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Abstract. Given a quasiconformal mapping f : R" — R”" with n > 2, we show that (un-
)boundedness of the composition operator C¢ on the spaces Qo (R™) depends on the index «
and the degeneracy set of the Jacobian Jy. We establish sharp results in terms of the index «
and the local/global self-similar Minkowski dimension of the degeneracy set of J¢. This gives a
solution to [3, Problem 8.4] and also reveals a completely new phenomenon, which is totally differ-
ent from the known results for Sobolev, BMO, Triebel-Lizorkin and Besov spaces. Consequently,
Tukia—Viisild’s quasiconformal extension f : R” — R” of an arbitrary quasisymmetric mapping
g :R"™P — R"P is shown to preserve Qy (R") for any («, p) € (0, 1) x [2,n) U (0, 1/2) x {1}.
Moreover, Qy (R") is shown to be invariant under inversions for all 0 < « < 1.
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1. Introduction

Quasiconformal mappings can be characterized via invariant function spaces. For exam-
ple, a homeomorphism f : R" — R", n > 2, is quasiconformal if and only if the com-
position operator Cy (given by Cy(u) = u o f) is bounded on the homogeneous Sobolev
space wln (R™) (see for example [5]). The composition property is most easily seen from
the usual analytic definition, according to which a homeomorphism f : R" — R", n > 2,

is quasiconformal if f € WloC (R"™; R™) and there is a constant K > 1 such that

IDf(x)|" < KJr(x) ae.x eR".

Indeed, modulo technicalities, one simply uses the chain rule and a change of variables
It is far less obvious that also the invariance of the Triebel-Lizorkin spaces F; /Y q(]R”)
with 0 < s < 1l and n/(n +s) < g < oo characterizes quasiconformality (see [10,
2, 6, 4]). The difficulty here is that one has to deal with “fractional derivatives” and thus
the inequality from the analytic definition is not immediately helpful. For the off-diagonal
Besov spaces Bn /5.q (R™) with g # n/s, the situation is different: each homeomorphism f
for which C; is bounded on Bs (R™) has to be quasiconformal and even bi-Lipschitz;
these spaces are clearly bi- L1psch1tz invariant (see [4]). Recall here that f is bi-Lipschitz
if there exists a constant L > 1 such that

1
=y =lf@ - fOI=Lix=yl. Vrye R™.

Furthermore, the John—Nirenberg space BMO(R") is invariant under quasiconformal
mappings and each sufficiently regular homeomorphism f for which Cy is a bounded
operator on BMO(R") is necessarily quasiconformal (see [7, 1]).
In their 2000 paper [3], Essen, Jasson, Peng and Xiao introduced the so-called
Q-spaces Oy (R"), 0 < a < 1, that satisfy
WERY) C Fy /e ®") € Qo(R") € BMO(R?).

n/a n/a

Each Q. (R") consists of all u € L%OC (R™) with

Ju(x) —u()? 12
lullg,mry = sup < 20— ”/ / T dxdy < 00.
xo€R™, r>0 B(xq,r) v B(xq,r) lx — yl

The above definition actually makes perfect sense for all —oo < o < oo, but the case
o > 1 (when n > 2) reduces to constant functions and the case ¢ < 0 to BMO(R")
(see [3]). These spaces have received considerable interest. In [3], five open problems
related to the spaces Q. (R") were posed. All but the following one of them have by now
been solved.

A quasiconformal composition problem for the Q-spaces ([3, Problem 8.4]). Ler f
be a quasiconformal mapping. Prove or disprove the boundedness of the composition
operator Cy on Qq(R") with a € (0, 1).
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The above string of inclusions of function spaces, all of which except for the Q-spaces
are known to be quasiconformally invariant, suggests that the answer should be in the
positive.

We show that, surprisingly, the answer to the above question depends on the quasi-
conformal mapping in question through the shrinking properties of the mapping. For ex-
ample, the quasiconformal mapping f(x) = x|x| induces a bounded composition oper-
ator for all 0 < @ < 1, but if the Jacobian of a quasiconformal mapping decays to zero
when we approach a sufficiently large set, then the invariance may fail. Thus, the case of
Q-spaces is very different from the other function spaces that we discussed above.

In order to state our results, we need to introduce some terminology whose analogues
have appeared in estimating the upper box-counting dimension of the singular set of a
suitable weak solution of the Navier—Stokes system [8].

Definition 1.1. For a set E C R" and every r > 0, denote by Ncoy (7, E) the minimal
number of cubes with edge length r required to cover E.

(i) The local self-similar Minkowski dimension of E is defined as

S logy Neov(r, EN B
dimz E = lzivm inf limsup  sup 02 Neov ), (1.1

=00 ;0 BCR" log,(rg/r)
Nr<rp<l

where the supremum is taken over all balls B = B(xg, rg) C R" withrg € [Nr, 1].
(i1) The global self-similar Minkowski dimension of E is defined as

— log, N, ,ENB
dim; g E = liminf sup sup 83 Neov(r )
N—00 ;-0 BCR” logy(ra/7)
rg>Nr

, (1.2)

where the first supremum is taken over all » € (0, oo) and the second is over all balls
B = B(xg,rg) C R" withrg € [Nr, 00).

We also need the concept of the local Muckenhoupt class.
Definition 1.2. For a closed set E € R” and a nonnegative function w : R” — R, we

say that w belongs to the local Muckenhoupt class A1 (R"; E) provided there exists a
positive constant C such that

][ w(z)dz < Cessinf w(x) (1.3)
B X€B
for every ball B = B(xp,rg) C R" with 2rg < d(xpg, E). Naturally, A (R"; ) stands

for the Muckenhoupt class A1 (R"). Accordingly, E is called the degeneracy set of w
when w € A|(R"; E).

The main result of this paper is the following theorem.
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Theorem 1.3. Given n > 2, let f : R" — R" be a quasiconformal mapping with
Jr € A{(R"; E) for some closed set E C R". If E is a bounded set with dimy E € [0, n)
or E is an unbounded set with dimy g E € [0, n), then C; is bounded on Q,(R") for all

(1.4)

0o min{l, (n —dimy E)/2}  if E is bounded,
min{l, (n —dimzg E)/2} if E is unbounded.

In paiicular, if E is a bounded set with dimz E € [0, n — 2] or E is an unbounded set
with dimyg E € [0, n — 2], then Cy is bounded on Qy(R") forall a € (0, 1).

Theorem 1.3 is essentially sharp—see Theorems 1.6 and 1.7 below.
As a first important consequence of Theorem 1.3, we have the following result.

Corollary 1.4. Leta € (0,1) and 0 # B € R. If f(z) = |z|#~ 'z, then Cy is bounded on
Oy R"™). In particular, Q4 (R") is conformally invariant in the sense that g € Qq(R") if
and only if x — g(x|x|™2) is in Qq(R™).

Furthermore, for the Tukia—Viiséld quasiconformal extension f : R" — R” of an arbi-
trary quasiconformal (quasisymmetric) mapping g : R"77 — R"~7, we obtain another
important consequence of Theorem 1.3.

Corollary 1.5. Given 1 < p < n, suppose g : R"P — R"7? js a quasiconformal
mapping when n — p > 2, or a quasisymmetric mapping when n — p = 1. Let f :
R" — R" be the Tukia—Viiisild quasiconformal extension of g as in [9]. Then

Q) Jp, Jpm1 € AL (R RIP);

(i) Cy, Cf_| are bounded on Q,(R") for all

1/2 when p =1,
1 when p > 2.

O<a<

Consequently, u € Qy(R") ifand only ifu o f € Qy(R").

The proof of Theorem 1.3 relies on a new characterization of Q-spaces established in
Section 3. This technical result allows us to employ our Muckenhoupt assumption and
the control on the number of Whitney-type balls guaranteed by our dimension estimate.
We expect that our approach will allow one to handle various other function spaces as
well.

Our assumption on the control of the fractal size of the degeneracy set, whether
bounded or unbounded, is necessary in the following sense.

Theorem 1.6. Letn > 2 and 0 < o < 1. There is a bounded set Ey, with dim;y, Ey, =
n—2ag and a quasiconformal (Lipschitz) mapping f : R" — R" with J; € A|(R"; Ey,)
for which Cy is not bounded on Q,(R") for any a € (ag, 1).
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The main idea in the constructions for Theorem 1.6 is to patch up suitable pieces of radial
stretchings in a family of pairwise disjoint balls. In this manner, we also construct an
unbounded set E,, C Z" with dlmLG Eyy = n —2a but dlmL an = 0 and an associated
quasiconformal mapping as in Theorem 1.6 (see below). This also shows the need for
dimz ¢ in Theorem 1.3.

Theorem 1.7. Letn > 2 and0 < oo < 1. There exists an unbounded set an C Z" with
dimz g an = n — 2aq but dimy, ED,0 = 0, and a quasiconformal (Lipschitz) mapping
f i R" = R" with Jr € A{(R"; Eq,) for which Cy is not bounded on Q(R") for any
o € (ap, 1).

This paper is organized as follows: Section 2 clarifies the relationship between the Min-
kowski dimension and the local Minkowski dimension dim; or the global Minkowski
dimension dim; ¢, and also computes dim; and dim; ¢ for the sets in Theorems 1.6
and 1.7; Section 3 explores a new aspect of Q,(R"), which will be used in the proof
of Theorem 1.3; in Section 4, we prove Theorem 1.3; Section 5 contains the proofs of
Corollaries 1.4 and 1.5; Section 6 is devoted to the proofs of Theorems 1.6 and 1.7.

Finally, as the converse of the above open question, given a homeomorphism f :
R" — RR" for which the composition operator C; is a bounded on Qy(R") for some
a € (0, 1), one would like to know if f is necessarily quasiconformal. The answer is
actually in the affirmative, at least under suitable regularity assumptions on the home-
omorphism in question. Since this requires some work, the details will be given in a
forthcoming paper.

Notation. In the following, we denote by C a positive constant which is independent of
the main parameters, but may vary from line to line. The symbol A < Bor B =2 A
means that A < CB.If A < B and B < A, we write A ~ B. For any locally integrable
function # and measurable set X, we denote by fX u the average of u on X, that is,
fX u=|X|"! fx udx. For aset Q and x € R", we use d(x, 2) to denote inf,cq |x — z|,
the distance from x to Q. For two sets E, F C R", write dist(E, F) = infxcg, yer [x— .
By A0, we mean the cube concentric with Q, with sides parallel to the axes, and with
edge length £(AQ) = AL(Q); similarly, A B denotes the ball concentric with Q with radius
Arp, where rp is the radius of B.

2. Local and global Minkowski dimensions

In this section, we clarify the relation between the Minkowski dimension and the above
dimensions dlmL and dlmLG Recall that for a bounded set E C R", its Minkowski
dimension dimy; E is defined by

_ log, N, ,E
dimy; E = lim sup M
r—0 log,(1/r)

where Ncoy (7, E) is the minimum number of cubes with edge length r required to cover E.
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Lemma 2.1. (i) Forevery set E C R" and every R > 1, we have

dim 10g, Neoy(r, EN B
Tmy E = liminf limsup  sup g2 Moo )
N—oo .0 BCR" logz(rB/l")
Nr<rp<R

(ii) For every set E C R", we always have
0 < supdimy;(E N B) < dimy E < dim;g E < n,
B
where the supremum is taken over all balls in R".
(iii) If E C F, then dimy E < dimy F and dim; g E < dim; ¢ F.

Proof. (i) From the definition, we always have

— log, N, ,ENB
dim; E < liminf limsup sup g2 Neov(r )
N—oo 0  BCR" log,(rp/r)
Nr<rp<R

Towards the reverse inequality, notice that every ball B of radius 1 < rp < R can be
covered by ¢, R" balls B; of radii 1. So

Neov(r, EN B) < ¢, R" sup{Neoy(r, EN B) : B C R" with r = 1},
and hence for all » < min{rp/N, 1} we have

logy Neo(r, ENB) _ logy cuR” 10g> Neoy(r, E N B)
< su
log,(rg/r) log, N Bern log,(1/r)

rg=1

Since the first term on the right-hand side tends to 0 as N — oo, by the definition of
dim; E we obtain the desired inequality.

(ii) Obviously, ELG E < n is obtained from Neoy(r, E N B) < (2rg/r)" for every
ball B with radius rg > Nr: indeed,

dim ! log, N
dimyg E < liminf sup sup M — liminf nlog, N +n _
N—oo ;50 BcR” nlng(rB/r) N—o00 nlog2N
rg>Nr

The other inequalities follow from the definitions and (i) directly.
(iii) These statements are trivial. ]

If E is a set of finitely many points, observing that Ngoy(r, E N B) < 1 for every ball B
with radius rg > Nr, we obtain

log, C
08> =0,

dimzg E < liminf
N—oo logy N

which implies that L L L
dimM E = dimL E = dimLG E =0.
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However, for a countable set E, di_mL(;, dim; and supp di_mM(E N B) may be very
different. Write N” = N x -+ x Nand 2N)" = 2N x ... x 2N with 2N = {2k : k € N}.
For 6 € [0, 1], set

2= ) Are= [ 25254120 420 2.1)
keNU{0} keNU{0}

where [0k] is the largest integer less than or equal to Ok. Write (210)" = 2N0 ... x 2N,
Observe that

2Ne = NU{0} when6 =1,

2No = 2Ny {1} when6 = 0.
We always have

dimy (2")" N B) = dim(2")" N B) = dimz((2")" N B) =0
for all balls B and all 6 € [0, 1] since (2%)" N B only contains finitely many points.
Lemma 2.2. Let 0 € [0, 1]. Then
dimz g 2N)" = on; (2.2)

in particular, dimy g M7 = 0 and dim;. g N* = n. But dim; 2N)" = 0.
Proof. We first show that dim; (2M¢)” = 0. Observe that each B C R" with rz < 1
contains at most a uniform number of points in Z". So for each N > 1 and r €
(0,rp/N), we can cover B N (2Neyn by a uniform number of balls of radii r, that is,
Neov(1, @2N)" N B) < 1, which implies that dimz (2N¢)” < 0 by definition. So by
Lemma 2.1, dim;, (2No)" = 0.

To show (2.2), we first consider the easy cases dim; g N = n and dim; g V)" = 0.
Indeed, for every ball B C R” with rg = N, we have

Neov(1,N" N B) = §(N" N B) > (N//n)",

which implies that

_ log, (N//n)"
Tmse N > liminf 02 VAV
N—oo 10g2 N

3

and hence, by Lemma 2.1, dim; g N"* = n.
On the other hand, foreach N andr > 0, if r < 1 and Nr < rp, we have

Neov(r, 2Y)" N B) < (log, rp)"™;
if 2% < r < 2k*1 for some k > 0, we have
Neov(r, @' N B) < /nllogy(rg/r +2)1".

Hence

_ | 1 ,
Timig QYY" < liminfsup sup iof2lyloeaCa/r +2)1

0.
N—00 ;>1 B:rg>Nr logZ(rB/r)

So by Lemma 2.1, we have dimzg 2N = 0.
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Generally, we let 6 € (0, 1). For every ball B = B(0, /n2"+1) withm > 2/0 + 1,
we have
Neov(1, 2Y)" 0 B)) = 5(2")" n B) > 2",
and hence
nom . . .nhB(logy, N) —nb _

dim N0y > fiminf su = liminf = nob.
2 )z N—oo 2,,,+1I;N m+1 N—o0 log2 N "

The proof of dimyg (2Y)" < On is reduced to verifying that for every large N, all
r > 0 and all balls B with rg > Nr, we have

Neov(r, @Y%) N B) < (rp/r)?". (2.3)
Indeed, this implies that

log,[(rg/r)?"] + log, C

dimzg V)" < liminf sup sup

N—oo 150 B:rg>Nr 10g2(}’3/r)
onl N +6nl C
_ fiminf 082 N T ORI0BC _
N—o0 logzN

To prove (2.3), we consider two cases under the assumption N > 25,

Casel:0 <r < 1. Ifrg <2, then (2N9 )" N B contains no more than a uniform number
of points, and hence
8™ N B S 1S (/)™

If 2" < rp < 2"*! for some m > 1, then 2)" N B C [0, 2" 2]". Notice that the
interval [0, 2”**2] contains at most ZZH'II 20k ~ p0m points of 26 and so we have

82"y N B) <27 < (rp/r)",
which implies that
Neov(r, @Y N B) < #(2Y)" N B) < (rp/r)"".

Case 2: r > 1. Assume that 2¢ < r < 2+, Given a ball B with rz > Nr, assume that
2" < rp < 2"*! forsomem > 54-¢. Then 2N¢)"NB C [0, 221", Observe that [0, 2¢]
can be covered by an interval of length r. If ¢ < k < [£/6], then {2F, 2K41, ... 2k4-2[0K1}
can be covered by an interval of length r. If k > [¢/6], then {2", 2k, ..., 2]‘—1—2[9"]} can
be covered by 210k1=t 4 1 intervals of length . Thus whenm < [£/0]—2, 2No [0, 2m+2)
can be covered by m — £ + 2 intervals of length r. If m > [£/0] — 2, then 20 N[0, 2+2]
can be covered by 20m—L intervals of length 7. In both cases, 2No [0, 2m+2] can be
covered by C2¢"=9 < C(rp/r)? intervals of length r. Therefore

Neov(r, 2N)" N[0, 2" F21") < (rp/r)?",

which gives (2.2) as desired. ]
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Remark 2.3. Lemma 2.2 indicates that the dimension di_mLG not only measures the local
self-similarity and local Minkowski size but also the global self-similarity of E.

By a slight modification of the standard Cantor construction, we obtain a set E, and
its self-similar extension &, such that dim; &, and dimy g &, are the same and coincide
with dimy E,. Precisely, the sets E, and &, are defined as follows. Let a € (0, 1). Let
I;,i = 1,2, be the two closed intervals obtained by removing the middle open interval
of length a from Iy = [0, 1] ordered from left to right; when m > 2, the subintervals
Li..i,,» im = 1,2, are the two closed intervals obtained by removing the middle open
intervals of length a[(1 — a) /2]””1 from /;,..;,, , ordered from left to right. Notice that
[1;..i,,| = [(1 —a)/2]" form > 1. For eachm > 1, set

= Gy, EF=uh=1I0xeoexI)
ilenime{l,2}

Notice that E' consists of 2" disjoint cubes {Q,, j}?m"1 with edge length [(1 — a)/2]™,

and E;”“ C EJ'. Denote by z,,, ; the center of Oy, ;, and zo = (1/2, ..., 1/2) the center
of Qo = 16’. Denote by E, the closure of the collection of all these centers, that is,

E; ={z0,zmj:meN, j=1,...,2m} 24

Set

o) k
Sa:UKl_a)x:era}. (2.5)

k>0

In this case, we consider the larger family {Qm, jImez, jeN consisting of all

2 A\
{(12) vix e Quine]

for all possible k > —m andi =1, ..., 2(m+kn 1 e ?m,j be the center of ém] We also
have

Ea={2mj:mel,jeN}L (2.6)

Lemma 2.4. Foreverya € (0, 1),

n

dimy E, = dimg E, = dim; &, = dim;g E, = dim; g & = ——————.
1my Lgq 1my, Lq 1my, Cq 1MLG La 1MG Ca logy(2/(1 — a)]
Proof. By Lemma 2.1, it suffices to show that

I n R
dmyE,> ———— & dmp & <-—
M= = 10g,[2/(1 — a)] L5 = T0g,12/(1 — )]

To this end, notice that for each k > m, we have

n

k—1
207 < Neoy([1 = @)/21%, Eq 0 Q) < 20677 43 728 < ol tmmn,

l=m
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where recall thatﬂ(ém,j) = [(1—a)/2]™. Foreachr < [(1 — a)/2]m+2, picking k, > m
such that

[(1—a)/2" <r<[d—a)/2]"7",
we have
Neov([1—=a) /215 +1 €,0 Q. i) < Neoy(r, EaN Om. ;) < Neoy([1 —a)/21%, E4 0\ O ),
and hence Neoy (7, E4) ~ 2k =mn 1 particular, Neoy(r, Eg) 2 2kn which implies that

— . kyn +log, C . kyn +log, C
dimy E, > limsup ——————— = lim sup
r—>0  logy(1/r) k—oo krlogy[2/(1 —a)] +log, C
n

T log,2/(1—a)

Moreover, for each ball B withrg > [(1 — a) /2]3r, there exists a kg < k. — 2 such that

[(1 —a)/21*% <rp <[(1 —a)/2]5" L.

Hence
Neov(r, Ea N B) < Neoy([1 — a)/Z]kV, &NB)< o (kr—kp)n_
Thus
sup logy Neov(r, €4 N B) - sup log, Clz(kyfm)n
Birpzlt-a/2-Vr  10&80B/7) " 0<m<k,—N logo[(1 — a)/21m~H

- U n(k, —m) +log, Cy - nN +log, Cy
= ozt (kr —m)logy[2/(1 —a)] ~ Nlogy[2/(1 — a)]
— n/log,[2/(1 —a)] as N — oo.

Consequently, we get

dimc &, < "
1m a > T T o
LG log,[2/(1 — a)]

as desired. O

3. A characterization of Q-spaces

In this section, we characterize membership in Q-spaces via oscillations. To do so, let
us introduce a couple of concepts. Let u be a measurable function. For ¢« € (0, 1),
q € (0, 00), and each ball B = B(xg, r) C R”, set

2/q
Y, ,(u, B) = 22’“"][ inf{][ lu(z) —c|? dz} dx.
“d Z B B(x,27kr)

k=0 (xo,r) ¢€R
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Define Qy 4 (IR") as the collection of u € L({OC (R™) such that

lullguqeny = sup  [Wa g, Blxo,r))]"? < oo,
x0€R”, r>0

Also, for every ball B C R”" and each function «# on B, set

®,(u, B) = |B|2a/ﬂ—1/ Ma’xdy
o BJp |x —y[t '
Then |ullg,® = supp [Pq(u, B)]l/z, where the supremum is taken over all balls

B C R".

Proposition 3.1. Let @ € (0, 1) and g € (0, 2]. There exists a constant C such that for
all measurable functions u and all balls B = B(xo, r) one has

C '@y (u, B(xg, r/16)) < W g, B(xg, r)) < CPy(u, B(xp, 16r)).
Consequently,
Qe R") = QqgR") with || - llg,®m) ~ I - | 04y ®)-
To verify Proposition 3.1, we need the following estimate from [6].

Lemma 3.2. Leto € (0,00) andu € LY (R"). Then there is a set E with |E| = 0 such
that for any x, y € R" \ E with |x — y| € [27%=1,27%) one has

1/o
) —um < Y. {C‘é‘]ﬁ []i(x,zj) lu(w) — ¢l dw]

j>k=2
1/o
+ inf [][ lu(w) —c|” dw:| } (3.1)
ceR B(y,2—J)

Proof of Proposition 3.1. By Lemma 3.2, we obtain

— a2 o
/ ) Z WD 4y < 5 @iyt / () —u(y) dy
B(x,2r)

|x — y|rree = B(x27/r)\B(x.275=1r)

%) 2/q
< <2—f'r>—2“[ inf][ e(w) —c|‘1dw]
j:Z—I kz/Z—fER B(x,27%r)
w .
+ > @™
j=1
= Ji(x) + J2(x).

2/q
][ [ Z inf][ lu(w) — c|? dw} dy
B(x,2=ir)\B(x,2=i~1r) kzj_zcéR B(y,2%r)



1170 Pekka Koskela et al.

Applying Holder’s inequality and changing the order of summation, we obtain

00 2/q
— i N=Da~—] ka -
Hx) $ Y @i Y 2 “Clgﬂf{ |:]£(x’2kr)|u(w)—c|qdw]

=1 k>j—2

k 2/q
< ke (27 )22 i% inf [][ lu(w) — c|? dw]
k;S j;1 c€R | J B(x,27kr)
s 2/q
< Q7)™ inf |:][ lu(w) — c|? dwi| .
kzz—:3 ceR B(x,27kr)

Thus,

2/q
rzo‘*"/ Jix)dx < Z 22'“"][ inf [][ lu(w) — c|? dw] dx
B(xg,r) K>3 B(xo,8r) C€R [J B(x,2-kr)

5 \Ila,q(uv B(xg, 8r)).

For J,, notice that

/ Jo(x)dx
B(xo,r)

[ee] 2/q
< § :(er)2°‘|: § : inf][ lu(w) — c|? dw] dy.
/B ceR B(y,Z*kr)

(x0,4r) j=—1 k>j—2

Then, applying an argument similar to the above estimate for J;, we have
rZ“—”/ J(x)dx S Wy 4 (u, B(xo, 87)).
B(xo.7)

Combining the estimates on J; and J>, we obtain
Dy (u, B(xo, 1)) f, \I"a,q(u» B(xo, 8r)).
On the other hand, noticing that for all x € R", » > 0 and k > 0 one has
—k+3r

2 <lx—wl—r—z <lz—w <l —wl+x—z] <2

whenever

z€Bx,27%) & we B, 2752\ B(x, 2751,
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we utilize g € (0, 2] and the Holder inequality to deduce

2/q
inf [][ lu(w) — ¢l dw} < ][ u(2) = g ok dz
ceR |JB(x,27%r) B(x,27kr)

5][ [u(2) — U gy 2—k+2,)\ B(x.2—k+1 |2dZ
B(x,27kr) (27 ENB (275 )

§][ ][ lu(z) — u(w)lzdwdz
B(x,27%r) J B(x,27%+2p)\ B(x,2=k+1r)
2
_ u(z) —u(w
S@ kr)za][ / dedz
B(x,2%r) J B(x,2= k42 )\ B(x,2k+1r) |2 — w["H¥

2
_ u(z) —ulw

cotmf | & P

B(x,2=*r) J Bz, 27 %3\ B(z,2~kr) 12 — w[T

Thus, by changing the order of the integrals with respect to dz and dx,

“I’a,q (”s B()C(), }’))

2
uz) —ulw
7[ 7[ / (@) (+2)| dwdzdx
k>0 B(xo.r)J B(x,27%r) J B 273\ Bz, 27kr) 12 — w["TH

2
u\z) —ulw

syl TR
=07 Btxo.2n) I Bz.27kr) JB 23\ B2~y |2 — W[t

lu(z) — u(w)|?

< P ][ / 5, dwdz
=07 Bo.2r) J B2\ Bz2 k) |2 — w]tTE
2
—u(w
/ f ju@) Irn(—&-Zil dwdz < g (u, B(xo, 161)).
B(xo,2r) J B(z,8r) lz —w
This completes the proof of Proposition 3.1. O

4. Proof of Theorem 1.3

Here we only prove Theorem 1.3 under the assumption diam E < oco. The case of infinite
diameter is similar. Without loss of generality, we may assume that diam £ = 1 and
E C B(0, 1). By Proposition 3.1, it suffices to show that

Wy oo f, B) S |lullg, @ foreachball B = B(xg,r).
We divide the argument into two cases.

Case 1: d(xg, E) > 4r. Notice that B(x,2r) N E = { for all x € B(xg, r). Since
Jr e AI(R"; E), and Jf(f_l(z)).]f—l(z) = 1 for almost all z € R", for all k > 0 and
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x € B(xg, r) we have

esssup  Jp1(x) = esssup  [Jp(f (@)1
z€f(B(x,27%r)) zef(B(x,27kr))

-1 —k
] < | |B(x,27"r)|

[ essinf Jf('l,U) m

weB(x,27kr)

A.1)

Thus,

|f (B(x,27%r))] 2
o f(z) —clPdz = ~—— 22 lu(z) — c*Jo-1(z) dz
]€3(x,2—kr) |Bx, 275 JrBe2+r) f

§][ lu(z) — c|?dz.
f(B(x,27kr))

Hence we have

Wy 2(uo f, B(xo, 1)) S ZZZka][ inf][ u(z) — c? dz dx
k=0 B(xg.r) ¢€R J £ (B(x,27*r))

2a/n—1
< Z/ % inf ][ lu(z) — c|* dz dx.
=0 /Bo.r) 1B, 275r)] @/n ceR J (B, 2kr))
Observe that Jy € A1(R"; E) also implies that

|f(B(x.27%r)|
T 3T s O

< essinf  Jp(z) S Jp(x) foralmostall x € B,
z€B(x,27%r) ’

that is,
IB(x,27*r) |7 S Jro)l F(B(x, 2757

Therefore, by a change of variables again,
\IIOZ,2(M o f’ B(X(), r))
/ |Bx, )P/

nf ][ lu(z) — c>dz [Jp (x)1*/" dx
f(B(x,27kr))

~Y 1
=0 /Bo.r) [ f(Blx, 27kr))Pe/n cer
< / |B(f ™' (x), )/ !
~ 5 r oy F B, 2702/
x inf ][ lu(z) — c*dz Jffl(x)[Jf(f_l(x))]h/" dx
ceR Jr(B(f~1x).27r))
< / |B(f ' (x), r)/n!
~ & raeory 1F B, 270 )/

x inf u(z) = cl? dz [Jp-1 ()] >/ dx.

ceR ]£<B<f1<x>,2kr))
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Now, by (4.1) with k = 0 and x = x(, we have

|B(xo. )| \B(w, )|
Jei < ~ A B(xg, 1),
s SO S B 7By S Pen

which further yields

Wy 2(u o f, B(xo,7))
-1 2a/n
S’Z][ ( lf(B(fl (x)’rk))' ) inf][ lu(z) — c[*dz dx
=0/ B \IF (B ~H(x), 275n)| ceR Jr(B(-100).2-kr))

L —1 , 2u
§][ Z( f(fl ) rk) ) inf][ lu(z) — cl*dzdx, (4.2)
FBory f=g \Lr (FTH), 2750) ) ceR Jpp(p-1).274n)

where

Ly(z,r) =sup{lf(@) — f(w)|: lz—w| <r} & Lyg(z,r)" ~|f(B(z, )l
Moreover, by quasisymmetry of f, for all j € Z and z € R" we have
fkeZ: Li(z, 27" e 279 Ly (2, 1), 27 Ly (z, )} S 1. 4.3)
Recalling that
F(B(xo, 7)) C B(f(x0), Ly(x0,7)) & Lp(f~'(x),r) <22 L¢(x0,7)

for some constant N > 1 (independent of xq, r; see [5]), we arrive at

Woa(uo f, B(xg, 7)) < 2221“][ lu(z) — c|* dzdx

j>0 B(f(x0),Ly(x0.r)) ]i(x,2f2N2Lf(XOJ))

< Waa(u, B(f (x0), 2" Ly (x0, 7)), 4.4)

which together with Proposition 3.1 gives

Woa(uo f. B(xo. 7)) < lullf, @
as desired.

Case 2: d(xg, E) < 4r < 4. Recall that each domain 2 admits a Whitney decomposi-
tion. In particular, for @ = R" \ E, there exists a collection Wg = {S;};en of countably
many dyadic (closed) cubes such that

@) Q= Ujen S and (S)° N (8))° = B forall j, k € Nwith j # k;

(i) 27/ €(S)) < dist(S}, Q) < 2/ €(S));
(i) 1€(S) < £(S) < 4€(Sx) whenever S, N S; # 7.
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Assume that 27%0~1 < 167 < 27%0 for k € N. For each k € Z and ball B, write
Fe(16B) = {S; € Wo : S;N16B # 3,27F < £(S;) < 2751} = (S}

Notice that there exists an integer Ng such that if k < kg — Np, then ./, (16B) = (.
Indeed, by

dist(Sk.j. E) < 16r +d(xo, E) < 20r

and (ii) above, we have 2k < 2% which is as desired.
Moreover, letting € € (0, n — dimy E — 2«), we claim that for all k > ko — N,

ﬁyk(l6B) < 2(k7k0)(di7mL E+€).

To see this, by the definition of dimy, E there exist constants N| > 8 and k; € N such that
forall k > k; + ko + N1, we have

log, Neow2 ¥, EN32B)
0g> cov( 5 3 ) §dimLE+e,
log,(32r/27%)

which implies that
Neoy(27%, EN32B) < 2k—ko)@dim Ete), (4.5)

For every § > 0, denote by Aoy (8, E N 32B) the collection of cubes of edge length &
required to cover E N 32B and have

B Acov(8, E N32B) = Neov(8, E N32B).
Fork > —Np and Sk; € #%(16B), we have ZIIﬁSk,i NE # ¢, and hence S ; intersects
some cube Q € JI/COV(Z’k, E N 32B), which implies that S ; C 2B3p Q. Also notice that
for each cube Q € Neow(27K 16BN E), the cube 213nQ can only contain a uniformly
bounded number of S ; € 7% (16B). We conclude that for k > — N,
1.7 (16B) < Neoy(27%, EN32B).
This together with (4.5) implies that for kK > k; + ko + Ny,

£.7.(16B) < 2k—ko)@im; E+€),

On the other hand, if kg — Ng < k < ki + ko + Nj, then from 2% < 2ki+Ni+No <1
we always have

8.7 (16B) < onlk—=ko) < 2(k—k0)(mL Ete)

This gives the above claim.
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By Proposition 3.1, we have

Wo2(u o f, B(xo, 1)) S Paluo f, B(xo, 16r))

< 2un LD o f@) —uo fOIP
sy 8 W te JOR
> = Jsui B, 16r) x =yl

>ko—No
M(léB) B 2
5 r2o¢—n / / |u o f(x) M:Zf(y)| dx dy
k>k0 Sk,i I 28k, -y
(168
Yoo i “ : o f(x) —uo f(y)
+r s dxdy
k>k0 -_ St.i J B(xo.16r)\28k lx — I
=P+ P.

For each S ;, let B ; be the ball centered at xi; (the center of S ;) and of radius
2./n £(Sk.;). Then

28ki C Br; & dist(xg;, E) >4-16- 2\/;3(5]{7,').
So applying the above Case 1 to 16 By ;, we have
Do (o f, Bri) S Wap(uo f16Bk:) S lully, -

This, together with n — 2o — EL E — € > 0, gives

17 (16B)
P 3 Y Bl T @u(ue £ Bri)

k>ko—Noy i=l
1.7 (16B)

20— —(n—2a)k 2
St E E 2mnse ”u”Qa(R’l)
k>ko— Ny i=1

< Z z(k—ko)(ﬁLE+e)2(n—2a)(k0—k)”u”2

~

W@y S Ml -
k>ko— Ny

To estimate P, write

uo fC) —uo fOIP
+2a xay
Sei J B(xo, 16r)\28k lx — y|"

k—ko+5
S Y 2henm / / o f(x) —uo f(y)|*dxdy
=1 St,i J2H18S, i \28 8y i
k—ko+5
Y 22"‘(‘5")2""{][ o f(x) — (o flysg, |*dx
(=1 Sk.i '

+][ |'4°f(}’)—(Mof)ze+15ki|2dy}.
2l+]S1<,i ,
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Observing that

1/2
{][S luo f(x)— (u of)2z+15k.i|2dx}
ki

{41 12
S Z{]és luo f(x) = (uo flas,, |2dx} S €+ Do flsMo®n),
J Sk.i

J=1

we obtain

_ 2
f / luo f(x) u;f(y)l dx dy
Sei I B(xg. 16r)\28.; lx — y|r+=e

k—ko+5

S D 27U D o fligmomn S 2% lu o flimom-
=1

Therefore, since n — 20 — dimy E — € > 0, one gets

£.7.(16B)
Py 3N ek g p2
k>ko—No  i=1
< Y 2tk Eray 020G By o f 12 yomn S o flEmon-
k>ko—No

Recall that it was proved by Reimann [7] that ||u o f|smo®?) S llullBMO®?), and also
in [3] that JullBmos) S Ilull g ). Thus Py < llullfy, gn)-

Combining the estimates for P and P2, we arrive at We 2 (o f, B(xo, ) S llullfy, gn
for all xg and r, as desired.

Case 3: d(xg, E) < 2r and r > 1. Without loss of generality, we may assume that
xo = 0. Denote by M the minimum number of balls, centered in B(0, 1) \ B(0, 1/2) and
of radius 272, required to cover B(0, 1) \ B(0, 1/2). Let {B; }j]"il be a sequence of such

balls and write their centers as {x; }jﬁ’i 1~ Write

Bij = BQ*x;,25%) fork>2andj=1,..., M.
Notice that
2k=9 = k=207 < 2774 (2% x;, E). (4.6)

Assume that 20~ < » < 2% Then ko > 1, and B(xo, 16r) \ B(xo, 2) can be covered by
the family {By ; : 2 <k <ko+4,0 < j < M}. Write By ; = B(0, 2). Then we have
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W, a(uo f, B(xo, r)) S O o f, B(xg, 16r))

ko+4 M _ 2
< Z Zrza—n/ / luo f(x) Mfzf(y)l dxdy
k=1 j=1 By J16B [x — y|rtee

ko+4

5 Z r2a—n2k(n—2a)q>a(u o f7 2Bk,])
k=1

ko+4
+°ir2a / / wo fe —uo SO 0
Bi; J16B\2By |x — y|rt2e

= P34+ P4.

By Proposition 3.1 and the result of Case 1 applied to 32By ;, we have
P (o f. 2Bt ;) S Voo (uo f.32Bi ;) < lully, @)

where
32289 =32.277d(2kx;, E) < d(2*xj, E) /4

due to (4.6), and hence

ko+4

2 20—n~k(n—2 2
Py < Nl eny Y 27" 220 < G, -
k=1

For P4, an argument similar to P, in Case 2 leads to Py < llu] 0o (R)" This finishes the
proof of Theorem 1.3.

5. Proofs of Corollaries 1.4 and 1.5

Proof of Corollary 1.4. Notice that if 8§ > 0, then f is a quasiconformal mapping from
R" — R”, and that

Jr e Ai(R"; {0}) when g > 1,
Jr e Ai(R") when0 < 8 < 1.

By Theorem 1.3, if 8 > 0, then C is bounded on Q4 (R") forall o € (0, 1). If 8 < 0,
then f is not a quasiconformal mapping from R” — R”", so we cannot apply Theorem 1.3
directly. However, f is a quasiconformal mapping from R" \ {0} to R" with J¢(x) ~
|x |1, yielding J; € A;(R"; {0}). Thus, an argument similar to but easier than that for
Theorem 1.3 will lead to the boundedness of Cr on Q,(R") forall @ € (0, 1).

Indeed, let u € Qy(R") and B = B(xp, r) be an arbitrary ball in R". If r < |x¢|/4,
then

Jrx) ~ |xolf~1 Vx e B(xo, 3r).
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From this and J; € A;(R"; {0}), similarly to Case 1 in the proof of Theorem 1.3, we
obtain (4.2)—(4.4). This implies

Woa(u o f. B(xo. 7)) < lullfy, @
If r > |x0l/4, then from B(xo, r) C B(0, 2r) and Proposition 3.1, we have
\I'[()t,2(u o fv B(-x()s I")) 5 \I'[(Jt,z(u o fv B(()? 2”')) 5 cDOt(u ] fv B(Ov 32}"))

Similarly to Case 3 in the proof of Theorem 1.3, denote by M the minimum number
of balls (centered in B(0, 1) \ B(0, 1/2) and of radius 279 that are required to cover
B0, 1)\ B(0,1/2). Let {Bj}M | be a collection of such balls and write their centers as

j:
{xi}j"il. Write
B = BQ*2%rx;,27%92%)  fork>0andj=1,..., M.

Then B(0, 32r) \ {0} is covered by the family of balls {By ; : k > 0,0 < j < M}.
Therefore,

M _ 2
Voo f B ) € Yy oo [ el i JOR 4
k=0 j=1 Br.j JB(0.32r) |x — y[rt=e
5 Z r2(x—n (z—kr)n—Za(Da(u ° f, 2Bk,j)
k>0
— 2
+Zr2a—n/ f luo f(x) ufzf(y)l dx dy
k=0 Br.j J B(0.32r)\2By |x — y|rtee
= Ps + Ps.

Similarly to the estimate on P3, we have Ps <

~

”””2Qa (rmy: and similarly to but more

easily than for P, we obtain P < |ju ||2Qa ®")- Putting all together gives

Wy oo f. B(xo.7)) < llullg, -
as desired, finishing the proof of Corollary 1.4. O

Proof of Corollary 1.5. For convenience, let R%. = {z = (x,y) : x e R" 1 & y > 0}.
We also write H" = R’} \ R*~! and equip it with the hyperbolic distance dp, that is,

d
dggn (w, w') =inf/ 2l G e m
Y y y

where the infimum is taken over all rectifiable curves y in H" joining w and w’.

Suppose that g : R"~! — R”~! is a quasiconformal mapping when n > 3, or a
quasisymmetric mapping when n = 2. According to Tukia—Vdisdld [9, Theorem 3.11],
g can be extended to a quasiconformal mapping f : RY — R’} such that



A quasiconformal composition problem for the Q-spaces 1179

©) flge-1 = &3

(i1) f|mr is L-bi-Lipschitz with respect to dp» for some constant L > 1, i.e.,
1
den (z, w) < dun (f(2), f(w)) < Ldgn (z, w)  VYw,w' € H".

Obviously, such an f can be further extended to a quasiconformal mapping f : R" - R”
by reflection, that is,

f(z): f(zla"'7zl’l—17_zn) fOrZERn\Rn’
' f @ forz € R

For simplicity, we write fas f, and generally set

n>3;
2<p<m
H"? =R"\R? ={z=(x,y) : x e R" 7 &0 # y € R’}

We equip H™? with the distance dp.», an analog of the hyperbolic distance, via

d
dyn.r (w, w') = inf 2]
v Jy 10, y)]

where the infimum is taken over all rectifiable curves y in H":? joining w and w’. Suppose
that g : R*7? — R"7? is a quasiconformal mapping when n — p > 2, or a quasisym-
metric mapping when n — p = 1. In accordance with Tukia—Viisild’s [9, Section 3.13],
g can be extended to a quasiconformal mapping f : R” — R” such that

@) flge-r = g;
(1) f|mn»r is L-bi-Lipschitz with respect to dp.» for some constant L > 1.

Yw, w' € H™P,

Notice that both f and f~! are bi-Lipschitz with respect to dgn.r. We show that C f
is bounded; the case of C,-i is analogous. By Theorem 1.3, it suffices to verify that

Jr € A{(R"; R"77). In what follows, we only consider the case p = 1; the argument can
easily be modified to handle p > 2.
First observe that

Jr(@) ~[d(f@),R"H1/Iy"  ae.z=(x,y) e R"\R"

where d(f (z), R"~1) stands for the Euclidean distance from f(z) to R"~!. Indeed, upon
taking r > 0 small enough such that

r<Iyl/2 & LpGzr) <d(f@),R"1)/2,
we get

dw, RN ~d(z,R" ) ~ |y| & d(fw),R")/2~d(f(z),R")/2
Yw € B(z,r),
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which in turn implies

|z — w| Lf(z) — f(w)]
& dwn , ~e
] we (f (2), f(w)) 4 @) R

dmr (z, w) ~ Yw € B(z,r).

Therefore
Jr (@) ~ IDF@I" ~ [d(f(2), R"DI"/|y|"  ae zeR",

as desired.
Now let B(xq,r) be an arbitrary ball with radius r < |yp|/2, and zo = (xo, yo).
Obviously,

Iy1/2 < lyol = 2|yl Vz=(x,y) € B(zo,7).
Then, it is enough to prove that

d(f(z0), R ~d(f(2),R"™") ae. ze B(z,r). (5.1)

Assuming this holds for the moment, we have

Jr(2) ~ [d(f(z0), R*™D1"/Iyol"  ae.z € B(zo, 1),

and further
][ Jp(2)dz ~ [d(f(z0), R DI"/Iyol" ~ essinf J;(2),
B(xq,r) z€B(xq,r)

thatis, J; € A;(R"; R"~1), as desired.
Towards (5.1), note that f is a quasisymmetric mapping, so there exists a homeomor-
phism 7 : [0, c0) — [0, co) such that

1@~ f)] _ <|z—w|> o e B
FGo — fanl ~ N\jzo—wl) VT

Observe that
%Izo—wl < lzo—w|—|z—z0| < |z—w| < |z—z0|+|z0—w| < 2|z0—w| VYw e R""L
Thus, by taking a point w € R"~! such that | f (z0) — f(w)| = d(f(z0), R"~1), we have

d(f@),R"™) < 1f(@) — fw)] < n@)|f(z0) = fF(w) S d(f(z0), R"™).

Upon changing the roles of z and z(, we also have

d(f(zo), R"™" Sd(f(»),R"™).

Hence (5.1) holds. This completes the proof of Corollary 1.5. O
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6. Proofs of Theorems 1.6 and 1.7

Proof of Theorem 1.6. Fix ay € (0, 1). Leta = 1 — 272%0/(n=220) ¢ (0, 1), and let the
sets E, be as in (2.4). Then n — 209 = n/log,[2/(1 —a)] and by Lemma 2.4, dim; E, =
n — 2a. The set E, is exactly what we want in the statement of Theorem 1.6.

Now we are going to construct a quasiconformal (Lipschitz) mapping f : R" — R”
such that Jy € A1(R"; E,), and hence J; € A1(R"; &), but Cy is unbounded on Q (R")
for any o € (g, 1).

Recall that {z,,, ;} are the centers of {Q, ;}, and {Q,,;} are the pre-cubes appearing
in the Cantor construction E, (see Section 2). Let 8 € (0, oo) and define the map f by
setting

70 = (Rald = a) 21" P 1x = 2 j 1P (6 = 2 ) + 2
if
Ix — zm,j| < 2al(1 —a)/2]" forsomem e Nand j = 1,...,2"",

and f(x) = x otherwise. Indeed, we only perturb the identity mapping on all balls
B(zm,j, 3al(1 —a)/21") C Om,;

by making “radial” stretchings with respect to their centers, where | Q| =[(1—a)/2]"".
Notice that

Jp() ~ IDF@" ~ (bal(1 —a)/21") " x — 2 ;1
<1 when |x — 2 | < 2al(1 —a)/2]",

and Jr(x) = |Df(x)|" = 1 otherwise. Thus f is a quasiconformal mapping. Moreover,
it is easy to check that Jy € Aj(R"; E;) and Jf ¢ A1 (R").

Set
n— 2« 1—a
Bo=1+ " log, .

2
Then By > Osince n — 2a < n — 200 = n/log,[2/(1 — a)]. Set also

o |mnBrn—20) it0 < B < po,
| mnBo/(n —2a) if B > Bo.
With each z,,, ; € E, we associate a ball By, ; such that
Buj C Z27%0um; & rmj=g2 all—a)/2I"
and so that the center x,,, ; of By, ; satisfies
. j = zm,j = 527" al(1 = a)/2]".

For each m, set

mn

U = Zum, j» where wp j(x) = xg, (x)d(x, 3By ;) forall possible ;.
j=1

Obviously, u,, ; is a Lipschitz function.
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We make two claims:
”umana(R”) S 2mn275(n+272a)[(1 _ a)/z]m(n+272a), 6.1)
”um ° f”zQa(Rn) 2 2mn2—l(n—2a)/(ﬁ+l)2—25[(1 _ a)/2]"’l(i‘l—20t+2). (62)
Assuming that both (6.1) and (6.2) hold for the moment, we arrive at
lltm o f”ZQa(Rn) S zmnzfﬁ(n72a)/(ﬁ+l)272€[(1 _ a)/z]m(n72ot+2)
~ 2mn27/é(n+272a)[(1 _ a)/Z]m(n+272a)

; > =20/ (B+1)
It 13, g

which tends to oo as m — oo since 8 > 0 and £ ~ m. This gives Theorem 1.6 under
(6.1)—(6.2).
Finally, we verify (6.1)—(6.2).

Proof of (6.1). Let B = B(xp, rp) be an arbitrary ball. If rg < ry,_ ;, since
[ (X)) —up(M| <|x =yl Vx,yeR"

one has

< ,20—n
by (um,2B) Sy /ZB /;B g |n ) dxdy

—dxd <r:<pr? . 6.3
/ /;?(y2r3) lx — y|"= 2(1—e) Y8 (6.3)

In particular, ®¢ (U, 2B, ;) S
If rg > 1y, j, One writes

_ 2
Dy (tt, 2B) < 2| B>/} Z / / 4 () uﬁz(y)l dx dy
By iaBan ) Buj J2B X = T

<|BP" N By I T O (i, 2B, )
By, j2B#(

- 2
+ |B|20z/n 1 f / [t (x) uﬁz(y)| dxdy.
By, j(2B0 Y B, j V2B\2Bu, |x — y|rt2e

NmJ

Notice that

2
Uy (x u 1
/ / ) = nﬁZ(i))l dx dy<rm]|BmJ| n+2a dy
B, J2B\2B,,; X — I 2B\2B,; 1Y — Zm,jl
2-2
Srm,ja|Bm,j|-

So, by (6.3) one has
@a(um’ ZB) 5 |B|2a/n—1 Z 2 20(+l’l' (64)

ey
B, jN2B#0)

Below we consider three subcases.
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First, if r, j < rp < 6]—4a[(1 — a)/2]™, there are a uniformly bounded number of
balls By, ; such that B, ; N 2B # (J, and hence

D (tm, 2B) S B2 — @) 2122 < 272 (1 — @) /217"

Second, if 61—451[(1 —a)2I" % <rp < 61—4(1[(1 —a)/2]" 1 for some 1 < k < m,
there are at most 2", up to a constant multiplier, balls By, ; such that B N By, ; # ¥, and
hence

Dy (1, 2B) < [(1 — a) /2]~ R Qumghng—Ent2=2a) (| _ g) jppn(n+2-20)
Since 2"[(1 — a)/2]""2® > 1 dueton — (n — 2a) log,[2/(1 — a)] > 0, we obtain
D, (U, 2B) SJ 2mn2—13(n+2—205)[(1 _ a)/z]m(n-i-z—za)'

Third, if rg > 61—4(1[(1 — a)/2], there are at most 2", up to a constant multiplier,
balls By, ; such that B N By, ; # @, and hence

Doy (U, 2B) < 22022001 (] gy o pmin+2-2a),
To sum up, one obtains
il Qo (ry S max{272[(1 — a)/21>", 272~ 2720 (1 — @) /21" H27200),
So (6.1) will follow once we show
272 (1 — @) /2P < 2mnp =t +2=2a) (] _ g) pym(nt2=2e),
Obviously, this is equivalent to 2¢7*=2%) < 2mn[(] — g)/2]™("=2®) and hence to
£(n —2a) <mn +m(n —2a)log,[(1 —a)/2].
But this last estimate follows from our choice of £, namely,

¢ mn ol 1—a
= m 10 .
n—2u £ 2

Bo =

min{B, fo} < ——
n—2ua

n— 2o
Thus (6.1) holds.

Proof of (6.2). Indeed, we have

ltm © £, @n = Palim o f. £~ (BO,2)))

pmn ) _ . 2
> Z/ / |tm,j o f(x) uﬁ,z, o f(Y dx dy
ST B S B ) |x — y|ree

omn

2 1T B )T D (0 f T (B )

Jj=1
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It suffices to estimate | f =1 (B, ;)| and @y (um,j o f, f~ (B, ;)) from below. We first
notice that if [x — z,,, ;| < %a[(l —a)/2]", then
_ 1 _
@ = (Rala = ay/2m)P P — g 1D (= 2 ) 2

and hence .
n —
Teo1(x) ~ (3al(1 — a)/21™) I =z | PIBED),

Forevery y € By, j,if [x — 2z, j| = 21y, j then

Fm,j < Zm,j = Ym, il = 1Y = Y jl 1Y = 2Zm,j| < \zm,j — Ym,jl 1Y = Y, jl < 3rm,j,

and hence
H - 1
T () ~ (Sal(1 = a) 2y PHD B0 L pnp (B4,
Therefore,
| f 7 B )| ~ 27D [(1 — a) /21"
and

][ Jr(y)dy ~ 2P/ BTD < essinf J;(y).

m, j ye m,j

Moreover, since J -1 € Ay (R™), similarly to (4.4) we have

Do, j © fo f~ (Buj)) 2 Wa2lttm,j o f. [~ @7 By, ))
z, ‘Ija,Z(um,Jﬁ 2_4’_NzBm,j) z Dy (um,jv 2_S_NZBm,j)-

Notice that for all x € 2712=V2B,, s andy € 278-M2B,, ;\ 279M2B,, ;. we have

—9-N. —12-N ~10-N
|x_y|'\’rm,j & |um,j(x)_um,j(y)|22 2rm,j_2 2"m,jzz 2rm,j-
Hence,

o (um,j , 2_SBm,j)

> 2 ][ / ) — tin OF e ay
s 2—12—N23m,j 278—N23m,j\279—N2 By, |x _ yln-‘r o
2l 2 .
Therefore
Do (ttm.jo fo [ (Buj) 21 - (6.5)

This together with (6.3) implies that

”um ° f”QQa(Rn) Z 2mn2—f(n—2a)/(/5+l)[(1 _ a)/z]m(n—Za)z—Zl[(l _ a)/z]zm
~ 2mn2—l(n—2a)/(ﬂ+l)2—2£[(1 _ a)/z]m(n—2a+2)’

as desired. O
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Proof of Theorem 1.7. Fix 6_(0, 1).Let0 = (n — 2a09)/n € (0, 1) and an = (2N9 )
be as in (2.1). By Lemma 2.2, dim; ¢ (2N)" = n — 2« but dim; (2N)" = 0.

Now we need to construct a quasiconformal (Lipschitz) mapping f : R” — R” such
that Jy € A (R"; (2Neym) but C/ is unbounded on Q, (R") for each o € (ap, 1). The idea
is similar to the construction of Theorem 1.6. We divide the argument into two cases.
Case 1: g = 1. Let 8 > 0 and define

P Ix —k|P(x —k) +k ifx e B(k,1) withk € BN)",
X) = -
x ifx ¢ UEeN" Bk, 1).

Then f is a quasiconformal mapping and

Jr(x) ~ |x —k|" if x € B(k, 1) for some k € (3N)",
Jr(x) =1 otherwise.

Now we show that Cy is unbounded on Q. (R") for each @ € (0, 1). Indeed, for each
k € (3N)", we take a ball By such that |x3; — k| =2""and rg; = 27M=5_ Set
up(x) = XB,;(X)d(X, 9By).
For each m, set
Uy = Z ug with £ =m(n —2a)/2a.
Ik| <2
Observe that if x € By, then
0 = 1x = kPP e — ) + g,

and hence
Jf—l()C) ~x — ]_é|—n/3/(ﬂ+1) ~ omB/(B+1)

Thus, one gets | £~ (By)| ~ 27 11=A/(F+Dlmn,
By an argument similar to (6.5) for @ (uy,j o f, f_l(Bm,j)), we have
Dy (ug o f, fTH(BY) 227
This leads to

ltm © £, @n = Palim o f. £~ (BO,21))

2 20Ce ) N N BT Dy (g o f £ (By))
lk|<2¢

zzl(Zafn) Z 272m27[17ﬂ/(ﬂ+1)]m(n72a)
k| <2t

> 92alny—=2my—[1=/(B+1)Im(n—2a) > 2—2m2m(n—205)/5/(/5+1)7

where { = m(n — 200) /2cx.
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On the other hand, we claim that ||u,, HZQO,(R") < 272" The proof of this estimate is
similar to that of (6.1) . Five situations have to be handled.

Ifrg <27Mm3, by an argument similar to (6.3) we have &, (u,,, 2B) < 27 2m

Ifrg >27"3, similarly to (6.4) we also have

q)o[ (um, 2B) 5 |B|2(x/n—1 Z 2—m(2—2a+n).
ByN2B#()

If 27m=5 < rg < 1, there is at most one B; such that B N B # ¢, and hence
Py (Um, 2B) S 272,

Ifl <rg < 2¢ then there are at most 2”"’2r;“3 balls B; such that B N By # ¢, and
hence

q)a (Mm7 23) s r;;rlZ;a—nzfm(272a+n) S 2201@27m(2720l+n) S 272m’

where £ = m(n — 2a) 2cx.
If rg > 2¢, then there are at most 2"+22¢" palls By such that B N B; # ¢, and hence

@a (um, ZB) 5 r]Zga—nZan—m(Z—Za—i-n) /S 22a£2—m(2—2a+n) 5 2—2m’

where £ = m(n — 2a) /2cx.
Finally, we have

Nt © FlQu®n) ~ Hmtn-2018/5+1)
lum |l @ (m7) ~

— 0

asm — oo since 8 > 0.

Case 2: g € (0, 1). Similarly to Case 1, we can first construct quasiconformal mappings
f:R" — R" with Jy € A1(R"; (2Ne)), and then construct the critical function u,,, but
the key parameter ¢ there is now taken as m(n — 2«) /(2o — n + 6n) where

20 —n+6n>0 < 2a >n—0n=a.

Such a Cy is unbounded on Q4 (R") for all « € (ap, 1), and hence satisfies our require-
ment; we omit the details. O
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