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Abstract. We provide a geometric approach to constructing Lefschetz collections and Landau–
Ginzburg homological projective duals from a variation of Geometric Invariant Theory quotients.
This approach yields homological projective duals for Veronese embeddings in the setting of
Landau–Ginzburg models. Our results also extend to a relative homological projective duality
framework.
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1. Introduction

A fundamental question in algebraic geometry is how invariants behave under passage
to hyperplane sections. In his seminal work [Kuz07], Kuznetsov studied this question
extensively for the bounded derived category of coherent sheaves on a projective variety
and developed a deep homological manifestation of projective duality. He suitably titled
this phenomenon “homological projective duality” (HPD).

The HPD setup is as follows. One starts with a smooth variety X → P(V ), together
with some homological data which is called a Lefschetz decomposition, and constructs a
homological projective dual Y → P(V ∗) together with a dual Lefschetz decomposition.
This establishes a precise relationship between the derived categories of any dual com-
plete linear sections X×P(V ) P(L⊥) and Y ×P(V ∗) P(L); we call this result of Kuznetsov
the “Fundamental Theorem of Homological Projective Duality” [Kuz07, Theorem 6.3]
(Theorem 2.4.10 below).

In this paper, we develop a robust geometric approach to constructing homologi-
cal projective duals as Landau–Ginzburg models. The idea, in the terminology of high-
energy theoretical physics, is to pass to a gauged linear sigma model and “change phases”
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[HHP08, HTo07, DSh08, CD+10, Sha10]. In mathematical terms, this is first passing
from a hypersurface to the total space of a line bundle [Isi12, Shi12], then varying Ge-
ometric Invariant Theory quotients (VGIT) to do a birational transformation to the total
space of this line bundle [BFK12, H-L12, Kaw02, VdB04, Seg11, HW12, DSe12]. A nice
consequence of our technique is that we can expand the homological projective duality
framework to the relative setting, i.e. all our results are proven in the relative setting over
a general smooth base variety.

Specifically, using the semi-orthogonal decompositions from [BFK12], we construct
both Lefschetz collections and homological projective duals for a large class of quo-
tient varieties. Our main application is to Veronese embeddings P(W) → P(SdW) for
d ≤ dimW . After recovering the natural Lefschetz decomposition in this case, we prove
that the Landau–Ginzburg pair ([W × P(SdW ∗)/Gm], w), where the Gm-action is by
dilation on W and w is the universal degree d polynomial, is a homological projective
dual to the Veronese embedding. In a subsequent paper, [BD+14], we replace the pair(
[W × P(SdW ∗)/Gm], w

)
with the non-commutative space (P(SdW ∗),A), where A is a

Z-graded sheaf of minimal A∞-algebras given by

A =
(⊕
k∈Z

ukOP(SdW ∗)(k)
)
⊗
∧
•
W ∗,

and higher products defined by explicit tree formulas, notably with

µd(1⊗ vi1 , . . . , 1⊗ vid ) =
u

d!

∂dw

∂xi1 . . . ∂xid

where {xj } denotes a basis of W and {vj } the corresponding basis of
∧1
W ∗, and µi = 0

for 2 < i < d . When d = 2, this recovers the homological projective dual from [Kuz05].
It should be noted that neither Kuznetsov’s precise definition of a homological pro-

jective dual nor his Fundamental Theorem are available at this level of generality. We
instead construct Landau–Ginzburg models which are weak homological projective duals
and prove that the conclusions of the Fundamental Theorem hold directly in our setting
(Theorem 3.1.3).

Homological projective duality was exhibited by Kuznetsov for the double Veronese
embedding

P(W) ↪→ P(S2W).

In this case, Kuznetsov [Kuz05] proves that a homological projective dual is given by
Y = (P(S2W ∗),Cliff0), where Cliff0 is a sheaf of even Clifford algebras. As a conse-
quence, Kuznetsov recovers a theorem of Bondal and Orlov [BO95] relating the derived
category of intersection of two even-dimensional quadrics to the derived category of a
hyperelliptic curve. Moreover, his homological projective duality framework provides
analogous descriptions for arbitrary intersections of quadrics as in [BO02].

In [Kuz06], Kuznetsov constructs the dual to the Grassmannian of two-dimensional
planes in a vector space W of dimension 6 or 7 with respect to the Plücker embedding

Gr(2,W) ↪→ P(
∧2
W).
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In these cases, the homological projective dual is a non-commutative resolution of the
classical projective dual: the Pfaffian variety. Among the many applications is a derived
equivalence between two non-birational Calabi–Yau varieties of dimension 3, originally
studied by Rødland as an example in mirror symmetry [Rød00]. This derived equivalence
was proven independently by Borisov and Căldăraru [BC09], who demonstrated that
generic Grassmannian Calabi–Yau varieties can be realized as moduli spaces of curves
on the dual Pfaffian Calabi–Yau. Homological projective duality for the Grassmannian
Gr(3, 6) was studied in [Del11].

A relative version of the 2-Veronese example was considered in [ABB11]; it was
used to relate rationality questions to categorical representability. Another example of
homological projective duality is conjectured by Hosono and Takagi and supported by a
proof of a derived equivalence between the corresponding linear sections [HT11, HT13a,
HT13b].

The main cases that this paper does not interpret in our larger framework are the
Grassmannian and Hosono–Takagi examples [Kuz06, Del11, HT11, HT13a, HT13b].
However, these examples do admit similar physical interpretations [DSh08, Hor11]. Thus,
it is plausible that all known examples of HPD would fall within the scope of our method-
ological approach. The main issue is that the results of [BFK12] need to be expanded to
handle the complexity of the VGIT theory which arises. Indeed, work of Addington,
Donovan, and Segal [ADS12] uses more complex GIT stratifications to understand the
Grassmannian case, albeit in a slightly less general context than HPD.

2. Background

2.1. Derived categories of LG models

Let Q be a smooth and quasi-projective variety with the action of an affine algebraic
group G. Let L be an invertible G-equivariant sheaf on Q and let w ∈ H0(Q,L)G be
a G-invariant section of L. We start by recalling the appropriate analog of the bounded
derived category of coherent sheaves for a quadruple (Q,G,L, w). Matrix factorization
categories have been studied in [Eis80, Buc86, Orl04]. Building on these works, most of
the ideas presented here are due to L. Positselski [Pos09, Pos11]. The authors generalize
these ideas in [BD+12] to a setting which includes the material presented below.

Definition 2.1.1. A gauged Landau–Ginzburg model, or gauged LG model, is the
quadruple (Q,G,L, w) with Q, G, L, and w as above. We shall commonly denote a
gauged LG model by the pair ([Q/G], w).

To declutter the notation, given a quasi-coherentG-equivariant sheaf E , we denote E⊗Ln
by E(n). Given a morphism f : E → F , we denote f⊗IdLn by f (n). Following Eisenbud
[Eis80], one gives the following definition.

Definition 2.1.2. A coherent factorization, or simply a factorization, of a gauged LG
model ([Q/G], w) consists of a pair of coherent G-equivariant sheaves, E−1 and E0, and
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a pair of G-equivariant OQ-module homomorphisms,

φ−1
E : E

0(−1)→ E−1, φ0
E : E

−1
→ E0,

such that the compositions φ0
E ◦φ

−1
E : E0(−1)→ E0 and φ−1

E (1)◦φ0
E : E

−1
→ E−1(1) are

multiplication by w. We shall often simply denote the factorization (E−1, E0, φ−1
E , φ0

E )
by E . The coherent G-equivariant sheaves E0 and E−1 are called the components of the
factorization E .

A morphism of factorizations, g : E → F , is a pair of morphisms of coherent G-
equivariant sheaves,

g−1
: E−1

→ F−1, g0
: E0
→ F0,

making the diagram

E0(−1) E−1 E0

F0(−1) F−1 F0

φ−1
E

g0(−1)

φ−1
F

φ0
E

g−1

φ0
F

g0

commute.
We let coh([Q/G], w) be the Abelian category of factorizations with coherent com-

ponents.
There is an obvious notion of chain homotopy between morphisms in coh([Q/G], w).

Let g1, g2 : E → F be two morphisms of factorizations. A homotopy between g1 and g2
is a pair of morphisms of quasi-coherent G-equivariant sheaves,

h−1
: E−1

→ F0(−1), h0
: E0
→ F−1,

such that

g−1
1 − g

−1
2 = h

0
◦ φ0

E + φ
−1
F ◦ h

−1, g0
1 − g

0
2 = h

−1(1) ◦ φ−1
E (1)+ φ0

F ◦ h
0.

We let K(coh[Q/G], w) be the corresponding homotopy category, whose objects are
factorizations and whose morphisms are homotopy classes of morphisms.

There is a translation autoequivalence [1] defined as

E[1] := (E0, E−1(1),−φ0
E ,−φ

−1
E (1)).

For any morphism g : E → F , there is a natural cone construction. We write C(g)
for the resulting factorization. It is defined as

C(g) :=

(
E0
⊕ F−1, E−1(1)⊕ F0,

(
−φ0

E 0
g−1 φ−1

F

)
,

(
−φ−1

E (1) 0
g0 φ0

F

))
.

The translation and the cone construction induce the structure of a triangulated category
on the homotopy category K(Qcoh[Q/G], w) [Pos11, BD+12].
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We wish to derive coh([Q/G], w), however, we lack a notion of quasi-isomorphism
because our “complexes” lack cohomology. For the usual derived categories of sheaves,
one can view localization by the class of quasi-isomorphisms as the Verdier quotient
by acyclic objects. The correct substitute in coh([Q/G], w) for acyclic complexes was
defined independently in [Pos09], [Orl11].

The following definitions give the correct analog for the derived category of sheaves
for LG models whenQ is smooth. These definitions are due to Positselski [Pos09, Pos11].

Definition 2.1.3. A factorization A is called totally acyclic if it lies in the smallest thick
subcategory of K(coh[Q/G], w) containing all totalizations [BD+12, Definition 2.10]
of short exact sequences from coh([Q/G], w). We let acycl([Q/G], w) denote the thick
subcategory of K(coh[Q/G], w) consisting of totally acyclic factorizations.

The absolute derived category of factorizations, or the derived category, of the LG
model ([Q/G], w) is the Verdier quotient

D(coh[Q/G], w) := K(coh[Q/G], w)/acycl([Q/G], w).

Abusing terminology, we say that factorizations E and F are quasi-isomorphic if they are
isomorphic in the absolute derived category.

Later we will also use the singularity category as an intermediary. We recall the definition.

Definition 2.1.4. Let [Y/G] be a global quotient stack with Y quasi-projective. The cat-
egory of singularities of [Y/G] is the Verdier quotient

Dsg([Y/G]) := Db(coh[Y/G])/perf([Y/G])

of the bounded derived category of coherent sheaves by the thick subcategory of perfect
complexes.

The following result, based on Koszul duality, is referred to in the physics literature as
the σ -model/Landau–Ginzburg-model correspondence for B-branes, arising from renor-
malization group flow. We sometimes refer to it briefly as the “σ -LG correspondence”.

Theorem 2.1.5. Let Y be the zero scheme of a section s ∈ 0(X, E) of a locally free
sheaf E of finite rank on a smooth variety X. Assume that s is a regular section, i.e.
dimY = dimX − rank E . Then there is an equivalence of triangulated categories

Db(cohY ) ∼= D(coh[V(E)/Gm], w)

where V(E) is the total space Spec Sym(E), w is the regular function determined by s
under the natural isomorphism

0(V(E),O) ∼= 0(X,Sym E),

and Gm acts by dilation on the fibers.

Proof. This is [Isi12, Theorem 3.6] or [Shi12, Theorem 3.4]. ut
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Proposition 2.1.6. Let X be a smooth variety or a global quotient stack. Consider the
trivial Gm-action on X and let χ be the identity character of Gm. For the Landau–
Ginzburg model (X,Gm,O(χ), 0), one has an equivalence of categories

Db(cohX) ∼= D(coh[X/Gm], 0).

Proof. Consider the functor F : Komb(cohX) → coh(X,Gm,O(−χ), 0) that sends a
bounded complex M• of coherent sheaves on X to the factorization

⊕
iM

2i(−i)
⊕

iM
2i+1(−i)

⊕
i d

2i

⊕
i d

2i+1

and that maps morphisms in the obvious way. It is clear that F is an equivalence of
abelian categories and preserves homotopies. For an acyclic complex M•, F(M•) is a
factorization which is the totalization of the acyclic complex of factorizations

· · ·
F(d−2)
−−−−→ F(M−1)

F(d−1)
−−−−→ F(M0)

F(d0)
−−−→ F(M1)

F(d1)
−−−→ · · ·

where eachM i is considered to be a complex concentrated in grade zero. Therefore F in-
duces an equivalence of derived categories. Moreover, since the Gm-action onX is trivial,
the Landau–Ginzburg models (X,Gm,O(−χ), 0) and (X,Gm,O(χ), 0) are isomorphic.
Thus, F induces an equivalence between Db(cohX) and D(coh[X/Gm], 0). ut

2.2. Semi-orthogonal decompositions

In this section we provide background material on semi-orthogonal decompositions and
record a few facts we will need later. Standard references are [Bon89, BK90, BO95].

Definition 2.2.1. Let A ⊆ T be a full triangulated subcategory. The right orthogonal A⊥
to A is the full subcategory of T consisting of objects B such that HomT (A,B) = 0 for
any A ∈ A. The left orthogonal ⊥A is is the full subcategory of T consisting of objects
B such that HomT (B,A) = 0 for any A ∈ A.

The left and right orthogonals are naturally triangulated subcategories.

Definition 2.2.2. A weak semi-orthogonal decomposition of a triangulated category T is
a sequence A1, . . . ,Am of full triangulated subcategories in T such that Ai ⊂ A⊥j for
i < j and, for every object T ∈ T , there exists a diagram

0 Tm−1 · · · T2 T1 T

Am A2 A1

|||
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where all triangles are distinguished and Ak ∈ Ak . We shall denote a weak semi-orthogo-
nal decomposition by 〈A1, . . . ,Am〉. If Ai are essential images of fully faithful functors
ϒi : Ai → T , we may also denote the weak semi-orthogonal decomposition by

〈ϒ1, . . . , ϒm〉.

Lemma 2.2.3. The assignments T 7→ Ti and T 7→ Ai appearing in the definition of a
weak semi-orthogonal decomposition are unique and functorial.

Proof. This is standard: see e.g. [Kuz09, Lemma 2.4]. ut

Closely related to the notion of a semi-orthogonal decomposition is the notion of a left/
right admissible subcategory of a triangulated category.

Definition 2.2.4. Let α : A → T be the inclusion of a full triangulated subcategory
of T . The subcategory A is called right admissible if α has a right adjoint, denoted α!,
and left admissible if α has a left adjoint, denoted α∗. A full triangulated subcategory is
called admissible if it is both right and left admissible.

Definition 2.2.5. A semi-orthogonal decomposition is a weak semi-orthogonal decom-
position 〈A1, . . . ,Am〉 such that each Ai is admissible. The notation is left unchanged.

2.3. Elementary wall-crossings

In this section, we review part of the relationship between variations of GIT quotients
[Tha96, DH98] and derived categories, following [BFK12]. While consideration of the
general theory was inspirational to our approach to homological projective duality, it is
sufficient for this paper to consider only the simplest types of variations of GIT quotients,
namely elementary wall-crossings.

Let Q be a smooth, quasi-projective variety and let G be a reductive linear algebraic
group. Let

σ : G×Q→ Q

denote an action of G on Q. Recall that a one-parameter subgroup λ : Gm → G is an
injective homomorphism of algebraic groups.

From λ, we can construct some subvarieties ofQ. We let Z0
λ be a choice of connected

component of the fixed locus of λ on Q. Set

Zλ :=
{
q ∈ Q

∣∣∣ lim
t→0

σ(λ(t), q) ∈ Z0
λ

}
.

The subvariety Zλ is called the contracting locus associated to λ and Z0
λ. If G is Abelian,

Z0
λ and Zλ are both G-invariant subvarieties. Otherwise, we must consider the orbits

Sλ := G · Zλ, S0
λ := G · Z

0
λ.

Also, let
Qλ := Q \ Sλ.
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We will be interested in the case where Sλ is a smooth closed subvariety satisfying
a certain condition. To state this condition we need the following group attached to any
one-parameter subgroup:

P(λ) :=
{
g ∈ G

∣∣∣ lim
α→0

λ(α)gλ(α)−1 exists
}
.

Definition 2.3.1. Assume Q is a smooth variety with a G-action. An elementary HKKN
stratification of Q is a disjoint union

K : Q = Qλ t Sλ,

obtained from the choice of a one-parameter subgroup λ : Gm → G, together with the
choice of a connected component, denoted Z0

λ, of the fixed locus of λ such that

• Sλ is closed in X;
• the morphism

τλ : [(G× Zλ)/P (λ)] → Sλ, (g, z) 7→ g · z,

is an isomorphism where p ∈ P(λ) acts by

(p, (g, z)) 7→ (gp−1, p · z).

We will need to attach an integer to an elementary HKKN stratification. We restrict the
relative canonical bundle ωSλ|Q to any fixed point q ∈ Z0

λ. This yields a one-dimensional
vector space which is equivariant with respect to the action of λ.

Definition 2.3.2. The weight of the stratum Sλ is the λ-weight of ωSλ/Q|Z0
λ
. It is denoted

by t (K).

Furthermore, given a one-parameter subgroup λ we may also consider its composition
with inversion,

−λ(t) := λ(t−1) = λ(t)−1,

and ask whether this provides an HKKN stratification as well. This leads to the following
definition.

Definition 2.3.3. An elementary wall-crossing (K+,K−) is a pair of elementary HKKN
stratifications

Q = Qλ t Sλ, Q = Q−λ t S−λ,

such that Z0
λ = Z

0
−λ. We often let Q+ := Qλ and Q− := Q−λ.

Let C(λ) denote the centralizer of the one-parameter subgroup λ. For an elementary wall-
crossing, set

µ = −t (K+)+ t (K−).
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Theorem 2.3.4. Let Q be a smooth, quasi-projective variety equipped with the action of
a reductive linear algebraic group G. Let w ∈ H0(Q,L)G be a G-invariant section of a
G-invertible sheaf L. Suppose we have an elementary wall-crossing (K+,K−),

Q = Q+ t Sλ, Q = Q− t S−λ,

and assume that L has weight zero on Z0
λ and that S0

λ admits a G-invariant affine open
cover. Fix any D ∈ Z.

(1) If µ > 0, then there are fully faithful functors

8+D : D(coh[Q−/G], w|Q−)→ D(coh[Q+/G], w|Q+),

and, for −t (K−)+D ≤ j ≤ −t (K+)+D − 1,

ϒ+j : D(coh[Z0
λ/C(λ)], wλ)j → D(coh[Q+/G], w|Q+),

and a semi-orthogonal decomposition

D(coh[Q+/G], w|Q+) = 〈ϒ
+

−t (K−)+D
, . . . , ϒ+

−t (K+)+D−1,8
+

D〉.

(2) If µ = 0, then there is an exact equivalence

8+D : D(coh[Q−/G], w|Q−)→ D(coh[Q+/G], w|Q+).

(3) If µ < 0, then there are fully faithful functors

8−D : D(coh[Q+/G], w|Q+)→ D(coh[Q−/G], w|Q−),

and, for −t (K+)+D ≤ j ≤ −t (K−)+D − 1,

ϒ−j : D(coh[Z0
λ/C(λ)], wλ)j → D(coh[Q−/G], w|Q−),

and a semi-orthogonal decomposition

D(coh[Q−/G], w|Q−) = 〈ϒ
−

−t (K+)+D
, . . . , ϒ−

−t (K−)+D−1,8
−

D〉.

Proof. This is [BFK12, Theorem 3.5.2]. ut

The categories D(coh[Z0
λ/C(λ)], wλ)j appearing in Theorem 2.3.4 are the full subcat-

egories consisting of objects of λ-weight j in D(coh[Z0
λ/C(λ)], wλ). For more details,

we refer the reader to [BFK12]. In our situation, we will only need the conclusion of the
following lemma. We set Yλ := [Z0

λ/(C(λ)/λ)].

Lemma 2.3.5. We have an equivalence

D(cohYλ, wλ) ∼= D(coh[Z0
λ/C(λ)], wλ)0.

Further, assume that there there is a character χ : C(λ)→ Gm such that χ ◦ λ(t) = t l .
Then twisting by χ provides an equivalence

D(coh[Z0
λ/C(λ)], wλ)r

∼= D(coh[Z0
λ/C(λ)], wλ)r+l for any r ∈ Z.

Proof. This is [BFK12, Lemma 3.4.4]; we give the very simple and short proof here.
A quasi-coherent sheaf on Yλ is a quasi-coherent C(λ)-equivariant sheaf on Z0

λ for which
λ acts trivially, i.e. of λ-weight zero. For the latter statement just observe that twisting
with χ is an autoequivalence of Db(coh[Z0

λ/C(λ)]) which brings range to target and its
inverse does the reverse. ut
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2.4. Homological projective duality

In this section, we provide an introduction to homological projective duality (HPD) fol-
lowing [Kuz07]. To make the ideas more transparent, we start by considering HPD over a
point. We then make the definitions we need for the relative setting considered in the rest
of this paper.

Let X be a smooth projective variety equipped with a morphism f : X→ P(V ).
We have a canonical section of OP(V )(1) � OP(V ∗)(1) determined as follows. Under

the natural isomorphism V ⊗ V ∗ ∼= End(V ), the identity map on V corresponds to an
element u ∈ V ⊗ V ∗. We define a section

θV ∈ 0(OP(V )(1) � OP(V ∗)(1)) ∼= V ⊗ V ∗

by taking the image of u under the isomorphism above.
Let OX(1) denote the pullback f ∗OP(V )(1). We can also pull back OP(V )(1) �

OP(V ∗)(1) to X × P(V ∗). Let θX denote the pullback of θV .

Definition 2.4.1. The zero locus of θX is called the universal hyperplane section of f . It
is denoted by X .

The universal hyperplane section comes equipped with two natural morphisms,

p : X → X and q : X → P(V ∗).

The fiber of q, XH , overH ∈ P(V ∗) is exactly the hyperplane section ofX corresponding
to H .

Remark 2.4.2. Recall that when X is smooth and f is an embedding, the projective dual
to X is the closed subset

X∨ := {H ∈ P(V ∗) | XH is singular}.

with its reduced, induced scheme structure. Thus X∨ is the non-regular, i.e. critical, locus
of q : X → P(V ∗) in P(V ∗).

Homological projective duality is a phenomenon that can be considered as a lifting of the
notion of classical projective duality to non-commutative geometry. The starting data for
HPD is a smooth variety X together with a map to a projective space, f : X → P(V ),
and a special type of a semi-orthogonal decomposition called a Lefschetz decomposition.
We now provide the setup to define a Lefschetz decomposition.

Definition 2.4.3. Let B be an algebraic variety and T a triangulated category. A B-linear
structure on T is a Dpe(B)-module structure

F : Dpe(B)⊗ T → T

on T .
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Definition 2.4.4. An exact functor8 : T → T ′ betweenB-linear triangulated categories
with respect to F and F ′ is called B-linear if there are bi-functorial isomorphisms

8(F(A⊗ T )) ∼= F
′(8(A)⊗ T ) for any T ∈ T , A ∈ Dpe(B).

Now let B = P(V ) and consider a P(V )-linear category T with respect to F . To simplify
notation, denote by (s) the functor of tensoring with F(O(s)).

Definition 2.4.5. A Lefschetz decomposition of a P(V )-linear category T is a semi-
orthogonal decomposition of the form

T = 〈A0,A1(1), . . . ,Ai(i)〉

where
0 ⊂ Ai ⊂ Ai−1 ⊂ · · · ⊂ A1 ⊂ A0 ⊂ T

is a chain of admissible subcategories of T and As(s) denotes the essential image of the
category As after application of the functor (s).

Definition 2.4.6. A dual Lefschetz decomposition of a P(V ∗)-linear category T ′ is a
semi-orthogonal decomposition of the form

T ′ = 〈Bj−1(1− j),Bj−2(2− j), . . . ,B0〉

where
0 ⊂ Bj−1 ⊂ Bj−2 ⊂ · · · ⊂ B1 ⊂ B0 ⊂ T ′

is a chain of admissible subcategories of T ′ and Bs(s) denotes the essential image of the
category Bs after application of the functor (s).

Now consider a morphism f : X → P(V ). The most important property of a Lefschetz
decomposition, given by the following proposition, is that it induces a semi-orthogonal
decomposition on the derived category of any linear section of X. This result, and the
proposition succeeding it, follow from the results in [Kuz07] and [Kuz11]. We give proofs
for these two statements for the sake of completeness.

Proposition 2.4.7. Consider a morphism f : X→ P(V ) and a Lefschetz decomposition

Db(cohX) = 〈A0,A1(1), . . . ,Ai(i)〉

with respect to f ∗. Let L ⊆ V ∗ be a linear subspace of dimension r , L⊥ its orthogonal
in V , and let

XL := X ×P(V ) P(L⊥)
be a complete linear section of X, i.e. dimXL = dimX − dimL. There is a semi-
orthogonal decomposition

Db(cohXL) = 〈CL,Ar(r), . . . ,Ai(i)〉

where the functor Aj (j)→ Db(cohXL) is the composition

Aj (j)→ Db(cohX)→ Db(cohXL)

of the inclusion and derived restriction to XL.
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Proof. Let δ : XL → X be the inclusion. Let As ∈ As(s) and At ∈ At (t). Restrict the
Koszul resolution on L to X to obtain an exact complex

0→
∧r
L⊗k OX(−r)→ · · · → OX → OXL → 0,

and tensor this complex with At ⊗OX
A∨s to get

0→
∧r
L⊗k As ⊗OX

A∨t (−r)→ · · · → As ⊗OX
A∨t → δ∗As ⊗OXL

δ∗A∨t → 0.

Applying global sections yields an exact sequence of hypercohomology

0→
∧r
L⊗k RHomX(At , As(−r))→ · · · → RHomX(At , As)

→ RHomXL(δ
∗At , δ

∗As)→ 0. (1)

Now, by definition of a Lefschetz decomposition, RHomXL(At , As(−p)) = 0 if p ≤
s < t . Plugging into (1) we obtain

RHomXL(δ
∗At , δ

∗As) ∼=

{
RHomX(At , As) if r ≤ s = t,
0 if r ≤ s < t,

which shows that δ∗ is fully faithful on At (t) for t ≥ r and that the images of these
subcategories are semi-orthogonal. ut

A Lefschetz decomposition also induces a semi-orthogonal decomposition on the univer-
sal hyperplane section X with respect to f , and similarly on the family of hyperplane
sections over any L ⊆ V ∗,

XL := X ×P(V ∗) P(L).

Let πL denote the natural map from XL to P(L) and define Ak(k) � Db(cohP(L)) to be
the full triangulated subcategory of Db(cohX × P(L)) generated by objects F � G with
F ∈ Ak(k) ⊂ Db(cohX) and G ∈ Db(cohP(L)).

Proposition 2.4.8. For any Lefschetz decomposition

Db(cohX) = 〈A0,A1(1), . . . ,Ai(i)〉,

there is an associated semi-orthogonal decomposition

Db(cohXL) = 〈DL,A1(1) � Db(cohP(L)), . . . ,Ai(i) � Db(cohP(L))〉 (2)

where DL is defined as the right orthogonal to 〈A1(1) � Db(cohP(L)), . . . ,Ai(i) �

Db(cohP(L))〉.

Proof. Notice that we get a semi-orthogonal decomposition

Db(cohX × P(L)) = 〈A0 � Db(cohP(L)), . . . ,Ai(i) � Db(cohP(L))〉.

Now, considerX×P(L) with the Segre embedding and apply Proposition 2.4.7 to get the
result. ut

The following is [Kuz07, Definition 6.1].
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Definition 2.4.9. Given a morphism f : X → P(V ) and a Lefschetz decomposition
〈A0,A1(1), . . . ,Ai(i)〉 of Db(cohX), a homological projective dual Y is an algebraic
variety together with a morphism g : Y → P(V ∗) and a fully faithful Fourier–Mukai
transform 8P with kernel P ∈ Db(cohY ×P(V ∗) X ) which induces a semi-orthogonal
decomposition

Db(cohX ) = 〈8P (Db(cohY )),A1(1) � Db(cohP(V ∗)), . . . ,Ai(i) � Db(cohP(V ∗))〉.

The Fundamental Theorem of HPD relates linear sections in X with respect to f to their
dual linear sections of Y with respect to g. Let N be the dimension of V , and L ⊂ V ∗ be
a linear subspace of dimension r . Recall that

XL := X ×P(V ) P(L⊥)

and define
YL := Y ×P(V ∗) P(L).

Theorem 2.4.10 (Fundamental Theorem of Homological Projective Duality). Let Y →
P(V ∗) be a homological projective dual to X → P(V ) with respect to the Lefschetz
decomposition {Ai} in the sense of Definition 2.4.9. With the notation above we have the
following:

• The category Db(cohY ) admits a dual Lefschetz decomposition

Db(cohY ) = 〈Bj (−j), . . . ,B1(−1),B0〉.

• Assume that XL and YL are complete linear sections, i.e.

dimXL = dimX − r and dimYL = dimY + r −N.

Then there exist semi-orthogonal decompositions

Db(cohXL) = 〈CL,Ar(1), . . . ,Ai(i − r + 1)〉,

Db(cohYL) = 〈Bj (N − r − j − 1), . . . ,BN−r(−1), CL〉.

Proof. This is [Kuz07, Theorem 6.3]. ut

Remark 2.4.11. Figure 1 is a useful representation of the pieces appearing in the semi-
orthogonal decompositions in the theorem above. The boxes themselves represent what
Kuznetsov calls primitive subcategories as := As/As+1. The longer vertical line is placed
at r , the dimension of L. The shaded boxes to the right of the long vertical line represent
the terms of the perpendicular to CL in Db(cohXL). The shaded boxes to the left of the
vertical line represent the terms of the perpendicular to CL in the derived category of the
homological projective dual YL. In the i-th column, the category generated by the boxes
below the staircase corresponds to Ai−1 and the category generated by the boxes above
the staircase gives Bj−i+1.
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as

a0

A0 Ai

B0Bj

Fig. 1. Kuznetsov’s image of Lefschetz collections and their duals.

Remark 2.4.12. Homological projective duality is a duality in the following sense. If
Y → P(V ∗) is a homological projective dual to X→ P(V ), then Y → P(V ∗) has a dual
Lefschetz decomposition Db(cohY ) = 〈Bj (−j), . . . ,B1(−1),B0〉. By dualizing as in
[Kuz07, Theorem 7.3], we get a Lefschetz decomposition Db(cohY ) = 〈B∗0, . . . ,B

∗

j (j)〉

for Y → P(V ∗). With respect to this Lefschetz decomposition, Kuznetsov shows that
X→ P(V ) is a homological projective dual to Y → P(V ∗).

Let X be an S-scheme and E be a locally free coherent sheaf over S. Let f : X→ PS(E)
be an S-morphism. We now consider homological projective duality in the relative set-
ting. This was already studied by Kuznetsov when E is the trivial bundle [Kuz07, Theo-
rem 6.27] and, in the case of relative 2-Veronese embeddings, by Auel, Bernardara, and
Bolognesi [ABB11, Theorem 1.13].

The definition of a Lefschetz decomposition extends to the relative setting by replac-
ing the projective space P(V ) by the projectivization PS(E) and OP(V )(1) by OPS (E)(1).
In the relative setting, we define the universal hyperplane section as X = X ×PS (E) X0
where X0 is the incidence variety in PS(E)×S PS(E∗).

Definition 2.4.13. Given an S-morphism f : X → PS(E) and a Lefschetz decomposi-
tion 〈A0,A1(1), . . . ,Ai(i)〉, a weak homological projective dual Y relative to S is either

• an S-scheme Y together with a morphism Y → PS(E∗), or
• a gauged Landau–Ginzburg model (Q,G,L, w) (Definition 2.1.1) together with an
S-morphism g : Q→ PS(E∗),

such that there is a semi-orthogonal decomposition

Db(cohX ) = 〈8,A1(1) � Db(cohPS(E∗)), . . . ,Ai(i) � Db(cohPS(E∗))〉

where 8 denotes the essential image of a fully faithful PS(E)-linear functor

8 : Db(cohY )→ Db(cohX ) or 8 : D(coh[Q/G], w)→ Db(cohX ),
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with the PS(E)-linear structure given by tensoring with pullbacks of objects in
D(cohPS(E)).

Remark 2.4.14. The difference between Kuznetsov’s definition of homological projec-
tive dual and the above definition of a weak homological projective dual is in the as-
sumption that the functor 8 is given by a Fourier–Mukai kernel in the fiber product
Db(cohY ×P(V ∗) X ). Recent work by Ben-Zvi, Nadler and Preygel [BNP13] shows that
a Fourier–Mukai kernel in Db(cohY ×P(V ∗) X ) for 8 does exist when Y is a scheme and
P(V ∗)-linearity is interpreted in a stronger,∞-categorical sense. Because of this differ-
ence, we prove the conclusions of the Fundamental Theorem of HPD separately in the
setup that we consider in this paper (Theorem 3.1.3).

Remark 2.4.15. In the relative setting, we will consider, instead of linear sections
XL and YL, the fiber products X ×PS (E) PS(W) and Y ×PS (E∗) PS(V) where
V = E∗/U is a quotient bundle and W = E/U⊥. For a Landau–Ginzburg pair
(Q,G,L, w), we define the fiber product as (Q,G,L, w)×PS (E∗) PS(V) := (Q×PS (E∗)
PS(V),G,L|PS (V), w|PS (V)).

3. Homological projective duality and VGIT

In this section we construct a weak homological projective dual to a GIT quotient pro-
vided we are also given the data of an elementary wall-crossing.

The idea behind this section is to start with a variety X given as a quotient X =
[Qss(M)/G] = [Q+/G], where Q is a smooth variety with an action of G and M
is a linearization of the G-action, and then to prove that, under basic assumptions, an
elementary wall-crossing which varies the GIT quotient induces a Lefschetz decomposi-
tion of Db(cohX) with respect to the morphism X → PS(E) induced by the bundle M.
Moreover, the same data can be used to construct a weak homological projective dual
to X, which is a Landau–Ginzburg pair (Y,w) where Y is a GIT quotient of the space
VQ(M)×S VS(E∗), and w is induced by the canonical section of OPS (E)×SPS (E∗)(1, 1).

We follow the notation of Section 2.3.

3.1. Lefschetz decompositions and HPD from elementary wall-crossings

Let Q be a smooth quasi-projective variety equipped with the action of a reductive linear
algebraic group G and a morphism p : [Q/G] → S.

Let λ be a one-parameter subgroup of G which determines an elementary wall-cross-
ing (K+,K−),

Q = Q+ t Sλ, Q = Q− t S−λ,

such that S0
λ = G · Z0

λ admits a G-equivariant affine cover and Sλ has codimension at
least 2. We let µ = −t (K+)+ t (K−) and we assume that µ ≥ 0.

Assume that G acts freely on Q+ and that X := [Q+/G] is a smooth and proper
variety. Notice that X is an S-scheme by composing the inclusion with p. We denote this
map by g : X→ S.
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Let E be a locally free coherent sheaf of rank N over S. One can consider the projec-
tive bundle

PS(E) := [(VS(E) \ 0VS (E))/Gm]

where 0VS (E) denotes the zero-section of VS(E). This bundle comes with a projection
π : PS(E) → S. We denote the relative bundle Oπ (1) by OPS (E)(1). Note that with our
notation, π∗OPS (E)(1) ∼= E .

Consider an S-morphism f : X→ PS(E). We write

L := f ∗OPS (E)(1).

Now suppose that there exists a G-equivariant invertible sheaf M = O(χ) on Q, for
some character χ of G, such that, as an invertible sheaf on [Q/G], it restricts to L on
[Q+/G],

M|[Q+/G] ∼= L.

Furthermore, let d be the λ-weight of M. Recall that in this case, the λ-weight of
M = O(χ) is the integer d such that χ ◦ λ(t) = td . We assume that d > 0.

Recall that we have fully faithful functors

ϒ+j : D
b(coh[Z0

λ/C(λ)])j → Db(cohX)

by applying Theorem 2.3.4 with w = 0, and Gm acting trivially, and using Proposition
2.1.6. Therefore, when writing semi-orthogonal decompositions, we will denote the es-
sential images of the functors ϒ+j by Z+j . By Lemma 2.3.5, we see that

Db(coh[Z0
λ/C(λ)])0

∼= D(cohYλ)

where Yλ := [Z0
λ/(C(λ)/λ)], and twisting by χ|C(λ), which by definition is tensoring with

the restriction of L, induces an isomorphism between Z+n and Z+n+d for any n ∈ Z.
When µ ≥ 0, the elementary wall-crossing induces a semi-orthogonal decomposi-

tion on Db(cohX), which is a Lefschetz decomposition when X is considered together
with the map f to PS(E). The fineness of the Lefschetz decomposition depends on the
λ-weight d of M.

Proposition 3.1.1. If µ ≥ 0, there is a Lefschetz decomposition

Db(cohX) = 〈A0, . . . ,Ai(i)〉

of X with respect to f , where i = dµ/de − 1 and

Aj =


〈Db(coh[Q−/G]),Z+0 , . . . ,Z

+

d−1〉, j = 0,
〈Z+0 , . . . ,Z

+

d−1〉, 0 < j < dµ/de − 1,
〈Z+0 , . . . ,Z

+

µ−d(dµ/de−1)〉, j = dµ/de − 1.
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Proof. Taking D = t (K−) in Theorem 2.3.4, in combination with Proposition 2.1.6,
gives a fully faithful functor8+

−t (K−)
: Db(coh[Q−/G])→ Db(cohX) and a weak semi-

orthogonal decomposition

Db(cohX) = 〈Z+0 , . . . ,Z
+

µ−1,D〉

where D represents the essential image of the functor 8+
t (K−)

.

Since X is smooth and proper, Db(cohX) is saturated [BV03, Corollary 3.1.5], and
so is any weak semi-orthogonal component. By [BK90, Proposition 2.8], all the subcate-
gories are fully admissible and we can mutate to get a new semi-orthogonal decomposi-
tion

Db(cohX) = 〈D,Z+0 , . . . ,Z
+

µ−1〉.

We conclude the proof by noticing, as above, that tensoring by L induces an isomorphism
between Z+n and Z+n+d for any n ∈ Z. ut

Recall that X0 is the incidence scheme in PS(E)×S PS(E∗) and that

X = X ×PS (E) X0

is the relative universal hyperplane section of the S-morphism f : X→ PS(E).
We will now set up an elementary wall-crossing for an action of G̃ = G×Gm×Gm

on a space U1
E∗ with a potential function w such that

Db(cohX ) ∼= D(coh[(U1
E∗)+/G̃], w).

The gauged Landau–Ginzburg model corresponding to the quotient [(U1
E∗)−/G̃] obtained

from the elementary wall-crossing will be our weak homological projective dual.
Let us define

U1
E∗ = VQ(M)×S (VS(E∗) \ 0VS (E∗))

with an action of G̃ = G×Gm×Gm which can be described by

VQ(M) VS(E∗) \ 0VS (E∗)
G g 1
Gm α−1

1 α1
Gm α2 1

Here, α1 ∈ Gm and α2 ∈ Gm act by dilation on the fibers of the two respective bundles,
and the action of G on VQ(M) is induced by the equivariant structure of M.

Let λ1 be the one-parameter subgroup given by λ1(α) = (λ(α), 1, 1). The contracting
locus for λ1 is

Sλ1 = VSλ(M|Sλ)×S (VS(E∗) \ 0VS (E∗)),

while the contracting locus for −λ1 is

S−λ1 = 0VS−λ (M) ×S (VS(E∗) \ 0VS (E∗)).
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Therefore,

(U1
E∗)+ = VQ+(M)×S (VS(E∗) \ 0VS (E∗)) ⊂ U

1
E∗ ,

and, by definition,

(U1
E∗)− = U

1
E∗ \ S−λ1 .

We will prove later that λ1 determines an elementary wall-crossing.
We now show that the pullback of the natural pairing

θE ∈ 0(PS(E)×S PS(E∗),OPS (E)×SPS (E∗)(1, 1))

to X ×S P(E∗), i.e. the section whose zero scheme is X , induces a G × Gm-invariant
function w on U1

E∗ , whereG×Gm isG×Gm×{1} ⊂ G̃. Indeed, we have isomorphisms

0(X ×S PS(E∗),Sym(L � OPS (E∗)(1))) ∼= 0(VX×SPS (E∗)(L � OPS (E∗)(1)),O)
∼= 0([VQ+(M)×S (VS(E∗) \ 0VS (E∗))/(G×Gm)],O)
= 0([(U1

E∗)+/(G×Gm)],O) ∼= 0([U1
E∗/(G×Gm)],O)

where the first isomorphism comes from the fact that OPS (E)×SPS (E∗)(1, 1)|X×SPS (E∗) =
L � OPS (E∗)(1), and the last one comes from our assumption that Sλ had codimension
at least two in Q, which implies that Sλ1 has codimension at least two in U1

E∗ . Further-
more, w is homogeneous of degree 1 with respect to the final Gm component, i.e. it is
semi-invariant with respect to the action of all of G̃ = G × Gm×Gm, with character
β(g, α1, α2) = α2 of G̃.

We are now ready to state:

Theorem 3.1.2. Let Q be a smooth quasi-projective variety equipped with the action of
a reductive algebraic group G and with a morphism p : [Q/G] → S. Let λ be a one-
parameter subgroup of G which determines an elementary wall-crossing (K+,K−) such
that S0

λ admits a G-equivariant affine cover and Sλ has codimension at least 2 in Q.
Assume that X = [Q+/G] is a smooth and proper variety and let f : X → PS(E)
be an S-morphism such that there exists a G-equivariant invertible sheaf M on Q with
λ-weight d and M|[Q+/G] ∼= f ∗OPS (E)(1).

If d ≤ µ, the gauged Landau–Ginzburg model ((U1
E∗)−, G̃,O(β), w) is a weak ho-

mological projective dual of f with respect to the Lefschetz decomposition given by

Ai =


〈Db(coh[Q−/G]),Z+0 , . . . ,Z

+

d−1〉, i = 0,
〈Z+0 , . . . ,Z

+

d−1〉, 0 < i < dµ/de − 1,
〈Z+0 , . . . ,Z

+

µ−d(dµ/de−1)〉, i = dµ/de − 1.

In particular, there is a semi-orthogonal decomposition

Db(cohX ) = 〈D(coh[(U1
E∗)−/G̃], w),Z

+

d � Db(cohPS(E∗)), . . .
. . . ,Z+µ−1 � Db(cohPS(E∗))〉

where each Z+k is equivalent to Db(coh[Z0
λ/C(λ)])k .
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Later we will give a proof of this theorem, based on Theorem 2.3.4 applied directly to the
elementary wall-crossing given by λ1, and on Theorem 2.1.5, but we first state the other
main result of this section.

Assume that Q− = ∅. Then, by Remark 3.1.9 below, the Landau–Ginzburg model

((U1
E∗)−, G̃,O(β), w)

simplifies to the Landau–Ginzburg model

(Q×S PS(E∗),G,M � OPS (E∗)(1), w).

In this case, the following theorem shows that the semi-orthogonal decompositions in the
statement of Kuznetsov’s Fundamental Theorem of homological projective duality hold.

Theorem 3.1.3. With the assumptions of Theorem 3.1.2, and assuming further that
Q− = ∅, we have the following:

• The derived category of the gauged Landau–Ginzburg model (Q ×S PS(E∗),G,
M � OPS (E∗)(1), w) admits a dual Lefschetz decomposition

D(coh[Q×S PS(E∗)/G], w)) = 〈BN−1(−N + 1), . . . ,B1(−1),B0〉

where N is the rank of E and

Bi =


〈Z+0 , . . . ,Z

+

d−1〉, 0 ≤ i ≤ N − dµ/de − 1,
〈Z+µ+1−d(dµ/de−1), . . . ,Z

+

d−1〉, i = N − dµ/de,

0, N − dµ/de < i < N.

• Let V = E∗/U be a quotient bundle of E∗ and W = E/U⊥ be the corresponding
quotient bundle of E . Assume that X ×PS (E) PS(W) is a complete linear section, i.e.

dim(X ×PS (E) PS(W)) = dimX − r

where r is the rank of U . Then

• if r < dµ/de, there is a semi-orthogonal decomposition

Db(cohX ×PS (E) PS(W)) = 〈D(coh[Q×S PS(V)/G], w)),Ar(1), . . .
. . . ,Ai(i − r + 1)〉;

• if r ≥ dµ/de, there is a semi-orthogonal decomposition

D(coh[Q×S PS(V)/G], w)) = 〈BN−1(−r −N − 2), . . .

. . . ,BN−1−r(−1),Db(cohX ×PS (E) PS(W))〉.

Remark 3.1.4. The notations Z+j and CV are used to illustrate that the corresponding
categories are equivalent, even though they are embedded by different functors and in
different categories.
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Remark 3.1.5. Figure 2 demonstrates the tabular representation of the Fundamental The-
orem of Homological Projective Duality in the case of the above theorem. The case when
r < dµ/de is pictured. The long vertical line is placed to the immediate left of Ar .
Should we have r ≥ dµ/de, the vertical line would be to the right of Adµ/de−1. The
boxes between the staircase and the vertical line are highlighted. These correspond to the
additional terms appearing in the decompositions of Theorem 3.1.3. Compared with Fig-
ure 1 and Remark 2.4.11, the situation here is simpler because in the case when Q− = ∅,
the Lefchetz decomposition is almost rectangular.

Zd−1

Zµ−d(dµ/de−1)

Z0

A0 Adµ/de−1

B0BN−dµ/deBN

Fig. 2. A visual representation of the components appearing in the semi-orthogonal decomposi-
tions in Theorem 3.1.3.

Before proving Theorems 3.1.2 and 3.1.3 we will set up a more complete picture of
the various elementary wall-crossings that appear in the proofs. For each quotient bun-
dle V of E∗, we will set up what is, in principle, a variation of GIT quotients problem
(we will specify four different elementary wall-crossings arising in such a setup), which
interpolates between the corresponding linear sections of X, X , the Landau–Ginzburg
model ((U1

E∗)−, G̃,O(β), w) which is the homological projective dual and the Landau–
Ginzburg model whose derived category is equivalent to the category CV in the statement
of Theorem 3.1.3. The proofs will then follow from applying Theorem 2.3.4 to some of
these wall-crossings.

Consider the variety

Q̃V := VQ(M⊕ p∗V) = VQ(M)×S VS(V),

equipped with a G̃ := G×Gm ×Gm-action described by

VQ(M) VS(V)

G g 1
Gm α−1

1 α1
Gm α2 1

The action of G on VQ(M) is given by the G-equivariant structure on M, and this
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action is trivial on the VS(V) component. The first Gm acts with weight −1 on the fibers
of VQ(M) and with weight 1 on the fibers of VS(V). The second Gm acts by dilation
only on the fibers of VQ(M).

To describe the elementary wall-crossings we consider, we define four G̃-invariant
open subsets:

U1
V := Q̃V \ (VQ(M)×S 0VS (V)), (3)

U2
V := Q̃V \ (S−λ ×Q 0VQ(M) ×S VS(V) ∪ S−λ ×Q VQ(M)×S 0VS (V)), (4)

U3
V := Q̃V \ (0VQ(M) ×S VS(V)), (5)

U4
V := Q̃V \ (VSλ(M)×S VS(V)) (6)

of Q̃V , and one-parameter subgroups given by

λ1(α) := (λ(α), 1, 1),
λ2(α) := (1G, α, 1),

λ3(α) := λ1(α)λ2(α)
d
= (λ(α), αd , 1),

λ4(α) := λ2(α).

It is convenient to picture the elementary wall-crossings we will describe as in Fig-
ure 3. Had these wall-crossings corresponded to wall-crossings coming from varying a
linearization, the GIT fan would look as in this figure.

λ4λ2

λ1

λ3

XV ∼
([(U1

V )+/G̃], w)
∼=

([(U4
V )−/G̃], w)

HPDV ∼
([(U1

V )−/G̃], w)
∼=

([(U2
V )−/G̃], w)

([(U3
V )− /G̃], w)

∼=

([(U2
V )+/G̃], w)

X ×PS (E) PS(W) ∼

([(U3
V )+/G̃], w)

∼=

([(U4
V )+/G̃], w)

Fig. 3. Hypothetical GIT fan relating categories appearing in HPD.

To clarify, in what follows, we set

(U iV )± := U
i
V \ S±λi .

The explicit formulas for the Sλi can be obtained by comparing the following lemma with
equations (3)–(6).
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Lemma 3.1.6. There are equalities

(U3
V )− = (U

2
V )+ = Q̃V \ (0VQ(M) ×S VS(V) ∪ VS−λ(M)×S 0VS (V)), (7)

(U1
V )− = (U

2
V )− = Q̃V \ (VQ(M)×S 0VS (V) ∪ 0VS−λ (M) ×S VS(V)), (8)

(U3
V )+ = (U

4
V )+ = Q̃V \ (0VQ(M) ×S VS(V) ∪ VSλ(M)×S VS(V)), (9)

(U1
V )+ = (U

4
V )− = Q̃V \ (VSλ(M)×S VS(V) ∪ VQ(M)×S 0VS (V)). (10)

Proof. This is easily checked. ut

Lemma 3.1.7. There are new elementary wall-crossings ((K+)i, (K−)i) for 1 ≤ i ≤ 4,

U iV = (U
i
V )+ t Sλi , U iV = (U

i
V )− t S−λi ,

with

t ((K+)i) =

{
t (K+) if i = 1, 3,
rankV if i = 2, 4,

t ((K−)i) =


t (K−)− d if i = 1,
t (K−)− d · rankV if i = 3,
1 if i = 2, 4.

Proof. We treat the case where i = 1. The other cases are similar. Denote by i± :
Q±→ Q the open immersions. Notice that

U1
V = (VQ+(i

∗
+M))×S (VS(V) \ 0VS (V)) t VSλ(M|Sλ)×S (VS(V) \ 0VS (V)),

U1
V = (VQ(M) \ 0VS−λ (M|S−λ ))×S (VS(V) \ 0VS (V))

t 0VS−λ (M|S−λ ) ×S (VS(V) \ 0VS (V)).

We will verify that these are elementary HKKN stratifications.
As S±λ are closed by assumption, it is clear that

Sλ1 = VSλ(M|Sλ)×S (VS(V) \ 0VS (V)),

S−λ1 = 0VS−λ (M|S−λ ) ×S (VS(V) \ 0VS (V))

are closed in U1
V . Furthermore,

Zλ1 = VZλ(M|Zλ)×S (VS(V) \ 0VS (V)),

Z−λ1 = 0VZ−λ (M|Z−λ ) ×S (VS(V) \ 0VS (V)).

By assumption τλ : [G× Zλ/P (λ)] → Sλ is an isomorphism. Also

P(±λ1) = P(±λ)×Gm ×Gm.

It remains to check that the maps

τλ1 : [(G×Gm ×Gm)× VZλ(M|Zλ)×S (VS(V) \ 0VS (V))/P (λ1)]

→ VSλ(M|Sλ)×S (VS(V) \ 0VS (V))
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and

τ−λ1 : [(G×Gm ×Gm)× 0VZ−λ (M|Z−λ ) ×S (VS(V) \ 0VS (V))/P (−λ1)]

→ 0VS−λ (M|S−λ ) ×S (VS(V) \ 0VS (V))

are isomorphisms. We will check this for the first map; the proof for the second one is
similar. First, we can cancel the Gm × Gm with the one appearing in P(λ1) = P(λ) ×

Gm ×Gm and look at the map

[G× VZλ(M|Zλ)×S (VS(V) \ 0VS (V))/P (λ)] → VSλ(M|Sλ)×S (VS(V) \ 0VS (V)).

Now, we can forget the VS(V) \ 0VS (V) on both sides, as P(λ) acts trivially on this factor,
and look at the map

[G× VZλ(M|Zλ)/P (λ)] → VSλ(M|Sλ),

or equivalently
[VG×Zλ(OG �M|G×Zλ)/P (λ)] → VSλ(M|Sλ).

We have an isomorphism τ ∗λM|Sλ ∼= OG �M|Zλ . This induces the desired isomorphism
on the corresponding geometric vector bundles.

For the computation of t ((K+)1), observe that the relative canonical bundle ωSλ1/U1

is the pullback of ωSλ/Q to Sλ1 . Since λ1 = (λ, 1, 1), the λ1-weight of ωSλ1/U1 |Z0
λ

is
the same as the λ-weight of ωSλ/Q|Z0

λ
. Therefore, t ((K+)1) = t (K+). For t ((K−)1), ob-

serve that ωS−λ1/U1 is the pullback of ωS−λ/Q tensored with M∗. Therefore, t ((K−)1) =
t (K−)− d . ut

Remark 3.1.8. The fourth elementary wall-crossing corresponding to U4
V and λ4 is not

used in the proofs which follow. However, it is interesting to note that this wall-crossing
can be used to prove the semi-orthogonal decompositions appearing in the Fundamental
Theorem of Homological Projective Duality in the case where the Lefschetz collection is
the trivial one with A0 = Db(cohX), which would give

Db(cohXL) = 〈Db(cohXL),Db(cohX), . . . ,Db(cohX)〉.

As we noted above, X , the relative universal hyperplane section of the S-morphism
f : X → PS(E), is the zero locus of the pullback of the canonical section θE ∈
0(PS(E) ×S PS(E∗),O(1, 1)) to X ×S P(E∗). Furthermore, we constructed a unique
G×Gm-invariant function on [(U1

E∗)+] that corresponds to θE . Since 0(Q̃E∗ ,O)G×Gm ∼=

0([(U1
E∗)+/G × Gm],O) we observe that there exists a unique G × Gm-invariant func-

tion w on Q̃E∗ , corresponding to the canonical section

(θE : O→ E × E∗) ∈ 0(S,Sym1(E ⊗OS
E∗)).

Moreover, w has weight 1 with respect to the third factor, therefore w is a semi-invariant
function with respect to the G̃-action with character β(g, α1, α2) = α2. In other words,
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w corresponds to a section in 0(Q̃E∗ ,O(β))G̃. We can apply the same construction for V
instead of E∗, and we will abuse notation by also writing this section as w when U iV is
an open subset of Q̃V for general V , even though w, in general, depends on both V and
1 ≤ i ≤ 4.

Proof of Theorem 3.1.2. We will prove the statement for any quotient bundle V of E∗ and
then, setting V = E∗, we will obtain the desired result.

Consider the gauged Landau–Ginzburg model (U1
V , G̃,O(β), w) as above. By Theo-

rem 2.1.5, there is an equivalence

Db(cohXV ) ∼= D(coh[(U1
V )+/G̃], w).

Consider the elementary wall-crossing ((K+)1, (K−)1) from Lemma 3.1.7. Since, by as-
sumption, the G-action has weight d > 0 on the fibers of VQ(M), we can choose the
following connected component of the fixed locus of λ1:

Z0
λ1
:= (0V

Z0
λ
(M|

Z0
λ
) ×S VS(V)) ∩ U1

V

where Z0
λ is the connected component of the fixed locus chosen for (K+,K−). Finally,

inside G̃ we have
C(λ1) = C(λ)×Gm ×Gm

and
[Z0
λ1
/C(λ1)] ∼= [Z

0
λ/C(λ)×Gm] ×S PS(V)

where the Gm-action is trivial. Furthermore, for this choice,

S0
λ1
= V((M⊕ p∗V)|S0

λ
) ∩ U1

V ,

which admits aG-invariant affine cover as we have assumed the existence of such for S0
λ.

Therefore, we may apply Theorem 2.3.4 to obtain a weak semi-orthogonal decompo-
sition

Db(cohX ×PS (E) PS(W))

= 〈Z+0 � Db(cohPS(V)), . . . ,Z+µ−1 � Db(cohPS(V)),D(coh[(U1
V )−/G̃], w)〉.

As X is smooth and proper, by [BV03, Corollary 3.1.5] and [BK90, Proposition 2.8],
we have a semi-orthogonal decomposition and can mutate to get a new semi-orthogonal
decomposition

Db(cohXV )=〈D(coh[(U1
V )−/G̃], w),Z

+

0 �Db(cohPS(V)), . . . ,Z+µ−1�Db(cohPS(V))〉.

This identifies DV with D(coh[(U1
V )−/G̃], w). Taking V = E∗, we get the desired semi-

orthogonal decomposition.
ThePS(E∗)-linearity of the fully faithful functor D(coh[(U1

E∗)−/G̃], w)→Db(cohX )
follows from the linearity of all the functors involved. ut
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Since, in the statement of Theorem 3.1.3, we assume that Q− = ∅, the picture is simpler.
In this case, we have (U2

V )+ = (U
2
V )− and the linear sections of the weak homological

projective dual can be directly compared toX×PS (E)PS(W). Had these elementary wall-
crossings corresponded to wall-crossings coming from varying a linearization, the GIT
fan would look as in Figure 4.

λ1

λ4

λ3

X ×PS (E) PS(W) ∼

([(U1
V )+/G̃], w)

∼=

([(U4
V )−/G̃], w)

HPDV ∼
([(U1

V )−/G̃], w)
∼=

([(U2
V )−/G̃], w)

∼=

([(U2
V )+/G̃], w)

∼=

([(U3
V )−/G̃], w)

X ×PS (E) PS(W) ∼

([(U3
V )+/G̃], w)

∼=

([(U4
V )+)/G̃], w)

Fig. 4. Hypothetical GIT fan relating categories appearing in HPD in the case Q− = ∅.

Remark 3.1.9. In this case, we can simplify the weak homological projective dual

((U1
E∗)−, G̃,O(β), w)

to the Landau–Ginzburg model

(Q×S PS(E∗),G,M � OPS (E∗)(1), w),

as well as its linear sections, by cancelling the Gm-actions which are now free. That is,
for any quotient bundle V of E∗, the Landau–Ginzburg models

((U1
V )−, G̃,O(β), w) and (Q×S PS(V),G,M � OPS (V)(1), w)

have equivalent derived categories.

Remark 3.1.10. Although the second elementary wall-crossing corresponding toU2
V and

λ2 is not used in the proof below, we have chosen to keep it in the main construction (see
Figure 4), as it still allows one to construct semi-orthogonal decompositions similar to the
ones in Theorem 3.1.3, albeit not in the correct order.

Proof of Theorem 3.1.3. We considerU3
V and the elementary wall-crossing ((K+)3, (K−)3)

of Lemma 3.1.7. The fixed locus of λ3 is

Z0
λ3
= (VZ0

λ
(M|Z0

λ
) \ 0V

Z0
λ
(M|

Z0
λ
))×S 0VS (V),

and since C(λ3) = C(λ) × Gm × Gm, we may cancel the fibers of this line bundle with
the first Gm-action to obtain an isomorphism

[Z0
λ3
/C(λ3)] ∼= [Z

0
λ/C(λ)×Gm].
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We apply Theorem 2.3.4 and Proposition 2.1.6 to two cases. When µ > dr we obtain
a semi-orthogonal decomposition

D(coh[(U3
V )+/G̃], w) = 〈D(coh[(U3

V )−/G̃], w),Z
+

0 , . . . ,Z
+

µ−dr−1〉. (11)

When µ ≤ dr we obtain a semi-orthogonal decomposition

D(coh[(U3
V ))−/G̃], w) = 〈D(coh[(U3

V )+/G̃], w),Z
−

0 , . . . ,Z
−

dr−µ−1〉 (12)

where, as before, we denote by Z−k the essential images of the fully faithful functors ϒ−k .
Therefore, in the case µ ≤ dr we have

D(coh[(U1
V )−/G̃], w) = D(coh[(U3

V )−/G̃], w)

= 〈D(coh[(U3
V )+/G̃], w),Z

−

0 , . . . ,Z
−

dr−µ−1〉

= 〈Db(cohX ×PS (E) PS(W)),Z−0 , . . . ,Z
−

dr−µ−1〉

= 〈Db(cohX ×PS (E) PS(W)),Z+0 , . . . ,Z
+

dr−µ−1〉 (13)

where the second line comes from (12), the third is by Theorem 2.1.5 and using the fact
that X ×PS (E) PS(W) is a complete linear section, and the last comes from equivalences
between the essential images Z+j of ϒ+j and the essential images Z−j of ϒ−j .

In the case where dr < µ, as before, considering the decomposition (11) will suffice.
We can now proceed to the proof of the statements in the theorem. Setting V = E∗

and noticing that in this case X×PS (E) PS(W) = ∅, we obtain the dual Lefschetz decom-
position

Db(coh[(U1
E∗)−/G̃], w)) = 〈BN−1(−N + 1), . . . ,B1(−1),B0〉

where

Bi =


〈Z+0 , . . . ,Z

+

d−1〉, 0 ≤ i ≤ N − dµ/de − 1,
〈Z+µ+1−d(dµ/de−1), . . . ,Z

+

d−1〉, i = N − dµ/de,

0, N − dµ/de < i < N.

.

Combined with Remark 3.1.9, equation (13), gives the statement of the theorem in the
case where µ ≤ dr , and similarly (11) gives the statement when dr < µ (see Figure 2
and Remark 3.1.5). ut

Remark 3.1.11. On dropping the assumption that X ×PS (E) PS(W) is a complete linear
section the theorem above continues to hold if we replace X ×PS (E) PS(W) either by the
gauged Landau–Ginzburg model (U3

V , G̃,O(β), w) or equivalently by the derived fiber
product X ×L

PS (E) PS(W) (see [Isi12, Remark 4.7]).
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3.2. A first example: projective bundles

In this section we provide an elementary and explicit example of homological projective
duality using the results of the previous section. The results presented here were first
proved in [Kuz07].

Let P be a locally free coherent sheaf on B with

V := H0(P)∗ 6= 0.

For the projective bundle π : PB(P)→ B, the relative invertible sheaf OP(P)(1) provides
a map

j : PB(P)→ P(V ).

With the notation as in the previous section, we set

Q = VB(P), G = Gm, λ(α) = α−1, M = O(χ), S = Spec k,

where Gm acts by fiberwise dilation and χ(α) = α. It follows that

[Q+/G] = PB(P), [Q−/G] = ∅ µ = rankP, d = 1,

As = π
∗ Db(cohB) for 0 ≤ s < µ.

By Remark 3.1.9, the weak homological projective dual reduces to

(VB(P)×k P(V ∗),Gm,O(χ) � O(1), w)

with Gm acting fiberwise with weight 1. This is isomorphic to

(VB×kP(V ∗) (P � O(1)),Gm,O(χ),w)

where Gm acts fiberwise with weight 1. Therefore, in this case, we can do more. Namely,
we may apply Theorem 2.1.5 to see that

D(coh[VB×kP(V ∗) (P � O(1))/Gm], w) ∼= Db(cohZ(w))

where Z(w) is the zero locus of w in B ×k P(V ∗). Furthermore, by definition, Z(w) can
be described as the set

Z(w) = {(b, s) | s(b) = 0} ⊆ B ×k P(V ∗).

Remark 3.2.1. This is precisely the homological projective dual obtained by Kuznetsov
[Kuz07]. Also notice that, as observed in [Kuz07, Lemma 8.1], Z(w) ∼= PB(P⊥)
where P⊥ is the locally free coherent sheaf defined as the kernel of the evaluation map
V ∗ ⊗OB → P .

Remark 3.2.2. If we project down to P(V ∗) then the fiber over s ∈ V ∗ = H0(B,P)
is precisely the vanishing locus of s. In particular, the image is the set of degenerate
sections of P . When rankP = dim B + 1, this is precisely the projective dual of PB(P)
(see [GKZ94, Theorem 3.11]). However, unlike the usual projective dual, the homological
projective dual is smooth.
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4. Homological projective duality for d-th degree Veronese embeddings

We will now apply the results of the previous two sections to construct a homological
projective dual to the degree d Veronese embedding. In view of potential applications,
we will do this in the relative setting. Let S be a smooth, connected variety and P be a
locally free coherent sheaf on S. We consider the relative degree d Veronese embedding
for d > 0,

gd : PS(P)→ PS(SdP).

Notice that g∗d(OP(SdP)(1)) ∼= OP(P)(d). Consider the Lefschetz decomposition

Db(cohPS(P)) = 〈A0, . . . ,Ai(i)〉

where the subcategories Aj are defined to be

A0 = . . . = Ai−1 = 〈p
∗ Db(coh S), . . . , p∗ Db(coh S)(d − 1)〉,

Ai = 〈p
∗ Db(coh S), . . . , p∗ Db(coh S)(k − 1)〉

where k = rankP − d(d(rankP)/de − 1).
We will first consider PS(P) as a quotient and use the results of Section 3. Let us

take Q = VS(P) and consider the G = Gm-action given by fiberwise dilation. Take the
character given by χ(α) = αd and the invertible sheaf M = O(χ) on Q. Taking the
one-parameter subgroup λ : Gm → Gm given by λ(α) = α−1, we see that we have an
elementary wall-crossing with

Sλ = 0VS (P), S−λ = VS(P).

We get

[Q+/G] = PS(P), [Q−/G] = ∅, µ = rankP − d, d = d,

where d is the weight of the λ-action on M. This shows that M induces the morphism
gd : P(P)→ P(SdP∗).

Using Proposition 3.1.1, we recover the Lefschetz decomposition with

A0 = · · · = Ai−1 = 〈p
∗ Db(coh S), . . . , p∗ Db(coh S)(d − 1)〉,

Ai = 〈p
∗ Db(coh S), . . . , p∗ Db(coh S)(k − 1)〉.

The universal degree d polynomial w is given by

w := (gd × 1)∗θ ∈ 0(PS(P)×S PS(SdP∗),OPS (P)(d) � OPS (SdP∗)(1))

where θ is the tautological section in 0(PS(SdP) ×S P(SdP∗),OP(SdP)(1) �

OPS (SdP∗)(1)). The zero locus w in PS(P) ×S PS(SdP∗) is the universal hyperplane
section X of PS(P) with respect to the embedding gd .

We have thus constructed a Landau–Ginzburg model which is a homological projec-
tive dual.
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Theorem 4.1. The gauged Landau–Ginzburg model ([VS(P)×S PS(SdP∗)/Gm], w) is
a weak homological projective dual to PS(P) with respect to the embedding gd and the
Lefschetz decomposition constructed above. Moreover, we have:

• The derived category of the Landau–Ginzburg model ([VS(P)×S PS(SdP∗)/Gm], w)

admits a dual Lefschetz decomposition

D(coh[VS(P)×S PS(SdP∗)/Gm], w) = 〈Bj (−j), . . . ,B1(−1),B0〉.

• Let V ⊂ (SdP∗)/U be a quotient bundle and W = (SdP)/U⊥. Let r = rankU .
Assume that PS(P) ×PS (SdP) PS(W) is a complete linear section (not necessarily
smooth). Then there exist semi-orthogonal decompositions as follows:

• if r < d(rankP − d)/de − 1,

Db(cohPS(P)×PS (SdP) PS(W))

= 〈D(coh[VS(P)×S PS(V)/Gm], w),Ar(1), . . . . . . ,Ai(i − r + 1)〉;

• if r ≥ d(rankP − d)/de − 1,

D(coh[VS(P)×S PS(V)/Gm], w) = 〈B0(−r −N − 2), . . .

. . . ,BN−1−r(−1),Db(cohPS(P)×PS (SdP) PS(W))〉.

Proof. Apply Theorems 3.1.2 and 3.1.3 to the elementary wall-crossing described above,
and simplify as described in Remark 3.1.9. ut

Remark 4.2. For the first part of the theorem, we can alternatively consider X as a de-
gree d hypersurface fibration over P(SdP∗) and use a relative version of Orlov’s theorem,
proven in [BD+14], with S = PS(SdP∗), E = π∗P and U = OPS (SdP∗)(1) to get the
decomposition

Db(cohX ) = 〈D(coh[VPS (SdP∗)(π
∗P)/Gm], w),

A1(1)⊗ Db(cohPS(SdP∗)), . . . ,Ai(i)⊗ Db(cohPS(SdP∗))〉.

Observing that VPS (SdP∗)(π
∗P) ∼= VS(P) ×S PS(SdP∗), we obtain the required semi-

orthogonal decomposition.

Remark 4.3. If d = 2, using the methods of [BD+14], we recover Kuznetsov’s construc-
tion for degree two Veronese embeddings [Kuz05] (when S is a point) and the relative
version in [ABB11].
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