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1. Introduction

1.1. Summary

This paper continues a series, commenced in [AHJR2], which aims to construct and de-
scribe a modular generalized Springer correspondence for connected reductive groups,
in other words, to prove analogues, for sheaves with modular coefficients, of the funda-
mental results of Lusztig [Lul, Lu2, Lu3] on the generalized Springer correspondence
for Q,-sheaves. In [AHJR2] we accomplished this for the group GL(n). Here we estab-
lish more of the foundational results, and use them to construct the correspondence for
classical groups more generally.

1.2. Statement of the main result

Recall the set-up from [AHJR2]: G denotes a connected reductive group over C, and we
consider G-equivariant perverse sheaves on the nilpotent cone .4 with coefficients in
a field k of positive characteristic £. The simple perverse sheaves are indexed by the set
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Ng Kk of pairs (O, £) where O is a nilpotent orbit and £ is an irreducible G-equivariant
k-local system on &. As we recall in §2, there is a subset ‘J’ICGUSHE C Ng.x of cuspi-
dal pairs. Let £ be a set of representatives of G-conjugacy classes of Levi subgroups

of G.Forany L € £ and (01,€&L) € ‘ﬁzusﬂf, we have a corresponding induction series
L,0L.E
N B € Ne k.

Theorem 1.1. Assume that G is classical, and that Kk is big enough (see below for the
precise conditions). Then we have a disjoint union

L,0..E
Ner=|] || oG, (1.1)
LeL (0, E)en] Y

and forany L € £and (O, EL) € ‘)’KCLu?lf we have a canonical bijection

NG & NG (L)/L)). (1.2)
Hence we obtain a bijection

Nox< || || Ir&IN(L)/LD). (1.3)

LeL (Op,EL)eny Y

which we call the modular generalized Springer correspondence for G.

Here, Irr(k[Ng(L)/L]) denotes the set of isomorphism classes of irreducible k-repre-
sentations of the relative Weyl group Ng(L)/L; we say that G is classical if its root
system has irreducible components only of types A, B, C or D; and we say that k is big
enough if it satisfies the following conditions:

(1) if the root system of G contains a component of type A, _1, then k contains all n-th
roots of unity of its algebraic closure;

(2) if the root system of G contains a component of type B or D, then k contains all
fourth roots of unity of its algebraic closure.

The second condition is, of course, vacuous if k happens to have characteristic 2. As we
will see, for particular groups these conditions on k can be weakened (for instance, in
[AHJR2] we proved Theorem 1.1 for G = GL(n) and k arbitrary); we imposed them
uniformly in order to have a concise statement.

1.3. Overview of the proof of Theorem 1.1

The main content of Theorem 1.1 can be divided into two rather different results on
induction series: the disjointness (i.e. the fact that the unions on the right-hand side
of (1.1) are disjoint), and the parametrization (i.e. the canonical bijection (1.2)). Recall
that in Lusztig’s paper [Lul], these results had uniform proofs, whereas case-by-case ar-
guments were needed for the explicit descriptions of the cuspidal pairs and the generalized
Springer correspondence, the latter being completed subsequently in [LS, S].
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Theorem 3.1 of this paper provides a uniform construction of the parametriza-
tion (1.2), which requires only mild assumptions on (&, £1) (weaker than the assump-
tions of Theorem 1.1). In particular, this statement does not require G to be classical.
As in [Lul], the word “canonical” refers to the fact that this bijection does not depend
on any choice: it is characterized by a geometric condition, relating to the restriction of
a certain perverse sheaf constructed from (L, O, £1) to the induced orbit Indg(ﬁi),
where 0, C .47 is a nilpotent orbit determined by (&', 1) (which frequently coincides
with Op).

On the other hand, our proof of disjointness (or rather of that part of its content which
goes beyond the general result of Corollary 2.2) relies on the classification of cuspidal
pairs, and hence requires case-by-case arguments. More precisely, we use general results
to reduce the proof of this disjointness to two key statements about cuspidal pairs (see
Theorem 5.7). Then we use induction on the rank within each classical type to classify
cuspidal pairs, and simultaneously check these statements: for SL(n) in Theorem 6.3, for
Sp(2n) when £ = 2 in Theorem 7.1, for Sp(2n) when £ # 2 in Theorem 7.2, for Spin(n)
when ¢ = 2 in Theorems 8.1 and 8.2, and for Spin(n) when ¢ # 2 in Theorems 8.3
and 8.4. (Easy arguments, explained in §5.3, reduce the classification of modular cuspidal
pairs to the case where G is simply connected and quasi-simple.)

This approach is similar to the one used for GL(n) in [AHJR2]. The main new com-
plication in this paper is the appearance of nonconstant local systems. (In the case where
the local systems are constant, the bijection (1.2) is easy to see; hence Theorem 3.1 was
not needed in [AHJR2].)

1.4. Remarks on cuspidal pairs

In the classification of cuspidal pairs we use two general results, which provide an up-
per bound and a lower bound for the number of cuspidal pairs. Namely, as observed
in [AHJR2], all pairs obtained by modular reduction from a cuspidal pair in characteris-
tic 0 are cuspidal, providing the lower bound. On the other hand, an easy generalization of
a result of Lusztig (Proposition 2.6) says that if (&, &) is a cuspidal pair then & is a dis-
tinguished orbit, providing the upper bound. We will show that, for quasi-simple classical
groups, the description of cuspidal pairs is always given by one of these two extremes. In
type A for all £ and in types B, C, D when ¢ # 2, the only cuspidal pairs are those ob-
tained by modular reduction; this is reminiscent of the result of Geck—Hiss—Malle [GHM,
Theorem 4.11] on cuspidal unipotent Brauer characters of finite classical groups. On the
other hand, in types B, C, D when ¢ = 2, all pairs supported on a distinguished orbit are
cuspidal; that is, cuspidal pairs are as plentiful as possible.

Among the exceptional groups, which will be treated in the third paper of this series,
there are cases where the number of cuspidal pairs is strictly between these upper and
lower bounds. As a result, there are cases where we cannot easily verify Statement 5.5
of the present paper, which asserts the distinctness of central characters of cuspidal pairs
supported on the same orbit. Therefore the third paper [AHJR3] includes a different proof
of the disjointness of induction series, based on a Mackey formula for our induction and
restriction functors.
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1.5. Explicit determination of the correspondence

Theorem 1.1 raises the problem of determining the modular generalized Springer corre-
spondence (1.3) explicitly in terms of the usual combinatorial parametrizations of both
sides. In Theorem 9.1 we solve this problem for G = SL(n) by a similar method to
that used in [AHJR2] for the GL(n) case, and in Theorems 9.5 and 9.7 we solve it for
G = SO(n) and G = Sp(2n) when ¢ = 2. In particular, the latter results determine
for the first time the (un-generalized) modular Springer correspondence for these groups
when ¢ = 2, complementing the results of [JLS] on the £ # 2 case (see Corollary 9.8).

These determinations require further general results, proved in Section 4, which play
the same role in our theory that Lusztig’s restriction theorem [Lul, Theorem 8.3] did in
the determination of his generalized Springer correspondence.

1.6. Organization of the paper

The remainder of the paper falls into three parts. In Sections 2-5, G is a general connected
reductive group, and we prove a number of general results underlying Theorem 1.1. In
Sections 6—8 we take G to be a simply connected quasi-simple classical group, consid-
ering the various types in turn; these sections complete the proof of Theorem 1.1, along
the lines set out in Section 5. In Section 9 we compute the modular generalized Springer
correspondence in the cases mentioned above.

2. Generalities

In this section we continue the study, begun in [AHJR2, Section 2], of the basic defini-
tions and constructions required to formulate the modular generalized Springer corrre-
spondence for an arbitrary connected reductive group over C.

2.1. Some notation

Our notation follows [AHJR?2]. In particular, k denotes a field of characteristic £ > 0. We
consider sheaves of k-vector spaces on varieties over C. For a complex algebraic group
H acting on a variety X, we denote by D'}i (X, k) the constructible H-equivariant derived
category and by Pervy (X, k) its subcategory of H-equivariant perverse k-sheaves on X.
We denote by Loc(X, k) the category of k-local systems on X, and by Loc” (X, k) the
category of H-equivariant local systems.

Throughout, G denotes a connected reductive complex algebraic group, g its Lie al-
gebra and A C g its nilpotent cone. Recall that G has finitely many orbits in .4¢, and
that every simple object in Pervg (A4, k) is of the form ZC(0, £) where & C A is
a G-orbit and £ is an irreducible G-equivariant k-local system on &. Let ¢ i denote
the set of such pairs (&, £), where the local systems £ on a given orbit & are taken up
to isomorphism. Thus ¢  is finite and parametrizes the isomorphism classes of simple
objects of Pervg (A5, k).
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Let P C G be a parabolic subgroup, and let L C P be a Levi factor. Then L is also
a connected reductive group, with Lie algebra [ and nilpotent cone .47 . We will denote
by Up the unipotent radical of P, by p the Lie algebra of P, and by up the Lie algebra
of U P.

As explained in [AHJR2, §2.1], we have two restriction functors

Rch’ /RgCP : Pervg (A5, k) — Pervy (A7, k),
which are exchanged by Verdier duality, and an induction functor
Ifcp : Pervp (A1, k) — Pervg (A5, k),

which commutes with Verdier duality. All these functors are exact, and we have adjunc-
tions'RY_, 41 , 4RY_,.

For simplicity we will say that L C G is a Levi subgroup if it is a Levi factor of a
parabolic subgroup of G. Given a Levi subgroup L, we write 37 for the centre of its Lie
algebra [, and 37 for the open subset {z € 3. | G; = L}, where G denotes the stabilizer
of zin G and G its identity component. The Lusztig stratification of g, defined in [Lu3,
§6], expresses g as the disjoint union of the smooth G-stable irreducible locally closed

subvarieties
Yo =G (0L +37),
where L runs over the Levi subgroups of G and &, over the nilpotent orbits for L, and

Y10,y = Y, 0, if and only if the pairs (L, &) and (M, O)) are G-conjugate. As
in [AHJR2], we define

Xroy=Yuwre and Ygq g,):=G x L (0L +37),

and we let w( g, : )7<LﬁL) — Y(1.0,) denote the natural G-equivariant morphism.
Let Ng(L, Op) be the subgroup of the normalizer Ng(L) that preserves the orbit O .
Then by [Le, proof of Lemma 5.1.28], @ (1 ¢,) is a Galois covering with Galois group

Ng(L, Or)/L.Heren € Ng(L, Op) acts on ?(LﬁL) by
n-(gx(x+z)=gn'x(n-(x+2) forgeG xeb, ze;].

If £, denotes an L-equivariant local system on &, then we write g[j for the unique G-
equivariant local system on Y(;, ¢,y whose pull-back to G x (0 +37) iskg R (£ &H—(ZZ)‘

2.2. Induction series

Recall that a simple object F in the abelian category Pervg (45, k) is called cuspi-
dal if for any proper parabolic P C G and Levi factor L C P we have Rfc p(F)
= 0. By [AHJR2, Proposition 2.1], the definition is unchanged if we instead require
/RECP(‘F) = 0. A pair (7, ) € Ng k is called a cuspidal pair it ZC(0, £) is cuspidal.
Let ‘ﬁg{sﬂf C Ng .k denote the set of cuspidal pairs.
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Recall from [AHJR2, Corollary 2.7] that every simple object of Pervg (A5G, k) ap-
pears as a quotient of Ich(IC(ﬁL, &r)) forsome L C P C G as above and (O, &r)
€ ‘ﬂCLu?lf. The cuspidal objects of Pervg (44, k) occur here in the case L = P = G.

As in [AHJR2], we make essential use of the Fourier—Sato transform Ty, an autoe-
quivalence of the category of conic G-equivariant perverse k-sheaves on g (for its defini-
tion and basic properties, see [AHIR1]). By [AHJR2, Corollary 2.12], for any (0, 1)

€ N\, there is a unique pair (€}, ;) € N, )" such that

TZC(OL, EL) EIC(O] + 51, & Bk

i) 2.1)

As mentioned in [AHJR2, Remark 2.13], it is possible that, as in the characteristic-0 case,
we have (0),E&;) = (O, &) always. (We will see in Corollary 6.6 below that this
holds when G = SL(n).) Next, [AHJR2, Corollary 2.18] tells us that there is a canonical
isomorphism

TaUGp(TC(OL. EL) ZTIC(Y ) (@1, 07))EL)- 22)

It follows from (2.2) that Ifc p(@C(OL, L)) does not depend on P, up to canonical iso-
morphism. We refer to the set of isomorphism classes of simple quotients of the perverse
sheaf Ich(IC(ﬁ’L, E1)), or to the corresponding subset ‘.YI(GL)]’kﬁL’gL) of N¢ k., as the in-
duction series attached to (L, Op, £r). Clearly, this induction series is unchanged if the

triple (L, O, &) is conjugated by an element of G.
Lemma 2.1. Let (6, €) € Ng . Then (€, €) € N7 if and only if
To(ZC(0.€) ZIC(Y 4y D)

or some simple local system D on Y; s that is a quotient of (@, g \)«E,, where
(L,07) (L,Op))*“L
(0., &) € ‘T(CLuﬁlf is as in (2.1). In particular, m(GLﬁfo”

the set of isomorphism classes of simple quotients of (w Lﬁ’L))*gl/;

is canonically in bijection with

Proof. This follows immediately from (2.2), using the fact that Ty is exact and fully
faithful and ZC preserves heads; see [J, Proposition 2.28]. O

Corollary 2.2. If (L, O, EL) and (M, Oy, Ey) are two triples as above where (L, 0)
and (M, 0},) are not G-conjugate, then ‘JI(GL,]{L’SL) N m(GMﬂ;ﬁMfW = @. In particular,
this holds if L and M are not G-conjugate.

Proof. Since (L, 0}) and (M, 0),) are not G-conjugate, Y(Lﬁi) and Y(Mﬁz’w) are dif-
ferent pieces of the Lusztig stratification. The result follows from Lemma 2.1. O

In defining induction series, we focused on quotients rather than subobjects; however,
we have an analogue of ‘Property A’ for Harish-Chandra induction of cuspidal modular
representations [GH, Section 2.2]:

Lemma 2.3. The induction series attached to (L, Oy, £1) equals the set of isomorphism
classes of simple subobjects of Ifd, (ZC(OL, EL)).
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Proof. In view of Lemma 2.1 and its analogue for subobjects, it suffices to prove that for
any simple local system £ on ¥ L,0;) We have

dim HomLoc(Y(Lﬁ,L),k)((W(L,ﬁl))*g’u L) = dim HomLoc(Y(Lﬁ,L),k) (L, (@ 1.0,)+EL)-

Bf?cause Do) is a Galois covering, the functors (@ Lﬁi))* and (g, ﬁi))* are biad-
joint; so it is equivalent to show that

dim HomLOC(;(Lﬁ,L)’k) (52, (ZZT(Lﬁ,L))*L) = dim Homl_oc(y(

L,ﬁl),k)((w@ﬁi))*ﬁ, &)

Since the local system gz is simple, it suffices to prove that (w(Lﬁ/L))*E is semi-
simple. However, since this local system is Ng (L, ﬂ’L) / L-equivariant, its socle must be
Ng(L, 0})/L-equivariant; and since (@(L.0,))*Lis simple as an Ng (L, 0} )/L-equiva-
riant local system (see equivalence (3.5) below), this socle must be equal to (w ﬁ/L))*L.
m}

In the following corollary, we denote by £V the local system dual to £. In the statement
we use the fact that if (0, £1) is a cuspidal pair for L, then (07, £') is also a cuspidal
pair (see [AHJR2, Remark 2.3]).

Corollary 2.4. If (0, ) € W70 then (0, V) e M40,

Proof. Since Verdier duality commutes with Igc p» this follows from Lemma 2.3. O

The following easy result is sometimes useful in determining induction series.

Lemma 2.5. Let (O, £) € Ng k, and suppose that LC(0, &) is a quotient of the perverse

sheaflgcp(IC(ﬁL, EL)) for some L C P C G as above and (O, 1) € Ny k. Then

G0 CECG-(ﬁ_L-f-uP).
Proof. The support of 1Y _,(ZC(0, £1)) is contained in G - (0 + up) by [AHIR2,
Corollary 2.15(1)], so 0 C G- (0L +up) (the latter being closed). By adjunction,
Hom(ZC (0L, £1), RS p(ZC(0, €))) = Hom(I{ - »(ZC(O1, £1)), IC(O, E)) # 0,

implying that &, is contained in the support of Rch (ZC (0, &£)). By definition of Rfcp,

the latter support is contained in &, s0 G - 0, C 0. O

2.3. Cuspidal pairs and distinguished orbits

Recall that a G-orbit & C A4 is said to be distinguished if it does not meet .47, for any
proper Levi subgroup L of G. We then have the following analogue of [Lul, Proposi-
tion 2.8].

cusp

Proposition 2.6. If (0, &) € N, then O is distinguished.
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This follows immediately from:

Proposition 2.7. Let (0, ) € NG k. If O meets N1, where L C P C G are as above,

then 'R _,(IC(0, &) # 0.

Proof. Letx € 0 N A7 and let € be the L-orbit of x. It suffices to show that
H™ 4O (REp(1C(0.6)),) #0,
which by definition of / Rgc p 1s equivalent to
HZ 9™ (x +up) NG, ZC(O, £)) #0. (2.3)

But for any y € x + up, we have x € G - y, since there is a 1-parameter subgroup of G
that fixes [ and contracts up to zero. Hence (x +up) N € = (x + up) N &, and (2.3)
becomes

HEMO)=dm(E) (x 4 up) N G, E) # 0. (2.4)

The proof of (2.4) is analogous to that of the corresponding statement in [Lul]. Namely,
by [Le, Proposition 5.1.15(1)] we have dim((x + up) N O) < %(dim(ﬁ) — dim(%)).
One sees in exactly the same way as in [Lul, Lemma 2.9(a)] that Up - x is an irreducible
component of (x + up) N & of dimension equal to %(dim(ﬁ) — dim(%)), and that the
restriction of £ to Up - x is a constant sheaf because (Up), is connected. It follows that
HAM@) =M@ (77, 1 €) £ 0, which implies (2.4). O

Remark 2.8. When G = GL(n), only the regular orbit &, is distinguished. So Propo-
sition 2.6 is consistent with [AHJR2, Theorem 3.1].

We conclude this subsection with a useful observation about distinguished orbits. It is
probably known to experts, but we could not find a reference.

Lemma 2.9. If L is a Levi subgroup of G and Oy, is a distinguished nilpotent orbit of L,
then Ng(L, O1) = Ng(L); that is, the normalizer NG (L) preserves O

Proof. Since the assumptions and conclusion are unchanged if one replaces G by a cen-
tral quotient, we can assume that G is a product of simple groups; thus it suffices to
consider the case where G is itself simple. The root system of L is then a sum of irre-
ducible root systems, at most one of which is of type different from A. Correspondingly,
A1 is a product of nilpotent cones for simple groups, at most one of which is of type
different from A, and the orbit & is a product of distinguished orbits in these nilpotent
cones. The action of the normalizer Ng(L) on .47, preserves the product of the factors
of type A, and in each of these factors the distinguished orbit must be the regular orbit.
So it suffices to consider the case where .47, does have a factor of type different from A,
and to show that the action of Ng (L) preserves each distinguished nilpotent orbit in that
non-type-A factor.

If G is of classical type, then in fact Ng(L) preserves every nilpotent orbit in the
non-type-A factor of .47, since the action of each element of N (L) on the non-type-A
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factor of .47 is the same as that of some element of L. To see this, one can assume that
G = Sp(V) or SO(V) where V is a vector space with a nondegenerate skew-symmetric or
symmetric bilinear form. If for example G = Sp(V), then there is some orthogonal direct
sum decomposition V = U @ U~ such that L = Sp(U) x H and Ng(L) = Sp(U) x H'
where H and H' are subgroups of GL(U 1) thus, the action of each element of Ng (L)
on the non-type-A factor .45,y of A7 is that of some element of Sp(U).

If G is of exceptional type, then the distinguished nilpotent orbits in the non-type-A
factor of .47, have different dimensions (this can be checked case-by-case, for instance
using the tables in [CM, Section 8.4]), so the claim is again obvious. O

Remark 2.10. Since the distinguished nilpotent orbits in L are exactly the Richardson
orbits of distinguished parabolic subalgebras of [ (see [CM, p. 123]), the lemma is equiv-
alent to the statement that if p, p’ are distinguished parabolic subalgebras of [, then the
pairs (I, p) and (I, p’) are G-conjugate iff p and p’ are L-conjugate, or in other words that
in the Bala—Carter classification of nilpotent orbits as stated in [CM, Theorem 8.2.12],
the parabolic subalgebra p; is defined uniquely up to L-conjugacy. In the case of classical
groups, this property is observed in [CM, p. 126]. If G is simple of exceptional type, it
follows from the fact that, for each proper Levi subgroup L of G, the Levi subalgebras
of non-L-conjugate distinguished parabolic subalgebras of L have different semisimple
ranks (since L is not of type Eg).

3. Study of an induced local system

In this section we continue to let G be an arbitrary connected reductive group over C. We
fix a Levi subgroup L and an orbit & C .47. (To reduce clutter, we drop the subscript L
from the notation &y, of the previous section.) Sometimes it will be convenient to choose
a parabolic subgroup P C G with Levi factor L, but our main constructions will not
depend on this choice.

We let Indf(ﬁ) denote the nilpotent orbit in .45 induced by &. The most familiar
definition of Indf (0) is as the unique nilpotent orbit that intersects & + up in a dense set
(see [CM, Theorem 7.1.1]), but it can also be defined in a way that is independent of P:
it is the unique nilpotent orbit that is dense in .45 N X1, ) (see [CM, Theorem 7.1.3 and
its proof]).

3.1. Overview

Our aim in this section is to study the local system (¢ Lﬁ))*g onY( ), where £ is an ir-
reducible L-equivariant k-local system on &’ and &is the resulting local system on )7( L.0)-
The specific statement we will prove is the following; its proof will be completed in §3.6.
In this statement we use the fact that since @z, ¢) : Y, .0y —> Y(1.0)1s a Galois covering
with Galois group Ng (L, 0)/L, there is a natural functor

Rep(Ng(L, O)/L,k) — Loc(Y( ). k) : U Ly;

see §3.2 below (and in particular (3.7)) for details.
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Theorem 3.1. Assume that the following conditions hold:

there is a parabolic subgroup P C G with Levi factor L

such that for any y € Indf(ﬁ) N(T +up), Gy C P; G.D
& is absolutely irreducible; (3.2)
the isomorphism class of £ is fixed by the action of Ng(L, O). 3.3)

Then there is a unique (up to isomorphism) indecomposable direct summand of the lo-
cal system (w(r, ¢))«E whose LC-extension has a nonzero restriction to IndG(ﬁ) This
direct summand appears with multiplicity one, and its head € is absolutely irreducible.
Moreover, the following properties hold:

€)) dlmHom((w(L ﬁ))*g & =1;

(2) the morphism N (w( L. ﬁ))*g obtained by adjunction from the unique (up to scalar)
morphism (@, )« E—CEisan isomorphism;

(3) the local system (g, ﬁ))*g is lsomorphlc 10 E® Lyng(L,6)/L) and its endomor-
phism algebra End((w(Lﬁ))*é') is isomorphic to K[Ng(L, O)/L];

(4) the assignment U +— £ ® Ly induces a bijection

3.4)

It k[NG (L. 0)/L]) < { isomorphism classes ofsimple}
G(L, ki

quotients of (w (L, ¢))+E

Our motivation is the occurrence of the right-hand side of (3.4) in Lemma 2.1, and after
Section 4 we will need Theorem 3.1 only in the case where (&, &) is a cuspidal pair
for L. (In that case, condition (3.1) follows from Proposition 2.6 and Lemma 3.11; condi-
tion (3.2) will be guaranteed by our assumptions on k; and condition (3.3) will be implied
by a certain property of cuspidal pairs. See the proof of Theorem 5.7.) However, it seemed
worthwhile to explain the proof of Theorem 3.1 in as general a setting as possible. We
will introduce our assumptions (3.1)—(3.3) on (&, £) as they are needed in the arguments.

Remark 3.2. Notice that if £ = k,; (and hence £ = ki, ) thenky, - satisfies the
properties (1)—(4) of the local system £ in the theorem, by the well known generahtles on
Galois covermgs_ recalled in §3.2. We will see in Lemma 3.19 below that if £ = k,, we
do indeed have £ = ﬂéy( Loy Hence, in the case of GL(n), the bijection (3.4) coincides
with the one used in [AHJR2, proof of Lemma 3.8].

Remark 3.3. Although this is not the point of view we will emphasize in the proof,
the reader may find it enlightening to interpret Theorem 3.1 in terms of modular repre-
sentations of finite groups. Namely, the irreducible L-equivariant local system 5 on 0
corresponds to an irreducible k-representation V of the group Ap(x) := L./LY,
where x is a chosen element of & There is a Galois covering of Yz ) with group
Ang (L) (x), denoted Y/ L.0) in §3.4 below, from which Y(; ) is obtained by factor-
ing out the action of the normal subgroup Ay (x); note that Ay, )(x)/AL(x) =
Ng(L)x/Lyx = Ng(L, 0)/L. Hence each representation of Ay z)(x) determines a lo-
cal system on Y(; ¢), and one can check that (w(;, ))«£ corresponds in this way to the
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A —
induced representation Ind A[LV?;)L )(x)(V). The local system £ produced by Theorem 3.1

corresponds to an irreducible representation V of A Ng(L)(x) whose restriction to Ay (x)
is isomorphic to V, by property (2). A necessary condition for such a representation V to
exist is that the isomorphism class of V be fixed by the conjugation action of Ay 1) (x),
which is exactly what assumption (3.3) implies. Given this and the fact that V is ab-
solutely irreducible (by assumption (3.2)), the obstruction to the existence of V is the
cohomology class in H*(Ng(L, 0)/L,k*) determined by V as in [I, Theorem 11.7].
Thus, part of Theorem 3.1 is the purely algebraic statement that this cohomology class is
trivial. However, an equally important part of Theorem 3.1 is that the construction of £
is canonical: in other words, the geometric condition about ZC-extension singles out one
particular choice of V, and hence one particular bijection (3.4).

Remark 3.4. The prototype for Theorem 3.1 is Lusztig’s result [Lul, Theorem 9.2], a
main ingredient of his generalized Springer correspondence for Q;-sheaves. That result
required (7, £) to be a cuspidal pair for L, and was in the setting of the group G rather
than the Lie algebra g; since he worked over an algebraically closed field of characteris-
tic 0, Lusztig had no need to refer to absolute irreducibility or to heads of indecomposable
summands. His original proof does not carry over to the modular setting. He subsequently
gave a different proof in the Lie algebra context in [Lu3, Sections 6—7], on which our ar-
guments are essentially based. However, significant modifications are required, primarily
because the property Lusztig stated as [Lu3, Lemma 6.8(c)] does not hold for modular
cuspidal pairs (let alone the more general pairs allowed by Theorem 3.1): that is, the
parabolic subgroups P of G having L as a Levi factor do not necessarily form a single
orbit under the conjugation action of Ng(L). For this reason, we cannot directly use the
constructions in [Lu3, Section 7] involving the variety of all G-conjugates of P. Our alter-
native constructions were inspired by the treatment of Bonnafé [Bo2]; he worked with G
rather than g, but many of his proofs require only minor adaptations to our case.

Remark 3.5. In [Lul, Proposition 9.5], in the setting of Q,-sheaves, Lusztig character-
ized the image of the sign representation of Ng(L, &))/L under his version of the bi-
jection (3.4). A general analogue of such a result in our context seems unlikely, since
Ng(L, 0)/L need not be a Coxeter group even if (&, £) is a cuspidal pair for L. For
example, if G is of type Eg, a Levi subgroup L of type A, can have cuspidal pairs in
characteristic 3 by [AHJR2, Theorem 3.1], and in that case Ng(L, )/L = Ng(L)/L is
isomorphic to (&3 x &3) x Z/2Z (see [H]).

3.2. Local systems and Galois coverings

In this subsection we collect some generalities on Galois coverings.

Let A be a finite group, and let 7 : X — Y be a Galois covering with Galois group A.
Since A is finite, the datum of an A-equivariant local system on X is equivalent to the
datum of a local system M on X, together with isomorphisms ¢, : M — a* M for all
a € A, which satisfy ¢p, = a*(¢pp) o ¢, for any a, b € A. (Here, by abuse of notation
we still denote by a : X = X the action of a € A.) Any object of the form 7* L, with £
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in Loc(Y, k), has a canonical A-equivariant structure in which ¢, is the isomorphism
T*L = (moa)*L > a*mx*L.1tis well known that the functor 7* induces an equivalence
of categories

Loc(Y, k) — Loc? (X, k). (3.5)

Now we define a canonical fully faithful functor
Rep(A, k) — Loc? (X, k) (3.6)

as follows: to any finite-dimensional k-representation V of A we associate the constant
local system Vy, with ¢, : Vy 5 a*Vy defined so that the composition

Pa * ~
Yy = a’Vy = Vy

(where the second isomorphism is the canonical one arising from the fact that Vy is
constant) is the automorphism of Vy induced by the action of a on V. The essential image
of (3.6) is the subcategory consisting of A-equivariant local systems whose underlying
local system is constant.

Composing (3.6) with an inverse of the equivalence (3.5) (uniquely defined up to
isomorphism of functors) we obtain a fully faithful functor

Rep(A, k) — Loc(Y,k) : V — Ly, 3.7

whose essential image is the subcategory whose objects are the local systems £ such
that 7*L is constant. By definition, for any representation V of A we have a canonical
isomorphism 7*Ly = Vy of A-equivariant local systems on X; moreover, if £ is a local
system on Y, then any isomorphism 7 * £ 5 Vy of A-equivariant local systems is induced

by a unique isomorphism £ — Ly .

Lemma 3.6. We have a canonical isomorphism m.ky = Lypa), where k[A] denotes the
left regular representation of A.

Proof. From the definitions one can easily write down a canonical isomorphism of
A-equivariant local systems 7 *m.ky = Kk[A],, which implies the claim. O

For any A-equivariant local system M on X, the group A has a natural action (by isomor-
phisms in Loc(Y, k)) on the direct image .M, in which a € A acts as the composition
T M > ma*M = 7, M where the first isomorphism is 7, (¢,) and the second is
base change. In particular, A acts on m.ky; under the isomorphism of Lemma 3.6, this
corresponds to the action of A on k[A] by right multiplication, and hence it induces an
algebra isomorphism

k[A] = End(m.ky). (3.8)

For any local system £ on Y, the projection formula gives an isomorphism m,7*L =
L @ mky, and the A-action on m,7v* L is the one induced by the A-action on m,ky.
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Assume now that we are given a group automorphism 6 of A, and automorphisms
of X and ¢ of Y, which satisfy

Tod=0vom, and D(a-x)=0()-Fx)

foralla € A and x € X. Then for any V € Rep(A4, k) one can define a local system
®*Ly on Y and a representation V¥ of A (which is isomorphic to V as a vector space,
with the action of @ € A corresponding to the action of 6(a) on V).

Lemma 3.7. We have a canonical isomorphism 9*Ly = Lys.

Proof. Consider the composition of natural isomorphisms of local systems
T Ly = (@ om) Ly = (wod) Ly =7 Ly = F*Vy = Vy.

Using the fact that ¥ oa = 0(a)o®, it is easily checked that ¢, : 7*9*Ly S arntot Ly
corresponds, under this composition, to the isomorphism Vy 5 a*Vy whose composi-
tion with the canonical isomorphism a*Vy = Vy is the automorphism of Vy induced by
the action of 6 (a) on V. Hence we have defined a canonical isomorphism of A-equivariant
local systems w*9* Ly = @ % and the lemma follows. O

Finally, we will need the following easy result.

Lemma 3.8. Let M be a local system on Y such that w* M is absolutely irreducible.
Then the functor V. M® Ly induces an equivalence of categories between Rep(A, k)
and the full subcategory of Loc(Y, k) whose objects are the local systems L such that w* L
is isomorphic to a direct sum of copies of w* M.

Proof. One can construct a functor in the reverse direction as follows: if £ is an object
of Loc(Y, k) such that 7* £ is isomorphic to a direct sum of copies of 7* M then one can
consider the vector space Hom(w* M, 7 * L), endowed with the natural A-action induced
by the A-equivariant structures on 7 * £ and 7 * M. Using the fact that Hom(* M, 7* M)
= k (since 7*M is absolutely irreducible), one can easily check that this provides an
inverse to the functor of the lemma. O

3.3. Preliminary results

We will need the following analogues in the Lie algebra setting of results stated in the
group setting in [Lul] or [Bol].

Lemma 3.9. Let P C G be a parabolic subgroup with Levi factor L. Let x € | and
y € g. Then

1

dim{gP |g7' -y € (L-x) +up} < 3(dimG, —dimLy,).

Proof. The proof is entirely analogous to that of [Lul, (1.3.1)]. O
Lemma 3.10. Let P C G be a parabolic subgroup with Levi factor L. Let x € O and
y € up be suchthatx +y € Indg(ﬁ). Then:

@)) G;ﬂ C P, and hence the natural morphism Ap(x + y) — Ag(x + y) is injective;

(2) the natural morphism Ap(x + y) — Ap(x) is surjective.
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Proof. The proof is analogous to that of [Lul, Corollary 7.3(d)]. Since P acts transitively
on Indg (O)N(O+up) and dim Indg (0) = dim 0+2 dimup (see [CM, Theorem 7.1.1]),
we have

dim P,y = dim P — dim(& + up) = dim G — dim Indf(ﬁ) =dim Gy,

proving (1). Now L,Up acts transitively on Indg(ﬁ ) N (x + up), which is irreducible
(being dense in x +up), implying that LS Up also acts transitively on it. Hence if g € L,
there exist 1 € L2 andu € Up such that g-(x+y) = hu-(x+y). Thenu='h~'g € Pity,
and its image in Ay (x) is gL}, which proves (2). m]
The following lemma will not in fact be used until later sections, but we place it here to
highlight the connection with Lemma 3.10(1).

Lemma 3.11. Let P C G be a parabolic subgroup with Levi factor L. Let x € O
and y € up be such that x + y € Indg(ﬁ). If O is a distinguished orbit in N, then
Gyyy C P, and hence Ap(x +y) = Ag(x + ).

Proof. The proof is analogous to that of [Bol, Theorem (3)]. By [CM, Theorem 8.2.6
and Corollary 7.1.7] there exists a distinguished parabolic subgroup Q C L, with Levi
factor M, such that x € ugp and & is the Richardson orbit of Q, ie. 0 = Indﬁ,l({O}).
Then Q' := QUp is a parabolic subgroup of G, which is distinguished by [Bol, Proposi-
tion 2.3], and x+y € ug belongs to the Richardson orbit of Q” since Indf (Ind%,, o)) =
IndAG,,({O}) (see [CM, Proposition 7.1.4(ii)]). By [Bol, Theorem 2.2(e)] we deduce that
Gyyy C Q' cP. O

3.4. Geometry
Following [Lu3, 6.11], we define

Tw,0) = U Y(L’,Ind{(ﬁ))’
L'DL

where the union is over Levi subgroups L’ of G containing L, and IndlL‘/(ﬁ ) denotes the
nilpotent orbit in .47 induced by &.

Lemma 3.12. T}, ) is an open subvariety of XL, ¢).

Proof. This is proved in [Lu3, Proposition 6.12] under the assumption that & supports
a cuspidal pair in characteristic 0, but in fact the only step of the proof that uses that
assumption can be easily seen to hold in general. (Namely, to show the equality la-
belled (c), instead of invoking [Lu3, Lemma 6.10], simply observe that both sides equal
COdimLie(L/) C/.) O
Clearly, the subvariety T(; ) is G-stable. It contains Y(;, ) as an open subset and con-
tains Y(G,Indf(ﬁ)) =36+ Indf(ﬁ) as a closed subset (closed by [Lu3, Proposition 6.5]).
Note that for every element y of T(z ) we have

dimG, =dimL —dim 0, 3.9

sinceif y € x + 37, forx € IndIL‘/(ﬁ), then G5 = (L))e.
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Remark 3.13. In the setting of the group G rather than the Lie algebra g, the variety
analogous to T{y, ) is the one denoted Xy by Bonnaf€ (see [Bo2, Remark 2.4] for the
description of X analogous to the above definition of T(j, ¢)).

Now we fix a parabolic subgroup P C G having L as a Levi factor. Recall that
X.0)=G-(0+31+up).
As in [AHJR2, §2.6], we also consider the variety
)?(L,@") =G xF (O + 31 +up).
Recall from [AHJR2, (2.12)] that we have a cartesian square
?(Lﬁ)g i(L,ﬁ’)

w(L,@")l l”(L,ﬁ) (3.10)
Yi.o)— X(1.0)

where the horizontal morphisms are open embeddings. The image of the top embedding
is G xf (0 + 37 +up) (see [Le, Lemma 5.1.27]). We set

~ o
T(L,ﬁ) = ”(L,@)(T(Lﬁ’)),

and denote by 77 ¢) : 7"( L,0) = T, o) the restriction of ;). The following result is
adapted from [Bo2, Theorem 2.3(a)].

Proposition 3.14. The variety T( L,0) s the normalization of Ty ¢) relative to the Galois
covering @y, ¢). In particular, this variety is independent of the choice of P up to canon-
ical isomorphism, and it is endowed with a natural action of Ng(L, O)/L commuting
with the G-action, such that Ty, ¢) is G x Ng(L, 0)/L-equivariant (where Ng(L, 0)/L
acts trivially on T(g ¢))-

Proof. Consider the smooth open subvariety
X0y =G x" (O +30+up) C X(1L.0)

L.6)

7z € 3.,and y € up, and assume that x +z 4+ y € Y(LCIndf’(ﬁ))

Then dim Gy y,4+y = dimL — dim & by (3.9). But we have G414y D Pry .y, and
P-(x+z+y) C(L-x)+ z+ up, which implies that

(and hence is smooth). Indeed, let x € &,
for some L' O L.

First, we claim that f( L.0) isincluded in X

dim Gy yz4y > dim P —dim(P - (x + z +y)) > dim L — dim(L - x).

Hence we finally obtain dim(L - x) > dim &, which implies that x € & and finishes the
proof of the claim.
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Now we claim that 7(z ¢) is finite. Since this morphism is projective, it suffices to
prove that it is quasi-finite. For y € Tz ¢), we have

T(’Llﬁ)(y) ={gPeG/P|g ' -yeO+;.+up)

by the first claim, and it suffices to prove that the set on the right-hand side is finite. But
the 37 component of any element of (G - y) N (& + 31 + up) is the semisimple part of its
projection to [ = p/up, and hence is conjugate to the semisimple part y; of y (by the Lie
algebra analogue of [Bo2, Lemma 1.6]). Since (G - ys) N 3 is finite, it suffices to show
that

(gPeG/Plg " ye(L -x)+up)

is finite for any x € & + 31, and this follows immediately from Lemma 3.9 and (3.9).
Finally, since we have a diagram

Yo.o)—Tw.0)

W(Lﬁ)l LT(Lﬁ) (3.11)
Yo.o)—Tw.0)

where the horizontal arrows are open embeddings, f( L.0) is smooth, and 7(; ) is finite,

we find that T(Lﬁ) is the normalization of T(; ) relative to @ ¢). The rest of the
statement follows from the functoriality of relative normalization. O

The next statement is the analogue of [Lu3, 7.5(f)]. The proof follows that of [Bo2,
Lemma 2.5 and Corollary 2.6].

Lemma 3.15. Assume that (3.1) holds. Then the morphism t(y, ¢) restricts to an iso-
morphism t&lﬁ) (Indg(ﬁ)) = Indg(ﬁ). In particular, the action of Ng(L, O)/L on
t(_Llﬁ) (Indg(ﬁ)) is trivial.

Proof. Since the statement is independent of P, we can assume that P satisfies the condi-

tion in (3.1). It suffices to prove that for any y € Indf(ﬁ) N (O +up), the fibre r(_Llﬁ)(y)
is a single point. As in the proof of Proposition 3.14, we have

T oy ={gP €G/P g™ -y e O +up).

Since P acts transitively on Indf(ﬁ’) N (O + up) (see [CM, Theorem 7.1.1]), the right-
hand side is Gy P/ P, which is a single point by our assumption. O

Now choose x € & and define ?(/L,ﬁ) = G xL (L/LS x 39). Let vy ) : ?(/L,ﬁ) —
Y1) be the map induced by the covering L/L; — L/Ly, = 0. Then vy ¢ is a
Galois covering with group A (x), and @ ¢) o v(1,¢) is a Galois covering with group

ANg)(x) = Ng(L)x/LS. Here n € Ng(L)y acts on Y(/L,ﬁ) by

n-(gx(mL3, z)) = gn_l * (nmn_lL;,n -z) forgeG,melL, ze3;,
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and v(; ) is the quotient map for the action of the normal subgroup L, (with the smaller
normal subgroup L} acting trivially).

Recall the parabolic subgroup P with Levi factor L. Following [Bo2, Remark 3.3] we
consider the P-actionon L/L} x 37 X up in which lu € LUp = P acts by

(lu) - (mLY, z,v) == (ImLY, 2,1 - (um -x —m -x) + (-2 —2) +u-v)),
and the smooth variety
X7 g =G x" (L/LS x 31 x up).

Then we have a Galois covering ;) with Galois group Ay (x) and a diagram

5% C Tor
Y0 X(L,0)
V(L.ﬁ)l lM(L.ﬁ)

Y o) T )€ Xe
(L,0) (L,0) (L,0)

~

We denote by T"(’L, o) the inverse image of 7(;, ) in X E’]: o) andby o ) : T(’L! o)~
7~"( L,0) the restriction of 11(; ). By construction, this morphism is a Galois covering with
Galois group Ay (x).

The following result follows from the same arguments as for Proposition 3.14.

Lemma 3.16. The variety f(/ L.0) is the normalization of T(y ¢ relative to the Galois
covering W, ¢) © V(). In particular, this variety is independent of the choice of P up
to canonical isomorphism, and is endowed with a natural action of Ay 1) (x) extend-
ing the action of Ap(x) and commuting with the action of G, and such that o ) is
G x Ang(L)(x)-equivariant. (Here the group Ang(r)(x) acts on ?(Lﬁ) via its quotient
ANg)(x)/AL(x) = Ng(L, O)/L.)

We summarize our constructions in the following diagram:

v C ’ C Yor
Yo TL.0) XL.0)
m.ml U(L,ﬁ)l lll(Lﬁ’)
Y0/ T, X0 — Xw.0)
w(L,ﬁ)j T(L,ﬁ)t L”(Lvﬁ)
Y0\ TiL,0) X0

Note once again that the first two columns do not depend on the choice of the parabolic

subgroup P (but the varieties X/ X and X, ¢) do depend on P).

(L,0y ?Lﬁ)
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3.5. Local systems

We denote by £ an irreducible L-equivariant local system on &. Choosing x € & as
above, we obtain a corresponding irreducible representation V = &, of Az (x). Note that,
up to isomorphism, £ is the local system on ¢ associated to V by the functor (3.7) for
the Galois covering L/L} — L/L, = U in other words, the A (x)-equivariant local
system obtained by pulling £ back to L/L? is isomorphic to the constant sheaf V; /Lo

Recall that & is defined to be the unique G-equivariant local system on ?(L’ﬁ) whose
pull-back to G x (0 +37) iskg R(E gkéi ). Alternatively, £ is the local system associated

to V by the functor (3.7) for the Galois covering v(; ¢ : Y/ — Y( L,0)- (To see this,

(L,0)
observe that (v, /,a))*é' isa G x Ap(x)-equivariant local system on Y(L o) whose pull-
backto G x (L/LS x 37)isks X (VL/LO &k ) hence (v(z ¢))* = V o J)
)

Given a parabolic subgroup P C G with L as Levi factor, we s1m11arly define € to be
the unique G-equivariant local system on X° (L.0) whose pull-back to G x (0 + 31 +up)
is kg ® (€ Rk, ®k,,). By similar reasoning, & is the local system associated to V
by the functor (3.7) for the Galois covering [y, g) : X X{L.0) - X° (L.0)" Clearly £ is an
extension of € under the open embedding Y( L,0) = Xe (L.0)

Let € denote the restriction of & to T( L.0)» which is therefore also an extension of E.
Alternatively, £ is_the local system associated to V by the functor (3.7) for the Galois
covering oy, o) : T(/ Loy~ T(1.6)- Since this covering is independent of P (see Propo-

sition 3.14 and Lemma 3.16), the local system Eis independent of P.
Now let F denote the G-equivariant local system on r(_L] o) (Ind](j(ﬁ )) obtained by

restricting &. We have the following analogue of part of [Lu3, Lemma 7.10(a)]:

Lemma 3.17. Assume that (3.1) and (3.2) hold. Then the local system F is absolutely
irreducible.

Proof. Since the statement is independent of P, we can assume that P satisfies the
condition in (3.1). In addition to choosing x € & as above, let y € up be such that
x +y € Indf(0). Then G4y C P. Recall from Lemma 3.15 that 7, ;) (Indf (0)) is
the G-orbit of 1 * (x + y), whose stabilizer in G is G,4y. Since F is G-equivariant, it
corresponds to some representation V’ of Ag(x+y) = Ap(x+y). We must show that the
representation V' is absolutely irreducible. However, by construction, the representation
V' is obtained by pulling back the representation V through the natural homomorphism
Ap(x +y) — Ap(x) (compare [Lul, Corollary 7.4]; we have no induction of repre-
sentations here, since Ap(x + y) = Ag(x + y)). This homomorphism is surjective by
Lemma 3.10(2), and V is absolutely irreducible by assumption (3.2), so the claim fol-
lows. m]

Recall that the action of (Ng(L, &)/L) on Y(L ©) extends to T(L o) (see Proposi-
tion 3.14). Hence forany n € Ng(L, 0)/L we have a local system n*& on T(L [)’) If(3.1)
holds, from Lemma 3.15 we know that Ng (L, &)/ L acts trivially on ‘L'( L ﬁ) (Ind¥ 7L (0)),s0
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( Ll o) (Ind% (0)) is F. We then have the following

the restriction of this local system to t
analogue of [Lu3, Lemma 7.10(b)(c)].

Proposition 3.18. Assume that (3.1)—(3.3) hold. Then for anyn € Ng(L, O)/L there is
a unique isomorphism

on: &S n*E
such that the induced automorphism of F is the identity. Moreover,
Pmn = Vl*(@m) O© ®n

forallm,n € Ng(L, 0)/L; in other words, the collection of isomorphisms ¢, constitute
an (Ng(L, 0)/L)-equivariant structure on E.

Proof. Choose some 7 in Ang(r)(x) whose image in Ng(L, 0)/L is n. Then we can
apply Lemma 3.7 to the automorphism of T(’L’ ) Tesp. T(r,0), resp. AL (x), induced by
the action of 7, resp. the action of n, resp. the conjugation by 7, to obtain an isomorphism
between n*E and the local system associated to the twist V" of V by the conjugation
action of 77 on Ar (x). From assumption (3.3) we deduce that Vs isomorphic to V, so
there exists an isomorphism ¢, : &5 n*E. .

By assumption (3.2), the representation V is absolutely irreducible, and hence so is £.
So for each n € Ng(L, 0)/L, the isomorphism ¢, is unique up to scalar. In partic-
ular, n*(¢,,) o ¢, must be a scalar multiple of ¢,,, for all m,n € Ng(L, 0)/L. By
the remark before the statement of the proposition, ¢, induces an automorphism of F;
by Lemma 3.17, this induced automorphism must be a scalar multiplication, so we can
uniquely normalize ¢, to make it the identity. With this normalization, the equation

Omn = n*(@m) o @, is clear. O

For the remainder of this section, we continue to assume that (3.1)—(3.3) all hold. Re-
stricting the isomorphisms ¢, of Proposition 3.18 to Y, ), we obtain a collection of
isomorphisms

~ ~

Un € > n*E
foralln € Ng(L, 0)/L, satisfying the rule
Y = n*(Iﬂm) o Yn.

In other words, by considering the extension £ to the larger variety ’YV‘( L.0). we have de-
fined a canonical (Ng(L, 0)/L)-equivariant structure on £ .

By the equivalence (3.5), this (Ng(L, &)/ L)-equivariant structure on £ gives rise to
a local system € on Y, (L,0) equipped with a canonical isomorphism

(@.0)EZE. (3.12)

Since £ is absolutely irreducible by (3.2), we can apply Lemma 3.8 with M = E.
Using the projection formula, from (3.12) we deduce a canonical isomorphism

(@(1,0)+E ZE® (w1, 0)):k (3.13)

Yi,0)°
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The canonical (Ng (L, )/L)-equivariant structure on & defines a canonical action of
Ng(L, O)/L on (@, ¢))+«E. Under isomorphism (3.13), this action is induced by the
canonical action on (@y, ﬁ))*ky(L o (see Lemma 3.6 and the subsequent comments).
From (3.8) and Lemma 3.8 we deduce the algebra isomorphism

K[NG(L, 6)/L] = End((@(.0))+E ). (3.14)

This is the analogue of [Lu3, Proposition 7.14]. (Note thai, in isolation, (3.14) is a less
conclusive statement in the modular case, since (@1, ¢))«€ is not semisimple.)

Lemma 3.19. If £ =k, then &= ]]éy(L &)

Proof. In this case g = lkT(L and the isomorphism ¢, defined in Proposition 3.18

is clearly the canonical one. Hence § = ]kY o 3san (Ng (L, 0)/L)-equivariant local
system, so & = ky, o O

Remark 3.20. When £ is nontrivial, it is a challenging problem to describe concretely
the local system £ on Y, (L,0) (for example, by specifying explicitly the corresponding
representation V of A N (L) (x)—see Remark 3.3). Even in Lusztig’s setting where (&, &)
is a characteristic-0 cuspidal pair, this problem is unsolved in general, although some
cases were settled by Bonnafé [Bo2, Bo3].

3.6. Proof of Theorem 3.1

Finally we are in a position to prove Theorem 3.1. We continue to assume (3.1)—(3.3).

Using (3.13), from Lemma 3.8 we deduce properties (1) and (4) of Theorem 3.1 for
the above local system &. Properties (2) and (3) already emerged from the above dis-
cussion (see (3.12)—(3.14)). Hence what remains to be proved is that (w;, ¢))«€ has a
unique direct summand whose ZC-extension has a nonzero restriction to Indg(ﬁ), ap-
pearing with multiplicity one, and that € is the head of this direct summand.

First, from (3) and Lemma 3.8 we deduce that the indecomposable direct summands
of (wy, @))*5 are of the form & ® Lo for Q an indecomposable direct summand of

Kk[NG(L, ©)/L], i.e. an indecomposable projective k[Ng (L, &)/L]-module. Now, let

J Y, o) = T, e) be the inclusion, and let d := dim(Y(; ¢)). Then the restriction of
the perverse sheaf ZC (Y(L oy (@, ﬁ))*é’ ) to the induced orbit IndG(ﬁ) is the same as
that of ]u*((w(L 0))+E[d]). Moreover, since 7(;, ) is finite and T(L ) is smooth, and g
extends 5 there is a canonical isomorphism of perverse sheaves

Ju(@1.0)+E1d]) Z (71.0))+Eld].

By definition, the restriction of the right-hand side to Indg (0) is F[d], which is indecom-
posable by Lemma 3.17. (Here we abuse notation by denoting also by F the local system
on Indf (0) corresponding to the previous F on the isomorphic variety ‘L'(_Ll o) (Indg (0)).)
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This implies that there exists a unique direct summand G of (| ﬁ))*g whose ZC-exten-
sion has a nonzero restriction to Indf(ﬁ ) (appearing with multiplicity one), and that the
restriction of G to Indg(ﬁ ) is Fld].

Let Q be the corresponding indecomposable projective k[N (L, €')/L]-module, so
that = £ ® Lo, and consider the vector space Hom((z Lﬁ))*g , G). This vector space
has a canonical action of Ng(L, ¢)/L induced by the action on (w(Lﬁ))*g , and using
Lemma 3.8 it is easily checked that this k[Ng (L, &))/L]-module is isomorphic to Q.
Now consider the following morphism:

Hom(((z,0))+&. 6) 22" Hom((x(z,5))+€1d1. ju(GldD) — End(Fld]) = k,
where the second arrow is induced by restriction to Indf(ﬁ). Then by construction this
morphism is nonzero, and (Ng(L, 0)/L)-equivariant if Ng(L, 0)/L acts trivially on
the right-hand side. It follows that Q is the projective cover of the trivial representation,
which concludes the proof.

4. Induction and restriction

Consider a chain of Levi subgroups L C M C G. Let P C Q be parabolic subgroups
of G whose Levi factors are L and M, respectively. Also,let R =P N M.
Fix a pair (0, £) € Ny, i satisfying the following conditions:

(1) forany y € IndY (€) N (O +ug), My C R;

(2) forany y € Ind%(0) N (6 +up), Gy C P;

(3) & is absolutely irreducible;

(4) the isomorphism class of & is fixed by Ng(L, O).

The last condition implies, of course, that the isomorphism class of £ is also fixed by
the smaller group Ny (L, &). These conditions say that (L, ©) satisfies (3.1)—(3.3) with
respect to both M and G, so we can invoke Theorem 3.1 in both settings. Notice that
if & is a distinguished nilpotent orbit for L, then conditions (1) and (2) follow from
Lemma 3.11.

In this section we prove that the resulting objects (local systems, equivariant struc-
tures, group actions) are compatible with induction from M to G (see Theorems 4.2, 4.4
and 4.5). This culminates in Theorem 4.7, a modular version of Lusztig’s restriction the-
orem [Lul, Theorem 8.3], which one would expect to need in order to determine the
modular generalized Springer correspondence. In the present paper, the only application
of these results is in Section 9, where Theorem 4.5 is used; in particular, they are not
needed for the proof of Theorem 1.1.

4.1. Notation

We will need notation for several versions of the varieties Yz ¢y, Y, (L0 etc. Define

37 ={zesL | M =L},



Modular generalized Springer correspondence 11 1035

an open subset of 3, containing 37 . Recalling that Y, 4y = G - (0 + 37 ), we define

Y(Lﬁ) =M -(0+3;) and Y(Lﬁ) =M (0 +3).

Likewise, YM (L.0) T(A]:I’ o) etc., are defined in the same way as ?(L (;), T(L 0y €tc., but
with the roles of P, G, and 37 replaced by R, M, and 37 . The subset Y(L o) C Y(L ﬁ)

defined similarly, except that we retain 3°L Note that ?( L’ o) is an (Np (L, )/ L)-stable

dense open subset of ¥ ( L0y and hence YV ( L ﬁ) is a dense open subset of Y/ (L.0) the image

MG 'YMG

Let w(Lﬁ> Yo

of Y( 3 ﬁ) under the Galois covering w( L.0)" Y( L.o) ™ YM —

(L,O)"
M;G
Y (L.0) denote the restriction of w( L.0)
Consider the varieties

Yoy =G xM (M- (0 +33) =G xM Y("fjg),

X0y =G x2(Q-(0+;31+up) =G x? (Xf‘fﬁ) +ug).

Here, the last equality comes from the fact that up = ug 4 up, so

Q- (0431 +up)=M-(0+31+ug)+ug.

We have a diagram of cartesian squares analogous to that in [Lul, §8.4]:

Yoo Xw.0)

g |

DL, 0) i(L’ﬁ)(—> )?(L,ﬁ) (L, 0) “.1)

q)L j

Yoo Xw.0)

The outer square is (3.10). The map ¢ : ?(L /j) — ?(L ) 1s induced by w(ﬁz ;g), using

the obvious identification Y( Lo)=G xM Y The maps ¢, x and v are the natural
ones, and the middle open embedding is prov1ded by the following result. It is trivial that
the diagram commutes, and the top and bottom squares are cartesian because the outer
square (3.10) is cartesian and x is surjective.

Lemma 4.1. The natural map G x™ m — G x € q induces an isomorphism
> M yM:G ™ M;G
Yo.o)=Gx"Y g — GxQ(Y(Lﬁ)-i-uQ).

Proof. Inthe M = L case this is [Le, Lemma 5.1.27], and the proof in general is similar.
One need only check that no nontrivial element of Uy belongs to the stabilizer of an
element of Y( L /j), but the identity component of this stabilizer is contained in M by the

definition of 37 . O
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4.2. Compatibility of actions and equivariant structures

Recall that the map @z, ¢) is a Galois covering, the quotient of a free (Ng(L, O)/L)-
action on Y(L ¢) obtained by restrlctmg this (Ng(L, O)/ L) action corresponds to the

action on Y(L ¢)- Under the identification Y(L o) =0G xM

(Ny (L, ©0)/L)-action on G xM (L ﬁ) induced by that on Y(L ﬁ) Hence the map v is

the quotient map for the (N (L, &)/L)-action on Y, (,0)» and it is a Galois covering with
group Ny (L, 0)/L. The map ¢ is étale but not Galois in general, since Ny (L, O)/L is
not necessarily normal in Ng (L, 0)/L. _

Theorem 3.1 applied to L C G gives us a canonical local system £ on Y ) and
a corresponding canonical (NG (L, €)/L)-equivariant structure on the local system & on
Y1, 0) (see the arguments following Proposition 3.18). Applied to L C M, the same
theorem gives us a local system E on Y(L oy and a corresponding (Ny (L, 0)/L)-

oM
equivariant structure on the local system EM on Y( L.0)"

and a corresponding (N (L 0))/L)-equivariant

Restricting to open subsets, we

obtain a local system & MG on Y(L oy

structure on the restriction £4:G of EM 1o ¥ (Af g) Let G xM €YY denote the unique

G-equivariant local system on Y(L ¢ whose pull-back to G x Y ﬁ) isks ® 5 To
this corresponds an (Ny (L, ﬁ) /L)-equivariant structure on the analogously defined local
system G xM EM:G on G x ?(IZ g) Under the identification G x™ (IZ o) = = Y.0),
the local system G x™ ENM’G is identified with 5, so we end up with an (Ny (L, O)/L)-
equivariant structure on &.

Our first goal is to prove:

Theorem 4.2. The (N m(L,O)/L)- eqmvarlant structure on & obtained as above, via
the identification of Y(L o) with G xM Y(AZ 2), is the restriction of the canonical
(NG (L, O)/L)-equivariant structure. Consequently, we have an isomorphism

G xM e = E

of local systems on l7( L,0)-

4.3. Further geometry

Since the canonical (NG (L, O)/L)-equivariant structure on & is defined using the ex-
tension € of & to T( 1,0 (see Proposition 3.18), to prove Theorem 4.2 we need to relate

T, o), T( L,0) to the corresponding varieties T( 1.0y T( 1.~ Hence we introduce

T(L,ﬁ) = U_I(T(L’ﬁ’)) =G x ((X(L,ﬁ) + UQ) N T(L,ﬁ))'

Lemma 4.3. We have an inclusion
]u"(L,ﬁ) c G x? (T&/I,ﬁ) +up)

of open subsets of )V((Lﬁ).
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~

Proof. The M = L case is the statement that f(Lﬁ) cX ?L o) which was the first step
of the proof of Proposition 3.14. The general case is proved similarly. O

Now the preimage x ~! (T(Lﬁ)) of T(L’ﬁ) in )?(Lﬁ) is by definition T(Lﬁ). We need to
describe the larger subset x -G x2(T &” o) -+ ug)). Note that we have obvious isomor-
phisms

OxPp=MxBp=M xR xug,

coming respectively from Q = MUg, P = RUg and from p = v + ugp (and the fact that
the R-action on ug extends to M). We use these isomorphisms to define a Q-action on
(M x®v) x ug: the Levi factor M C Q acts in the obvious diagonal way, and an element
u € Ug acts by the rule

u-mxx,y)=mx*x,u-(m-x)—m-x+u-y) formeM,xecr,ycug. (42)

In particular, we can identify Q x P (5 + 31 +up) with X ?{ o) X 10 and hence identify

X0y =GxP(O+31+up) = Gx2(Qx (G+;31+up)) with G x2 (Sif‘{ﬁ) Xug).

M
(L,0)

Hence the preimage

Under this identification, the map x becomes the map G x ¢ ()~( X ug) —

~

M . M .M M
G x¢ (X(].g) + uo) induced by 7] ;5 X(LﬁL_) X1 o)

x NG x2 (T&”’ o) Fu0)) is identified with G x Q (T&”ﬁ) X uQ),Nin such a way that the
restriction o of x to this preimage is the map induced by ‘L'(AZ o)’ T(AL” o~ T(AL” oy

To sum up, we have expanded (4.1) into a diagram of cartesian squares in which all
the horizontal maps are open embeddings:

Y(L,ﬁ)( T(L,ﬁ)( G XQ (T(Z}:I’ﬁ) X uQ)(ﬁ X(L,ﬁ)

T(L.0) ?(L,ﬁ)(_>' ]v"(Lﬁ);). G x2 (T&’Iﬁ) +ug)— X(L,ﬁ) Tw.e  (4.3)

Yio.o)— Tw.0) X.0)

All the vertical maps here are finite except for those on the right-hand side (that is, except
for x, v and (1, ¢)).

4.4. Proof of Theorem 4.2

Since Uy acts trivially on the M xR v component in the action (4.2), the local system
EM Kk, o on T (111‘/1’ @) X U is not iust M -equivariant but~ Q-equivariant, and we have a
well-defined local system G x2 (EM r k, Q) on G x¢ (T(AL’[ o) % ug), whose restriction

to f(Lﬁ) is easily seen to be g
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The (Ny (L, O)/L)-action onT (L o)
action of M and preserves each fibre of the map r( L.0) So the induced (Ny (L, O)/L)-

defined by Proposition 3.14 commutes with the

action on TM (L.0) X U0 (with trivial action on the second factor) commutes both with the
M-action and with the Ug-action defined by (4.2); that is, it commutes with the whole
Q-action. Hence it induces an (Ny(L, &)/L)-action on G x @ ( (L.0) X ug) which
commutes with the G-action and preserves each fibre of the map o. This in turn induces an
(Nm(L, O)/L)-action on the subset T(;, () (which is a union of fibres of o). By definition
of the horizontal embeddings, this action extends the (Ny; (L, &)/L)-action on 17( L.0)

viewed as G xM Y (AZ 2) Therefore it coincides with the restriction of the (Ng (L, 0)/L)-

action on T, ) defined by Proposition 3.14, since the same compatibility holds for the
actions on the dense subset ?(L,ﬁ)-

To prove Theorem 4.2 it suffices to prove that two (N (L, 0)/L)-equivariant struc-
tures on & are the same. The first is induced by the (Np (L, 0)/L)-equivariant structure
onGx2(& M Xk Q) which in turn is induced by the (N (L, O)/L)-equivariant structure
on EM defined by Proposition 3.18. The second is the restriction of the (Ng(L, 0)/L)-
equivariant structure on € defined by Proposition 3.18. Hence it suffices to prove that the
first (Ny (L, O)/L)- -equivariant structure induces the trivial (Ny;(L, 0)/L)-equivariant
structure on the restriction of & to 7., )(Ind (0)), and for this it suffices to prove the
following statement:

(Lﬁ

the ernbedding f’(L oy — G x 2 (WZI o) X ug)

maps 7, )(IndG(ﬁ)) into G x ¢ ((r(L ﬁ)) 1(IndM(ﬁ)) X UQg).

L,o
Then from (4.3) we see that it suffices to prove that the embedding T(L, o) — G x @
(T&”ﬁ) +ug) maps 1! (Ind¥ (©)) into G x2 (Ind} (0) + up), or in other words that
(XU 4, +u0) NIndf (6) C Indy! (0) +ug. (4.4)

But this is easy. The left-hand side of (4.4) is unchanged if XM (L.0) is replaced by its

intersection with .4}, namely Indﬁ” (©). For any M-orbit ¢’ in IndLM (0) \ IndLM (0),
0" + uyg is contained in the closure of the orbit Indﬁ(ﬁ’) whose codimension in 4G
is dim A4}y — dim &”, strictly greater than the codimension dim .43y — dim IndILVI (0) of
Indf,[ (IndIZI (0)) = Indg (0). Hence &’ 4 ug does not intersect Indg (0), proving (4.4).

4.5. Induction isomorphisms

By [AHJR2, Proposition 2.17], there is a canonical isomorphism

17, (ZC(O +51. £ RK,))) = IC(Y(1 00, (@1, 0)4E ) 4.5)
The same result applied to M instead of G gives us a canonical isomorphism

I R(ZCO +;51, Ewmk,)) =IC(Y]] 4, (w(f‘{ﬁ))*gM). (4.6)
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There is also a natural isomorphism of functors expressing the transitivity of induction:
I p =15 ol) p: D} (1k) > Df(g. k). 4.7

This isomorphism is defined by a standard diagram, exactly analogous to [AHR, (7.6)]
but with the groups T, C, B, L, P replaced respectively by L, R, P, M, Q, and nilpotent
cones replaced by Lie algebras throughout.

Combining (4.5)—(4.7), we obtain a canonical isomorphism

I o (ZC Y 4 @l 5):EM) ZIC(Y 1 0. (@(1.0)4E). (4.8)

On the left-hand side of (4.8) we have an action of Ny (L, 0)/L, induced functorially by
the action on (w("g ﬁ))*c‘f M derived from the canonical (Ny; (L, €))/L)-equivariant struc-

ture on £M . On the right-hand side of (4.8), likewise, we have an action of Ng(L, O)/L.
The following crucial result says that these actions are compatible. (A special case of
Theorem 4.4 was used in determining the modular generalized Springer correspondence
for GL(n); see [AHJR2, proof of Lemma 3.11]. That case was relatively easy because the
local system £ was trivial and the groups Ny (L, &)/L and NG (L, 0)/L were the same.)

Theorem 4.4. The isomorphism (4.8) is (Ny (L, O)/L)-equivariant, in the sense that
the action of (Ny (L, O)/L) on the left-hand side corresponds to the restriction of the
action of (NG (L, O)/L) on the right-hand side.
Proof. The special case of this result where L is a maximal torus 7' (and thus, necessarily,
0 = {0} and & = k) was proved in [AHR, §7.6]. The proof of the general case is
similar, with the additional complication of nontrivial local systems. _
Let j : Yz ¢y — g be the inclusion. Since j* : End(ZC(Y(L o), (@1, 0))+E)) —
End((= L’ﬁ))*g [dim Yz ¢)]) is an isomorphism, to prove the theorem it suffices to prove

that the following isomorphism of shifted local systems on Y(; ), induced by (4.8), is
(Ny (L, 0)/L)-equivariant:

F 0@l 5 @l 5):EM) = (@, 0)+Eldim Y ). (4.9)

Our aim now is to give another construction of the isomorphism (4.9), one which can be
seen to be (N (L, O)/L)-equivariant using Theorem 4.2.
By using [AHJR2, Lemma 2.14], the left-hand side of (4.9) can be rewritten as

j*(nMCQ)undg(IC(Y(Afﬁ) +ug, (w(’{’ﬁ))*EM Rk, ,))[dimugl, (4.10)

where myco © G x€ q — g is the usual proper map and Indg : Dg(q, k) =
Dg (G x€9 q,k) is the standard equivalence of equivariant derived categories. Now the
cartesianness of the bottom square in (4.1), together with Lemma 4.1, says that
M M;G
(X(L,ﬁ) =+ U.Q) n Y(L,@’) = Y(L,ﬁ) + up.
So the support of (4.10) is contained in G - (Y, (M;g) +1up), and this object can be rewritten

L
as
ThcIndG (@ o) EM 0 mlk, )dim Y 0], (4.11)
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where JTMCQ G x? (Y(L o) T10) = Y1 0) s the restriction of 7y . (In calculating
the shift, we have used the formula dim Y, ) = dim G —dim L+-dim & and its analogue
for YM (L. .) Under the isomorphism of Lemma 4.1, the map 7, - 0 corresponds to the

étale map ¢, and thus (4.11) can be rewritten as

gadndfy (@ 5):EM0)ldim Yt )], (4.12)
which in turn is isomorphic to
et Ind§y (EM9)[dim Y )] = ((1.6))-E[dim Y1 )], (4.13)

as required.

The verification that the isomorphism (4.9) equals the isomorphism obtained by the
preceding argument (i.e. the composition (4.10)=(4.11)=(4.12)=(4.13)) will be omit-
ted: it is routine diagram-chasing, no harder than the L = T case proved in [AHR,
Lemmas 7.8 and 7.9]. The (Ny(L, 0)/L)-equivariance of (4.9) now boils down to the
(Np (L, 0)/L)-equivariance of (4.13), following immediately from Theorem 4.2. m]

Recall from Theorem 3.1 and its proof in §3.6 that the indecomposable direct summands
of (@, 0))« & are of the form &€ ® £ py where Py is the projective cover of an irre-
ducible k[N (L, O)/L]-module V. Since ZC is fully faithful and additive, it follows
that the indecomposable direct summands of ZC(Y(z ¢), (1, ¢))+E) are of the form
IC(Y(L,6), E® Lp,). Then (4.8) has the following refinement:

Theorem 4.5. For any irreducible K[Npy (L, ©)/L]-module U, we have

=M ~ <
IMcQ(IC(Y(L oy £ ® ‘CII‘;[U)) x~ @ ICY (L, 0y, E® ACPV)@mV,Uy
Velrr([k[Ng(L,0)/L])

where my y denotes the multiplicity of Py as a summand of the induced representation

Ng(L,0)/L
IndNM(L,ﬁ)/L(PU)’

Proof. Since the left-hand side is a direct summand of the left-hand side of (4.8), we
know it has the form stated on the right-hand side with some multiplicities. We can deter-
mine these multiplicities by applying the functor j* of restriction to ¥, ¢). By the same
argument as in the proof of Theorem 4.4,

=M ~ =M;G : .
FIco@el 5. 8" @ LE)) = pund§ (€ @ L3 )Idim Y g)].

where EM;G is the local system on YM i ﬁ)

On applying Theorem 4.2, this becomes

corresponding to the representation Py via the

Galois covering w( L ﬁ)

0+ (@*E ® Lp,)[dim Yi.ol

where £ py 1s the local system on Y (L,0) corresponding to the representation Py via the
Galois covering . By the projection formula, this in turn becomes £ ® £;[dim Yool

NG(L,0)/L (Py). The result follows. O

where [ denotes the induced representation Ind Nay(L.O)/L
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4.6. A restriction theorem

For the remainder of this section, let (&, £1) denote a cuspidal pair in ‘ﬁcLusﬂf satisfying
the conditions introduced at the the beginning of the section (p. 1034):

(3) &L is absolutely irreducible;
(4) the isomorphism class of & is fixed by Ng(L).

Recall from Proposition 2.6 and Lemma 2.9 that Ng (L, 01) = Ng(L) for cuspidal pairs,

and from Lemma 3.11 that conditions (1) and (2) are automatically satisfied.
cusp

As mentioned in §2.2, there is another pair (& , £;) € M, (frequently, and possibly
always, equal to (&, £r)) such that

T(ZC(OyL,E) = IC(ﬁ/L + 3L, S/L gkﬁL)'

Since Fourier transform is compatible with field extensions and with the adjoint action
of G, conditions (3) and (4) also hold for (£}, £;). Hence we can apply the results of
this section and the previous one with (7, £) = (0}, &}).

Combining Lemma 2.1 and Theorem 3.1, we have a canonical bijection

Ir(k[NG (L)/L]) <> N304, (4.14)

in which V e Irr(k[Ng(L)/L]) corresponds to the unique pair (Oy, y) € Mgk such
that

Ty(IC(Ov. Ev)) ZIC(Y 1, 0y € ® Lv).
We now show that the bijection (4.14) between simple objects is implemented by a functor
between abelian categories.
Recall the isomorphism (2.2). Since Ty is an equivalence, the (Ng(L)/L)-action on

IC(Y(Lﬁ/L), (w(Lﬁ’L))*g/L) induces an (Ng(L)/L)-action on Ich(IC(ﬁL, £1)). Hence
we have a functor

SEOLED — Hom(18_ ,(IC(O, £1)), —) : Pervg (A6, k) — Rep(Ng(L)/L, k).
G LCP

In the special case where L = T is a maximal torus (and hence (0, £1) = ({0}, k)), this
is the Springer functor S¢ : Pervg (A6, k) — Rep(Ng(T)/T, k), as defined in [AHJR1,

Section 5]. So S(GL’WL’SL) is a ‘generalized Springer functor’.
Proposition 4.6. Let (0, ) € Vg k.

1) If (0,€) € ‘ﬂg"]’km’&), then S(GL’ﬁL’gL)(IC(ﬁ, £)) is the irreducible representation
of Ng(L)/L corresponding to (O, £) under (4.14).

O, €
Q) If (0,8 e ‘)’t(GL]L L L])fOI" some other triple (L, Op,, EL,) such that Y(Lﬁi) 4
X(L|,ﬁ;‘ ), then S(GL’ﬁL’gL)(IC(ﬁ, 5)) = O
1
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Proof. By definition, we have an isomorphism
SgHE(TC(0, €)) = Hom(IC(Y 0. (w1, 01))+E}). TgTC(O, £))).  (4.15)

In case (1), if (0,&) = (Oy,Ey) for V. € Irr(k[Ng(L)/L]), then the right-hand side
of (4.15) is

Hom(ZC(Y 1, 01 (@ 1.01))+E 1) IC(Y (1. 01, € ® L))
= HomLoc(Y(Lﬁ/L),]k) (€ ® Lung w1, € ® Lv)
= Hompepvg(z)/L,k) KING(L)/L], V) = V.

(Here, the second isomorphism uses Lemma 3.8.) In case (2), the right-hand side of (4.15)
vanishes because Ty (ZC (0, £)) is a simple perverse sheaf supported in X, O ) which
1

by [Lu3, Proposition 6.5] either does not intersect X L,o)) o intersects it only in the
boundary of ¥ L.6}) O

The following result says that generalized Springer functors are compatible with restric-
tion to Levi subgroups. In the L = T case (i.e., the case of Springer functors), this was
shown in [AHR, Section 7].

Theorem 4.7. We have an isomorphism of functors

Ng(L)/L (L,OL.EL) ~ g(L,0L,EL) G
R SNM(L)/LOSG =Sy ORMcQ'

&)

In particular, if (0,€) € fﬁ(GL’]’kﬁL’ corresponds to V € Irt(K[Ng(L)/L]) under the

bijection (4.14), then

Ng(L)/L

Resyo\7) (V) = 8051 (R o (ZC(0, £))).

Proof. Applying Fourier transform to the isomorphism (4.8), and using (2.2) for G and
for M, we obtain exactly the isomorphism

15 o (/g (ZC(OL. EL))) =X p(TC(OL. EL)) (4.16)

derived from the transitivity isomorphism If; _, o I} = If_, (see [AHJR2, Lemma
2.6]). Theorem 4.4 implies that the isomorphism (4.16) is (Nps(L)/L)-equivariant, where
the (N (L)/L)-action on the left-hand side is obtained from that on IQ’IC RZC(OL, &)
and the (Nys(L)/L)-action on the right-hand side is obtained by restricting the action of
Ng(L)/L. So for F € Pervg (A5, k) we have

Res\o (54 G710 () = Hom (1 (I oTC(01. 07), 7)

2 Hom(IY_x(ZC(OL, £1)). R§ o (F)) = S W R o (),

which proves the claim. (Here the first isomorphism follows from (4.16), and the second
one from adjunction.) O
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5. Strategy of the proof of Theorem 1.1

We continue to let G be a connected reductive group over C. In this section we will
introduce some hypotheses on G and k which imply the modular generalized Springer
correspondence for G, and explain how to reduce Theorem 1.1 to case-by-case checking.

5.1. Central characters

Let L be a Levi subgroup of G, and (0L, £1) € M k. Recall that £, corresponds to an
irreducible representation V over k of the finite group Ay (x) := Ly/L$, where x € Op.
The inclusion Z(L) C L, induces a homomorphism Z(L)/Z(L)° — Ap(x) whose
image is a central subgroup. If x : Z(L)/Z(L)° — k* is a homomorphism, we say that
&1 has central character x if Z(L)/Z(L)° actson V via . If & is absolutely irreducible,
it is guaranteed to have some central character by Schur’s Lemma.

Lemma 5.1. Let (01,&r) € ‘ﬁcLu?lf, and suppose £, has central character x. For any
pair (0,€) € mﬁfﬁfbg“, & has central character x o ¢ where o denotes the natural
homomorphism Z(G)/Z(G)° — Z(L)/Z(L)°.

Proof. This follows easily from the definition of IEC p(@XC(Oy, £L)), as in the setting of

Qy-sheaves [Lul, §3.2]. m]

We will sometimes refer to x o g, rather than to x, as the central character of £;. This
does no harm because the homomorphism p is well known to be surjective.

Lemma 5.2. Let (0,&;) € ‘ﬂiusﬂf, and define (0} ,&)) € ‘ﬁiusﬂf by Fourier transform
as in §2.2. If &1, has central character x, then so does &; .

Proof. This follows easily from the definition of the Fourier transform, as in the setting
of Q,-sheaves [Lu2, Section 9]. ]
Lemma 5.3. Let (01, &1) € Nk, and assume E;, has central character x. Then for

anyn € Ng(L, OL), the local system n*Ey, on O, has central character x.

Proof. This follows from the observation that the action of Ng(L) on Z(L)/Z(L)° is
trivial, since the surjective morphism o of Lemma 5.1 is Ng (L)-equivariant, and Ng (L)
acts trivially on Z(G). O

5.2. The two key statements

Consider the following statements about a connected reductive group H and the field k.
Statement 5.4. For any (0, &) € ‘)’K;}ISHE, the local system & is absolutely irreducible.

Statement 5.5. For a fixed nilpotent orbit © C JVH, if one considers all the H-equiva-
riant local systems € on O such that (0, &) € ‘ﬁifug, then these local systems all have a

central character, and these central characters are distinct.
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Notice that, for a fixed H, one can always enlarge k to ensure that Statement 5.4 holds,
and then the existence of the central characters referred to in Statement 5.5 follows auto-
matically, but not the distinctness.

Remark 5.6. A remarkable feature of Lusztig’s generalized Springer correspondence for
Qy-sheaves is that the distinctness of central characters of cuspidal pairs holds even with-
out fixing the orbit & (see [Lul, Introduction]). In Section 7 we will see that when k has
characteristic 2, there are several cuspidal pairs for Sp(2n) with the same (trivial) central
character, supported on different distinguished orbits. Thus, Statement 5.5 appears to be
the best we can hope for in the modular case.

Let £ denote a set of representatives of G-conjugacy classes of Levi subgroups of G. We
can now prove the following conditional version of Theorem 1.1 (without any assumption
that G is classical).

Theorem 5.7. Suppose that Statements 5.4 and 5.5 hold with H = L for all proper Levi
subgroups L C G. Then

Nox= ] || &, 5.1)

LeL (0, 5L)€‘ﬁmp
and forany L € £and (O, &) € ‘TICLUED, we have a canonical bijection

NEEED o I (K[NG(L)/L)). 5.2)

In particular,
Morl=Y_ Y [rk[NG(L)/L]). (5.3)

Leg oy, 5L)€mCUSp
Proof. Ttis clear from what was said in §2.2 that

=) U mgee.

LeL (Op.EL)eNyy

By Corollary 2.2, the union over £ is disjoint; so to prove (5.1) we need only prove the
disjointness of the union over 0N L. 115 for each L € £. When L = G, the union over ‘ﬁcuSp
is disjoint by definition. Suppose for a contradiction that for some L € £ with L - G

ﬁm o
there are distinct cuspidal pairs (& (1), & (1)) “ (2), E (2)) € ‘ﬁcusﬂf such that ‘ﬁ(L &)
oD €@ .
and ‘ﬁ(GLk ) are not disjoint. Let ((ﬁ,ﬂ') Y, (Sg) )") denote the cuspidal pair obtained

from (& @ , Sg)) by Fourier transform as in (2.1), for i € {1, 2}. Then by Corollary 2.2
again, (L, (ﬁg))’) and (L, (ﬁf))’) must be G-conjugate, or in other words (ﬁil))’ and
(6’22))/ are Ng(L)-conjugate. However, (ﬁzl))’ and (6’22))/ are distinguished L-orbits
by Proposition 2.6, so Lemma 2.9 forces (ﬁg))’ = (6’22))/ . Since Fourier transform is
invertible, we must have (521))’ +~ (522))’ . Statement 5.5 for H = L implies that (521))’
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and (é'f))’ have different central characters. By Lemma 5.2, we conclude that 821) and

. . . LoV v
522) have different central characters. But then Lemma 5.1 implies that m(G I ) and
(L.62 £y ’
Gk L "L 7 are disjoint, contradicting our assumption. So (5.1) is proved.

The bijection (5.2) is trivial if L = G (both sides have one element). If L # G, the
canonical bijection (5.2) is provided by the combination of Lemma 2.1 and Theorem 3.1
applied with (0, &) = (0, &}). (Here we use Lemma 2.9 to replace Ng(L, 0})/L
with Ng(L)/L.) So we need only verify the three assumptions of Theorem 3.1. Assump-
tion (3.1) follows from Lemma 3.11; assumption (3.2) is guaranteed by Statement 5.4 for
H = L; and assumption (3.3) follows from Statement 5.5 for H = L, since local systems
with different central characters cannot be in the same N¢ (L)-orbit, by Lemma 5.3. O

Theorem 5.7 suggests an inductive approach that, if successful, proves the modular gener-
alized Springer correspondence for G at the same time as determining its cuspidal pairs.
Assuming by induction that the cuspidal pairs for every proper Levi subgroup L of G
have been determined, one may hope that Statements 5.4 and 5.5 hold for all such L (in
the case of Statement 5.4, this is not so much a hope as a specification of how large k
needs to be to allow this approach). If so, then Theorem 5.7 applies and one has the mod-
ular generalized Springer correspondence for G. Moreover, from (5.3) one can work out
the number of cuspidal pairs for G. In combination with other information such as Propo-
sition 2.6 and [AHJR2, Proposition 2.22], this may be enough to determine the cuspidal
pairs for G, completing the inductive step.

In Sections 6-8 we will see that this approach succeeds when G is classical, and thus
prove Theorem 1.1. We will consider the various Lie types in turn, taking G = SL(n) in
Section 6 (type A), G = Sp(2n) in Section 7 (type C), and G = Spin(n) in Section 8
(types B and D).

5.3. Some reductions

We need some general reduction principles, to explain why proving Theorem 1.1 for the
cases where G is simply connected and quasi-simple is enough to prove it for general
classical groups. These principles are also required in the inductive proof for each simply
connected quasi-simple G, because of course Levi subgroups of such G are not them-
selves quasi-simple.

First, let us consider the relationship between G and its maximal semisimple quotient
G/Z(G)°. The nilpotent cone of G/Z(G)° is the same as .#; (on which Z(G)° acts
trivially). The forgetful functor

Pervg,z(Gy (NG, k) — Pervg (A5, k)

associated with the quotient morphism G — G/Z(G)° is exact and fully faithful,
since the forgetful functors from both categories to the category of all perverse sheaves
on A are fully faithful. Since the natural homomorphism Ag(x) — Ag/z(G)e(x)
is an isomorphism for all x € G, the sets Mg and NG,z k can be identi-
fied. The notion of cuspidal pair is the same whether one considers G or G/Z(G)°,
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SO ‘ﬁcu}f and ‘ﬁgusg(G)o i can also be identified. The Levi subgroups of G/Z(G)° are
the subgroups of the form L/Z(G)° where L is a Levi subgroup of G. Note that
NG(L)/L = NGz (L/Z(G)°)/(L/Z(G)®). The above comments also apply to the

relationship between L and L/Z(G)®, and in particular ‘ﬂcuysﬂf = mi‘}sg(c)o,k. Finally,

the induction series associated to a given element of ‘ﬁcuSp is the same for G/Z(G)° as
for G. We deduce that, in proving Theorem 1.1, we can replace G by the semisimple
group G/Z(G)°. ~ ~

Now assume G is semisimple, and let G be a simply connected cover of G. Then G
is a direct product of simply connected quasi-simple groups. We claim that, in proving
Theorem 1.1, we can replace G by G; granting this, it is then clear that we can reduce
to the simply connected quasi-simple case, because all the relevant concepts behave well
with respect to direct products. To show the claim, we need to relate cuspidal pairs and
induction series for G and for G. - -

Let K = ker(G — G), a subgroup of the finite centre Z(G). The nilpotent cone of G
is the same as .45 (and K acts trivially on it). Again the forgetful functor

Pervg (4G, k) — Pervg (A6, k)

is exact and fully faithful. Since the natural homomorphism Az(x) — Ag(x) is surjec-

tive for all x € A, we can identify Dt x with a subset of ‘ﬁG k- characterized by the

condition that K acts trivially on the local system. A pair in 91  is cuspidal for G if and
cusp

only if it is cuspidal for G, so Nox = m““s" N Ng k. The Levi subgroups of G are all

of the form L where L denotes the inverse image of a Levi subgroup L of G. Note that
Ng (L) / L= Ng(L)/L. The above comments also apply to the relationship between L

and L, and in partlcular mzuﬁlf = ‘ﬁcuSp NNy k. Clearly, the induction series associated to

a given element of ‘ﬁ k is the same for G as for G. Since disjointness of induction series
is the only point at issue in (1.1) (see the proof of Theorem 5.7), knowing Theorem 1.1
for G implies it for G.

5.4. Combinatorial notation

As in [AHJR2], we let N> denote the set of sequences of nonnegative integers with
finitely many nonzero terms. (Here the sequences will be parametrized by positive inte-
gers). Elements of N°° are sometimes called compositions. For a = (ay, ap, ...) € N,
let |la]| = Z;’il a;. Given a,b € N* and k € N, we can form the sum a + b and the
product ka.

For m € N, let Part(m) denote the set of partitions of m. We identify Part(m) with
the subset of N* consisting of decreasing sequences A with |A|| = m. For A € Part(m),
w € Part(m’) and k € N, the sum A + w and the product k) are defined as above, via this
identification. For A € Part(m), let m(A) = (m1(A), ma(A), ...) be the composition in
which m; (}) is the multiplicity of i in A. We write A' for the transpose partition, defined
by the property that A} — A}, | = m; (&) for all i. For A € Part(m) and p € Part(m’), we
define AU u € Part(m + m’) to be the partition whose parts are the union of those of A
and those of j; thus, (A U p)t = A+ ut.
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Let Party(m) C Part(m) be the set of £-regular partitions, i.e., partitions in which
m; (1) < £ for all i. On the other hand, let Part(m, £) C Part(m) be the set of partitions
all of whose parts are powers of £; that is, m; (A) = O unless i = ¢J for some j = 0. For
a € N*°, we define

Part(a) :HPart(ai) and Part,(a) =HPartg(a,~).

i1 i>1

We write an element of Part(a) as A = (A1), 1@ .. .) where () € Part(a;). Recall that
Party (m) is in bijection with Irr(k[&,,]), where k has characteristic £ and &,, denotes the
symmetric group; hence Part, (a) is in bijection with Irr(k[&,]), where &5 = [[;.; Ga;.

Form € N, we let Bipart(m) denote the set of bipartitions of m. For a € N> we define
Bipart(a) in the obvious way. When £ # 2, we also let Bipart,(m) C Bipart(m) denote
the subset consisting of ¢-regular bipartitions (i.e. pairs (1!, 12) where both A! and A% are
£-regular), and for a € N°°, we define Bipart (a) correspondingly. Recall that when k has
characteristic £ # 2, Bipart,(m) is in bijection with Irr(k[(Z/27Z) : &,,]), where @ denotes
the wreath product; hence Bipart (a) is in bijection with Irr(k[(Z/27Z) : G,]).

If n > 1 and £ is a prime number, ny denotes n/£¢ where £¢ is the largest power of ¢
that divides n.

6. The special linear group

In this section we fix n > 1 and a prime number ¢, and we consider the case where
G = SL(n) and k is a field of characteristic £ containing all the n-th roots of unity (or
equivalently all the n,/-th roots of unity). The main result appears in Theorem 6.3.

6.1. Preliminaries

We identify the centre Z(G) with the group p, of complex n-th roots of unity. Let ft,
be the set of group homomorphisms x : w, — k*. Note that i, is a cyclic group of
order ny under pointwise multiplication. For x € 1, let e(x) denote the order of x. We
now explain how to use the elements of [, to parametrize the local systems of interest
to us.

Recall that the G -orbits in .45 are in bijection with Part(n): for A € Part(n), the corre-
sponding orbit &, consists of nilpotent matrices with Jordan blocks of sizes A1, A2, .. ..
For any x € 0, the natural homomorphism Z(G) — Ag(x) is surjective with ker-
nel wy/gcd(n) where ged() denotes ged(Ag, A2, .. .). Hence the irreducible G-equivariant
k-local systems on &), all have rank one, and they are distinguished by their central char-
acters, which range over those x € 1, such that e(x) | gcd(A),. We will write these local
systems as &), , accordingly. Thus

Nk = (O3, Exy) | (&, x) € Part(n)'},

where
Part(n) := {(A, x) € Part(n) x jt, | e(x) | ged(A) ).
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The unique distinguished orbit in .45 is the regular orbit ), consisting of nilpotent ma-
trices with a single Jordan block. The irreducible G-equivariant k-local systems on &,
are the &), where x runs over i,.

The set of G-conjugacy classes of Levi subgroups of G is also in bijection with
Part(n): forv = (v, ..., vy) € Part(n) (where s = £(v)), one can set

v =S(GL(v1) x - -+ x GL(vs)),

and choose £ := {L,, | v € Part(n)}. The relative Weyl group Ng(L,)/L, is isomorphic
t0 Sm(v), so Irr(k[Ng (L) /L,]) is in bijection with Part,(m(v)).
Note that we have isomorphisms

2wy =,z € ©

li[z;-)" = 1},
i=1

2wy = {2 e ©) [[]g7 =1}, ©.1)
i=1
SL X -+ X SL(vg
Ly/Z(L,)® = ) (‘:) vi/ged(v) 1y
(1o &) € oy X X g [T ¢ =1}

The natural surjective homomorphism Z(G) — Z(Ly)/Z(L,)° has kernel w,/gcd(v)-
Hence the group homomorphisms Z(L,)/Z(L,)° — k* are in bijection with those y €
Ity such that e(x) | ged(v) .

We can identify the nilpotent cone .47, with the product As ) X -+ X ASL(y)-

We let 0" denote the regular L,-orbit in N, 1e. ﬁm = Ou)) X -+ X Oy. For

[v]
X € ﬁ[Lvﬁ, the natural homomorphism Z(L,)/Z(L,)° — Ap,(x) is an isomorphism.

Hence the irreducible L, -equivariant k-local systems on ﬁ[Luﬁ all have rank one, and they

are distinguished by their central characters; we will write them as 5)% ’ where x € [, is

such that e(y) | gcd(v). We can use the third isomorphism in (6.1) to regard 5;” as an
(SL(vy) x - -+ x SL(vy))-equivariant local system; we then have

£ = oy B BEL, 6.2)
where x; € iy, is defined uniquely by the rule that x; (;) = x(¢) whenever ¢ € u,
and ¢; € .y, satisfy ¢ n/ged(v) — g“ivi/ ged®), Here, the notation 5(%)(”)‘0) is the analogue for
SL(v;) of the notation £, , for G = SL(n), i.e., it denotes the SL(v;)-equivariant local
system on 0|,,) associated to x; € [, -

For the purposes of modular reduction arguments, we let K be the extension of Q,
obtained by adjoining all n-th roots of unity, O be its ring of integers, and I be the residue
field of Q. Then F is isomorphic to the extension of IF; obtained by adjoining all n-th roots
of unity, and k is an extension of F.

6.2. The two statements and the classification of cuspidal pairs

By Proposition 2.6, every cuspidal pair for G must be supported on the regular orbit &).
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Lemma 6.1. If x € [, satisfies e(x) = ny, then the pair (O, Ew),y) is cuspidal.

Proof. This proof is similar to the proof of [AHJR2, Proposition 2.25]. In fact, it is
enough to prove the proposition in case k = F. In this case, there exists an O-free local
system £ on &, such that £X := K ®g £P is a rank-one local system associated with
a generator of the group of homomorphisms y, — K*, and such that F @g £0 = Emy,x-
Then (O, EXyis a cuspidal pair by [Lul, (10.3.2)], and ZC(O ), Eny,y) occurs in
the modular reduction of ZC(&(y), K. By [AHJR2, Proposition 2.22] this implies that
(O, Em), ) is cuspidal. o

Remark 6.2. The preceding proof involved the observation that ZC(0(), Ew), ) occurs
in the modular reduction of ZC(&y), EXY. In fact, since the only distinguished orbit in
ASL) 18 Oy, the modular reduction of ZC(O ), EXY is equal to ZC(Oy, Emy, x)-

Theorem 6.3. Let k be a field containing all n-th roots of unity. Then Theorem 1.1 and
Statements 5.4 and 5.5 hold for G = SL(n). The only cuspidal pairs are those described
in Lemma 6.1, so the number of cuspidal pairs is ¢ (ng).

Proof. We prove this by induction on n, the n = 1 case being trivial.

Let v € Part(n) with v # (n), so that the corresponding Levi subgroup L, is a proper
subgroup of G. As explained in §5.3, the cuspidal pairs for L, can be identified with those
for L,,/Z(L,)°, which can in turn be identified with a subset of the cuspidal pairs for the
simply-connected cover SL(vy) x --- x SL(vy) (see (6.1)).

After possibly replacing k by a larger field k' containing additional roots of unity,
the inductive hypothesis applies to each factor SL(v;), and tells us the classification of
cuspidal pairs for SL(v;) x --- x SL(vy) over k’: they have the form

SL(v) SL(vy)
(O X =X Oy €y B BEL) s

where each x; € i, satisfies e(x;) = (v;)¢. However, the discussion preceding (6.2)
shows that among these, the L,-equivariant local systems are already defined over k.
Thus every cuspidal pair for L, (over k) is supported on the regular orbit ﬁ[L]ﬁ; moreover,
applying (6.2), we see that (6’{;}, Ef ") is cuspidal if and only if e(x) = (v;), for every i.

We conclude that L, has cuspidal pairs if and only if v has the form dp where d | ny
and p € Part(n/d, £), and in this case the cuspidal pairs are (ﬁ[fij)”], 5; Y where x € [in
satisfies e(x) = d. In particular, the number of cuspidal pairs for Ly, is ¢(d), and they
are distinguished by their central characters.

We have established Statements 5.4 and 5.5 for all proper Levi subgroups of G, so we
can invoke Theorem 5.7 and conclude that Theorem 1.1 holds for G.

For the cuspidal pairs described in Lemma 6.1, it is clear that Statements 5.4 and 5.5
hold. Thus, to complete the inductive step, it remains to show that those ¢ (n,/) pairs are
the only cuspidal pairs for G = L. It suffices to show that this number of cuspidal pairs
makes the equality (5.3) hold, which follows immediately from Lemma 6.5 below (using
the obvious bijection between Part, (m(dp)) and Part,(m(p))). m]

Recall the combinatorial bijection that was used in [AHJR2] to describe the modular
generalized Springer correspondence for GL(n):
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Lemma 6.4 ([AHJIR2, Lemma 3.9]). The following map is a bijection:
W = |_| A |_| Part, (m(v)) — Part(n),
vePart(n, ) vePart(n,£)

where | |
50« Part,(m(v)) — Part(n) : A Zgl AN,

i>0
The analogous fact needed to complete the proof of Theorem 6.3 is:

Lemma 6.5. The following map is a bijection:

20 — I_l P I_l Part,(m(p)) — Part(n)’,
X Eltn X Eitn
pePart(n/e(x),t) pePart(n/e(x),t)

where ‘ ,
£ Part,(m(p)) — Part(n) : X > (Z eGOL L, x).
i>0
Proof. For fixed x € J1,, the partitions o € Part(n) for which (o, x) € Part(n)’ are ex-
actly those of the form e(x )t for t € Part(n/e(x)). So the result follows from Lemma 6.4
applied with n/e(x) in place of n. O

Note the following consequence of Theorem 6.3 and its proof:

Corollary 6.6. For SL(n), cuspidal perverse sheaves are invariant under Fourier trans-
cusp

form. In other words, for any Levi L C SL(n) and any (O,&r) € N, i, we have
(0,.&)=(OL,EL).

Proof. This follows from Lemma 5.2, since the cuspidal pairs for SL(n), classified in
Theorem 6.3, have distinct central characters. O

Remark 6.7. Consider the group PGL(n) = SL(n)/u,. As explained in §5.3, the cusp-
idal pairs for PGL(n) can be identified with the cuspidal pairs for SL(n) that have trivial
central character. By Theorem 6.3, there is a unique such cuspidal pair (namely (O, k))
if n is a power of ¢, and none otherwise; thus we recover the classification of cuspidal
pairs for GL(n) given in [AHJR2, Theorem 3.1].

7. The symplectic group

In this section we fix n > 1 and take G = Sp(2n). Since all the groups Ag(x) for x € G
are 2-groups, the behaviour is markedly different in the £ = 2 and £ # 2 cases.
Recall that the G-orbits in .44 are classified by Jordan form: they are in bijection with
the set
Partgp(2n) = {A € Part(2n) | m;4+1(2) is even for all i }.

By [CM, Theorem 8.2.14], the distinguished orbits are the orbits &) where A belongs to
the set Party sp(2n) of partitions of 2 into distinct even parts.
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7.1. The £ = 2 case

Since the only irreducible representation of a 2-group in characteristic 2 is the trivial
representation, the only simple G-equivariant local system on a nilpotent orbit in the
£ = 2 case is the constant sheaf.

Theorem 7.1. Letk be any field of characteristic 2. Then Theorem 1.1 and Statements 5.4
and 5.5 hold for G = Sp(2n). Every pair (0, k) for A € Party 5,(2n) is cuspidal, so the
number of cuspidal pairs is |Party s5p(2n)| = |Party(n)|.

Proof. We prove this by induction on n, the n = 1 case being part of Theorem 6.3. The
set of G-conjugacy classes of Levi subgroups of G is in bijection with |_| <m<n Part(m):
forv = (v1, ..., vs) € Part(m) (where s = £(v)), a corresponding Levi subgroup has the
form

L, = GL(v1) x --- x GL(vs) x Sp2(n — m)),

where we omit the last factor if m = n. The only irreducible L, -equivariant local system
on any orbit in .47 is the trivial one (as we noted above in the case L, = G), so it is
clear that Statements 5.4 and 5.5 hold for all Levi subgroups of G, including G itself. By
Theorem 5.7, Theorem 1.1 holds for G.

It remains to classify the cuspidal pairs for G. For a proper Levi subgroup L, C G,
the inductive hypothesis gives the classification of cuspidal pairs for the Sp(2(n — m))
factor, and [AHJR2, Theorem 3.1] yields the classification of cuspidal pairs for the GL(v;)
factors. We conclude that L., has cuspidal pairs if and only if v € Part(m, 2), and in that
case the cuspidal pairs have the form (O(,,) x --- x O,,) x Oy, k) where u runs over
Party sp(2(n — m)).

We have Ng(L,)/L, = (Z/27Z) : Sm(y). Note that

Hrr(k[(Z/22)  Smw)D| = M (kK[Sm) DI = [Part, (m(v))].

We wish to show that every pair (&}, k) for A € Party 5,(2n) is cuspidal. By Proposi-
tion 2.6, (5.3) and the preceding observations, it suffices to show that

Partsy(2n)| = ) [Party sp2(n —m))| Y [Party(m(w)|.  (7.1)

0<m<n vePart(m,2)

By Lemma 6.4, the right-hand side of (7.1) is equal to ZOfmfn |Party sp(2(n — m))| x
|Part(m)|. There is an obvious bijection

£+ || Partysp2(n —m)) x Part(m) = Parts(2n) (7.2)

0<m=<n

defined by f(u,A) = u UL UL, so(7.1) holds. O
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7.2. The £ # 2 case

Here we do have nontrivial local systems on our nilpotent orbits: for x € &, with
A € Partsp(2n), the group Ag(x) is isomorphic to (Z/2Z)!F1M2 M7 5o the number
of isomorphism classes of simple G-equivariant local systems on &, is 2!t |m2i(M)#0}
and all these local systems have rank one.

Iftn = (kgl) for some positive integer k, then by [Lul, Corollary 12.4(b)] there is a

unique rank-one G-equivariant (Qg-local system D;{Q‘ on the orbit O 2(k—1),....4,2) such

that (Ook 2(k—1).....4.2) ’D?Z) is a cuspidal pair in Lusztig’s sense. This local system has

an obvious Z-form D,?e, and we set & = k ®g, D,?e. Then (O ok 2(k—1)....4.2), k) is a
cuspidal pair in our sense by [AHJR2, Proposition 2.22].

Theorem 7.2. Let k be a field of characteristic different from 2. Then Theorem 1.1 and

Statements 5.4 and 5.5 hold for G = Sp(2n). If n is not of the form (k'zH), there is no

k+l)’

cuspidal pair; if n = ( 5 ), the unique cuspidal pair is (O ok 2(k—-1)....4,2)» Ek)-

Proof. Again we prove this by induction on n, the n = 1 case being part of Theorem 6.3.
Recall the description of Levi subgroups from the proof of Theorem 7.1. By the inductive
hypothesis, we know that for v € Part(m), 1 < m < n, the corresponding Levi L, has a
cuspidal pair if and only if v € Part(m, £) andn —m = (kgl) for some positive integer k,
and in that case the unique cuspidal pairis (O,) X - - X O(,) X O(ak, ... 4,2), KK - - KKKEL).
It is clear that Statement 5.4 holds for all Levi subgroups (including G), and that State-
ment 5.5 holds at least for proper Levi subgroups. By Theorem 5.7, Theorem 1.1 holds
for G.

Statement 5.5 for G itself will be immediate once we show that the number of cuspidal
pairs for G is 1 if n = (*1') and 0 otherwise. By the equality (5.3) and the fact that

[Irr(k[(Z/27Z) * Sm)])| = |Bipart (m(v))] it suffices to show that

pHiTmai )F#OH — § : § j |Bipart, (m(1))]. (7.3)
A€Partgp (2n) meN, keZ- o vePart(m,£)
m+(k"2'1)=n

But a trivial modification of the bijection of Lemma 6.4 shows that

>~ IBipart,(m(v))| = [Bipart(m)], (7.4)
vePart(m,£)

so (7.3) reduces to the identity [Lul, (10.4.1)] that Lusztig used to classify cuspidal pairs
for Sp(2n) in the characteristic-0 case. ]

Remark 7.3. Consider the reductive group PSp(2n) = Sp(2n)/{%1}. The cuspidal pairs
for PSp(2n) can be identified with the cuspidal pairs for Sp(2n) on which the nontrivial
central element —/ acts trivially. If £ = 2, all the cuspidal pairs described in Theorem 7.1
have this property. If £ # 2, then by the construction of &, we have the same rule as in the
characteristic-0 case (see [Lul, Introduction]): the cuspidal pair (2, 2(k—1),...,4,2), Ek) of
Theorem 7.2 descends to PSp(2n) if and only if n is even, i.e. k = 0 (mod 4) or k = 3
(mod 4).



Modular generalized Springer correspondence 11 1053

8. The special orthogonal and spin groups

In this section we fix N > 3, and set G = Spin(N) and G = SO(N). As usual, we
consider the cases N = 2n + 1 (type B,) and N = 2n (type D,,) separately. As in the
symplectic group case, all the groups Ag(x) for x € ¢ are 2-groups, so we also have a
natural dichotomy according to whether £ = 2 or £ # 2.

8.1. The N =2n+1, £ =2 case

Recall that the G-orbits in .4, which are the same as the G-orbits, are classified by
Jordan form: they are in bijection with

Partso(2n + 1) = {A € Part(2n 4+ 1) | mp; (1) is even for all i}.

By [CM, Theorem 8.2.14], the distinguished orbits are the orbits &, where A belongs to
the set Party so(2n + 1) of partitions of 2n + 1 into distinct odd parts.
In the £ = 2 case, there are no nonconstant simple G-equivariant local systems on

nilpotent orbits. Hence there is essentially no difference between the story for G and that
for G.

Theorem 8.1. Letk be any field of characteristic 2. Then Theorem 1.1 and Statements 5.4
and 5.5 hold for G = Spin(2n + 1). Every pair (0, k) for » € Party so(2n + 1) is cusp-
idal, so the number of cuspidal pairs is |Party so(2n + 1)|.

Proof. We prove this by induction on n, the n = 1 case being part of Theorem 6.3. It suf-
fices to consider G, for which the proof proceeds much like that of Theorem 7.1. The set of
G-conjugacy classes of Levi subgroups of G is again in bijection with Loy < Part(m):
for v = (v1, ..., vs) € Part(m), a corresponding Levi subgroup has the form

L, = GL(v;) x --- x GL(v5) x SOQ(n — m) + 1),

where we omit the last factor if m = n. As in the setting of Theorem 7.1, the only
irreducible L ,-equivariant local system on any orbit in A1, is the trivial one. Once again,
it follows that Statements 5.4 and 5.5 hold for all Levi subgroups of G (including G
itself), and that Theorem 1.1 holds for G.

To finish the proof, it remains to classify the cuspidal pairs for G. The inductive
hypothesis and [AHJR2, Theorem 3.1] tell us that a proper Levi subgroup L, C G has
cuspidal pairs if and only if v € Part(m, 2), and that in that case the cuspidal pairs have
the form (O,) x -+ x O,y x O,,k) where u runs over Party s0(2(n — m) + 1). To
show that every pair (0, k) for A € Party so(2n + 1) is cuspidal, we must show that

Partso@n+ D] = Y [Parason—m)+ D] Y [Parym)l.  (8.1)

0<m<n vePart(m,2)

But this can be proved in exactly the same way as (7.1). O
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8.2. The N =2n, £ =2 case

Here the classification of G-orbits (= G-orbits) in .45 is slightly different from the N =
2n + 1 case: for every partition A € Partso(2n) we have a single O(2n)-orbit &), which
on restriction to G either remains a single G-orbit or splits into two, the latter occurring
precisely when A belongs to the set Part,.(2n) of partitions A € Partso(2n) satisfying
mo;+1(A) = 0 for all i. (Of course, Part,e(2n) is empty if n is odd.) By [CM, Theorem
8.2.14], the distinguished orbits are the orbits &, where A belongs to the set Party 5o (21)
of partitions of 2n into distinct odd parts. (Recall that we are assuming that N = 2n > 4.)

Theorem 8.2. Letk be any field of characteristic 2. Then Theorem 1.1 and Statements 5.4
and 5.5 hold for G = Spin(2n). Every pair (0, k) for A € Party so(2n) is cuspidal, so
the number of cuspidal pairs is |Party so(2n)|.

Proof. The proof is much the same as that of Theorem 8.1. The base case of the induction
is now the n = 2 case, which follows from Theorem 6.3. If n is odd, the set of G-
conjugacy classes of Levi subgroups of G is in bijection not with o< <, Part(m) but
rather with |_|0§m§n7 metn—1 Part(m). (The exclusion of the m = n — 1 case is because a
Levi subgroup of the form GL(v;) x --- x GL(v5) x SO(2) is conjugate to one of the
form GL(v1) x - -+ x GL(vs) x GL(1)). So the equality required in place of (8.1) is

Partso(2n)[ = Y [Partyso@(n —m))| Y [Pary(m)].  (82)
0<m=<n vePart(m,2)
m#n—1
which can also be proved in the same way as (7.1). (In fact, the exclusion of the m = n—1
case makes no difference to (8.2), since Party s0(2) is empty.) Now suppose that n is
even. As seen above, | k| is not |Partso(2n)| but rather |Partso(2n)| + |Partye (2n)].
Correspondingly, the set of G-conjugacy classes of Levi subgroups of G is not quite in
bijection with | Jo_,,<. yuzn—1 Part(m): if m = n and all parts of v € Part(n) are even,
there are two G-conjugacy classes of Levi subgroups of the form GL(v;) x - - - x GL(vy).
The equality we need to prove, therefore, is the sum of (8.2) and

|Partye (2n)| = Z |Part, (m(v))]. (8.3)
vePart(n,2)
m;(v)=0

Note that the left-hand side of (8.3) is the same as the number of partitions of 7 into even
parts; under the bijection of Lemma 6.4 (for £ = 2), these correspond exactly to the terms
of the disjoint union labelled by v € Part(n, 2) where m{(v) = 0, so (8.3) is proved. O

8.3. Special orthogonal groups with £ # 2

Now, as a preliminary step, we treat the case of G = SO(N) when £ # 2. The situation
in this case is parallel to that of §7.2. For x € 0) with A € Partso(N), we have Az(x) =
(Z)27)*P where

a) = if N is even and A € Partye(N),
| T maici () # 0} — 1 otherwise.
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Thus, the number of isomorphism classes of simple G-equivariant local systems on &,
is 2 and all these local systems have rank one.

If N = k2 for some positive integer k, then by [Lul, Corollary 13.4(b)] there is a
unique rank-one E-equivariant Q¢-local system Dg“ on the orbit O(2k—1,2k-3,...,3,1) such
that (O(ok—1,2k—3....3.1) D,((@“) is a cuspidal pair in Lusztig’s sense. This local system has

an obvious Zg-form D%"', and we set & := k ®z, D,?‘. Then (Ok—1,2k-3....3.1), Ek) is a
cuspidal pair in our sense by [AHJR2, Proposition 2.22].

Theorem 8.3. Let k be a field of characteristic different from 2. Then Theorem 1.1 and
Statements 5.4 and 5.5 hold for G = SO(N). If N is not of the form k?, there is no
cuspidal pair; if N = k2, the unique cuspidal pair is (O (2k—1,2k—3,....3, 1), Ek)-

Proof. Since SO(3) is a quotient of SL(2), and SO(4) a quotient of SL(2) x SL(2),
the theorem above in these two cases is implied by Theorem 6.3, using the reductions
explained in §5.3.

For N > 5, we proceed by induction. Recall the description of Levi subgroups from
the proofs of Theorems 8.1 and 8.2. From the description of A#(x) above, it is clear
that Statement 5.4 holds for all Levi subgroups of G, including G itself. By the inductive
hypothesis, we know that for v € Part(m), | < m < |[N/2] (and m # N/2 — 1 when
N is even), the corresponding Levi L, has a cuspidal pair if and only if v € Part(m, £)
and N — 2m = k> for some positive integer k, and in that case the unique cuspidal pair
is (Owy) X -+ X Oy X Opk—1,..3.1), kB - - - Kk K &). Thus, Statement 5.5 holds for
proper Levi subgroups of G. By Theorem 5.7, Theorem 1.1 holds for G.

Statement 5.5 for G will be immediate once we show that the number of cuspidal
pairs for G is 1 if N = k> and 0 otherwise. In order to treat the even and odd cases
simultaneously, let us adopt the convention that Part,.(N) = @ if N is odd. Then

Mgul= Y. 27+ |Partye(N). (8.4)
ArePartgo (N)

Next, we must count the representations of the various NE(ZU) /Z,,. We have

(Z)27) t Smw) if 2m < N, or
if 2m = N and 2 | gcd(v),

Ng(Ly)/L, = 8.5
G/ Ly an index-2 subgroup 8)

of (Z/2Z) 2t Smyy if 2m = N and 2 { ged(v).

In the first case, Ng(f,))/zy is a product of Coxeter groups of type B, and its irreducible
representations are parametrized by Bipart (m(v)), just as in the proof of Theorem 7.2.
When 2m = N, on the other hand, the situation is analogous to the relationship
between irreducible representations of Coxeter groups of types B and D, via Clifford
theory. Let o denote the action of Z /27 on Bipart(k) which exchanges the two partitions
making up a bipartition. Then o induces in an obvious way actions on Bipart, (k) and on
Bipart (m(v)). Let A € Bipart,(m(v)). If 0 (A) # A, then the corresponding irreducible
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representations D* and D°™ become isomorphic when restricted to NE(ZV) /Z,,. But
if A = o(X), then the restriction of D* to Ng(zv) /Z,, breaks up as the sum of two
nonisomorphic irreducible representations. Thus,

IBipart, (m(v))| — [Bipart, (m())°

[er(kK[Ng (L) /Ly D) = 2

+ 2|Bipart, (m(v))” |,

where Bipart (m(v))? = {A € Bipart,(m(v)) | c(A) = )»}..The set Bipart (m(v))? is
empty unless all components of m(v) are even. In that case, it makes sense to form the
composition %m(v), and there is an obvious bijection

Bipart, (m(v))” = Pa_rte(%m(v)).

By interpreting Partg(%m(v)) as the empty set when %m(v) is not defined, we obtain the
following formula, valid whenever 2||v| = m:

|lr(k[Ng(Ly) /Ly D] = 5|Bipart, (m(v)] + 3 |Part, (3m() -

We are now ready to count the total number of irreducible representations of all
NE(ZU) /L, as L, ranges over Levi subgroups admitting a cuspidal pair. (In this compu-
tation, when N = k> we also count the cuspidal pair for the Levi G constructed before the
statement of the theorem.) Note that for such groups, we have v € Part(m, £) for some m.
Since £ # 2, ged(v) will never be divisible by 2. Thus, for our purposes, the cases in (8.5)
are distinguished simply by whether 2m < N or 2m = N. In the following computation,
all sums involving the condition 2m = N should be regarded as 0 if N is odd:

> Ir(k[Ng(L,)/Ly))]
m,keN

2m+k*=N
vePart(m,£)

= Y |&INg(@L)/LDI+ Y |rkINg(L,)/L,D)
meN, keZ~q meN

2m+k*=N 2m=N
vePart(m,£) vePart(m,£)

= ) IBipart,m)+ Y (3[Bipart,(m()| + 3|Part,(3m())|)

meN, keZ~q meN

2m+k*=N 2m=N
vePart(m,£) vePart(m,0)

= Z |Bipart (m(v))| + Z %IBipart (m))| + Z %|Pa_rtg(%m(v))|

meN, keZg meN meN
2m+k2=N 2m=N 2m=N
— vePart(m,£) vePart(m,£)

vePart(m,£) all m; (v) even

= Z |Bipart(m)| + Z %|Bipart(m)|+ Z %|Part(m/2)|.

meN, keZ- g meN meN
2m+k2=N 2m=N 2m=N
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The last step in this computation is justified by (7.4) and by the following identity, which
is an easy consequence of Lemma 6.4:

Y. [Party(3m()| = [Part(m/2)].

vePart(m,£)
all m; (v) even

By (5.3), to complete the proof of the theorem, we must show that the quantity above is
equal to the right-hand side of (8.4). That equality is none other than the identity [Lul,
(10.6.3)] used by Lusztig to classify characteristic-0 cuspidal pairs. O

8.4. Spin groups with £ # 2

We now turn our attention to G = Spin(N) when £ # 2. Let ¢ denote the nontrivial
element of the kernel of the map G — G. The groups Ag(x) are no longer necessarily
just products of copies of Z/27Z, although they are still 2-groups. An explicit description
of these groups can be found in [Lul, §14.3] (see also the remarks following [CM, Corol-
lary 6.1.7]). As explained further below, it follows from this description that if k contains
all fourth roots of unity of its algebraic closure, then every irreducible representation of
Ag(x) over k is absolutely irreducible. Therefore, we assume in this subsection that k
contains the fourth roots of unity. Let K be the extension of Q; obtained by adjoining the
fourth roots of unity, O be its ring of integers, and I be the residue field of Q. Then k is
an extension of .

Given a pair (0, &) € gk, one can consider the character x : Z(G) — k> by
which Z(G) acts on &. If this character descends to a character of the quotient Z(G)—
that is, if x(¢) = l—then the pair (&, £) is actually G-equivariant, and its cuspidality
has been studied in Theorem 8.3. Thus, it now suffices to study the remaining characters.

Fix a character x : Z(G) — k> such that x (¢) = —1. There is one such character if
N is odd, and two if N is even. Let x : Z(G) — O* C K* be the unique lift of x. Let
NG,k x C N,k be the set of pairs (&, ) such that Z(G) acts on £ by x, and let Mg k 3
be the corresponding set of characteristic-0 pairs.

By [Lul, Proposition 14.4], Mg K 5 is in bijection with the set

Partspin, (V) = {A € Partso(N) | mp;1(2) < 1foralli > 0}.

Explicitly, the bijection works as follows. If A € Partgpin ¢ (N) \ Partye (), then the G-
orbit ) supports a unique irreducible G-equivariant K-local system DE% of central char-
acter x. Lusztig explains in [Lul, §14.3] that the quotient K[Ag (x;)]/(1 + &) (for any
chosen x; € ©,) is isomorphic to the even part of a Clifford algebra, and that D%x cor-
responds to the unique simple module for this algebra on which Z(G) acts by x. (Lusztig
works over Qy, but the quadratic form defining the Clifford algebra is defined and split
over O, so the results from [Bou, §9, no. 4] that he cites apply equally well over K as
over @g.) The same arguments show that O[Ag (x;)]/(1 +¢) and k[Ag (x;)]/(1 + ¢€) are
also isomorphic to the even part of a similarly defined Clifford algebra, and the proofs
in [Bou, §9, no. 4] show that the relevant simple module over K is defined over O, and
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that its modular reduction to k is the unique simple module for k[Ag (x3)]/(1 + €) on
which Z(G) acts by x. Hence DEZ has a natural Q-form Di(\),)i’ and the modular reduc-
tion &, , =k ®o Dgi is the unique irreducible G-equivariant k-local system on &, of
central character y, and is absolutely irreducible.

If » € Party(N) (forcing N = 0 (mod 4)), then (again by [Lul, §14.3]) one of
the two G-orbits in &) supports a rank-one K-local system D)Hf;( of central character y,
and this is the unique irreducible G-equivariant K-local system of central character x on
either of the two orbits. In this case |Ag(x)| = 2, so it is clear that Dﬁx has a natural
O-form D?i’ and that the modular reduction &, , :=k®g D?,f( is the unique irreducible
G-equivariant k-local system of central character x on either of the two orbits in &. This
local system is of rank one, hence absolutely irreducible.

To summarize our discussion, every element of 91 i , is of the form (0}, &y ) for
some A € Partgpinc(N) (where, if A € Partye(N), &) should be replaced by the ap-
propriate one of the two G-orbits it contains), and hence Mg  x is in bijection with
Partgpin ¢ (V). In particular, we have

NG kx| = [Partspin,e (N)]. (8.6)

IfN = (k—;l) with k odd, then (ﬁ(zk_lgzk_s ,,,,, 5,1)> 5(21(_1,2](_5“._,5’1)’)() is a cuspidal

pair, by [LS, Corollary 4.9] and [AHJR2, Proposition 2.22]. Similarly, if N = (k '2H) with
k cven, then (ﬁ(2k71,2k75,..‘,7,3)5 5(21{,1,2](,5’””7,3),)() isa cuspidal pair.

Theorem 8.4. Let k be a field of characteristic different from 2 and containing all fourth
roots of unity. Then Theorem 1.1 and Statements 5.4 and 5.5 hold for G = Spin(N). If
N is not of the form (k'zH), there is no cuspidal pair in NGk . If N = (k'gl), the unique
cuspidal pair in NG .y is

(O0k—-1,2k—5,..,5.1)> E@k—1,2k—5,...,5.1),x) if k is odd,
(O 2k=1,2k-5,..,7.3)» E@k—1,2k—5,...1.3).x)  ifk is even.

Proof. The groups Spin(3) = SL(2) and Spin(4) = SL(2) x SL(2) fall under Theo-
rem 6.3. For N > 5, we proceed by induction.

We begin with a review of the Levi subgroups of G. Suppose 0 < m < |[N/2], and
m # N/2 — 1if N is even. Let v € Part(m). As in the preceding subsections, we denote
by L, aLevi subgroup of G = SO(N) that is isomorphic to GL(vy) x --- x GL(v5) X
SO(N — 2m). Consider the group

M, ={(z 81, ..., 8) € C* x GL(v1) x -+ x GL(vy) | 2 = det(g) - - - det(g,)}.

Note that Z(M,)/Z(M,)° has order 2 if 2 | gcd(v), and Z(M,) is connected otherwise.
Let §, denote the element (—1,1,...,1) € M,. Let ey_2,, € Spin(N — 2m) be the
nontrivial element of the kernel of Spin(N — 2m) — SO(N — 2m). Finally, let

L,=M, x SPIH(N - 2m)/<(6\)a EN=2m))-
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This is a Levi subgroup of Spin(N), isomorphic to the preimage of L, under Spin(N) —
SO(N). The element € can be identified with (§,,, 1) = (1, ey—2s) € L,.

Assume for now that m > 0, so that L, is a proper Levi subgroup of G. Consider
two pairs (0, E) € Ny, ik and (0", E") € Nspin(N—2m),k- The pair (0 x 0',E R E') is
L,-equivariant if and only if the scalar by which §,, acts on £ coincides with the scalar by
which gx_2,, acts on &',

We are interested in the subset 91, i, C Ny, k consisting of pairs on which Z(G)
acts by x. There is a natural identification

(0,6),(0,&) e

Z(Spin(N — 2 Z(Spin(N — 2, o
M,k % NSpin(N—2m).k (Spin( m))/Z(Spin( m))

8y acts on € by —1, and
Ne, ky < :
acts on £ by x

Let us now consider the conditions under which 91, ., contains a cuspidal element.
An obvious restriction is that 2 | gcd(v): otherwise, Z(M,) is connected, so §, cannot
act nontrivially, and 9 , is empty. Suppose now that 2 | gcd(v). Under the bijection
above, an element of 9 i , is cuspidal if and only if both (&, ) and (07, &’) are
cuspidal. By induction, the latter can happen only if N — 2m = (szrl) for some k, and
in that case, there is a unique possibility for (¢”, £’). On the other hand, for (&, £), the
reasoning is similar to that carried out in the proof of Theorem 6.3. If (&, £) is cuspidal,
then ¢ must be the regular nilpotent orbit for M,,. Write (7, &) as

(ﬁ(vl) X oo X ﬁ(vs):gl KK E),

where each pair (0, &) lies in sy (1), k. Each such pair must be cuspidal for SL(v;),
so by the classification of cuspidal pairs in Theorem 6.3, Z(M,)/Z(M,)° must act on &;
by a character of order (v;)y . Since we have already required 8, to act by —1, such an &;
exists only when every v; is of the form 2¢”.

To summarize, 9, i, , contains a unique cuspidal element if both of the following

conditions hold: N — 2m = (k'zH) for some k, and v = 2v’ for some v’ € Part(m/2, £).
Otherwise, 91y, i, , contains no cuspidal element. The cuspidal elements of D, i with
trivial central character were discussed in the proof of Theorem 8.3. Together, these ob-
servations show that Statement 5.5 holds for every proper Levi subgroup of G.

As explained above, our assumption on k implies that Statement 5.4 holds for all
the M,, and hence for all Levi subgroups of G, including G itself. By Theorem 5.7,
Theorem 1.1 holds for G. It remains only to classify the cuspidal pairs for G, since that
classification will imply Statement 5.5 for G.

Note that Ng(L,)/L, = Ng(L,)/L,. From (8.5), we see that this group is always
a product of Coxeter groups of type B, and that its irreducible k-representations are
parametrized by Bipart (m(v)) = Bipart e(m(v’)). (Here, we have used the observation
that the nonzero entries of m(v) are the same as those of m(v").) We can now compute
the total number of irreducible representations of all the Ng(L,)/L, as L, ranges over
Levi subgroups admitting a cuspidal pair. (In the formulas below, when N = (k;’l) we
also count the cuspidal pair for the Levi G constructed before the statement of the theo-
rem.) In the following calculation, the quantity m’ corresponds to m /2 in the preceding
discussion.
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> > IIr(k[NG(Ly)/LyD)|

m'eN, keZ~ v'ePart(m’, L)

am'+(*TH=N
= > > Bipart, (m(v)|= Y [Bipari(m)|. (8.7)
m'eN, keZ~ V' €Part(m’, ) m'eN, keZ-
am'+(*3)=N am'+(*3)=N

We wish to show that the number of cuspidal pairs in Mgk  is 1if N = (*1') and 0
otherwise. By (5.3), it suffices to show that the quantities in (8.6) and (8.7) are equal. That
is the content of [Lul, Corollary 14.5], used by Lusztig in the characteristic-0 version of
the problem. O

9. Computations in some cases

With Theorem 1.1 established for the classical groups, we may consider the question of
computing the bijection (1.3) combinatorially. In this section, we carry out this computa-
tion for SL(n) in arbitrary characteristic, and for SO(n) and Sp(2n) when ¢ = 2. (Recall
from Section § that when £ = 2, the bijection (1.3) for Spin(n) is essentially the same as
for SO(n).)

In these constructions, if (K, @, F) is an £-modular system, for A € Part(a) we denote
by SH)% the irreducible K-representation of &, associated with A, and by Sé‘) its standard

O-form. If A € Part,(a), we denote by Dfﬁ (or simply D*) the irreducible F-representation
of &, associated with A.

9.1. The special linear group

Let G = SL(n). The notation and conventions of Section 6 will be in force, especially
those from §6.1 involving Levi subgroups of G. As a consequence of Theorem 6.3 and
its proof, the set ‘JTL k is empty unless v € Part(n) has the form dp for d|ny and
p € Part(n/d, £), in which case it is in bijection with {x € [t |e(x) = d}. So the
modular generalized Springer correspondence (1.3) for G = SL(n) is a bijection

L] 1rKING(Lenp)/Lenp)) < Nk
X Eitn
pePart(n/e(x),)

Using our combinatorial parametrizations of Irr(K[NG (Le(y)p)/Le(x)p)) and Ng k, we
can reinterpret this as a bijection

2. [  Paty(m(p)) > Part(). ©.1)
X Eln
pePart(n/e(x),L)
It remains to determine the bijection E explicitly, which is achieved by the following
result.
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Theorem 9.1. The modular generalized Springer correspondence B for G = SL(n),
when interpreted as in (9.1), coincides with the combinatorial bijection E°° defined in
Lemma 6.5.

Write &, , for the restriction of E to the subset of the domain indexed by x and p.
We need to show that &, , = E;‘,’p, where ;‘fp is as in Lemma 6.5. Now by definition,
the image of &, , consists of the combinatorial parameters for the pairs in the subset
L ﬁLE(x)p 5’“6()()/7
Letp Clerp) €x . ~
N6k of N k. By Lemma 5.1, all such pairs have as their second com-
ponent a local system with central character x. So every element of the image of &, , has
the form (e(x)t, x) for some t € Part(n/e(x)).

Therefore, for each x € f1, there is some bijection

v, = |_| Yyp: |_| Part, (m(p)) — Part(n/e(x))
pePart(n/e(x),?) pePart(n/e(x),l)
such that
Ex.oX) = (e(X)V¥y.p(X), x) forall A € Part,(m(p)).

Theorem 9.1 reduces to the following result:

Theorem 9.2. For every x € [i, and p € Part(n/e(x), ) we have ¥, , = o), where
¥, is defined as in Lemma 6.4.

The proof of Theorem 9.2 is similar to that of [AHJR2, Theorem 3.4]; in fact, when y is
trivial, Theorem 9.2 is essentially equivalent to [AHJR2, Theorem 3.4], by the principles
of §5.3. However, the general case presents some additional complications.

Let e denote e(). We proceed by induction on n, the base case n = 1 being trivial.
Since we know that W, and | | pePart(n/e,l) W,C)O are bijections with the same (finite) domain
and codomain, it suffices to prove that

UypQ) < YLA)  forall X € Part,(m(p)). 92)

where < denotes the usual dominance partial order on Part(n/¢). (However, the induction
hypothesis still has equality rather than <.)
The first step corresponds to [AHJR2, Lemma 3.10].

Lemma 9.3. Assume that n = met’ for some m > 1 and i > 0. Then (9.2) holds for the
partition ' _
p=,....0".
_\/_/
m entries

Proof. Note that the composition m(p) contains a single nonzero entry, equal to m, so that
Part(m(p)) can be identified with Part(mn) and Part,(m(p)) with Part, (m). The inequality
we need to prove is that

Yy p(A) < €2Y forall A € Party(m). 9.3)

Recall the ¢-modular system (K, O, F) defined in §6.1. We can and will assume that
k =TF.
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As with [AHJR2, Lemma 3.10], we make use of the fact that the Levi subgroup
L, = S(GL(et') x --- x GL(ef")) has cuspidal pairs in characteristic 0, in which
setting the generalized Springer correspondence was determined in [LS]. Explicitly, let
X : mn — O* denote a character of order ef! whose modular reduction is x; since
gcd(ep) = e’ this character ¥ factors through a faithful character of Z(Lep)/Z(Lep)°.

Form the correspondrng O-local system & ‘oon ﬁ[e;‘i, and let £ “’ =K®o 5;36. Then

(ﬁ[e;"], gher &) € N, K is a characteristic- 0 cuspidal pair by [Lul (10 3.2)].
As part of the characterlstlc 0 generalized Springer correspondence (see [LS, Propo-

sition 5.2]), we have an injection

Y50,k - Part(m) — Part(n/e)

such that for any A € Part(m), the simple summand of IL C Py e (ﬁ[e;’i, ghe ) corre-

sponding to the irreducible K-representation SH)% of the group 6m = Ng (Lep) /Lep s
Ic(ﬁe'/’)?,p,K()‘)’ gellfg_p.r((k),i,K)’ where gm/f;,p,n((k),)?,K denotes the unique irreducible G-
equivariant K-local system of central character x on the orbit @W.p.K(/\)' (Here, P, is
any parabolic subgroup of G having L., as Levi factor.) For consistency with our def-
initions in the modular case, we define the generalized Springer correspondence using
Fourier transform, i.e. via the characteristic-0 analogues of Lemma 2.1 and Theorem 3.1
(for the latter, see [AHJR2, Proposition 2.20]). That is, v¥; , Kk is specified by the rule

~ =L
To(ZC(Oevz, 200 Eevy p iz 0)) IC(Y glery SE®E5%). 04
¢ ep

A
where S is the K-local system on Y(Lw P

SA of G,, via the usual Galois covermg w

Lep) correspondmg to the representation

(L0 and 5~‘§§ is the unique irre-
P> [ep]

ducible summand of (@ Loy G50 )*5 ;K whose ZC-extension has a nonzero restriction
P> 6/3]

to IndG (ﬁLE” ) = O(. Equivalently (see [Lu3, Section 7]), 5 - corresponds to the

&,n-equivariant structure on 5 f" defined by restricting an &, -equlvanant structure on

the local system 5 s K on T( L ﬁLgp) the latter G,,-equivariant structure belng normalized
P>~ [ep]
.. . * ep ~ ep
by the characterlstlc 0 version of Proposition 3.18. Since (e Loy, ﬁéx )€ FK = 5)2 k- the

local system 5 “k has rank one.

As shown in [EM §3.7 and Theorem 3.8(c)], the generalized Springer correspondence
defined as above using Fourier transform differs by a sign twist from the correspondence
computed in [LS, Proposition 5.2], so ¥; , k is given explicitly by

Vi k() = LN
On the other hand, in our modular setting, the injection

Yy, p - Partg(m) — Part(n/e)
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is defined via Lemma 2.1 and Theorem 3.1, so we have

To(ZC(Gey, - Eevry p00.0)) = LC(Y,

A Lep
(Lop 7" D" ®E&,"). (9.5)

where D* is the k-local system on Y(L gl corresponding to the irreducible k—represen-
ep» [epl

tation D* of &,,, and 5 Lo corresponds to the &,,-equivariant structure on 5 " defined

by restricting the &,,-equivariant structure on 5  given by Proposition 3.18. Here, we
have used Corollary 6.6 to omit the primes on &y, ”’ and &, Lep,

For any A € Party(m), the representation D* occurs in the modular reduction Sé) Rok
of S%; likewise, D* occurs in the modular reduction of Sf:. Since the modular reduction

of x is x, the modular reduction of the rank-one local system & {4er§ is & L Hence the local
systems 5 8 JK and 5 - & (also of rank one) have modular reductions 5 ” and é\; ? respec-
tively. The Gm—equlvarlant structure on Ei eﬁ){ defined as in [Lu3, Lemma 7.10(b)(c)] in-

duces an &,,-equivariant structure on é\f “ that satisfies the condition of Proposition 3.18,
and hence coincides with the & —equivariant structure defined by Proposition 3.18. It fol-
lows that the modular reduction of £ e’ﬁg is&, ghe,

Hence the perverse sheaf D* ® &£ Xe” occurs in the modular reduction of SA ® 5
By the argument following [AHJR2, (3.14)], we can conclude from this and from the
equations (9.4) and (9.5) that ZC(O,y, ,(1)s Eeyry,(1).x) Occurs in the modular reduction

of ZC(Oey; , k1) ey, x (3, %K) and in particular is supported in @iy So we have

shown that Oy, ) C Opipr, Which gives (9.3). ]
The remaining step corresponds to [AHJR2, Lemma 3.11].
Lemma 9.4. If p € Part(n/e, £) is not of the form (¢, ..., £"), then (9.2) holds.

Proof. Let m; = m,i(p), and form the Levi subgroup M = S(GL(mpe) x GL(mef) x
- x GL(m;el") x ---). This group contains L,,; their relationship can be pictured as
follows:

Lep = S(GL(e) x - -- x GL(e) x GL(ef) x - -- x GL(e) x GL(el?) x --- x GL(el?) x --+)

mo copies mj copies my copies

\:
M =S( GL(mge) X GL(m1el) X GL(mzeZZ) PEEED R

Let Q be the parabolic subgroup of G containing P, that has M as its Levi factor. We
are going to apply the results of Section 4, specifically Theorem 4.5, to the triple L., C
M C G (the assumptions (3) and (4) are trivially true for our local systems). Note that
NM(Lep)/Lep = NG(Lep)/Lep = 6m(,o)-

By (6.1), M/Z(M)° is a central quotient of

SL(mge) x SL(mjef) x --- x SL(m,-eZi) X e
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By assumption, the induction hypothesis applies to each factor of the latter product, so
we know that the modular generalized Springer correspondence for M is given by Theo-
rem 9.1. In particular, we know that for all A € Part,(m(p)),

Tm(IC(ﬁego(A(/zO))m X ﬁezl()\(fl))t X ’EEZO()L(ZO))l,egl()L(Zl))t’m;x))
—L
=~ 70(YM DM@ (€, 7)),
et )
where £

OGN el LEVY ey denotes the unique M -equivariant irreducible local system

on the orbit ﬁeeo(x(f(’))t X ﬁdl(wﬂ))l x --- with central character x, and D*M is the
irreducible local system on Y™ L., corresponding to the irreducible representation D*
P>~ lep]

via the Galois covering w(L P (Here, as in the proof of Lemma 9.3, we have used

Corollary 6.6.) €r>lep]
By comparison, for G we have the as yet uncomputed map

Yy.p  Party(m(p)) — Part(n/e)

defined by the rule that for all A € Part,(m(p)),

~ A =L
Tg (IC(ﬁel/,X’p(x), ge‘//X,p(l)’X)) = IC(Y(Lep,ﬁ[Le;/]])’ D" ® SX p),

where D* is the irreducible local system on Y Lep
(Lep: O1ep))

[},[Leﬁ). (Here again we have used Corol-
ep

corresponding to the irreducible

representation D* via the Galois covering @
lary 6.6.)
Let G* be the projective cover of D* as a k[&m(,)]-module, and let G* and

denote the corresponding local systems on Y e, and YM | respectively. Then
(Lep-Orpy) (Lep, Oy

— > ep]
IC (Y(L olerys G*®¢& )L("’p ) is the indecomposable direct summand of the perverse sheaf
eps

)
[ep] ~L. . A —Lep . .
IC(Y(Lepﬁ[Le;’]’)’ (w(LeﬂﬁLe,, )«Ex?) with head ZC (Y ,D*®E& ™). Since Ty is an

Lep
[ep] ) (L“P ) ﬁ[ep] ) .
equivalence, there is an indecomposable direct summand O of Ifep CP,y zc (ﬁ[e;/i’
such that

(Lep ’

gl,M

E5Y)

Tg(QY) ZIC(Y, iy G OE,), 9.6)
eps

[eo])
and the head of Q* is ZC (Oey, ,0)s Eeyry ,(1).%)- Similarly, there is an indecomposable

. L, L,
direct summand P* of ILMS cr,rmZC(O, ", E4)) such that

o]’
—L.
T, (P*) = 7Cc(YM ,GMM @ (€M), 9.7
a(P*) ( (Lepﬁfe;‘{) &, ) CN))
and the head of P* is IC(ﬁdo(k((o))l X ﬁd](wl))t e ’5680()\(‘30))1,651(A“]))‘,.‘.;X)'
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In the case where Ny (L¢p)/Lep = NG(Lep)/Lep, Theorem 4.5 says simply that

Lco(zea! Mo E M) =ICY,, 1, G @E").

L b
epﬁlefﬁ) (Leps Opp)

Using (9.6), (9.7), and [AHJR2, Corollary 2.10] we deduce that
1§ o(PH) = oM 9.8)
Since IAG,ICQ is exact, (9.8) implies that
G

IMcQ(IC(ﬁeZO(A((O))I X ﬁdl(k(ﬂ))t X ’5eeo(x<f°>)t,eel(Mf'))t,.‘.;x)) 9.9)
is a quotient of Q*. But Q* has the simple head IC(ﬁelvap(x), Eeyry ,(0).x)s SO We deduce
that the induced perverse sheaf (9.9) surjects to ZC(Oy,, ,(r)> ey, ,(1).x)- The desired
inequality (9.2) now follows from Lemma 2.5, since

X O

G
Il’ldM(ﬁe eZl(A“l))‘ X - ) = ﬁel//ﬁo(l)

(O(A(ZO))l
by [CM, Lemma 7.2.5]. ]

9.2. Special orthogonal and symplectic groups in characteristic 2

In this subsection, we take £ = 2. Let G = G(N) where G stands for either SO or Sp, and
N > 3. In the Sp(N) case we assume, of course, that N is even; in the SO(N) case we
assume first that N # 0 (mod 4), and we will treat the case where N = 0 (mod 4) later.
Recall that there are no nontrivial L-equivariant irreducible local systems on nilpotent
orbits for L where L is any Levi subgroup of G. For brevity, we will omit the trivial local
system from the notation where possible.

We saw in Sections 7 and 8 that the Levi subgroups admitting a cuspidal pair are those
of the form

L, =GL(v1) x --- x GL(vy) x G(N — 2k), 0<k<|N/2], v €Part(k,2),

excluding the case k = N/2 — 1 when G = SO and N is even. Let P, C G(N) be a
parabolic subgroup with L, as its Levi factor. Let W, = Ng(n)(L,)/(Ly). Recall that
this is isomorphic either to (Z/27Z) * G (), or else (in certain cases in type D) to an
index-2 subgroup thereof. In either case, its irreducible representations in characteris-
tic 2 are parametrized by Part, (m(v)): the irreducible k-representation of W, labelled by
A € Part,(m(v)) is obtained by pulling back the irreducible representation D* of Smw)
through the projection W,, — Gm).
The orbits in .47, supporting cuspidal pairs are those of the form

ﬁ[v];ﬂ = ﬁ(ul) X o0 X ﬁ(vm) x Oy, W € Party g(N — 2k).
Thus, the modular generalized Springer correspondence for G can be regarded as a bijec-
tion
Q: |_| |_| Party (N — 2k) x Party(m(v)) — Partg(N).
0<k<|N/2| vePart(k,2)
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(Here, we do not need to exclude the k = N/2 — 1 case when G = SO and N is even,
because Part; so(2) is empty anyway.)

Theorem 9.5. Let G = SO(N) with N % 0 (mod 4), or G = Sp(N) with N even. The
modular generalized Springer correspondence for G is given by

= || Ll i
0<k<|N/2] vePart(k,2)
where a),ioU : Party (N — 2k) x Part,(m(v)) — Partg(N) is defined by
oy (1, ) = U, () Uy, (L),
Here ¥, denotes the map ¥,° of Lemma 6.4 with k in place of n (and with £ = 2).

Proof. Let Q% denote | |y n/2; Llvepartk,2) @5 @ map with the same domain and
codomain as €2. Combining the bijection of Lemma 6.4 with that of (7.2) (or its SO
analogue), we see that Q2 is a bijection. Hence it suffices to show that

o, (1, A) < g (1, X) (9.10)

for all k, v, u, A as above, where wy,, denotes the restriction of €2 to the subset of the
domain indexed by k and v, and < is the dominance order (corresponding to the closure
order on nilpotent orbits for G).

We need to consider some Fourier transforms. Let i — ' denote the involution of
Party (N — 2k) defined by

Tyw-20TC(O)) = IC(O),1).

(As mentioned in §2.2, it is quite possible that u™ = yu always, but we are not able to
prove this.) Then using [AHJR2, (3.6)] we obtain

Ty, ZC(Onyp)) = LC(Oyy, 0t +5L,)-

By the definition of the bijection €2, the simple perverse sheaf ZC (0, ,(u.1)) is a quotient
of va cp, (ZC(Ov); 1)), namely the one with Fourier transform

Ty(ZC(Ow; (1) = IC(Y(Lvﬁ[u]:M)’ Dl)’

where D* is the local system on Y, (Ly.Opy 1) corresponding to the irreducible representa-
T vl

tion D* of W, via the Galois covering DLy Oy 1
T vlp

Let G* be the projective cover of D* as a k[W,]-module, and let G* be the local
system on Y(Lvﬁ[vw_l_) corresponding to G*. As in the proof of Lemma 9.4, there is an

y. (Here we are using Lemma 3.19.)

indecomposable direct summand Q* of va cp, (ZC(O1vy; 1)) such that
To(Q") =2 IC(Yw,.0,,,0-9")- ©.11)

and the head of Q* is ZC(Oy, , (u.1))-



Modular generalized Springer correspondence 11 1067

Let M} denote the Levi subgroup of G containing L,, that has the form M} = GL(k) x
G(N — 2k), and let Oy be the parabolic subgroup of G containing P, that has M as Levi
factor. We are going to apply the results of Section 4, specifically Theorem 4.5, to the
triple L, C My C G (the assumptions (3) and (4) are trivially true for the constant local
system). Note that N, (Ly)/Ly = Gm(). We identify A3y, with AGLk) X AGN—20)-

Since the G(N — 2k) factor of My, plays no role in the induction Iﬁkc PAM> W know
from [AHJR2, Theorem 3.4] that ZC (ﬁlﬂff’u o) X 0y) is a quotient of the perverse sheaf

I/LW:C P.AM, (ZC(O1v); 1)), namely the one with Fourier transform

~ M
T (Ic(ﬁwf,ovo‘) X ﬁ”)) = IC(Y(L]:,//”M.HT)’ Dl,Mk)’
where DMk is the local system on Y(AZ" o0 corresponding, via the Galois covering
VP vl
() (AL/If Oy’ to the irreducible representation D* of GCm)-

Let F* be the projective cover of D* asa k[Sm(v)]-module, and let F % be the local
system on Y, (]ZI" o corresponding to F*. There is an indecomposable direct sum-
Ve vl

mand P* of 1%, |\ (ZC(Olyy;p1)) such that

Ty (PY ZTCXY G, FP), (9.12)
v Ot

and the head of P* is IC(Oye oy X O).
Now since W, and G, have the same irreducible k-representations, the induced
representation Indgfn(u) (F}) is isomorphic to G*. So in this case Theorem 4.5 says that

G M, AN ~ A
leCQk (IC(Y(L‘k),ﬁM:M-;-)’ ]: )) = IC(Y(LU;ﬁ[V]:Hf)’ g )

Using (9.11), (9.12), and [AHJR2, Corollary 2.10] we deduce that
I o, (PH = QM 9.13)

Since Iz?/lchk is exact, (9.13) implies that IﬁkCQk (Ic(ﬁ‘/fsz’v o) X 0))) is a quotient of o*
on the other hand, Q* has the simple head ZC(&,,, ,(..1))- We conclude that the perverse
sheaf I/\G/Ikc O (Ic(ﬁ%ff’v ) X Oy)) surjects to ZC(O, ,(u.1))- The desired inequality (9.10)
now follows from Lemma 2.5, since

G - (Oyw o) X Op) = Ous ) (9.14)

by definition of w;?,. O

We now turn to the case where G = SO(N) with N = 0 (mod 4). In this case, as we noted
in Section 8, certain partitions correspond to more than one nilpotent orbit or conjugacy
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class of Levi subgroups. To label these objects combinatorially, we will use partitions that
may be decorated with a superscript Roman numeral [ or /1, as in [CM]. Let

Part(k, 2)" := Part(k, 2) ifk < N/2,

and

Part(N/2,2) := {v | v € Part(N/2,2), m{(v) # 0}
U{v! | v ePart(N/2,2), m(v) =0} U {v!! | v ePart(N/2,2), m(v) =0}.

Then the conjugacy classes of Levi subgroups of G admitting a cuspidal pair are in bijec-
tion with the set |_|05ng/2, k2N j2—1 Part(k, 2)’: in particular, for v € Part(N /2, 2) with
mi(v) = 0, we have two representative Levi subgroups L and L s, both isomorphic to
GL(v1) x GL(v2) x --- but not G-conjugate to each other. (They are O(N)-conjugate.)

To make the labelling consistent, we choose representatives M 1{, , and M IIVI , of the
two G-conjugacy classes of Levi subgroups isomorphic to GL(N/2). Then for v €
Part(N /2, 2) with m;(v) = 0, we specify that L ; is contained in M]Iv/2 and L1 is con-
tained in M}\,I/z. Note that if v € Part(N/2, 2) and m;(v) # 0, then a Levi subgroup L,
of the corresponding conjugacy class is contained both in a conjugate of M 1{, /2 and in a
conjugate of M 11\11/2

Similarly, let

Partso(N)' := (Partso(N) \ Partye(N))
U AT | & € Partye (N)} U (AT | & € Partye(N)}.

Then Nk (or equivalently the set of nilpotent orbits in .4 ) is in bijective correspon-
dence with Partso(N)'. For A € Party.(N), we have two orbits &,; and &, 1 with the
same Jordan type; we specify that ) is the orbit that meets the Lie algebra of M II\, P and

01 is the orbit that meets the Lie algebra of My/,.

Remark 9.6. To match the use of Roman numerals above with that in [CM], choose
M}, 1 and M 11\,1/2 as in [CM, Lemma 7.3.2(ii)]. With that choice, our labelling of orbits by
Roman numerals is consistent with that in [CM, Theorem 5.1.4 and Lemma 5.3.5]. This
claim can be worked out using the explicit description of orbit representatives in [CM,
Recipe 5.2.6]. Alternatively, it follows from [CM, Corollary 6.3.5, Theorem 7.3.3(iii),
and Theorem 8.3.1].

For convenience, in the formulas below we continue to use the notation v for an arbitrary
element of Part(N /2, 2)" even though it may be a decorated partition; in that case, notation
such as m(v) should be interpreted using the underlying partition.

The modular generalized Springer correspondence for G can thus be regarded as a
bijection

Q: || | | Partyso(V — 2k) x Party(m(v)) — Partso(N)'.
0<k<N/2 vePart(k,2)’

For0 <k < N/2 and v € Part(k, 2)" we define a map

w]c{o]/) : Party so(N — 2k) x Part,(m(v)) — Partso(N)'



Modular generalized Springer correspondence 11 1069

by the same formula as for w;°, in Theorem 9.5, with the following addendum: when

k = N/2 and v is decorated with a Roman numeral (forcing my(v) = 0), the same
Roman numeral should be used to decorate the output of this map (which necessarily
belongs to Partye (V)).

Theorem 9.7. Let G = SO(N) with N = 0 (mod 4). The modular generalized Springer
correspondence for G is given by

Q = I_l |_| .
0<k<N/2 vePart(k,2)’
Proof. The proof is essentially identical to that of Theorem 9.5, with the obvious proviso
that when we define the subgroup My 2, in the case that k = N /2 and m{(v) = 0, we
choose whichever of My, , or M{/,, matches the Roman numeral decoration on our given
v € Part(N /2, 2)’. This ensures that when ﬁ,/,;o/ 2y ) is interpreted as a nilpotent orbit in

this My 2, its G-saturation is ﬁw%’}z ()» proving the analogue of (9.14). O

We deduce a description of the (un-generalized) modular Springer correspondence for
G = SO(N) and G = Sp(N) in characteristic £ = 2, complementing the results of [JLS]
in the £ # 2 case. Notice that the proofs of Theorems 9.5 and 9.7 relied on the fact
that we were dealing with bijections, so we needed to work with the full generalized
correspondence in order to obtain this description.

Corollary 9.8. The modular Springer correspondence for G = SO(N) or G = Sp(N)
is the map
Irr(k[NG(T)/T1) = N x

described combinatorially by

Atuat if N i ,
Party (LN /2]) — Partg(N) : A > i N is even
(HUAUAY if N is odd.

Proof. This is obtained from Theorem 9.5 or 9.7 by taking k = [N /2] and v = (1%), so
that L, is a maximal torus 7. O
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