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Abstract. We show that if � ⊂ Rn+1, n ≥ 1, is a uniform domain (also known as a 1-sided
NTA domain), i.e., a domain which enjoys interior corkscrew and Harnack chain conditions, then
uniform rectifiability of the boundary of � implies the existence of exterior corkscrew points at
all scales, so that in fact, � is a chord-arc domain, i.e., a domain with an Ahlfors–David regular
boundary which satisfies both interior and exterior corkscrew conditions, and an interior Harnack
chain condition. We discuss some implications of this result for theorems of F. and M. Riesz type,
and for certain free boundary problems.

Keywords. Chord-arc domains, NTA domains, 1-sided NTA domains, uniform domains, uniform
rectifiability, Carleson measures, harmonic measure, A∞ Muckenhoupt weights

1. Introduction and statement of main result

An NTA (Non-Tangentially Accessible) domain � is one which enjoys an interior Har-
nack chain condition, as well as interior and exterior corkscrew conditions (see Defini-
tions 2.10, 2.11, and 2.16 below). This notion was introduced in [JK], and has found
numerous applications in the theory of elliptic equations and free boundary problems.
A chord-arc domain is an NTA domain whose boundary is Ahlfors–David regular (ADR)
(see Definition 2.1 below).

A 1-sided NTA domain (also known as a uniform domain in the literature) satisfies
interior corkscrew and Harnack chain conditions, but one imposes no assumptions on
the exterior domain �ext := Rn+1

\ �. A 1-sided chord-arc domain is a 1-sided NTA
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domain with an ADR boundary. In general, the 1-sided conditions are strictly weaker than
their standard counterparts: for example, the domain � = R2

\ K , where K is Garnett’s
“4-corners Cantor set” (see, e.g., [DS2]), is a 1-sided chord-arc domain, but� = R2, thus
there is no exterior domain.

The various versions of non-tangential accessibility have been studied in connec-
tion with quantitative analogues of the F. and M. Riesz Theorem [RR], in which one
obtains scale invariant absolute continuity (e.g., the A∞ condition of Muckenhoupt, or
more generally, weak-A∞) of harmonic measure ω with respect to surface measure on
the boundary, given some quantitative rectifiability property of the boundary, along with
some quantitative connectivity hypothesis on �. This has been done in two dimensions
by M. Lavrentiev [Lav], and in higher dimensions, for Lipschitz domains by B. Dahlberg
[Dah]; for chord-arc domains by G. David and D. Jerison [DJ], and independently by
S. Semmes [Sem]; for NTA domains without an ADR hypothesis by M. Badger [Bad];
for the Riesz measure associated to the p-Laplacian in chord-arc domains, by J. Lewis
and the fourth named author of this paper [LN]; for domains with ADR boundaries, sat-
isfying an “interior big pieces of Lipschitz subdomains” condition, by B. Bennewitz and
J. Lewis [BL]; and for 1-sided chord-arc domains with uniformly rectifiable boundaries
(see Definition 2.3 below), by the second and third named authors of this paper [HM]. In
addition, the second and third authors of this paper, jointly with I. Uriarte-Tuero [HMU],
have obtained a free boundary result that is a converse to the theorem of [HM], in which
scale invariant absolute continuity of harmonic measure with respect to surface mea-
sure, in the presence of the 1-sided chord-arc condition, implies uniform rectifiability
of ∂�.

It turns out, perhaps surprisingly, in light of the counter-example of T. Hrycak (see
[DS2]), that the result of [HM] may be subsumed in that of [DJ] and [Sem], while on the
other hand, the free boundary result of [HMU] is stronger than the authors had initially
realized. Our main result in this paper is the following.

Theorem 1.1. Suppose that � ⊂ Rn+1 is a uniform (i.e., 1-sided NTA) domain, and that
∂� is uniformly rectifiable. Then � is a chord-arc domain.

Let us point out that both of our hypotheses are essential, in the sense that neither one,
alone, allows one to draw the stated conclusion. Indeed, as we have noted above, a 1-sided
NTA domain, with ADR boundary, need not be NTA in general: in fact there may be no
exterior domain. On the other hand, Hrycak’s example shows that uniform rectifiability,
in general, is strictly weaker than a “Big Pieces of Lipschitz Graphs” condition1, whereas
the latter property is enjoyed by boundaries of chord-arc domains, by the main geometric
result of [DJ].

Theorem 1.1, combined with previous work mentioned above, has implications for
theorems of F. and M. Riesz type, and for certain free boundary problems. We now have
the following.

1 However, as shown by the first named author of this paper and R. Schul [AS], uniform rectifia-
bility is equivalent to a “Big Pieces of Big Pieces of Lipschitz Graphs” condition.
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Theorem 1.2. Suppose that � ⊂ Rn+1 is a uniform (i.e., 1-sided NTA) domain whose
boundary is Ahlfors–David regular. Then the following are equivalent:

(1) ∂� is uniformly rectifiable.
(2) � is an NTA domain, and hence a chord-arc domain.
(3) ω ∈ A∞.
(4) ω ∈ weak-A∞.

Here ω denotes generic harmonic measure for �, and statements (3) and (4) are under-
stood in a scale invariant sense (see, e.g., [HM, HMU]). That (2) implies (3) was proved
in [DJ], and independently in [Sem]; it is of course trivial that (3) implies (4), while (4)
implies (1) is the main result of [HMU]. Theorem 1.1 closes the circle by establishing
that (1) implies (2). In particular, this yields a sharpened version of the free boundary
result of [HMU], namely, we now find that (4) implies (2), under the stated background
hypotheses.

In connection with the previous result we recall the David–Semmes conjecture re-
cently proved in [NTV] (see also [HMM] for the case of a boundary of a 1-sided NTA
domain with ADR boundary) which establishes that uniform rectifiability is equivalent to
the boundedness of the Riesz transform. Hence Theorem 1.1 implies that, under the same
background hypothesis, the Riesz transform is bounded on L2(∂�) if and only if � is an
NTA domain and consequently a chord-arc domain.

In Section 2, we establish notation and review some necessary definitions and prelim-
inary results. In particular, we recall two different characterizations of uniform rectifiabil-
ity, one analytic and the other geometric. In Sections 3 and 4, we give two separate proofs
of Theorem 1.1, each one using a different characterization. Finally, in an appendix, we
provide the proof of a folklore theorem concerning the equivalence of 1-sided NTA and
uniform domains.

2. Preliminaries

2.1. Notation and conventions

• We use the letters c, C to denote harmless positive constants, not necessarily the same
at each occurrence, which depend only on dimension and the constants appearing in
the hypotheses of the theorems. We shall also sometimes write a . b and a ≈ b to
mean, respectively, that a ≤ Cb and 0 < c ≤ a/b ≤ C, where the constants c and C
are as above, unless explicitly noted to the contrary. Unless otherwise specified, upper
case constants are greater than 1 and lower case constants are smaller than 1.
• Given a domain� ⊂ Rn+1, we shall use lower case letters x, y, z, etc., to denote points

on ∂�, and capital letters X, Y,Z, etc., to denote generic points in Rn+1 (especially
those in Rn+1

\ ∂�).
• The open (n+ 1)-dimensional Euclidean ball of radius r will be denoted B(x, r) when
x lies on ∂�, or B(X, r) when the center X is in Rn+1

\ ∂�. A surface ball is denoted
1(x, r) := B(x, r) ∩ ∂�.
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• If ∂� is bounded, it is always understood (unless otherwise specified) that all surface
balls have radii controlled by the diameter of ∂�, that is, if 1 = 1(x, r) then r .
diam(∂�). Note that in this way 1 = ∂� if diam(∂�) < r . diam(∂�).
• For X ∈ Rn+1, we set δ(X) := dist(X, ∂�).
• We let H n denote n-dimensional Hausdorff measure, and let σ := H n

|∂� denote the
surface measure on ∂�.
• For a Borel set A ⊂ Rn+1, we let 1A denote the usual indicator function of A, i.e.

1A(x) = 1 if x ∈ A, and 1A(x) = 0 if x /∈ A.
• We shall use the letter I (and sometimes J ) to denote a closed (n + 1)-dimensional

Euclidean cube with sides parallel to the coordinate axes, and we write `(I ) for the
side length of I . We use Q to denote a dyadic “cube” on ∂�. The latter exist, given
that ∂� is ADR (cf. [DS1], [Chr]), and enjoy certain properties which we enumerate
in Lemma 2.18 below.

2.2. Some definitions

Definition 2.1 (Ahlfors–David regular). We say that a closed set E ⊂ Rn+1 is n-dimen-
sional ADR (or simply ADR) (Ahlfors–David regular) if there is a uniform constant C
such that

1
C
rn ≤ H n(E ∩ B(x, r)) ≤ Crn, ∀r ∈ (0, R0), x ∈ E, (2.2)

where R0 is the diameter of E (which may be infinite).

Definition 2.3 (Uniform rectifiability). Following David and Semmes [DS1], [DS2], we
say that a closed set E ⊂ Rn+1 is n-dimensional UR (or simply UR) (uniformly rectifi-
able) if it satisfies the ADR condition (2.2), and if for some uniform constant C and for
every Euclidean ball B := B(x0, r) with r ≤ diam(E), centered at any point x0 ∈ E, we
have the Carleson measure estimate∫∫

B

|∇
2S1(X)|2 dist(X,E) dX ≤ Crn, (2.4)

where Sf is the harmonic single layer potential of f , i.e.,

Sf (X) := cn
∫
E

|X − y|1−nf (y) dH n(y). (2.5)

Here, the normalizing constant cn is chosen so that E(X) := cn|X|1−n is the usual fun-
damental solution for the Laplacian in Rn+1 (one should use a logarithmic potential in
ambient dimension n+ 1 = 2).

A geometric characterization of uniform rectifiability can be given in terms of the so
called bilateral β-numbers. For x ∈ E, a hyperplane P , and r > 0 we set

bβE(x, r, P ) = r
−1
(

sup
y∈E∩B(x,r)

dist(y, P )+ sup
y∈P∩B(x,r)

dist(y, E)
)
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and then define
bβE(x, r) = inf

P
bβE(x, r, P )

where the infimum is over all n-dimensional hyperplanes P ⊆ Rn+1.

Definition 2.6 (BWGL). We say that an n-dimensional ADR setE satisfies the bilateral
weak geometric lemma or BWGL if, for each ε > 0, the set

B̂ε := {(x, r) : x ∈ E, r > 0, bβE(x, r) ≥ ε}

is a Carleson set, i.e., there is C1 > 0 such that if we define

σ̂ (A) =

∫∫
A

dH n dt

t
, A ⊂ E × (0,∞),

then
σ̂
(
B̂ε ∩ (B(x, r)× (0, r))

)
≤ C1r

n (2.7)

for all x ∈ E and r > 0.

Theorem 2.8 ([DS2, Theorem 2.4, Part I]). An n-dimensional ADR set E is uniformly
rectifiable if and only if it satisfies the BWGL.

Remark 2.9. We note that there are numerous characterizations of uniform rectifiability
given in [DS1, DS2]; the two stated above will be most useful for our purposes, and
appear in [DS2, Chapter 2, Part I] and [DS2, Chapter 3, Part III].

We recall that the UR sets are precisely those for which all “sufficiently nice” singular
integrals are bounded on L2 (see [DS1]). We further remark that uniform rectifiability
is the scale invariant version of rectifiability: in particular, BWGL may be viewed as a
quantitative version of the characterization of rectifiable sets in terms of the existence a.e.
of approximate tangent planes. In this context, see also [Jo1].

Definition 2.10 (Corkscrew condition). Following [JK], we say that a domain�⊂Rn+1

satisfies the corkscrew condition if for some uniform constant c > 0 and for every surface
ball 1 := 1(x, r) with x ∈ ∂� and 0 < r < diam(∂�), there is a ball B(X1, cr)
contained in B(x, r)∩�. The point X1 ∈ � is called a corkscrew point relative to 1 (or
relative to B). We note that we may allow r < C diam(∂�) for any fixed C, simply by
adjusting the constant c.

Definition 2.11 (Harnack chain condition). Again following [JK], we say that � sat-
isfies the Harnack chain condition if there is a uniform constant C such that for every
ρ > 0 and 3 ≥ 1, and every pair of points X,X′ ∈ � with δ(X), δ(X′) ≥ ρ and
|X − X′| < 3ρ, there is a chain of open balls B1, . . . , BN ⊂ �, N ≤ C(3), with
X ∈ B1, X

′
∈ BN , Bk ∩ Bk+1 6= ∅ and C−1 diam(Bk) ≤ dist(Bk, ∂�) ≤ C diam(Bk).

The chain of balls is called a Harnack chain.

Definition 2.12 (1-sided NTA). If � satisfies both the corkscrew and Harnack chain
conditions, then we say that � is a 1-sided NTA domain.
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Remark 2.13. We observe that the 1-sided NTA condition is a quantitative connectivity
condition.

An alternative (and quantitatively equivalent) definition is as follows.

Definition 2.14 (Uniform domain). For 0 < c < 1 < C, we say that an open set
� ⊆ Rn+1 is a (c, C)-uniform domain if, for any two points X, Y ∈ �, there is a path γ
such that

(1) `(γ ) ≤ C|X − Y |, where `(γ ) denotes the length of γ , and
(2) δ(Z) ≥ c dist(Z, {X, Y }) for any Z ∈ γ .

We call such a curve a good curve for X and Y .

It is well known that Definitions 2.12 and 2.14 are equivalent, nevertheless finding a
precise reference is difficult. That every uniform domain is a 1-sided NTA domain was
proved by Gehring and Osgood [GO]. Indeed, the extension domains of P. Jones [Jo2]
are clearly 1-sided NTA by definition, while in [GO], the authors prove that extension
domains are the same as uniform domains (see also [Väi]). For a more direct proof of the
fact that uniform domains are 1-sided NTA domains, see [BS, Lemmas 4.2 and 4.3 and
their proofs]. For completeness, we include the converse implication below.

Theorem 2.15. If� is a 1-sided NTA domain then� is a uniform domain with constants
that only depend on the 1-sided NTA constants.

We defer the proof of Theorem 2.15 to an appendix.

Definition 2.16 (NTA domain). Following [JK], we say that a domain � is an NTA do-
main if it is a 1-sided NTA domain and in addition �ext := Rn+1

\ � also satisfies the
corkscrew condition.

Definition 2.17 (Chord-arc domain). � is a chord-arc domain if it is an NTA domain
with ADR boundary.

2.3. Dyadic grids

Lemma 2.18 (Existence and properties of the “dyadic grid” [DS1, DS2], [Chr]). Sup-
pose that E ⊂ Rn+1 satisfies the ADR condition (2.2). Then there exist constants a0 > 0,
η > 0 and C1 < ∞, depending only on dimension and the ADR constants, such that for
each k ∈ Z, there is a collection of Borel sets (“cubes”)

Dk := {Qk
j ⊂ E : j ∈ Ik},

where Ik denotes some (possibly finite) index set depending on k, satisfying:

(i) E =
⋃
j Q

k
j for each k ∈ Z.

(ii) If m ≥ k then either Qm
i ⊂ Q

k
j or Qm

i ∩Q
k
j = ∅.

(iii) For each (j, k) and each m < k, there is a unique i such that Qk
j ⊂ Q

m
i .
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(iv) diam(Qk
j ) ≤ C12−k .

(v) Each Qk
j contains some surface ball 1(xkj , a02−k) := B(xkj , a02−k) ∩ E.

(vi) H n({x ∈ Qk
j : dist(x, E \ Qk

j ) ≤ τ 2−k}) ≤ C1τ
ηH n(Qk

j ) for all k, j and τ ∈
(0, a0).

A few remarks concerning this lemma are in order.

• In the setting of a general space of homogeneous type, this lemma has been proved
by Christ [Chr], with the dyadic parameter 1/2 replaced by some constant δ ∈ (0, 1).
In fact, one may always take δ = 1/2 (cf. [HM+, proof of Proposition 2.12]). In the
presence of the Ahlfors–David property (2.2), the result already appears in [DS1, DS2].
• For our purposes, we may ignore those k ∈ Z such that 2−k & diam(E), in the case

where the latter is finite.
• We shall denote by D = D(E) the collection of all relevant Qk

j , i.e., D :=
⋃
k Dk ,

where, if diam(E) is finite, the union runs over those k such that 2−k . diam(E).
• Given a cube Q ∈ D, we set

DQ := {Q′ ∈ D : Q′ ⊆ Q}, (2.19)

• For a dyadic cubeQ ∈ Dk , we shall set `(Q) = 2−k , and we shall refer to this quantity
as the “length” of Q. Evidently, `(Q) ≈ diam(Q).
• Properties (iv) and (v) imply that for each cube Q ∈ Dk , there is a point xQ ∈ E, a

Euclidean ball B(xQ, rQ) and a surface ball 1(xQ, rQ) := B(xQ, rQ) ∩ E such that
c`(Q) ≤ rQ ≤ `(Q) for some uniform constant c > 0, and

1(xQ, 2rQ) ⊂ Q ⊂ 1(xQ, CrQ) (2.20)

for some uniform constant C. We shall denote this ball and surface ball by

BQ := B(xQ, rQ), 1Q := 1(xQ, rQ), (2.21)

and we shall refer to the point xQ as the “center” of Q.

It will be useful to dyadicize the corkscrew condition, and to specify precise corkscrew
constants. Let us now specialize to the case where E = ∂� is ADR, with � satisfying
the corkscrew condition. Given Q ∈ D(∂�), we shall sometimes refer to a “corkscrew
point relative to Q”, which we denote by XQ, and which we define to be the corkscrew
point X1 relative to the surface ball 1 := 1Q (see (2.20), (2.21) and Definition 2.10).
We note that

δ(XQ) ≈ dist(XQ,Q) ≈ diam(Q). (2.22)

Definition 2.23 (c0-exterior corkscrew condition). Fix a constant c0 ∈ (0, 1), and a do-
main � ⊂ Rn+1 with ADR boundary. We say that a cube Q ∈ D(∂�) satisfies the
the c0-exterior corkscrew condition if there is a point zQ ∈ 1Q and a point X−Q ∈
B(zQ, rQ/4)\� such that B(X−Q, c0 `(Q)) ⊂ B(zQ, rQ/4)\�, where1Q = 1(xQ, rQ)
is the surface ball defined above in (2.20)–(2.21).
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3. The analytic proof of Theorem 1.1

We suppose that � is a 1-sided NTA (i.e., uniform) domain, with uniformly rectifiable
boundary. It suffices to show that � satisfies an exterior corkscrew condition at all scales
(up to the diameter of ∂�).

To this end, we define a discrete measure m as follows. Let B = B(c0) denote the
collection of Q ∈ D(∂�) for which the c0-exterior corkscrew condition (see Definition
2.23) fails. Set

αQ :=

{
σ(Q) if Q ∈ B,
0 otherwise.

(3.1)

For any subcollection D′ ⊂ D(∂�), we set

m(D′) :=
∑
Q∈D′

αQ. (3.2)

We will prove, as a consequence of the UR and 1-sided NTA properties, that the
collection B satisfies a packing condition, i.e., that m is a discrete Carleson measure,
provided that c0 is small enough. More precisely, we have the following.

Lemma 3.3. Let� be a 1-sided NTA domain with UR boundary, and let B = B(c0) ⊂ D
be the collection defined above. Then there is a c0 sufficiently small such that the measure
m satisfies the packing condition

sup
Q∈D

m(DQ)
σ (Q)

= sup
Q∈D

1
σ(Q)

∑
Q′∈B:Q′⊂Q

σ(Q′) ≤ M1, (3.4)

where the constants c0 and M1 depend only upon dimension, and on the ADR/UR and
1-sided NTA constants.

Let us momentarily take the lemma for granted, and deduce the conclusion of Theorem
1.1. We fix a cube Q ∈ D(∂�), and we seek to show that �ext has a corkscrew point
relative toQ. Let1Q ⊂ Q denote the surface ball defined in (2.20)–(2.21), and letQ1 be
a subcube of Q of maximal size that is contained in 1Q. We then have `(Q1) ≥ c`(Q).
By (3.4) (applied to Q1) and the ADR condition, there is a constant c1, depending only
on M1 and the ADR constants, and a cube Q′ ∈ DQ1 \ B with `(Q′) ≥ c1`(Q). Since
Q′ /∈ B, it therefore enjoys the c0-exterior corkscrew condition, and hence so doesQ, but
with c0 replaced by c′0 = c0c1. Since every surface ball contains a cube of comparable
diameter, this means that there is an exterior corkscrew point relative to every surface ball
on the boundary, and therefore � is NTA, and hence chord-arc.

It remains to prove the lemma.

Proof of Lemma 3.3. We follow a related argument in [HM], which in turn uses an idea
from [DS2]. Let B denote the collection of Q ∈ D for which the c0-exterior corkscrew
condition (Definition 2.23) fails. We fix a cube Q ∈ B and a point zQ ∈ 1Q ⊂ Q, set
B = B(zQ, r/4) with r = rQ ≈ `(Q), and set 1 = B ∩ ∂�. Let 8 ∈ C∞0 (B) with
0 ≤ 8 ≤ 1, 8 ≡ 1 on (1/2)B, and ‖∇8‖∞ . r−1. Let L := − div ·∇ denote the
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usual Laplacian in Rn+1, and let S denote the single layer potential for L as in (2.5) with
E = ∂�. Since ∂� is ADR,

σ(1) ≈

∫
∂�

8dσ = 〈LS1,8〉 =
∫∫

Rn+1
(∇S1(X)− Eβ) · ∇8(X) dX

.
1
r

(∫∫
B\�

|∇S1(X)− Eβ| dX +
∫∫

B∩�

|∇S1(X)− Eβ| dX
)

=:
1
r
(I + II), (3.5)

where Eβ is a constant vector at our disposal. We let B∗ := κ0B be a concentric dilate of B
with κ0 a large constant (see [HM, (5.12)]), and set 1∗ := B∗ ∩ ∂�. As in the proof of
[HM, Lemma 5.10], we may choose Eβ so that

‖∇S1∂�\1∗ − Eβ‖L∞(B) ≤ C (3.6)

and

r−1
∫∫

B∩(�\6B,ε)

|∇S1(X)− Eβ| dX

≤ Cε r
n/2
(∫∫

UB,ε

|∇
2S1(X)|2δ(X) dX

)1/2

, (3.7)

where 6B,ε is a “border strip” of thickness Cεr , and UB,ε is a Whitney region with
εr . δ(X) ≈ dist(X,1) . r for all X ∈ UB,ε, with ε a small positive constant to be
chosen. In the language of [HM, Sections 4 and 5], 6B,ε = � \ �F(εr),Q with F = ∅,
UB,ε = �fat

F(εr),Q and Eβ is the average of ∇S1 on �F(εr),Q. We observe that (3.7) is
a consequence of a Poincaré inequality proved in [HM, Section 4]. Moreover, by [HM,
Lemma 5.1, Lemma 5.3, and Corollary 5.6], we have∫∫

B

|∇S11∗(X)|q dX ≤ Cq rn+1, 1 ≤ q < (n+ 1)/n, (3.8)

|6B,ε ∩ B| . εrn+1, (3.9)

and ∫∫
B∩6B,ε

|∇S11∗(X)| dX . εγ rn+1 (3.10)

for some fixed γ with 0 < γ < 1. Combining these facts, we see that

II/r . εγ σ(1)+ Cεσ(1)
1/2
(∫∫

UB,ε

|∇
2S1(X)|2δ(X) dX

)1/2

.

Furthermore, by [HM, Lemma 5.7], the failure of the c0-exterior corkscrew property im-
plies that

|B \�| . c0r
n+1.

Combining the latter fact with (3.6) and (3.8), we find that

I/r . c
1/q ′
0 σ(1).



976 Jonas Azzam et al.

If ε and c0 are chosen small enough, then the small terms may be hidden on the left hand
side of (3.5), to obtain

σ(1) .
∫∫

UB,ε

|∇
2S1(X)|2δ(X) dX. (3.11)

As observed above, the measure dm(X) := |∇2S1(X)|2δ(X)dX is a Carleson measure
in Rn+1

\∂�, since ∂� is UR (see (2.4)). Moreover, for the various balls B = B(zQ, r/4)
under consideration, the Whitney regions UB,ε have bounded overlaps, since each such
region is associated to a cube Q with `(Q) ≈ r , and B ∩ ∂� ⊂ Q (in the language of
[HM, Sections 3 and 4], UB,ε is a union of fattened Whitney boxes meeting B∗ whose
side length is of the order of `(Q)). In addition,

σ(Q) . σ(1).

Combining these observations with (3.11), we obtain the desired packing condition. ut

4. The geometric proof of Theorem 1.1

Suppose � is a (c, C)-uniform domain with ADR boundary E := ∂�. As mentioned
earlier, this is equivalent to being 1-sided NTA, so in particular we will also use the fact
that � satisfies the corkscrew condition of Definition 2.10. We can assume, by making
numbers smaller if need be, that the constant c in the definition of the corkscrew condition
is the same as in our definition of (c, C)-uniform domains.

Lemma 4.1. There is ε > 0 depending only on c and C such that the following holds.
Suppose x ∈ ∂�, r ∈ (0, diam(∂�)), and P is a hyperplane such that bβE(x, r, P ) < ε.
Let vP be a unit vector orthogonal to P . Define

B±(x, r) = B(x, r) ∩ {x + y : ±y · vP > εr} ⊆ Rn+1
\ ∂�.

Then exactly one of B±(x, r) is contained in �ext, and the other is contained in �.

We assume Lemma 4.1 for the moment and complete the proof of Theorem 1.1. Fix ε > 0
as in Lemma 4.1 and let B = B(x, r) with x ∈ E and r < diam(∂�). Our aim is to show
that B contains an exterior corkscrew. Set (1/2)1 = 1(x, r/2). By Definition 2.6 and
Theorem 2.8, there is C1 (depending on ε) such that (2.7) holds. If we set

ρ = sup{s < r/2 : ∃y ∈ (1/2)1, (y, s) 6∈ B̂ε},

then

C1
rn

2n
≥ σ̂

(
B̂ε ∩ (1/2)1× (0, r/2)

)
≥ σ̂

(
(1/2)1× (ρ, r/2)

)
= σ

(
(1/2)1

)
log

r

2ρ
≥ C−1 r

n

2n
log

r

2ρ
,

where C−1 is the constant from (2.2). Thus ρ ≈ r (with implicit constants depending on ε
and n), hence we may find x1 ∈ (1/2)1 and r . r1 ≤ r/2 such that B(x1, r1) ⊆ B(x, r)

and bβE(x1, r1) < ε. Lemma 4.1 and the fact that r1 ≈ r imply that B has an exterior
corkscrew, and this finishes the proof of Theorem 1.1.
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Next we prove Lemma 4.1.

Proof of Lemma 4.1. Let k = 1/(2C + 1), X± = x ± krvP /2, and ε < ck/4, so that
X± ∈ Rn+1

\ ∂�. We will often use the fact that k < 1.

Claim. At least one of X± is in �ext.

Indeed, assume on the contrary that both points are in �. Then there is a good curve
γ ⊆ � connecting X± such that

diam(γ ) ≤ `(γ ) ≤ C|X+ −X−| = Ckr.

By our choice of k, and since X+ ∈ γ , this implies that

γ ⊆ B(X+, Ckr) ⊆ B(x, kr(C + 1/2)) ⊆ B(x, r).

Furthermore, by condition (2) in Definition 2.14 there must exist Z ∈ γ ∩ P ∩ B(x, r)
such that

min{|Z −X+|, |Z −X−|} ≤ δ(Z)/c ≤ εr/c.

Assume |Z − X+| ≤ |Z − X−| and let x′ denote the orthogonal projection of x onto P .
Then

εr/c ≥ |X+ − Z| ≥ |X+ − x′| ≥ |X+ − x| − |x − x′| ≥ kr/2− εr > kr/4,

which is a contradiction since ε < ck/4. This proves the claim.

We have proved that either X+ or X− belong to �ext. Suppose for instance that
X− ∈ �ext. Note that B−(x, r) ⊆ �ext since B−(x, r) is connected, contains X−,
and does not intersect ∂� (because bβE(x, r) < ε). Similarly B+(x, r) ∩ ∂� = ∅.
To show that B+(x, r) is contained in�, we recall that, by the corkscrew condition, there
is X1 ∈ B(x, r) ∩ � such that B(X1, cr) ⊆ B(x, r) ∩ �. Since ε < ck/4 < c/4, we
know that B(X1, cr) must intersect either B+(x, r) or B−(x, r). Since it is contained
in�, it cannot hit B−(x, r), thus it must intersect B+(x, r). Since B+(x, r) is connected,
B+(x, r) must also be contained in �, and this completes the proof. Note that, as far as
Theorem 1.1 is concerned, what is more relevant to us is that B−(x, r) ⊆ �ext, but we
have shown B+(x, r) ⊆ � for the sake of completeness. A similar argument appears in
[Dav, proof of Theorem 1.18]. ut

Appendix. Proof of Theorem 2.15

Lemma A.1. Let X,X′ ∈ �, ρ := min{δ(X), δ(X′)}, and |X − X′| ≤ 3ρ. Let
B1, . . . , BN withN ≤ C(3) be a Harnack chain withX ∈ B1, X

′
∈ BN , Bk ∩Bk+1 6= ∅

and C−1
0 diam(Bk) ≤ dist(Bk, ∂�) ≤ C0 diam(Bk). Then diam(Bj ) ≈ ρ with constants

depending only on 3 and C0. Let γ denote the polygonal curve connecting X to the cen-
ter of B1, then to the centers of the Bj ’s in order, and finally to the center of BN to X′.
Then `(γ ) ≤ M|X−X′| whereM depends only on n,3 and C0. Moreover for any Z ∈ γ
we have δ(Z) ≥ c dist(Z, {X,X′}) for some c that only depends on n, 3 and C0. Thus γ
is a good curve for X and X′.
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Proof. Note that if |X − X′| ≤ ρ/2 then the Harnack chain above can be taken to
only have one ball, and the segment joining X to X′ is a good curve. Thus we assume
|X −X′| ≥ ρ/2. Since Bj ∩ Bj+1 6= ∅ for j < N , we obtain

diam(Bj ) ≤ C0 dist(Bj , ∂�) ≤ C0(dist(Bj+1, ∂�)+ diam(Bj+1))

≤ C0(C0 + 1) diam(Bj+1),

and switching the roles of Bj , Bj+1 yields diam(Bj+1) ≤ C0(C0+ 1) diam(Bj ). Thus for
j = 1, . . . , N , diam(Bj ) ≈ min{diam(B1), diam(BN )} ≈ ρ with comparability constants
depending only on n, 3 and C0. Note that if |X −X′| ≥ ρ/2 then

`(γ ) ≤

N∑
i=1

diam(Bi)+ diam(B1)+ diam(BN ) . Nρ ≤ C(3)ρ . |X −X′|.

If Z ∈ γ then there is i = 1, . . . , N such that Z ∈ Bi . Assume for instance that
dist(Z, {X,X′}) = |Z −X|. Then

dist(Z, {X,X′}) ≤ diam(B1)+

i∑
j=1

diam(Bj ) . ρ . dist(Bi, ∂�) . δ(Z). (A.2)

This eventually shows that γ is good curve for X and X′, completing the proof. ut

Proof of Theorem 2.15. For X, Y ∈ � we need to find a good curve γ connecting X
and Y . Let k ∈ Z satisfy 2k ≤ |X − Y | < 2k+1. Let jX, jY ∈ Z be such that 2jX ≤ δ(X)
< 2jX+1 and 2jY ≤ δ(Y ) < 2jY+1. Let qX, qY ∈ ∂� denote respectively a closest point
to X and Y in the boundary, that is, δ(X) = |qX −X| and δ(Y ) = |qY − Y |.

We consider several cases.

Case 1: |X−Y | ≤ 1
2 min{δ(X), δ(Y )}. Then the segment joiningX to Y is a good curve.

Case 2: |X − Y | ≥ 1
2 min{δ(X), δ(Y )} and k ≤ min{jX + 2, jY + 2}. Then |X − Y | <

2k+1
≤ 8 min{δ(X), δ(Y )}. By Lemma A.1 there is a good curve γ joining X to Y .

Case 3: |X − Y | ≥ 1
2 min{δ(X), δ(Y )} and k ≥ min{jX + 2, jY + 2}. Switching X

and Y we may assume that jY + 2 ≥ jX + 2, and therefore k ≥ jX + 2. For all i ∈ Z
with jX + 2 ≤ i ≤ k, let Xi be a corkscrew point relative to B(qX, 2i) ∩ ∂� so that
B(Xi, c2i) ⊆ B(qX, 2i). Provided c ≤ 1/4, XjX+2 can be chosen to be X.

Note that |Xi − Xi+1| ≤ 2i+2, while min{δ(Xi), δ(Xi+1)} ≥ c2i , thus there is a
Harnack chain Bi1, . . . , B

i
Ni

with Ni ≤ C(4/c) which joins Xi and Xi+1, and such that
Xi ∈ B

i
1 and Xi+1 ∈ B

i
Ni

. Let γi be the polygonal curve connecting Xi to Xi+1 as

constructed in Lemma A.1. Note that `(γi) . |Xi − Xi+1| . 2i . Let γX =
⋃k−1
i=jX+2 γi .

Note that γX joins X to Xk and

`(γX) ≤

k−1∑
i=jX+2

`(γi) .
k−1∑

i=jX+2

|Xi −Xi+1| .
k−1∑

i=jX+2

2i . 2k ≤ |X − Y |.
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Moreover, if Z ∈ γX, then Z ∈ γi for some i = jX + 2, . . . , k − 1. By Lemma
A.1 and the construction of γi we have δ(Z) ≥ c dist(Z, {Xi, Xi+1}). We may assume
dist(Z, {Xi, Xi+1}) = |Z − Xi | (the other case is treated similarly). Using the last two
inequalities in (A.2) (in this case ρ ≈ 2i) we obtain 2i . δ(Z), which yields

|Z −X| ≤ |Z −Xi | + |Xi − qX| + |qX −X| ≤
1
c
δ(Z)+ 2i + δ(X)

. δ(Z)+ 2jX+1 . δ(Z). (A.3)

To proceed we next observe that

2jY ≤ δ(Y ) ≤ |Y −X| + δ(X) ≤ 2k+1
+ 2jX+1

≤ 2k+1
+ 2k−1,

which implies that jY ≤ k+1. Assume first that jY+2 ≤ k (the case k+1 ≤ jY+2 ≤ k+3
is considered below). Repeating the previous argument we can find a curve γY joining Y
and Yk , where Yk is a corkscrew point relative to B(qY , 2k) ∩ � so that B(Yk, c2k) ⊆
B(qY , 2k). This construction gives much as before `(γY ) . |X− Y | and |Z− Y | . δ(Z)

for every Z ∈ γY .
We also observe that

|Xk − Yk| ≤ |Xk − qX| + |qX −X| + |X − Y | + |Y − qY | + |qY − Yk|

≤ 2k + 2jX+1
+ 2k+1

+ 2jY+1
+ 2k ≤ 2k+3

≤ 8|X − Y |

and
min{δ(Xk), δ(Yk)} ≥ c2k. (A.4)

By Lemma A.1 there exists a good curve γk joining Xk and Yk . Let γ = γX ∪ γk ∪ γY ,
and note that γ joins X and Y . Moreover, since 2k ≤ |X − Y | < 2k+1, we have

`(γ ) ≤ `(γX)+ `(γk)+ `(γY ) . |X − Y | + |Xk − Yk| . |X − Y |.

For Z ∈ γX ∪ γY , (A.3) and its corresponding version for Y show that δ(Z) ≥
c dist(Z, {X, Y }). If Z ∈ γk , assume for instance that dist(Z, {Xk, Yk}) = |Xk − Z|.
Using the last two inequalities in (A.2) we find that 2k . δ(Z), since in this case ρ ≥ c2k

by (A.4). Hence,

|Z −X| ≤ |Z −Xk| + |Xk − qX| + |qX −X| ≤
1
c
δ(Z)+ 2k + 2jX+1 . δ(Z).

This proves that γ is a good curve for X and Y and completes the case jY + 2 ≤ k.
Let us finally consider the case k + 1 ≤ jY + 2 ≤ k + 3. Note that we then clearly

have

|Xk − Y | ≤ |Xk − qX| + |qX −X| + |X− Y | ≤ 2k + 2jX+1
+ 2k+1

≤ 2k+2
≤ 4|X− Y |

and
min{δ(Xk), δ(Y )} ≥ c2k. (A.5)

By Lemma A.1 there exists a good curve γk joining Xk and Y . Let γ = γX ∪ γk , and note
that γ joins X and Y . Moreover, since 2k ≤ |X − Y | < 2k+1, we have

`(γ ) ≤ `(γX)+ `(γk) . |X − Y | + |Xk − Y | . |X − Y |.
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For Z ∈ γX, (A.3) yields δ(Z) ≥ c dist(Z, {X, Y }). If Z ∈ γk and dist(Z, {Xk, Y }) =
|Z − Y | we obtain c|Z − Y | ≤ δ(Z) from the construction of γk . On the other hand,
if dist(Z, {Xk, Y }) = |Xk − Z|, using the last two inequalities in (A.2) we find that
2k . δ(Z), since now ρ ≥ c2k by (A.5). Thus,

|Z −X| ≤ |Z −Xk| + |Xk − qX| + |qX −X| ≤
1
c
δ(Z)+ 2k + 2jX+1 . δ(Z).

This proves that γ is a good curve for X and Y and concludes the proof of Theorem 2.15.
ut
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