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Abstract. We study integrodifferential operators and regularity estimates for solutions to integro-
differential equations. Our emphasis is on kernels with a critically low singularity which does not
allow for standard scaling. For example, we treat operators that have a logarithmic order of differ-
entiability. For corresponding equations we prove a growth lemma and derive a priori estimates.
We derive these estimates by classical methods developed for partial differential operators. Since
the integrodifferential operators under consideration generate Markov jump processes, we are able
to offer an alternative approach using probabilistic techniques.
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1. Introduction

In recent years, regularity results for linear and nonlinear integrodifferential operators
have been addressed by many research articles. Scaling properties are crucially used in
these approaches. We reconsider these cases and, at the same time, include limit cases
where standard scaling properties do not hold anymore. We study linear operators of the
form

Au(x) =

∫
Rd

(
u(x + h)− u(x)− 〈∇u(x), h〉1B1(h)

)
K(x, h) dh,

which, provided certain assumptions onK(x, h) are satisfied, are well defined for smooth
and bounded functions u : Rd → R. The quantity K(x, h) equals the jump intensity of
jumps from x ∈ Rd to x+h ∈ Rd for the Markov processX that is generated by the linear
operatorA. IfK is independent of the first variable, thenX is a Lévy process. IfK(x, h) =
|h|−α−dm(h/|h|) for all h 6= 0 and some appropriate function m : Sd−1

→ [0,∞], then
the increments ofX have stable distributions. Looking at the operatorA as an integrodiffer-
ential operator, this property is important because it allows one to use scaling techniques.
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Scaling techniques themselves are crucial when studying regularity properties of func-
tions u : Rd → R satisfying the equationAu = f in a domain� ⊂ Rd for some function
f : �→ R. In this work we study such properties with the emphasis on two features. We
do not assume any regularity of the kernel functionK with respect to the first variable ex-
cept for boundedness. Moreover, and this is the main new contribution, we systematically
study classes of kernels that do not possess the aforementioned scaling property.

Our results include a growth lemma (expansion of positivity) and Hölder-type regular-
ity estimates. Moreover, we provide several estimates on the corresponding Markov jump
process. Recall that, in the case of an elliptic operator of second order Au = aij (·)∂i∂ju,
the standard growth lemma reads as follows:

Lemma 1. There is a constant θ ∈ (0, 1) such that if R > 0 and u : Rd → R satisfy

−Au ≤ 0 in B2R, u ≤ 1 in B2R, |(B2R\BR) ∩ {u ≤ 0}| ≥ 1
2 |B2R\BR|,

then u ≤ 1− θ in BR .

The above lemma also holds true for several nonlinear operators. Such lemmas are sys-
tematically studied and applied in [Lan71]. Their importance is underlined in [KS79],
where the authors establish a priori bounds for elliptic equations of second order with
bounded measurable coefficients. Nowadays they form a standard tool for the study of
various questions for nonlinear partial differential equations of second order (see [CC95]
and [DGV12]). Note that the property formulated in Lemma 1 is also referred to as ex-
pansion of positivity which describes the corresponding property for 1− u.

In this work we prove a similar growth lemma for integrodifferential operators (see
Lemma 2 below). An important instance of an operator A that we have in mind is

Au(x) =

∫
Rd
[u(x+h)− u(x)]a(x, h)|h|−d1B1(h) dh (1)

for some measurable function a : Rd × Rd → [1, 2]. Note that, in the last years, similar
results have been studied for kernels of the form a(x, h) � |h|−α for some α ∈ (0, 2)
and we refer the reader to the short discussion below. The case α = 0 is of particular
interest because in this case the corresponding growth lemma fails. Our results apply to
more general kernels than the one appearing in (1).

1.1. Main assumptions and results

Let K : Rd × (Rd \ {0}) → [0,∞) be a measurable function such that K(x, h) =
K(x,−h) for all x, h and

κ−1
|h|−d`(|h|) ≤ K(x, h) ≤ κ|h|−d`(|h|) for 0 < |h| < R0, (A1)

sup
x∈Rd

∫
Rd\{0}

(1 ∧ |h|2)K(x, h) dh ≤ K0, (K0)

where κ,K0 ≥ 1, R0 ∈ (0,∞] are fixed constants and ` : (0, R0)→ (0,∞) is a function
satisfying

∫ R0
0 (`(s)/s) ds = ∞ and, for some cL ∈ (0, 1), cU ≥ 1, and γ ∈ (0, 2), the

following:
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∫ R0

r

`(s)
ds

s
<∞ for 0 < r < R0, (`1)

`(rλ)/`(r) ≥ cLλ
−γ for r > 0 and 1 ≤ λ < R0/r, (`2)

`(rλ)/`(r) ≤ cUλ
d for r > 0 and 1 ≤ λ < R0/r. (`3)

The last two conditions are often referred to as weak scaling conditions.

Examples. The standard example is given by `(s) = s−α for some α ∈ (0, 2). Other
examples include `(s) = s−αg(s) for α ∈ (0, 2) and g a function that varies slowly at 0.
More generally, the conditions (`2) and (`3) are satisfied if the function ` is regularly
varying at zero of order −α ∈ (−2, 0] and satisfies some weak bounds for large values
of s. The case α = 0 is very interesting. The choice `(s) = 1 is possible if R0 < ∞. In
the case R0 = ∞ an interesting example is provided by `(s) = 1(0,1)(s)+ s

−γ
1[1,∞)(s)

for some γ > 0.

We define an auxiliary function L : (0, R0)→ (0,∞) by

L(r) =

∫ R0

r

`(s)

s
ds,

which is strictly decreasing. Note that under our assumptions, L(0+) = ∞ and L(R0−)

= 0. Furthermore, we define a measure µ on B(Rd) by

µ(dy) =
`(|y|)

L(|y|)

dy

|y|d

and, for a > 1, a scale function ϕa = ϕ : (0, R0)→ (0,∞) by ϕ(r) = L−1(a−1L(r)).
Define an operator A : C2

b(R
d)→ C(Rd) by

Au(x) =

∫
Rd\{0}

(
u(x + h)− u(x)− 〈∇u(x), h〉1B1(h)

)
K(x, h) dh (2)

where K : Rd × (Rd \ {0})→ [0,∞) satisfies (A1) and (K0).
Now we can formulate our first main result, a growth lemma for nonlocal operators.

We state the result for functions which, together with their first and second derivatives, are
continuous and bounded. It is an important feature of this result that none of the constants
depends on the regularity of the function under consideration. Thus, the result is tailored
for later applications to viscosity solutions of fully nonlinear partial differential equations.

Lemma 2. Assume (K0) and (A1) hold true with R0 = ∞. Let η, δ ∈ (0, 1) and C0 > 0.
There exist constants a > 2 and θ ∈ (0, 1) such that if r > 0 and v ∈ C2

b(R
d) satisfy

−Av(x) ≤ L(ϕ(r)) (= a−1L(r)) for x ∈ Bϕ(r),

v(x) ≤ 1 for x ∈ Bϕ(r),

v(x) ≤ C0

(
L(ϕ(r))

L(|x|)

)η
for x ∈ Rd \ Bϕ(r),

µ
(
(Bϕ(r) \ Br) ∩ {v ≤ 0}

)
≥ δµ(Bϕ(r) \ Br),

then
v(x) ≤ 1− θ for all x ∈ Br . (3)
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Remark. As the proof shows, the value of θ is a multiple of a−1.

Note that, in the by now well-known case where `(r) = r−α and L(r) � r−α for α ∈
(0, 2), this result reduces to a growth lemma which is very similar to those given in [Sil06]
and [CS09]. Let us now formulate our second main result.

Theorem 3. Assume (K0) and (A1) hold true with R0 ∈ (0,∞]. There exist constants
c > 0 and β ∈ (0, 1) such that if 0 < r ≤ R0/2, f ∈ L∞(Br), and u ∈ C2

b(R
d) satisfy

Au = f in Br , then

sup
x,y∈Br/4

|u(x)− u(y)|

L(|x − y|)−β
≤ cL(r)β‖u‖∞ + cL(r)

β−1
‖f ‖L∞(Br ). (4)

If R0 = ∞, then (4) holds true for every r > 0.

In the case `(r) = r−α , we set ν = αβ, and the estimate (4) reduces to

sup
x,y∈Br/4

|u(x)− u(y)|

|x − y|ν
≤ cr−ν‖u‖∞ + cr

α−ν
‖f ‖L∞(Br ),

which one would expect from standard scaling behavior of the integrodifferential opera-
tor.

In the case R0 = ∞ we obtain a Liouville theorem.

Corollary 4. If (A1) holds for R0 = ∞, then every function u ∈ C2
b(R

d) satisfying
Au = 0 on Rd is a constant function.

Proof. Since u is harmonic in every ball Br we can consider r → ∞ in Theorem 3 and
use limr→∞ L(r) = 0 in order to prove that u is a constant function. ut

Our method to prove Lemma 2 and Theorem 3 is based on a purely analytic technique
introduced in [Sil06]. As mentioned above, a second aim of this work is to explain a prob-
abilistic approach to results like Theorem 3. The starting point for these observations is
that, for several linear differential or integrodifferential operators A, variants of Lemma 1
can be established with the help of the corresponding Markov processes. Let X be the
strong Markov process associated with the operator A, i.e. we assume that the martingale
problem has a unique solution. Denote by TA, τA the hitting resp. exit time for a measur-
able set A ⊂ Rd and by Px the measure on the path space with Px(X0 = x) = 1. The
following property then implies Lemma 1.

Proposition 5. There is a constant c ∈ (0, 1) such that for every R > 0, every measur-
able set A ⊂ B2R \ BR with |(B2R \ BR) ∩ A| ≥

1
2 |B2R \ BR| and every x ∈ BR ,

Px(TA < τB2R ) ≥ c. (5)

This result is established for nondegenerate diffusions in [KS79], thus leading to a re-
sult like Theorem 3 for elliptic differential operators of second order. The case of inte-
grodifferential operators with fractional order of differentiability α ∈ (0, 2) is treated



Intrinsic scaling properties for nonlocal operators 987

in [BL02]. Therein it is shown that Proposition 5 holds true for jump processes X gener-
ated by integral operators A of the form (2) under the assumptions K(x, h) = K(x,−h)
and K(x, h) � |h|−d−α for all x and h where α ∈ (0, 2) is fixed. Note that this class
includes the case Au = −(−1)α/2u and versions with bounded measurable coefficients.

Proposition 5 fails to hold for several cases we are interested in. One example is given
by A as in (2) with K(x, h) = k(h) � |h|−d for |h| ≤ 1 and some appropriate condition
for |h| > 1. For example, the geometric stable process with generator− ln(1+ (−1)α/2),
0 < α ≤ 2, can be represented by (2) with a kernel K(x, h) = k(h) with such behavior
for |h| close to zero. The operator resp. the corresponding stochastic process can be shown
not to satisfy a uniformly hitting estimate like (5) (see [Mim14]).

This leads to the question whether a priori estimates can be obtained by the approach
from [BL02] at all. In the second part of this work we address this question. It turns out
that our main idea, i.e., to determine a new intrinsic scale, can also be used to establish a
modification of (5). As we did in the proof of Lemma 2, we choose a measure different
from the Lebesgue measure for the assumption |(B2R \BR)∩A| ≥

1
2 |B2R \BR|. We refer

the reader to Section 6 for further details.
Since we employ methods from two different fields: partial differential operators as in

[Sil06] and stochastic analysis as in [BL02], it is interesting to compare both approaches.
In both, we need to make several assumptions, e.g., solvability of the equation and exis-
tence of the corresponding Markov jump process. The conditions in the analytic approach
are slightly less restrictive than those imposed when using stochastic analysis. Note that
although we assume the solutions u are twice differentiable in the first part, the assertions
resp. the constants in our results do not depend on the regularity of the functions u. Thus,
the techniques and assertions presented here can be applied to nonlinear problems.

1.2. Examples

Let us look at different choices for the function ` used in condition (A1). Note that (`2)
does not allow `(h) to be zero (unlike K(x, h)). Since the behavior of ` at zero is most
important and characteristic, we provide examples of functions ` : (0, 1)→ (0,∞). For
a > 1, r ∈ (0, 1), set L(r) =

∫ 1
r
(`(s)/s) ds and ϕa(r) = L−1(a−1L(r)).

Table 1. Different choices for a function ` when β ∈ (0, 2), a > 1.

`(s) L(s) ϕa(s)

s−β ln(2/s)2 � s−β ln(2/s)2 � s

s−β β−1(s−β − 1) � s

ln(2/s) � ln(2/s)2 � s1/
√
a

1 ln(1/s) s1/a

ln(2/s)−1
� ln(ln(2/s)) � exp(− ln(2/s)1/a)
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1.3. Related results in the literature

Let us comment on related results in the literature. The probabilistic approach, which we
explain in Section 5, is based on the approach of [BL02]. The analytic method, which
we employ in the first part of the article, is based on [Sil06]. Both approaches have been
refined in many articles, allowing for more general kernels and treating fully nonlinear
integrodifferential equations, but all these articles assume standard scaling properties, i.e.,
something like K(x, h) � |h|−d−α for some α ∈ (0, 2). We refer to [KS14, SS14] for
further references. Note that our regularity result, Theorem 3, is stronger than Theorem 12
because we can allow for right-hand sides f in the integrodifferential equation and for
more general kernels.

The current work comprises the two preprints [KM13] and [KM14] where the ap-
proaches by analytic and probabilistic methods are explained separately. After [KM13]
had appeared, several articles have made use of the ideas therein. In [Bae15] nonlocal
problems are studied where the kernels are supposed to satisfy certain upper and lower
scaling conditions. These assumptions do not include limit cases like (1) since some com-
parability with kernels like |h|−d−α for α ∈ (0, 2) is still assumed. In [KKL16] the au-
thors study fully nonlinear problems with assumptions on the kernels similar to [Bae15].
In [CZ15] the authors extend the regularity estimates of [KM13] to time-dependent equa-
tions with drifts. The article [JW16] is not directly related to [KM13] but mentions the
need to consider f 6= 0. We solve this problem.

1.4. Organization of the article

In Section 2 we review the relation between translation invariant nonlocal operators and
semigroups/Lévy processes. Presumably, Proposition 6 is of some interest to many read-
ers since it establishes a one-to-one relation between the behavior of a Lévy measure
at zero and the behavior of the multiplier of the corresponding generator for large values
of |ξ |. Sections 3 and 4 contain the proof of Lemma 2 and Theorem 3 respectively. In Sec-
tion 5 we explain the probabilistic approach to Theorem 3, which leads to Theorem 12.
Note that we are slightly changing the assumptions there. The probabilistic approach is
based on a Krylov–Safonov type hitting lemma, which is Proposition 13. Section 6 con-
tains the proof of this result and of Theorem 12. The last section is an Appendix in which
we collect important properties of regularly resp. slowly varying functions.

2. Multipliers and Lévy measure: analysis meets probability

The aim of this section is to provide some background about translation invariant in-
tegrodifferential operators and related stochastic processes. The results explained here
motivated the search for a new scale function which is a key element of the whole project.
However, the material of this section is not needed for the proofs of the main results.

In this paper we provide two approaches to Theorem 3. One approach uses techniques
from analysis, the other uses stochastic processes. Note that the quantityK(x, h) dh in (2)
has a clear interpretation in terms of probability. For fixed x, the quantity

∫
M
K(x, h) dh
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describes the intensity with which the corresponding process performs jumps from some
point x ∈ Rd to a point from the set x + M . In this sense, the conditions (`1)–(`3)
say something about the behavior of the process. On the other hand, the conditions say
something about mapping properties of the operator A. In this section we explain the link
between these two viewpoints. We restrict ourselves to the cases of translation invariant
operators, i.e., we assume K(x, h) to be independent of the first variable. This allows us
to give a focused presentation. Note that the results of this section are not used in the rest
of the article.

In the translation invariant case, i.e. when K(x, h) does not depend on x, there is a
one-to-one correspondence between A and multipliers, semigroups and stochastic pro-
cesses. One aim is to prove how the behavior of `(|h|) for small values of |h| translates
into properties of the multiplier or characteristic exponent ψ(|ξ |) for large values of |ξ |.
This is achieved in Proposition 6. We add a subsection where we discuss which regularity
results are known in critical cases of the (much simpler) translation invariant case. Note
that our set-up, although allowing for an irregular dependence of K(x, h) on x ∈ Rd ,
leads to new results in these critical cases.

2.1. Semigroups, generators and Lévy processes

A stochastic process X = (Xt )t≥0 on a probability space (�,F ,P) is called a Lévy
process if it has stationary and independent increments, P(X0 = 0) = 1 and its paths
are P-a.s. right continuous with left limits. For x ∈ Rd we define Px to be the law of the
process X + x. In particular, Px(Xt ∈ B) = P(Xt ∈ B − x) for t ≥ 0 and measurable
sets B ⊂ Rd .

Due to stationarity and independence of increments, the characteristic exponent of Xt
is given by

E[ei〈ξ,Xt 〉] = e−tψ(ξ),

where ψ is called the characteristic exponent ofX. It has the following Lévy–Khintchine
representation:

ψ(ξ) =
1
2
〈Aξ, ξ〉 + 〈b, ξ〉 +

∫
Rd\{0}

(
1− ei〈ξ,h〉 + i〈ξ, h〉1B1(h)

)
ν(dh), (6)

whereA is a symmetric nonnegative definite matrix, b ∈ Rd and ν is a measure on Rd\{0}
satisfying

∫
Rd\{0}(1 ∧ |y|

2) ν(dy) <∞, called the Lévy measure of X.
The converse also holds; that is, givenψ as in the Lévy–Khintchine representation (6),

there exists a Lévy process X = (Xt )t≥0 with the characteristic exponent ψ . The equal-
ity (6) provides a link to an analytic viewpoint on Lévy processes. If ν is a Lévy measure,
i.e., a Borel measure on B(Rd \ {0}), then one can construct a convolution semigroup
(νt )t>0 of probability measures such that the Fourier transform of νt equals e−tψ with ψ
as in (6). This approach can be found in [BF75].

Let X = (Xt )t≥0 be a Lévy process corresponding to the characteristic exponent ψ
as in (6) with A = 0, b = 0 and a Lévy measure ν(dh). Then Ptf (x) := Ex[f (Xt )]
defines a strongly continuous contraction semigroup (Pt )t≥0 of operators on the space
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of bounded uniformly continuous functions on Rd equipped with the supremum norm.
Moreover, it is a convolution semigroup, since

Ptf (x) = E0[f (x +Xt )] =

∫
Rd
f (x + y) νt (dy)

with νt (B) := P(Xt ∈ B). The infinitesimal generator A of the semigroup (Pt )t≥0 is
given by

Au(x) =

∫
Rd\{0}

(
u(x + h)− u(x)− 〈∇u(x), h〉1B1(h)

)
ν(dh) (7)

if u is sufficiently regular (see [Sat13, proof of Theorem 31.5]. Note that the process
(u(Xt )−u(X0)−

∫ t
0 Au(Xs) ds)t≥0 is a martingale (with respect to the natural filtration)

for every u ∈ C2
b(R

d) (see [RY99, proof of Proposition VII.1.6]. In this sense the process
X corresponds to the given Lévy measure ν and, in our set-up, to the kernel K(x, h) =
k(h). For details about Lévy processes we refer to [Ber96, Sat13].

Let us now explain the connection between the characteristic exponent ψ and the
symbol of the operator A. To be more precise, if f̂ (ξ) =

∫
Rd e

i〈ξ,x〉f (x) dx denotes the
Fourier transform of a function f ∈ L1(Rd), then

Âf (ξ) = −ψ(−ξ)f̂ (ξ)

for any f ∈ S(Rd) with Af ∈ L1(Rd), where S(Rd) is the Schwartz space (see [Ber96,
Proposition I.2.9]). Hence, −ψ(−ξ) is the symbol (multiplier) of the operator A. The
following result explains how, in the case ν(dh) = k(h)dh = K(x, h)dh, the kernel
K(x, h) = k(h) is related to the characteristic exponent resp. the multiplier.

Proposition 6. Assume that the operatorA defined on S is given by (7). Assume ν(dh) =
k(h)dh = K(x, h)dh whereK : Rd× (Rd \{0})→ [0,∞) is a measurable function with
K(x, h) = K(x,−h) for almost all x, h. Assume that K satisfies (A1) and (K0) with
R0 ∈ (0,∞]. Set L(r) =

∫ R0
r
(`(s)/s) ds. Then there are constants c, r0 > 0 such that

c−1L(|ξ |−1) ≤ ψ(ξ) ≤ cL(|ξ |−1) for ξ ∈ Rd , |ξ | ≥ r0.

The assumptions of Proposition 6 allow one to treat sophisticated examples. However, it
is instructive to think about the simple examples

K(x, h) = |h|−d−α for some α ∈ (0, 2),

K(x, h) = |h|−d1B1(h),

K(x, h) = |h|−d ln(2/|h|)±1
1B1(h).

Proof of Proposition 6. Note first that, by (A1),

κ−1j (|h|) ≤ k(h) ≤ κj (|h|) for 0 < |h| < R0

for j (s) = s−d`(s). Since 1− cos x ≤ 1
2x

2, it follows from (`2) and Lemma 7 below that
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ψ(ξ) ≤ 1
2 |ξ |

2
∫
|h|≤|ξ |−1

|h|2j (|h|) dh+ 2
∫
|ξ |−1<|h|<R0

j (|h|) dh+ 2
∫
|h|≥R0

k(h) dh

≤ c1

[
|ξ |2

∫
|ξ |−1

0
s`(s) ds + L(|ξ |−1)+ 1

]
≤ c2

[
|ξ |2`(|ξ |−1)

∫
|ξ |−1

0
sc−1
L (s/|ξ |−1)−γ ds + L(|ξ |−1)

]
≤ c3

(
`(|ξ |−1)+ L(|ξ |−1)

)
≤ c4L(|ξ |

−1).

In order to prove the lower bound, we employ an idea of [Grz14]. Let us first consider
the case R0 = ∞. We choose an orthogonal transformation of the form Oe1 = |ξ |

−1ξ ,
where e1 := (1, 0, . . . , 0) ∈ Rd . Then a change of variable yields

ψ(ξ) =

∫
Rd\{0}

(1− cos(〈ξ, h〉))j (|h|) dh =
∫
Rd\{0}

(1− cos(|ξ |h1))j (|h|) dh.

By the Fubini theorem, we obtain

ψ(ξ) ≥ 2
∫
∞

0
(1− cos(|ξ |r))F (r) dr,

where F(r) :=
∫
Rd−1 j (

√
|z|2 + r2) dz for r > 0. Using (`3) we deduce that for every

0 < r ≤ s,

F(r) =

∫
Rd−1

(
|z|2 + s2

|z|2 + r2

)d/2
`(
√
|z|2 + r2)

`(
√
|z|2 + s2)

j (
√
|z|2 + s2) dz ≥ c−1

U F(s).

Now,

ψ(ξ) ≥ 2
∞∑
k=0

∫
|ξ |−1(3π/2+2kπ)

|ξ |−1(π/2+2kπ)
(1− cos(|ξ |r))F (r) dr

≥
c−1
U π

|ξ |

∞∑
k=0

F(|ξ |−1(3π/2+ 2kπ)) ≥ c−2
U

∞∑
k=0

∫
|ξ |−1(3π/2+(2k+1)π)

|ξ |−1(3π/2+2kπ)
F(r) dr

≥ c−2
U

∫
∞

3π
2 |ξ |

−1
F(r) dr ≥ c5

∫
|h|≥ 3π

2 |ξ |
−1
j (|h|) dh = c6L

( 3π
2 |ξ |

−1)
≥ c7L(|ξ |

−1),

where in the last inequality we have used Lemma 7. The case R0 < ∞ can be proved
similarly. ut

2.2. Some related results from potential theory

Let us explain which results, related to Theorem 3, have been obtained in the case where
K(x, h) is independent of x ∈ Rd . In this case, methods from potential theory can be
used.
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Hölder estimates of harmonic functions are obtained for the Lévy process with the
characteristic exponent ψ(ξ) = |ξ |2/ln(1+ |ξ |2) − 1 in [Mim13] by establishing a
Krylov–Safonov type estimate replacing the Lebesgue measure with the capacity of the
sets involved. Recently, regularity estimates have been obtained in [Grz14] for a class of
isotropic unimodal Lévy processes which is quite general but does not include Lévy pro-
cesses with slowly varying Lévy exponents such as geometric stable processes. Regularity
of harmonic functions for such processes is investigated in [Mim14], where it is shown
that a result like Proposition 5 fails. Using the Green function, logarithmic bounds for the
modulus of continuity are obtained. At this point it is worth mentioning that the transition
density pt (x, y) of the geometric stable process satisfies p1(x, x) = ∞ (see [ŠSV06]).
This illustrates that regularity results like Theorem 3 in the case K(x, h) = |h|−d1B1(h)

and in similar cases are quite delicate.

3. Proof of Lemma 2

Before we proceed to the main proof, let us provide two auxiliary statements which indi-
cate the link of the scale function ϕ with the kernels K .

Lemma 7. The following properties of the function L hold true:

L(r) ≥ γ−1cL`(r) for r > 0, (i)

In the case R0 = ∞:
L(rλ)

L(r)
≥ cLλ

−γ for λ ≥ 1, r > 0, (ii-a)

In the case R0 <∞:
L(rλ)

L(r)
≥
cL

2
λ−γ for 1 ≤ λ < λ1, 0 < r < r1, (ii-b)

where λ1 > 1 can be chosen arbitrarily and r1 > 0 depends on λ1 and R0.

Proof. From (`2) we deduce

L(r) = `(r)

∫ R0

r

`(s)

`(r)

ds

s
≥ cL`(r)r

γ

∫ R0

r

s−1−γ ds = cLγ
−1`(r),

which proves part (i). In the case R0 = ∞ we obtain

L(rλ) =

∫
∞

rλ

`(s)
ds

s
=

∫
∞

r

`(sλ)
ds

s
=

∫
∞

r

`(sλ)

`(s)
`(s)

ds

s
≥ cLλ

−γ

∫
∞

r

`(s)
ds

s

= cLλ
−γL(r),

which is one part of claim (ii). In the case R0 <∞ we deduce

L(rλ) =

∫ R0

rλ

`(s)
ds

s
=

∫ R0/λ

r

`(sλ)
ds

s
≥ cLλ

−γ

∫ R0/λ

r

`(s)
ds

s

≥ cLλ
−γ (L(r)− L(R0/λ)) ≥ cLλ

−γ (L(r)− L(R0/λ1))

=
cL

2
λ−γL(r)+

cL

2
λ−γ (L(r)− 2L(R0/λ1)) ≥

cL

2
λ−γL(r),

which proves the remaining case and completes the proof. ut
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Lemma 8. Assume a > 1. Then µ(Bϕa(r) \ Br) = |∂B1| ln a, where |∂B1| denotes the
surface area of the unit sphere in Rd .

Proof. This follows by introducing polar coordinates:

µ(Bϕa(r) \ Br) = |∂B1|

∫ ϕa(r)

r

1
L(s)

`(s) ds

s
= |∂B1| ln

L(r)

L(ϕa(r))
= |∂B1| ln a. ut

Lemma 9. Set j (s) = s−d`(s) for 0 < s < R0. Let M ≥ 1. Then

s ≤ Mt ≤ R0 and t ≤ R0 imply j (t) ≤ cj (s)

with c = max{cU ,Mγ+dc−1
L }.

Proof. Assume s, t > 0 with s ≤ Mt ≤ R0 for some M ≥ 1. We consider two cases. If
s < t , then

j (t) = t−d`(t) = (s/t)ds−d`(s(t/s)) ≤ cU s
−d`(s),

where we have applied (`3). If t ≤ s ≤ Mt , then

j (t) = t−d`(t) ≤ (s/t)γ c−1
L (M−1s)−d`(s) ≤ Mγ+dc−1

L j (s),

where we have applied (`2). The proof is complete. ut

We are now able to provide the proof of our first main result. Recall that this result is
proved under the assumption R0 = ∞.

Proof of Lemma 2. Define β : [0,∞)→ [0,∞), β(r) = exp(−r2), and further

b(x) := β(|x|) and br(x) := βr(|x|) := β(r
−1
|x|) for x ∈ Rd , r > 0.

First we estimate −Abr . For r > 0 we can deduce from (`1), (`2) and Lemma 7 that

−Abr(x) =

∫
Rd

(
b

(
x

r

)
− b

(
x + y

r

)
+

〈
∇b

(
x

r

)
,
y

r

〉
1B1(y))K(x, y) dy

≤ c1

∫
Rd

((
|y|

r

)2

1Br (y)+ 1Bcr (y)

)
`(|y|)

|y|d
dy

= c2

(
r−2

∫ r

0
s`(s) ds +

∫
∞

r

`(s)
ds

s

)
= c2

(
r−2`(r)

∫ r

0
s
`(s)

`(r)
ds + L(r)

)
≤ c3

(
r−2`(r)

∫ r

0
s

(
r

s

)γ
ds + L(r)

)
≤ c4(`(r)+ L(r)) ≤ c5L(r).

Hence,
sup
x∈Rd
−Abr(x) ≤ c6L(r). (8)

Set

θ :=
1
a

(
β(1)− β

(
3
2

))
=

1
a

(
βr(r)− βr

(
3r
2

))
,

where a > 2 will be chosen later independently of v and r .
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We claim that one can choose a > 2 so large that v(x) ≤ 1 − θ for x ∈ Br . Assume
that this is not true. Then for a > 2 there is x0 ∈ Br satisfying

v(x0) ≥ 1− θ = 1− a−1βr(r)+ a
−1βr(3r/2).

Since |x0| < r ,

v(x0)+ a
−1br(x0) ≥ 1+ a−1βr(|x0|)− a

−1βr(r)+ a
−1βr(3r/2)

> 1+ a−1βr(3r/2)

≥ v(y)+ a−1βr(|y|) for all y ∈ Bϕ(r) \ B3r/2,

(9)

where the last inequality follows from the assumption v(x) ≤ 1 for x ∈ Bϕ(r) and
βr(|y|) ≤ βr(3r/2). By choosing a sufficiently large, we will ensure that ϕ(r) > 3r/2. It
follows from (9) that v+a−1br attains its maximum at x1 ∈ B3r/2 and (v+a−1br)(x1) ≥

1+ a−1βr(3r/2) > 1.

x1

Bϕ(r)

B3r/2

Br

Fig. 1. Br ⊂ B3r/2 ⊂ Bϕ(r).

The idea now is to establish a contradiction by evaluating −A(v + a−1br)(x1) in two
different ways. First, by (8),

−A(v + a−1br)(x1) ≤ a
−1L(r)+ c6a

−1L(r) = (1+ c6)a
−1L(r).

On the other hand, since v+ a−1br attains its maximum at x1, ∇(v+ a−1br)(x1) = 0
and hence

− A(v + a−1br)(x1) =

∫
Rd\{0}

(
(v + a−1br)(x1)− (v + a

−1br)(x1 + y)
)
K(x1, y) dy

=

∫
{y∈Rd\{0} : x1+y∈Bϕ(r)}

(
(v + a−1br)(x1)− (v + a

−1br)(x1 + y)
)
K(x1, y) dy

+

∫
{y∈Rd\{0} : x1+y 6∈Bϕ(r)}

(
(v + a−1br)(x1)− (v + a

−1br)(x1 + y)
)
K(x1, y) dy

=: I1 + I2.

Since v + a−1br attains its maximum on Bϕ(r) at x1 with v + a−1br > 1, by (A1) we
obtain
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I1 ≥∫
{y∈Rd\{0} : x1+y∈Bϕ(r)\Br , v(x1+y)≤0}

(
(v+ a−1br)(x1)− (v+ a

−1br)(x1 + y)
)
K(x1, y) dy

≥ c7(1− a−1
‖b‖∞)

∫
{y∈Rd\{0} : x1+y∈Bϕ(r)\Br , v(x1+y)≤0}

j (|y|) dy

with j (s) := s−d`(s).
Using |y| ≤ |x1 + y| + |x1| ≤ |x1 + y| + 3r/2 ≤ 5

2 |x1 + y| for x1 + y ∈ Bϕ(r) \ Br ,
we deduce from (`2) that j (|y|) ≥ c8j (|x1 + y|). Here we have applied Lemma 9. The
assumptions of the lemma imply

I1 ≥ c9(1− a−1
‖b‖∞)

∫
{y∈Rd\{0} : x1+y∈Bϕ(r)\Br , v(x1+y)≤0}

j (|x1 + y|) dy

= c9(1− a−1)

∫
{y∈Rd\{0} : y∈Bϕ(r)\Br , v(y)≤0}

j (|y|) dy

= c9(1− a−1)

∫
{y∈Rd\{0} : y∈Bϕ(r)\Br , v(y)≤0}

L(|y|) µ(dy)

≥ c9(1− a−1)L(ϕ(r))µ((Bϕ(r) \ Br) ∩ {v ≤ 0})

≥ c9(1− a−1)a−1L(r)δµ(Bϕ(r) \ Br) ≥ c10(1− a−1)δL(r)(ln a)/a,

where in the last inequality we have used Lemma 8.
Lemma 7 implies that, if we consider a > c−1

L (5/2)γ , then L(r)/L(5r/2) ≤
c−1
L (5/2)γ . Hence

L(ϕ(r)) = a−1 L(r)

L(5r/2)
L(5r/2) ≤ L(5r/2),

and sinceL is decreasing, we obtain ϕ(r) ≥ 5r/2. To estimate I2 we note that for x1+y 6∈

Bϕ(r) it follows from (9) that

(v + a−1br)(x1)− a
−1br(x1 + y) ≥ 1+ a−1βr(3r/2)− a−1βr(ϕ(r)) ≥ 1.

Together with the growth assumption on v, this yields

I2 ≥ −c11

∫
{y : x1+y∈Rd\Bϕ(r)}

(
L(ϕ(r))

L(|x1 + y|)

)η
j (|y|) dy.

Note that x1 + y 6∈ Bϕ(r) implies |y| ≥ |x1 + y| − |x1| ≥ 5r/2− 3r/2 = r and

|x1 + y| ≤ 3r/2+ |y| ≤ 3
2 |y| + |y| =

5
2 |y| and y 6∈ B2ϕ(r)/5.

In this case L(|x1 + y|) ≥ L
( 5

2 |y|
)

and

{y ∈ Rd \ {0} : x1 + y 6∈ Bϕ(r)} ⊂
{
y ∈ Rd \ {0} : |y| ≥ 2

5ϕ(r)
}
.
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Thus we obtain

I2 ≥ −c12

∫
{y: : x1+y∈Rd\Bϕ(r)}

(
L(ϕ(r))

L(5|y|)/2

)η
j (|y|) dy

≥ −c13

∫
∞

2
5ϕ(r)

(
L(ϕ(r))

L(5s/2)

)η
`(s)

s
ds ≥ −c14

∫
∞

2
5ϕ(r)

(
L(ϕ(r))

L(s)

)η
(−L′(s)) ds

= −c14L(ϕ(r))
η(1− η)−1L

( 2
5ϕ(r)

)1−η
≥ −c15L(ϕ(r)) = −c16

L(r)

a
,

where in the third inequality Lemma 7 and in the last inequality monotonicity of L and
Lemma 7 again have been used.

Finally, we obtain

(1+ c6)
L(r)

a
≥ c10(1− a−1)δL(r)

ln a
a
− c16

L(r)

a
,

or 1+c6+c16 ≥ c10(1−a−1)δ ln a. Choosing a > 2 large enough leads to a contradiction.
This means that we have proved that there exists a > 2 such that

v(x) ≤ 1− a−1(β(1)− β(3/2)) = 1− θ for all x ∈ Br .

Note that our choice of a does not depend on r; hence the assertion of the theorem
holds for every r > 0 with the same choice of a and θ . ut

4. Proof of Theorem 3

First of all, we restrict the general case and assume that conditions (A1) and (K0) hold
true with R0 = ∞. At the end of the proof we explain how to reduce the general case to
this case.

Let r > 0. Assume u ∈ C2
b(R

d) satisfies Au = f in Br where f is essentially
bounded. We assume u 6≡ 0 and prove assertion (4) in the simplified case ‖u‖∞ ≤ 1/2
and ‖f ‖L∞(Br ) ≤

1
2L(r/2). Let us briefly explain why this is sufficient. In the general

case we would set
ũ =

u

2‖u‖∞ + 2L(r/2)−1‖f ‖L∞(Br )
.

If u solved Au = f in Br , then ũ would solve Aũ = f̃ in Br with ‖ũ‖∞ ≤ 1/2 and
‖f̃ ‖L∞(Br ) ≤

1
2L(r/2). Thus we could apply the result in the simplified case and obtain

sup
x,y∈Br/4

|u(x)−u(y)|

L(|x−y|)−β
≤

(
c

2
L(r)β+

c

2
L(r/2)L(r)β−1

)(
2‖u‖∞+2L(r/2)−1

‖f ‖L∞(Br )
)

≤ c̃L(r)β‖u‖∞ + c̃L(r)
β−1
‖f ‖L∞(Br ),

where c̃ is another constant, depending on cL and γ because of Lemma 7.
Hence we can restrict ourselves to ‖u‖∞ ≤ 1/2 and ‖f ‖L∞(Br ) ≤

1
2L(r/2). Let

x0 ∈ Br/4. Without loss of generality we may assume u(x0) > 0.
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Br

x0 ∈ Br/4

Brn

Fig. 2. Reduction of oscillation at x0.

It is sufficient to show that

|u(x)− u(x0)| ≤ c
L(|x − x0|)

−β

L(r)−β
for any x ∈ Br .

Define rn = L−1(an−1L(r/2)) for n ∈ N, where a > 2 will be chosen in the course
of the proof independently of r , u and f . We will construct a nondecreasing sequence
(cn)n∈N and a nonincreasing sequence (dn)n∈N of positive numbers so that

cn ≤ u(x) ≤ dn for all x ∈ Brn := Brn(x0) and dn − cn ≤ b
−n+1, (10)

where b = 2/(2− θ) ∈ (1, 2) and θ ∈ (0, 1) will be chosen later independently of r, u
and f . This will be enough, since for rn+1 ≤ |x − x0| < rn we will then have

|u(x)− u(x0)| ≤ b
−n+1

= b

(
1
an

)ln b/ ln a

= b

(
L(r/2)
anL(r/2)

)ln b/ ln a

= b

(
L(r/2)
L(rn+1)

)ln b/ ln a

≤ b

(
L(r/2)

L(|x − x0|)

)ln b/ ln a

≤ b

(
2γ

cL

)ln b/ ln a(
L(|x − x0|)

L(r)

)−ln b/ ln a

,

where in the last inequality we have used Lemma 7.
We prove (10) and construct sequences (cn) and (dn) inductively. We set

c1 := inf
Rd
u and d1 := c1 + 1.

Let n ∈ N, n ≥ 2. Assume that ck and dk have been constructed for k ≤ n and that (10)
holds for k ∈ N, k ≤ n. We are now going to construct cn+1 and dn+1.

Set m := (cn + dn)/2. By (10) it follows that for x ∈ Brn ,

u(x)−m ≤ 1
2 (dn − cn) ≤

1
2b
−n+1.
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Define a function v : Rd → R by v(x) := 2bn−1(u(x0 + x) − m). Then v(x) ≤ 1 for
x ∈ Brn and Av = 2bn−1f in Brn .

Assume that µ({x ∈ Brn \ Brn+1 : v(x) ≤ 0}) ≥ 1
2µ(Brn \ Brn+1). We recall that the

ball Br/2 has center 0 and the balls Brn have center x0. For x ∈ Br/2 \ Brn there exists
k ∈ N with k ≤ n− 1 such that rk+1 ≤ |x| < rk . Then by (10) we have

v(x) = 2bn−1(u(x0 + x)−m) ≤ 2bn−1(dk −m) ≤ 2bn−1(dk − ck)

= 2bn−k = 2b
(
an−1L(r/2)
akL(r/2)

)ln b/ ln a

= 2b
(
L(rn)

L(rk+1)

)ln b/ ln a

≤ 2b
(
L(rn)

L(|x|)

)ln b/ ln a

.

If x ∈ Bcr/2, then L(|x|) ≤ L(r/2) and u(x0 + x)−m ≤ d1 − c1 = 1; hence

v(x) ≤ 2bn−1
= 2

(
an−1L(r/2)
L(r/2)

)ln b/ ln a

= 2
(
L(rn)

L(r/2)

)ln b/ ln a

≤ 2
(
L(rn)

L(|x|)

)ln b/ ln a

.

We want to apply Lemma 2 with r = rn+1. Note that rn = ϕa(rn+1). In order to apply
Lemma 2 we need to verify that 2bn−1

|f | ≤ L(ϕ(rn+1)) = a
n−1L(r/2). But this holds

true because |f | ≤ 1
2L(r/2) and (b/a)n−1

≤ b/a ≤ 2a−1
≤ 1. Thus we find that for

some a > 2 and θ ∈ (0, 1), not depending on v or r , we have v(x) ≤ 1 − θ on Brn+1 .
Going back to u, we deduce

u(x) ≤
1− θ

2
b1−n
+
cn + dn

2
for x ∈ Brn+1 .

We take cn+1 = cn and dn+1 = min
{
dn,

1−θ
2 b1−n

+
cn+dn

2

}
. This choice implies that

dn+1 − cn+1 ≤ b
−n.

In the case µ({x ∈ Brn \Brn+1 : v(x) ≤ 0}) < 1
2µ(Brn \Brn+1) we repeat the previous

argument with −v instead of v and deduce

u(x) ≥ −
1− θ

2
b1−n
+
cn + dn

2
for x ∈ Brn+1 .

This time we choose cn+1 = max
{
cn,−

1−θ
2 b1−n

+
cn+dn

2

}
and dn+1 = dn. Finally, we

set β := ln b/ ln a.
We have completed the proof in the special case where conditions (A1) and (K0)

hold true with R0 = ∞. Now, let us assume that conditions (A1) and (K0) hold true
for some R0 < ∞, i.e., there is ` : (0, R0) → (0,∞) satisfying

∫ R0
0 (`(s)/s) ds = ∞

and conditions (`1)–(`3) for some cL ∈ (0, 1), cU ≥ 1, and γ ∈ (0, 2). We define˜̀: (0,∞)→ (0,∞) by

˜̀(s) = {`(s) for 0 < s < R0,

(s − R0/2)−γ for s ≥ R0.
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Lemma 10. The function ˜̀satisfies (`1)–(`3) with R0 being replaced by∞ and for some
c̃L ∈ (0, 1), c̃U ≥ 1, and γ ∈ (0, 2).

Proof. Assume R0 > 0. Condition (`1) obviously holds true. When checking (`2) and
(`3) we need to consider several cases. Both conditions hold true for λr < R0 because the
functions ˜̀and ` coincide in this range. For λr ≥ R0, r ≥ R0 the conditions can easily
be verified. The only challenging case is λr ≥ R0, r < R0. Let us verify (`2) in this case,
i.e., show that ˜̀(rλ) ≥ c̃Lλ−γ ˜̀(r) ⇔ (rλ− R0/2)−γ ≥ c̃Lλ−γ `(r), (11)

which is equivalent to

(rλ− R0/2)−γ

(rλ)−γ
r−γ ≥ c̃L`(r) and

( rλ

rλ− R0/2

)γ
r−γ ≥ c̃L`(r).

Since the fraction on the left-hand side is bounded in [1, 2] for rλ ≥ R0, it is sufficient
to show r−γ > c̃L`(r) in the case r < R0 ≤ λr for some c̃L ∈ (0, 1). Let us prove this
assertion in two cases separately. In the case R0/2 < r < R0 ≤ λr we conclude that

`(r) = `(R0/2)
`(r)

`(R0/2)

(`3)
≤ `(R0/2)cU2dR−d0 rd ≤ `(R0/2)cU2d ≤ `(R0/2)cU2d

r−γ

R
−γ

0

,

which proves the assertion. In the case r < R0/2 < R0 ≤ λr we proceed as follows:

`(r) =
`(R0/2)
`(R0/2)
`(r)

(`2)
≤

`(R0/2)
cL(R0/2r)−γ

= cL(R0/2)γ `(R0/2)r−γ .

Thus we have shown ˜̀(rλ) ≥ c̃Lλ−γ ˜̀(r) for all r > 0 and λ > 1

for an appropriate choice of c̃L. In other words, the function ˜̀satisfies condition (`2) with
R0 being replaced by∞. It remains to show˜̀(rλ) ≤ c̃Uλd˜̀(r) for all r > 0 and λ > 1

for an appropriate choice of c̃U . As explained above, it remains to show this estimate in
the case r < R0 ≤ λr . For r ≤ R0/2 < R0 ≤ λr we obtain

`(λr)

`(r)
=
(λr − R0/2)−γ

`(R0/2)
`(R0/2)
`(r)

(`3)
≤ 2γR−γ0 `(R0/2)−1cU (R0/2r)d

≤ 2γR−γ0 `(R0/2)−1cUλ
d .

If R0/2 < r < R0 ≤ λr ,

`(λr)

`(r)
=
(λr − R0/2)−γ

`(R0/2)
`(R0/2)
`(r)

(`2)
≤ 2γR−γ0 `(R0/2)−1c−1

L (R0/2r)γ

≤ 2γR−γ0 `(R0/2)−1c−1
L ≤ 2γR−γ0 `(R0/2)−1c−1

L λd . ut
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Next, define a modified kernel function K̃(x, h) by

K̃(x, h) =

{
K(x, h) for 0 < |h| < R0,

|h|−d(|h| − R0/2)−γ for |h| ≥ R0,

with γ as in (`2). Let us denote the integrodifferential operator corresponding to K̃ by Ã.
Since u solves Au = f , the function u also solves

Ãu = f + (Ã− A)u =: f̃ .

Due to the definition of K̃ , the image of u under the operator Ã−A is a bounded function,
hence f̃ is a bounded function. Now we apply the previous proof (R0 = ∞) and obtain,
for every r > 0,

sup
x,y∈Br/4

|u(x)− u(y)|

L(|x − y|)−β
≤ cL(r)β‖u‖∞ + cL(r)

β−1
‖f ‖L∞(Br )

+ cL(r)β−1
‖(Ã− A)u‖L∞(Br ) (12)

for some positive constant c > 0. Note that

‖(Ã− A)u‖L∞(Br ) ≤ 2‖u‖∞ sup
x∈Br

∫
Rd\BR0

(K(x, h)+ K̃(x, h)) dh ≤ c′‖u‖∞

for some constant c′ > 0. Since L(R0/2) ≤ L(r) for 0 < r ≤ R0/2 we conclude that

‖(Ã− A)u‖L∞(Br ) ≤ c
′L(R0/2)−1L(r)‖u‖∞

and finally

sup
x,y∈Br/4

|u(x)− u(y)|

L(|x − y|)−β
≤ (c + c′L(R0/2)−1)L(r)β‖u‖∞ + cL(r)

β−1
‖f ‖L∞(Br ). ut

5. An approach to regularity via stochastic processes

As explained in the introduction, the aim of this section is to provide an alternative ap-
proach to Theorem 3 using stochastic processes. First, let us formulate our assumptions
and results. As in the first part, we assume that 0 ≤ α < 2 and K : Rd × (Rd \ {0}) →
[0,∞) is a measurable function satisfying (K0) and the symmetry condition K(x, h) =
K(x,−h) for all x, h. Instead of condition (A1) we assume the following:

κ−1 `(|h|)

|h|d
≤ K(x, h) ≤ κ

`(|h|)

|h|d
for 0 < |h| ≤ 1, (K)

where κ > 1 and ` : (0, 1) → (0,∞) is locally bounded and varies regularly at zero
with index −α ∈ (−2, 0]. Possible examples could be `(s) = 1, `(s) = s−3/2 and
`(s) = s−β ln(2/s)2 for some β ∈ (0, 2) (see Appendix for a more detailed discussion).
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These assumptions on K(x, h) differ slightly from the ones in Section 1. Concern-
ing the behavior of K(x, h) for small values of |h|, these assumptions are slightly more
restrictive. We suppose that there exists a strong Markov process X = (Xt ,Px) with tra-
jectories that are right continuous with left limits associated with A in the sense that for
every x ∈ Rd ,

(i) Px(X0 = x) = 1;
(ii) for any f ∈ C2

b(R
d) the process (f (Xt )−f (X0)−

∫ t
0 Af (Xs) ds)t≥0 is a martingale

under Px .

Note that the existence of such a Markov process comes for free in the case whenK(x, h)
is independent of x (see Section 2). In the general case it has been established by many
authors in different general contexts (see the discussion in [AK09]). Denote by τA =
inf {t > 0 : Xt 6∈ A} and TA = inf {t > 0 : Xt ∈ A} the first exit time resp. hitting time of
the process X for a measurable set A ⊂ Rd .

Definition 11. A bounded function u : Rd → R is said to be harmonic in an open subset
D ⊂ Rd with respect toX (andA) if for any bounded open set B ⊂ B ⊂ D the stochastic
process (u(XτB∧t ))t≥0 is a Px-martingale for every x ∈ Rd .

Before we can formulate our results we need to introduce an additional quantity. Note
that (K0) and (K) imply that

∫ 1
0 s`(s) ds ≤ c for some constant c > 0. Let L : (0, 1) →

(0,∞) be defined by L(r) =
∫ 1
r
(`(s)/s) ds. The function L is well defined because

L(r) ≤ r−2 ∫ 1
r
s2(`(s)/s) ds ≤ cr−2. See the table in Section 1.2 for several examples.

We note that the function L is always decreasing.

Remark. The definition ofL here is different from the definition in Section 1. The reason
is that here we are able to work without specific assumptions on K(x, h) for large values
of |h|.

The result analogous to Theorem 3, which we prove with probabilistic techniques, is the
following theorem.

Theorem 12. There exist constants c > 0 and γ ∈ (0, 1) such that for all r ∈ (0, 1/2)
and x0 ∈ Rd ,

|u(x)− u(y)| ≤ c‖u‖∞
L(|x − y|)−γ

L(r)−γ
, x, y ∈ Br/4(x0), (13)

for all bounded functions u : Rd → R that are harmonic in Br(x0) with respect to A.

Let us comment on this result. It is important to note that the result trivially holds if the
function L : (0, 1)→ (0,∞) satisfies limr→0+ L(r) <∞. This is equivalent to∫

B1

`(|h|)

|h|d
dh <∞, (14)
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which, in the case K(x, h) = k(h), means that the Lévy measure is finite. Thus, for the
proof, we can concentrate on cases where (14) does not hold. One could say that our result
holds true up to and across the phase boundary determined by whether the kernel K(x, ·)
is integrable (finite Lévy measure) or not.

Furthermore, note that the main result of [BL02] is implied by Theorem 12 since the
choice `(s) = s−α , α ∈ (0, 2), leads to L(r) � r−α . Given the whole spectrum of pos-
sible operators covered by our approach, this choice is a very specific one. It allows one
to use scaling methods which are not at our disposal here. Table 1 in Section 1 contains
several admissible examples. Note that (13) becomes trivial if L(0) <∞.

The main ingredient in the proof of Theorem 12 is a new version of Proposition 5
which we provide now. Define a measure µ by

µ(dx) =
`(|x|)

L(|x|)|x|d
1B1(x) dx. (15)

Moreover, for a > 1, we define a function ϕa : (0, 1)→(0, 1) by ϕa(r)=L−1(a−1L(r)).
The following result is our modification of Proposition 5.

Proposition 13. There exists a constant c > 0 such that for all a > 1, r ∈ (0, 1/2) and
measurable sets A ⊂ Bϕa(r) \ Br with µ(A) ≥ 1

2µ(Bϕa(r) \ Br), the inequality

Px(TA < τBϕa(r)) ≥ Px(XτBr ∈ A) ≥ c
ln a
a

holds true for all x ∈ Br/2.

The novelty of Proposition 13 is the definition and use of the measure µ. It allows us
to deal with the classical cases as well as with critical cases, e.g. given by K(x, h) �
|h|−d1B1(h).

Note that we use the notation f (r) � g(r) to denote that the ratio f (r)/g(r) stays
between two positive constants as r converges to some value of interest.

6. Probabilistic estimates

Proposition 14. There exists a constant C1 > 0 such that for x0 ∈ Rd , r ∈ (0, 1/2) and
t > 0,

Px0(τBr (x0) ≤ t) ≤ C1tL(r).

Proof. Let x0 ∈ Rd , 0 < r < 1 and let f ∈ C2(Rd) be a positive function such that

f (x) =

{
|x − x0|

2, |x − x0| ≤ r/2,
r2, |x − x0| ≥ r,

and for some c1 > 0,

|f (x)| ≤ c1r
2,

∣∣∣∣ ∂f∂xi (x)
∣∣∣∣ ≤ c1r and

∣∣∣∣ ∂2f

∂xi∂xj
(x)

∣∣∣∣ ≤ c1.
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By the optional stopping theorem we get

Exf (Xt∧τBr (x0)
)− f (x0) = Ex

∫ t∧τBr (x0)

0
Af (Xs) ds, t > 0. (16)

Let x ∈ Br(x0). We estimate Af (x) by splitting the integral in (2) into three parts. First∫
Br

(f (x + h)− f (x)−∇f (x) · h1{|h|≤1})K(x, h) dh

≤ c2

∫
Br

|h|2K(x, h) dh ≤ c2κ

∫
Br

|h|2−d`(|h|) dh ≤ c3r
2`(r),

where in the last line we have used Karamata’s theorem (see property (2) in Appendix).
On the other hand, on Bcr we have∫
Bcr

(f (x + h)− f (x))K(x, h) dh ≤ 2‖f ‖∞

∫
Bcr

K(x, h) dh

≤ 2‖f ‖∞

(
κ

∫
B1\Br

|h|−d`(|h|) dh+

∫
Bc1

K(x, h) dh

)
≤ c4r

2L(r),

where we have applied property (5) from Appendix. Note that∣∣∣∣∫
B1\Br

h · ∇f (x)K(x, h) dh

∣∣∣∣ = 0.

Therefore, by property (1) from Appendix we conclude that there is a constant c6 > 0
such that for all x ∈ Br(x0) and r ∈ (0, 1) we have

Af (x) ≤ c6r
2L(r). (17)

Let us look again at (16). On {τBr (x0)≤ t}we haveXt∧τBr (x0)
∈Br(x0)

c and so f (Xt∧τBr (x0)
)

≥ r2. Thus, by (17) and (16) we get

Px0(τBr (x0) ≤ t) ≤ c6L(r)t. ut

Proposition 15. There are constants C2, C3 > 0 such that for x0 ∈ Rd ,

sup
x∈Rd

ExτBr (x0) ≤
C2

L(r)
, r ∈ (0, 1/2),

inf
x∈Br/2(x0)

ExτBr (x0) ≥
C3

L(r)
, r ∈ (0, 1/2).

Proof. The proof is similar to the proof of the exit time estimates in [BL02] (see also the
proof of Proposition 17):

(a) First we prove the upper estimate for the exit time. Let x ∈ Rd , r ∈ (0, 1/2) and
let

S = inf {t > 0 : |Xt −Xt−| > 2r}
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be the first time of a jump larger than 2r . With the help of the Lévy system formula (see
[BL02, Proposition 2.3]) and (K) we can deduce

Px(S ≤ L(r)−1) = Ex
∑

t≤L(r)−1∧S

1{|Xt−Xt−|>2r} = Ex
∫ L(r)−1

∧S

0

∫
Bc2r

K(Xs, h) dh ds

≥ c1Ex[L(r)−1
∧ S]

∫ 1

2r

`(t)

t
dt. (18)

Since L is regularly varying at zero,

Ex[L(r)−1
∧ S] ≥ L(r)−1Px(S > L(r)−1) ≥ c2L(2r)−1(1− Px(S ≤ L(r)−1)

)
and so it follows from (18) that

Px(S ≤ L(r)−1) ≥ c3 (19)

with c3 =
c1c2
c1c2+1 ∈ (0, 1). The strong Markov property and (18) lead to

Px(S > mL(r)−1) ≤ (1− c3)
m, m ∈ N.

Since τBr (x0) ≤ S,

ExτBr (x0) ≤ ExS ≤ L(r)−1
∞∑
m=0

(m+ 1)Px(S > L(r)−1m)

≤ L(r)−1
∞∑
m=0

(m+ 1)(1− c3)
m.

(b) Now we prove the lower estimate of the exit time. Let r ∈ (0, 1/2) and y ∈
Br/2(x0). By Proposition 14,

Py(τBr (x0) ≤ t) ≤ Py(τBr/2(y) ≤ t) ≤ C1tL(r/2), t > 0,

since Br/2(y) ⊂ Br(x0). Choose t = 1
2C1L(r/2)

. Then

EyτBr (x0) ≥ Ey[τBr (x0); τBr (x0) > t] ≥ tPy(τBr (x0) > t)

≥ t (1− C1L(r/2)t) =
1

4C1L(r/2)
.

By (3) from Appendix we know that L is regularly varying at zero. Hence there is a
constant c1 > 0 such that L(r/2) ≤ c1L(r) for all r ∈ (0, 1/2). Therefore

EyτBr (x0) ≥
1

4C1c1L(r)
. ut
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Proposition 16. There is a constant C4 > 0 such that for all x0 ∈ Rd and r, s ∈ (0, 1/2)
satisfying 2r < s,

sup
x∈Br (x0)

Px(XτBr (x0)
6∈ Bs(x0)) ≤ C4

L(s)

L(r)
.

Proof. Let x0 ∈ Rd , r, s ∈ (0, 1/2) and x ∈ Br(x0). Set Br := Br(x0). By the Lévy
system formula, for t > 0,

Px(XτBr∧t 6∈ Bs) = Ex
∑

v≤τBr∧t

1{Xv−∈Br , Xv∈Bcs }
= Ex

∫ τBr∧t

0

∫
Bcs

K(Xv, z−Xv) dz dv.

Let y ∈ Br . Since s ≥ 2r , it follows that Bs/2(y) ⊂ Bs and hence∫
Bcs

K(y, z− y) dz ≤

∫
Bs/2(y)c

K(y, z− y) dz ≤ c1

∫ 1

s/2

`(u)

u
du+ c2 ≤ c3L(s),

where in the last inequality we have used that L varies regularly at zero and that
limr→0+ L(r) > 0 (see (5) in Appendix).

The above considerations together with Proposition 15 imply

Px(XτBr∧t 6∈ Bs) ≤ c3L(s)ExτBr ≤ c4
L(s)

L(r)
.

Letting t →∞ we obtain the desired estimate. ut

For x0 ∈ Rd and r ∈ (0, 1) we define the measure

µx0(dx) =
`(|x − x0|)

L(|x − x0|)
|x − x0|

−d
1{|x−x0|<1} dx. (20)

Define ϕa(r) = L−1(a−1L(r)) for r ∈ (0, 1) and a > 1. The following property is
important for the construction below:

r = L−1(L(r)) ≤ L−1(a−1L(r)) = ϕa(r). (21)

Now we can prove a Krylov–Safonov type hitting estimate which includes Proposi-
tion 13 as a special case.

Proposition 17. There exists a constant C5 > 0 such that for all x0 ∈ Rd , a > 1,
r ∈ (0, 1/2) andA ⊂ Bϕa(r)(x0)\Br(x0) satisfying µx0(A) ≥

1
2µx0(Bϕa(r)(x0)\Br(x0)),

Py(TA < τBϕa(r)(x0)) ≥ Py(XτBr (x0)
∈ A) ≥ C5

ln a
a
, y ∈ Br/2(x0).

Proof. Consider x0 ∈ Rd , a > 1, r ∈ (0, 1/2) and a set A ⊂ Bϕa(r)(x0) \ Br(x0)

satisfying µx0(A) ≥
1
2µx0(Bϕa(r)(x0) \ Br(x0)). Set µ := µx0 , ϕ := ϕa , Bs := Bs(x0)

and let y ∈ Br/2. The first inequality follows from {XτBr ∈ A} ⊂ {TA < τBϕ(r)} since
A ⊂ Bϕ(r) \ Br .
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By the Lévy system formula, for t > 0,

Py(XτBr∧t ∈ A) = Ey
∑

s≤τBr∧t

1{Xs−∈Br , Xs∈A}

= Ey
∫ τBr∧t

0

∫
A

K(Xs, z−Xs) dz ds. (22)

Since |z−x| ≤ |z−x0|+ |x0−x| ≤ |z−x0|+ r ≤ 2|z−x0| for x ∈ Br and z ∈ Bcr ,

Ey
∫ τBr∧t

0

∫
A

K(Xs, z−Xs) dz ds ≥ c1Ey[τBr ∧ t]
∫
A

`(|z− x0|)

|z− x0|d
dz, (23)

where we have used property (4) of Appendix.
Since L is decreasing,∫

A

`(|z− x0|)

|z− x0|d
dz =

∫
A

L(|z− x0|) µ(dz) ≥ L(ϕ(r))µ(A)

≥
L(r)

2a
µ(Bϕ(r) \ Br). (24)

Noting that

µ(Bϕ(r) \ Br) = c2

∫ ϕ(r)

r

1
L(s)

`(s) ds

s
= −c2 lnL(s)|ϕ(r)r = c2 ln a,

we conclude from (22)–(24) that

Py(TA < τBϕa(r)(x0)) ≥ c3L(r)
ln a
a

Ey[τBr ∧ t].

Note that the above estimate provides an alternative proof of the first assertion of Propo-
sition 15. Letting t →∞ and using the lower bound in Proposition 15 we get

Py(TA < τBϕa(r)(x0)) ≥ c3L(r)
ln a
a

EyτBr ≥ c3L(r)
ln a
a
C3L(r)

−1
= c3C3

ln a
a
. ut

7. Proof of Theorem 12

Let x0 ∈ Rd , r ∈ (0, 1/2) and x ∈ Br/4(x0). Using (4) from Appendix with δ = 1, we
see that there is a constant c0 ≥ 1 such that

L(s)

L(s′)
≤ c0

(
s

s′

)−α−1

, 0 < s < s′ < 1/2. (25)

For n ∈ N define

rn := L
−1(L(r/2)an−1) and sn := 3‖u‖∞b−(n−1)

for some constants b ∈ (1, 3/2) and a > c02α+1 that will be chosen in the proof indepen-
dently of n, r and u. As we explained in the introduction, Theorem 12 trivially holds true



Intrinsic scaling properties for nonlocal operators 1007

if limr→0+ L(r) is finite. Thus, we can assume limr→0+ L(r) is infinite. This implies that
rn→ 0 as n→∞ as it should be.

We will use the following abbreviations:

Bn := Brn(x), τn := τBn , mn := inf
Bn
u, Mn := sup

Bn

u.

We are going to prove
Mk −mk ≤ sk (26)

for all k ≥ 1.
Assume for a moment that (26) is proved. Then, for any r ∈ (0, 1/2) and y ∈ Br/4(x0)

⊂ Br/2(x) we can find n ∈ N such that

rn+1 ≤ |y − x| < rn.

Furthermore, since L is decreasing, we obtain with γ = ln b/ ln a ∈ (0, 1)

|u(y)− u(x)| ≤ sn = 3b‖u‖∞a−nln b/ ln a
= 3b‖u‖∞

[
L(rn+1)

L(r/2)

]−ln b/ ln a

≤ 3b‖u‖∞

[
L(|x − y|)

L(r/2)

]−γ
,

which proves our assertion. Thus it remains to prove (26).
We use an inductive argument. Obviously, M1 − m1 ≤ 2‖u‖∞ ≤ s1. Since 1 < b <

3/2, it follows that
M2 −m2 ≤ 2‖u‖∞ ≤ 3‖u‖∞b−1

= s2.

Assume now that (26) is true for all k ∈ {1, . . . , n} for some n ≥ 2.
Let ε > 0 and take z1, z2 ∈ Bn+1 so that

u(z1) ≤ mn+1 + ε/2, u(z2) ≥ Mn+1 − ε/2.

It is enough to show that
u(z2)− u(z1) ≤ sn+1, (27)

since then Mn+1 −mm+1 − ε ≤ sn+1, which implies (26) for k = n+ 1, since ε > 0 was
arbitrary.

By the optional stopping theorem,

u(z2)− u(z1) = Ez2 [u(Xτn)− u(z1)]

= Ez2 [u(Xτn)− u(z1); Xτn ∈ Bn−1]

+

n−2∑
i=1

Ez2 [u(Xτn)− u(z1); Xτn ∈ Bn−i−1 \ Bn−i]

+ Ez2 [u(Xτn)− u(z1); Xτn ∈ B
c
1] = I1 + I2 + I3.

Let A = {z ∈ Bn−1 \ Bn : u(z) ≤ (mn +Mn)/2}. It is sufficient to consider the case
µx(A) ≥

1
2µx(Bn−1 \Bn), where µx is the measure defined by (20). In the other case we
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would use µx((Bn−1 \ Bn) \ A) ≥
1
2µx(Bn−1 \ Bn) and could continue the proof with

‖u‖∞ − u and

(Bn−1 \ Bn) \ A =

{
z ∈ Bn−1 \ Bn : ‖u‖∞ − u(z) ≤

‖u‖∞ −mn + ‖u‖∞ −Mn

2

}
instead of u and A.

The estimate (25) implies a = L(rn+1)/L(rn) ≤ c0(rn+1/rn)
−α−1, from which we

deduce rn+1 ≤ rn(c0a
−1)1/(α+1)

≤ rn/2 because of a > c02α+1. Next, we make use of
the following property:

rn−1 = L
−1(L(r/2)an−2) = L−1(a−1L(r/2)an−1) = L−1(a−1L(rn)) = ϕa(rn). (28)

Then by Proposition 17 (with r = rn and x0 = x) we get

pn := Pz2(Xτn ∈ A) ≥ C5(ln a)/a.

Hence,

I1 = Ez2 [u(Xτn)− u(z1); Xτn ∈ Bn−1]

= Ez2 [u(Xτn)− u(z1); Xτn ∈ A] + Ez2 [u(Xτn)− u(z1); Xτn ∈ Bn−1 \ A]

≤

(
mn +Mn

2
−mn

)
pn + sn−1(1− pn)

≤
1
2 snpn + sn−1(1− pn) ≤ sn−1

(
1− 1

2pn
)
≤ sn−1

(
1−

C5 ln a
2a

)
.

By Proposition 16,

I2 ≤

n−2∑
i=1

sn−i−1Pz2(Xτn 6∈ Bn−i) ≤ C4

n−2∑
i=1

sn−i−1
L(rn−i)

L(rn)

≤ 3C4‖u‖∞

n−2∑
i=1

b−(n−i−2) a
n−i−1

an−1 ≤ 3C4‖u‖∞
b−n+3

a − b
≤ C4

b3

a − b
sn+1.

Similarly, by Proposition 16,

I3 ≤ 2‖u‖∞Pz2(Xτn 6∈ B1) ≤ 2C4‖u‖∞
L(r1)

L(rn)
=

2C4

3
b

(
b

a

)n−1

sn+1 ≤ C4
b2

a
sn+1.

Hence,

u(z2)− u(z1) ≤ sn+1b
2
[

1−
C5 ln a

2a
+

C4b

a − b
+
C4

a

]
.

Since a − b ≥ a/4 for b ∈ (1, 3/2) and a > c02α+1
≥ 2, it follows that

q := 1−
C5 ln a

2a
+

C4b

a − b
+
C4

a
≤ 1−

C5 ln a
2a

+
7C4

a
= 1−

C5 ln a − 14C4

2a
.

Next, we choose a > c02α+1 so large that C5 ln a − 14C4 > 0. Thus q < 1. Finally, we
choose b ∈ (1, 3/2) sufficiently small so that b2q < 1.

Hence, (27) holds, which finishes the proof. ut
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Appendix. Slow and regular variation

In this section we collect some properties of slowly resp. regularly varying functions that
are used in Sections 6 and 7.

Definition 18. A measurable function ` : (0, 1) → (0,∞) is said to vary regularly at
zero with index ρ ∈ R if for every λ > 0,

lim
r→0+

`(λr)

`(r)
= λρ .

If a function varies regularly at zero with index 0, it is said to vary slowly at zero. For
simplicity, we call such functions regularly varying resp. slowly varying.

Note that slowly resp. regularly varying functions include functions which are neither
increasing nor decreasing. By [BGT87, Theorem 1.4.1(iii)], any function ` that varies
regularly with index ρ ∈ R is of the form `(r) = rρ`0(r) for some function `0 that varies
slowly.

Assume
∫ 1

0 s`(s) ds ≤ c for some c > 0. Let L : (0, 1)→ (0,∞) be defined by

L(r) =

∫ 1

r

`(s)

s
ds .

The function L is well defined because L(r) = r−2 ∫ 1
r
r2(`(s)/s) ds ≤ r−2 ∫ 1

r
s`(s) ds

≤ cr−2. Note that (K0) and (K) imply that
∫ 1

0 s`(s) ds ≤ c does hold in our setting. We
note that the function L is always decreasing.

Let us list further properties which are made use of in our proofs. Note that they are
established in [BGT87] for functions which are slowly resp. regularly varying at∞. By a
simple inversion we adapt the results to functions which are slowly resp. regularly varying
at 0.

(1) If ` is slowly varying, then by [BGT87, Proposition 1.5.9a], L is slowly varying with

lim
r→0+

L(r) = ∞ and lim
r→0+

`(r)

L(r)
= 0.

(2) If ` is slowly varying and ρ > −1, then Karamata’s theorem [BGT87, Proposition
1.5.8] ensures

lim
r→0+

∫ r
0 s

ρ`(s) ds

rρ+1`(r)
= (ρ + 1)−1.

(3) If ` is regularly varying of order −α < 0 (in our case 0 < α < 2), then [BGT87,
Theorem 1.5.11]

lim
r→0+

L(r)

`(r)
= α−1.

In particular, if ` is regularly varying of order −α < 0, then so is L.
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(4) Assume ` is regularly varying of order −α ≤ 0 and stays bounded away from 0
and∞ on every compact subset of (0, 1). Then Potter’s theorem [BGT87, Theorem
1.5.6(ii)] implies that for every δ > 0 there is a constant C = C(δ) ≥ 1 such that for
r, s ∈ (0, 1),

`(r)

`(s)
≤ Cmax

{(
r

s

)−α−δ
,

(
r

s

)−α+δ}
.

(5) Since L is nonincreasing, we observe limr→0+ L(r) ∈ (0,∞].
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processes. Potential Anal. 41, 1–29 (2014) Zbl 1302.60109 MR 3225805

[JW16] Jarohs, S., Weth, T.: Symmetry via antisymmetric maximum principles in nonlocal prob-
lems of variable order. Ann. Mat. Pura Appl. (4) 195, 273–291 (2016) Zbl 06548059
MR 3453602

[KM13] Kassmann, M., Mimica, A.: Intrinsic scaling properties for nonlocal operators.
arXiv:1310.5371v2 (2013)

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1196.47037&format=complete
http://www.ams.org/mathscinet-getitem?mr=2583323
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06535137&format=complete
http://www.ams.org/mathscinet-getitem?mr=3432451
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0997.60089&format=complete
http://www.ams.org/mathscinet-getitem?mr=1918242
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0308.31001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0481057
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0938.60005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1465812
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0667.26003&format=complete
http://www.ams.org/mathscinet-getitem?mr=1015093
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0834.35002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1351007
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1170.45006&format=complete
http://www.ams.org/mathscinet-getitem?mr=2494809
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1310.60103&format=complete
http://www.ams.org/mathscinet-getitem?mr=3326235
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1237.35004&format=complete
http://www.ams.org/mathscinet-getitem?mr=2865434
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1302.60109&format=complete
http://www.ams.org/mathscinet-getitem?mr=3225805
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06548059&format=complete
http://www.ams.org/mathscinet-getitem?mr=3453602
http://arxiv.org/abs/1310.5371v2


Intrinsic scaling properties for nonlocal operators 1011

[KM14] Kassmann, M., Mimica, A.: Intrinsic scaling properties for nonlocal operators II.
arXiv:1412.7566v2 (2014)

[KS14] Kassmann, M., Schwab, R. W.: Regularity results for nonlocal parabolic equations. Riv.
Mat. Univ. Parma (N.S.) 5, 183–212 (2014) Zbl 1329.35095 MR 3289601

[KKL16] Kim, S., Kim, Y.-C., Lee, K.-A.: Regularity for fully nonlinear integro-differential oper-
ators with regularly varying kernels. Potential Anal. 44, 673–705 (2016) Zbl 06580626
MR 3490545

[KS79] Krylov, N. V., Safonov, M. V.: An estimate for the probability of a diffusion process hit-
ting a set of positive measure. Dokl. Akad. Nauk SSSR 245, 18–20 (1979) (in Russian)
Zbl 0459.60067 MR 0525227

[Lan71] Landis, E. M.: Second Order Equations of Elliptic and Parabolic Type. Izdat. “Nauka”,
Moscow (1971) (in Russian) Zbl 0226.35001 MR 0320507
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