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Abstract. In this paper, we prove the mirror symmetry conjecture between the Saito–Givental the-
ory of exceptional unimodular singularities on the Landau–Ginzburg B-side and the Fan–Jarvis–
Ruan–Witten theory of their mirror partners on the Landau–Ginzburg A-side. On the B-side, we
develop a perturbative method to compute the genus-0 correlation functions associated to the prim-
itive forms. This is applied to the exceptional unimodular singularities, and we show that the numer-
ical invariants match the orbifold-Grothendieck–Riemann–Roch and WDVV calculations in FJRW
theory on the A-side. The coincidence of the full data at all genera is established by reconstruc-
tion techniques. Our result establishes the first examples of LG-LG mirror symmetry for weighted
homogeneous polynomials of central charge greater than one (i.e. which contain negative degree
deformation parameters).
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1. Introduction

Mirror symmetry is a fascinating geometric phenomenon discovered in string theory.
The rise of mathematical interest in it dates back to the early 1990s, when Candelas,
de la Ossa, Green and Parkes [6] successfully predicted the number of rational curves on
the quintic 3-fold in terms of period integrals on the mirror quintics. Since then, one pop-
ular mathematical formulation of mirror symmetry has been the equivalence on the mirror
pairs between the Gromov–Witten theory of counting curves and the theory of variation
of Hodge structures. This was proved in [20, 33] for a large class of mirror examples
via toric geometry. Mirror symmetry has also deep extensions to open strings incorpo-
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rating D-brane constructions [27, 48]. In our paper, we will focus on closed string mirror
symmetry.

Gromov–Witten theory presents the mathematical counterpart of A-twisted supersym-
metric nonlinear σ -models, borrowing the name of A-model from physics terminology.
Its mirror theory is called the B-model. On either side, there is a closely related linearized
model, called the N = 2 Landau–Ginzburg model (or LG model), describing the quan-
tum geometry of singularities. There exist deep connections in physics between nonlinear
sigma models on Calabi–Yau manifolds and Landau–Ginzburg models (see [25] for re-
lated literature).

In this paper, we will study the LG-LG mirror symmetry conjecture, which asserts the
equivalence of two nontrivial theories of singularities for mirror pairs (W,G), (W T ,GT ).
HereW is an invertible weighted homogeneous polynomial on Cn with an isolated critical
point at the origin, and G is a finite abelian symmetry group of W . The mirror weighted
homogeneous polynomial W T was introduced by Berglund and Hübsch [5] in the early
1990s. For an invertible polynomial W =

∑n
i=1

∏n
j=1 x

aij
j , the mirror polynomial is

W T
=
∑n
i=1

∏n
j=1 x

aji
j . The mirror groupGT was introduced by Berglund and Henning-

son [4] and Krawitz [28] independently. Krawitz also constructed a ring isomorphism
between the two models. Now the mirror symmetry between these LG pairs is also called
Berglund–Hübsch–Krawitz mirror [11]. WhenG = GW is the group of diagonal symme-
tries of W , the dual group GTW = {1} is trivial. In order to formulate the conjecture, let us
introduce the theories on both sides first. We remark that one of the most general mirror
constructions of LG models was proposed by Hori and Vafa [26].

A geometric candidate for LG A-model is Fan–Jarvis–Ruan–Witten theory (or FJRW
theory) constructed by Fan, Jarvis and Ruan [14, 15], based on a proposal of Witten [50].
Several purely algebraic versions of LG A-model have been worked out [7, 36]. FJRW
theory is closely related to Gromov–Witten theory, in terms of the so-called Landau–
Ginzburg/Calabi–Yau correspondence [10, 37]. The purpose of FJRW theory is to solve
the moduli problem for the Witten equations of a LG model (W,G) (G is an appropri-
ate subgroup of GW ). The outputs are the FJRW invariants. Analogous to the Gromov–
Witten invariants, the FJRW invariants are defined via the intersection theory of appro-
priate virtual fundamental cycles with tautological classes on the moduli space of stable
curves. These invariants virtually count the solutions of the Witten equations on orbifold
curves. For our purpose later, we considerG = GW , and summarize the main ingredients
of FJRW theory as follows (see Section 2 for more details):

• An FJRW ring (HW , •). Here HW is the FJRW state space given by the GW -invariant
relative cohomology ofW , and the multiplication • is defined by an intersection pairing
together with the genus-0 primary FJRW invariants with three marked points.
• A prepotential FFJRW

0,W of a formal Frobenius manifold structure on HW , whose coeffi-
cients are all the genus-0 primary FJRW invariants 〈· · ·〉W0 .
• A total ancestor potential A FJRW

W that collects the FJRW invariants at all genera.

A geometric candidate of the LG B-model of (W T ,GT ) for general GT is still missing.
When G = GW , then GT = {1} and a candidate comes from the third author’s the-
ory of primitive forms [41]. The starting point here is a germ of holomorphic function
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(f = W T here)
f (x) : (Cn, 0)→ (C, 0), x = {xi}i=1,...,n,

with an isolated singularity at the origin 0. We consider its universal unfolding

(Cn × Cµ, 0× 0)→ (C× Cµ, 0× 0), (x, s) 7→ (F (x, s), s),

where µ = dimC Jac(f )0 is the Milnor number, and s = {sα}α=1,...,µ parametrize the
deformation. Roughly speaking, a primitive form is a relative holomorphic volume form

ζ = P(x, s)dnx, dnx = dx1 · · · dxn,

at the germ (Cn × Cµ, 0 × 0), which induces a Frobenius manifold structure (called
the flat structure in [41]) at the germ (Cµ, 0). This gives the genus-0 invariants in the
LG B-model. At higher genus, Givental [19] proposed a remarkable formula (its unique-
ness was established by Teleman [49]) for the total ancestor potential for semisimple
Frobenius manifold structures, which can be extended to some nonsemisimple boundary
points [12, 34] including s = 0 of our interest. The whole package is now referred to
as Saito–Givental theory. We will call the extended total ancestor potential at s = 0 the
Saito–Givental potential and denote it by A SG

f .
For G = GW , the LG-LG mirror conjecture (for all genera) is well-formulated [11]:

Conjecture 1.1. For a mirror pair (W,GW ) and (W T , {1}), there exists a ring isomor-
phism (HW , •) ∼= Jac(W T ) together with a choice of primitive forms ζ such that the
FJRW potential A FJRW

W is identified with the Saito–Givental potential A SG
WT .

For the weighted homogeneous polynomial W = W(x1, . . . , xn), we have

W(λq1x1, . . . , λ
qnxn) = λW(x1, . . . , xn), ∀λ ∈ C∗,

with each weight qi being a unique rational number satisfying 0 < qi ≤
1
2 [38]. There is

a partial classification of W using the central charge [43]

ĉW :=
∑
i

(1− 2qi).

So far, Conjecture 1.1 has only been proved for ĉW < 1 (i.e., ADE singularities) by
Fan, Jarvis and Ruan [14] and for ĉW = 1 (i.e., simple elliptic singularities) by Krawitz,
Milanov and Shen [30, 35]. However, it has been open for ĉW > 1, including exceptional
unimodular modular singularities and a wide class of those related to K3 surfaces and
CY 3-folds. One of the major obstacles is that computations in the LG B-model require
concrete information about the primitive forms. The existence of the primitive forms for a
general isolated singularity has been proved by M. Saito [46]. However, explicit formulas
were only known for weighted homogeneous polynomials with ĉW ≤ 1 [41]. This is
due to the difficulty of mixing between positive and negative degree deformations when
ĉW > 1.

The main objective of the present paper is to prove that Conjecture 1.1 is true when
W T is one of the exceptional unimodular singularities as in Table 1. Here we use variables
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Table 1. Exceptional unimodular singularities.

Polynomial Polynomial Polynomial Polynomial

E12 x3
+ y7 W12 x4

+ y5 U12 x3
+ y3

+ z4

Q12 x2y + xy3
+ z3 Z12 x3y + y4x S12 x2y + y2z+ z3x

E14 x2
+ xy4

+ z3 E13 x3
+ xy5 Z13 x2

+ xy3
+ yz3 W13 x2

+ xy2
+ yz4

Q10 x2y + y4
+ z3 Z11 x3y + y5 Q11 x2y + y3z+ z3 S11 x2y + y2z+ z4

x, y, z instead of the conventional x1, . . . , xn. These polynomials are all of central charge
larger than 1, providing the first nontrivial examples with the existence of negative degree
deformation (i.e., irrelevant deformation) parameters.

Originally, the 14 exceptional unimodular singularities given by Arnold [3] are one-
parameter families of singularities with three variables. Each family contains a weighted
homogeneous singularity characterized by the existence of only one negative degree but
no zero-degree deformation parameter [43]. In this paper, we consider the stable equiv-
alence class of a singularity, and always choose polynomial representatives of the class
with no square terms for additional variables. The FJRW theory with the group of diago-
nal symmetries is invariant when adding square terms for additional variables.

LG-LG mirror symmetry for exceptional unimodular singularities

Let us explain how we achieve the goal in more detail. Following [28], we can specify a
ring isomorphism Jac(W T ) ∼= (HW , •). Then we calculate certain FJRW invariants, by an
orbifold-Grothendieck–Riemann–Roch formula and WDVV equations. More precisely,
we have

Proposition 1.2. Let W T be one of the 14 singularities. Then

9 : Jac(W T )→ (HW , •),

defined in (2.20) and (2.23), generates a ring isomorphism. LetMT
i be the i-th monomial

of W T , and φµ be of the highest degree among the specified basis of Jac(W T ) in Table 2.
Let qi be the weight of xi with respect toW . For each i, we have genus-0 FJRW invariants

〈9(xi),9(xi),9(M
T
i /x

2
i ),9(φµ)〉

W
0 = qi whenever MT

i 6= x
2
i . (1.1)

Surprisingly, ifW T belongs toQ11 or S11, then the ring isomorphism Jac(W T )∼=(HW , •)

was not known in the literature. The difficulty comes from the fact that if some qj is 1/2,
then one of the ring generators is a so-called broad element in FJRW theory, and invariants
with broad generators are hard to compute. We overcome this difficulty for the two cases,
using Getzler’s relation on M1,4. It is quite interesting that the higher genus structure
detects the ring structure. We expect that our method works for general unknown cases of
(HW , •) as well.

On the B-side, recently there has appeared a perturbative way to compute the prim-
itive forms for arbitrary weighted homogeneous singularities [32]. In this paper, we de-
velop a perturbative method for the whole package of the associated Frobenius manifolds,
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and describe a recursive algorithm to compute the associated flat coordinates and the po-
tential function FSG

0,WT (see Section 3.2). We apply this perturbative method to compute
genus-0 invariants of LG B-model associated to the unique primitive forms [23,32] of the
exceptional unimodular singularities, and show that it coincides with the A-side FJRW
invariants for W in Proposition 1.2 (up to sign).

In the next step, we establish a reconstruction theorem in such cases (Lemma 4.2),
showing that the WDVV equations are powerful enough to determine the full prepoten-
tials for both sides from those invariants in (1.1). This gives the main result of our paper:

Theorem 1.3. Let W T be one of the 14 exceptional unimodular singularities in Table 1.
Then the specified ring isomorphism 9 induces an isomorphism of Frobenius manifolds
between Jac(W T ) (which comes from the primitive form of W T ) and HW (which comes
from the FJRW theory of (W,GW )). That is, the prepotentials are equal to each other:

FSG
0,WT = FFJRW

0,W . (1.2)

In general, the computations of FJRW invariants are challenging due to our very little un-
derstanding of virtual fundamental cycles, especially at higher genus. However, according
to Teleman [49] and Milanov [34], the nonsemisimple limit A SG

WT is fully determined by
the genus-0 data on the semisimple points nearby. As a consequence, we upgrade our
mirror symmetry statement to higher genus and prove Conjecture 1.1 for the exceptional
unimodular singularities.

Corollary 1.4. Conjecture 1.1 is true for W T being one of the 14 exceptional unimod-
ular singularities in Table 1. The specified ring isomorphism 9 induces the following
coincidence of total ancestor potentials:

A SG
WT = A FJRW

W . (1.3)

The choice in Table 1 has the property that the mirror weighted homogeneous polynomials
are again representatives of the exceptional unimodular singularities. Arnold discovered
a strange duality among the 14 exceptional unimodular singularities, which says that the
Gabrielov numbers of each coincide with the Dolgachev numbers of its strange dual [2].
The strange duality is also reproved algebraically in [44]. The choices in Table 1 also
represent Arnold’s strange duality: the first two rows are strange dual to themselves, and
the last two rows are dual to each other. For example, E14 is strange dual to Q10. Beyond
the choices in Table 1, we also discuss the LG-LG mirror symmetry for other invertible
polynomial representatives (some of whose mirrors may no longer be exceptional sin-
gularities) where equality (1.3) still holds. The results are summarized in Theorem 4.3
and Remark 4.5. Our method has the advantage of being applicable to general invertible
polynomials with more involved WDVV techniques developed.

The present paper is organized as follows. In Section 2, we give a brief review of
FJRW theory and compute the initial FJRW invariants as in Proposition 1.2. In Section 3,
we develop the perturbative method for computing the Frobenius manifolds in the LG
B-model following [32]. In Section 4, we prove Conjecture 1.1 when the B-side is given
by one of the exceptional unimodular singularities. We also discuss the more general case
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when either side is given by an arbitrary weighted homogeneous polynomial represen-
tative of the exceptional unimodular singularities. Finally, in the appendix, we provide
detailed descriptions of the specified isomorphism 9 as well as a complete list of the
genus-0 4-point functions on the B-side for all the exceptional unimodular singularities.
We would like to point out that Sections 2 and 3 are completely independent of each other.
The reader can choose either section to start from.

2. A-model: FJRW theory

2.1. FJRW theory

In this section, we give a brief review of FJRW theory. For more details, we refer the
readers to [14, 15]. We start with a nondegenerate weighted homogeneous polynomial
W = W(x1, . . . , xn), where the nondegeneracy means that W has an isolated critical
point at the origin 0 ∈ Cn and contains no monomial of the form xixj for i 6= j . This
implies that each xi has a unique weight qi ∈ Q ∩ (0, 1/2] [38]. Let GW be the group of
diagonal symmetries,

GW := {(λ1, . . . , λn) ∈ (C∗)n | W(λ1x1, . . . , λnxn) = W(x1, . . . , xn)}. (2.1)

In this paper, we will only consider FJRW theory for the pair (W,GW ). In general, FJRW
theory also works for any subgroup G ⊂ GW where G contains the exponential grading
element

J =
(
exp(2π

√
−1 q1), . . . , exp(2π

√
−1 qn)

)
∈ GW . (2.2)

Definition 2.1. The FJRW state space HW for (W,GW ) is defined to be the direct sum
of all GW -invariant relative cohomology:

HW :=
⊕
γ∈GW

Hγ , Hγ := H
Nγ (Fix(γ ),W∞γ ,C)

GW . (2.3)

Here Fix(γ ) is the fixed point set of γ , and CNγ ∼= Fix(γ ) ⊂ Cn; Wγ is the restriction of
W to Fix(γ ); and W∞γ := (ReWγ )

−1(M,∞) with M � 0, where ReWγ is the real part
of Wγ .

Each γ ∈ GW has a unique form

γ =
(
exp(2π

√
−12γ1 ), . . . , exp(2π

√
−12γn )

)
∈ (C∗)n, 2

γ

i ∈ [0, 1) ∩Q. (2.4)

Thus HW is a graded vector space, where to each nonzero α ∈ Hγ , we assign the degree

degα = Nγ /2+
n∑
i=1

(2
γ

i − qi).

We call Hγ a narrow sector if Fix(γ ) consists of 0 ∈ Cn only, and a broad sector other-
wise.
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The FJRW vector space HW is equipped with a nondegenerate symmetric pairing

〈 , 〉 :=
∑
γ∈GW

〈 , 〉γ ,

where each 〈 , 〉γ : Hγ ×Hγ−1 → C is induced from the intersection pairing of Lefschetz
thimbles. The pairing between Hγ1 and Hγ2 is nonzero only if γ1γ2 = 1. Moreover,
there is a canonical isomorphism (see [14, Section 5.1], [9, Appendix A], and references
therein)

(HW , 〈 , 〉) ∼=

( ⊕
γ∈GW

(Jac(Wγ )ωγ )
GW ,

∑
γ∈GW

〈 , 〉res,γ

)
. (2.5)

Here ωγ is a volume form on Fix(γ ) of the type dxj1∧· · ·∧dxjNγ , where we mean ωγ = 1
if Nγ = 0. GW acts on both xi and dxi . Let (Jac(Wγ )ωγ )

GW be the GW -invariant part of
the action. We choose a generator

1γ := ωγ ∈ HNγ (Fix(γ ),W∞γ ,C). (2.6)

If Hγ is narrow, then Hγ ∼= (Jac(Wγ )ωγ )
GW ∼= C is generated by 1γ . If Hγ is broad,

we denote generators of Hγ by φ 1γ via φ ωγ ∈ (Jac(Wγ )ωγ )
GW . Finally, the residue

pairing 〈 , 〉res,γ is defined from the standard residue ResWγ of Wγ ,

〈fωγ , gωγ 〉res,γ := ResWγ (fg) := Residuex=0
fgωγ

∂Wγ
∂xj1
· · ·

∂Wγ
∂xjNγ

.

It is highly nontrivial to construct a virtual cycle for the moduli of solutions of Witten
equations. For the details of the construction, we refer to the original paper of Fan, Jarvis
and Ruan [15]. Let C := Cg,k be a stable genus-g orbifold curve with marked points
p1, . . . , pk (where 2g − 2+ k > 0). We only allow orbifold points at marked points and
nodals. Near each orbifold point p, a local chart is given by C/Gp with Gp ∼= Z/mZ
for some positive integer m. Let L1, . . . ,Ln be orbifold line bundles over C . Let σi
be a C∞-section of Li . We consider the W -structures, which can be thought of as the
background data to be used to set up the Witten equations

∂̄σi +
∂W

∂σi
= 0.

For simplicity, we only discuss cases where W = M1 + · · · +Mn with Mi =
∏n
j=1 x

aij
j .

Let KC be the canonical bundle for the underlying curve C and ρ : C → C be the
forgetful morphism. A W -structure L consists of (C ,L1, . . . ,Ln, ϕ1, . . . , ϕn) where ϕi
is an isomorphism of orbifold line bundles

ϕi :

n⊗
j=1

L
⊗ai,j
j → ρ∗(KC,log), KC,log := KC ⊗

k⊗
j=1

O(pj ).

A W -structure induces a representation rp : Gp → GW at each point p ∈ C . We require
it to be faithful. The moduli space of pairs C = (C ,L) is called the moduli of stable
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W -orbicurves and denoted by W g,k . According to [14], W g,k is a Deligne–Mumford
stack, and the forgetful morphism st : W g,k → Mg,k to the moduli space of stable
curves is flat, proper and quasi-finite. W g,k can be decomposed into open and closed
stacks by decorations on each marked point,

W g,k =

∑
(γ1,...,γk)∈(GW )k

W g,k(γ1, . . . , γk), γj := rpj (1).

Furthermore, let 0 be the dual graph of the underlying curve C. Each vertex of 0 rep-
resents an irreducible component of C, each edge represents a node, and each half-edge
represents a marked point. Let ]E(0) be the number of edges in 0. We decorate the
half-edge representing the point pj by an element γj ∈ GW . We denote the decora-
tion by 0γ1,...,γk and call it a GW -decorated dual graph. We further call it fully GW -
decorated if we also assign some γ+ ∈ GW and γ− = (γ+)−1 on the two sides of each
edge. The stack W g,k(γ1, . . . , γk) is stratified, where each closure in W g,k(γ1, . . . , γk)

of the stack of stable W -orbicurves with fixed decorations (γ1, . . . , γk) on 0 is denoted
by W g,k(0γ1,...,γk ).

If W g,k(γ1, . . . , γk) is nonempty, then the line bundle criterion follows [14, Proposi-
tion 2.2.8]:

deg(ρ∗Li) = (2g − 2+ k)qi −
k∑

j=1

2
γj
i ∈ Z, i = 1, . . . , n. (2.7)

In [15], Fan, Jarvis and Ruan perturb the polynomialW to polynomials of Morse type
and construct virtual cycles from the solutions of the perturbed Witten equations. Those
virtual cycles transform in the same way as the Lefschetz thimbles attached to the critical
points of the perturbed polynomials. As a consequence, they construct a virtual cycle

[W g,k(0γ1,...,γk )]
vir
∈ H∗(W g,k(0γ1,...,γk ),C)⊗

k∏
j=1

HNγj (Fix(γj ),W∞γj ,C)
GW ,

which has total degree

2
(
(ĉW − 3)(1− g)+ k − ]E(0)−

k∑
j=1

n∑
i=1

(2
γj
i − qi)

)
. (2.8)

Based on this, they obtain a cohomological field theory {3Wg,k : (HW )
⊗k
→H ∗(Mg,k,C)}

with a flat identity. Each 3Wg,k is defined by extending the following map linearly to HW :

3Wg,k(α1, . . . , αk) :=
|GW |

g

deg(st)
PD st∗

(
[W g,k(γ1, . . . , γk)]

vir
∩

k∏
j=1

αj

)
, αj ∈ Hγj .

Definition 2.2. Let ψj be the j -th psi class in H ∗(Mg,k). Define FJRW invariants (or
correlators)

〈τ`1(α1), . . . , τ`k (αk)〉
W
g,k =

∫
Mg,k

3Wg,k(α1, . . . , αk)

k∏
j=1

ψ
j̀

j , αj ∈ Hγj . (2.9)
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The FJRW invariants in (2.9) are called primary if all j̀ are zero. We then simply denote
them by 〈α1, . . . , αk〉

W
g . We call (HW , •) an FJRW ring where the multiplication • on

HW is defined by
〈α • β, γ 〉 = 〈α, β, γ 〉W0 . (2.10)

If the invariant in (2.9) is nonzero, the integrand should be a top degree element in
H ∗(Mg,k). Then using the total degree formula (2.8) and the definition of the coho-
mological field theory, it is not hard to see that

k∑
j=1

degαj +
k∑

j=1
j̀ = (ĉW − 3)(1− g)+ k. (2.11)

Let us fix a basis {αj }
µ
j=1 of HW , with α1 being the identity. Let t(z) =∑

m≥0
∑µ
j=1 tm,αj αj z

m. The FJRW total ancestor potential is defined to be

A FJRW
W = exp

(∑
g≥0

~g−1
∑
k≥0

1
k!
〈t(ψ1)+ ψ1, . . . , t(ψk)+ ψk〉Wg,k

)
. (2.12)

There is a formal Frobenius manifold structure on HW , in the sense of Dubrovin [13]. Its
prepotential is given by

FFJRW
0,W =

∑
k≥3

1
k!
〈t0, . . . , t0〉

W
0,k, t0 =

µ∑
j=1

t0,αj αj .

The prepotential satisfies the WDVV (Witten–Dijkgraaf–Verlinde–Verlinde) equations∑
i,j

∂3FFJRW
0,W

∂tαa∂tαd ∂tαi
ηij

∂3FFJRW
0,W

∂tαj ∂tαb∂tαc
=

∑
i,j

∂3FFJRW
0,W

∂tαa∂tαb∂tαi
ηij

∂3FFJRW
0,W

∂tαj ∂tαc∂tαd
, tα := t0,α,

(2.13)

where (ηij ) is the inverse of the matrix (〈αi, αj 〉). It implies [14, Lemma 6.2.6]

〈. . . , αa, αb • αc, αd〉0,k = Sk + 〈. . . , αa • αb, αc, αd〉0,k + 〈. . . , αa, αb, αc • αd〉0,k

− 〈. . . , αa • αd , αb, αc〉0,k. (2.14)

where k ≥ 3, Sk is a linear combination of products of correlators with the number of
marked points no greater than k − 1. Moreover, S3 = S4 = 0.

Another important tool is the Concavity Axiom [14, Theorem 4.1.8]. Consider the
universalW -structure (L1, . . . ,Ln) on the universal curve π : C → W g,k(0γ1,...,γk ). If

all Hγi are narrow and π∗
( n⊕
i=1

Li

)
= 0, (2.15)

then R1π∗(
⊕n

i=1 Li) is a vector bundle of constant rank, denoted by D, and

[W g,k(0γ1,...,γk )]
vir
∩

k∏
i=1

1γi = (−1)DcD
(
R1π∗

( n⊕
i=1

Li

))
∩[W g,k(0γ1,...,γk )]. (2.16)
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This can be calculated by the orbifold Grothendieck–Riemann–Roch formula [8, Theo-
rem 1.1.1]. As a consequence, if the codimension D is 1, we have

3W0,4(1γ1 , . . . , 1γ4) =

n∑
i=1

(
B2(qi)

2
κ1−

4∑
j=1

B2(2
γj
i )

2
ψj+

∑
0cut

B2(2
γ0cut
i )

2
[0cut]

)
. (2.17)

Here B2(x) := x2
− x + 1/6 is the second Bernoulli polynomial, and κ1 is the first

kappa class on M0,4. Here the graphs 0cut are fully GW -decorated on the boundary of
W 0,4(γ1, . . . , γ4). Each 0cut has exactly one edge which seperates the graph into two
components. Two sides of the edge are decorated by some γ+ ∈ GW and γ− := (γ+)−1 so
that each component of 0cut satisfies the line bundle criterion (2.7). Finally, [0cut] denotes
the boundary class inH ∗(M0,4,C) that corresponds to the underlying undecorated graph
of 0cut.

We call a correlator concave if it satisfies (2.15). Otherwise we call it nonconcave.
A nonconcave correlator may contain broad sectors. In this paper, we will use WDVV to
compute the nonconcave correlators. Some other methods are described in [7, 22].

2.2. FJRW invariants

In this subsection, we will prove Proposition 1.2. Let us first describe the construction
of the mirror polynomial W T . Let W = M1 + · · · +Mn with Mi =

∏n
j=1 x

aij
j . We call

such a polynomial W invertible because its exponent matrix EW := (aij ) is invertible.
Berglund and Hübsch [5] introduced a mirror polynomial W T ,

W T
:=

n∑
i=1

n∏
j=1

x
aji
j . (2.18)

Its exponent matrix EWT is just the transpose matrix of EW , i.e. EWT = (EW )
T . In [31],

Kreuzer and Skarke proved that every invertible W is a direct sum of three atomic types
of singularities: Fermat, chain and loop. If W is of atomic type, then W T belongs to the
same atomic type. We list the three atomic types (with qi ≤ 1/2) and a C-basis of their
Jacobi algebra as follows. The table also contains an element φµ of highest degree.

Table 2. Invertible singularities.

Polynomial f C-basis of Jac(f ) φµ

m-Fermat x
a1
1 + · · · + x

am
m

∏m
i=1 x

ki
i
, ki < ai − 1

∏m
i=1 x

ai−2
i

m-Chain: x
a1
1 x2 + x

a2
2 x3 + · · · + x

am
m {

∏m
i=1 x

ki
i
}k x

a1−2
1

∏m
i=2 x

ai−1
i

m-Loop: x
a1
1 x2 + x

a2
2 x3 + · · · + x

am
m x1

∏m
i=1 x

ki
i
, ki < ai

∏m
i=1 x

ai−1
i

Here in the case of m-Chain, k = (k1, . . . , km) satisfies (1) kj ≤ aj − 1 for all j , and
(2) k is not of the form (a1 − 1, 0, a3 − 1, 0, . . . , a2l−1 − 1, i, ∗, . . . , ∗) with i ≥ 1.
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A first step towards the LG-LG mirror symetry Conjecture 1.1 is a ring isomorphism
between (HW , •) and Jac(W T ). For computation convenience later, we use the follow-
ing normalized residue defined by the normalized residue pairing ηWT (to be explained
in (3.1)):

R̃esWT (φµ) := ηWT (dx1 · · · dxn, φµdx1 · · · dxn) = 1. (2.19)

The ring isomorphism has been studied in [1, 14, 16, 28, 29] for various examples.
According to the Axiom of Sums of singularities [14, Theorem 4.1.8(8)] in FJRW theory,
the FJRW ring (HW , •) is a tensor product of the FJRW ring of each direct summand.
Krawitz constructed a ring isomorphism for each atomic type if qi < 1/2 for all i [28].
For our purpose, if W is a polynomial in Table 1, then it is already known that (HW , •) is
isomorphic to Jac(W T ) except for W = x2

+ xyq + yzr , (q, r) = (3, 3), (2, 4). We will
give new constructions for the two exceptional cases, and will also briefly introduce the
earlier constructions for the other 12 cases.

Since EW is invertible, we can write E−1
W using column vectors ρk ,

E−1
W = (ρ1| · · · |ρn), ρk := (ϕ

(k)
1 , . . . , ϕ(k)n )T , ϕ

(k)
i ∈ Q.

We can view ρk as an element in GW by defining the action

ρk =
(
exp(2π

√
−1ϕ(k)1 ), . . . , exp(2π

√
−1ϕ(k)n )

)
∈ GW .

Thus ρiJ ∈ GW , with J the exponential grading element in (2.2).

Proposition 2.3 ([28]). For any n-variable invertible polynomial W with each degree
qi < 1/2, there is a degree-preserving ring isomorphism 9 : Jac(W T ) → (HW , •). In
particular, if ρiJ is narrow for i = 1, . . . , n, then 9 is generated by

9(xi) = 1ρiJ , i = 1, . . . , n, (2.20)

Example 2.4. Let W = xp + yq , p, q > 2. Denote

γi,j =
(
exp(2π

√
−1 i/p), exp(2π

√
−1 j/q)

)
.

The FJRW ring (HW , •) is generated by {1γ2,1 , 1γ1,2}. Then W T
= W and the ring iso-

morphism 9 : Jac(W T )
∼=
→ (HW , •) generated by (2.20) extends as

9(xi−1yj−1) = 1γi,j , 1 ≤ i < p, 1 ≤ j < q. (2.21)

For 2-Loop singularities, ρiJ may not be narrow for some i ∈ {1, 2}. However, ring
isomorphisms still exist. According to [1, 28], we have

Example 2.5. ForW = x2y+xy3
+z3
∈ Q12, we haveGW ∼= µ15. A ring isomorphism

9 : Jac(W T )
∼=
→ (HW , •) is obtained by extending (2.20) from

9(x) = x1J 10 . (2.22)

The corresponding vector space isomorphism 9 : Jac(W T )→ HW is as follows:

HW 1J 1J 13 1J 11 x1J 10 y21J 10 1J 8 1J 7 x1J 5 y21J 5 1J 4 1J 2 1J 14

Jac(WT ) 1 y z x y2 yz xy xz y2z xy2 xyz xy2z
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Now we discuss if there exists qi = 1/2 for W . Without loss of generality, we as-
sume W is of the atomic type: W = x2

1 + x1x
a2
2 + · · · + xm−1x

am
m . Then Fix(ρ1J ) =

{(x1, . . . , xm) ∈ Ck | xi = 0, i > 2}. Thus Hρ1J is generated by a broad element
x
a2−1
2 1ρ1J , which is a ring generator of HW . If m = 2, it is known [16] that 9 :

Jac(W T )→ (HW , •) generates a ring isomorphism by 9(x1) = a2x
a2−1
2 1ρ1J and 9(x2)

= 1ρ2J . The key point is that the residue formula in (2.5) implies

〈x
a2−1
2 1ρ1J , x

a2−1
2 1ρ1J , 1

ρ
1−a2
2 J−1〉

W
0 = 〈x

a2−1
2 1ρ1J , x

a2−1
2 1ρ1J , 1J 〉W0 = −1/a2.

Inspired by this, for m ≥ 3, we consider

K := 〈x
a2−1
2 1ρ1J , x

a2−1
2 1ρ1J , 1

ρ
1−a2
2 ρ−1

3 J−1〉
W
0 .

If K 6= 0, then it is possible to define

9(x1) =
√
−a2/K x

a2−1
2 1ρ1J . (2.23)

In Section 2.3, using Getzler’s relation, we will prove the following nonvanishing lemma:

Lemma 2.6. Let W = x2
+ xyq + yzr with (q, r) = (3, 3), (2, 4). Then

Kq,r := 〈y
q−11ρ1J , y

q−11ρ1J , 1
ρ

1−q
2 ρ−1

3 J−1〉
W
0 6= 0. (2.24)

As a direct consequence of Lemma 2.6, it is not hard to check the following.

Proposition 2.7. Let W T be one of the exceptional unimodular singularities in Table 1.
Then the map 9 in (2.20) and (2.23) generates a degree-preserving ring isomorphism

9 : Jac(W T ) ∼= (HW , •).

Proof. We only need to consider W = x2
+ xyq + yzr with (q, r) = (3, 3), (2, 4).

We will check that 9 gives a vector space isomorphism which preserves the degree and
the pairing on both sides. We will also check that the generators in HW satisfy exactly
the algebra relations in Jac(W T ), by computing all the genus-0 3-point correlators. We
remark that we use the normalized residue in Jac(W T ), i.e.,

R̃esWT (y
q−1zr−1) = 1.

Lemma 2.6 allows us to extend 9 by defining 9(x) as in (2.23). Then we can check
directly that

9(x) •9(x)=

(
−

q

Kq,r
〈yq−11ρ1J , y

q−11ρ1J , 1
ρ

1−q
2 ρ−1

3 J−1〉
W
0

)
1
ρ
q−1
2 ρ3J

=−q9(yq−1z).

This coincides with x2
+qyq−1z = 0 in Jac(W T ). We notice that the product9(x)•9(z)

can be computed via

〈9(x),9(x),9(zr−2)〉W0,3 = 〈9(x) •9(x),9(z
r−2)〉 = −q.

For r = 4, we use the WDVV equation once to get 9(x) • 9(z). The preimages of the
broad sectors are of the form cxzj , j = 1, . . . , r − 2, where the constant c is fixed by the
constant in (2.24) and the normalized residue pairing.
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We have 9(x) • 9(y) = 0 by simply checking the formula (2.11). This coincides
with xy = 0 in Jac(W T ).

The rest of the proof is the same as in [28, Lemmas 4.5–4.7]. For the reader’s con-
venience, we sketch a proof for W = x2

+ xy3
+ yz3. The other case can be treated

similarly. By (2.20), we get

9(y) = 1J 15 , 9(z) = 1J 13 .

According to (2.11), the nonzero 〈· · ·〉W0,3 with narrow insertions only is one of the follow-
ing:

〈1J , 1J j , 1J 18−j 〉
W
0,3, j odd, (2.25)

or

〈1J 15 , 1J 15 , 1J 7〉
W
0,3, 〈1J 15 , 1J 13 , 1J 9〉

W
0,3, 〈1J 13 , 1J 13 , 1J 11〉

W
0,3, 〈1J 15 , 1J 11 , 1J 11〉

W
0,3.

(2.26)

All the correlators listed above are concave. Furthermore, we apply (2.7) to get the line
bundle degrees. Except for the last correlator in (2.26), we have

deg(ρ∗Li) = −1, i = 1, 2, 3.

This implies all the bundles R1π∗(
⊕n

i=1 Li) have rank zero. By (2.16) for D = 0, the
values of those correlators all equal 1. We use those correlators to get, for example,

9(y) •9(y) = 〈1J 15 , 1J 15 , 1J 7〉
W
0,3 η

1
J7 ,1J11 1J 11 = 1J 11 .

Here ηi,j is defined in (2.13). Similarly, we obtain

9(yz) = 1J 9 , 9(z2) = 1J 7 , 9(y2z) = 1J 5 , 9(yz2) = 1J 3 , 9(y2z2) = 1J 17 .

The correlators in (2.25) match the normalized residue pairing. For the last correlator
〈1J 15 , 1J 15 , 1J 11〉

W
0,3, we have

deg(ρ∗L1) = −1, deg(ρ∗L2) = −2, deg(ρ∗L3) = 0.

Thus for each fiber (isomorphic toCP1) of the universal curve C over W 0,3(J
15, J 15, J 11),

we have

H 0
(
CP1,

⊕
Li

)
= 0⊕ 0⊕ C, H 1

(
CP1,

⊕
Li

)
= 0⊕ C⊕ 0.

According to the Index Zero axiom in [14, Theorem 4.1.8], this corrlelator equals the de-
gree of the so-called Witten map fromH 0 toH 1, which sends (x, y, z) to

(
∂W
∂x
, ∂W
∂y
, ∂W
∂z

)
.

In this case,
〈1J 15 , 1J 11 , 1J 11〉

W
0,3 = −3.

From this, we check that
9(y) •9(y2) = −39(z2).

This coincides with the last relation in Jac(W T ), i.e., y3
+ 3z2

= 0.
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Finally, we list the table for each vector space isomorphism.

If W = x2
+ xy3

+ yz3, the vector space isomorphism 9 : Jac(W T )
∼=
→ HW is

HW 1J 1J 15 1J 13
√
−3/K3,3 y

21J 12 1J 11 1J 9 1J 7

√
−33K3,3 y

21J 6 1J 5 1J 3 1J 17

Jac(WT ) 1 y z x y2 yz z2 xz y2z yz2 y2z2

If W = x2
+ xy2

+ yz4, then the vector space isomorphism is given by

HW 1J 1J 13
√
−2/K2,4 y1J 12 1J 11 1J 9 y1J 8 1J 7 1J 5

√
−23K2,4 y1J 4 1J 3 1J 15

Jac(WT ) 1 z x y z2 xz yz z3 xz2 yz2 yz3

ut

We will give explicit formulas for the isomorphism 9 in all other cases in the appendix.
Those isomorphisms9 turn out to identify the ancestor total potential of the FJRW theory
of (W,GW ) with that of the Saito–Givental theory of W T up to rescaling.

Next we compute the FJRW invariants in Proposition 1.2. We introduce a new notation

1φ := 9(φ), φ ∈ Jac(W T ). (2.27)

Due to the above conventions, the second part of Proposition 1.2 is simplified as follows.

Proposition 2.8. LetMT
i be the i-th monomial ofW T with the ordering in Table 1. Then

〈1xi , 1xi , 1MT
i /x

2
i
, 1φµ〉

W
0 = qi, ∀i = 1, . . . , n. (2.28)

Proof. We classify the correlators in (2.28) into concave and nonconcave ones. For the
concave correlators, we use (2.17). For the nonconcave correlators, we use WDVV to re-
construct them from concave correlators and again use (2.17). We will freely interchange
the notation

(x1, x2, x3) = (x, y, z). (2.29)

Let us start with concave correlators. As an example, we compute 〈1x, 1x, 1xp−2 , 1φµ〉W0
forW = xp+yq . The computation of all other concave corrlators in (2.28) is similar. For
W = xp+yq , we recall that for γi,j ∈ GW ∼= µp×µq , we have2

γi,j
1 = i/p and2

γi,j
2 =

j/q. All the sectors are narrow and 1γi,j = 1xi−1yj−1 with our notation conventions.
According to the line bundle criterion (2.7), we know that for 〈1x, 1x, 1xp−2 , 1φµ〉W0 ,

deg(ρ∗L1) = −2, deg(ρ∗L2) = −1.

Thus π∗L1 = π∗L2 = 0 and the correlator is concave. Moreover, R1π∗L2 = 0 and
the nonzero contribution of the virtual cycle only comes from R1π∗L1. Now we can
apply (2.17). There are three decorated dual graphs in 0cut, where we simply denote
1i,j := 1γi,j :
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S
S

�
�

�
�

S
S

12,1

12,1

1p−1,1

1p−1,q−1

γ01 γ−1
01 S

S

�
�

�
�

S
S

12,1

1p−1,1

12,1

1p−1,q−1

γ02 γ−1
02 S

S

�
�

�
�

S
S

12,1

1p−1,q−1

12,1

1p−1,1

γ03 γ−1
03

The decorations of the boundary classes are 2
γ0i
1 = (p − 3)/p, 0, 0 for i = 1, 2, 3. We

obtain

〈12,1, 12,1, 1p−1,1, 1p−1,q−1〉
W
0 =

∫
M0,4

3W0,4(12,1, 12,1, 1p−1,1, 1p−1,q−1)

=
1
2

(
B2

(
1
p

)
− 2B2

(
2
p

)
− 2B2

(
p − 1
p

)
+ 2B2(0)+ B2

(
p − 3
p

))
=

1
p
.

All the nonconcave correlators in (2.28) are listed as follows:

• 〈1y, 1y, 1z, 1φµ〉W0 for the 3-Chain W = x2
+ xy2

+ yz4.
• 〈1x, 1x, 1y, 1φµ〉W0 for the 3-Chain W = x2

+ xyq + yzr , (q, r) = (3, 3) or (2, 4).
• 〈1x, 1x, 1y, 1φµ〉W0 and 〈1y, 1y, 1z, 1φµ〉W0 for the 3-Loop W = x2z+ xy2

+ yz3.
• 〈1x, 1x, 1y, 1φµ〉W0 for W = x2

+ xy4
+ z3.

• 〈1x, 1x, 1y, 1φµ〉W0 for W = x2y + xy3
+ z3.

• 〈1x, 1y, 1y, 1φµ〉W0 for W = x2y + y2
+ z4.

For the nonconcave correlators, we will use the WDVV equations and the ring rela-
tions to reconstruct them from the concave correlators. Let us start with the value of
〈1y, 1y, 1yq−2z, 1φµ〉W0 in the 3-Chain W = x2

+ xy2
+ yz4. Since φµ = yz3

∈ Jac(W T )

and 1y • 1yz = 0, we get

〈1z, 1y, 1yz • 1z2 , 1y〉W0 = 〈1z, 1y, 1yz, 1z2 • 1y〉W0 − 〈1z, 1y • 1y, 1yz, 1z2〉
W
0

= 0− (−4) 1
16 =

1
4 .

The first equality follows from the WDVV equation (2.14). We also use 1y • 1yz = 0.
Both 〈1z, 1y, 1yz, 1z2 • 1y〉W0 and 〈1z, 1y • 1y, 1yz, 1z2〉

W
0 are concave correlators and

can be computed from (2.17). For other nonconcave correlators, we will list the WDVV
equations. The concavity computation is checked easily. For the 3-ChainW = x2

+xyq+

yzr , (q, r) = (3, 3) or (2, 4), 1φµ = 1yq−1zr−1 , and we have

〈1y, 1x, 1φµ , 1x〉W0 = −〈1y, 1x • 1x, 1y, 1yq−2zr−1〉
W
0

= q〈1y, 1yq−1z, 1y, 1yq−2zr−1〉
W
0 =

1
2 .

For the 3-Loop W = x2z+ xy2
+ yz3, 1φµ = 1xyz2 , and we get

〈1y, 1x, 1xy • 1z2 , 1x〉W0 = 〈1y, 1x, 1xy, 1z2 • 1x〉W0 − 〈1y, 1x • 1x, 1xy, 1z2〉
W
0

=
1

13 − (−2) 2
13 =

5
13 .

〈1z, 1y, 1z • 1xyz, 1y〉W0 = 〈1z, 1y • 1z, 1xyz, 1y〉W0 − 〈1z, 1y • 1y, 1z, 1xyz〉W0
=

1
13 − (−3) 1

13 =
4

13 .
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For W = x2
+ xy4

+ z3, 1x is broad. However,

〈1y, 1x, 1φµ , 1x〉W0 = −〈1y, 1x • 1x, 1y, 1y2z〉
W
0 = 4〈1y, 1y3 , 1y, 1y2z〉

W
0 =

1
2 .

For W = x2y + xy3
+ z3, we get

〈1y, 1x, 1xy • 1yz, 1x〉W0 + 〈1y, 1x • 1x, 1xy, 1yz〉W0 = 〈1y, 1x, 1xy, 1yz • 1x〉W0
= −

1
2 〈1y, 1x, 1y • 1y2z, 1xy〉W0 = −

1
2 〈1y, 1xy, 1xy, 1y2z〉

W
0

= −
1
2 〈1y, 1xy, 1y • 1yz, 1xy〉W0 = −〈1y, 1xy, 1yz, 1xy2〉

W
0 .

The first, third and last equalities are WDVV equations. Finally, we get

〈1x, 1x, 1y, 1xy2z〉
W
0 = −〈1y, 1x • 1x, 1xy, 1yz〉W0 − 〈1y, 1xy, 1yz, 1xy2〉

W
0

= −
(
−

1
5

)
−
(
−

1
5

)
=

2
5 .

For W = x2y + y2
+ z4, we get

〈1x, 1y, 1xy • 1z2 , 1y〉W0 = 〈1x, 1y, 1xy, 1z2 • 1y〉W0 − 〈1x, 1y • 1y, 1xy, 1z2〉
W
0

=
(
〈1y, 1x, 1x, 1y • 1yz2〉

W
0 − 〈1y, 1x • 1yz2 , 1x, 1y〉W0

)
− 〈1x, 1y • 1y, 1xy, 1z2〉

W
0 .

Combining this equation and y2
= −2x, we get

〈1x, 1y, 1xyz2 , 1y〉W0 = −〈1y, 1x, 1x, 1xz2〉
W
0 + 〈1x, 1x, 1xy, 1z2〉

W
0

= −
(
−

1
8

)
+

1
4 =

3
8 . ut

2.3. Nonvanishing invariants

In this subsection, we will prove Lemma 2.6. Our tool is the Getzler relation [17], which
is a linear relation between codimension two cycles in H∗(M1,4,Q). Let us briefly intro-
duce this relation here. Consider the dual graph,

10 ·1{234} :=��
��

��
�

HHH��
�

HHH

1
2
3
4

This graph represents a codimension-2 stratum in M1,4: A vertex represents a genus-0
component. An edge connecting two vertices (including a circle connecting the same
vertex) represents a node, and a tail (or half-edge) represents a marked point on the com-
ponent of the corresponding vertex. Let 10,3 be the S4-invariant of the codimension-2
stratum in M1,4,

10,3 = 10 ·1{123} +10 ·1{124} +10 ·1{134} +10 ·1{234}.

We denote by δ0,3 = [10,3] the corresponding cycle in H4(M1,4,Q). We list the corre-
sponding unordered dual graphs for other strata below. A filled circle (as a vertex) repre-
sents a genus-1 component. See [17] for more details.
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δ2,2 : tS
S

�
�

�
�

S
S

tδ2,3 :

��
�

HHH��
�

HHH

tδ2,4 :

��
�

HHH��
�

HHH

δ3,4 : δ0,4 : δβ :t �
��

HHH��
�

H
HH
��
��

�
��
���
Z
ZZ

PPP ��
��

�
��

HHH
H

HH
���

In [17], Getzler found the following identity:

12δ2,2 + 4δ2,3 − 2δ2,4 + 6δ3,4 + δ0,3 + δ0,4 − 2δβ = 0 ∈ H4(M1,4,Q). (2.30)

Proof of Lemma 2.6. We start with W = x2
+ xy2

+ yz4. We normalize

u = y1J 12 , v =
√
−2y1J 8 , w = −2y1J 4 .

The nonvanishing pairings between these broad elements are 〈u,w〉 = 1 and 〈v, v〉 = 1.
We integrate 3W1,4(1J 9 , 1J 9 , 1J 9 , 1J 9) over the Getzler relation (2.30). The Composi-

tion law [14, Theorem 4.1.8(6)] in FJRW theory implies∫
δ0,3

3W1,4(1J 9 , 1J 9 , 1J 9 , 1J 9) = 4〈1J 9 , 1J 9 , 1J 9 , 1J 7〉
W
0

(∑
α,β

ηα,β〈1J 9 , 1J 9 , α, β〉
W
0

)
= 4〈1J 9 , 1J 9 , 1J 9 , 1J 7〉

W
0
(
2〈1J 9 , 1J 9 , 1J 13 , 1J 3〉

W
0 + 2〈1J 9 , 1J 9 , 1J 11 , 1J 5〉

W
0

+ 2〈1J 9 , 1J 9 , 1J 9 , 1J 7〉
W
0 + 2〈1J 9 , 1J 9 , u,w〉

W
0 + 〈1J 9 , 1J 9 , v, v〉

W
0
)
.

The factor 4 comes from the fact that there are four strata in 10,3 which contribute.
We have the factor 2 for 〈1J 9 , 1J 9 , 1J 13 , 1J 3〉

W
0 since both α = 1J 13 and α = 1J 3

give the same correlator. Finally, 1J is the identity, and the string equation implies
〈1J 9 , 1J 9 , 1J 15 , 1J 〉W0 = 0. There are two correlators containing broad sectors; we simply
denote

C1 := 〈1J 9 , 1J 9 , v, v〉
W
0 , C2 := 〈1J 9 , 1J 9 , u,w〉

W
0 .

We can calculate the concave correlators using the orbifold-GRR formula (2.17) to get

〈1J 9 , 1J 9 , 1J 13 , 1J 3〉
W
0 =

1
4 , 〈1J 9 , 1J 9 , 1J 11 , 1J 5〉

W
0 = −

1
8 , 〈1J 9 , 1J 9 , 1J 9 , 1J 7〉

W
0 =

1
8 .

This implies ∫
δ0,3

3W1,4(1J 9 , 1J 9 , 1J 9 , 1J 9) = C2 +
1
2C1 +

1
4 .

Similarly, we get∫
δβ

3W1,4(1J 9 , 1J 9 , 1J 9 , 1J 9) = 6C2
2 + 3C2

1 +
9

16 ,

∫
δ0,4

3W1,4(1J 9 , 1J 9 , 1J 9 , 1J 9) = 165
128 .
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The last equality requires the computation for a genus-0 correlator with five marked
points. It is reconstructed from some known 4-point correlators by the WDVV equations.
On the other hand, using the homological degree (2.8), we deduce the vanishing of the in-
tegral of3W1,4(1J 9 , 1J 9 , 1J 9 , 1J 9) over those strata which contain the genus-1 component.
Thus ∫

12δ2,2+4δ2,3−2δ2,4+6δ3,4

3W1,4(1J 9 , 1J 9 , 1J 9 , 1J 9) = 0.

Now apply the Getzler relation (2.30) to get

−12C2
2 + C2 − 6C2

1 +
1
2C1 +

53
128 = 0. (2.31)

On the other hand, since 1J 9 = 1J 13 • 1J 13 , we apply WDVV equations to get
〈u, u, 1J 9〉

W
0 = (〈1J 13 , u, v〉W0 )

2,

〈1J 9 , 1J 9 , v, v〉W0 + 〈1J 13 , 1J 13 , 1J 9 , 1J 15〉
W
0 = 2〈1J 9 , 1J 13 , v, w〉W0 〈1J 13 , u, v〉W0 ,

〈1J 9 , 1J 9 , u,w〉W0 + 〈1J 13 , 1J 13 , 1J 9 , 1J 15〉
W
0 = 〈1J 9 , 1J 13 , v, w〉W0 〈1J 13 , u, v〉W0 .

If 〈u, u, 1J 9〉
W
0 = 0, then 〈1J 13 , u, v〉W0 = 0, and the other two equations above imply

C1 = C2 = −〈1J 13 , 1J 13 , 1J 9 , 1J 15〉
W
0 = −

3
16 ,

where the last equality follows from (2.17). However, this contradicts (2.31).
Next we consider W = x2

+ xy3
+ yz3. We denote{

u := y21J 12 , w := −3y21J 6 ,

C1 := 〈1J 13 , 1J 13 , w,w〉W0 , C2 := 〈1J 7 , 1J 13 , u,w〉W0 , C3 := 〈1J 7 , 1J 7 , u, u〉W0 .

We integrate 3W1,4(1J 13 , 1J 13 , 1J 7 , 1J 7) over the Getzler relation (2.30) to get

−8C2
2 −

2
3C2 − 2C1C3 +

8
81 = 0. (2.32)

On the other hand, since 1J 7 = 1J 13 • 1J 13 , the WDVV equations imply{
〈1J 7 , 1J 13 , u,w〉W0 + 〈1J 13 , 1J 13 , 1J 13 , 1J 17〉

W
0 = 〈1J 13 , 1J 13 , w,w〉W0 〈1J 13 , u, u〉W0 ,

〈1J 7 , 1J 7 , u, u〉W0 = 〈1J 7 , 1J 13 , u,w〉W0 〈1J 13 , u, u〉W0 .

Now 〈1J 13 , u, u〉W0 = 0 implies C2 = −
5

18 and C3 = 0. This contradicts (2.32). ut

3. B-model: Saito’s theory of primitive form

Throughout this section, we consider the Landau–Ginzburg B-model defined by

f : X = Cn→ C,

where f is a weighted homogeneous polynomial with isolated singularity at the origin:

f (λq1x1, . . . , λ
qnxn) = λf (x1, . . . , xn).
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Recall that qi are called the weights of xi , and the central charge of f is defined by

ĉf =
∑
i

(1− 2qi).

Associated to f , the third author [41] has introduced the concept of a primitive form,
which, in particular, induces a Frobenius manifold structure (sometimes called a flat
structure) on the local universal deformation space of f . This gives rise to the genus
zero correlation functions in the Landau–Ginzburg B-model, which are conjectured to be
equivalent to the FJRW invariants on the mirror singularities.

The general existence of primitive forms for local isolated singularities is proved by
M. Saito [46] via Deligne’s mixed Hodge theory. For f being a weighted homogeneous
polynomial, the existence problem is greatly simplified due to the semisimplicity of mon-
odromy [41, 46]. However, explicit formulas for primitive forms have only been known
for ADE and simple elliptic singularities [41] (i.e., for ĉf ≤ 1). This led to the difficulty
of computing correlation functions in the Landau–Ginzburg B-model, and has become
one of the main obstacles toward proving mirror symmetry between Landau–Ginzburg
models.

Based on the recent idea of perturbative approach to primitive forms [32], in this
section we will develop a general perturbative method of computing the Frobenius mani-
folds in the Landau–Ginzburg B-model. This is applied to the 14 exceptional unimodular
singularities. With the help of a certain reconstruction type theorem for the WDVV equa-
tions (see e.g. Lemma 4.2), it completely solves the computation problem in the Landau–
Ginzburg B-model at genus zero.

3.1. Higher residue and good basis

Let 0 ∈ X = Cn be the origin. Let �k
X,0 be the germs of holomorphic k-forms at 0. In

this paper we will work with the following space [42]:

H(0)
f := �

n
X,0[[z]]/(df + zd)�

n−1
X,0 ,

which is a formally completed version of the Brieskorn lattice associated to f . Given a
differential form ϕ ∈ �n

X,0, we will use [ϕ] to represent its class in H(0)
f .

There is a natural semi-infinite Hodge filtration on H(0)
f given by H(−k)

f := zkH(0)
f ,

with graded pieces

H(−k)
f /H(−k−1)

f
∼= �f , where �f := �

n
X,0/df ∧�

n−1
X,0 .

In particular, H(0)
f is a free C[[z]]-module of rank µ = dimC Jac(f )0, the Milnor number

of f . We will also denote the extension to Laurent series by

Hf := H(0)
f ⊗C[[z]] C((z)).

There is a natural Q-grading on H(0)
f defined by assigning the degrees

deg xi = qi, deg(dxi) = qi, deg z = 1.



1208 Changzheng Li et al.

Then for a homogeneous element of the form ϕ = zkg(xi)dx1 ∧ · · · ∧ dxn, we have

degϕ = deg g + k +
∑
i

qi .

In [42], the third author constructed a higher residue pairing

Kf : H(0)
f ⊗H(0)

f → znC[[z]]

which satisfies the following properties:
1. Kf is equivariant with respect to the Q-grading, i.e.,

deg(Kf (α, β)) = degα + degβ

for homogeneous elements α, β ∈ H(0)
f .

2. Kf (α, β) = (−1)nKf (β, α), where the − operator takes z to −z.
3. Kf (v(z)α, β) = Kf (α, v(−z)β) = v(z)Kf (α, β) for v(z) ∈ C[[z]].
4. The leading z-order of Kf defines a pairing

H(0)
f /zH(0)

f ⊗H(0)
f /zH(0)

f → C, α ⊗ β 7→ lim
z→0

z−nKf (α, β),

which coincides with the usual residue pairing ηf : �f ⊗�f → C.
We remark that the classical residue pairing ηf is intrinsically defined up to a nonzero
constant. In the case of weighted homogeneous singularities (for instance for the excep-
tional unimodular singularities), we will always specify a top degree element φµ in a
weighted homogeneous basis of Jac(f ), and will fix the constant such that

ηf (dx1 · · · dxn, φµdx1 · · · dxn) = 1. (3.1)

We will call it the normalized residue pairing.
The last property implies thatKf defines a semi-infinite extension of the residue pair-

ing, which explains the name “higher residue”. It is naturally extended to

Kf : Hf ⊗Hf → C((z)),

which we denote by the same symbol. This defines a symplectic pairing ωf on Hf by

ωf (α, β) := Resz=0 z
−nKf (α, β)dz,

with H(0)
f being a maximal isotropic subspace. Following [41], we introduce

Definition 3.1. A good section σ is defined by a splitting of the quotient H(0)
f → �f ,

σ : �f → H(0)
f ,

such that (1) σ preserves the Q-grading; (2) Kf (Im(σ ), Im(σ )) ⊂ znC. A basis of Im(σ )
will be referred to as a good basis of H(0)

f .

Definition 3.2. A good opposite filtration L is defined by a splitting

Hf = H(0)
f ⊕ L

such that (1) L preserves the Q-grading; (2) L is an isotropic subspace; (3) z−1
: L→ L.
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Remark 3.3. Here for f being weighted homogeneous, (1) is a convenient statement
equivalent to the conventional condition that ∇GMz∂z preserves L (see e.g. [32]).

The above two definitions are equivalent. In fact, a good opposite filtration L defines the

splitting σ : �f
∼=
→ H(0)

f ∩zL. Conversely, a good section σ gives rise to the good opposite
filtration L = z−1 Im(σ )[z−1

]. As shown in [41,46], the primitive forms associated to the
weighted homogeneous singularities are in one-to-one correspondence with good sections
(up to a nonzero scalar). Therefore, we only introduce the notion of good sections, and
refer our readers to loc. cit. for the precise notion of primitive forms. We remark that for
general isolated singularities, we need the notion of very good sections [46, 47] in order
to incorporate monodromy.

3.2. The perturbative equation

We start with a good basis {[φαdnx]}µα=1 of H(0)
f , where dnx := dx1 · · · dxn. In this

subsection, we will formulate the perturbative method of [32] for computing its associated
primitive form, flat coordinates and the potential function. The construction works for
general f after the replacement of a good basis by a very good one (see also [47]). We
will focus on f being weighted homogeneous since in that case it leads to a very effective
computation algorithm. In the following discussion we will then assume {φα}

µ
α=1 to be

weighted homogeneous polynomials in C[x] that represent a basis of the Jacobi algebra
Jac(f ) and φ1 = 1.

3.2.1. The exponential map. Let F be a local universal unfolding of f (x) around 0 ∈ Cµ:

F : Cn × Cµ→ C, F (x, s) := f (x)+
µ∑
α=1

sαφα(x), s = (s1, . . . , sµ).

The polynomial F becomes weighted homogeneous of total degree 1 after the assignment

deg sα := 1− degφα.

The higher residue pairing is also defined for F as the family version, but we will not use
it explicitly in our discussion (although implicitly it is used in an essential way).

Let B := spanC{[φαd
nx]} ⊂ H(0)

f be spanned by the chosen good basis. Then

H(0)
f = B[[z]], Hf = B((z)).

Let BF := spanC{φαd
nx} be another copy of the vector space spanned by the forms

φαd
nx. We use a different notation to distinguish it from B, since BF should be viewed

as a subspace of the Brieskorn lattice for the unfolding F . See [32] for more details.
Consider the exponential operator [32]

e(F−f )/z : BF → B((z))[[s]]
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defined as a C-linear map on the basis of BF as follows. Let C[s]k :=

Symk(spanC{s1, . . . , sµ}) denote the space of k-homogeneous polynomial in s (not to
be confused with the weighted homogeneous polynomials). As elements in Hf ⊗ C[s]k ,
we can decompose

[z−k(F − f )kφαd
nx] =

∑
m≥−k

∑
β

h
(k)
αβ,mz

m
[φβd

nx],

where h(k)αβ,m ∈ C[s]k . Then we define

e(F−f )/z(φαd
nx) :=

∞∑
k=0

∑
β

∑
m≥−k

h
(k)
αβ,m

zm

k!
[φβd

nx] ∈ B((z))[[s]].

Proposition 3.4. The exponential map extends to a C((z))[[s]]-linear isomorphism

e(F−f )/z : BF ((z))[[s]] → B((z))[[s]].

Proof. Clearly, e(F−f )/z extends to a C((z))[[s]]-linear map on BF ((z))[[s]]. The state-
ment follows by noticing e(F−f )/z ≡ 1 mod (s) under the manifest identification between
B and BF . ut

We will use the same symbol

Kf : B((z))[[s]] × B((z))[[s]] → C((z))[[s]]

to denote the C[[s]]-linear extension of the higher residue pairing to Hf [[s]]=B((z))[[s]].

Lemma 3.5. For any ϕ1, ϕ2 ∈ BF , we have

Kf (e
(F−f )/zϕ1, e

(F−f )/zϕ2) ∈ z
nC[[z, s]].

In particular, e(F−f )/z maps BF [[z]] to an isotropic subspace of Hf [[s]].
Proof. Let KF denote the higher residue pairing for the unfolding F [42]. The expo-
nential operator e(F−f )/z gives an isometry (with respect to the higher residue pairing)
between the Brieskorn lattice for the unfolding F and the trivial unfolding f [32,47]. That
is, Kf (e(F−f )/zϕ1, e

(F−f )/zϕ2) = KF (ϕ1, ϕ2) ∈ z
nC[[z, s]], where ϕ1, ϕ2 are treated as

elements of the Brieskorn lattice for the unfolding F . ut

Remark 3.6. The above lemma can also be proved directly via an explicit formula forKf
described in [32]. By that formula, there exists a compactly supported differential operator
P
(
∂
∂x̄i
, z ∂

∂xi
, y∂xi ,∧dx̄i

)
on smooth differential forms composed of ∂

∂x̄i
, z ∂

∂xi
, y∂xi ,∧dx̄i

and some cut-off function such that

Kf (e
(F−f )/zϕ1, e

(F−f )/zϕ2)

= zn
∫
X

e(F−f )/zϕ1 ∧ P

(
∂

∂x̄i
, z

∂

∂xi
, y∂xi ,∧dx̄i

)
(e−(F−f )/zϕ2).

Since P will not introduce negative powers of z when passing through e(f−F)/z, the
lemma follows.
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Theorem 3.7. Given a good basis {[φαdnx]}µα=1 ⊂ H(0)
f , there exists a unique pair

(ζ,J ) satisfying (1) ζ ∈ BF [[z]][[s]], (2) J ∈ [dnx] + z−1B[z−1
][[s]] ⊂ Hf [[s]],

and

e(F−f )/zζ = J . (?)

Moreover, both ζ and J are weighted homogeneous.

Proof. We will find ζ(s) recursively with respect to the order in s. Let

ζ =

∞∑
k=0

ζ(k) =

∞∑
k=0

∑
α

ζα(k)φαd
nx, ζα(k) ∈ C[[z]] ⊗C C[s]k.

Since e(F−f )/z ≡ 1 mod (s), the leading order of (?) is

ζ(0) ∈ [d
nx] + z−1B[z−1

],

which is uniquely solved by ζ(0) = φ1d
nx. Suppose we have solved (?) up to order N , i.e.

ζ(≤N) :=
∑N
k=0 ζ(k) such that

e(F−f )/zζ(≤N) ∈ [d
nx] + z−1B[z−1

][[s]] mod (sN+1).

Let RN+1 ∈ B((z))⊗C C[s](N+1) be the (N + 1)-th order component of e(F−f )/zζ(≤N).
Let

RN+1 = R
+

N+1 + R
−

N+1

where R+N+1 ∈ B[[z]] ⊗C C[s](N+1) and R−N+1 ∈ z
−1B[z−1

] ⊗C C[s](N+1). Let R̃+N+1 ∈

BF [[z]] ⊗C C[s](N+1) correspond to R+N+1 under the manifest identification between B
and BF . Then

ζ(≤N+1) := ζ(≤N) − R̃
+

N+1

gives the unique solution of (?) up to order N + 1. This algorithm allows us to solve ζ,J
perturbatively to arbitrary order. The weighted homogeneity follows from the fact that (?)
respects the weighted degree. ut

Remark 3.8. In [32], it is shown that the volume form

∞∑
k=0

∑
α

ζα(k)φαd
nx

gives the power series expansion of a representative of the primitive form associated to the
good basis {[φαdnx]}µα=1. In particular, this is a perturbative way to compute the primitive
form via a formal solution of the Riemann–Hilbert–Birkhoff problem.
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3.2.2. Flat coordinates and potential function. Let (ζ,J ) be the unique solution of (?).
As shown in [32], ζ represents the power series expansion of a primitive form. However,
for the purpose of mirror symmetry, it is more convenient to work with J , which plays the
role of Givental’s J-function (see [21] for an introduction). This allows us to read off the
flat coordinates and the potential function of the associated Frobenius manifold structure.

With the natural embedding z−1C[z−1
][[s]] ↪→ z−1C[[z−1

]][[s]], we decompose

J = [dnx] +
−∞∑
m=−1

zmJm, where Jm =
∑
α

J α
m [φαd

nx], J α
m ∈ C[[s]].

We denote the z−1-term by
tα(s) := J α

−1(s).

It is easy to see that tα is weighted homogeneous of the same degree as sα such that
tα = sα+O(s2). Therefore tα defines a set of new homogeneous local coordinates on the
(formal) deformation space of f .

Proposition 3.9. The function J = J (s(t)) in coordinates tα satisfies

∂tα∂tβJ = z−1
∑
γ

A
γ
αβ(t)∂tγJ

for some homogeneous Aγαβ(t) ∈ C[[t]] of weighted degree degφα + degφβ − degφγ .
Moreover, for any α, β, γ, δ,

∂tαA
δ
βγ = ∂tβA

δ
αγ ,

∑
σ

AδασA
σ
βγ =

∑
σ

AδβσA
σ
αγ .

Proof. Consider the splitting

Hf [[s]] = B((z))[[s]] = H+ ⊕H−,

where

H+ := e(F−f )/z(BF [[z]][[s]]) ⊂ B((z))[[s]], H− := z−1B[z−1
][[s]].

Let BF := H+ ∩ zH−. Equation (?) implies that z∂tαJ ∈ BF , with z-leading term of
constant coefficient

z∂tαJ ∈ [φαdnx] +H−.

In particular, {z∂tαJ } form a C[[s]]-basis of BF .
Similarly, z2∂tα∂tβJ = z2∂tα∂tβ (e

(F−f )/zζ ) ∈ H+, and z2∂tα∂tβJ ∈ zH− by the
above property of the leading constant coefficient. Therefore z2∂tα∂tβJ ∈ BF . This im-
plies the existence of functions Aγαβ = A

γ
αβ(s(t)) such that

z2∂tα∂tβJ =
∑
γ

zA
γ
αβ(s(t))∂tγJ

The homogeneous degree follows from the fact that J is weighted homogeneous.
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Let Aα denote the linear transformation on BF given by

Aα : z∂βJ 7→
∑
γ

A
γ
αβz∂tγJ .

We can rewrite the above equation as (∂tα − z
−1Aα)∂tβJ = 0. We notice that

[∂tα − z
−1Aα, ∂tβ − z

−1Aβ ] = 0 on BF for all α, β.

Therefore the last equations in the proposition hold. ut

Lemma 3.10. In terms of the coordinates tα , we have

Kf (z∂tαJ , z∂tβJ ) = zngαβ .

Here gαβ is the constant equal to the residue pairing ηf (φαdnx, φβdnx).
Proof. We adopt the same notation as in the above proof. Since z∂tαJ ∈ H+,

Kf (z∂tαJ , z∂tβJ ) ∈ znC[[z]][[s]]

by Lemma 3.5. Since also z∂tαJ = [φαdnx] +H− ∈ zH−, we have

Kf (z∂tαJ , z∂tβJ ) ∈ zngαβ + zn−1C[z−1
][[s]].

The lemma follows from the above two properties. ut

Corollary 3.11. Let Aαβγ (t) :=
∑
δ A

δ
αβgδγ . Then Aαβγ is symmetric in α, β, γ .

Proof. By Lemma 3.10, ∂tγKf (z∂tαJ , z∂tβJ ) = 0. Now apply Proposition 3.9. ut

The above propositions can be summarized as follows. The triple (∂tα , A
γ
αβ , gαβ) defines

a (formal) Frobenius manifold structure on a neighborhood S of the origin with {tα} being
the flat coordinates, together with the potential function F0(t) satisfying

Aαβγ (t) = ∂tα∂tβ ∂tγF0(t).

It is not hard to see that F0(t) is homogeneous of degree 3−ĉf . As in the next proposition,
the potential function F0(t) can also be computed perturbatively. Let

F0(t) = F0,(≤N)(t)+O(tN+1).

Proposition 3.12. The potential function F0 associated to the unique pair (ζ,J ) satisfies

∂tαF0(t) =
∑
β

gαβJ β

−2(s(t)).

Moreover, F (≤N)
0 (t) is determined by ζ(≤N−3)(s).

Proof. The first statement follows directly from Proposition 3.9.
Recall ζ(s) = ζ(≤N)(s)+O(sN+1). Let J α

m(s) = J α
m,(≤N)(s)+O(s

N+1). It is easy to

see that F (≤N)
0 (t) only depends on J α

−1,(≤N−2)(s), J
α
−2,(≤N−1)(s), and J α

m,(≤N)(s) only
depends on ζ(≤N+m)(s). Hence, the second statement follows. ut

Remark 3.13. By Remark 3.8, ζ is in fact an analytic primitive form. Therefore, both tα
and F0(t) are in fact analytic functions of s at the germ s = 0.
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3.3. Computation for exceptional unimodular singularities

We start with the next proposition, which follows from a related statement for Brieskorn
lattices [23]. An explicit calculation of the moduli space of good sections for general
weighted homogenous polynomials is also given in [32,47]. For exposition, we include a
proof here.

Proposition 3.14. If f is one of the 14 exceptional unimodular singularities, then there
exists a unique good section {[φαdnx]}µα=1, where {φα} ⊂ C[x] are (arbitrary) weighted
homogeneous representatives of a basis of the Jacobi algebra Jac(f ).

Proof. We give the details for the E12-singularity. The other 13 types are established
similarly.

The E12-singularity is given by f = x3
+ y7 with deg x = 1

3 , deg y = 1
7 , and central

charge ĉf = 22
21 . We consider the weighted homogeneous monomials

{φ1, . . . , φ12} = {1, y, y2, x, y3, xy, y4, xy2, y5, xy3, xy4, xy5
} ⊂ C[x, y]

which represent a basis of Jac(f ). The normalized residue pairing gαβ between φα, φβ is
equal to 1 if α + β = 13, and 0 otherwise. Since Kf preserves the Q-grading,

degKf ([φαdxdy], [φβdxdy]) = degφα + degφβ + 2− ĉf ,

which has to be an integer for a nonzero pairing. A simple degree count implies that

Kf ([φαdxdy], [φβdxdy]) = z
2gαβ ,

and therefore {[φαdxdy]} constitutes a good basis.
Let {φ′α} be another set of weighted homogeneous polynomials such that {[φ′αdxdy]}

gives a good basis. We can assume φ′α ≡ φα as elements in Jac(f ) and degφ′α = degφα .
Since [φαdxdy] forms a C[[z]]-basis of H(0)

f , we can decompose

[φ′αdxdy] =
∑
β

Rβα [φβdxdy], Rβα ∈ C[[z]].

By weighted homogeneity, Rβα is homogeneous of degree degφα − degφβ , which is not
an integer unless α = β. Thus [φ′αdxdy] = [φαdxdy], which proves uniqueness. ut

Let F0 be the potential function of the associated Frobenius manifold structure. Then F0
is an analytic function, as an immediate consequence of the above uniqueness together
with the existence of the (analytic) primitive form. As will be shown in Lemma 4.2, we
only need to compute F0,(≤4) to prove mirror symmetry.

We illustrate the perturbative calculation for theE12-singularity f = x3
+y7. The full

result is summarized in the appendix by similar calculations. We adopt the same notation
as in the proof of Proposition 3.14. By Proposition 3.12, we only need ζ(≤1) to compute
F0,(≤4), which is

ζ(≤1) = dxdy.
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Using the equivalence relation in Hf , we can expand

e(F−f )/z(ζ(≤1)) =

3∑
k=0

(F − f )k

k!
z−kζ(≤1) +O(s4)

in terms of the good basis {φα}. We find the flat coordinates up to order 2:

t1
.
= s1 −

1
7 s5s7 −

1
7 s3s9, t2

.
= s2 −

1
7 s

2
7 −

2
7 s5s9, t3

.
= s3 −

3
7 s7s9,

t4
.
= s4 −

1
7 s8s9 −

1
7 s7s10 −

1
7 s5s11 −

1
7 s3s12, t5

.
= s5 −

2
7 s

2
9 ,

t6
.
= s6 −

2
7 s9s10 −

2
7 s7s11 −

2
7 s5s12, t7

.
= s7, t8

.
= s8 −

3
7 s9s11 −

3
7 s7s12,

t9
.
= s9, t10

.
= s10 −

4
7 s9s12, t11

.
= s11, t12

.
= s12.

This allows us to solve the inverse function sα = sα(t) up to order 2. A straightforward
but tedious computation of the z−2-term shows that in terms of flat coordinates

F0,(≤4) = F (3)
0 + F (4)

0 ,

where F (3)
0 is the third order term representing the algebraic structure of Jac(f ),

∂tα∂tβ ∂tγF
(3)
0 = ηf ([φαφβφγ dxdy], [dxdy]).

The fourth order term F (4)
0 , which we call the 4-point function, is computed by

−F (4)
0 =

1
14 t5t6t

2
7 +

1
18 t

3
6 t8+

1
7 t

2
5 t7t8+

1
7 t3t

2
7 t8+

1
6 t4t6t

2
8 +

1
14 t

2
5 t6t9+

1
7 t3t6t7t9

+
1
7 t3t5t8t9+

1
7 t2t7t8t9+

1
14 t2t6t

2
9 +

1
14 t

3
5 t10+

1
6 t4t

2
6 t10+

2
7 t3t5t7t10+

1
14 t2t

2
7 t10

+
1
6 t

2
4 t8t10+

1
14 t

2
3 t9t10+

1
7 t2t5t9t10+

1
7 t3t

2
5 t11+

1
6 t

2
4 t6t11+

1
7 t

2
3 t7t11+

1
7 t2t5t7t11

+
1
7 t2t3t9t11+

1
18 t

3
4 t12+

1
14 t

2
3 t5t12+

1
14 t2t

2
5 t12+

1
7 t2t3t7t12+

1
14 t

2
2 t9t12.

In particular, for our later use, we can read off

∂t4∂t4∂t4∂t12F0|t=0 = −
1
3 , ∂t2∂t2∂t9∂t12F0|t=0 = −

1
7 .

4. Mirror symmetry for exceptional unimodular singularities

In this section, we use two reconstruction results to prove the mirror symmetry conjecture
between the 14 exceptional unimodular singularities and their FJRW mirrors both at genus
zero and at higher genera.

4.1. Mirror symmetry at genus zero

Throughout this subsection, we assume W T to be one of the 14 exceptional unimodular
singularities in Table 1. We will consider the ring isomorphism 9 : Jac(W T )→ (HW , •)

defined in Proposition 2.7. We will also denote the basis of Jac(W T ) specified therein
by {φ1, . . . , φµ} with degφ1 ≤ · · · ≤ degφµ. As mentioned, there is a formal Frobe-
nius manifold structure on the FJRW ring (HW , •) with a prepotential FFJRW

0,W . We have
also shown in the previous section that there is a Frobenius manifold structure with flat
coordinates (t1, . . . , tµ) associated to (the primitive form) ζ therein, whose prepotential
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will be denoted by FSG
0,WT from now on. We introduce the primary correlators 〈· · · 〉W

T ,SG
0,k

associated to the Frobenius manifold structure on B-side. The primary correlators, up to
linear combinations, are given by

〈φi1 , . . . , φik 〉
WT ,SG
0,k =

∂kFSG
0,WT

∂t i1 · · · ∂t ik
(0). (4.1)

From the specified ring isomorphism 9 and (2.10), we have

〈1φi , 1φj , 1φk 〉
W
0,3 = 〈φi, φj , φk〉

WT ,SG
0,3 .

From Proposition 2.8 and the computation in Section 3.3 and in the appendix, we have

〈1xi , 1xi , 1MT
i /x

2
i
, 1φµ〉

W
0,4 = −〈xi, xi,M

T
i /x

2
i , φµ〉

WT ,SG
0,4 .

To deal with the sign, we will make the following modifications, as in [14, Section 6.5].
We simply denote (−1)r := eπ

√
−1 r . Let F̃SG

0 denote the potential function of the Frobe-
nius manifold structure ζ̃ := (−1)−ĉWT ζ . Set φ̃j := (−1)− degφjφj and define a map
9̃ : Jac(W T ) → HW by 9̃(φ̃j ) := 9(φj ). Let t̃ denote the flat coordinate of F̃SG

0 ,
namely

t̃j = (−1)1−deg tj tj . (4.2)

As a consequence, we have F̃ (3),SG
0,WT = F (3),SG

0,WT and F̃ (4),SG
0,WT = −F

(4),SG
0,WT . Denote 1̃φ̃j :=

9̃(φ̃j ). Then 9̃ defines a pairing-preserving ring isomorphism, which is read off from the

identities 〈1̃φ̃i , 1̃φ̃j , 1̃φ̃k 〉
W
0,3 = 〈φ̃i, φ̃j , φ̃k〉

WT ,ζ̃ ,SG
0,3 , Moreover,

〈1̃x̃i , 1̃x̃i , 1̃
M̃T
i /x

2
i

, 1̃φ̃µ〉
W
0,4 = 〈x̃i, x̃i, M̃

T
i /x

2
i , φ̃µ〉

WT ,ζ̃ ,SG
0,4 . (4.3)

From now on, we simplify the notation by dropping the symbol ˜ and the superscript ζ̃ . In
addition, we simply denote bothHW and Jac(W T ) asH , and we denote the correlators on
both sides as 〈φi1 , . . . , φik 〉0,k (or 〈φi1 , . . . , φik 〉) whenever there is no risk of confusion.
We have the following “selection rule” for primary correlators.

Lemma 4.1. A primary correlator 〈φi1 , . . . , φik 〉0,k on either A-side or B-side is nonzero
only if

k∑
j=1

degφij = ĉWT − 3+ k. (4.4)

Proof. The A-side case follows from (2.11) and ĉW = ĉWT . The primary correlator on
B-side is given by ∂ti1 · · · ∂tikF

SG
0,WT (0), where degφij = 1 − deg tij . Then the statement

follows, by noticing that FSG
0,WT (0) is weighted homogenous of degree 3− ĉWT . ut

A homogeneous α ∈ H is called a primitive class with respect to the specified basis {φj }
if it cannot be written as α = α1 • α2 for 0 < degαi < degα. A primary correlator
〈φi1 , . . . , φik 〉0,k is called basic if at least k − 2 insertions φij are primitive classes. Now
Theorem 1.3 is a direct consequence of the equalities (4.3) and the following statement:
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Lemma 4.2 (Reconstruction Lemma). If W T is one of the 14 exceptional singularities,
then all the following hold.

(1) The prepotential F0 is uniquely determined from the basic correlators 〈. . .〉0,k with
k≤5.

(2) All basic correlators 〈φi1 , . . . , φi5〉0,5 vanish.
(3) All the 4-point basic correlators are uniquely determined from (1.1).

Proof of (1). The potential function F0 satisfies the WDVV equation (2.13) (hence
(2.14)). We can assume that 〈· · ·〉0,k is not of type 〈1, . . .〉0,k , k ≥ 4 (otherwise it van-
ishes according to the string equation, or the invariance of the primitive form along the
φ1-direction where we notice φ1 = 1). Consider a correlator 〈. . . , αa, αb • αc, αd〉0,k ,
with the last three insertions nonprimitive. By (2.14), such a correlator is the sum of Sk
together with three terms whose insertion replaces αb • αc with lower degree ones αb
or αc at the same position. Repeating this will turn αb • αc into a primitive class, up to
a product of correlators with fewer insertions. By induction both on the degree of non-
primitive classes and on k, we can reduce any correlator to a linear combination of basic
correlators.

Now we assume that 〈φi1 , . . . , φik 〉0,k is a nonzero basic correlator. Then we can write
φi1 • · · · • φik = x

aybzc. It follows from the degree constraint (4.4) that

ĉWT − 3+ k =
k∑

j=1

degφij = aqx + bqy + cqz. (4.5)

Let P be the maximal degree of a generator x, y and z (or x and y if W T
= W T (x, y) is

in two variables x, y only). By direct calculations, we conclude

k ≤
ĉWT + 1
1− P

+ 2 < 6.

Proof of (2). For W T
= xp + yq , x, y are generators for the ring structure H . The

multiplications for all the insertions will be in the form of xa•yb. By the degree constraint,
a nonzero basic correlator 〈φi1 , . . . , φik 〉0,k satisfies

aq + bp = (k − 1)pq − 2p − 2q. (4.6)

On the other hand, we assume the first k − 2 insertions are primitive classes, so that they
are either x or y. The top degree class φµ = xp−2

• yq−2 is of degree 2 − 2/p − 2/q.
Therefore we have the following inequalities required for a nonvanishing correlator:

a ≤ k−2+2(p−2), b ≤ k−2+2(q−2), a+b ≤ k−2+2(p−2+q−2). (4.7)

It is easy to see that there is no (a, b) satisfying both (4.6) and (4.7) if k = 5. Hence
〈φi1 , . . . , φi5〉0,5 = 0. The arguments for the remaining W T on B-side and all the W on
A-side are all similar and elementary, details of which are left to the readers.

Proof of (3). Let us start with W T
= xp + yq , where we notice that p, q

are coprime. The degree constraint (4.6) with k = 4 implies that (a, b) =
(2p − 2, q − 2) or (p − 2, 2q − 2). Thus the possibly nonzero basic correlators are
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〈x, x, xp−2yi, xp−2yq−2−i
〉0,4, i = 0, . . . , q − 2. On the other hand, if formula (1.1)

holds, then by the WDVV equation (2.14), we have

〈x, x, xp−2
• yi, xp−2yq−2−i

〉 = −〈x, xp−2, yi, x • xp−2yq−2−i
〉

+ 〈x, x • xp−2, yi, xp−2yq−2−i
〉 + 〈x, x, xp−2, yi • xp−2yq−2−i

〉

= 〈x, x, xp−2, yi • xp−2yq−2−i
〉 = 1/p.

For the 2-Chain W T
= xpy + yq , the degree constraint (4.5) tells us

a
q − 1
pq
+ b

1
q
= ĉW − 3+ k.

For k = 4, this implies that (a, b) = (2p− 2, q) or (p− 2, 2q− 1). The basic correlators
are 〈x, x, xp−2y1+i, xp−2yq−1−i

〉 with 0 ≤ i ≤ q − 1, 〈y, y, xiyq−2, xp−2−iyq−1
〉 with

0 ≤ i ≤ p − 2 and 〈x, y, xiyq−1, xp−3−iyq−1
〉 with 0 ≤ i ≤ p − 3. The first two

types are uniquely determined from the correlators which are listed in Proposition 1.2.
For example, if 0 < i < q − 1, since p xp−1y = ∂xW

T
= 0 in Jac(W T ), we have

〈x, x, xp−2y • yi, xp−2yq−1−i
〉 = 〈x, x, xp−2y, xp−2yq−1−i

• yi〉.

The last type is determined by

〈x, y, xiyq−1, xp−3−iyq−1
〉 = −

1
q
〈x, y, xiyq−1, xp−2−i

• xp−1
〉

= −
1
q
(〈x, y, xp−1, xp−2yq−1

〉 + 〈x, y • xp−1, xp−2−i, xiyq−1
〉)

= −
1
q
〈x, y, x • xp−2, xp−2yq−1

〉 = −
1
q
〈x, x, xp−2

• y, xp−2yq−1
〉 = −

1
pq
.

Here we use the relation xp + qyq−1
= ∂yW

T
= 0 in Jac(W T ) in the first equality.

For the 2-Loop W T
= x3y + xy4, the degree constraint (4.6) with k = 4 implies that

(a, b) = (5, 4) or (3, 7). If (1.1) holds, namely if

〈x, x, xy, x2y3
〉 =

3
11 , 〈y, y, xy2, x2y3

〉 =
2

11 ,

then we conclude 〈x, y, x2, x2y3
〉 =

3
11 , 〈x, y, y

2, x2y3
〉 =

2
11 and 〈x, x, x2y2, xy2

〉 =

2
11 from a single WDVV equation for each correlator. For the rest, we conclude
〈x, x, xy3, x2y〉 = 1

11 and 〈x, y, xy3, xy3
〉 = −

1
11 by solving the following linear equa-

tions which come from the WDVV equation:{
−3〈x, x, x2y, xy3

〉 + 〈x, x • xy3, y3, y〉 = 〈x, x • y3, y, xy3
〉,

−4〈x, y, xy3, xy3
〉 = 〈x, y, x2, x • xy3

〉 + 〈x, y • x2, x, xy3
〉.

Here the coefficient −3 (resp. −4) comes from 3x2y + y4
= 0 (resp. x3

+ 4xy3
= 0) in

Jac(W T ). Similarly, we conclude 〈x, y, x2y2, x2y〉 = − 1
11 and 〈y, y, x2y2, xy3

〉 =
1

11 .
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ForW T
= x2y+ y4

+ z3
∈ Q10, the number of 4-point basic correlators is 10. Three

of them are the initial correlators in (1.1), 〈x, x, y, y3z〉, 〈y, y, y2, y3z〉, 〈z, z, z, y3z〉,
the rest are 〈y, y, y2z, y3

〉, 〈y, z, y3, y3
〉, 〈z, z, yz, y2z〉, 〈x, x, yz, y3

〉, 〈x, x, y2, y2z〉,

〈x, y, xz, y3
〉, and 〈z, z, xz, xz〉. We have seven WDVV equations to reconstruct them

from the initial correlators:
4〈y, y, y2z, y3

〉 = 〈x, x, y, y3z〉, 〈y, z, y3, y3
〉 = 〈y, y, y2z, y3

〉 − 〈y, y, y2, y3z〉,

〈z, z, yz, y2z〉 = 〈z, z, z, y3z〉, 〈x, x, yz, y3
〉 = 〈x, x, y, y3z〉,

〈x, x, y2, y2z〉 = 〈x, x, y, y3z〉, 〈x, y, xz, y3
〉 = 〈x, x, y, y3z〉,

〈z, z, xz, xz〉 = −4〈z, z, z, y3z〉.

For other singularities of three variables, all the basic 4-point correlators are uniquely
determined from the initial correlators in (1.1), by the same technique. However, the dis-
cussion is more tedius. For example, there are 21 4-point basic correlators for the type
S12 singularityW T

= x2y+y2z+z3x. We can write down 18 WDVV equations carefully
to determine all the 21 basic correlators from the three correlators in (1.1). The details are
skipped here. ut

4.2. Mirror symmetry at higher genus

In Section 2, we already constructed the total ancestor FJRW potential A FJRW
W for a pair

(W,GW ). Now we give the B-model total ancestor Saito–Givental potential A SG
WT . Let S

be the universal unfolding of the isolated singularity W T . For a semisimple point s ∈ S,
Givental [19] constructed the following formula containing higher genus information on
the Landau–Ginzburg B-model of f (see [12, 18, 19] for more details):

A SG
f (s) := exp

(
−

1
48

µ∑
i=1

log1i(s)
)
9̂sR̂s(T ).

Here T is the product of µ copies of the Witten–Kontsevich τ -function;1i(s),9s and Rs
are data coming from the Frobenius manifold; and the operators ·̂ are the so-called quan-
tization operators. We call A SG

f (s) the Saito–Givental potential for f at s. Teleman [49]
proved that A SG

f (s) is uniquely determined by the genus zero data on the Frobenius man-
ifold. By definition, the coefficients in each genus-g generating function of A SG

f (s) are
just meromorphic near the nonsemisimple point s = 0. Recently, using Eynard–Orantin
recursion, Milanov [34] proved A SG

WT (t) extends holomorphically at t = 0. We denote
such an extension by A SG

WT , and Corollary 1.4 follows from Theorem 1.3 and Teleman’s
theorem.

4.3. Alternative representatives and the other direction

Although the theory of primitive forms depends only on the stable equivalence class of the
singularity, FJRW theory definitely depends on the choice of the polynomial together with
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the group. For the exceptional unimodular singularities, in the following we list all the ad-
ditional invertible weighted homogeneous polynomial representatives without quadratic
terms x2

k in additional variables xk (up to permutation symmetry among variables):
E14 : x

3
+ y8, W12 : x

2y + y2
+ z5, W13 : x

4y + y4
;

Q12 : x
2y + y5

+ z3, Z13 : x
3y + y6, U12 : x

2y + y3
+ z4
;

U12 : x
2y + xy2

+ z4.

(4.8)

It is quite natural to investigate Conjecture 1.1 for all the weighted homogeneous
polynomial representatives on the B-side.

Theorem 4.3. Conjecture 1.1 is true if W T is given by any weighted homogenous poly-
nomial representative of the exceptional unimodular singularities such that W T is not
x2y + xy2

+ z4. That is, there exists a mirror map such that

A FJRW
W = A SG

WT .

Sketch of the proof. Thanks to Corollary 1.4, it remains to consider the case when W T

is given by (4.8). By Proposition 3.14, there is a unique good section. Let us specify
a weighted homogeneous basis {φ1, . . . , φµ} of Jac(W T ) as in Table 2 for each atomic
type and take the product of such bases for mixed types. Then we could obtain the 4-
point function by direct calculations (see the link in the appendix for precise output).
An isomorphism 9 : Jac(W T )→ HW is chosen much as in Section 2. We compute the
corresponding 4-point FJRW correlators as in Proposition 2.8. IfW T is not x2y+xy2

+z4,
then the 4-point FJRW correlators turn out to be the same as the B-side 4-point correlator
up to sign. These invariants completely determine the full data of the generating function
at all genera on both sides, by exactly the same reconstruction technique as in the previous
two subsections. Therefore, the statement follows. ut

Remark 4.4. If W T
= x2y + xy2

+ z4, then HW has broad ring generators x1J 8 and
y1J 8 . Our method does not apply to compute

〈x1J 8 , x1J 8 , y1J 8 , 1J 15〉
W
0 , 〈y1J 8 , y1J 8 , x1J 8 , 1J 15〉

W
0 , 1φµ = 1J 15 .

If W T
= x2y + y2

+ z5, we may need a further rescaling on 9(x) since we only know

(〈9(x),9(x),9(y),9(yz3)〉W0 )
2
= 2〈9(y),9(y),9(y),9(y),9(yz3)〉W0 =

1
4 .

The first equality is a consequence of the WDVV equation, and the second is a conse-
quence of the orbifold GRR calculation with codimension D = 2 (i.e., (2.16)).

The other direction. Among all the representatives W on the A-side, there are in total
three cases for whichW T is no longer exceptional unimodular. The correspondingW T is
given by x3

+xy6, x2
+xy5

+z3, or x2
+xy3

+z4. Let us end this section by the following
remark, which gives a positive answer to Conjecture 1.1 for those representatives.



Mirror symmetry for exceptional unimodular singularities 1221

Remark 4.5. 1. For the remaining three cases, W T is no longer given by any one of the
exceptional unimodular singularities.

2. A similar calculation to the one in Proposition 3.14 shows that there exists a unique
primitive form (up to constant) for x2

+xy5
+z3. However, for the other two cases x3

+xy6

and x2
+xy3

+z4, there is a whole one-dimensional family of choices of primitive forms.
3. Let us specify a basis {φ1, . . . , φµ} of Jac(W T ) following Table 2. It is easy to check

that {[φ1d
nx], . . . , [φµdnx]} form a good basis and specifies a choice of primitive form.

A similar calculation shows that the B-side 4-point function coincides with the A-side
one (up to sign as before), and they completely determine the full data of the generating
functions at all genera by the same reconstruction technique again.

5. Appendix

5.1. The vector space isomorphisms

Here we list the vector space isomorphisms 9 : Jac(W T ) → (HW ) for the remaining
cases of W in Table 1.

(1) 3-Fermat type. LetW = W T
= x3
+y3
+z4
∈ U12. We denote 1i,j,k := 1 ∈ Hγ for

γ = (exp(2π
√
−1 i/3), exp(2π

√
−1 j/3, exp(2π

√
−1 k/4)) ∈ GW . The isomorphism

9 is given by

9(xi−1yj−1zk−1) = 1i,j,k, 1 ≤ i, j ≤ 3, 1 ≤ k ≤ 4.

(2) Chain type. Let W = x3
+ xy5. The mirror W T is of type Z11. Note GW ∼= µ15.

HW 1J 1J 13 1J 11 1J 10 1J 8 ∓5y41J 0 1J 7 1J 5 1J 4 1J 2 1J 14

Jac(WT ) 1 y x y2 xy x2 y3 xy2 y4 xy3 xy4

Let W = x3y + y5. The mirror W T is of type E13. Note GW ∼= µ15.

HW 1J 1J 13 1J 12 1J 11 1J 9 1J 8 ∓3y21J 0 1J 7 1J 6 1J 5 1J 4 1J 2 1J 14

Jac(WT ) 1 y y2 x y3 xy y4 xy2 x2 xy3 x2y x2y2 x2y3

Let W = x2y + y3z+ z3. The mirror W T is of type Z13. Note GW ∼= µ18.

HW 1J 1J 16 1J 14 1J 13 1J 11 1J 10 ∓3y21J 9 1J 8 1J 7 1J 5 1J 4 1J 2 1J 17

Jac(WT ) 1 y z y2 yz x z2 y2z xy xz xy2 xyz xy2z

Let W = x2y + y2z+ z4. The mirror W T is of type W13. Note GW ∼= µ16.

HW 1J 1J 14 1J 13 1J 11 1J 10 1J 9 ∓2y1J 8 1J 7 1J 6 1J 5 1J 3 1J 2 1J 15

Jac(WT ) 1 z y z2 yz x z3 yz2 xz xy xz2 xyz xyz2
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(3)Loop type. There is one 2-Loop of typeZ12:W = W T
= x3y+xy4 withGW ∼= µ11.

HW 1J 1J 8 1J 6 1J 4 1J 2 x21J 0 y31J 0 1J 9 1J 7 1J 5 1J 3 1J 10

Jac(WT ) 1 y x y2 xy x2 y3 xy2 x2y xy3 x2y2 x2y3

There is one 3-Loop with W T of type S12: W = x2z+ xy2
+ yz3 with GW ∼= µ13.

HW 1J 1J 11 1J 10 1J 9 1J 8 1J 7 1J 6 1J 5 1J 4 1J 3 1J 2 1J 12

Jac(WT ) 1 z x y z2 xz yz xy xz2 yz2 xyz xyz2

(4)Mixed type. LetW = x2
+xy4

+z3. The mirrorW T is of typeQ10. NoteGW ∼= µ24.

HW 1J 1J 19 1J 17 ∓4y31J 16 1J 13 1J 11 ∓4y31J 8 1J 7 1J 5 1J 23

Jac(WT ) 1 y z x y2 yz xz y3 y2z y3z

Let W = x2y + y4
+ z3. The mirror W T is of type E14. Note GW ∼= µ24.

HW 1J 1J 22 1J 19 1J 17 ∓2y1J 16 1J 14 1J 13 1J 11 1J 10 ∓2y1J 8 1J 7 1J 5 1J 2 1J 23

Jac(WT ) 1 z z2 x y2 xz x yz2 yz y2z yz2 xy xyz xyz2

5.2. Four-point functions for exceptional unimodular singularities

In the following, we provide the 4-point functions F (4)
0 (t) of the Frobenius manifold

structure associated to the primitive form ζ for all the remaining 13 cases in Table 1. We
mark the terms that give the B-side 4-point invariants corresponding to (1.1) by using
boxes. We also provide the expression of ζ up to order 3. We remind the reader of
F̃ (4)

0 (t̃) = −F (4)
0 (t) as discussed in Section 4.1. We obtain the list with the help of a com-

puter. The codes are written in Mathematica 8, and are available at http://member.ipmu.jp/
changzheng.li/index.htm.

• Type E13: f = x3
+ xy5.

{φi}i = {1, y, y2, x, y3, xy, y4, y2x, x2, y3x, yx2, x2y2, y3x2
},

ζ = 1− 4
75 s12s13 −

1
25xs

2
13 +O(s

4),

−F (4)
0 = −

3
10 t6t
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1
10 t5t6t

2
8 +
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3
8 +
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2
5 t4t
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+
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−
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10 t
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1
5 t2t3t8t13 +
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2 t10t13 .

http://member.ipmu.jp/changzheng.li/index.htm
http://member.ipmu.jp/changzheng.li/index.htm
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• Type E14: f = x2
+ xy4

+ z3.

{φi}i = {1, y, x, y2, xy, y3, xy2, z, yz, xz, y2z, xyz, y3z, xy2z},

ζ = 1+ 1
64 s

2
12s14+

1
64 s10s

2
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1
48ys12s

2
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1
192y

2s3
14+O(s

4),
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• Type Z11: f = x3y + y5.

{φi}i = {1, y, x, y2, xy, x2, y3, xy2, y4, xy3, xy4
},

ζ = 1+ 17
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2
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2
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4),
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5
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3
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• Type Z12: f = x3y + xy4.

{φi}i = {1, y, x, y2, xy, x2, y3, xy2, x2y, xy3, x2y2, x2y3
},

ζ = 1− 6
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• Type Z13: f = x2
+ xy3

+ yz3.

{φi}i = {1, y, z, y2, yz, x, z2, y2z, xy, xz, xy2, xyz, xy2z},

ζ = 1+ 7
486 s
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7
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• Type W12: f = x4
+ y5.

{φi}i = {1, y, x, y2, xy, x2, y3, xy2, x2y, xy3, x2y2, x2y3
},

ζ = 1− 1
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• Type W13: f = x2
+ xy2

+ yz4.

{φi}i = {1, z, y, z2, yz, x, z3, yz2, xz, xy, xz2, xyz, xyz2
},

ζ = 1− 5
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• Type Q10: f = x2y + y4
+ z3.

{φi}i = {1, y, z, x, y2, yz, xz, y3, y2z, y3z},

ζ = 1+ 3
128 s9s
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• Type Q11: f = x2y + y3z+ z3.

{φi}i = {1, y, z, x, y2, yz, z2, xz, y2z, yz2, y2z2
},

ζ = 1− 5
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• Type Q12: f = x2y + xy3
+ z3.

{φi}i = {1, x, y, xy, y2, xy2, z, xz, yz, xyz, y2z, xy2z},

ζ = 1+ 1
75 s
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• Type S11: f = x2y + y2z+ z4.

{φi}i = {1, z, x, y, z2, xz, yz, z3, xz2, yz2, yz3
},

ζ = 1− 3
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• Type S12: f = x2y + y2z+ xz3.

{φi}i = {1, z, x, y, z2, xz, yz, xy, xz2, yz2, xyz, xyz2
},

ζ = 1− 12
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3
5 t9 −

2
13 t4t5t6t9 −

1
13 t3t

2
6 t9 +

1
13 t

2
4 t7t9 +

1
13 t3t5t7t9

+
1

13 t2t6t7t9 +
1

13 t3t4t8t9 +
1

13 t2t5t8t9 −
1
26 t

2
3 t

2
9 −

1
13 t2t4t

2
9 −

1
13 t4t

2
5 t10

+
1

26 t
2
4 t6t10 +

1
13 t3t5t6t10 +

2
13 t2t

2
6 t10 −

3
13 t3t4t7t10 −

2
13 t2t5t7t10 +

1
26 t

2
3 t8t10

+
1

13 t2t4t8t10 +
1
13 t2t3t9t10 −

1
26 t

2
2 t

2
10 +

5
26 t

2
4 t5t11 +

7
26 t3t

2
5 t11 +

3
13 t3t4t6t11

+
4

13 t2t5t6t11 +
3
26 t

2
3 t7t11 +

1
13 t2t4t7t11 −

2
13 t2t3t8t11 +

1
26 t

2
2 t9t11 +

5
26 t

2
3 t4t12

+
2

13 t2t
2
4 t12 +

3
13 t2t3t5t12 +

3
26 t

2
2 t6t12 .

• Type U12: f = x3
+ y3

+ z4.

{φi}i = {1, z, x, y, z2, xz, yz, xy, xz2, yz2, xyz, xyz2
},

ζ = 1+ 1
72 s

2
11s12 +

1
72 s8s

2
12 +

1
36zs11s

2
12 +

1
72z

2s3
12 +O(s

4),

−F (4)
0 =

1
8 t

2
5 t6t7 +

1
6 t3t

2
6 t8 +

1
6 t4t

2
7 t8 +

1
4 t2t5t7t9 +

1
6 t

2
3 t8t9 +

1
4 t2t5t6t10 +

1
6 t

2
4 t8t10

+
1
8 t

2
2 t9t10 +

1
8 t2t

2
5 t11 +

1
6 t

2
3 t6t11 +

1
6 t

2
4 t7t11 +

1
18 t

3
3 t12 +

1
18 t

3
4 t12 +

1
8 t

2
2 t5t12 .
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142 (1971) Zbl 0224.32011 MR 0294699

[39] Saito, K.: Einfach-elliptische Singularitäten. Invent. Math. 23, 289–325 (1974)
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