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Abstract. We show that we can approximate every function f ∈ Ck(B1) by an s-harmonic func-
tion in B1 that vanishes outside a compact set.

That is, s-harmonic functions are dense inCkloc. This result is clearly in contrast with the rigidity
of harmonic functions in the classical case and can be viewed as a purely nonlocal feature.
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1. Introduction

It is a well-known fact that harmonic functions are very rigid. For instance, in dimen-
sion 1, they reduce to linear functions and, in any dimension, they never possess local
extrema.

The goal of this paper is to show that the situation for fractional harmonic functions
is completely different, namely one can fix any function in a given domain and find an
s-harmonic function1 arbitrarily close to it.

Heuristically speaking, the reason for this phenomenon is that while classical har-
monic functions are determined once their trace on the boundary is fixed, in the fractional
setting the operator sees all the data outside the domain. Hence, a careful choice of these
data allows an s-harmonic function to “bend up and down” basically without any restric-
tion.
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Università degli studi di Milano, Via Saldini 50, 20133 Milano, Italy, and
Istituto di Matematica Applicata e Tecnologie Informatiche, Consiglio Nazionale delle Ricerche,
Via Ferrata 1, 27100 Pavia, Italy, and Weierstraß Institut für Angewandte Analysis und Stochastik,
Mohrenstraße 39, 10117 Berlin, Germany; e-mail: enrico@mat.uniroma3.it

Mathematics Subject Classification (2010): 35R11, 60G22, 35A35, 34A08
1 Of course, we are saying here that a (say, bounded and smooth) function u is s-harmonic in a

domain � if (−1)su(x) = 0 for any x ∈ �.
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The rigorous statement of this fact is in the following Theorem 1.1. For this, we recall
that, given s ∈ (0, 1), the fractional Laplace operator of a function u is defined (up to a
normalizing constant) as

(−1)su(x) :=

∫
Rn

2u(x)− u(x + y)− u(x − y)
|y|n+2s dy.

We refer to [5, 9, 11, 12] for other equivalent definitions, motivations and applications.

Theorem 1.1. Fix k ∈ N. Then, given any function f ∈ Ck(B1) and any ε > 0, there
exist R > 1 and u ∈ H s(Rn) ∩ Cs(Rn) such that{

(−1)su = 0 in B1,

u = 0 in Rn \ BR

and
‖f − u‖Ck(B1)

≤ ε.

As usual, in Theorem 1.1, we have denoted by Ck(B1) the space of all the functions f :
B1 → R that possess an extension f̃ ∈ Ck(B1+µ) (i.e. f̃ = f in B1) for some µ > 0.

We also mention that an important rigidity feature for classical harmonic functions
is imposed by the Harnack inequality: if u is harmonic and nonnegative in B1 then u(x)
and u(y) are comparable for any x, y ∈ B1/2. A striking difference with the nonlocal
case is that this type of Harnack inequality fails for the fractional Laplacian (namely it is
necessary to require that u is nonnegative in the whole of Rn and not only in B1, see e.g.
[8, Theorem 2.2]). As an application of Theorem 1.1, we point out that one can construct
examples of s-harmonic functions with a “wild” behavior, that oscillate as many times as
we want, and reach interior extrema basically at any prescribed point. In particular, one
can construct s-harmonic functions to be used as barriers basically without any geometric
restriction.

As a further observation, we would like to stress that, while Theorem 1.1 reveals a
purely nonlocal phenomenon, a similar result does not hold for any nonlocal operator.
For instance, it is not possible to replace the sentence “any fuction is locally s-harmonic
up to a small error” with “any surface is locally a nonlocal minimal surface up to a small
error”, that is, it is not true that any surface may be locally approximated by nonlocal
minimal surfaces. Indeed, the uniform density estimates satisfied by nonlocal minimal
surfaces impose severe geometric restrictions that prevent the formation of sharp edges
and thin spikes.

We refer to [3] for the definition of nonlocal minimal surfaces and for their density
properties; as a matter of fact, one of the consequences of Theorem 1.1 is that density
properties do not hold true for nonlocal minimal surfaces, so s-harmonic functions and
nonlocal minimal surfaces may have very different behaviors.

Finally, we would like to point out that, while Theorem 1.1 states that “up to a small
error, all functions are s-harmonic”, it is not true that “all functions are s-harmonic”
(or, more precisely, that any given function, say in B1, may be conveniently extended
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outside B1 to make it s-harmonic near the origin). For instance, a function that vanishes
on an open subset ofB1 cannot be extended to a function that is s-harmonic inB1, unless it
vanishes identically, in view of the Unique Continuation Principle (see [7]). This provides
an example of a function which is not s-harmonic in B1 (but, by Theorem 1.1, may be
arbitrarily well approximated by s-harmonic functions).

We think that it is an interesting problem to determine whether a density result as
in Theorem 1.1 holds true under additional assumptions on the function u: for instance,
whether one can also require that u is supported in a ball of universal radius (i.e. indepen-
dent of ε) or whether one can have meaningful bounds on its global norms. Moreover, it
would be interesting to find constructive and efficient algorithms to explicitly determine u.

The proof of Theorem 1.1 can be summarized in three steps:

• One may reduce to the case in which f is a polynomial, by density in Ck(B1), and so
to the case in which f is a monomial, by the linearity of the operator. Therefore, it is
enough to find an s-harmonic function that approximates xβ/β! in Ck(B1).
• One can construct an s-harmonic function v with an arbitrarily large number of deriva-

tives prescribed at a given point; in particular, one obtains an s-harmonic function that
has the same derivatives as xβ/β! up to order |β| at the origin (this is indeed the main
step needed for the proof).
• One can rescale the function v above by preserving the derivatives of order |β| at the

origin. By this rescaling, the higher order derivatives (of order between |β|+1 and k) go
to zero and so they become a better and better approximation of the higher derivatives
of xβ/β!, which establishes Theorem 1.1.

The rest of the paper is organized as follows. In Section 2 we collect some preliminary re-
sults, such as a (probably well-known) generalization of the Stone–Weierstrass Theorem
and the construction of an s-harmonic function in B1 that has a well-defined growth from
the boundary. Then, in Section 3, we construct an s-harmonic function with an arbitrarily
large number of derivatives prescribed. This is, in a sense, already the core of our argu-
ment, since these types of properties are typical for the fractional case and do not hold for
classical harmonic functions. Also, from this result, the proof of Theorem 1.1 will follow
via scaling and approximation.

We refer to [2] for recent results in the spirit of this paper dealing with processes with
memory. See also [6] for recent results concerning approximation of arbitrary functions
by solutions of very general linear nonlocal equations.

2. Preliminary observations

In this section we collect some auxiliary results that will be needed in the rest of the paper.
First of all, we recall a version of the Stone–Weierstrass Theorem for smooth func-

tions. We give a quick proof since in general this result is presented only in the continuous
setting.

Lemma 2.1. For any f ∈ Ck(B1) and any ε > 0 there exists a polynomial P such
that ‖f − P ‖Ck(B1)

≤ ε.
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Proof. Without loss of generality we may suppose that f ∈ Ck0 (B2). Also, given ε > 0,
we fix R > 0 such that ∫

Rn\BR
e−|x|

2
dx ≤ ε. (1)

Then we fix η > 0, to be taken arbitrarily small (possibly in dependence on ε and R,
which are fixed once and for all), and we take Jη ∈ N large enough such that

∑
j>Jη

(−1)j

j !ηj
≤ e−1/η. (2)

Let also

Q(x) := (πη)−n/2
Jη∑
j=0

(−1)j |x|2j

j !ηj
,

P (x) :=

∫
Rn
f (y)Q(x − y) dy,

G(x) := (πη)−n/2e−|x|
2/η.

We remark that Q is a polynomial in x, hence so is P . Moreover, by Taylor expansion,

G(x) = Q(x)+ (πη)−n/2
∑
j>Jη

(−1)j |x|2j

j !ηj
,

and so, using (2), we conclude that, for any x ∈ B3,

|G(x)−Q(x)| ≤ e−1/
√
η, (3)

provided that η is sufficiently small.
Now we recall (1) and we observe that, for any α ∈ Nn with |α| ≤ k and any x ∈ B1,

|Dα(G ∗ f )(x)−Dαf (x)| =

∣∣∣∣∫
Rn
G(y)

(
Dαf (x − y)−Dαf (x)

)
dy

∣∣∣∣
≤ π−n/2

∫
Rn
e−|z|

2
|Dαf (x −

√
η z)−Dαf (x)| dz

≤ 2π−n/2ε‖f ‖Ck(Rn) + π
−n/2

∫
BR

e−|z|
2
|Dαf (x −

√
η z)−Dαf (x)| dz

≤ C
(
ε + Rn sup

z∈BR

|Dαf (x −
√
η z)−Dαf (x)|

)
for some C > 0. Now, if η is sufficiently small, we have

sup
|x−y|≤

√
η R

|Dαf (x)−Dαf (y)| ≤ R−nε,
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and we conclude that
|Dα(G ∗ f )(x)−Dαf (x)| ≤ Cε (4)

for any α ∈ Nn with |α| ≤ k and any x ∈ B1, for a suitable C > 0.
Furthermore, using (3) we see that, for any α ∈ Nn with |α| ≤ k and any x ∈ B1,

|Dα(G ∗ f )(x)−DαP(x)| = |Dα(G ∗ f )(x)−Dα(Q ∗ f )(x)|

=

∣∣∣∣∫
B3

(G(y)−Q(y))Dαf (x − y) dy

∣∣∣∣
≤ C‖f ‖Ck(Rn)e

−1/
√
η
≤ ε,

as long as η is small enough. From this and (4) we obtain

‖f − P ‖Ck(Rn) ≤ ‖f − (G ∗ f )‖Ck(Rn) + ‖(G ∗ f )− P ‖Ck(Rn) ≤ Cε

for some C > 0, which is the desired result, up to renaming ε. ut

Now, we construct an s-harmonic function in B1 that has a well-defined growth close to
the boundary:

Lemma 2.2. Let ψ̄ ∈ C∞(R, [0, 1]) be such that ψ̄(t) = 0 for any t ∈ R \ (2, 3)
and ψ̄(t) > 0 for any t ∈ (2, 3). Let ψ0(x) := ψ̄(|x|) and ψ ∈ H s(Rn) ∩ Cs(Rn) be the
solution of {

(−1)sψ = 0 in B1,

ψ = ψ0 in Rn \ B1.

Then, if x ∈ ∂B1−ε , we have

ψ(x) = κεs + o(εs) (5)

as ε → 0+, for some κ > 0.

Proof. We notice that the function ψ ∈ H s(Rn)may be constructed by the direct method
of the calculus of variations, and also ψ ∈ Cs(Rn) (see e.g. [10]).

Also, we use the Poisson kernel representation (see e.g. [1,9]) to write, for any x ∈ B1,

ψ(x) = c

∫
Rn\B1

ψ0(y)(1− |x|2)s

(|y|2 − 1)s |x − y|n
dy

= c(1− |x|2)s
∫ 3

2

[∫
Sn−1

ρn−1ψ̄(ρ)

(ρ2 − 1)s |x − ρω|n
dω

]
dρ

for some c > 0. Now we take x ∈ B1 with |x| = 1− ε, and we obtain

ψ(x) = c(2ε − ε2)s
∫ 3

2

[∫
Sn−1

ρn−1ψ̄(ρ)

(ρ2 − 1)s |(1− ε)e1 − ρω|n
dω

]
dρ

= 2scεs
∫ 3

2

[∫
Sn−1

ρn−1ψ̄(ρ)

(ρ2 − 1)s |e1 − ρω|n
dω

]
dρ + o(εs) = κεs + o(εs)

for some κ > 0, as desired. ut
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We observe that alternative proofs of Lemma 2.2 may be obtained from a boundary Har-
nack inequality in the extended problem and from explicit barriers (see [4, 10]).

By blowing up the functions constructed in Lemma 2.2 we obtain the existence of a
sequence of s-harmonic functions approaching (x · e)s+ for a fixed unit vector e, as stated
below:

Corollary 2.3. For a fixed e ∈ ∂B1, there exists a sequence of functions ve,j ∈ H s(Rn)∩
Cs(Rn) such that (−1)sve,j = 0 in B1(e), ve,j = 0 in Rn \ B4j (e), and

ve,j (x)→ κ(x · e)s+ in L1(B1(e))

as j →∞, for some κ > 0.

Proof. Let ψ be as in Lemma 2.2 and

ve,j (x) := j
sψ(j−1x − e).

The s-harmonicity of ve,j and the property of its support can be derived from those of ψ .
We now prove the convergence. For this, given x ∈ B1(e) we write pj := j−1x − e

and εj := 1− |pj | = 1− |j−1x − e|. We remark that

1 > |x − e|2 = |x|2 − 2x · e + 1,

which implies that

|x|2 < 2x · e and x · e > 0 for all x ∈ B1(e). (6)

As a consequence,

|pj |
2
= |j−1x − e|2 = j−2

|x|2 + 1− 2j−1x · e = 1− 2j−1(x · e)+ + o(j
−1)(x · e)2+,

and so

εj = j
−1(1+ o(1))(x · e)+.

Therefore, using (5), we have

ve,j (x) = j
sψ(pj ) = j

s(κεsj + o(ε
s
j ))

= j s
(
κj−s(x · e)s+ + o(j

−s)
)

= κ(x · e)s+ + o(1).

Integrating over B1(e) we obtain the desired convergence. ut
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3. Spanning the derivative of a function and proof of Theorem 1.1

The main result of this section is that we can find an s-harmonic function with an arbitrar-
ily large number of derivatives prescribed. That is, we can arbitrarily prescribe the Taylor
polynomial of s-harmonic functions (in sharp contrast to the case of classical harmonic
functions, in which the Hessian must be of trace zero). This feature will be accomplished
by a “vector space” procedure on a suitable “germ space”: hence, in light of the method
exploited in this linear space, we say, with some abuse of terminology, that we “span” the
derivatives with s-harmonic functions.

To this end, we use the standard norm notation |α| := α1 + · · · + αn for a multiin-
dex α = (α1, . . . , αn) ∈ Nn.

Theorem 3.1. For any β ∈ Nn there existR > r > 0, p ∈ Rn, and v ∈ H s(Rn)∩Cs(Rn)
such that {

(−1)sv = 0 in Br(p),
v = 0 in Rn \ BR(p),

(7)

Dαv(p) = 0 for any α ∈ Nn with |α| ≤ |β| − 1, (8)
Dαv(p) = 0 for any α ∈ Nn with |α| = |β| and α 6= β, (9)

Dβv(p) = 1. (10)

Proof. We denote by Z the set containing the couples (v, x) of all functions v ∈
H s(Rn)∩Cs(Rn) and points x ∈ Br(p) that satisfy (7) for some R > r > 0 and p ∈ Rn.

We let

N :=

|β|∑
j=0

nj .

To any (v, x) ∈ Z we can associate a vector in RN by listing all the derivatives of v up to
order |β| evaluated at x, that is,

(Dαv(x))|α|≤|β| ∈ RN .

We claim that the vector space spanned by this construction exhausts RN (if we prove this,
then we obtain (8)–(10) by writing the vector with entry 1 when α = β and 0 otherwise
as a linear combination of the above functions).

To reach a contradiction, assume that the vector space above does not exhaust RN ,
that is, there exists c = (cα)|α|≤|β| ∈ RN \ {0} such that∑

|α|≤|β|

cαD
αv(x) = 0 (11)

for any (v, x) ∈ Z .
We observe that the couple (ve,j , x) with ve,j given by Corollary 2.3 and x ∈ B1(e)

belongs to Z . Therefore, for any ξ ∈ Rn \B1/2 and e := ξ/|ξ |, (11) holds when v := ve,j
and x ∈ B1(e).



964 Serena Dipierro et al.

Accordingly, for every ϕ ∈ C∞0 (B1(e)), we use integration by parts and the conver-
gence result in Corollary 2.3 to obtain

0 = lim
j→∞

∫
Rn

∑
|α|≤|β|

cαD
αve,j (x) ϕ(x) dx

= lim
j→∞

∫
Rn

∑
|α|≤|β|

(−1)|α|cαve,j (x)Dαϕ(x) dx

= κ

∫
Rn

∑
|α|≤|β|

(−1)|α|cα(x · e)s+D
αϕ(x) dx

= κ

∫
Rn

∑
|α|≤|β|

cαD
α(x · e)s+ϕ(x) dx.

Consequently, for any x ∈ B1(e),∑
|α|≤|β|

cαD
α(x · e)s+ = 0. (12)

Recalling (6), we observe that, for any x ∈ B1(e),

Dα(x · e)s+ = s(s − 1) . . . (s − |α| + 1)(x · e)s−|α|+ e
α1
1 . . . eαnn .

So we take x := e/|ξ | ∈ B1(e), and we obtain

Dα(x · e)s+|x=e/|ξ | = s(s − 1) . . . (s − |α| + 1)|ξ |−sξα1
1 . . . ξαnn .

Hence we can write (12) as∑
|α|≤|β|

cαs(s − 1) . . . (s − |α| + 1)ξα = 0 (13)

for any ξ ∈ Rn \ B1/2. Now, (13) says that a polynomial in the variable ξ is identically
equal to 0 in an open subset of Rn, so all of its coefficients must vanish:

s(s − 1) . . . (s − |α| + 1)cα = 0 (14)

for any |α| ≤ |β|. Notice that none of the factors s, (s − 1), . . . , (s − |α| + 1) vanishes
since s is not an integer. Hence cα = 0 for any |α| ≤ |β|, that is, c = 0, contrary to our
assumption. ut

We stress that Theorem 3.1 reflects a purely nonlocal feature. Indeed, in the local case
(i.e. when s = 1) the statement of Theorem 3.1 would be clearly false when |m| ≥ 2,
since the sum of the pure second derivatives of any harmonic function must vanish and
cannot sum up to 1.

With the aid of Theorem 3.1, we can now complete the proof of Theorem 1.1:
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Proof of Theorem 1.1. By Lemma 2.1, we can limit ourselves to the case in which f is
a polynomial, and the linearity of the fractional Laplace operator allows us to reduce the
argument to the case where f is a monomial, say

f (x) = xβ/β!

for some β ∈ Nn. Then we take v as in Theorem 3.1 and we define

uη(x) := η
−|β|v(ηx + p),

with η ∈ (0, 1/2) to be taken conveniently small (in dependence on ε that is fixed in the
statement of Theorem 1.1).

For simplicity, the function uη will be called just u; it will give, for a suitable choice
of η, the function seeked in the statement of Theorem 1.1.

Let also g(x) := u(x) − f (x) = u(x) − (β!)−1xβ . By Theorem 3.1 we know that
Dαg(0) = 0 for any α ∈ Nn with |α| ≤ |β|. Furthermore, if |α| ≥ |β| + 1, then

|Dαg(x)| = η|α|−|β||Dαv(ηx + p)| ≤ C|α|η‖v‖C|α|(B1/2(p))

for any x ∈ B1, with some C|α| > 0. As a consequence, defining k′ := k + |β| + 1 and
fixing any γ ∈ Nn with |γ | ≤ k′−1 and any x ∈ B1, we deduce by Taylor expansion that

Dγ g(x) =
∑

|β|+1≤|γ |+|α|≤k′−1

Dγ+αg(0)
α!

xα+
∑

|γ |+|α|=k′

k′

α!

∫ 1

0
(1−t)k

′
−1Dγ+αg(tx) dt xα,

and so |Dγ g(x)| ≤ Cη, with C > 0 possibly depending also on v.
Since this is valid for any x ∈ B1, we obtain

‖u− f ‖Ck(B1)
= ‖g‖Ck(B1)

≤ ‖g‖
Ck
′−1(B1)

≤ Cη

for some C > 0, which implies the statement of Theorem 1.1 as long as η ∈ (0, C−1ε).
ut
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