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Abstract. In this paper, we propose a strengthening of Dade’s Conjecture. This version, called
the Character Triple Conjecture, once assumed for quasisimple groups, is shown to imply Dade’s
Projective Conjecture for all finite groups. In particular Dade’s Projective Conjecture holds for a
group whose nonabelian simple sections have only covering groups satisfying the Character Triple
Conjecture. We verify the new conjecture for some classes of quasisimple groups.
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1. Introduction

In [Da92], [Da94] and [Da97], E. C. Dade proposed a series of conjectures on linear rep-
resentations of finite groups. Those conjectures generalize earlier conjectural statements
due to Alperin–McKay [Al76] and to Alperin [Al87], and an important reformulation of
the latter due to Knörr–Robinson [KR89]. We propose here a strategy to reduce Dade’s
conjectures to statements on quasisimple groups. Namely we introduce a strengthening
of one of Dade’s conjectures, called below the Character Triple Conjecture 1.2, and prove
that Dade’s Projective Conjecture (see [Da94, 15.5]) holds for all finite groups if the
Character Triple Conjecture holds for all quasisimple groups (see Theorem 1.3 below).

We hope that our reduction theorem can give further motivation to the checking of
Dade’s conjectures for various quasisimple groups (see for instance [Br06]). For simple
groups with cyclic outer automorphism group, our inductive condition is equivalent to
Dade’s Invariant Projective Conjecture (see Proposition 6.6 below). Note that our work
gives evidence for the project brought forth by Dade [Da97, Section 5] although we do not
take into account the various refinements of Dade’s conjecture given by Glesser [Gl07]
or Uno [Uno04].

Roughly speaking, our Character Triple Conjecture can be considered as an adapta-
tion to Dade’s conjecture of the inductive conditions given by Isaacs–Malle–Navarro,
Navarro–Tiep and the author in the context of other local/global conjectures (see
[IMN07], [NT11], [Spä13a] and [Spä13b]).
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Concerning the methods used to prove Theorem 1.3, it is understood that any reduc-
tion statement has to give Clifford theory a central rôle (see [IMN07], [NT11], [Spä13a]
and [Spä13b]). Namely, studying triples (H,M, χ), whereM is a normal subgroup of the
finite group H and χ ∈ Irr(M) is an irreducible character of M , is of crucial importance.
In particular, characterizing how two such character triples are to be considered equiva-
lent with regard to our particular purpose seems to be a good way to start any study. This
method allows a remarkable flexibility as to what can be required in terms of blocks or
character degrees, while remaining very elementary in the questions raised.

Continuing our investigations developed in [Spä13a], [NS14] and [KS15], we pro-
pose here another variant of equivalence relation on character triples (see Definition 3.6),
and show several properties useful for our study of Dade’s conjectures. This leads us to
formulate our reduction theorem in those new terms.

Before stating the conjecture and the main result we recall some relevant notation.
Fix a prime p. For a finite group G we denote by P(G|Op(G)) the set of p-chains of G
starting with Op(G) (see Definition 6.1). For D ∈ P(G|Op(G)) with

D = (D0 = Op(G) � D1 � · · · � Dl)

we denote by |D| the integer l, called the length of D. This notion partitions P(G|Op(G))
into the set of p-chains of even length, denoted by P(G|Op(G))+, and the set of
p-chains of odd length, denoted by P(G|Op(G))−. For a p-block B ofG and an element
D ∈ P(G) we denote byGD the normalizer of D inG and by BD the set of all p-blocks b
of GD with bG = B, where bG is the block obtained via Brauer induction (of blocks).

For χ ∈ Irr(G) we denote by d(χ) the defect of χ , which is the integer i such that
piχ(1)p = |G|p, where as usual for an integer j we denote by jp the maximal p-power
dividing j . For a nonnegative integer d, and any set C of p-blocks of G, the set Irrd(C)
consists of all characters with defect d belonging to a block in C. Now for a p-block B
of G, Cd(B)+ is defined to be the set of all pairs (D, θ) with D ∈ P(G|Op(G))+ and
θ ∈ Irrd(BD), and one obtains Cd(B)− analogously. The group G acts naturally on
Cd(B)+ and Cd(B)− by conjugation. For (D, θ) ∈ Cd(B)+ we denote by (D, θ) its
G-orbit and by Cd(B)+ and Cd(B)− the corresponding sets of G-orbits.

With this notation, Dade’s Projective Conjecture 15.5 from [Da94] can be rephrased
in the following way (see Proposition 6.2 for more details).

Conjecture 1.1. Let p be a prime, d an integer, G a finite group with Op(G) ≤ Z(G),
and B a p-block of G with a noncentral defect group. Then there exists a bijection

� : Cd(B)+→ Cd(B)−

such that θOp(G) and θ ′Op(G) are multiples of the same irreducible character whenever

(D, θ) ∈ Cd(B)+ and (D′, θ ′) ∈ �((D, θ)).

According to [Da94, Theorem (18.14)] the above conjecture for all groups implies the
Alperin–McKay conjecture for all groups, and according to [Da92, Theorem 8.3] it also
implies the Alperin weight conjecture for all groups.
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As above, one can interpret Dade’s Projective Conjecture as the existence of a bi-
jection. Then one can strengthen this conjecture by requiring additionally that characters
associated to each other via this bijection give character triples that satisfy the new equiv-
alence relation introduced in Definition 3.6.

Conjecture 1.2 (Character Triple Conjecture). Let p be a prime, d an integer, G a fi-
nite group with Op(G) ≤ Z(G), and B a p-block of G with a noncentral defect group.
Suppose that GC A. Then there exists an AB -equivariant bijection

� : Cd(B)+→ Cd(B)−
such that for every (D, θ) ∈ Cd(B)+, some (D, θ ′) ∈ �((D, θ)) satisfies

(AD,θ ,GD, θ) ∼G (AD′,θ ′ ,GD′ , θ
′)

in the sense of Definition 3.6.

This conjecture for a given group G implies Dade’s Extended Projective Conjecture
[Da97, 4.10] for G (see Proposition 6.4). The author suspects that it is in fact stronger
than Dade’s Final Conjecture proposed in [Da97, 5.8], but this should be the subject of
future investigations. In addition our new conjecture holds for p-solvable groups (see
[Spä14]).

The main aim of the paper is to prove the following statement.

Theorem 1.3. Let S be a set of simple nonabelian groups such that every covering
group X of some S ∈ S satisfies Conjecture 1.2 with respect to X C X o Aut(X). Then
Dade’s Projective Conjecture (Conjecture 1.1) holds for every finite group G if every
nonabelian simple group involved in G is contained in S.

This gives another approach to verifying the Alperin weight and the Alperin–McKay
Conjectures via making use of the classification of finite simple groups.

The proof of Theorem 1.3 is mainly built on the study and properties of the equiva-
lence relation from Definition 3.6 on character triples. This equivalence relation allows us
to control the Clifford theory of characters, especially with respect to blocks. In Section 8
this is applied to verify the reduction statement via the following steps:

(i) A minimal counterexample G has been described in [ER02] and has a normal per-
fect subgroup K such that K/Z(K) is the direct product Sr of groups isomorphic
to a nonabelian simple group S. This group generates together with the centre of G
the generalized Fitting subgroup.

(ii) According to [Ro02] it is sufficient to consider the cardinality of character sets as-
sociated with the chains of K .

(iii) The universal covering of K is a group of the form Ŝr , where Ŝ is the universal
covering group of S. The p-chains of K and the cardinalities of the character sets
from (ii) can be studied via characters of subgroups of Ŝr o Aut(Ŝr) thanks to
Theorem 5.3.

(iv) Chains of Ŝ and associated characters in the interplay with the wreath product struc-
ture of ŜroAut(Ŝr) are studied in Section 7. (Slightly similar considerations already
appear in [EH02].)
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Later on we give examples where Conjecture 1.2 holds for covering groups of nonabelian
simple groups. Based on earlier work on Dade’s Invariant Conjecture we prove that the
Character Triple Conjecture holds for most sporadic groups. Blocks with cyclic defect
also satisfy this conjecture. A further example is given by the quasisimple groups SL2(q).

The paper is structured in the following way: After setting the notation and some basic
lemmas in Section 2 we introduce in Section 3 our equivalence relation between character
triples. Basic properties of this relation are then investigated in Section 4. In Section 5 we
prove that two major constructions of irreducible characters give a way to obtain new
pairs of equivalent character triples and investigate their nature (see Theorem 5.3). Using
this new equivalence relation we propose in Section 6 a new version of Dade’s Conjecture
and prove that it is a strengthening of Dade’s Extended Projective Conjecture. In Section 7
we investigate p-chains of direct products and study how wreath products act on them.
This proves some implications of the Character Triple Conjecture for quasisimple groups.
In Section 8 we construct an equivariant bijection between certain pairs of characters and
p-chains using combinatorial arguments and apply it to prove our main result, namely that
a minimal counterexample of Dade’s Projective Conjecture cannot exist if all quasisimple
groups satisfy the Character Triple Conjecture. We conclude by giving some examples of
quasisimple groups satisfying the latter conjecture.

2. Notation and basic observations

This section introduces some notation and gathers basic results about induced blocks. The
notation is based on that introduced in [NT89] and [Na98]. All groups in this paper are
finite. We use R. Brauer’s definition of induced blocks (see [Na98, p. 87]).

Notation 2.1. We denote by tr(M) the trace of a matrix M . Let p be a prime. Let R be
the ring of algebraic integers, and let O be a localization of R at some maximal ideal
containing pR. Let F be the residue field of O. Accordingly charF = p. See Chapter 2
of [Na98] for details and exact definitions. Let ()∗ : O → F be the associated canonical
epimorphism.

For a finite group G we denote by Irr(G) the set of ordinary irreducible characters
of G. For a character φ1 ∈ Irr(G) and H ≤ G we denote by φ1,H the restriction of φ1
to H . The set of p-blocks of G form Bl(G), and Blnc(G) is defined to be the set of
p-blocks with noncentral defect groups. Recall that for χ ∈ Irr(G)we denote by d(χ) the
defect of χ , that is, the integer d with pd = (|G|/χ(1))p. This defines the set Irrd(G) :=
{χ ∈ Irr(G) | d(χ) = d} for any integer d .

For a character χ ∈ Z≥0Irr(G) we denote by Irr(χ) the set of irreducible constituents
of χ and by Irr(G | ν) the set of irreducible constituents of νG where N ≤ G and
ν ∈ Irr(N). As always let Char(G | ν) be the set of characters of G whose irreducible
constituents are contained in Irr(G | ν). For χ ∈ Irr(G) we denote by λχ : Z(FG) → F
the associated central function. For b ∈ Bl(G) the central function λb : Z(FG) → F
is defined as λb = λχ for any χ ∈ Irr(b). Also, if χ ∈ Irr(G) we denote by bl(χ) the
p-block ofG containing χ . Moreover ClG(x) is theG-conjugacy class containing x ∈ G.
For any subset C ⊆ G, C+ denotes the sum

∑
x∈C x seen as an element in FG or ZG.
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For H ≤ G and b ∈ Bl(H) we denote by bG the induced block, when it is defined,
and if H C G, then Bl(G | b) is the set of p-blocks of G covering b. For B a p-block
or a set (sum) of p-blocks of G we denote by Irr(B) the ordinary characters belonging
to (a block in) B. For nonnegative integers d we set Irrd(B) := Irrd(G) ∩ Irr(B) and
Irrd(B | ν) := Irrd(B) ∩ Irr(G | ν) where N CG and ν ∈ Irr(N) .

If N C G and τ ∈ Irr(N) we denote by Gτ the stabilizer of τ in G, also sometimes
called the inertia group and denoted by IG(τ ). For B ∈ Bl(G) we define Irr(B | τ) :=
Irr(B) ∩ Irr(G | τ).

Lemma 2.2. Let N CG and let ε : G→ G/N = G be the canonical epimorphism. Let
θ ∈ Irr(N) and suppose that there is an extension θ̃ ∈ Irr(G) of θ . Let η ∈ Irr(G) and
η := η ◦ ε ∈ Irr(G). If x ∈ G, then

λθ̃η(ClG(x)
+) = λθ̃〈N,x〉((ClG(x) ∩ xN)

+)λη(ClG(x)
+).

(Note that θ̃η ∈ Irr(G) according to [Is76, Corollary (6.15)].)

Proof. From [NS14, Lemma 2.2] we know

λθ̃η(ClG(x)
+) = λθ̃〈N,x〉(ClL(x)

+)λη(ClG(x)
+),

where L/N = CG(x) and x := ε(x). By the definition of L we observe that
ClL(x) is contained in xN and coincides with ClG(x) ∩ xN , hence λθ̃L(ClL(x)

+) =

λθ̃〈N,x〉((ClG(x) ∩ xN)
+). ut

The above formula is used for the proof of an adaptation of [NS14, Proposition 2.3] to
the situation we consider in the later sections.

Proposition 2.3. Let N C G and H1, H2 ≤ G such that NH1 = NH2 = G. Write
M1 := N ∩ H1 and M2 := N ∩ H2. For i = 1, 2 let θ̃i ∈ Irr(Hi) with θ̃i,Mi

∈ Irr(Mi).
Assume moreover that:

(i) for every N ≤ J ≤ G with J/N cyclic, the blocks bl(θ̃1,J∩H1)
J and bl(θ̃2,J∩H2)

J

are defined and equal:

bl(θ̃1,J∩H1)
J
= bl(θ̃2,J∩H2)

J ,

(ii) for every c ∈ Bl(H1 | bl(θ1)) the block cG is defined.

Then for every η ∈ Irr(G) with N ≤ ker(η), the block bl(θ̃2ηH2)
G is defined and

bl(θ̃1ηH1)
G
= bl(θ̃2ηH2)

G. (Note that bl(θ̃1ηH1) and bl(θ̃2ηH2) are well-defined since
H1/M1 ∼= H2/M2 ∼= G/N implies θ̃1ηH1 ∈ Irr(H1) and θ̃2ηH2 ∈ Irr(H2) according to
[Is76, Corollary (6.15)].)

Proof. Let η1 := ηH1 and η2 := ηH2 . Note that because bl(θ̃1η1) ∈ Bl(H1 | bl(θ1)), the
block bl(θ̃1η1)

G is defined by (ii). Hence, by definition, it is sufficient to show

λθ̃1η1
((ClG(x) ∩H1)

+) = λθ̃2η2
((ClG(x) ∩H2)

+) for every x ∈ G,
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since this implies that bl(θ̃2η2)
G is defined and bl(θ̃1η1)

G
= bl(θ̃2η2)

G. Let x := xN , let
x1 be the image of x via the isomorphism G/N ∼= H1/M1 and let x1 ∈ H1 be such that
x1M1 = x1. According to Lemma 2.2, we have

λθ̃1η1
((ClG(x) ∩H1)

+) = λθ̃1,〈M1,x1〉
((ClG(x) ∩ x1M1)

+)λη1(ClH1/M1(x1))

where η1 ∈ Irr(H1/M1) is the character that lifts to η1. Let x2 be the image of x via
G/N ∼= H2/M2, and let x2 ∈ H2 be such that x2M2 = x2. Analogously

λθ̃2η2
((ClG(x) ∩H2)

+) = λθ̃2,〈M2,x2〉
((ClG(x) ∩ x2M2)

+)λη2(ClH2/M2(x2)),

where η2 ∈ Irr(H2/M2) lifts to η2. By the definition of η1 and η2 we see that

λη1(ClH1/M1(x1)) = λη2(ClH2/M2(x2)).

Since bl(θ̃1,〈M1,x1〉)
〈N,x〉

= bl(θ̃2,〈M2,x2〉)
〈N,x〉 by assumption (i), we have

λθ̃〈M1,x1〉
((ClG(x) ∩ x1M1)

+) = λθ̃〈M2,x2〉
((ClG(x) ∩ x2M2)

+).

This implies

λθ̃1η1
((ClG(x) ∩H1)

+) = λθ̃2η2
((ClG(x) ∩H2)

+),

and hence bl(θ̃1η1)
G
= bl(θ̃2η2)

G. ut

2.4. Dade’s ramification group G[b]

Later we compare induced blocks. This task is significantly simplified by using Dade’s
ramification group G[b], introduced in [Da73]. If N C G and b ∈ Bl(N), we denote
by G[b] the group generated by N and all elements x ∈ G with λb̃(x)(Cl〈N,x〉(x)

+) 6= 0
for some block b̃(x) ∈ Bl(〈N, x〉) covering b. (This is an equivalent definition of G[b]
following ideas of [Mu13]; see [KS15, Proposition 3.1] for more details.)

Proposition 2.5 (Properties of Dade’s ramification group). Let N C G and b ∈ Bl(N)
be G-invariant. Then

(a) G[b] ≤ NCG(D), where D is a defect group of b,
(b) λb̃(ClJ (x)

+) = 0 for every N ≤ J ≤ G, x ∈ J \G[b] and b̃ ∈ Bl(J | b).

Proof. Part (a) is a consequence of Dade’s description of G[b] given in [Da73, Corol-
lary 12.6] (see also [Mu13, Theorem 3.13]). Part (b) follows from the definition of G[b]
given above. ut
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3. A new equivalence relation between character triples

The goal of this section is to establish the announced new equivalence relation between
character triples and describe its first properties. This equivalence relation helps to prove
Theorem 1.3, since it enables one to control and compare the Clifford theory of different
characters.

Recall that a triple (G,N, χ) is called a character triple if N C G and χ is a G-in-
variant irreducible character of N (see [Is76, p. 186]).

Many properties of a character triple are reflected by a projective representation that
can be deduced from the character of the (character) triple. In our setting we are mainly
interested in projective representations obtained that way satisfying some additional prop-
erties (see also [NT89, 3.5.7] and [NS14, Section 3]).

Definition 3.1 (Projective representations associated with a character). Let (G,N, χ)
be a character triple and D a (linear) representation of N affording χ . Then a projective
representation P of G is called a projective representation of G associated with χ if
(i) P(gn) = P(g)D(n) and P(ng) = D(n)P(g) for every n ∈ N and g ∈ G, i.e.,

PN = D and the factor set α of P is trivial on (G×N) ∪ (N ×G),
(ii) the values of the factor set α are roots of unity.

For a given character triple (G,N, χ) and a linear representation D of N affording χ
there exists a projective representation P of G associated with χ (see [NS14, Theorem
3.1(a)] based on [Is76, Theorem (11.2)]). Then the factor set α of P determines a map
α : G/N ×G/N → C (see also [NS14, remark before Theorem 3.2]).

Recall the definition of an isomorphism of character triples. Let (H1,M1, θ1) and
(H2,M2, θ2) be character triples and let ι : H1/M1 → H2/M2 be an isomorphism. For
every group J with M1 ≤ J ≤ H1 we denote by J ι the group with M2 ≤ J

ι
≤ H2 and

J ι/M2 = ι(J/M1), and by ηι the character of J ι/M2 associated to η ∈ Irr(J/M1) via ι.
Suppose that for every subgroup J with M1 ≤ J ≤ H1 there exists an additive bijection

σJ : Char(J | θ1)→ Char(J ι | θ2)

satisfying σJ (Irr(J | θ1)) = Irr(J ι | θ2) such that for I, J with M1 ≤ I ≤ J ≤ H1 and
ψ,ψ ′ ∈ Char(J | θ1) the following conditions hold:
(i) σI (ψI ) = σJ (ψ)I ι ,

(ii) σJ (ψη) = σ(ψ)ηι for every η ∈ Irr(J/M1).
Let σ denote the union of the maps σJ for M1 ≤ J1 ≤ H1. Then the map (ι, σ ) :
(H1,M1, θ1) → (H2,M2, θ2) is called an isomorphism of character triples (see also
[Is76, Definition (11.23)]).

Further the isomorphism (ι, σ ) is strong if

σJ (ψ)
h2 = σJ h1 (ψ

h1)

for every J withM1 ≤ J ≤ H1, h1 ∈ H1 and ψ ∈ Char(J | θ1), where h2M2 = ι(h1M1).
(See also [Is76, Exercise (11.13)].)

We use the following generalization of [NS14, Theorem 3.2] and assume thereby the
following setting.
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Hypothesis 3.2. Let N C G, and let (H1,M1, θ1) and (H2,M2, θ2) be character triples
withG = NH1 = NH2,M1 = N ∩H1 andM2 = N ∩H2. Let ι : H1/M1 → H2/M2 be
the canonical isomorphism. Assume that there exist projective representations P1 and P2
of H1 and H2 associated with θ1 and θ2 respectively, with factor sets α1 and α2 such that
α1(x, y) = α2(ι(x), ι(y)) for all x, y ∈ H1/M1.

Theorem 3.3. Assume Hypothesis 3.2. Then there exists a strong isomorphism of char-
acter triples

(ι, σ ) : (H1,M1, θ1)→ (H2,M2, θ2),

where for every N ≤ J ≤ G the map

σJ∩H1 : Char(J ∩H1 | θ1)→ Char(J ∩H2 | θ2)

is given by

σJ∩H1(tr(QJ∩H1 ⊗ P1,J∩H1)) = tr(QJ∩H2 ⊗ P2,J∩H2)

for any projective representation Q of J whose factor set is the inverse of that of P1,J∩H1

and which is the lift of a projective representation of J/N .

Proof. The arguments from [NS14, proof of Theorem 3.2] apply here: By [NS14, The-
orem 3.1(c)], every γ ∈ Irr(J ∩ H1 | θ1) is the trace of some representation of the form
Q1 ⊗ P1,J∩H1 , where Q1 is a projective representation of J ∩H1 that is the lift of a pro-
jective representation of (J ∩H1)/M1 whose factor set is the inverse of that of P1,J∩H1 .
Also, Q1 is uniquely determined up to similarity and defines a projective representation
of J and J ∩ H2. It is straightforward to check that this defines a strong isomorphism of
character triples. ut

In a slight generalization of the terminology of [NS14] we call (ι, σ ) : (H1,M1, θ1) →

(H2,M2, θ2) as above an isomorphism of character triples given by (the projective repre-
sentations) P1 and P2.

If CG(N) ≤ H1 ∩H2, by Schur’s Lemma the matrices P1(x) and P2(x) are scalar for
all x ∈ CG(N). Recall that for J with J ≤ K and ψ ∈ Irr(K) we denote by Irr(ψJ ) the
set of irreducible constituents of ψJ .

Lemma 3.4. Assume Hypothesis 3.2. Let (ι, σ ) : (H1,M1, θ1) → (H2,M2, θ2) be an
isomorphism of character triples given by the projective representations P1 and P2. As-
sume CG(N) ≤ H1 ∩H2. Then the following are equivalent:

(i) For every x ∈ CG(N) the matrices P1(x) and P2(x) are scalar matrices associated
with the same ζ ∈ C.

(ii) Irr(ψCJ (N)) = Irr(σJ∩H1(ψ)CJ (N)) for every J with N ≤ J ≤ G and ψ ∈ Irr(J | θ1).

Proof. The arguments of [NS14, proof of Lemma 3.3] apply with mild modifications.
ut
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In the situation of Lemma 3.4, we say that (H1,M1, θ1) and (H2,M2, θ2) are N -central
isomorphic character triples and that (ι, σ ) is an N -central isomorphism of character
triples.

The following lemma is often used and is basic for the definition of N -block isomor-
phic character triples in Definition 3.6.

Lemma 3.5. Assume Hypothesis 3.2. Additionally assume that for i = 1, 2 some defect
group Di of bl(θi) satisfies CG(Di) ≤ Hi . Then

(a) CG(N) ≤ H1 ∩H2,
(b) for every ci ∈ Bl(Hi | θi) the block bl(ci)G is defined.

Proof. This follows from [NT89, Lemma 5.5.14 and Theorem 5.5.16(ii)]. ut

Definition 3.6 (N -block isomorphism of character triples). Let (ι, σ ) : (H1,M1, θ1)→

(H2,M2, θ2) be an N -central isomorphism of character triples. Assume that for i = 1, 2
there exists some defect group Di of bl(θi) with CG(Di) ≤ Hi . If for every N ≤ J ≤ G
and ψ ∈ Irr(J | θ) the equality

bl(σJ∩H1(ψ))
J
= bl(ψ)J

holds then we say that (ι, σ ) is an N -block isomorphism of character triples. (Recall that
according to Lemma 3.5(b) the blocks bl(σJ∩H1(ψ))

J and bl(ψ)J are defined.) In this
situation we write

(H1,M1, θ1) ∼N (H2,M2, θ2) via (ι, σ )
and call (H1,M1, θ1) and (H2,M2, θ2) (a pair of) N -block isomorphic character triples.

In Lemma 3.8(b) we will see that ∼N is an equivalence relation. The following remark
lists the properties that have to be checked in order to verify that two character triples are
N -block isomorphic.

Remark 3.7. Let N CG, and let (H1,M1, θ1) and (H2,M2, θ2) be two character triples.
Then

(H1,M1, θ1) ∼N (H2,M2, θ2)

if

(i) G = NH1 = NH2, M1 = N ∩H1 and M2 = N ∩H2 (let ι : H1/M1 → H2/M2 be
the canonical epimorphism),

(ii) for i = 1, 2 some defect group Di of bl(θi) satisfies CG(Di) ≤ Hi ,
(iii) there exist projective representations P1 and P2 associated with θ1 and θ2 with factor

sets α1 and α2 such that α1(h, h
′) = α2(ι(h), ι(h

′)) for all h, h′ ∈ H1/M1, and
the scalar matrices P1(x) and P2(x) are associated with the same scalars for every
x ∈ CG(N),

(iv) for every N ≤ J ≤ G and ψ ∈ Irr(J ∩H1 | θ1) the blocks satisfy

bl(σJ∩H1(ψ))
J
= bl(ψ)J ,

where (ι, σ ) : (H1, N1, θ1) → (H2, N2, θ2) is the N -central isomorphism of char-
acter triples given by P1 and P2.

Then (ι, σ ) is an N -block isomorphism of character triples.
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Note that by Lemma 3.5(a) the condition in (ii) implies that the matrices in (iii) are well-
defined.

Proof. Assumptions (i) and (ii) imply that CG(N) ≤ CG(D1) ∩ CG(D2) ≤ H1 ∩ H2.
Then Lemma 3.4 implies that P1 and P2 determine an N -central isomorphism (ι, σ ) of
character triples. For every N ≤ J ≤ G and ψ ∈ Irr(J ∩H1 | θ1) the blocks bl(ψ)J and
bl(σJ∩H1(ψ))

J are defined according to Lemma 3.5, and those blocks satisfy bl(ψ)J =
bl(σJ∩H1(ψ))

J according to (iv). ut

The next statement proves that ∼N is an equivalence relation on the set of character
triples.

Lemma 3.8. (a) If (H1,M1, θ1) ∼N (H2,M2, θ2) and (H2,M2, θ2) ∼N (H3,M3, θ3),
then

(H1,M1, θ1) ∼N (H3,M3, θ3).

(b) If (H1,M1, θ1) ∼N (H2,M2, θ2), then

(H1 ∩ J,M1, θ1) ∼N (H2 ∩ J,M2, θ2) for every N ≤ J ≤ G.

(c) If (H1,M1, θ1) ∼N (H2,M2, θ2) and n ∈ N , then (H n
2 ,M

n
2 , θ

n
2 ) ∼N (H1,M1, θ1).

Proof. This follows from straightforward calculations. ut

While the relation ∼b introduced in [NS14, Definition 3.6] was in fact an order relation
and enabled us to control the relative height of characters and defect groups, an N -block
isomorphism of character triples affords less control since the characters involved have to
satisfy fewer requirements with respect to the defect groups of the associated blocks or
their heights.

Proposition 3.9. Let (ι, σ ) : (H1,M1, θ1)→ (H2,M2, θ2) be an N -block isomorphism
of character triples (see Definition 3.6). Let J be a group withN ≤ J ≤ G,ψ ∈ Irr(J | θ)
and ψ ′ := σJ∩H1(ψ). Then:

(a) Irr(ψCJ (G)) = Irr(ψ ′CJ (G)).
(b) d(ψ)− d(θ1) = d(ψ

′)− d(θ2).
(c) Assume d(θ1) = d(θ2) and J C G. Let B ∈ Bl(G) and Bi the sum of blocks b in

Bl(Hi) with bG = B for i = 1, 2. Then the restriction of σH1 to Irr(B1 |ψ) gives a
defect preserving bijection between Irr(B1 |ψ) and Irr(B2 |ψ

′).

Proof. Part (a) follows directly from Lemma 3.4. According to Theorem 3.3 the maps
(ι, σ ) define an isomorphism of character triples, hence ψ(1)/θ1(1) = ψ ′(1)/θ2(1) ac-
cording to [Is76, Lemma (11.24)]. This implies (b).

If d(θ1) = d(θ2) then the bijection σH1 is a defect preserving bijection thanks to (b).
According to the properties of isomorphisms between character triples, σH1(ψ

H1) is
mapped to (σH1∩J (ψ))

H2 = (ψ ′)H2 . This implies

σH1(Irr(H1 |ψ)) = Irr(H2 |ψ
′).

According to Definition 3.6 every character τ ∈ Irr(H1 |ψ) satisfies bl(τ )G =

bl(σH1(τ ))
G. This implies σH1(Irr(B1 |ψ)) = Irr(B2 |ψ

′). ut
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Lemma 3.10. Assume Hypothesis 3.2. In addition assume that for i = 1, 2 there exists
some defect group Di of bl(θi) with CG(Di) ≤ Hi . Suppose that for i = 1, 2 the pro-
jective representation Pi associated with θi is a linear representation affording a charac-
ter θ̃i with

(i) Irr(θ̃1,CG(N)) = Irr(θ̃2,CG(N)),
(ii) bl(θ̃2,J∩H2)

J
= bl(θ̃1,J∩H1)

J for every N ≤ J ≤ G with J/N cyclic.

Then
(H1,M1, θ1) ∼N (H2,M2, θ2)

via the isomorphism of character triples given by P1 and P2. (Note that according to
Lemma 3.5 the characters θ̃1,CG(N) and θ̃2,CG(N) from (i) and the blocks bl(θ̃2,J∩H2)

J and
bl(θ̃1,J∩H1)

J are well-defined.)

Proof. We want to apply Remark 3.7 and check the assumptions made there. The as-
sumptions 3.7(i) and 3.7(ii) are satisfied by the assumptions of our lemma.

The projective representations P1 and P2 are linear and hence their factor sets coin-
cide as required in 3.7(iii). Furthermore for x ∈ CG(N) the matrices P1(x) and P2(x) are
scalar matrices associated to the same ζ ∈ C because of assumption (i) on θ̃1 and θ̃2. The
isomorphism (ι, σ ) of character triples given by P1 and P2, as defined in Theorem 3.3, is
the following: if N ≤ J ≤ G, then

σJ : Char(J ∩H1 | θ1)→ Char(J ∩H2 | θ2)

satisfies
θ̃1,J∩H1ηJ∩H1 7→ θ̃2,J∩H2ηJ∩H2

for every η ∈ Irr(J ) with N ≤ ker(η). Then by hypothesis and Proposition 2.3 we have

bl(ψ)J = bl(σJ∩H1(ψ))
J for every ψ ∈ Irr(J | θ1).

This proves that condition 3.7(iv) is satisfied. ut

The above statement helps to shorten the assumptions made in Remark 3.7 in the case
where H1/M1 is cyclic. In this situation the existence of an N -block isomorphism of
character triples requires mainly group-theoretic properties.

Proposition 3.11. Let N C G with cyclic G/N , and let (H1,M1, θ1) and (H2,M2, θ2)

be character triples with H1, H2 ≤ G and Irr(θ1,Z(N)∩H1) = Irr(θ2,Z(N)∩H2). Assume

(i) G = NH1 = NH2, M1 = N ∩ H1 and M2 = N ∩ H2, in particular H1/M1 and
H2/M2 are then cyclic,

(ii) for i = 1, 2 some defect group Di of bl(θi) satisfies CG(Di) ≤ Hi .

Then there is an N -block isomorphism (ι, σ ) : (H1,M1, θ1) → (H2,M2, θ2), where
ι : H1/M1 → H2/M2 is the canonical epimorphism.
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Proof. In this situation we know that θ1 extends to some θ̃1 ∈ Irr(H1) according to
[Is76, Corollary (11.22)]. We use Dade’s ramification group introduced in [Da73] (see
also Proposition 2.5). Recall that we denote byG[c] Dade’s ramification group of a block
c ∈ Bl(N) (see 2.4). According to [KS15, Theorem C(a)(2)] there exists an extension ψ̃
of θ2 to G[bl(θ1)

G
] ∩ H2 such that bl(θ̃1,J∩H1)

J
= bl(ψ̃J∩H2)

J for every group J with
N ≤ J ≤ G[bl(θ1)

G
]. The character ψ̃ extends to some θ̃2 ∈ Irr(H2) since H2/M2 is

cyclic.
Let Gp′ be the group with N ≤ Gp′ such that G/Gp′ is isomorphic to a Sylow p-

subgroup of G/N . For J := NCGp′ (N) we have bl(θ̃1,H1∩J )
J
= bl(θ̃2,H2∩J )

J and we
see that the same unique block of CGp′ (N) is covered by bl(θ̃1,H1∩J ) and bl(θ̃2,H2∩J ).
Since Irr(θ1,Z(N)∩H1) = Irr(θ2,Z(N)∩H2), this implies Irr(θ̃1,CG

p′
(N)) = Irr(θ̃2,CG

p′
(N)).

Since G/Gp′ is cyclic, there exists some η ∈ Irr(G) with Gp′ ≤ ker(η) such that
θ̃2ηH2 ∈ Irr(H2 | ν) where ν ∈ Irr(θ̃1,CG(N)). Then straightforward arguments using
[NT89, Corollary 5.1.12] prove that bl(θ̃2,H2∩J ηH2∩J ) = bl(θ̃2,H2∩J ) for every J with
N ≤ J ≤ G.

The characters θ̃1 and θ̃2ηH2 have all of the properties required in Lemma 3.10, and
hence (H1,M1, θ1) ∼N (H2,M2, θ2). ut

Notation 3.12. Let Z ≤ CG(N)with ZCG and Z∩N = 1. Let (ι, σ ) : (H1,M1, θ1)→

(H2,M2, θ2) be anN -central isomorphism of character triples (see Lemma 3.4). ForG =
G/Z, N := NZ/Z ∼= N and M i := MiZ/Z ∼= Mi , and the characters θ i ∈ Irr(M i)

corresponding to θi there is an isomorphism of character triples (ι, σ ) : (H 1,M1, θ1)→

(H 2,M2, θ2) given by projective representations such that

• the isomorphism ι : H1/M1 → H2/M2 induces an isomorphism ι : H 1/M1 →

H 2/M2,
• for every NZ ≤ J ≤ G and any character χ ∈ Irr(J/Z | θ1) the character σ J/Z(χ)

lifts to σJ (χ), where χ ∈ Irr(J | θ1) is the lift of χ .

We call (ι, σ ) induced by (ι, σ ) and (ι, σ ) a lift of (ι, σ ).

Recall that every block of a quotient of a given group H is contained (or dominated by) a
unique block of H (see [Na98, p. 198]).

Proposition 3.13. Assume Hypothesis 3.2 with (H1,M1, θ1) ∼N (H2,M2, θ2) via (ι, σ ).
Let Z ≤ H1 ∩ H2 with Z C G and N ∩ Z = 1. Let G = G/Z, N := NZ/Z ∼= N and
M i := MiZ/Z ∼= Mi . Let θ i ∈ Irr(M i) be the character corresponding to θi .

(a) Assume that either Z is a p′-group or Z ≤ Z(G) is a p-group. Then (H 1,M1, θ1)

∼N (H 2,M2, θ2).
(b) Assume that Z ≤ Z(G) is central. Then (H 1,M1, θ1) ∼N (H 2,M2, θ2) via (ι, σ ),

where (ι, σ ) is induced by (ι, σ ).

Proof. For the proof of (a) let P1 and P2 be projective representations associated with
θ1 and θ2 that give the N -block isomorphism (ι, σ ) between the character triples. Now
consider the linear representation X i ofM i defined by X i(mZ) = Pi(m) form ∈ Mi that
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affords θ i . In addition by [NS14, Theorem 3.1] there exists a projective representation P1
of H 1 associated with θ1 such that

P1(mZ) = X 1(mZ) = P1(m) for every m ∈ M1.

The map D1 on H1 defined by D1(h) := P1(hZ) for every h ∈ H1 is a projective
representation of H1 with D1,M1 = P1,M1 . According to [NS14, Theorem 3.1(b)] there
exists a map ξ1 : H1/M1 → C× such that

P1(gZ) = ξ1(gM1)P1(g) for every g ∈ H1.

The map ξ1 defines a map ξ2 : H2/M2 → C× by means of the canonical isomorphism
ι : H1/M1 → H2/M2. Then ξ2P2 is a projective representation of H2 associated with
θ2 as well. Since the factor sets of P1 and P2 correspond via ι, the factor sets of ξ1P1
and ξ2P2 coincide as well. Straightforward calculations show that ξ1P1 and ξ2P2 give the
same isomorphism (ι, σ ) of character triples.

Now notice that CG/Z(NZ/Z) = CG(N)/Z since Z C G and N ∩ Z = 1. As
P1(x) and P2(x) are associated with the same scalar for x ∈ CG(N), the projective
representations ξ1P1 and ξ2P2 have the same property. Since the factor sets of ξ1P1 and
ξ2P2 coincide via ι, we see that ξ2P2 uniquely determines a projective representation P2
of H2/Z associated with θ2.

The isomorphism of character triples (ι, σ ) : (H 1,M1, θ1) → (H 2,M2, θ2) given
by P1 and P2 is the one induced by (ι, σ ) in the sense of 3.12.

By the above arguments it is clear that (ι, σ ) is an N -central isomorphism of char-
acter triples. Note that some defect group Di of bl(θi) satisfies CG(Di) ≤ Hi , since
(H1,M1, θ1) ∼N (H2,M2, θ2). Moreover Di := DiZ/Z is a defect group of bl(θ i)
according to [NT89, Theorems 5.8.8 and 5.8.10]. Now CG/Z(DiZ/Z) = CG(Di)Z/Z
since N ∩ Z = 1 and Z CG. This implies CG(Di) ≤ H i .

Let NZ ≤ J ≤ G and ψ ∈ Irr(J ∩ H 1 | θ1) with J := J/Z. By its definition the
character σ J∩H 1

(ψ) lifts to σJ∩H1(ψ) whenever ψ ∈ Irr(J ∩ H1 | θ1) is the lift of ψ .
By assumption bl(ψ)J = bl(σJ∩H1(ψ))

J . Let B := bl(ψ)J , b1 := bl(ψ) ∈ Bl(J ∩ H1)

and b2 := bl(σJ∩H1(ψ)) ∈ Bl(J ∩ H2). Moreover let B ∈ Bl(J ) be the block contained
in B in the sense of [Na98, p. 198], b1 ∈ Bl(J ∩ H 1) the one contained in b1 and
b2 ∈ Bl(J ∩H 2) the one contained in b2. (The existence and uniqueness of B, b1 and b2
follows from the fact that p - |Z| or Z ≤ Z(J ) according to [NT89, Theorems 5.8.8

and 5.8.11].) The blocks b
J

1 and b
J

2 are defined according to [NT89, Lemma 5.5.14 and
Theorem 5.5.16(ii)]. Then according to [NS14, Proposition 2.4(b) and (c)] we have

b
J

1 = B = b
J

2 .

Since b1 = bl(ψ) and b2 = bl(σJ∩H1(ψ)), this implies (H 1,M1, θ1) ∼N (H 2,M2, θ2)

in the situation of (a). In order to prove (b), one applies part (a) with Op(Z) and then
again with Z/Op(Z) (in place of Z). ut
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4. N -block isomorphic character triples via projective representations

In this section we study N -block isomorphisms of character triples in more detail and de-
rive a criterion in terms of projective representations. This is done in the following steps:
Before considering the general case one analyses when two character triples (H1,M1, θ1)

and (H2,M2, θ2) are N -block isomorphic character triples under the assumption that θ1
and θ2 extend. The general case is later studied using the theory of projective representa-
tions. Therefore we gather some essentially well-known statements that allow us to relate
the case with an extending character to the general case. This can be seen as an adaptation
of [NS14, Theorem 4.1] to this new equivalence relation of character triples.

If we have an epimorphism ε : Ĝ → G with kernel Z, a Z-section of ε is any map
rep : G→ Ĝ with ε ◦ rep = IdG and rep(1G) = 1Ĝ.

Theorem 4.1. Let N C G and (H1,M1, θ1) be a character triple such that H1N = G

and H1 ∩N = M1. Let P1 be a projective representation of H1 associated with θ1. Then
there is a group Ĝ, a surjective homomorphism ε : Ĝ → G with finite cyclic central
kernel Z and a Z-section rep : G→ Ĝ of ε satisfying the following properties:

(a) N̂ = N0 × Z where N̂ := ε−1(N), N0 is isomorphic to N via εN0 : N0 → N and
N0 C Ĝ. Also the action of Ĝ on N0 coincides with the action of G on N via ε.

(b) Let M1,0 := ε
−1(M1) ∩ N0. The character θ1,0 := θ1 ◦ εM1,0 ∈ Irr(M1,0) extends to

Ĥ1 := ε
−1(H1). There exists a linear representation D1 of Ĥ1 with

D1(rep(g)) = P1(g) for every g ∈ H1,

and this representation affords an extension θ̃1,0 ∈ Irr(Ĥ1) of θ1,0. The Z-section rep
satisfies

rep(n) ∈ N0 and rep(ng) = rep(n) rep(g) for every n ∈ N and g ∈ G.

(c) The unique irreducible constituent ν of (θ̃1,0)Z is faithful.
(d) If N ≤ J ≤ G with CG(J ) ≤ H1 and Ĵ := ε−1(J ), then ε(CĜ(Ĵ )) = CG(J ).

Assume there exists some projective representation P2 of H2 associated with θ2 such that
the isomorphism

(ι, σ ) : (H1,M1, θ1)→ (H2,M2, θ2)

given by P1 and P2 is N -central. Then:

(e) M̂2 = M2,0 × Z, where M̂2 := ε
−1(M2) and M2,0 := N0 ∩ ε

−1(M2).
(f) The character θ2,0 := θ2 ◦ εM2,0 ∈ Irr(M2,0) extends to Ĥ2 := ε

−1(H2). There exists
a linear representation D2 of Ĥ2 with

D2(rep(g)) = P2(g) for every g ∈ H2,

and this representation affords an extension θ̃2,0 ∈ Irr(Ĥ2) of θ2,0.
(g) {ν} = Irr((θ̃2,0)Z) = Irr((θ̃1,0)Z).
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(h) The isomorphism of character triples

(̂ι, σ̂ ) : (Ĥ1, M̂1,0, θ1,0)→ (Ĥ2, M̂2,0, θ2,0)

given by D1 and D2 is N0-central and is the lift of (ι, σ ) in the sense of 3.12.
(i) If (Ĥ1,M1,0, θ1,0)∼N0 (Ĥ2,M2,0, θ2,0) via (̂ι, σ̂ ), then (H1,M1, θ1)∼N (H2,M2, θ2)

via (ι, σ ).

Proof. The construction of Ĝ can be found in [Na98, proof of Theorem (8.28)] and in
[Is76, proof of Lemma (11.28)]. We fix Z to be the finite subgroup ofC× that is generated
by all values of α, where α denotes the factor set of P1. The elements of Ĝ are defined to
be {(g, z) | g ∈ G, z ∈ Z} and multiplication is given by

(g1, z1)(g2, z2) = (g1g2, z1z2α(g1, g2)).

Let ε : Ĝ → G be the epimorphism given by (g, z) 7→ g, with kernel 1 × Z ≤ Z(Ĝ),
which we identify with Z. We define a Z-section rep : G → Ĝ by g 7→ (g, 1). Then
N0 := {(n, 1) | n ∈ N}C Ĝ and N0 is isomorphic to N via εN0 .

Then M1,0 := {(m, 1) | m ∈ M1} is isomorphic to M1. Let θ1,0 := θ1 ◦ εM1,0 ∈

Irr(M1,0). The map D1 defined on Ĥ1 := ε
−1(H1) by

D1(h, z) = zP1(h) for every z ∈ Z and h ∈ H1,

is an irreducible linear representation of Ĥ1. Let θ̃1,0 ∈ Irr(Ĥ1) be the character afforded
by D1. With these definitions, (a)–(c) are satisfied.

In the following we denote by Û the group ε−1(U) ≤ Ĝ for U ≤ G. Let N ≤
J ≤ G and Ĵ := ε−1(J ). We assume that CG(J ) ≤ H1. If c ∈ CG(J ) ≤ CH1(M1) the
matrix P1(c) is scalar by Schur’s Lemma. Using the fact that P1(c) = P1(ncn

−1) for
n ∈ J we now see that ε(CĜ(Ĵ )) = CG(J ), as claimed in (d).

By the definition of character triple isomorphisms given by projective representations
the factor sets of P1 and P2 coincide via the canonical isomorphism ι : H1/M1 →

H2/M2. In particular the values of the factor set α2 of P2 are contained in Z. Then the
map D2 defined on Ĥ2 by

D2(h, z) = zP1(h) for every z ∈ Z and h ∈ H2

is an irreducible linear representation of Ĥ2. If θ̃2,0 ∈ Irr(Ĥ2 | θ2,0) is the character af-
forded by D2, then it is an extension of θ2,0. Also by definition {ν} = Irr((θ̃2,0)Z) =

Irr((θ̃1,0)Z). We see that ε−1(M2) = M2,0 × Z.
According to (d) we have CĜ(N0) = CĜ(N̂) = ĈG(N) ≤ Ĥ1 ∩ Ĥ2, as (H1,M1, θ1)

and (H2,M2, θ2) are N -central isomorphic character triples, and hence CG(N) ≤ H1 ∩

H2. Since P1 and P2 define an N -central isomorphism of character triples, it is clear
that D1(x, z) and D2(x, z) for (x, z) ∈ CĜ(N0) are associated with the same scalar.
This proves that (Ĥ1, M̂1,0, θ1,0) and (Ĥ2, M̂2,0, θ2,0) are N0-central isomorphic charac-
ter triples via (̂ι, σ̂ ).

Finally we consider part (h) and assume that (Ĥ1,M1,0, θ1,0) ∼N0 (Ĥ2,M2,0, θ2,0).
Then (H1,M1, θ1) ∼N (H2,M2, θ2) according to Proposition 3.13(b). ut
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When checking if two given character triples are N -block isomorphic, usually the most
complicated task is to verify the equality of induced blocks coming from corresponding
characters. We facilitate that by using Dade’s ramification group, mentioned in 2.4.

Lemma 4.2. Let N C G and H1, H2 ≤ G with NH1 = NH2 = G. For i = 1, 2 write
Mi := N ∩ Hi and let θ̃i ∈ Irr(Hi) with θi := θ̃i,Mi

∈ Irr(Mi). Suppose that bl(θ1) and
bl(θ2) have defect groups D1 and D2 with CG(D1) ≤ H1 and CG(D2) ≤ H2. Let P1
and P2 be linear representations of H1 and H2 affording θ̃1 and θ̃2, respectively.

(a) For x ∈ G and J := 〈N, x〉, P1((ClJ (x)∩H1)
+) is a scalar matrix associated to an

element of O. So there is some ξ ∈ F associated with P1((ClJ (x) ∩H1)
+)∗.

(b) If x ∈ G \G[bl(θi)N ] and J := 〈N, x〉, then Pi((ClJ (x)∩Hi)+)∗ is the zero matrix.
(c) If x ∈ G[bl(θ1)

N
] and bl(θ1)

N
= bl(θ2)

N , then for J := 〈N, x〉 the following two
statements are equivalent:

(i) bl(θ̃1,J∩H1)
J
= bl(θ̃2,J∩H2)

J .
(ii) The matrices P1((ClJ (y)∩H1)

+)∗ and P2((ClJ (y)∩H2)
+)∗ are associated with

the same ξ ∈ F for every y ∈ xN .

Proof. Note that ClJ (x) ∩ H1 is either empty or contained in x′M1 for some x′ ∈ H1.
In the first case we have P1((ClJ (x) ∩ H1)

+) = 0. Otherwise ClJ (x) ∩ H1 is a disjoint
union of J1-conjugacy classes for J1 := J ∩ H1. Accordingly P1((ClJ (x) ∩ H1)

+) is a
scalar matrix associated to an algebraic integer by [Is76, Section 3]. This proves (a).

Note that θ̃1,J1 is afforded by P1,J1 . Let b := bl(θ1)
N . By definition the element

λθ̃1,J1
((ClJ (x)∩H1)

+) is the scalar associated with P1((ClJ (x)∩H1)
+)∗. If x ∈ G\G[b],

then λθ̃1,J1
((ClJ (x) ∩H1)

+) = 0 by the definition of G[b] (see Proposition 2.5(b)).

Assume now x ∈ G[b] and b = bl(θ2)
N . Since P1,J1 affords θ̃1,J1 and P2,J2 affords

θ̃2,J2 for J2 := J ∩H2, the equality bl(θ̃1,J∩H1)
J
= bl(θ̃2,J∩H2)

J implies

λθ̃1,J1
((ClJ (y) ∩H1)

+) = λθ̃2,J2
((ClJ (y) ∩H2)

+) for every y ∈ J.

This shows that (i) implies (ii) in part (c).
On the other hand, following [KS15, Theorem B] together with [Na98, Theorem (9.2)]

there exists ζ ∈ Irr(J2) with M2 ≤ ker(ζ ) such that bl(θ̃1,J∩H1)
J
= bl(ζ θ̃2,J∩H2)

J . Note
that ζ is a linear character since J2/M2 is cyclic by definition. This implies

λθ̃1,J1
((ClJ (y) ∩H1)

+) = ζ(y2)
∗λθ̃2,J2

((ClJ (y) ∩H2)
+) for every y ∈ J,

where y2 ∈ yN ∩H2. Now by straightforward calculations we see that for some y ∈ xN
the matrices P1((ClJ (y)∩H1)

+)∗ and P2((ClJ (y)∩H2)
+)∗ are nonzero. Hence the values

of λθ̃1,J1
((ClJ (y) ∩ H1)

+) and λθ̃2,J2
((ClJ (y) ∩ H2)

+) are nonzero. By the assumption
in (ii) this implies ζ(y2)

∗
= 1, and hence all p-regular elements of J2 are contained in the

kernel of ζ since J2/M2 is cyclic. Accordingly bl(ζ θ̃2,J∩H2) = bl(θ̃2,J∩H2) by [NT89,
5.1.12]. This completes the proof of (c). ut

The following statement gives a general criterion for the existence of an N -block isomor-
phism of character triples. It takes into account the projective representations associated
with the characters.
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Theorem 4.3. Let N C G, and let (H1,M1, θ1) and (H2,M2, θ2) be character triples
with NH1 = NH2 = G, M1 = N ∩ H1 and M2 = N ∩ H2. Suppose there are defect
groups D1 and D2 of bl(θ1) and bl(θ2) with CG(D1) ≤ H1 and CG(D2) ≤ H2. Let P1
and P2 be projective representations ofH1 andH2 associated with θ1 and θ2, respectively,
in the sense of Definition 3.1. Then the following two statements are equivalent:

(i) The projective representations P1 and P2 of H1 and H2 satisfy:

(i.a) The factor sets of P1 and P2 coincide via the canonical isomorphism ι :

H1/M1 → H2/M2.
(i.b) P1(x) and P2(x) are scalar matrices associated with the same scalar for every

x ∈ CG(N).
(i.c) (P1((ClJ (x)∩H1)

+))∗ and (P2((ClJ (x)∩H2)
+))∗ are scalar matrices associ-

ated with the same scalar for every x ∈ G[bl(θ1)
N
] ≤ NCG(D1) ∩NCG(D2),

where J := 〈N, x〉.

(ii) (H1,M1, θ1) ∼N (H2,M2, θ2) via the isomorphism of character triples given by P1
and P2.

(Note that CG(D1) ≤ H1 and CG(D2) ≤ H2 imply CG(N) ≤ H1 ∩H2 by Lemma 3.5(a),
and hence P1(x) and P2(x) in (i.b) are well-defined. Moreover, by Lemma 4.2(a) the
elements of F occurring in (i.c) are well-defined.)

Proof. We first prove that (i) implies (ii). By Lemma 3.4 the projective representations
determine an N -central isomorphism (ι, σ ) : (H1,M1, θ1) → (H2,M2, θ2) of character
triples. By assumption, θ1 and θ2 have defect groups D1 and D2 with CG(D1) ≤ H1 and
CG(D2) ≤ H2. By Lemma 3.5(b) this implies bl(ψi)G is defined for all ψi ∈ Irr(Hi | θi).

Following Theorem 4.1, P1 with its factor set α1 determines a group Ĝ = {(g, z) |
g ∈ G, z ∈ Z}, a surjective homomorphism ε : Ĝ → G and a cyclic group Z C Ĝ.
By 4.1(a), N is naturally isomorphic to N0 := {(n, 1) | n ∈ N} via εN0 . Furthermore by
4.1(a) the action of Ĝ on N̂ := ε−1(N) satisfies

(n, z)(g,z
′)
= (ng, z) for every g ∈ G, z, z′ ∈ Z and n ∈ N. (4.1)

Let M1,0 and θ1,0 ∈ Irr(M1,0) and Ĥ1 be defined as in 4.1(b). Moreover let θ̃1,0 ∈

Irr(Ĥ1) be the extension of θ1,0 afforded by a representation D1 defined as in 4.1(b).
The assumptions (i.a) and (i.b) on P1 and P2 imply that (H1,M1, θ1) and

(H2,M2, θ2) are N -central isomorphic character triples via the isomorphism given by
P1 and P2 (see Theorem 3.3 and Lemma 3.4).

Let Ĥ2 ≤ Ĝ, M2,0, θ2,0 ∈ Irr(M2,0), D2 and θ̃2,0 be defined as in Theorem 4.1(f).
Then the isomorphism (̂ι, σ̂ ) of character triples given by D1 and D2 is N0-central and is
the lift of (ι, σ ) in the sense of 3.12 (see Theorem 4.1(h)).

By Theorem 4.1(i) it is sufficient to prove that (̂ι, σ̂ ) is an N0-block isomorphism of
character triples, as this implies (H1,M1, θ1) ∼N (H2,M2, θ2) via (ι, σ ). We prove in
the following that (̂ι, σ̂ ) is an N0-block isomorphism of character triples by checking the
conditions given in Lemma 3.10:
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Straightforward arguments prove that Hypothesis 3.2 is satisfied. Recall that D1 is a
defect group of bl(θ1) with CG(D1) ≤ H1. Then D1,0 := {(d, 1) | d ∈ D1} is a defect
group of bl(θ1,0) and by Theorem 4.1(a) it satisfies CĜ(D1,0) ≤ Ĥ1. Analogously for a
defect group D2 of bl(θ2) with CG(D2) ≤ H2, the group D2,0 := {(d, 1) | d ∈ D2} is a
defect group of bl(θ2,0) and CĜ(D2,0) ≤ Ĥ2. Hence the group-theoretic assumptions of
Lemma 3.10 are satisfied.

Assume that there exist projective representations P1 and P2 ofH1 andH2 associated
with θ1 and θ2 respectively, with factor sets α1 and α2 such that

α1(x, y) = α2(ι(x), ι(y)) for all x, y ∈ H1/M1.

Now CĜ(N0)/Z = CG(N) according to (4.1) (see also Theorem 4.1(a)). Hence for
x ∈ CG(N), D1(x) and D2(x) are associated with the same scalar by assumption (i.b)
and the construction of D1 and D2. This implies Irr((θ̃1,0)CĜ(N0)) = Irr((θ̃2,0)CĜ(N0)),
assumption (i) of Lemma 3.10.

In the next step we verify assumption (ii) of Lemma 3.10, i.e., bl((θ̃2,0)J∩Ĥ2
)J0 =

bl((θ̃1,0)J0∩Ĥ1
)J0 for every N0 ≤ J0 ≤ Ĝ with cyclic J0/N0. According to Lemma 4.2(c)

it is sufficient to check that D1((ClJ0(x0)∩ Ĥ1)
+)∗ and D2((ClJ0(x0)∩ Ĥ2)

+)∗ are asso-
ciated with the same scalar in F for every x0 ∈ Ĝ[bl(θ1,0)

N0 ], where J0 = 〈N0, x0〉.
Note that by (i.c) for elements of N we have bl(θ1)

N
= bl(θ2)

N . Proposition 2.5(a)
together with [Na98, Lemma (4.13)] implies G[bl(θ1)

N
] ≤ NCG(D1) ∩ NCG(D2). Let

x ∈ G[bl(θ1)
N
] and J := 〈N, x〉. Then ClJ (x) coincides with the N -orbit contain-

ing x, and hence ClJ (x) = {nx | n ∈ Lx(N)}, where Lx : N → N is the map given
by n 7→ n−1xnx−1. Let y := (x, 1), J0 := 〈N0, y〉 and define Ly : N0 → N0 by
n 7→ n−1yny−1. Then the set ClJ0(y) coincides with ClJ0(y) = {ly | l ∈ Ly(N0)}, since
the action of y on N0 coincides with the one of x on N according to 4.1(a).

Assume first that ClJ (x) ∩ H1 6= ∅, so there exists some x0 ∈ H1 ∩ xN ∩ ClJ (x).
Straightforward computations show that y0 := (x0, 1) ∈ ClJ0(y). The definition of D1
implies

D1((ClJ0(y) ∩ Ĥ1)
+) =

∑
l∈Ly (N0)

ly∈Ĥ1

D1(ly) =
∑

l∈Ly (N0)

ly∈Ĥ1

D1(lyy
−1
0 )D1(y0)

=

∑
l∈Lx (N)
lx∈H1

P1(lxx
−1
0 )P1(x0) =

∑
k∈ClJ (x0)
k∈H1

P1(k)

= P1((ClJ (x) ∩H1)
+).

If ClJ (x) ∩ H1 = ∅ then for y = (x, 1) we also have D1((ClJ0(y) ∩ Ĥ1)
+) = 0 =

P1((ClJ (x) ∩ Ĥ1)
+). Analogously we see

D2((ClJ0(y) ∩ Ĥ2)
+) = P2((ClJ (x) ∩H2)

+).

Let y′ := (x, z). Moreover Cl〈N0,y′〉(y
′) = {k(1, z) | k ∈ Cl〈N0,(x,1)〉(x, 1)}. This implies

the equalities D1((ClJ0(y
′)∩Ĥ2)

+) = zP1((ClJ (x)∩H2)
+) and D2((ClJ0(y

′)∩Ĥ2)
+) =
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zP2((ClJ (x) ∩ H2)
+). Together with assumption (i.c) and Lemma 4.2(b) this implies

that the scalars associated with D1((ClJ0(y
′) ∩ Ĥ1)

+)∗ and D2((ClJ0(y
′) ∩ Ĥ2)

+)∗ co-
incide whenever y′ ∈ N0CĜ(D1,0) ∩ N0CĜ(D2,0) and J0 := 〈N0, y

′
〉. Note that

Ĝ[bl(θ1,0)
N0 ] ≤ N0CĜ(D1,0) according to Proposition 2.5(a). Hence by Lemma 4.2(c)

we have bl((θ̃1,0)J∩Ĥ1
)J = bl((θ̃2,0)J∩Ĥ2

)J for every N0 ≤ J ≤ Ĝ with J/N0 cyclic.
This shows by Lemma 3.10 that

(Ĥ1,M1,0, θ1,0) ∼N0 (Ĥ2,M2,0, θ2,0).

We now prove that (ii) implies (i). Let P1 and P2 be projective representations of H1
andH2 associated with θ1 and θ2 that give theN -block isomorphism (ι, σ ) : (H1,M1, θ1)

→ (H2,M2, θ2) of character triples.
According to Lemma 3.4 the projective representations P1 and P2 have the properties

described in (i.a) and (i.b). It remains to verify the property described in (i.c) for elements
x ∈ G and J := 〈N, x〉. In addition let θ̃1 ∈ Irr(J ∩ H1 | θ1) be an extension of θ1.
Then θ̃2 := σJ∩H1(θ̃1) ∈ Irr(J ∩ H2) is an extension of θ2. Let Q be the projective
representation of J/N such that QJ∩H1 ⊗ P1,J∩H1 affords θ̃1. Then θ̃2 is afforded by
QJ∩H2 ⊗ P2,J∩H2 . Note that since J/N is cyclic, Q is a one-dimensional projective
representation with Q(x)∗ 6= 0. Now bl(θ̃1)

J
= bl(θ̃2)

J implies according to Lemma
4.2(c) that the matrices (QJ∩H1 ⊗P1((ClJ (x)∩H1)

+))∗ = Q(x)∗P1((ClJ (x)∩H1)
+)∗

and Q(x)∗P2((ClJ (x)∩H2)
+)∗ are scalar matrices associated with the same scalar in F.

This implies that P1 and P2 satisfy the condition from (i.c). ut

Using the above criterion we can prove that N -block isomorphic character triples can be
obtained by passing to quotients or to (central) extensions.

Corollary 4.4. Suppose that N C G, Z C G with Z ≤ Z(N) and H1, H2 ≤ G with
NH1 = NH2 = G. Assume (H1/Z,M1/Z, θ1) ∼N/Z (H2/Z,M2/Z, θ2). Let θ1 ∈

Irr(H1) and θ2 ∈ Irr(H2) be the lifts of θ1 and θ2. Then (H1,M1, θ1) ∼N (H2,M2, θ2).

Proof. In order to prove the statement we will check that the assumptions made in Re-
mark 3.7 are satisfied.

Let H i := Hi/Z, M i := Mi/Z, N := N/Z and Di be a defect group of bl(θ i).
According to [NT89, Theorems 5.8.8, 5.8.10 and 5.8.11] some defect group Di of bl(θi)
satisfies DiZ/Z = Di . Hence CG(Di) ≤ H i implies CG(Di) ≤ Hi . This proves that the
general assumptions made in Theorem 4.3 are satisfied.

Let P1 and P2 be projective representations of H 1 and H 2 associated with θ1 and θ2
that give an N -block isomorphism of character triples. Then they satisfy the assumptions
in Theorem 4.3(i).

Let P1 and P2 be the projective representations of H1 and H2 respectively given by

Pi(hi) = P i(hiZ) for every hi ∈ Hi and i ∈ {1, 2}.

We now check that those projective representations have the properties described in 4.3(i).
Since CG(N) ≥ CG(N)/Z for G := G/Z, the projective representations P1 and P2

define an N -central isomorphism of character triples according to Lemma 3.4. Hence P1
and P2 satisfy assumptions (i.a) and (i.b) of Theorem 4.3.
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Let x ∈ G, J := 〈N, x〉, x := xZ and J := J/Z. Let T ⊂ Z be defined by
{xz | z ∈ T} = ClJ (x) ∩ {xz | z ∈ Z}. Then we obtain

Pi((ClJ (x) ∩Hi)+) = |T|P i((ClJ (x) ∩H i)
+).

By Theorem 4.3, the matrices P1((ClJ (x)∩H 1)
+)∗ and P2((ClJ (x)∩H 2)

+)∗ are asso-
ciated with the same scalar. So P1 and P2 satisfy 4.3(i.c) in view of the above equality.

Since the conditions of Theorem 4.3(i) are satisfied, (ι, σ ) is anN -block isomorphism
of character triples. ut

In the opposite direction only a weak version of the above statement can be proven. Al-
though it is not essential in the later proofs, we give this statement and its proof for
completeness and possible future use.

Corollary 4.5. Suppose that N C G and (H1,M1, θ1) ∼N (H2,M2, θ2) where NH1 =

NH2 = G. Let Z ≤ Z(N) ∩ ker(θ1) ∩ ker(θ2) with CG(N)/Z = CG/Z(N/Z). Assume
that either Z is a p′-group or Z ≤ Z(G). Let θ1 ∈ Irr(M1/Z) and θ2 ∈ Irr(M2/Z) be the
associated characters of the quotients. If CG/Z(D1) ≤ H1/Z and CG/Z(D2) ≤ H2/Z

for some defect groups D1 of bl(θ1) and D2 of bl(θ2), then (H1/Z,M1/Z, θ1) ∼N/Z
(H2/Z,M2/Z, θ2).

Proof. Let H i := Hi/Z, M i := Mi/Z and N := N/Z. Let P1 and P2 be projective
representations of H1 and H2 respectively that give the N -block isomorphism (ι, σ ) :

(H1,M1, θ1) → (H2,M2, θ2) of character triples. Because Z ≤ Z(N) ∩ ker(θi), the
projective representation Pi is constant on Z-cosets for i = 1, 2, and hence defines a
projective representation P i of H i associated with θ i .

We check successively that P1 and P2 satisfy the requirements from Remark 3.7.
The defect groups Di satisfy CG(Di) ≤ H i , the requirement from 3.7(ii), by the given
assumptions.

According to Theorem 4.3 the projective representations P1 and P2 have factor sets
coinciding via the canonical isomorphism ι : H1/M1 → H2/M2. Hence via the canonical
isomorphism ι : H 1/M1 → H 2/M2 the factor sets of P1 and P2 coincide as well. This
is assumption 3.7(i).

For x ∈ CG(N), P1(x) and P2(x) are scalar matrices associated with the same scalar.
Now since CG(N)/Z = CG/Z(N/Z), the scalars associated with P1(x) and P2(x) coin-
cide as well. This is assumption 3.7(iii).

Let (ι, σ ) be the character triple isomorphism given by P1 and P2. Let N ≤ J ≤ G
and ψ ∈ Irr(H1 ∩ J | θ1). Then σH1∩J (ψ) is the lift of σH 1∩J

(ψ), where J := J/Z

and ψ ∈ Irr(H 1 ∩ J ) lifts to ψ . Moreover bl(ψ)J = bl(σH1∩J (ψ))
J . According to

[NS14, Proposition 2.4(b)] (for p - |Z|) and [NS14, Proposition 2.4(c)] (if Z ≤ Z(G))
this implies bl(ψ)J = bl(σH 1∩J

(ψ))J since bl(ψ) ⊇ bl(ψ) and bl(σH1∩J (ψ)) ⊇

bl(σH 1∩J
(ψ)). By Remark 3.7 this proves the statement. ut
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5. Construction of N -block isomorphic character triples

In this section we consider how one can obtain new pairs ofN -block isomorphic character
triples by using direct products (Theorem 5.1) and wreath products (Theorem 5.2). In
addition we prove that the equivalence relation between character triples only depends on
the automorphisms induced (see Theorem 5.3).

In the first statement we consider character triples coming from direct products. Recall
that the irreducible characters of a group N1 × N2 can be written as χ1 × χ2 with χ1 ∈

Irr(N1) and χ2 ∈ Irr(N2) (see [Is76, (4.21)]).

Theorem 5.1. For j = 1, 2 let (Hj,1,Mj,1, θj,1) ∼Nj (Hj,2,Mj,2, θj,2). Then

(H1,M1, θ1) ∼N (H2,M2, θ2),

where N := N1 × N2, Hi := H1,i × H2,i , Mi := M1,i ×M2,i and θi := θ1,i × θ2,i ∈

Irr(Mi).

Proof. Let Gj := NjHj,1 = NjHj,2 and Dj,i be a defect group of bl(θj,i). Hence
CGj (Dj,i) ≤ Hj,i . Straightforward calculations show that Di := D1,i × D2,i is a defect
group of bl(θi), and hence CG(Di) ≤ Hi for G = G1 × G2. Hence the group-theoretic
assumptions of Theorem 4.3 are satisfied.

Let Pj,1 and Pj,2 be projective representations associated with θj,1 and θj,2 that give
an Nj -block isomorphism (ιj , σj ) : (Hj,1,Mj,1, θj,1)→ (Hj,2,Mj,2, θj,2). Note that then
the projective representations Pj,i satisfy the conditions from Theorem 4.3(i) and Pi :=
P1,i ⊗ P2,i is a projective representation of Hi associated with θi .

For the proof of the statement using Theorem 4.3 we have to check the conditions from
Theorem 4.3(i) for P1 and P2: by the definition of Pi the factor sets αi of Pi (i = 1, 2)
satisfy

αi((h1, h2), (h
′

1, h
′

2)) = α1,i(h1, h
′

1)α2,i(h2, h
′

2)

for all hj , h′j ∈ Hj,i , where αj,i is the factor set of Pj,i . Let ι : H1/M1 → H2/M2 be the
canonical isomorphism. Since then

ι(h1, h2) = (ι1(h1), ι2(h2))

for all hj ∈ Hj,1/Mj,1, the factor sets α1 and α2 coincide via ι. Hence P1 and P2 satisfy
4.3(i.a).

Let x ∈ CG(N) and xi ∈ CGi (Ni) with x = (x1, x2). Let ξj ∈ C be such that Pj,i(xj )
is a scalar matrix associated with ξj . (Because of 4.3(i) for Pj,i , ξj is well-defined.) Then
P1(x) and P2(x) are scalar matrices associated with ξ1ξ2. This implies that P1 and P2
satisfy (i.b) of Theorem 4.3.

It remains to check that for x ∈ G and J := 〈N, x〉 the matrices P1((ClJ (x)∩H1)
+)∗

and P2((ClJ (x) ∩ H2)
+)∗ are associated with the same scalar. Let x ∈ G, x1 ∈ G1 and

x2 ∈ G2 with x = (x1, x2). Then straightforward computations show that

ClJ (x) = {(c1, c2) | c1 ∈ ClJ1(x1) and c2 ∈ ClJ2(x2)},
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where J1 := 〈N1, x1〉 and J2 := 〈N2, x2〉. For i = 1, 2 we obtain

ClJ (x) ∩Hi = {(c1, c2) | c1 ∈ ClJ1(x1) ∩H1,i and c2 ∈ ClJ2(x2) ∩H2,i}

and

Pi((ClJ (x) ∩Hi)+) = P1,i((ClJ (x) ∩H1,i)
+)⊗ P2,i((ClJ (x) ∩H2,i)

+).

This implies that in all cases condition 4.3(i.c) holds for P1 and P2, since the Pi,j have
the analogous property. ut

We now construct new N r -block isomorphic character triples using wreath products.

Theorem 5.2. Let r be a positive integer and (H1,M1, θ1) ∼N (H2,M2, θ2). Then

(H1 oSr ,M
r
1 , θ

r
1 ) ∼N r (H2 oSr ,M

r
2 , θ

r
2 ).

Proof. Let P1 and P2 be projective representations associated with θ1 and θ2 which give
an N -block isomorphism of character triples and hence satisfy the conditions from 4.3(i).

LetG :=NH1=NH2 andDi a defect group of bl(θi) for i∈{1, 2} with CG(Di)≤Hi .
By straightforward computations one sees that D̃i := Dri is a defect group of bl(θ ri ).

Assume that a defect group of bl(θ1) or bl(θ2) is contained in Z(N). Without loss
of generality we may assume D1 ≤ Z(N) and hence CN (D1) = N ≤ H1 and M1 =

N . Because of bl(θ2)
N
= bl(θ1)

N
= bl(θ1) this implies D2 = D1, since according

to [NT89, Lemma 5.3.3] some defect group of bl(θ2) is contained in a defect group of
bl(θ2)

N
= bl(θ1). This implies M2 = N and H2 = G. Now as bl(θ1) = bl(θ2) is a block

of central defect and Irr(θ1,Z(N)) = Irr(θ2,Z(N)), the two characters coincide (see [Na98,
Theorem (9.12)]).

Accordingly in the following we assume D1,D2 6≤ Z(N). Again we apply Theorem
4.3 by constructing projective representations with the required properties. For i ∈ {1, 2}
let P̃i be the projective representation of Hi oSr defined using Pi as in [JK81, 4.3].

Let ι : H1/M1 → H2/M2 and ι̃ : H̃1/M̃1 → H̃2/M̃2 be the canonical isomorphisms
for H̃i := Hi oSr ≤ G oSr and M̃i := M

r
i ≤ H̃i . Note that the factor sets of P̃1 and P̃2

then coincide via ι̃. Hence P̃1 and P̃2 satisfy condition (i.a) of Theorem 4.3.
Moreover by definition (P̃i)H r

i
coincides with the projective representation

Pi ⊗ · · · ⊗ Pi (r factors)

of H r
i . By the arguments in the proof of Theorem 5.1 we see that:

• for every x ∈ CGoSr
(N), P̃1(x) and P̃2(x) are associated with the same scalar,

• P̃1((ClJ (x) ∩ H̃1)
+)∗ and P̃2((ClJ (x) ∩ H̃2)

+)∗ are associated with the same scalar
whenever x ∈ Gr and J := 〈N, x〉.

Since D1,D2 6≤ Z(N), CGoSr
(D̃i) = CG(Di)r ≤ H r

i . Hence condition (i.c) of Theorem
4.3 has to be checked only for elements x ∈ N rCGoSr

(D1) ∩ N
rCGoSr

(D2) ≤ G
r . The

above arguments prove that P̃1 and P̃2 satisfy (i.c), and hence they give an N r -block
isomorphism of character triples. ut

In the following statement one considers character triples where the characters but not the
groups coincide. This statement (and its proof) is a generalization of some ideas that led
to [Spä13a, Theorem 7.9] and [Spä13b, Proposition 4.6].
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Theorem 5.3. Let (H1,M1, θ1) ∼N (H2,M2, θ2) and G = NH1 = NH2. Let Ĝ be a
group with N C Ĝ, and let ε : G → Aut(N) and ε̂ : Ĝ → Aut(N) be the canonical
morphisms. Assume that ε(G) = ε̂(Ĝ). Let Ĥ1 := ε̂

−1(ε(H1)) and Ĥ2 := ε̂
−1(ε(H2)).

Then
(Ĥ1,M1, θ1) ∼N (Ĥ2,M2, θ2).

Note thatMi ≤ Ĥi since the group of automorphisms ofN induced byHi clearly contains
the automorphisms of N induced by Mi . Hence the character triples considered in the
above statement are well-defined.

Basically this theorem tells us that the existence of an N -block isomorphism of char-
acter triples is a property governed by the group of induced automorphisms, the actual
structure of the groups only playing a minor rôle. This statement is used as a key step of
the proof of Theorem 1.3.

The proof of this statement is based on Theorem 4.3 and seems quite involved. The
rest of this section is devoted to it. We see in Lemma 5.4 that the group-theoretic as-
sumptions of Theorem 4.3 are satisfied. Accordingly it remains to construct projective
representations P̂1 and P̂2 of Ĥ1 and Ĥ2 associated with θ1 and θ2 with the properties
from 4.3(i). Their construction uses the notation from 5.5 and is given in Subsection 5.6.
Afterwards the properties required in 4.3(i) are successively checked for those projective
representations P̂1 and P̂2, and we conclude the proof of Theorem 5.3 after Proposi-
tion 5.11.

Lemma 5.4. For N CG, the character triples (Ĥ1,M1, θ1) and (Ĥ2,M2, θ2) satisfy the
group-theoretic assumptions from Theorem 4.3, i.e.,

(a) Ĥ1N = Ĥ2N = Ĝ, M1 = N ∩ Ĥ1 and M2 = N ∩ Ĥ2,
(b) CĜ(D1) ≤ Ĥ1 and CĜ(D2) ≤ Ĥ2, where D1 is a defect group of bl(θ1) and D2 a

defect group of bl(θ2),
(c) (Ĥ1,M1, θ1) and (Ĥ2,M2, θ2) are character triples.

Proof. Since ε̂(Ĝ) = ε(G), the definition of Ĥ1 and Ĥ2 implies the equalities in (a).
Part (b) follows analogously from CG(D1) ≤ H1 and CG(D2) ≤ H2. For i = 1, 2 the
groups Ĥi and Hi induce the same automorphisms on Mi , hence θi is Ĥi-invariant. This
proves (c). ut

For the proof of Theorem 5.3, in the following paragraph we explicitly recall the conse-
quences of (H1,M1, θ1) ∼N (H2,M2, θ2).

Notation 5.5. By the assumption of Theorem 5.3 we have (H1,M1, θ1)∼N (H2,M2, θ2),
and hence there exist projective representations P1 and P2 associated with θ1 and θ2 of
H1 andH2 respectively that satisfy the statements in Theorem 4.3(i). Since the properties
of P1 and P2 are crucial for the remaining parts of the proof, we give them here in detail:

(i.a) the factor sets α1 and α2 of P1 and P2 coincide via the canonical isomorphism
ι : H1/M1 → H2/M2, i.e.,

α1(h, h
′) = α2(ι(h), ι(h

′)) for all h, h′ ∈ H1/M1,
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(i.b) there exists a map µ : CG(N) → C such that P1(x) = µ(x) Idθ1(1) and P2(x) =

µ(x) Idθ2(1), where Idθ1(1) and Idθ ′1(1) denote the appropriate identity matrices,
(i.c) P1((ClJ (x)∩H1)

+)∗ and P2((ClJ (x)∩H2)
+)∗ are scalar matrices associated with

the same scalar for every x ∈ NCG(D1) ∩NCG(D2) and J := 〈N, x〉.

5.6. Construction of P̂1 and P̂2

Let T be a full representative set of CG(N)N -cosets in G with 1N ∈ T, i.e., every x ∈ G
can be written as tnc for some t ∈ T, n ∈ N and c ∈ CG(N), where t is unique and c and
n are unique up to simultaneous Z(N)-multiplication.

Let 1N ∈ T̂ ⊂ Ĝ be such that there exists a bijection T → T̂ given by t 7→ t̂ with
ε(t) = ε̂(̂t). By definition we have

nt = n̂t for every n ∈ N and t ∈ T.

Hence T̂ is a complete representative set of CĜ(N)N -cosets in Ĝ, i.e., every x̂ ∈ Ĝ may
be written as t̂nc for a unique t̂ ∈ T̂ and some n ∈ N and c ∈ CĜ(N). In this context t is
unique, and n and c are unique up to simultaneous Z(N)-multiplication.

Notation 5.7 (TN and T̂N ). Let

TN := {tn | t ∈ T and n ∈ N} and T̂N := {̂tn | t̂ ∈ T̂ and n ∈ N}.

There is a bijection̂: TN → T̂N with tn 7→ t̂n for every t ∈ T and n ∈ N . For every
x ∈ TN the image is denoted by x̂. Then for every y ∈ TN and n ∈ N ,

ŷn = ŷn̂ = ŷn and n̂y = n̂ŷ = nŷ. (5.1)

This bijection maps Hi,rep := TN ∩Hi to Ĥi,rep := T̂N ∩ Ĥi .

Let µ0 ∈ Irr((θ1)Z(N)) and µ̂ : CĜ(N)→ C be a map such that any µ̂(c) (c ∈ CĜ(N)) is
a root of unity and

µ̂(cz) = µ̂(c)µ0(z) for every c ∈ CĜ(N) and z ∈ Z(N). (5.2)

For i = 1, 2 let P̂i : Ĥi → GLθi (1)(C) be given by

P̂i (̂hc) := Pi(h)µ̂(c) for every ĥ ∈ Ĥi,rep and c ∈ CĜ(N).

Note that by the choice of Ĥi,rep and the definition of Ĥi this defines a map on Ĥi and by
(5.2), P̂i is well-defined and does not depend on the actual choice of ĥ and c.

Lemma 5.8. For i = 1, 2 the map P̂i is a projective representation of Ĥi associated
with θi , and the factor set α̂i : Ĥi × Ĥi → C satisfies

α̂i (̂hc, ĥ
′c′) = µ(c′′′)αi(h

′′, c′′′)−1αi(h, h
′)µ̂(c)µ̂(c′)µ̂(c′′)−1

for all ĥ, ĥ′ ∈ Ĥi,rep and c, c′ ∈ CĜ(N), where c′′ ∈ CĜ(N), h
′′
∈ Hi,rep and c′′′ ∈

CG(N) satisfy ĥcĥ′c′ = ĥ′′c′′ and hh′ = h′′c′′′.
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Note that c′′, h′′ and c′′′ are only determined up to Z(N)-multiplication. Nevertheless
µ(c′′′)µ̂(c′′)−1 and αi(h′′, c′′′) are constant. Hence the given expression for α̂i (̂hc, ĥ′c′)
is uniquely determined.

Proof of Lemma 5.8. First we prove that P̂i is a projective representation of Ĥi associ-
ated with θi for i = 1, 2. By definition it is clear that (P̂i)Mi

is a linear representation
affording θi . Let x ∈ Ĥi , m ∈ Mi , ĥ ∈ Ĥi,rep and c ∈ CĜ(N) with x = ĥc. Then
xm = ĥcm = ĥmc with ĥm ∈ Ĥi,rep and mx = mĥc with mĥ ∈ Ĥi,rep. The equalities in
(5.1) imply

P̂i(xm) = P̂i(ĥmc) = Pi(hm)µ̂(c) = Pi(h)Pi(m)µ̂(c)
= P̂i (̂hc)P̂i(m) = P̂i(x)P̂i(m).

Analogously one obtains P̂i(mx) = P̂i(m)P̂i(x).
In the next step we show that P̂i is a projective representation of Ĥi and compute its

factor set. Let ĥ, ĥ′, ĥ′′ ∈ Hi,rep and c, c′, c′′ ∈ CĜ(N) be such that

ĥcĥ′c′ = ĥ′′c′′.

Note that there is some c′′′ ∈ CG(N) such that hh′ = h′′c′′′. We obtain

P̂i (̂hc)P̂i (̂h′c′) = Pi(h)Pi(h′)µ̂(c)µ̂(c′′) = Pi(hh′)αi(h, h′)µ̂(c)µ̂(c′)
= Pi(h′′c′′′)αi(h, h′)µ̂(c)µ̂(c′)
= Pi(h′′)Pi(c′′′)αi(h′′, c′′′)−1αi(h, h

′)µ̂(c)µ̂(c′)

= Pi(h′′)µ(c′′′)αi(h′′, c′′′)−1αi(h, h
′)µ̂(c)µ̂(c′).

Since P̂i (̂h′′c′′) = Pi(h′′)µ̂(c′′), this implies that the factor set α̂i : Ĥi×Ĥi → C satisfies

α̂i (̂hc, ĥ
′c′) = µ(c′′′)αi(h

′′, c′′′)−1αi(h, h
′)µ̂(c)µ̂(c′)µ̂(c′′)−1.

This proves that P̂i is a projective representation of Ĥi associated with θi . ut

Lemma 5.9. The factor sets of P̂1 and P̂2 coincide via the canonical isomorphism ι̂ :

Ĥ1/M1 → Ĥ2/M2.

Proof. Let x1, x
′

1 ∈ Ĥ1 and x2, x
′

2 ∈ Ĥ2 with x2M2 = ι̂(x1M1) and x′2M2 = ι̂(x
′

1M1).
Then there exist ĥ1, ĥ

′

1 ∈ Ĥ1,rep and c, c′ ∈ CĜ(N) with x1 = ĥ1c and x′1 = ĥ′1c
′.

According to Lemma 5.8 we have

α̂1(x1, x
′

1) = µ(c
′′′

1 )α1(h
′′

1, c
′′′

1 )
−1α1(h1, h

′

1)µ̂(c)µ̂(c
′)µ̂(c′′)−1,

where c′′ ∈ CĜ(N), h
′′

1 ∈ H1,rep and c′′′ ∈ CG(N) satisfy x1x
′

1 = ĥ
′′

1c
′′ and h1h

′

1 = h
′′

1c
′′′.

By the choice of x2, x
′

2 ∈ Ĥ2 there exist n, n′ ∈ N with x2 = x1n and x′2 = x′1n
′.

Hence ĥ2 := ĥ1n and ĥ′2 := ĥ′1n
′ are contained in Ĥ2,rep. Moreover x2 = ĥ2c and

x′2 = ĥ
′

2c
′. For h′′2 := h

′′

1(n
ĥ′1)n′ ∈ H2,rep we get

x2x
′

2 = x1nx
′

1n
′
= x1x

′

1(n
x′1)n′ = (̂h′′1c

′′)(nx
′

1)n′ = ĥ′′1(n
ĥ′1)n′c′′ = ĥ′′2c

′′.
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Analogously one sees h2h
′

2 = h′′2c
′′′, where hi , h′i and h′′i are the preimages of ĥi , ĥ′i

and ĥ′′i under the bijection introduced in 5.7.
The arguments from the proof of Lemma 5.8 apply and prove

α̂2(x2, x
′

2) = µ(c
′′′)α2(h

′′

2, c
′′′)−1α2(h2, h

′

2)µ̂(c)µ̂(c
′)µ̂(c′′)−1.

By 5.5(i.a) we know that the preimages h1 and h2 of ĥ1 and ĥ2 satisfy α1(h1, h
′

1) =

α2(h2, h
′

2). Analogously we see that α1(h
′′

1, c
′′′) = α2(h

′′

2, c
′′′). Together with the above,

this implies the equality of α̂1 and α̂2 via ι̂. ut

The above statement proves that condition (i.a) of 4.3 is satisfied by P̂1 and P̂2. The next
lemma ensures that also 4.3(i.b) holds for P̂1 and P̂2.

Lemma 5.10. For every x ∈ CĜ(N), P̂1(x) and P̂2(x) are scalar matrices associated
with µ̂(x).

Proof. This directly follows from the definitions of P̂1 and P̂2. ut

To verify 4.3(i.c) we compare P̂1((ClĴ (x) ∩ Ĥ1)
+)∗ and P̂2((ClĴ (x) ∩ Ĥ2)

+)∗ for x ∈
NCĜ(D1) ∩NCĜ(D2) and Ĵ := 〈N, x〉.

Proposition 5.11. For x∈NCĜ(D1)∩NCĜ(D2) and Ĵ :=〈N, x〉, P̂1((ClĴ (x)∩Ĥ1)
+)∗

and P̂2((ClĴ (x) ∩ Ĥ2)
+)∗ are associated with the same scalar.

Proof. Let x ∈ NCĜ(D1) ∩ NCĜ(D2). We observe that ClĴ (x) is the N -orbit in Ĵ
containing x. Accordingly ClĴ (x) is contained in xN . More concretely, ClĴ (x) coincides
with Lx(N)x, where for y ∈ G ∪ Ĝ we define Ly : N → N by n 7→ n−1ny

−1
. Note that

Ly only depends on the automorphism of N induced by y. If x = ĥc for h ∈ T̂N and
c ∈ CĜ(N), we see that Lx(N) = Lĥ(N) = Lh(N) and furthermore ClJ (h) = Lh(N)h
for J := 〈N, h〉. For j ∈ {1, 2} we obtain

P̂j ((ClĴ (x) ∩ Ĥj )
+) =

∑
y∈ClĴ (x)

y∈Ĥj

P̂j (y) =
∑

l∈Lx (N)
lx∈Ĥj

P̂j (lx)

=

∑
l∈Lx (N)
lx∈Ĥj

P̂j (lĥc) =
∑

l∈Lĥ(N)
lx∈Ĥj

P̂j (l̂hc)

=

∑
l∈Lh(N)
lĥc∈Ĥj

Pj (lh)µ̂(c) = µ̂(c)
( ∑
l∈Lh(N)
lh∈Hj

Pj (lh)
)

= µ̂(c)Pj ((ClJ (h) ∩Hj )+).

Note that h∈NCG(D1)∩NCG(D2). Hence by 5.5(i.c) we know that P1((ClJ (h)∩H1)
+)∗

and P2((ClJ (h) ∩ H2)
+)∗ are associated with the same scalar in F. Using the above

equation this implies the statement. ut

This was the final step necessary for the proof of Theorem 5.3.
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Proof of Theorem 5.3. According to Lemma 5.4 we can apply Theorem 4.3. The maps
P̂1 and P̂2 from 5.6 are projective representations of Ĥ1 and Ĥ2 associated with θ1 and
θ2 according to Lemma 5.8. Moreover P̂1 and P̂2 satisfy the conditions from 4.3(i) (see
Lemmas 5.9–5.11. This proves

(Ĥ1,M1, θ1) ∼N (Ĥ2,M2, θ2). ut

6. A new version of Dade’s conjecture

In this section we propose a new version of Dade’s conjecture (see Conjecture 6.3). Cen-
tral to this conjecture is that there exists a bijection between certain character sets such
that associated characters determine block isomorphic character triples in the sense of
Definition 3.6. As seen in the previous sections, this allows a precise control of the Clif-
ford theory of those characters and counting the characters “lying above”.

We start by introducing some notation related to p-chains and blocks.

Definition 6.1 (p-chains). For any finite group H we denote by Op(H) the largest nor-
mal p-subgroup of H . Let G be a finite group. We denote by P(G) the set of chains of
strictly increasing p-subgroups ofG starting with {1}, and by P(G|Z) those starting with
a given p-subgroup Z. For a chain

D = (P0 � P1 � · · · � Pn)

of nontrivial p-subgroups of G we set |D| = n, the length of D, and denote by NG(D)
or GD the group

⋂n
i=0 NG(Pi).

Let B ∈ Bl(G). Then by BD one denotes the sum of blocks b ∈ Bl(GD)with bG = B.
For an integer d and ε ∈ {+,−} let

Cd(B)ε := {(D, θ) | D ∈ P(G|Op(G))ε and θ ∈ Irrd(BD)}

and Cd(B) := Cd(B)+ ∪ Cd(B)−.
For σ ∈ Aut(G), D ∈ P(G) and θ ∈ Irr(NG(D)) we define (D, θ)σ to be (Dσ , θσ ).

This determines an action of Aut(G) on Cd(B) preserving the length of the p-chains
involved. Hence G acts on Cd(B)+ and Cd(B)− by conjugation. For (D, θ) ∈ C(B) we
denote by (D, θ) its G-orbit and by Cd(B)+ and Cd(B)− the associated sets of G-orbits.

As mentioned in the introduction, we consider Dade’s conjectures as the existence of a
certain bijection. Recall that Blnc(G) is the set of blocks of G with noncentral defect
groups.

Proposition 6.2. Let G be a finite group, p a prime, d a nonnegative integer and B ∈
Blnc(G). Assume that Op(G) ≤ Z(G). Then the following are equivalent:

(i) Dade’s Projective Conjecture holds for B and d.
(ii) There exists a bijection

� : Cd(B)+→ Cd(B)−
such that θOp(G) and θ ′Op(G) are multiples of the same irreducible character whenever

(D, θ) ∈ Cd(B)+ and (D′, θ ′) ∈ �((D, θ)).
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Recall that Dade’s Projective Conjecture for B and d—in the version we are considering
here—claims ∑

D∈P(G|Op(G))/∼G
(−1)|D||Irrd(BD | ν)| = 0 for every ν ∈ Irr(Op(G)),

where D runs over a full set of representatives of the G-orbits in P(G|Op(G)).

Proof of Proposition 6.2. LetD(1), . . . ,D(r) be a full set of representatives of theG-orbits
in P(G|Op(G))+, and D(−1), . . . ,D(−r ′) one in P(G|Op(G))−. Then part (i) is equiva-
lent to

r∑
i=1

|Irrd(BD(i) | ν)| =
r ′∑
i=1

|Irrd(BD(−i) | ν)| for every ν ∈ Irr(Op(G)).

We analogously rephrase part (ii). For ν ∈ Irr(Op(G)) let Cd(B | ν)+ be the set of
G-orbits in {(D, θ) ∈ Cd(B)+ | θ ∈ Irrd(BD | ν)}, and define Cd(B | ν)− analogously. The
existence of the bijection � in part (ii) is equivalent to

|Cd(B | ν)+| = |Cd(B | ν)−| for every ν ∈ Irr(Op(G)).

Since G acts on the pairs, there is a one-to-one correspondence between

{(D(i), θ) | 1 ≤ i ≤ r and θ ∈ Irrd(BD(i) | ν)}

and Cd(B | ν)+. Analogously the elements of {(D(−i), θ) | 1 ≤ i ≤ r ′ and θ ∈

Irrd(BD(−i) | ν)} correspond to those of Cd(B | ν)−. This proves that (i) and (ii) are equiv-
alent. ut

Analogously other forms of Dade’s conjecture can then be seen as different requirements
on this bijection. We strengthen this conjecture by requiring that characters associated
with each other by the bijection determine character triples satisfying the equivalence
relation from Definition 3.6.

Conjecture 6.3 (Character Triple Conjecture). Let G be a finite group, p a prime, d a
nonnegative integer and B ∈ Blnc(G). Assume that Op(G) ≤ Z(G). Suppose thatGCA.
Then there exists an AB -equivariant bijection

� : Cd(B)+→ Cd(B)−

such that for every (D, θ) ∈ Cd(B)+, some (D′, θ ′) ∈ �((D, θ)) defines G-block isomor-
phic character triples in the sense of Definition 3.6, i.e.,

(AD,θ ,GD, θ) ∼G (AD′,θ ′ ,GD′ , θ
′).

(The last statement is independent of the choice of (D′, θ ′) because of Lemma 3.8(c).)

From Definition 3.6 we see that this is already a stronger form of [Da97, Conjecture 4.10].

Proposition 6.4. Conjecture 6.3 implies Dade’s Extended Projective Conjecture from
[Da97, 4.10].
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Thus Conjecture 6.3 is formally stronger than [Da92, Conjecture 6.3], [Da94, Conjecture
15.5] and Dade’s Projective Conjecture that are implied by Dade’s Extended Projective
Conjecture.
Proof of Proposition 6.4. For the proof we make free use of the notation introduced in
[Da94] for twisted group algebras.

Let G C E be finite groups with Op(G) = 1 and ε̂ : Ê → E a central extension
of E by a cyclic group Z, and let λ ∈ Irr(Z) be a faithful character. Then Op(Ĝ) is
central in Ê. Note that Ê together with λ determines a totally split twisted group al-
gebra A of G over C and vice versa (see [Da94, Theorem 6.20]). Analogously any block
B of Ĝ with noncentral defect group that contains a character of Irr(Ĝ | λ) corresponds
to a block B of A with nontrivial defect (see [Da94, Theorems 8.6 and 9.6]). There is a
bijection Irr(B | λ)→ Irr(B) with χ 7→ χ∗ such that χ and χ∗ have the same height and
the defect of χ is the sum of the defect of χ∗ and z0, where pz0 = |Z|p (see [Da94, Propo-
sitions 9.2 and 9.10]). For any subgroup U ≤ E the group Û := ε−1(U) is associated
with the twisted group algebra A[U ] as in [Da94, (5.4)]. Furthermore block induction
for blocks and subgroups of Ĝ corresponds naturally via the correspondence of blocks
from [Da94, Theorem 8.6] to the block induction in the totally split group algebra context
introduced in [Da94, Definition 10.5] (see [Da94, Theorem 10.10]).

Dade’s Projective Conjecture [Da94, 15.5] for the p-blockB of A[G] and any positive
integers d is equivalent to the statement that for the corresponding p-block B of Ĝ there
exists a bijection

�0 : Cd+z0(B | λ)+→ Cd+z0(B | λ)−,

where Cd+z0(B | λ)ε is defined as the set of (D, θ) ∈ Cd+z0(B)ε with θ ∈ Irr(ĜD | λ)
for ε ∈ {+,−}. This is a consequence of Conjecture 6.3 since two characters can only
be in Ĝ-block isomorphic character triples if they cover the same character of Z (see
Lemma 3.4).

If �0 is given by Conjecture 6.3, the bijection is ÊB,λ-equivariant and for every
(D, θ) ∈ Cd+z0(B | λ)+ every (D′, θ ′) ∈ �0((D, θ)) satisfies

(ÊD,θ , ĜD, θ) ∼Ĝ (ÊD′,θ ′ , ĜD′ , θ
′).

Since �0 is ÊB -equivariant, Dade’s Invariant Projective Conjecture [Da97, 4.7] holds
for B. Furthermore in the above situation there exist projective representations of ÊD,θ
and ÊD′,θ ′ associated with θ and θ ′ such that the factor sets coincide via the canonical
isomorphism of ÊD,θ/ĜD,θ and ÊD′,θ ′/ĜD′,θ ′ . Accordingly also the Extended Projective
Conjecture [Da97, 4.10] holds. ut

The sets Cd(B) are also defined for blocks with central defect. In that case they can be
described explicitly.

Lemma 6.5 (Blocks with central defect). Let G be a finite group and B ∈ Bl(G) with
central defect. Then Cd(B)− = ∅ and

Cd(B)+ =
{
{(D(0), χ) | χ ∈ Irr(B)}, d = z0,

∅, d 6= z0,

where D(0) = (Op(G)) is the chain of length 0 and |Op(G)| = pz0 .
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Accordingly Conjecture 6.3 cannot be generalized to those blocks. In the case of cyclic
A/G Conjecture 6.3 can be reformulated.

Proposition 6.6. Let G be a finite group, p a prime and B ∈ Blnc(G). Assume that
Op(G) ≤ Z(G). Suppose that GCA is such that AB/G is cyclic. Assume there exists an
AB -equivariant bijection

� : Cd(B)+→ Cd(B)−

such that for every (D, θ) ∈ Cd(B)+, some (D′, θ ′) ∈ �((D, θ)) satisfies Irr(θZ(G)) =

Irr(θ ′Z(G)). Then Conjecture 6.3 holds for B, GC A and d .

If AB/G is cyclic the assumptions are equivalent to Dade’s Invariant Projective Conjec-
ture for B in the reformulation of [Ro02]. This can be seen using the same arguments as
in the proof of Proposition 6.2.

Proof of Proposition 6.6. It only remains to check that the associated character triples
satisfy the given equivalence relation, but this follows from Proposition 3.11. ut

The above statement will be essential in checking Conjecture 6.3 for groups related to
sporadic groups (see Theorem 9.2).

Definition 6.7 (Inductive Condition for Dade’s Conjecture). Let S be a nonabelian
simple group, Ŝ its universal covering group, B ∈ Blnc(Ŝ) and d a positive integer. We
say that the Inductive Condition for Dade’s Conjecture holds for B and d if Conjecture
6.3 holds for B ′ with respect to X C A and integers d ′ ≤ d + z0 whenever X is a quo-
tient of Ŝ by a central subgroup, B ′ ∈ Bl(X) is contained in B, A := X o Aut(X) and
pz0 = |Z(X)|p. If this holds for allB ∈ Blnc(Ŝ) and d ′ ≤ d , then we say that the Inductive
Condition for Dade’s Conjecture holds for S and d .

In the verification of this condition we use the following equivalent (more technical) re-
formulation.

Proposition 6.8. Let S be a nonabelian simple group, Ŝ its universal covering group,
B ∈ Blnc(Ŝ) and d a positive integer. Then the Inductive Condition for Dade’s Conjecture
holds for B and d if and only if for A0 := Ŝ o Aut(Ŝ) and the integer z0 with pz0 =

|Z(Ŝ)|p there exists a defect preserving A0,B -equivariant bijection

� : C≤d+z0(B)+→ C≤d+z0(B)−,

where for every (D, θ) ∈ C≤d+z0(B)+, (D′, θ ′) ∈ �((D, θ)) and Z := ker(θZ(Ŝ)) we
have Z = ker(θ ′

Z(Ŝ)
) and

(AD,θ/Z, ŜD/Z, θ) ∼Ŝ/Z (AD′,θ ′/Z, ŜD′/Z, θ
′
).

(Here θ and θ ′ denote the characters of ŜD/Z and ŜD′/Z that are associated with θ
and θ ′.)
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Note that according to Theorem 5.3 it is clear that in the above statement A0 can be
replaced by any group L containing Ŝ as a normal subgroup with L/CL(Ŝ) = Aut(Ŝ).

Proof of Proposition 6.8. Here we concentrate on one direction and construct � assum-
ing that the Inductive Condition for Dade’s Conjecture holds. The other direction follows
from similar arguments. By definition, for every covering group X of S and every block

B ∈ Bl(X) contained in B there exists a bijection �X : C≤d+z0
nc (B)+ → C≤d+z0(B)−

such that corresponding pairs give X-block isomorphic character triples. Using those
maps one can construct a map � with the required properties. ut

In Section 9 we give some examples of blocks and simple groups for which the Inductive
Condition for Dade’s Conjecture holds.

An important property of Dade’s conjectures is that the type of chains can be varied
and thereby adapted to the groups considered. Also the refinement introduced here allows
such flexibility.

We recall the terminology introduced in [Da92, Section 3] and adapt it to our situation.

Notation 6.9. A chain D = (P0 � P1 � · · · � Pn) ∈ P(G) is called radical if

(a) P0 = Op(G),
(b) Pk = Op(

⋂k
i=0 NG(Pi)) for every 1 ≤ k ≤ n.

We denote by R(G) the set of radical p-chains of G. In addition let E(G|Op(G)) be
the set of elementary abelian chains of G starting with Op(G) (see also [Da94, Defini-
tion 1.5]).

Let κ ∈ {p, rad, elem}, G a finite group, B ∈ Bl(G) and d a nonnegative integer.
We define Cdκ (B)+ and Cdκ (B)− to be the sets of pairs (D, θ) where D ∈ P(G|Op(G)),
D ∈ R(G) or D ∈ E(G|Op(G)) is of even length or odd length respectively, and θ ∈
Irrd(BD). The action of G on those sets allows us to define Cdκ (B)+ and Cdκ (B)− as the
sets of G-orbits in Cdκ (B)+ and Cdκ (B)−.

Proposition 6.10. Let G C A with Op(G) ≤ Z(G), let B ∈ Bl(G) be an A-invariant
block with a noncentral defect group and let d be a nonnegative integer. If for some
κ0 ∈ {p, rad, elem} there exists an A-equivariant bijection

�κ0 : Cdκ0
(B)+→ Cdκ0

(B)−

such that for each (D, θ) ∈ Cdκ (B)+, every (D′, θ ′) ∈ �κ((D, θ)) satisfies

(AD,θ ,GD, θ) ∼G (AD′,θ ′ ,GD′ , θ
′),

then there exists for every κ ∈ {p, rad, elem} an A-equivariant bijection

�κ : Cdκ (B)+→ Cdκ (B)−

such that for each (D, θ) ∈ Cdκ (B)+, every (D′, θ ′) ∈ �((D, θ)) satisfies

(AD,θ ,GD, θ) ∼G (AD′,θ ′ ,GD′ , θ
′).
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In other words, the statement of Conjecture 1.2 is independent of the type of the underly-
ing p-chains considered there.

Proof of Proposition 6.10. Let (D0, θ0) ∈ Cdp (B)+ ∪ Cdp (B)−. For κ ∈ {p, rad, elem} let

M+,(D0,θ0),κ := {(D′, θ ′) ∈ Cdκ (B)+ | (AD′,θ ′ ,GD′ , θ
′) ∼G (AD0,θ0 ,GD0 , θ0)},

M−,(D0,θ0),κ := {(D′, θ ′) ∈ Cdκ (B)− | (AD′,θ ′ ,GD′ , θ
′) ∼G (AD0,θ0 ,GD0 , θ0)}.

Let StabA,∼G (D0, θ0) be the stabilizer in A of the ∼G-equivalence class in Cdκ (B) con-
taining (D0, θ0), i.e., the group of elements y ∈ A with

(ADy0 ,θ
y

0
,GDy0

, θy) ∼G (AD0,θ0 ,GD0 , θ0).

Note that according to Lemma 3.8, StabA,∼G (D0, θ0) is an actual group. It further acts
on M+,(D0,θ0),κ and M−,(D0,θ0),κ .

The required bijection exists for κ ∈ {p, rad, elem} if for every (D0, θ0) ∈ Cdp (B)+ ∪
Cdp (B)− the sets M+,(D0,θ0),κ and M−,(D0,θ0),κ are equivalent StabA,∼G(D0, θ0)-sets. Ac-
cording to [Is08, Lemma 3.33] it is sufficient to check that for every subgroup H ≤
StabA,∼G(D0, θ0) with G ≤ H the set of H -fixed points in M+,(D0,θ0),κ , denoted by
(M+,(D0,θ0),κ)

H , has the same cardinality as the analogously defined set (M−,(D0,θ0),κ)
H .

Let f(D0,θ0) : P(G)→ Z be the map defined by

f(D0,θ0)(D) := |{θ ∈ Irrd(BD) | (D, θ) ∈ (M+,(D0,θ0),κ)
H
∪ (M−,(D0,θ0),κ)

H
}|

for every D ∈ P(G). This map is constant on H -orbits, and f(D0,θ0)(D) = f(D0,θ0)(D′)
whenever NA(D) = NA(D′). Then, according to [Da94, Proposition 2.10],∑

D∈P(G|Op(G))/∼H
(−1)|D|f(D0,θ0)(D) =

∑
D∈E(G|Op(G))/∼H

(−1)|D|f(D0,θ0)(D)

=

∑
D∈R(G)/∼H

(−1)|D|f(D0,θ0)(D).

Note that whenever (D, θ) ∈ (M+,(D0,θ0),κ)
H
∪ (M−,(D0,θ0),κ)

H , the p-chain satisfies
GHD = H , accordingly∑

D∈P(G|Op(G))/∼G
(−1)|D|f(D0,θ0)(D) =

∑
D∈E(G|Op(G))/∼G

(−1)|D|f(D0,θ0)(D)

=

∑
D∈R(G)/∼G

(−1)|D|f(D0,θ0)(D).

Since |(M+,(D0,θ0),κ0)
H
| = |(M−,(D0,θ0),κ0)

H
|, this implies that |(M+,(D0,θ0),κ)

H
| =

|(M−,(D0,θ0),κ)
H
| for every κ ∈ {p, rad, elem}. AccordinglyM+,(D0,θ0),κ andM−,(D0,θ0),κ

are equivalent as StabA,∼G(D0, θ0)-sets. As this applies to all pairs (D, θ) ∈ Cd(B)+ ∪
Cd(B)−, this proves the statement. ut

A comparison with other inductive conditions in this area seems helpful to understand the
origin of Conjecture 6.3 and the Inductive Condition for Dade’s Conjecture.
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6.11. Comparison with inductive conditions for other global/local conjectures

We compare here mainly with the results and statements around the McKay and the
Alperin–McKay conjecture. A similar link to results around Alperin’s weight conjecture
seems possible but requires more adaptations since an equivalence relation on modular
character triples from [Na98, Definition (8.25)] has to be introduced first.

In order to see the parallel between the above and the results in [Spä13a] and [NS14]
we translate the inductive conditions into the language used here.

Recall that for a finite group G and a p-subgroup D of G we denote by Irr0(G |D)

the height zero characters of G that belong to a block with defect group D.

Proposition 6.12. Let S be a nonabelian simple group, Ŝ its universal covering group
and A := Ŝ o Aut(Ŝ). Then the following statements are equivalent:

(i) The Inductive AM Condition from [Spä13a, Definition 7.2] holds for S and a prime p
with respect to a noncentral defect group D.

(ii) There exists an AD-stable subgroup M with NŜ(D) ≤ M � Ŝ and an AD-equivari-
ant bijection

� : Irr0(Ŝ |D)→ Irr0(M |D)

such that for every χ ∈ Irr0(Ŝ |D) and χ ′ := �(χ) the groups Z := ker(χZ(Ŝ)) and
ker(χ ′

Z(Ŝ)
) coincide and

(Aχ/Z, Ŝ/Z, χ) ∼Ŝ/Z (MAD,χ ′/Z,M/Z, χ
′),

where χ and χ ′ are the characters corresponding to χ and χ ′.

Proof. We use the reformulation of the Inductive AM Condition given in [KS16a, Defi-
nition 6.2], which is equivalent to the one in [Spä13a, Definition 7.2].

To prove that (i) implies (ii), we assume that the groupM and the bijection� are given
by the Inductive AM Condition. Furthermore for every χ ∈ Irr0(M |D) and χ ′ := �(χ)
the groups Z := ker(χZ(Ŝ)) and ker(χ ′

Z(Ŝ)
) coincide. Moreover, for every χ ∈ Irr0(Ŝ |D)

there exists a group L := L(χ) and characters θ̃ and θ̃ ′ such that:

(a) For Z := ker(χZ(X)) and G := Ŝ/Z the group L satisfies G C L, A/CA(G) =
Aut(Ŝ)χ and CL(X) = Z(L).

(b) θ̃ ∈ Irr(L) is an extension of the character θ ∈ Irr(G) determined by χ .
(c) For D := DZ/Z and M := MZ/Z let θ ′ ∈ Irr(M) be the character defined by

�(χ) ∈ Irr0(M |D). Then θ̃ ′ ∈ Irr(MNL(D)) is an extension of θ ′.
(d) The characters satisfy

Irr(θ̃CL(G)) = Irr(θ̃ ′CL(G)),

bl(θ̃J ) = bl(θ̃ ′MNJ (D))
J for every J with G ≤ J ≤ L.

According to Lemma 3.10 we see that then

(L,G, θ) ∼G (MNL(D),M, θ ′).
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In view of the description of L in (a) this implies

(Aχ/Z, Ŝ/Z, χ) ∼Ŝ/Z (MAD,χ ′/Z,M/Z, χ
′)

according to Theorem 5.3. This proves that (i) implies (ii).
Assume now that (ii) holds for Ŝ, a group M and a bijection �. Using Theorem

4.1 together with Proposition 3.13(b) it is easy to construct, for every character χ ∈
Irr0(M |D), a group L(χ) with the above properties (a)–(d). ut

Moreover we like to mention that in [NS14, Theorem 7.1] a strengthening of the Alperin–
McKay conjecture is shown to be a consequence of the Inductive AM Conditions. The
above Character Triple Conjecture strengthens Dade’s Conjecture in the same fashion.

7. p-chains in wreath products

The Inductive Condition for Dade’s Conjecture for a simple nonabelian group S from
Definition 6.7 is a statement on the representation theory of normalizers of p-chains in
quasisimple groups associated with S. The aim of this section is to prove Theorem 7.2
and thereby show that the Inductive Condition for Dade’s Conjecture for S implies the
Character Triple Conjecture for covering groups of Sr (for some positive integer r) (see
Theorem 7.1).

Theorem 7.1 is rephrased in terms of the universal covering group Ŝr that is embedded
as a normal subgroup in Ŝr o (Aut(Ŝ) o Sr) (see Theorem 7.2). The Character Triple
Conjecture, as well as its reformulation in Theorem 7.2, can be divided into two parts:
by the first part there exists an equivariant bijection, and according to the second part,
associated character triples satisfy the equivalence relation (see (7.1)).

For the first part, the construction of the bijection, one determines all radical p-chains
in Ŝr (see Lemma 7.5). Note that radical p-chains of direct products are more practical
than other kinds of p-chains and we can concentrate on them according to Proposition
6.10. The radical p-chains of Ŝr are deduced from R(Ŝ) using a combinatorial descrip-
tion of those chains (see Proposition 7.8). This combinatorial tool is applied to prove (in
Corollary 7.11) the existence of an equivariant bijection. In its construction, particular
care is necessary to determine and compare normalizers of the chains involved.

At the end of this section one uses Theorems 5.1 and 5.2 to prove the required equality
of the associated character triples.

Theorem 7.1. Let S be a nonabelian simple group, r a positive integer, K a covering
group of Sr , z̃ the integer with |Z(K)|p = pz̃, B ∈ Blnc(K) and d an integer. Assume
that the Inductive Condition for Dade’s Conjecture from Definition 6.7 holds for S and d.
Suppose that K C L for some finite group L. Let d ′ be an integer with d ′ ≤ d + z̃. Then
the Character Triple Conjecture from 1.2 holds for B and d ′ with respect to K C L.

Note thatK is a quotient of Ŝr , where Ŝ is the universal covering group of S. The automor-
phisms of L induced onK correspond to ones in Aut(Sr) = Aut(S) oSr . Hence the Char-
acter Triple Conjecture for B with respect toK CL is proven by considering the block B
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of Ŝr containing B and considering Ŝr as a normal subgroup of Ã := Ŝr oAut(Ŝr). Then
the above Theorem 7.1 is a direct consequence of the following more technical statement.

Since we concentrate on characters arising from radical p-chains we use the set

Cdrad(B)ε := {(D, θ) | D ∈ R(G)ε and θ ∈ Irrd(BD)}

for any integer d, ε ∈ {+,−} and B ∈ Bl(G). In order to consider characters with various
defects simultaneously we study the sets

C≤drad (B)ε :=
⋃
d ′≤d

Cd
′

rad(B)ε and C≤drad (B)ε :=
⋃
d ′≤d

Cd ′rad(B)ε

for any integer d , ε ∈ {+,−} and B ∈ Bl(G).

Theorem 7.2. Let S be a nonabelian simple group, r a positive integer, Ŝ its universal
covering group, B ∈ Blnc(Ŝ

r), d an integer, z0 the integer with pz0 = |Z(Ŝ)|p and
Ã := Ŝr o Aut(Ŝr). Assume that the Inductive Condition for Dade’s Conjecture from
Definition 6.7 holds for S and d . Then there exists an ÃB -equivariant defect preserving
bijection

� : C≤d+rz0(B)+→ C≤d+rz0(B)−

such that for every (D, θ) ∈ C≤d+rz0(B)+, the pair (D′, θ ′) ∈ �((D, θ)) and the group
Z := ker(θZ(Ŝr )) satisfy Z = ker(θ ′

Z(Ŝr )
) and

(ÃD,θ/Z, (Ŝ
r)D/Z, θ) ∼Ŝr/Z (ÃD′,θ ′/Z, Ŝ

r
D′/Z, θ

′
), (7.1)

where θ and θ ′ are the characters of ŜrD/Z and ŜrD′/Z lifting to θ and θ ′.

While for r = 1 such a bijection is given by assumption, for higher r the construction
of � is more involved and requires additional arguments. The proof will be given after
Corollary 7.11. As mentioned above, there are two main difficulties to address. On the
one hand, one has to understand the radical p-chains of Ŝr . This is done by using a
combinatorial description of those chains in terms of paths in lattices. On the other hand,
some effort is needed to see the equivalence of the character triples given in (7.1).

The arguments on paths in Ŝr is based on the following observation on radical
p-chains of direct products made by Eaton and Höfling [EH02].

Lemma 7.3. Let G1, G2 be finite groups, D = (D1 � · · · � D|D|) ∈ R(G1 ×G2), and
Pri : G1×G2 → Gi be the canonical projection for i = 1, 2. SetD(i) := Pri(D) to be the
chain Pri(D1) ≤ . . . ≤ Pri(D|D|), and define Pr◦i (D) as the associated strictly increasing
chain of p-groups obtained by deleting groups that occur twice. Then

(a) Di = Pr1(Di)× Pr2(Di) for i = 1, . . . , |D|,
(b) Pr◦1(D) ∈ R(G1), Pr◦2(D) ∈ R(G2),
(c) NG1×G2(D) = NG1(Pr◦1(D))× NG2(Pr◦2(D)).

Proof. This follows directly from [EH02, Lemma 3.1(a)]. ut
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Notation 7.4. Let Ŝ be the universal covering group of S and A := Ŝ o Aut(Ŝ).

Moreover, for ε ∈ {+,−} let C≤dnc,rad(Ŝ)ε :=
⋃
B∈Blnc(Ŝ)

C≤drad (B)ε and C≤dnc,rad(Ŝ)ε :=⋃
B∈Blnc(Ŝ)

C≤drad (B)ε . Since S satisfies the Inductive Condition for Dade’s Conjecture,
using the arguments of Proposition 6.10 we see that there exists a defect preserving
A-equivariant bijection

�0 : C≤dnc,rad(Ŝ)+→ C≤dnc,rad(Ŝ)−

such that for every (D, θ) ∈ C≤dnc,rad(Ŝ)+ and for Z := ker(θZ(Ŝ)) every (D′, θ ′) ∈
�0((D, θ)) satisfies Z = ker(θ ′

Z(Ŝ)
) and

(ÃD,θ/Z, ŜD/Z, θ) ∼Ŝ/Z (ÃD′,θ ′/Z, ŜD′/Z, θ
′
), (7.2)

where θ and θ ′ are the characters of ŜD/Z and ŜD′/Z corresponding to θ and θ ′.
Let Tε ⊆ C≤dnc,rad(Ŝ)ε be a complete set of Aut(Ŝ)-representatives in C≤dnc,rad(Ŝ)ε such

that for every x ∈ T+ there exists a unique x′ ∈ T− with �0(x) = x
′. We set |x| to be

|D| whenever x = (D, θ) ∈ T+ ∪ T−.

Using T+ and T− one can now describe some complete set of Aut(Ŝ)r -orbit representa-
tives in a certain subset of C≤dnc,rad(Ŝ

r).

Lemma 7.5. For every c = (c1, . . . , cr) ∈ (T+)r let c′ = (c′1, . . . , c
′
r) ∈ (T−)r with

c′i ∈ �0(ci). Let (D(i), θi) = ci and (D(−i), θ−i) = c′i for 1 ≤ i ≤ r . In addition let Cc,c′
be the set of chains (D̃, θ̃ ) ∈ C≤dnc,rad(Ŝ

r) such that

• Pr◦i (D̃) ∈ {D
(i),D(−i)} for every 1 ≤ i ≤ r ,

• ψi ∈ {θi, θ−i}, where ψi ∈ Irr(NŜ(Pr◦i (D̃))) is defined by θ̃ = ψ1 × · · · × ψr ,
• (Pr◦i (D̃), ψi) ∈ {ci, c

′

i}.

Then
⋃̇
c∈(T+)r Cc,c′ is a complete set of Aut(Ŝ)r -representatives in C≤dnc,rad(Ŝ

r)′, where

C≤dnc,rad(Ŝ
r)′ =

⋃
(b1,...,br )∈(Blnc(Ŝ))r

C≤dnc,rad(b1 × · · · × br).

Proof. This follows from Lemma 7.3. ut

In the next step we introduce certain combinatorial objects, which we later show to be in
bijection with the elements of Cc,c′ .

Notation 7.6. Let k ∈ (Z≥0)
r . We call

P = {x ∈ Zr | 0 ≤ xi ≤ ki}

the standard polyhedron associated with k. Let a, a′ ∈ (Z≥0)
r with 2 | ai and 2 - a′i for all

1 ≤ i ≤ r . A standard a, a′-polyhedron is a standard polyhedron associated with k ∈ Zr
where ki ∈ {ai, a′i} for every 1 ≤ i ≤ r .
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A lattice path p in the standard polyhedron P associated with k is a sequence of pair-
wise distinct points x(0) = (0, . . . , 0), . . . , x(l) = k ∈ P such that 0 ≤ x(j+1)

i − x
(j)
i ≤ 1

for all 1 ≤ i ≤ r and 1 ≤ j ≤ l − 1. The integer l is called the length of p, abbrevi-
ated |p|. (Note that this might differ from other definitions of such paths.) We call such
a path p odd if 2 - |p|, and even if 2 | |p|. For a given standard polyhedron P we define
LP, LP,+, and LP,− as the sets of all, all even and all odd lattice paths in P respectively.
Furthermore the lattice path in P that contains the points (0, 0, . . . , 0), (k1, 0, . . . , 0),
(k1, k2, 0, . . . , 0), . . . , (k1, k2, . . . , kr−1, 0) and k is called the representative lattice path
of P, denoted by prep. (This name will be justified in Lemma 7.9.) Note that the length of
this path is congruent to

∑
i ki in Z/2Z.

Analogously let La,a′,+ be the set of all even lattice paths of a, a′-polyhedra, and
La,a′,− be the set of all odd lattice paths of a, a′-polyhedra. Let La,a′ := La,a′,+∪La,a′,−.

Example 7.7. Let r = 2 and k = (1, 1) ∈ Z2. Then the standard polyhedron associated
with k has only the following paths:

• p1: (0, 0), (0, 1), (1, 1),
• p2: (0, 0), (1, 0), (1, 1),
• p3: (0, 0), (1, 1).

In general one can picture paths as in Figure 1 where the path has length 6.

p

Fig. 1. A lattice path in the standard polyhedron associated with (4, 4) of length 6

Proposition 7.8. Let c ∈ (T+)r , and let c′ ∈ (T−)r be associated with c as in Lemma
7.5. Let a = (a1, . . . , ar) ∈ Zr with ai = |ci | and a′ = (a′1, . . . , a

′
r) ∈ Zr with a′i = |c

′

i |.
Then there is a bijection

ϒ : Cc,c′ → La,a′

such that for (D̃, θ̃ ) the associated path p := ϒ((D̃, θ̃ )) passes through the points
x(j) ∈ Zr (0 ≤ j ≤ |D̃|) with

Pri(D̃j ) = D
(i)

x
(j)
i

for every 1 ≤ i ≤ r,

where D̃ = (D̃0 � D̃1 � · · · � D̃
|D̃|) and D̃(i) := Pr◦i (D̃) = (D

(i)
0 � D

(i)
1 � · · · �

D
(i)

|D̃(i)|). The length of D̃ coincides with the length of ϒ((D̃, θ̃ )).

Proof. This follows from the definitions. ut
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The number of lattice paths in a fixed polyhedron P is given by Delannoy numbers for
r = 2 and k = (k1, k1) (see for example [KR91, Section 2]). But we are more inter-
ested here in the comparison of the numbers of odd and even lattice paths in a standard
polyhedron.

Lemma 7.9. Let P be the standard polyhedron associated with k ∈ (Z≥0)
r , and prep its

representative lattice path. Then

|LP,+| − |LP,−| = (−1)
∑
i ki = (−1)|prep|.

Proof. This follows by induction on
∑
i ki . By induction the number of even lattice paths

minus the number of odd lattice paths whose penultimate point differs from the last in
exactly t fixed entries is (−1)(

∑
ki )−t−1. Thus the difference we are looking for is

r∑
t=1

(
r

t

)
(−1)(

∑
ki )−t−1

= (−1)
∑
ki

( r∑
t=1

(
r

t

)
(−1)t−1

)
= (−1)

∑
ki ,

since
∑r
t=0

(
r
t

)
(−1)t−1

= 0. ut

There is a natural action of Sr on Zr . For given a, a′ ∈ (Z≥0)
r , any group Y ≤ (Sr)a,a′

acts on La,a′,+ and La,a′,−. For p ∈ L we denote by (Y)p its stabilizer in Y, which is a
Young subgroup in Y if Y is a Young subgroup of Sr .

Proposition 7.10. Let a, a′ ∈ (Z≥0)
r with 2 | ai and 2 - a′i for every 1 ≤ i ≤ r . For

every Young subgroup Y of (Sr)a,a′ there exists a Y-equivariant bijection

5a,a′ : La,a′,+→ La,a′,−.

In particular (Y)p = (Y)5a,a′ (p) for every p ∈ La,a′,+.

Proof. Let L := La,a′ , L+ := La,a′,+ and L− := La,a′,−. According to [Is08, Lemma
3.33] it is sufficient to prove that every subgroup Y ≤ Y has the same number of fixed
points on L+ and on L−. Since the stabilizer of a lattice path in Y is always a Young
subgroup, the number of fixed points of a group Y ≤ Y is exactly the one for the minimal
Young subgroup that contains Y . Accordingly it is sufficient to compute the fixed points
of Y on L+ and on L− for Young subgroups Y ≤ Y.

In a first step we prove |L+| = |L−|. According to Lemma 7.9 one has only to
show that the number of a, a′-polyhedra with an even representative path coincides with
the number of a, a′-polyhedra having an odd representative path. The a, a′-polyhedra
with an even representative path correspond to vectors k ∈ Zr with ki ∈ {ai, a′i} and
(−1)

∑
i ki = 1, i.e., the set {i | ki = a′i} has even cardinality. There are

∑
0≤2j≤r

(
r

2j

)
such

polyhedra. On the other hand, the number of a, a′-polyhedra with an odd representative
path is

∑
0≤2j−1≤r

(
r

2j−1

)
= −(1− 1)r +

∑
0≤2j≤r

(
r

2j

)
. This implies |L+| = |L−|.

We prove the proposition by induction on r . For r = 1 the statement is obviously true
since L is formed by one path of length a1 and one of length a′1 respectively.

For r > 1 we consider the paths that are invariant under a given Young subgroup
Y ≤ Y. Let j1, . . . , jr ′ be a full set of representatives of Y -orbits on {1, . . . , r} and let



A reduction theorem for Dade’s projective conjecture 1109

LY be the set of Y -invariant paths in L. For b ∈ Zr ′ with bi = aji and b
′
∈ Zr ′ with

b′i = a
′

ji
, let f : LY → L

b,b
′ be the map naturally induced by

(x1, . . . , xr) 7→ (xj1 , . . . , xjr′ ).

One sees that f is bijective. In addition it preserves parity.
As shown above, the number of even paths in L

b,b
′ coincides with the number of odd

paths in this set. This proves that |L+ ∩ LY | = |L− ∩ LY |. ut

Proposition 7.10 translates into the following statement on Cc,c′ .

Corollary 7.11. Let c ∈ (T+)r , and let c′ ∈ (T−)r be associated with c as in Lemma 7.5.
Let Y := (Sr)c,c′ be the stabilizer of c and c′.

(a) There is a Y-equivariant defect preserving bijection

�c,c′ : Cc,c′,+→ Cc,c′,−.

(b) Every (D̃, θ̃ ) ∈ Cc,c′,+ and (D̃′, θ̃ ′) = �c,c′((D̃, θ̃ )) satisfy ker(θ̃Z(Ŝ)) = ker(θ̃ ′
Z(Ŝ)

)

and

((A oSr)D̃,θ̃/Z0, Ŝ
r
D/Z0, θ̃ ) ∼Ŝr/Z0

((A oSr)D̃′,θ̃ ′/Z0, Ŝ
r
D′/Z0, θ̃ ′),

where Z0 = 〈ker(θ̃Z(Ŝ(i))) | 1 ≤ i ≤ r〉 and Ŝ(i) denotes the subgroup

〈1Ŝ〉 × · · · × 〈1Ŝ〉 × Ŝ × 〈1Ŝ〉 × · · · × 〈1Ŝ〉

of Ŝr , where the ith factor is isomorphic to Ŝ.

Proof. Let a = (a1, . . . , ar) ∈ Zr with ai = |ci |, and a′ = (a′1, . . . , a
′
r) ∈ Zr with

a′i = |c
′

i |.
By definition, the bijection ϒ from Proposition 7.8 is Y-equivariant and preserves

parity. Hence the bijection 5a,a′ from Proposition 7.10 gives the bijection �c,c′ required
in (a).

In part (b) the character θ̃ is of the formψ1×· · ·×ψr ∈ Irr(NŜ(D
(1))×· · ·×NŜ(D

(r)))

with (D(i), ψi) ∈ {ci, c′i} for every 1 ≤ i ≤ r and D(i) := Pr◦i (D̃) (see Lemma 7.5).
Furthermore according to Lemma 7.3 we have

NŜr (D̃) = NŜ(D
(1))× · · · × NŜ(D

(r)).

Analogously θ̃ ′ is of the form ψ ′1 × · · · × ψ
′
r ∈ Irr(NŜ(D

′(1)) × · · · × NŜ(D
′(r))) with

(D′(i), ψ ′i) ∈ {ci, c
′

i} for every 1 ≤ i ≤ r , where D′(i) := Pr◦i (D̃
′). Lemma 7.3 implies

NŜr (D̃) = NŜ(D
′(1))× · · · × NŜ(D

′(r)).

By the choice of c′, for every 1 ≤ i ≤ r and Zi := ker(ψi,Z(Ŝ)) we have the equality
Zi = ker(ψ ′

i,Z(Ŝ)
) and the equivalence

(A(D(i),ψi )/Zi, ŜD(i)/Zi, ψ i) ∼Ŝ/Zi (A(D′(i),ψ ′i )
/Zi, ŜD′(i)/Zi, ψ

′

i),
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where ψ i and ψ ′i are the characters of ŜD(i)/Zi and ŜD′(i)/Zi corresponding to ψi and ψ ′i .
By the choice of T+ and T− we see that

(A oSr)(D̃,θ̃ ) = A
r

(D̃,θ̃ ) o (Sr)(D̃,θ̃ ).

Note that for Z0 = 〈Zi | 1 ≤ i ≤ r〉, Z0 C (A o Sr)(D̃,θ̃ ) and Z0 C (A o Sr)(D̃′,θ̃ ′). The
combination of Theorems 5.1 and 5.2 implies that then

((A oSr)D̃,θ̃/Z0, Ŝ
r
D/Z0, θ̃ ) ∼Ŝr/Z0

((A oSr)D̃′,θ̃ ′/Z0, Ŝ
r

D̃′/Z0, θ̃ ′),

where θ̃ and θ̃ ′ are the characters of ŜrD̃/Z0 and ŜrD̃′/Z0 corresponding to θ̃ and θ̃ ′. ut

This finally enables us to construct the bijection from Theorem 7.2. We first prove it in a
simplified situation.

Theorem 7.12. Let S be a nonabelian simple group, r a positive integer, Ŝ its univer-
sal covering group, B ∈ Blnc(Ŝ

r), d an integer, and Ã := Ŝr o Aut(Ŝr). Assume that
the Inductive Condition for Dade’s Conjecture from Definition 6.7 holds for S and d . If
p - |Z(Ŝ)|, then there exists an ÃB -equivariant defect preserving bijection

� : C≤d+rz0(B)+→ C≤d+rz0(B)−

such that for every (D, θ) ∈ C≤d+rz0
rad (B)+, the pair (D′, θ ′) ∈ �((D, θ)) and the group

Z := ker(θZ(Ŝr )) satisfy Z = ker(θ ′
Z(Ŝr )

) and

(ÃD,θ/Z, (Ŝ
r)D/Z, θ) ∼Ŝr/Z (ÃD′,θ ′/Z, Ŝ

r
D′/Z, θ

′
), (7.3)

where θ and θ ′ are the characters of ŜrD/Z and ŜrD′/Z lifting to θ and θ ′.

Proof. Note that the arguments of the proof of Proposition 6.10 imply that it is sufficient
to construct an ÃB -equivariant defect preserving bijection

� : C≤d+rz0
rad (B)+→ C≤d+rz0

rad (B)−

with the requirements as above.
Let bi ∈ Bl(Ŝ) be such that B = b1 × · · · × br . Without loss of generality assume

bi ∈ Blnc(Ŝ) for 1 ≤ i ≤ r ′ and bi 6∈ Blnc(Ŝ) for i > r ′ for some r ′. LetA := ŜoAut(Ŝ).
First we assume that r ′ = r . Then using the bijections �c,c′ for c ∈ (T−)r and

c′ ∈ (T+)r associated with c as in Lemma 7.5 we obtain an A o Sr -equivariant defect
preserving bijection

�′ : C≤dnc,rad(Ŝ
r)+→ C≤dnc,rad(Ŝ

r)−

such that every (D̃1, θ̃1) ∈ C≤dnc,rad(Ŝ
r)+ and every (D̃2, θ̃2) ∈ �

′((D̃1, θ̃1)) satisfy

((A oSr)D̃1,θ̃1
/Z′, ŜrD̃1

/Z′, θ̃1) ∼Ŝr/Z′ ((A oSr)D̃2,θ̃2
/Z′, ŜrD̃2

/Z′, θ̃2), (7.4)
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where Z′, θ̃1 and θ̃2 are defined as in 7.11. Note that for any block B ∈ Bl(Ŝr) that has
a defect group D with D ∩ Ŝ(i) 6≤ Z(Ŝ) for every 1 ≤ i ≤ r , the bijections �′ can be

restricted to C≤drad (B)+ and �′(C≤drad (B)+) = C≤drad (B)−. This proves the existence of the
bijection in the case where r ′ = r , but it remains to show that (7.1) holds with this choice
of �′.

In the next step we assume r ′ 6= r . Let a0 be the integer with pa0 = |Z(Ŝ)|p. Re-
call that according to Lemma 6.5 the set C≤d(bi)− is empty and C≤d(bi)+ = Ca0(bi)+
contains just the characters of bi whenever r ′ < i ≤ r . Let b′′ := br ′+1× · · · × br and let

�′′ : C≤d(b′′)+→ C≤d(b′′)+

be the identity map. For r ′′ := r − r ′, (D̃1, θ̃1) ∈ C≤d(b′′)+ and (D̃2, θ̃2) := �
′((D̃1, θ̃1))

we have

((AoSr ′′)D̃1,θ̃1
/Z′′, (Ŝr

′′

)D̃1/Z′′
, θ̃1) ∼Ŝr′′/Z′′ ((AoSr ′′)D̃2,θ̃2

/Z′′, (Ŝr
′′

)D̃2
/Z′′, θ̃2), (7.5)

where Z′′ := ker(θ̃Z(Ŝr′′ )) and the characters θ̃1 and θ̃2 of (Ŝr
′′

)D/Z′′ and (Ŝr
′′

)D′/Z
′′ cor-

respond to θ̃1 and θ̃2. (The equivalence of the character triples follows from Lemma 3.8.)
Let b′ := b1 × · · · × br ′′ and d ′ := d − r ′′a0. Now the elements of C≤drad (B) can be

built from C≤d
′

rad (b
′) and Cr ′′a0(b′′)+: Let (D′, θ ′) ∈ C≤d

′

rad (b
′) and (D′′, θ ′′) ∈ Cr

′′a0
rad (b′′)+.

Then
D′ = (D′0 � D

′

1 � · · · � D
′

|D|)

and D′′ = (Op(Ŝr
′′

)) for suitable p-groups D′i (1 ≤ i ≤ |D′|).
Let D̃i := D′i × Op(Ŝr

′′

) for 0 ≤ i ≤ |D′|. Then

D̃ := (D̃0 � D̃1 � · · · � D̃|D′|) ∈ R(Ŝr)

with |D̃| = |D′|. This chain satisfies

NŜr (D̃) = N
Ŝr
′ (D′)× Ŝr

′′

.

The character θ̃ := θ ′× θ ′′ is well-defined and θ̃ ∈ Irr(NŜr (D̃)). Straightforward calcula-
tions show (D̃, θ̃ ) ∈ Crad(B). Moreover d(θ̃) = d(θ ′)+d(θ ′′). In the following we denote
(D̃, θ̃ ) by (D′, θ ′)× (D′′, θ ′′). This gives a bijection

C≤d
′

rad (b
′)× Cr

′′a0(b′′)+→ C≤drad (B) with ((D′, θ ′), (D′′, θ ′′)) 7→ (D′, θ ′)× (D′′, θ ′′),

that preserves the length of chains and adds the defect of the characters. It also induces a
bijection

C≤d
′

rad (b
′)× Cr ′′a0(b′′)+→ C≤drad (B) with ((D′, θ ′), (D′′, θ ′′)) 7→ (D′, θ ′)× (D′′, θ ′′).

In such a situation we denote (D′, θ ′)× (D′′, θ ′′) also by (D′, θ ′)× (D′′, θ ′′).
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Let � : C≤drad (B)+→ C≤drad (B)− with

(D′, θ ′)× (D′′, θ ′′) 7→ �′((D′, θ ′))×�′′((D′′, θ ′′)).

Then by definition we see that � is (A oSr)B -equivariant and defect preserving.
Let (D̃1, θ̃1) ∈ C≤drad (B) and (D̃2, θ̃2) ∈ �((D̃1, θ̃1)). Let (D′1, θ

′

1) ∈ C≤d
′

rad (b
′) and

(D′′1, θ
′′

1 ) ∈ Cr ′′a0(b′′) be such that (D′1, θ
′

1) × (D
′′

1, θ
′′

1 ) = (D̃1, θ̃1). Let Z′0 ≤ ker(θ ′1) be
associated with θ ′1 as in Lemma 7.11 and Z′′ := ker(θ ′′1 ). Let Z0 := Z

′
×Z′′ . According

to Theorem 5.1, (7.4) and (7.5),

(ÃD̃1,θ̃1
/Z0, (Ŝ

r)D̃1
/Z0, θ̃1) ∼Ŝr/Z0

(ÃD̃2,θ̃2
/Z0, (Ŝ

r)D̃2
/Z0, θ̃2), (7.6)

where Ã := (Ŝ o Aut(Ŝ))r o Sr , and θ̃1 and θ̃2 are the characters of (Ŝr)D̃1
/Z0 and

(Ŝr)D̃2
/Z0 corresponding to θ̃1 and θ̃2.

It remains to prove that with the given bijection, equality (7.3) holds. Let Z :=
ker(θ̃Z(Ŝr )), and let φ1 ∈ Irr(ŜrD̃1

/Z) and φ2 ∈ Irr(ŜrD̃2
/Z) be the characters lifting to

θ̃1 and θ̃2 respectively.
Since p - |Z(Ŝ)| we have p - |Z/Z0|. In order to apply Corollary 4.5 we have to

check that C(Ŝr (Ã)(D̃1,θ̃1)
)/Z0

(Ŝr/Z0)/(Z/Z0) coincides with C(Ŝr (Ã)(D̃1,θ̃1)
)/Z(Ŝ

r/Z). Let

x ∈ C(Ŝr (Ã)(D̃1,θ̃1)
)/Z(Ŝ

r/Z) and x ∈ (AoSr)D̃1,θ̃1
/Z0 with x(Z/Z0) = x. Straightforward

calculations show that x defines a morphism ν : Ŝr/Z0 → Z/Z0 via s 7→ [s, x]. Since
Ŝr and hence Ŝr/Z0 are perfect and Z/Z0 is abelian, the map ν is trivial. Accordingly x
centralizes Ŝr/Z0. Now according to Corollary 4.5, equality (7.6) implies

((Ã)(D̃1,θ̃1)
/Z, (Ŝr)D̃1

/Z, φ1) ∼Ŝr/Z (ÃD̃2,θ̃2
/Z, (Ŝr)D̃2

/Z, φ2).

This concludes the proof of Theorem 7.2. ut

We now consider the general case and verify that the above constructed bijection has all
of the properties required for 7.2.

Proof of Theorem 7.2. Let � be the bijection constructed in the proof of Theorem 7.12.
Let (D̃1, θ̃1) ∈ C≤d ′(B) and (D̃2, θ̃2) ∈ �((D̃1, θ̃1)). It remains to verify that (7.1) holds,
i.e., the groups Z := ker(θ̃1,Z(Ŝr )) and ker(θ̃2,Z(Ŝr )) coincide and

(ÃD̃1,θ̃1
/Z, (Ŝr)D̃1

/Z, φ1) ∼Ŝr/Z (ÃD̃2,θ̃2
/Z, (Ŝr)D̃2

/Z, φ2),

where Ã := Ŝr oAut(Ŝr) = (ŜoAut(Ŝ)) oSr = (ŜoAut(Ŝ))r oSr and the characters
φ1 and φ2 are the characters of (Ŝr)D̃1

/Z and (Ŝr)D̃2
/Z associated with θ̃1 and θ̃2.

By the proof of Theorem 7.12 we already have

(ÃD̃1,θ̃1
/Z0, (Ŝ

r)D̃1
/Z0, θ̃1) ∼Ŝr/Z0

(ÃD̃2,θ̃2
/Z0, (Ŝ

r)D̃2
/Z0, θ̃2), (7.7)

where Z0 is determined as before (7.6) and θ̃1 and θ̃2 are the characters of (Ŝr)D̃/Z0 and
(Ŝr)D̃′/Z0 corresponding to θ̃1 and θ̃2.
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It remains to prove that (7.1) holds with the given bijection. LetZ := ker(θ̃1,Z(Ŝr )), P1
a projective representation of ÃD̃1,θ̃1

/Z0 associated with θ̃1, and P2 a projective represen-

tation of ÃD̃2,θ̃2
/Z0 associated with θ̃2, such that they give an Ŝr/Z0-block isomorphism

of character triples. Then φ1 ∈ Irr(ŜrD̃1
/Z) and φ2 ∈ Irr(ŜrD̃2

/Z) lift to θ̃1 and θ̃2.

By definition P1 and P2 define projective representations P1 and P2 of ÃD̃1,θ̃1
/Z and

ÃD̃2,θ̃2
/Z associated with φ1 and φ2. We use the following notation: H i := ÃD̃i ,θ̃i/Z,

M i := (Ŝr)D̃i/Z, Hi := ÃD̃i ,θ̃i/Z0, Mi := (Ŝr)D̃i/Z0, N := Ŝr/Z0, N := Ŝr/Z,
G := (ÃD̃i ,θ̃i/Z0)N and G := ((Ã)(D̃i ,θ̃i )/Z)N . With this we check that P1 and P2
satisfy the assumptions in Theorem 4.3(i). As in the proof of Corollary 4.5 we see that
the required group-theoretic assumptions are satisfied. For any defect group D1 of bl(φ1)

we have

CG(D1)N ≤ (A
r ′
× A oSr ′′)/Z. (7.8)

Moreover the assumption from 4.3(i.a) on the factor set is satisfied by the definition of
P1 and P2.

Now we check P1(x) and P2(x) for x ∈ CG(N). Let x ∈ H1 = (AoSr)D̃1,θ̃1
/Z0 with

x(Z/Z0) = x. By the arguments in the proof of Theorem 7.12 we see that x ∈ CG(N).
Accordingly P1(x) = P1(x) and P2(x) = P2(x) are scalar matrices associated with the
same scalar.

Next we verify that P1 and P2 satisfy assumption 4.3(i.c): for every x ∈ NCG(D1)

the scalar matrices P1((ClJ (x) ∩ H 1)
+)∗ and (P2((ClJ (x) ∩ H 2)

+))∗ are associated
with the same scalar, whereD1 is a defect group of bl(φ1) and J := 〈N, x〉. The equality
obviously holds if ClJ (x)∩H 1 = ∅ and ClJ (x)∩H 2 = ∅. Without loss of generality we
assume in the following that x ∈ H 1.

Let x ∈ NCG(D1) and J := 〈N, x〉. Straightforward calculations prove that

k∗P i((ClJ (x) ∩H i)
+)∗ = Pi((ClJ (x) ∩Hi)+)∗,

where k = |ClJ (x) ∩ x(Z/Z0)|.
If k∗ is invertible or equivalently p - k, Theorem 4.3(i.c) for P1 and P2 implies

P1((ClJ (x) ∩H1)
+)∗ = P2((ClJ (x) ∩H2)

+)∗, and hence

P1((ClJ (x) ∩H 1)
+)∗ = P2((ClJ (x) ∩H 2)

+)∗.

Otherwise there exists some nontrivial element z ∈ Z/Z0 such that xz and x are
J -conjugate, hence there exists some s ∈ Ŝr/Z0 with xs = xz. According to (7.8) we
can write x as (x′, x′′) where x′ ∈ Ar

′

and x′′ ∈ A oSr ′′ . Moreover z may be written as
(z1, . . . , zr ′ , z

′′)with zi ∈ Z(Ŝ)/Zi and z′′ ∈ Z(Ŝr
′′

). Let si ∈ Ŝ with s = (s1, . . . , sr) and
s′i = (1, . . . , 1, si, 1, . . . , 1) ∈ Ŝ(i). Then xsi = (x′si )x′′ = x′x′′zi for every 1 ≤ i ≤ r ′

and
xsr′+1···sr = xz′′.
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This proves that xzi and xz′′ are J -conjugate to x for every 1 ≤ i ≤ r ′. Since z is a
nontrivial element of Z/Z0, either zi is nontrivial for some 1 ≤ i ≤ r ′′ or z′′ is nontrivial.
By the definition of Z0 this implies that

θ̃1(zi) = ζ θ̃1(1) or θ̃1(z
′′) = ζ θ̃1(1)

for some root of unity ζ 6= 1. Let η̃1 be an extension of φ1 to J ∩H 1 and Q a projective
representation of J with N ≤ ker(Q) such that QJ∩H 1

⊗ P1,J∩H1 affords η̃1.

The block bl(̃η1)
J covers bl(φ1)

N . Let τ ∈ Irr(bl(̃η1)
J )with Irr(τZ(N))= Irr(φ1,Z(N)).

(Such a character exists by [KS15, Theorem B] and [Na98, Theorem (9.2)].) Since the
elements x, xziZ/Z0 and xz′′Z/Z0 are J -conjugate, the above arguments imply τ(x) = 0
and λτ (ClJ (x)

+) = 0, and therefore

QJ∩H 1
⊗ P1((ClJ (x) ∩H 1)

+)∗ = 0.

Since Q is a one-dimensional projective representation, this proves

P1((ClJ (x) ∩H 1)
+)∗ = 0.

Analogously one sees P2((ClJ (x) ∩ H 2)
+) = 0. We see that P1 and P2 also satisfy

4.3(i.c), and hence

(ÃD̃1,θ̃1
/Z, (Ŝr)D̃1

/Z, φ1) ∼Ŝr/Z (ÃD̃2,θ̃2
/Z, (Ŝr)D̃2

/Z, φ2).

Hence (7.1) holds with the bijection � constructed above. ut

8. About a minimal counterexample to Dade’s Projective Conjecture

In this section we show how one can apply Theorem 7.2 to prove our main theorem.
The first two statements are almost immediate consequences of Theorem 7.2. Then we
connect those statements with earlier results of [Ro02] and [ER02].

Theorem 8.1. Let d be a nonnegative integer and S a nonabelian simple group satisfy-
ing the Inductive Condition for Dade’s Conjecture from Definition 6.7 with respect to d.
Let L be a finite group and suppose there is some K C L with K = [K,K] such that
K/(Z(L) ∩K) is isomorphic to Sr for some r ≥ 1. Let B ∈ Blnc(K). Then there exists a
defect preserving LB -equivariant bijection � : C≤d(B)+→ C≤d(B)− with

(LD,θ ,KD, θ) ∼K (LD′,θ ′ ,KD′ , θ
′)

for every (D, θ) ∈ Cd(B)+ and (D′, θ ′) ∈ �((D, θ)).

Proof. Let Ŝ be the universal covering group of S. By the assumptions on K it is clear
that there exists an epimorphism ε : Ŝr → K , since Ŝr is the universal covering of Sr by
[As86, Chapter 11, Exercise 2]. Let Ã := Ŝr oAut(Ŝr). Via ε the block B is contained in
some B̂ ∈ Bl(Ŝr) and B̂ contains just this block (see [NT89, Theorems 5.8.8 and 5.8.11]).
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Let z0 be the integer with pz0 = |Z(Ŝ)|p. According to Theorem 7.2 there exists for Ŝr

an ÃB̂ -equivariant bijection

�̂ : C≤d+rz0(B̂)+→ C≤d+rz0(B̂)−

such that for every (D1, θ1) ∈ C≤d+rz0(B̂)+ and (D2, θ2) ∈ �̂((D1, θ1)) the groups
Z := ker(θ̃1,Z(Ŝr )) and ker(θ̃2,Z(Ŝr )) coincide and the pairs satisfy

(ÃD1,θ1/Z, Ŝ
r
D1
/Z, φ1) ∼Ŝr/Z (ÃD2,θ2/Z, Ŝ

r
D2
/Z, φ2), (8.1)

where φ1 and φ2 are the characters of ŜrD1
and ŜrD2

corresponding to θ1 and θ2. Hence θ1

is the lift of a character of a subgroup of K if and only if θ2 is.
Let (D1, θ1) ∈ C≤d+rz0(B̂)+ with ker(θ1) ≥ ker(ε) and (D2, θ2) ∈ �̂((D1, θ1)). Since

Z0 := ker(ε) ≤ Z(Ŝr), we have ε(NŜr (Di)) = NK(ε(Di)) and ε(Di) ∈ P(K|Op(K)).
Analogously, in Ã′ := NÃ(Z0) we have ε(NÃ′(Di)) = NÃ′/Z0

(Di), where Di := ε(Di).
For i = 1, 2 let θ i ∈ Irr(NŜr/Z0

(Di)) be the lift of φi , hence a character that lifts to θi .
According to Corollary 4.4 in combination with Lemma 3.8(b), (8.1) implies

(Ã′D1,θ1
/Z0,NŜr/Z0

(D1), θ1) ∼Ŝr/Z0
(Ã′D2,θ2

,NŜr/Z0
(D2), θ2).

By Theorem 5.3 in combination with Lemma 3.8(b) this implies that

(LD1,θ1
,NK(D1), θ1) ∼K (LD2,θ2

,NK(D2), θ2).

Let z1 be the integer with pz1 = |Z0|p. Since �̂ is an Aut(Ŝr)B̂ -equivariant defect
preserving bijection, it induces an LB -equivariant defect preserving bijection

� : C≤d+rz0−z1(B)+→ C≤d+rz0−z1(B)−.

Moreover (D1, θ1) ∈ C≤d+rz0−z1(B)+ and (D2, θ2) ∈ �((D1, θ1)) satisfy

(LD1,θ1 ,NK(D1), θ1) ∼K (LD2,θ2 ,NK(D2), θ2).

Since rz0 − z1 ≥ 0, this proves the statement. ut

Corollary 8.2. Let d be a nonnegative integer and S a nonabelian simple group such
that S satisfies the Inductive Condition for S and d (see Definition 6.7). Let L be a finite
group and suppose there is some K C L with K = [K,K] such that K/(Z(L) ∩ K) is
isomorphic to Sr for some r ≥ 1. Let C ∈ Bl(L) be a block with a defect group D such
that D ∩K 6≤ Z(K). Then there exists a bijection

5 :
⋃̇

D∈P(K|Op(K))+/∼L
Irrd(CD)→

⋃̇
D′∈P(K|Op(K))−/∼L

Irrd(CD′)

such that Irr(χZ(L)) = Irr(5(χ)Z(L)) for every χ ∈
⋃̇

D∈P(K|Op(K))+/∼L Irrd(CD).

Proof. Let B be a p-block of K covered by C. Any defect group D0 of B is L-conjugate
to D ∩K (see [Na98, Theorem (9.26)]). By assumption D0 6≤ Z(K).
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According to Theorem 8.1 there exists a defect preserving LB -equivariant bijection

� : C≤d(B)+→ C≤d(B)−
with

(LD1,θ1 ,KD1 , θ1) ∼K (LD2,θ2 ,KD2 , θ2)

for every (D1, θ1) ∈ C≤d(B)+ where (D2, θ2) ∈ �((D1, θ1)). Let D1, . . . ,Ds be a full
set of L-orbit representatives in P+(L). Then one can choose in C≤d(B)+ a full set T+ of
L-orbit representatives such that for every (D, θ) ∈ T+ the chain D coincides with Di for
some 1 ≤ i ≤ s. For fixed 1 ≤ i ≤ s the characters ψ (i)1 , . . . , ψ

(i)
ti

with (Di, ψ (i)j ) ∈ T+
form a full set of NLB (Di)-orbit representatives in Irr(BDi ). By standard Clifford theory
we know that Irrd(CDi ) can be seen as the disjoint union

Irrd(CDi ) =
ti⋃
k=1

Irrd(CDi |ψ
(i)
k )

where Irrd(CDi |ψ
(i)
k ) := Irrd(CDi ) ∩ Irr(LDi |ψ

(i)
k ) for every 1 ≤ i ≤ s.

Let Ds+1, . . . ,Ds′ be a full set of L-orbit representatives in P(L)−. For every (D, θ)
inT+ we choose an element (D′, θ ′) ∈ �((D, θ)) such thatD′ ∈ {Ds+1, . . . ,Ds′}. LetT−
be the set of all such pairs. Since T+ is a full set of LB -orbit representatives, T− is a full
set of LB -orbit representatives as well. As above, for fixed s + 1 ≤ i ≤ s′ the characters
ψ
(i)
1 , . . . , ψ

(i)
ti

with (Di, ψ (i)j ) ∈ T− form a full set of NLB (Di)-orbit representatives in
Irr(BDi ). Again we obtain

Irrd(CDi ) =
ti⋃
k=1

Irrd(CDi |ψ
(i)
k ) for every s + 1 ≤ i ≤ s′.

This implies ⋃̇
D∈P(K)+/∼L

Irrd(CD) =
⋃̇

(D,θ)∈T+
Irrd(CD | θ),

⋃̇
D∈P(K)−/∼L

Irrd(CD) =
⋃̇

(D,θ)∈T−
Irrd(CD | θ).

By the construction we can associate to every (D, θ) ∈ T+ a pair (D′, θ ′) ∈ T− such
that (D′, θ ′) ∈ �((D, θ)). Hence for the associated character triples we know

(LD,θ ,KD, θ) ∼K (LD′,θ ′ ,KD′ , θ
′)

from the construction using Theorem 8.1. According to Proposition 3.9(c) we also have
|Irrd(CD,θ | θ)| = |Irrd(CD′,θ ′ | θ

′)|. Now Clifford correspondence gives a defect pre-
serving bijection between Irrd(CD,θ | θ) and Irrd(CD | θ), and between Irrd(CD′,θ ′ | θ

′)

and Irrd(CD′ | θ
′). This implies |Irrd(CD | θ)| = |Irrd(CD′ | θ

′)|. Together with the above
equalities this implies the existence of a bijection

5 :
⋃̇

D∈P(K)+/∼L
Irrd(CD)→

⋃̇
D′∈P(K)−/∼L

Irrd(CD′).
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Since the bijection is given by the associated character triple isomorphisms in combina-
tion with Clifford correspondence, it satisfies in addition

Irr(χZ(L)) = Irr(5(χ)Z(L)) for every χ ∈
⋃̇

D∈P(K)+/∼L
Irrd(CD). ut

Now we turn to the proof of Theorem 1.3. We use here the results from [Ro02] and
[ER02], and consider a given finite group G with Op(G) ≤ Z(G) and a p-block C of G
with noncentral defect.

Assumption 8.3. LetG be a finite group with Op(G) ≤ Z(G) and C ∈ Blnc(G). Assume
that Dade’s Projective Conjecture holds for all groups H with Op(H) ≤ Z(H) whenever

• all the nonabelian simple groups involved in H are involved in G,
• either

– |H : Z(H)| < |G : Z(G)|, or
– |H : Z(H)| = |G : Z(G)| and |H | < |G|.

We apply results from [Ro02] and [ER02]. Note that in both cases the results stated there
hold for G under the above assumption. As explained in the remark before [Ro02, The-
orem 2] the actual assumption used in [ER02] is the one given in 8.3, namely that one
assumes that Dade’s Projective Conjecture holds in every central extension H of a sec-
tion of G, where |H | < |G| or |H : Z(H)| < |G : Z(G)|. An analogous statement can
be made about the proof of [ER02], which describes properties of a finite group G satis-
fying Assumption 8.3 in the case where G has a block not satisfying Dade’s Projective
Conjecture.

Theorem 8.4. Let S be a set of nonabelian simple groups S satisfying the Inductive Con-
dition for Dade’s Conjecture from Definition 6.7. Assume that every nonabelian simple
component of G is contained in S, and suppose that Assumption 8.3 holds. Then Dade’s
Projective Conjecture holds for the block C and d .

Proof. According to [ER02, Theorem 1] and the succeeding remarks we may assume
that G has only one component up to isomorphism, i.e., for the generalized Fitting sub-
group F∗(G) of G, F∗(G)/Z(G) is the direct product of groups isomorphic to a non-
abelian simple group S. Let K := [F∗(G),F∗(G)]. According to [Ro02, Theorem 1] the
block C covers a block B of F∗(G) such that B has a defect group that is not central
in F∗(G). Let λ ∈ Irr(Z(G)). From Corollary 8.2 we know∑

D∈P(K Z(G)|Op(K))/∼G

(−1)|D||Irrd(BD | λ)| = 0,

where Irrd(BD | λ) = Irrd(BD) ∩ Irr(GD | λ). By [Ro02, Theorem 1] this implies∑
D∈P(G|Op(K))/∼G

(−1)|D||Irrd(BD | λ)| =
∑

D∈P(K Z(G)|Op(K))/∼G

(−1)|D||Irrd(BD | λ)|

= 0.
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(Note that by an application of [Da92, Proposition 3.7], Theorem 1 of [Ro02] is also valid
when the underlying p-chains are not assumed to be normal.) Hence Dade’s Projective
Conjecture holds for C and d . ut

The above implies Theorem 1.3.

9. The Character Triple Conjecture for quasisimple groups

In this section we verify the Character Triple Conjecture for some quasisimple groups.
Recall that Proposition 6.10 simplifies the checking of Dade’s Conjecture since the type
of the p-chains under consideration can be varied. For example it seems that for certain
blocks of groups of Lie type and in the nondefining characteristic, elementary abelian
p-chains have good properties (see [Br06]). Proposition 6.10 is applied later in the veri-
fication of the Character Triple Conjecture for blocks with cyclic defect and for p-blocks
of SL2(q).

In [Da96] and [Ma05] it is proven that various strong versions of Dade’s conjectures
hold for blocks with cyclic defect groups. Since the relation of our Character Triple Con-
jecture to Dade’s Final Conjecture is not fully established, we give here an independent
proof and use the above proposition in order to deduce from [KS16a, KS16b] that our
Character Triple Conjecture holds for all blocks with cyclic defect groups.

Proposition 9.1. LetG be a finite group andB ∈ Bl(G) a block with a nonnormal, cyclic
defect group D. Then the Character Triple Conjecture 6.3 holds for B.
Proof. According to Proposition 6.10 it is sufficient to prove that the Character Triple
Conjecture holds with respect to elementary abelian p-chains. Let D be a defect group
of B and (D, θ) ∈ Cd(B) with D ∈ E(G). Then D|D| is contained in a defect group
of bl(θ), and after suitable G-conjugation, D|D| ≤ D. Since D is cyclic, there exists a
unique subgroup E of D with Op(G) � E such that E/Op(G) is elementary abelian.
So the chains D0 := (Op(G)) and D1 := (Op(G) � E) are the only chains that occur
in Cdelem(B) up to G-conjugacy. Accordingly it is sufficient to find a defect preserving
Aut(G)B -equivariant bijection 3 : Irr(B)→ Irr(b) with

((Go Aut(G))θ ,G, θ) ∼G (NGoAut(G)(E)3(θ),NG(E),3(θ)) for every θ ∈ Irr(B),

where b ∈ Bl(NG(E)) is the block with bG = B.
Since the defect group is cyclic, all ordinary irreducible characters of B and b have

height zero. By [KS16a, Theorem 1.1] and [KS16b, Theorem 1.1] the Inductive AM
Condition holds for b via a bijection 3 : Irr(B)→ Irr(b). According to Proposition 6.12
the bijection satisfies

((Go Aut(G))θ ,G, θ) ∼G (NGoAut(G)(M)3(θ),M,3(θ)) for every θ ∈ Irr0(B).

This proves the statement. ut

Theorem 9.2. Let p be a prime. Let S be either a simple group SL2(2n), 2B2(22n+1) or
a simple sporadic group such that p is odd or S is not the Baby Monster or the Monster
group. Then the Inductive Condition for Dade’s Conjecture from Definition 6.7 holds
for S.
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Proof. All listed groups have cyclic outer automorphism group. Hence Proposition 6.6
can be applied here. For the listed groups, respectively their universal covering groups,
Dade’s Invariant Projective Conjecture from [Da97, 4.9] holds: see [Da99] for the groups
SL2(2n) and 2 B2(22n+1), [AC95, Hu97] for the Matthieu groups, [Da92, Theorem 10.1]
and [Ko97, AOW03] for the Janko groups, [AO04, AO98, An99] for the three simple
Conway groups, [AO99, AO05, AOU08] for the Fischer sporadic groups, [HH99] for
the Higman–Sims group, [EP99, Mu98] for the McLaughlin group, [An97] for the Held
group, [Hi99] for the Suzuki group, [AO02] for the O’Nan and Rudvalis sporadic simple
groups, [AO03] for the Harada–Norton group, [SU03] for the Lyons group, [Uno04] for
the Thompson group, [AW04] for the Baby Monster, and [AW10] for the Fischer–Griess
Monster (the latter two with p 6= 2). ut

The above results allow us to verify that the blocks of SL2(q) with nonnormal defect
groups satisfy the Character Triple Conjecture.

Proposition 9.3. Let p a prime, q a prime power, G := SL2(q) and B ∈ Blnc(G) be
a p-block. Then the Character Triple Conjecture holds for B and for the p-block of
G/Z(G) contained in B. Moreover the Inductive Condition for Dade’s Conjecture holds
for G/Z(G).

Proof. Note that if G is the simple group SL2(4) as mentioned above the statement fol-
lows from [Da99, Theorem 6.13] since the group of outer automorphisms of G is then
cyclic. For G a covering group of PSL2(9) computer calculations prove the statement.

Otherwise G is the universal covering group of G/Z(G) (see [GLS98, Table 6.1.3]).
Hence the first part of the statement implies the second.

We now distinguish the various possible values of p with respect to the characteristic
of the underlying field Fq .

If p | q we verify the Character Triple Conjecture using radical chains. Let P be a
Sylow p-subgroup of G and A := GoAut(G). Then the Inductive AM Condition holds
for B according to [Spä13a, Theorem 8.4] wheneverG is the universal covering group of
PSL2(q). According to Proposition 6.12 this gives an AP -equivariant bijection

5 : Irr0(G |P)→ Irr0(NG(P ) |P)

such that for every θ ∈ Irr0(G |P) the character θ ′ := �(θ) satisfies Z := ker(θZ) =
ker(θ ′Z) and

(Aθ/Z,G/Z, θ) ∼G/Z (AP,θ/Z,NG(P )/Z, θ).

The only radical p-chains of G are D0 := ({1G}) and D1 := ({1G} � P). Accordingly
5 induces a height preserving AB -equivariant bijection

� : C≤drad (B)+→ C≤drad (B)−

for all blocks B ∈ Bl(G). Hence it is also defect preserving. Moreover the bijection has
the properties described in Proposition 6.12.

Let G := SL2(Fq) and F : G → G be a Frobenius endomorphism defining an
Fq -structure of G. If p - q, then either B is the principal 2-block of G, or B has cyclic
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defect (see [Bo11, Theorem 7.1.1]). Assume that p = 2 and q is odd. Let B the principal
2-block of G, Z = Z(G) and P be a Sylow 2-subgroup of G. Then P := P/Z is
isomorphic to C(q+ε)2/2oC2, where ε ∈ {±1} is such that 4 | q+ ε and the group C2 acts
on C(q+ε)2/2 by inverting. Let q0 be the prime with q0 | q and F0 be a field automorphism
of GL2(q) that corresponds to a field automorphism of Fq that generates the Galois group
of Fq over Fq0 ; let T be an F0-stable maximal torus of G := SL2(Fq) with |TF | = q + ε
and T′ be an F0-stable maximal torus of G with |(T′)F | = q − ε.

Assume 8 - q+ε and hence P is a Klein four-group. Then the only elementary abelian
noncyclic subgroup of P is P . In G/Z all involutions are G-conjugate, and hence all
cyclic subgroups P of order 4 are conjugate in G. This leads to the following elementary
abelian chains of G starting with Z up to G-conjugation:

D0 := (Z), D1 := (Z � C4), D2 := (Z � C4 � P), D3 := (Z � P).

Straightforward calculations in SL2(q) lead to GD0 = G, GD1 = M , GD2 = P and
GD3 = NG(P ), where M = NG(T) or M = NG(T′). Furthermore the group NG(P ) is
isomorphic to the semidirect product of P with an automorphism of order 3, permuting
the cyclic subgroups of order 4.

Let G̃ be the subgroup of GL2(q) with G̃ ≥ G and G̃/G ∈ Syl2(GL2(q)/SL2(q)).
Let F0 be a field automorphism of GL2(q) that corresponds to a field automorphism of Fq
that generates the Galois group of Fq . Note that 8 - q + ε implies by straightforward cal-
culations that F0 has odd order. Hence for A := G̃ o 〈F0〉 the quotient A/G is cyclic
and induces on G the group Aut(G). The aim here is to verify the Character Triple Con-
jecture for the principal block b0 of G for G C A, since this implies the statement for
GC (GoAut(G)) according to Theorem 5.3. By Proposition 6.6 it is therefore sufficient
to construct a defect preserving A-equivariant bijection

� : C≤delem(b0)+→ C≤delem(b0)−

such that pairs (D, θ)with faithful θZ(G) are sent to aG-orbit of some (D′, θ ′)with faithful
θ ′Z(G), where d is the integer with 2d = |G|2.

In the following we describe successively the groupsGDi for 0 ≤ i ≤ 4, the characters
of b0,Di and their stabilizers in ADi .

The characters of GD0 belonging to b0 are described in [Bo11, Theorem 7.1.1]. We
use the notation for those characters as given there: Let T be an F0-stable maximal torus
of G := SL2(Fq) with q + ε = |TF |, and T′ be an F0-stable maximal torus of G with
q − ε = |(T′)F |.

Characters of b0 χ(1) d(χ) Aχ # char.

1G 1 3 A 1

StG q 3 A 1

RG
T (ξ)± (ξ ∈ Irr(TF ), o(ξ) = 2) (q − ε)/2 3 Go 〈F0〉 2

RG
T (ξ) (ξ ∈ Irr(TF ), o(ξ) = 4) q − ε 2 A 1

RG
T′(ξ)± (ξ ∈ Irr((T′)F ), o(ξ) = 2) (q + ε)/2 2 Go 〈F0〉 2
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For D1 = (Z � C4) the group GD1 = NG(T)F has TF as an abelian normal subgroup of
index 2. SinceGD1 ≥ NG(P ), the block b0,D1 is the principal one. Accordingly Irr(b0,D1)

is the union of characters Irr(GD1 | ξ), where ξ ∈ Irr(TF ) has 2-power order. Moreover
GAD1 = A.

Characters of b0,D1 χ(1) d(χ) AD1,χ # char.

χ ∈ Irr(GD1 | 1TF ) 1 3 AD1 2

χ ∈ Irr(GD1 | ξ) (ξ ∈ Irr(TF ), o(ξ) = 2) 1 3 (Go 〈F0〉)D1 2

χ ∈ Irr(GD1 | ξ) (ξ ∈ Irr(TF ), o(ξ) = 4) 2 2 AD1 1

The group GD2 coincides with P , and Irr(P ) = Irr(b0,D2). The group Z(SL2(q)) is a
normal subgroup of P and P/Z(SL2(q)) is a Klein four-group.

Characters of b0,D2 χ(1) d(χ) AD2,χ # char.

χ1, χ2 ∈ Irr(GD2 | 1Z(SL2(q))) 1 3 AD2 2

χ3, χ4 ∈ Irr(GD2 | 1Z(SL2(q))) 1 3 (Go 〈F0〉)D2 2

χ ∈ Irr(GD2) \ Irr(GD2 | 1Z(SL2(q))) 2 2 AD2 1

The group NG(P ) has P as a normal subgroup of index 3. All characters of b0,D3 belong
to the principal block of NG(P ). Straightforward computations determine the characters,
their defects and their stabilizers.

Characters of b0,D3 χ(1) d(χ) AD3,χ # char.

χ1 1 3 AD3 1

χ2 3 3 AD3 1

χ3, χ4 1 3 (Go 〈F0〉)D3 2

χ5 2 2 AD2 1

χ6, χ7 2 2 (Go 〈F0〉)D3 2

A thorough inspection of the above tables shows that a bijection � with the necessary
properties exists.

Assume 8 | q+ ε. We show that there are sixG-orbits of elementary abelian 2-chains:
Let o = log2(q + ε), let T be a maximal F -stable torus of G such that q + ε = |TF | and
let T2 be the Sylow 2-subgroup of TF . Recall that Z denotes the centre of SL2(q).

Then the Sylow 2-subgroup P of G coincides with 〈T2, x〉 for some element x ∈ G
of order 4 acting on T2 by inverting. Let a′ ∈ T2 be an element of order 8. From the
description of the fusion system in [Li07, Example 8.8] straightforward computations
show that the 2-chains in Pelem(G) up to G-conjugation are exactly the following:

D0 := (Z), D1 := (Z � 〈a′2〉), D2 := (Z � 〈a′2, x〉),

D3 := (Z � 〈a′2, a′x〉), D4 := (Z � 〈a′2〉 � 〈a′2, x〉),

D5 := (Z � 〈a′2〉 � 〈a′2, a′x〉).
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The chains D4 and D5 are G̃-conjugate, and D2 and D3 are as well. The other chains
satisfy GADi = A. Accordingly the characters from b0,D3 and b0,D5 can be studied using
the results on the other blocks.

As above, we use the description of Irr(b0) from [Bo11, Theorem 7.1.1] with the same
notation.

Characters of b0 χ(1) d(χ) Aχ # char.

1G 1 o+ 1 A 1

StG q o+ 1 A 1

RG
T (ξ)± (ξ ∈ Irr(TF ), o(ξ) = 2) (q − ε)/2 o+ 1 GZ(G̃)o 〈F0〉 2

RG
T (ξ) q − ε o GATF ,{ξ,ξ−1} 2o−1

− 1

(ξ ∈ Irr(TF ), 2 < o(ξ) 2-power)

RG
T′(ξ)± (ξ ∈ Irr((T′)F ), o(ξ) = 2) (q + ε)/2 2 GZ(G̃)o 〈F0〉 2

For D1 = (Z � 〈a′2〉) the group GD1 = NG(T)F has TF as an abelian normal subgroup
of index 2. As above, Irr(b0,D1) is the union of characters Irr(GD1 | ξ), where ξ ∈ Irr(TF )
has 2-power order.

Characters of b0,D1 χ(1) d(χ) AD1,χ # char.

χ ∈ Irr(GD1 | 1TF ) 1 o+ 1 AD1 2

χ ∈ Irr(GD1 | ξ) (ξ ∈ Irr(TF ), o(ξ) = 2) 1 o+ 1 (GZ(G̃)o 〈F0〉)D1 2

χ ∈ Irr(GD1 | ξ)

(ξ ∈ Irr(TF ), 4 ≤ o(ξ) 2-power) 2 o AD1,TF ,{ξ,ξ−1} 2o−1
− 1

The group GD2 has P := 〈a′2, x〉 as a normal subgroup of index 6, and all characters of
Irr(GD2) belong to the principal block of GD2 , hence Irr(GD2) = Irr(b0,D2). Let ν be a
linear nontrivial character of P . Let ψ ∈ Irr(P ) be the character of degree 2. The char-
acters of Irr(GD2 | ν) of degree 3 can be obtained by induction from two linear characters
of 〈a′, x〉.

Characters of b0,D2 χ(1) d(χ) AD2,χ # char.

χ ∈ Irr(GD2 | 1P ) (of degree 1) 1 4 (GZ(G̃)o 〈F0〉)D2 2

χ ∈ Irr(GD2 | 1P ) (of degree 2) 2 3 (GZ(G̃)o 〈F0〉)D2 1

χ ∈ Irr(GD2 | ν) 3 4 (GZ(G̃)o 〈F0〉)D2 2

χ ∈ Irr(GD2 |ψ2) (of degree 2) 2 3 GD2 Z(G̃)(Go 〈F0〉)D2,TF ,{a′,a′−1} 2

χ ∈ Irr(GD2 |ψ2) (of degree 4) 4 2 (Go 〈F0〉)D2 1

The group GD4 = 〈a
′, x〉 has the cyclic subgroup 〈a′〉 of order 8 as normal subgroup of

index 2, hence Irr(GD4) has four linear characters and three characters of degree 2.

Characters of b0,D4 χ(1) d(χ) AD4,χ # char.

χ ∈ Irr(GD2 | ξ) (ξ ∈ Irr(〈a′〉), o(ξ) | 2) 1 4 (GZ(G̃)o 〈F0〉)D2 4

χ ∈ Irr(GD2 | ξ) (ξ ∈ Irr(〈a′〉), o(ξ) = 4) 2 3 (GZ(G̃)o 〈F0〉)D2 1

χ ∈ Irr(GD2 | ξ) (ξ ∈ Irr(〈a′〉), o(ξ) = 4) 2 3 GD2 Z(G̃)(Go 〈F0〉)TF ,{a′,a′−1} 2
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Reviewing the given lists one can see that there exists an A-equivariant defect preserving
bijection

� : C≤d0(b0)+→ C≤d0(b0)−.

This map can be chosen such that for any (D, θ) ∈ C≤d0(b0)+ and (D′, θ ′) ∈ �((D, θ))
the groups ker(θZ) and ker(θ ′Z) coincide. Let (D, θ) ∈ C≤d0(b0)+ and Z0 := ker(θZ). If
AD,θ ≤ GZ(G̃)o 〈F0〉 then Proposition 6.6 applies, and hence for (D′, θ ′) ∈ �((D, θ))
we get the equivalence

((Go 〈F0〉)(D,θ)/Z0,GD/Z0, θ) ∼G/Z0 ((Go 〈F0〉)(D′,θ ′)/Z0,GD/Z0, θ
′
),

where θ and θ ′ are the characters corresponding to θ and θ ′.
It remains to prove the analogous property in the case of AD,θ 6≤ GZ(G̃)o 〈F0〉. The

character θ ∈ {1G,StG,RG
T (ξ) | ξ ∈ Irr(TF ) with 2 < o(θ) < 2o} can be considered as a

character ofG/Z and has an extension θ̃ ∈ Aθ/Z(G̃) such that for everyGZ(G̃)/Z(G̃) ≤
J ≤ Aθ/Z(G̃) the character θ̃J belongs to the principal block of J .

Every θ ′ ∈ Irr(GD1 | 1TF ) ∪ Irr(GD1 | ξ) (ξ ∈ Irr(TF ) with 2 < o(ξ) < 2o) seen as
character ofGD1 Z(G̃)/Z(G̃) has an extension θ̃ ′ ∈ Irr(AD1,θ/Z(G̃)) such that θ̃ ′J belongs
to the principal block for every J with GD1 Z(G̃)/Z(G̃) ≤ J ≤ AD1,θ ′/Z(G̃).

If θ ∈ Irr(GD0) is a character of the form RG
T (ξ) (ξ ∈ Irr(TF ) with o(ξ) = 2o) or

θ ∈ Irr(GD1 | ξ) (ξ ∈ Irr(TF ) with o(ξ) = 2o), then θ extends to some θ̃ ∈ Irr(AD0,θ )

and θ̃ ∈ Irr(AD1,θ ) respectively, by an adaptation of the proof given in [IMN07, Theorem
(14.1)]. For RG

T (ξ) and the character θ ∈ Irr(GD1 | ξ) the extension can be chosen to lie
over the same faithful character of Z(G̃).

Let i ∈ {1, 2} be such that θ ∈ GDi . There exists a linear character µ ∈ Irr(ADi ,θ )
with ker(µ) ≥ G̃Di such that (µθ̃)J belongs to the principal block for every J with
G̃Di ≤ J ≤ ADi ,θ (see [KS15, Theorem C (a)(2)]). Straightforward calculations show
that (µθ̃)J belongs to the principal block for every J with GDi ≤ J ≤ ADi ,θ .

This implies that for those characters θ = RG
T (ξ) and θ ′ ∈ Irr(GD1 | ξ) we have the

equivalence
(A(θ),GD, θ) ∼G (A(D1,θ ′),GD1 , θ

′). ut

In the above proof we have simultaneously proven the following statement.

Corollary 9.4. Let q be an odd prime power such that G := SL2(q) is the universal
covering group of the simple group G/Z(G). Then the Inductive AM Condition from
[Spä13a, Definition 7.2] is satisfied for the principal block of G/Z(G).

Proof. Let p be a prime and P a Sylow p-subgroup of G. Let d be the integer such that
pd = |G|p. Then the bijection

� : C≤d(B)+→ C≤d(B)−
constructed above maps every G-orbit (D, θ) with θ ∈ Irr0(G) to some (D′, θ ′) with
θ ′ ∈ Irr0(M), where M is a fixed Aut(G)P -stable group M with NG(P ) ≤ M � G.

According to Proposition 6.12 this implies that the Inductive AM Condition holds for
G/Z(G). ut
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