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Abstract. The notion of adequate subgroups was introduced by Jack Thorne [60]. It is a weakening
of the notion of big subgroups used by Wiles and Taylor in proving automorphy lifting theorems
for certain Galois representations. Using this idea, Thorne was able to strengthen many automorphy
lifting theorems. It was shown in [22] and [23] that if the dimension is smaller than the character-
istic then almost all absolutely irreducible representations are adequate. We extend the results by
considering all absolutely irreducible modules in characteristic p of dimension p. This relies on a
modified definition of adequacy, provided by Thorne in [61], which allows p to divide the dimen-
sion of the module. We prove adequacy for almost all irreducible representations of SL2(p

a) in
the natural characteristic and for finite groups of Lie type as long as the field of definition is suffi-
ciently large. We also essentially classify indecomposable modules in characteristic p of dimension
less than 2p − 2 and answer a question of Serre concerning complete reducibility of subgroups in
classical groups of low dimension.
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1. Introduction

Throughout the paper, let k be a field of characteristic p and let V be a finite-dimensional
vector space over k. Let ρ : G → GL(V ) be an absolutely irreducible representation.
Thorne [60] called (G, V ) is adequate if the following conditions hold (we rephrase the
conditions slightly by combining two of the properties into one):

(i) p does not divide dimV ;
(ii) Ext1G(V , V ) = 0;

(iii) End(V ) is spanned by the elements ρ(g) with ρ(g) semisimple.

If G is a finite group of order prime to p, then it is well known that (G, V ) is adequate.
In this case, condition (iii) is often referred to as Burnside’s lemma, and it is a trivial con-
sequence of the Artin–Wedderburn theorem. Furthermore, if G is a connected algebraic
group over k and V is a faithful, absolutely irreducible rational G-module of dimension
coprime to p, then (G, V ) is adequate ([21, Theorem 1.2] and Theorem 11.5).

These conditions are a weakening of the conditions used by Wiles and Taylor in study-
ing the automorphic lifts of certain Galois representations. See [9] for some applications.
Thorne [60] generalized various results assuming the weaker hypotheses for p odd. We
refer the reader to [60] for more references and details. See also [12] for further appli-
cations. Recently Thorne [61, Corollary 7.3] has shown that one can relax the condition
that p - dimV , still with p odd. So more generally, we say that an absolutely irreducible
representation ρ : G→ GL(V ) is adequate if:

(i) H 1(G, k) = 0;
(ii) H 1(G, (V ∗ ⊗ V )/k) = 0;

(iii) End(V ) is spanned by the elements ρ(g) with ρ(g) semisimple.

Note that we allow the case p = 2 in the definition. Thorne has used this extended notion
of adequacy to prove an automorphy lifting theorem for 2-adic Galois representations of
unitary type over imaginary CM fields [61, Theorem 5.1].

Observe that if p - dimV , then k is a direct summand of V ∗ ⊗ V . Thus, Ext1G(V , V )
= 0 implies that H 1(G, k) = 0 in this case. Also note that, by the long exact se-
quence in cohomology, if H 2(G, k) = 0, then H 1(G, (V ∗ ⊗ V )/k) = 0 follows from
Ext1G(V , V ) = 0. Thus, under the assumption that either p - dimV or H i(G, k) = 0 for
i = 1, 2, adequacy is equivalent to the two conditions:

(i) Ext1G(V , V ) = 0;
(ii) End(V ) is spanned by the elements ρ(g) with ρ(g) semisimple.

Following [20], we say that the representation ρ : G → GL(V ), respectively the pair
(G, V ), is weakly adequate if End(V ) is spanned by the elements ρ(g) with ρ(g) semi-
simple.

It was shown in [22, Theorem 9] that:

Theorem 1.1. Let k be a field of characteristic p and G a finite group. Let V be an
absolutely irreducible faithful kG-module. Let G+ denote the subgroup generated by the
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p-elements ofG. If dimW ≤ (p− 3)/2 for an absolutely irreducible kG+-submoduleW
of V , then (G, V ) is adequate.

The exampleG = SL2(p) with V irreducible of dimension (p− 1)/2 shows that the pre-
vious theorem is best possible. However, the counterexamples are rare. In fact, as shown
in [23, Corollary 1.5], if dimV < p− 3, then the (p± 1)/2-dimensional representations
of SL2(p) are the only two counterexamples. More precisely, in [23] we extend Theo-
rem 1.1 to the more general situation of dimW < p and show that almost always (G, V )
is adequate:

Theorem 1.2. Let k be a field of characteristic p and G a finite group. Let V be an
absolutely irreducible faithful kG-module, and let G+ denote the subgroup generated by
the p-elements of G. Suppose that the dimension d of any irreducible kG+-submodule in
V is less than p. Then:

(i) (G, V ) is weakly adequate.
(ii) LetW be an irreducible kG+-submodule of V ⊗k k. Then (G, V ) is adequate unless

the group H < GL(W) induced by the action of G+ on W is as described in one
of the exceptional cases (a), (b)(i)–(vi) listed in [23, Theorem 1.3]. In particular, if
d < p − 3 and (G, V ) is not adequate, then d = (p ± 1)/2 and H ∼= SL2(p) or
PSL2(p).

Above the threshold p−1 for dimW , there are lots of linear groups that are not adequate.
Still, if dimV = p, the situation is very much under control. In this paper, we extend
adequacy results to the case of linear groups of degree p and generalize the asymptotic
result [21, Theorem 1.2] to disconnected algebraic groups G (with p - [G : G0

]), at the
same time allowing p to divides the dimension of the G-module. Next, we show that in
all cases considered in Theorem 1.2, under some additional mild condition (say, G is not
p-solvable if p is a Fermat prime, and p > 5), one in fact has dim Ext1G(V , V ) ≤ 1,
a result of interest in deformation theory. An outgrowth of our results leads us to prove
an analogue of the first author’s result [19] and answer a question of Serre on complete
reducibility of finite subgroups of orthogonal and symplectic groups of small degree. In
fact, we essentially classify indecomposable modules in characteristic p of dimension
less than 2p − 2.

Note that if the kernel of ρ has order prime to p, then there is no harm in passing to
the quotient. So we will generally assume that either ρ is faithful or more generally has
kernel of order prime to p. Also, note that the dimension of cohomology groups and the
dimension of the span of the semisimple elements in G in End(V ) do not change under
extension of scalars. Hence, most of the time we will work over an algebraically closed
field k.

Our main results are the following. First we show that the condition H 1(G, k) = 0 in
the definition of adequacy is not particularly constraining if dimV is small. In particular,
the next result follows fairly easily from [19] (see [20, Theorem 4.1]). See Theorem 4.10
for a slightly more general result.
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Theorem 1.3. Let G be a finite irreducible subgroup of GLd(k) with k algebraically
closed of characteristic p. Assume that H 1(G, k) 6= 0 and d < 2p − 2. Then G is
solvable, d = p − 1, p or p + 1, and one of the following holds:

(i) d = p − 1, p = 2a + 1 is a Fermat prime, [G : Z(G)O2(G)] = p and O2(G) is a
group of symplectic type with O2(G)/Z(O2(G)) (elementary) abelian of order 22a .

(ii) d = p and G has a normal abelian p′-subgroup of index p.
(iii) d = p + 1, p = 2a − 1 is a Mersenne prime, and G contains a normal abelian p′-

subgroup N such that G/N is a Frobenius group of order dp with kernel of order d.

The following curious corollary is immediate from Theorem 4.10. We suspect that there
is a proof of this that does not require the classification of finite simple groups.

Corollary 1.4. Let G be a finite irreducible subgroup of GLd(k) with k algebraically
closed of characteristic p and d < 2p − 2. Suppose that G has a composition factor of
order p. Then G is solvable. Moreover, either d = p, or d = 2a with p = d ± 1 (and so
p is either a Mersenne prime or a Fermat prime).

In the situation of Theorem 1.2, Ext1G(V , V ) may be nonzero and so G may fail to be
adequate. Nevertheless, we can prove the following two results, which were motivated by
discussions with Mazur and which are of interest in deformation theory. (Recall [47, Sec-
tion 1.2], for instance, that the inequality dim Ext1G(V , V ) ≤ n implies that the universal
deformation ring over the ring O of integers of a sufficiently large finite extension of Qp
is a quotient of O[[x1, . . . , xn]]. See also [6, Theorem 2.4].)

Theorem 1.5. Let k be a field of characteristic p and G a finite group. Let V be an
absolutely irreducible faithful kG-module, and let G+ denote the subgroup generated by
the p-elements of G. Suppose that the dimension d of any irreducible kG+-submodule
W in V is less than p, and let H be the image of G+ in GL(W).

(i) Suppose that:

(a) If p is a Fermat prime, thenG is not p-solvable (equivalently,H is not solvable).
(b) If p = 3, then H 6∼= SL2(3a) for all a ≥ 2.
(c) If p = 5 and dimkW = 4, then H 6∼= �+4 (5).

Then dimk Ext1G(V , V ), dimk Ext1G(V , V
∗) ≤ 1. In particular,H 1(G,Sym2(V )) and

H 1(G,
∧2(V )) are both at most 1-dimensional.

(ii) In the exceptional cases (p, dimkW,H) = (5, 4, �+4 (5)) or (p,H) = (3,SL2(3a))
with a ≥ 2, Ext1G(V , V ) and Ext1G(V , V

∗) are at most 2-dimensional.

Note that one cannot remove conditions (a)–(c) in Theorem 1.5(i). In fact, in the case G
is p-solvable of Theorem 1.5, Ext1G(V , V ) and Ext1G(V , V

∗) can be of arbitrarily large
dimension. See Example 5.9. On the other hand, if dimkW < (p− 1)/2 in Theorem 1.5,
then H 1(G,Sym2(V )) = H 1(G,

∧2(V )) = 0 (see Corollary 5.11).
In fact, we can show that both Ext1G(V , V ) and Ext1G(V , V

∗) are at most 1-dimension-
al in another situation, without any dimension condition, but instead with a condition on
Sylow p-subgroups.
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Theorem 1.6. Let k be a field of characteristic p and G a finite group. Let V be an
absolutely irreducible faithful kG-module, and let G+ denote the subgroup generated by
the p-elements of G. Suppose that the image of G+ in GL(W) for some irreducible G+-
submodule W of V has Sylow p-subgroups of order p, and that G has no composition
factor of order p. Then dimk Ext1G(V , V ) ≤ 1 and dimk Ext1G(V , V

∗) ≤ 1. In particular,
H 1(G,Sym2(V )) and H 1(G,

∧2(V )) are both at most 1-dimensional.

Next we determine adequacy of linear groups of degree p:

Theorem 1.7. Let k be a field of characteristic p and G a finite group. Let V be an
absolutely irreducible faithful kG-module with dimV = p. Then precisely one of the
following holds:

(i) (G, V ) is adequate.
(ii) G contains a normal abelian subgroup of index p.

(iii) p = 3 and the image of G in PGL(V ) is PSL2(9).

Extending the results of [23, §3], we prove in Corollary 9.4 that, aside from some ex-
ceptions with p = 2, 3 and with (q, dimV ) = (p, (p ± 1)/2), all nontrivial irreducible
representations of SL2(q) over Fq are adequate. This and other results on weak adequacy
and on Ext1, and the dearth of examples where weak adequacy fails, suggest that quite
a lot of irreducible representations are indeed weakly adequate. (Currently, all but one
counterexample to weak adequacy are induced modules, and the only primitive coun-
terexample is given in [20].)

Finally, we classify all low dimensional self-dual indecomposable and nonirreducible
kG-modules V with k algebraically closed of characteristic p and G a finite subgroup of
GL(V ) with Op(G) = 1.

First we recall one of the main results of [19] which settled a conjecture of Serre.

Theorem 1.8. Let k be a field of positive characteristic p. Let G be a subgroup of
GLn(k) = GL(V ) with no nontrivial normal unipotent subgroup and p ≥ n+ 2. Then V
is completely reducible.

Serre asked for an analogous result for the other classical groups. The example Ap <
SOp(k) shows that one cannot do too much better. We also see that there are reducible
indecomposable self-dual SL2(p)-modules of dimensions p and p ± 1 (contained in Sp
for the dimension p−1 and SO in the other cases). Building on the methods used in com-
puting Ext1, we can essentially classify the self-dual reducible indecomposable modules
of dimension less than 2p − 2.

Theorem 1.9. Let k be an algebraically closed field of characteristic p. Let V be a vector
space over k with dimV ≤ 2p−3. Suppose thatG is a finite subgroup of GL(V ) such that
Op(G) = 1, and the kG-module V is indecomposable and self-dual but not irreducible.
Then p > 3, G+ is quasisimple, VG+ is uniserial, and one of the following statements
holds for some U ∼= U∗ ∈ IBrp(G+):
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(i) VG+ = (k|U |k), and (G+, p, dimU) is (SL2(q), q − 1, p + 1), (Ap, p, p − 2),
(SLn(q), (qn − 1)/(q − 1), p − 2), (M11, 11, 9), (M23, 23, 21), or (PSL2(p), p,

p − 2).
(ii) VG+ = (U |U). Furthermore, (G+, p, dimU) = (SL2(q), q + 1, p− 2), (2A7, 7, 4),

(PSL2(p), p ≡ ε (mod 4), (p + ε)/2) or (SL2(p), p ≡ ε (mod 4), (p − ε)/2) with
ε = ±1.

Moreover, V supports a nondegenerateG-invariant bilinear form that is either symmetric
or alternating. Furthermore, all such forms have the same type, which is symmetric in all
cases except when (G+, p, dimU) = ((P)SL2(p), p, (p − 1)/2), in which case it is al-
ternating. Conversely, all the listed cases give rise to reducible self-dual indecomposable
modules of dimension < 2p − 2.

In particular, this gives a classification of all finite non-G-cr subgroups for G = Sp(V )
or SO(V ) with dimV < 2p − 2—see Proposition 8.8 (recall that the notion of G-cr
subgroups was introduced by Serre [56]). It also yields the following variant of the main
result of [19]:

Corollary 1.10. Let k be an algebraically closed field of characteristic p and V a vector
space over k with d := dimV ≤ p − 1. Suppose G is a finite subgroup of GL(V ) such
that Op(G) = 1 and the kG-module V is self-dual. Then either the kG-module V is com-
pletely reducible, or d = p − 1, G+ = (P)SL2(p), and any G-invariant nondegenerate
bilinear form on V must be alternating.

In Theorem 1.9 and Corollary 1.10, the notation (P)SL2(p) means SL2(p) if p ≡
1 (mod 4) and PSL2(p) if p ≡ 3 (mod 4).

This paper is organized as follows. In §2, we describe the structure of quasisimple
linear groups of degree at most 2p. We collect various facts concerning extensions and
self-extensions of simple modules in §3 and prove Theorem 1.3 in §4. Theorems 1.5
and 1.6 are proved in §5. Adequacy of linear groups of degree p is discussed in §6;
in particular, we prove Theorem 1.7. In the next §7, we describe the PIMs for various
simple modules of simple groups. These data are used in §8 to classify reducible self-dual
indecomposable modules of dimension at most 2p− 3 (Theorem 1.9), and to classify the
finite non-G-cr subgroups of symplectic and orthogonal groups in dimensions at most
2p − 3 (Proposition 8.8 and Corollary 1.10). §9 is devoted to proving weak adequacy of
SL2(q)-representations (Proposition 9.1). In §10, we show that almost always the natural
module for SLn(q) is adequate. In §11, we prove Theorem 11.5 concerning adequacy of
(possibly disconnected) reductive algebraic groups and asymptotic adequacy.

Notation. If V is a kG-module and X ≤ G is a subgroup, then VX denotes the restric-
tion of V to X. The containments X ⊂ Y (for sets) and X < Y (for groups) are strict.
Fix a prime p and an algebraically closed field k of characteristic p. Then for any finite
group G, IBrp(G) is the set of isomorphism classes of irreducible kG-representations (or
their Brauer characters, depending on the context), dp(G) denotes the smallest degree
of nontrivial ϕ ∈ IBrp(G), P(ϕ) is the principal indecomposable module (PIM) corre-
sponding to ϕ, and B0(G) denotes the principal p-block of G. Sometimes we use 1 to
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denote the principal representation. Op(G) is the largest normal p-subgroup ofG, Op(G)

is the smallest normal subgroup N of G subject to G/N being a p-group, and similarly
for Op′(G) and Op′(G) = G+. Furthermore, the Fitting subgroup F(G) is the largest
nilpotent normal subgroup of G, and E(G) is the product of all subnormal quasisimple
subgroups of G, so that F ∗(G) = F(G)E(G) is the generalized Fitting subgroup of G.
Given a finite-dimensional kG-representation 8 : G → GL(V ), we denote by M the
k-span

〈8(g) | 8(g) semisimple〉k.
If M is a finite length module over a ring R, then define soci(M) by soc0(M) = 0 and
socj (M)/socj−1(M) = soc(M/socj−1(M)). If M = socj (M) with j minimal, we say
that j is the socle length of M . If V is a vector space endowed with a nondegenerate
quadratic form, then O(V ) denotes the full isometry group of the form. For a linear alge-
braic group G, G0 denotes the connected component containing the identity.

2. Linear groups of low degree

First we recall the description of absolutely irreducible nonsolvable linear groups of de-
gree less than p = char(k), relying on the main result of Blau and Zhang [5]:

Theorem 2.1 ([23, Theorem 2.1]). Let W be a faithful, absolutely irreducible kH -mod-
ule for a finite group H with Op′(H) = H . Suppose that 1 < dimW < p. Then one of
the following cases holds, where P ∈ Sylp(H):

(a) p is a Fermat prime, |P | = p, H = Op′(H)P is solvable, dimW = p − 1, and
Op′(H) is absolutely irreducible on W .

(b) |P | = p, dimW = p − 1, and one of the following conditions holds:

(b1) (H, p) = (SUn(q), (qn+1)/(q+1)), (Sp2n(q), (q
n
+1)/2), (2A7, 5), (3J3, 19),

or (2Ru, 29).
(b2) p = 7 and H = 61 · PSL3(4), 61 · PSU4(3), 2J2, 3A7, or 6A7.
(b3) p = 11 and H = M11, 2M12, or 2M22.
(b4) p = 13 and H = 6Suz or 2G2(4).

(c) |P | = p, dimW = p − 2, and (H, p) = (PSLn(q), (qn − 1)/(q − 1)), (Ap, p),
(3A6, 5), (3A7, 5), (M11, 11), or (M23, 23).

(d) (H, p, dimW) = (2A7, 7, 4), (J1, 11, 7).
(e) Extraspecial case: |P | = p = 2n + 1 ≥ 5, dimW = 2n, Op′(H) = RZ(H),

R = [P,R]Z(R) ∈ Syl2(Op′(H)), [P,R] is an extraspecial 2-group of order 21+2n,
V[P,R] is absolutely irreducible. Furthermore, S := H/Op′(H) is simple nonabelian,
and either S = Sp2a(2

b)′, or �−2a(2
b)′ with ab = n, or S = PSL2(17) and p = 17.

(f) Lie(p)-case: H/Z(H) is a direct product of simple groups of Lie type in character-
istic p.

Furthermore, in cases (b)–(d), H is quasisimple with Z(H) a p′-group.

Now we prove the following result which extends Theorem 2.1 for quasisimple groups
and is of independent interest. Note that the complex analogue of this result is given by
[63, Theorem 8.1].
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Theorem 2.2. Let p be a prime andH a finite quasisimple group of order divisible by p.
Suppose W is a faithful, absolutely irreducible kH -module of dimension d , where p ≤
d ≤ 2p. Then one of the following statements holds:

(i) H is a quasisimple group of Lie type in characteristic p.
(ii) (H, dimW,p) is as listed in Tables I, IIa, IIb, III, where the fourth column lists the

number of isomorphism classes of W for each choice of (H, dimW,p).

Table I. Quasisimple linear groups: Alternating groups

H dimW p Class number

An n−

{
2, p | n
1, p - n

n− 1
2
≤ p ≤ n− 1 1

A5 3 3 2
2A5 6 3 1
A6 5, resp. 8, 10 5 2, resp. 1, 1

2A6 10 5 2
3A6 6 5 2
6A6 6 5 4
A7 4 2 2
A7 8, resp. 10 5 1, resp. 2
A7 10, resp. 14 7 1, resp. 2

2A7 4, resp. 6 3 2
2A7 14 7 2
3A7 6 5 2
3A7 9 7 2
6A7 6 5 4
A8 14 7 1

2A8 8 5, 7 1
2A9 8 5, 7 2
2A10 8 5 2
2A11 16 11 1

Proof. LetL be the universal covering group of S := H/Z(H). Recall that dp(L) denotes
the smallest degree of nontrivial absolutely irreducible kL-representations. Then

2p ≥ dimW ≥ dp(L). (2.1)

This inequality will allow us to rule out the majority of the cases. We will assume that S
is not isomorphic to any finite simple group of Lie type in characteristic p.

First, let S be a sporadic group. Then dp(L) is listed in [33]. Furthermore, p ≤ 71 and
so dimW ≤ 142. Now the result follows from inspecting [31] and [34] (and also [49] for
the three Conway groups), and is listed in Table III.

Assume now that S = An. The cases 5 ≤ n ≤ 13 can be checked by inspecting [34],
and the result is listed in Table I. If 14 ≤ n ≤ 16, then p ≤ 13, dimW ≤ 26, and so the
statement follows by inspecting [31]. So we may assume n ≥ 17. In this case,

dimW ≤ 2p ≤ 2n < (n2
− 5n+ 2)/2.
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Table IIa. Quasisimple linear groups: Groups of Lie type, I

H dimW p Class number

SL2(q)
2 | q

p

p

p + 1

q + 1
q − 1
q − 1

q/2− 1
q/2

1

PSL2(q)
2 - q

p

2p − 2
2p − 1

2p
2p

(q ± 1)/2
(q + 1)/2
(q + 1)/4
(q − 1)/2
(q + 1)/2

2
1
2

(q − 3)/4
(q − 5)/4

SL2(q)
2 - q

p + 1
2p
2p
2p

(q − 1)/2
(q ± 1)/4
(q − 1)/2
(q + 1)/2

2
2

(q + 1)/4
(q − 1)/4

PSp2n(q), 2 - q, n ≥ 2 p
p = (qn − 1)/2, q = 3
p = (qn + 1)/2, n = 2m

2

Sp2n(3), n odd prime p + 1 (3n − 1)/2 2

PSp2n(3), n odd prime 2p − 1 (3n + 1)/4 2

Sp2n(q), n odd prime 2p p = (qn − 1)/4, q = 3
p = (qn + 1)/4, q = 5

2

SLn(q)
n odd prime

p
qn − 1
q − 1

q − 2

SLn(2)
n− 1 ≥ 3 prime

2p 2n−1
− 1 1

SUn(q)
n odd prime

p
qn + 1
q + 1

q

PSUn(2)
n− 1 ≥ 5 prime

2p (2n−1
+ 1)/3 1

SUn(2)
n− 1 ≥ 5 prime

2p − 1 (2n−1
+ 1)/3 2

Hence, by [27, Lemma 6.1],W is the heart of the natural permutation module ofG = An,
yielding the first row of Table I.

Next suppose that S is an exceptional group of Lie type defined over Fq . The cases
S ∈ {2B2(8),G2(3),G2(4), 3D4(2), 2F4(2)′,F4(2)} can be checked using [34] and lead
to the last six rows of Table IIb. For all other groups, dp(L) is bounded below by the
Landazuri–Seitz–Zalesskii bounds (see [62, Table II] for latest improvements) and one
can check that (2.1) cannot hold. For instance, if S = F4(q) with q ≥ 3, then p ≤ q4

+ 1
whereas dp(L) ≥ q8

+ q4
− 2.

From now on we may assume that S is a finite classical group defined over Fq and
p - q. Suppose first that S = PSL2(q). Using [34] we may assume that q ≥ 11. If
q is even, then L = SL2(q) and each ϕ ∈ IBrp(L) has degree q or q ± 1, whereas
p | (q ± 1). If in addition p 6= q ± 1 then 2p ≤ 2(q + 1)/3 < q − 1 ≤ dimW , violating



1240 Robert Guralnick et al.

Table IIb. Quasisimple linear groups: Groups of Lie type, II

H dimW p Class number

SL3(3) 16, resp. 26 13 1, resp. 3
2 · PSL3(4) 6 3 1
2 · PSL3(4) 10 5, resp. 7 2, resp. 1
41 · PSL3(4) 8 5, resp. 7 2, resp. 4
42 · PSL3(4) 4 3 2
6 · PSL3(4) 6 5 2

PSL4(3) 26 13 2
SU3(3) 14 7 1

SU4(2)
10
6

5
2
1

61 · PSU4(3) 6 5 2
SU5(2) 10 5 1
Sp4(4) 18, resp. 34 17 1, resp. 2
Sp6(2) 7 5, 7 1

2 · Sp6(2) 8 5, 7 1
2 ·�+8 (2) 8 5, 7 1
�−8 (2) 34 17 1
2B2(8) 14 7, 13 2

2 · 2B2(8)
8

16, 24
5

13
1

G2(3) 14 7, 13 1
2 · G2(4) 12 7 1
2F4(2)′ 26 13 2
3D4(2) 26 13 1

(2.1). So p = q ± 1, and inspecting [7] we arrive at the first multi-row of Table IIa.
Assume that q is odd. Then again L = SL2(q), and we also get additional possibilities
ϕ(1) = (q ± 1)/2 for ϕ ∈ IBrp(L). Note that p 6= (q ± 1), (q ± 1)/3 (as q ≥ 11 is odd)
and (2.1) implies p > (q + 1)/5 as dp(L) = (q − 1)/2. It follows that p = (q ± 1)/4 or
p = (q ± 1)/2. A detailed analysis of IBrp(L) leads to the second and third multi-rows
of Table IIa.

Suppose now that S = PSLn(q) with n ≥ 3. Note that SL4(2) ∼= A8. If (n, q) =
(6, 3), then p ≤ 13 whereas dp(L) ≥ 362 by [26, Table III]. If (n, q) = (6, 2), then
p ≤ 31, so [26, Table III] implies (dimW,p) = (62, 31), as recorded in Table IIa (the
9th row). The cases (n, q) = (3, q ≤ 7), (4, 3) can be checked using [34]. So we may
assume that (n, q) 6= (3, q ≤ 7), (4, 2), (4, 3), (6, 2), (6, 3). In these cases,

dimW ≤ 2p ≤
2(qn − 1)
q − 1

<


(q2
− 1)(q − 1)/gcd(3, q − 1), n = 3,

(q3
− 1)(q − 1)/gcd(2, q − 1), n = 4,

(qn−1
− 1)

(
qn−2

− q

q − 1
− 1

)
, n ≥ 5.
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Table III. Quasisimple linear groups: Sporadic groups

H dimW p Class number
M11 5 3 2

2M12 2p 3, 5 2
2J2 6 3, resp. 5 2, resp. 1
M11 10 5 3

2M22 10 5, resp. 7 2, resp. 1
M11 11, 16 11 1
M12 11, resp. 16 11 2, resp. 1

2M12 12 11 1
6Suz 12 7, 11, 13 2
J1 14 11 1
J1 22, 34 19 1
J2 14 7 2
2J2 14 7 1
3J3 18 17 4
M22 20 11 1

3M22 21 11 2
M23 22 11 1
HS 22 11 1

McL 22 11 1
M24 23, resp. 45 23 1, resp. 2
M23 45 23 2
Co3 23 23 1
Co2 23 23 1

2Co1 24 13, 23 1

Applying [26, Theorem 1.1], we see that W is one of the Weil modules of L = SLn(q),
of dimension (qn − 1)/(q − 1)− a with a = 0, 1, 2. Note that

qn − 1
q − 1

− 2 > max
{

2(q + 1), 2 ·
qn−2

− 1
q − 1

,
qn−1

− 1
q − 1

,
2
3
·
qn − 1
q − 1

}
.

If q ≥ 3, then (qn− 1)/(q− 1)− 2 > 2(qn−1
− 1)/(q− 1). Recall that p |

∏n
i=1(q

i
− 1)

and p ≤ dimW ≤ 2p. So we arrive at one of the following possibilities:

• q = 2, p = 2n−1
− 1, whence W is the unique Weil module of dimension 2p by [26,

Theorem 1.1], leading to the 9th row of Table IIa.
• p = (qn − 1)/(q − 1), whence n is an odd prime, S = L, and W is one of q − 2 Weil

modules of dimension p by [26, Theorem 1.1], leading to the 8th row of Table IIa.
• 2p = (qn − 1)/(q − 1). Here, q is odd and n must be even, but then

qn − 1
2(q − 1)

=
qn − 1
q2 − 1

·
q + 1

2
cannot be a prime.

Next suppose that S = PSUn(q) with n ≥ 3. The cases (n, q) = (3, q ≤ 5), (4, q ≤ 3),
(5, 2), (6, 2) can be checked using [34]. So we may assume that none of these cases oc-
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curs. Now observe that if n = p = 3 | (q + 1) then 2p < (q − 1)(q2
+ 3q + 2)/6, and

furthermore

2p ≤
2(qn − (−1)n)

q + 1
<



(q − 1)(q2
− q + 1)/3, n = 3, p 6= 3 | (q + 1),

(2q3
− q2

+ 2q − 3)/3, n = 3, 3 - (q + 1)

(q2
+ 1)(q2

− q + 1)
gcd(2, q − 1)

− 1, n = 4,

(qn − (−1)n)(qn−1
− q2)

(q + 1)(q2 − 1)
− 1, n ≥ 5.

Applying [30, Theorem 16] and [24, Theorem 2.7], we conclude thatW is one of the Weil
modules of L = SUn(q), of dimension (qn − (−1)n)/(q + 1)− b with b = 0,±1. Note
that

qn − (−1)n

q + 1
− 1 > max

{
2(q + 1),

2(qn−2
− (−1)n)

q + 1
,
qn−1

+ (−1)n

q + 1
,

2(qn − (−1)n)
3(q + 1)

}
.

If q ≥ 3, then
qn − (−1)n

q + 1
− 1 > 2 ·

qn−1
− (−1)n−1

q + 1
.

Recall that p |
∏n
i=2(q

i
− (−1)i) and p ≤ dimW ≤ 2p. So we arrive at one of the

following possibilities:

• q = 2, p = (2n−1
− (−1)n−1)/3; in particular, n−1 ≥ 5 is a prime. HenceW is either

the unique Weil module of dimension 2p, or one of the two Weil modules of dimension
2p − 1, leading to the 11th and 12th rows of Table IIa.
• p = (qn − (−1)n)/(q + 1), whence n is an odd prime, S = L, and W is one of q Weil

modules of dimension p, yielding the 10th row of Table IIa.
• 2p = (qn − (−1)n)/(q + 1). Here, q is odd and n must be even, but then

qn − (−1)n

2(q + 1)
=
qn/2 − (−1)n/2

q + 1
·
qn/2 + (−1)n/2

2

cannot be a prime.

Now let S = PSp2n(q) with n ≥ 2. Note that Sp4(2)
′ ∼= A6 and PSp4(3) ∼= SU4(2).

Also, the cases (n, q) = (2, 4), (3, 2) can be checked using [34]. So we will assume that
(n, q) 6= (2, q ≤ 4), (3, 2). In this case,

dimW ≤ 2p ≤
2(qn + 1)

gcd(2, q − 1)
<
(qn − 1)(qn − q)

2(q + 1)
.

Using the Landazuri–Seitz–Zalesskii bound for Sp2n(q) with 2 | q and applying [24, The-
orem 2.1] to Sp2n(q) with q odd, we now see that q must be odd and W is one of the
Weil modules of L = Sp2n(q), of dimension (qn ± 1)/2. So we arrive at the 4th–7th
rows of Table IIa. Note in addition that if 2 < p = (qn − 1)/4 then q = 5 and n is an
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odd prime, and if p = (qn + 1)/4 then q = 3 and n is again an odd prime. Similarly,
if p = (qn − 1)/2 then q = 3 and n is an odd prime, and if p = (qn + 1)/2 then
n = 2m.

Now we may assume that S = �2n+1(q) with n ≥ 3, or P�±2n(q) with n ≥ 4. Again,
the cases of�7(3) and�±8 (2) can be checked directly using [34]. Aside from these cases,
one can verify that (2.1) cannot hold. ut

3. Extensions and self-extensions

First we recall a convenient criterion concerning self-extensions in blocks of cyclic defect:

Lemma 3.1 ([23, Lemma 7.1]). Suppose thatG is a finite group and V is an irreducible
FpG-representation that belongs to a block of cyclic defect. Then Ext1G(V , V ) 6= 0 if
and only if V admits at least two nonisomorphic lifts to characteristic zero. In this case,
dim Ext1G(V , V ) = 1.

The next observation is useful in various situations:

Lemma 3.2. Let H ≤ G be a subgroup of index coprime to p = char(k). Suppose that
V is a kG-module and VH = V1 ⊕ V2 is a direct sum of two nonzero H -submodules, at
least one of which is also stabilized by G. Then the G-module V is decomposable.

Proof. Suppose for instance that V1 is stabilized byG, and consider the natural projection
π : V → V1 along V2. Write G =

⊔m
i=1 giH where m := [G : H ] is coprime to p, and

let

π̃ =
1
m

m∑
i=1

giπg
−1
i .

It is straightforward to check that π̃ is G-equivariant, π̃2
= π̃ , and Im(π̃) = V1. Hence

the G-module V decomposes as V1 ⊕ Ker(π̃). ut

From now on we again assume that k is algebraically closed of characteristic p. First we
record the following consequence of the Künneth formula [4, 3.5.6].

Lemma 3.3. LetH be a finite group. Assume thatH is a central product of subgroupsHi ,
1 ≤ i ≤ t , and Z(H) is a p′-group. Let X and Y be irreducible kH -modules. Write
X = X1⊗· · ·⊗Xt and Y = Y1⊗· · ·⊗Yt whereXi and Yi are irreducible kHi-modules.

(i) If Xi and Yi are not isomorphic for two distinct i, then Ext1H (X, Y ) = 0.
(ii) If X1 and Y1 are not isomorphic but Xi ∼= Yi for i > 1, then Ext1H (X, Y ) ∼=

Ext1H1
(X1, Y1).

(iii) If Xi ∼= Yi for all i, then Ext1H (X, Y ) ∼=
⊕

i Ext1Hi (Xi, Yi).

Lemma 3.4. Let G be a finite group with a normal subgroup N = Op(N) and V be a
kG-module. Suppose that N acts trivially on V . Then H 1(G, V ) ∼= H 1(G/N, V ).
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Proof. Since N acts trivially on V , we have H 1(N, V ) = Hom(N, V ). Furthermore,
Hom(N, V ) = 0 as Op(N) = N . Now the inflation-restriction sequence in cohomology
implies that the sequence

0→ H 1(G/N, V )→ H 1(G, V )→ 0

is exact, whence the claim follows. (Note that if N is a p′-group, then the Hochschild–
Serre spectral sequence degenerates, and so H i(G, V ) ∼= H i(G/N, V N ) for all i. Simi-
larly, if G/N is a p′-group, then H i(G, V ) = H i(N, V )G/N for all i.) ut

Lemma 3.5 ([23, Lemma 7.8]). Let V be a kG-module of finite length.

(i) Suppose that X is a composition factor of V such that V has no indecomposable
subquotient of length 2 with X as a composition factor. Then V ∼= X ⊕M for some
submodule M ⊂ X.

(ii) Suppose that Ext1G(X, Y ) = 0 for any two composition factors X, Y of V . Then V is
semisimple.

Lemma 3.6 ([23, Lemma 7.9]). Let V be a kG-module. Suppose thatU is a composition
factor of V of multiplicity 1, and U occurs both in soc(V ) and head(V ). Then V ∼= U⊕M
for some submodule M ⊂ V .

Lemma 3.7. Let G be group with a normal subgroup N of index coprime to p. Let k
be an algebraically closed field of characteristic p, and let V be a kG-module of finite
length.

(i) V is semisimple if and only if VN is semisimple. In particular, if V is reducible
indecomposable, then VN cannot be semisimple.

(ii) Suppose V is reducible indecomposable. Then the N -module V has no simple direct
summand.

Proof. (i) The “only if” part is obvious. For the “if” part, suppose U is a G-submodule
of V . Since VN is semisimple, VN = U⊕W for someN -submoduleW . AsU isG-stable,
by Lemma 3.2 there is a G-submodule W ′ such that V = U ⊕W ′.

(ii) Consider a decomposition VN =
⊕t

i=1 Ui into indecomposable direct summands,
and write V = V1⊕V2, where V2 is the sum of those Ui’s which are simple and V1 is the
sum of the nonsimple ones. Assume that V2 6= 0.

Note that if U is any reducible indecomposable N -module, then soc(U) ⊆ rad(U).
Indeed, suppose a maximal submoduleM ⊂ U does not contain soc(U). Then soc(U) =
(M ∩ soc(U))⊕W for some N -submodule W 6= 0, and U = M ⊕W is decomposable,
a contradiction. Applying this remark to the summands Ui in V1, we see that soc(V1) ⊆

rad(V1). But V2 is semisimple, so

soc(V1) = soc(V1) ∩ rad(V1) = soc(V ) ∩ rad(V )

is G-stable. By Lemma 3.2, there is a G-submodule V ′2 6= 0 such that soc(V ) =
soc(V1)⊕ V

′

2. In this case, VN = V1 ⊕ V
′

2. Since V ′2 is G-stable, again by Lemma 3.2 we
have V = V ′1 ⊕ V

′

2 for some G-submodule V ′1. As V is indecomposable and V ′2 6= 0, we
must have V ′1 = 0, whence V1 = 0, VN = V2 is semisimple, contradicting (i). ut
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Lemma 3.8 ([23, Lemma 7.11]). Let V be an indecomposable kG-module.

(i) If the G+-module VG+ admits a composition factor L of dimension 1, then all com-
position factors of VG+ belong to B0(G

+).
(ii) Suppose a normal p′-subgroup N of G acts by scalars on a composition factor L

of the G-module V . Then N acts by scalars on V . If in addition V is faithful then
N ≤ Z(G).

Corollary 3.9. Let V be an indecomposable kG-module of dimension≤ 2p−3. Suppose
that dp(G+) ≥ p − 3. Then one of the following holds:

(i) The G+-module V is irreducible.
(ii) All composition factors of V have dimension ≤ p.

(iii) All composition factors of V belong to B0(G
+).

Proof. Suppose that dimU > p for a composition factor U of V but V |G+ is reducible.
Since dimV − dimU ≤ p − 4 < dp(G

+), V must have a composition factor L of
dimension 1. Hence we are done by Lemma 3.8. ut

Finally, self-dual indecomposable modules of SL2(q) (where q = pn) of low dimension
are described in the following statement:

Proposition 3.10 ([23, Proposition 8.2]). Suppose that V is a reducible, self-dual, inde-
composable representation of SL2(Fq) over Fp, where q = pn. If dimV < 2p − 2, then
q = p and one of the following holds:

(i) dimV = p and V ∼= P(1).
(ii) dimV = p + 1 and V is the unique nonsplit self-extension of L((p − 1)/2).

(iii) dimV = p − 1 and V is the unique nonsplit self-extension of L((p − 3)/2).

Conversely, all the listed cases give rise to examples.

4. Finite groups with indecomposable modules of dimension ≤ 2p − 2

Throughout this section, we assume that k is an algebraically closed field of characteristic
p > 3. First we recall several intermediate results proved in [23]:

Lemma 4.1 ([23, Lemma 9.1]). Let G be a finite group, p > 3, and V be a faithful
kG-module of dimension < 2p. Suppose that Op(G) = 1 and Op′(G) ≤ Z(G). Then
F(G) = Op′(G) = Z(G), F ∗(G) = E(G)Z(G), and G+ = E(G) is either trivial or
a central product of quasisimple groups of order divisible by p. In particular, G has no
composition factor isomorphic to Cp, and so H 1(G, k) = 0.

Lemma 4.2. [23, Lemma 9.3]. Let V be a faithful indecomposable kG-module with two
composition factors V1, V2. Assume that Op(G) = 1 and dimV ≤ 2p − 2. If J :=
Op′(G

+) 6≤ Z(G+), then the following hold:

(i) p = 2a + 1 is a Fermat prime.
(ii) dimV1 = dimV2 = p − 1.

(iii) J/Z(J ) is elementary abelian of order 22a .
(iv) H 1(G+, k) 6= 0.
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Lemma 4.3 ([23, Lemma 9.5]). Let H be a quasisimple finite group of Lie type in char-
acteristic p > 3. Assume that V1, V2 ∈ IBrp(H) satisfy dimV1 + dimV2 < 2p.

(i) If H 6∼= SL2(q), PSL2(q), then Ext1H (V1, V2) = 0. In particular, there is no re-
ducible indecomposable kG-module V with G+ ∼= H and dimV < 2p.

(ii) Suppose H ∼= SL2(q) or PSL2(q), Ext1H (V1, V2) 6= 0, and dimV1 = dimV2. Then
q = p and V1 = L((p − 3)/2) or L((p − 1)/2).

Proposition 4.4 ([23, Proposition 9.7]). Let p > 3 and let G be a finite group with a
faithful, reducible, indecomposable kG-module V of dimension ≤ 2p − 3. Suppose in
addition that Op(G) = 1. Then G+ = E(G+), G has no composition factor isomorphic
to Cp, and one of the following holds:

(i) G+ is quasisimple.
(ii) G+ is a central product of two quasisimple groups and dimV = 2p−3. Furthermore,

V has one composition factor of dimension 1, and either one of dimension 2p− 4 or
two of dimension p − 2. In either case, V 6∼= V ∗.

Corollary 4.5. Let k be a field of characteristic p and let V be a faithful reducible inde-
composable kG-module of a finite group G with Op(G) = 1. If dimV ≤ 2p − 3, then
VG+ is indecomposable.

Proof. Assume the contrary. Then we can pick an indecomposable direct summand U
of dimension ≤ p − 2 of VG+ and let H ≤ GL(U) be the image of G+ acting on U .
By Proposition 4.4, G has no composition factors isomorphic to Cp. Hence Op(H) = 1.
Since the kH -module U is faithful and indecomposable, U is simple by [19, Theorem A].
But this contradicts Lemma 3.7(ii). ut

Recall that a component of a finite group is any subnormal quasisimple subgroup. We first
note that:

Lemma 4.6. LetG be an irreducible subgroup of GL(V ) ∼= GLd(k) with k algebraically
closed of characteristic p. Assume that G = Op′(G) and G has a component of order
coprime to p. Then d ≥ 2p.

Proof. Assume the contrary: d < 2p. Write E(G) = E1 ∗ E2, where E1 is the central
product of all components of G of order coprime to p and E2 is the product of the re-
maining components; in particular, 1 6= E1 � G. Since G is generated by p-elements,
there is a p-element x not centralizing E1. Let W be an irreducible constituent of VE1 .
Since d < 2p and dimW ≥ 2, we have xW ∼= W .

Now write E1 = Q1 ∗ · · · ∗ Qn as a central product of n components and W ∼=
W1 ⊗ · · · ⊗ Wn, where Wi is an irreducible kQi-module. Note that x acts on the set
{Q1, . . . ,Qn}. If this action is nontrivial, then dimW ≥ 2p. (Indeed, we may assume
that x permutes Q1, . . . ,Qm cyclically for some p ≤ m ≤ n, and that after replacing W
by another E1-summand of V if necessary, Q1 acts nontrivially on W , i.e. dimW1 ≥ 2.
Since xW ∼= W , this implies that dimWi ≥ 2 for 1 ≤ i ≤ m, whence dimW ≥ 2m ≥
2p ≥ 2p.) Thus we may assume that x normalizes each Qi , but does not centralize Q1.
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It follows that Q1 is a quasisimple p′-group with a nontrivial outer automorphism of p-
power order; in particular, p > 2. If p = 3, then Q1 ∼=

2B2(22a+1) and dimW1 ≥ 14.
So p > 3, and using the description of outer automorphisms of finite simple groups
[18, Theorem 2.5.12], we see that Q1 is a quasisimple group of Lie type over a field of
size qp for some prime power q. Now applying [42], we see that dimW1 ≥ 2p. ut

The proof of Lemma 4.6 certainly depends on the classification of finite simple groups.
We note the following result which does not require the classification:

Lemma 4.7. Let k = k̄ be of characteristic p and letG be a finite irreducible p-solvable
subgroup of GL(V ) ∼= GLn(k) of order divisible by p. Then n ≥ p − 1.

Proof. We may assume that p > 2. By a result of Isaacs [50, Theorem 10.6], V has
a p-rational lift to characteristic 0. But then by [11], the Jordan blocks of any element
g ∈ G of order p acting on V have sizes 1, p − 1, or p. So if n < p − 1, then g acts
trivially on V , a contradiction. ut

In what follows, we will slightly abuse the language by also consideringCp as a Frobenius
group with kernel of order p.

Lemma 4.8. Let p > 2 be a prime and letG be a transitive subgroup of Sn with n < 2p.
Assume that G has a composition factor of order p. Then one of the following holds:

(i) n = p and G is a Frobenius group of order pe for some e | (p − 1) with kernel of
order p.

(ii) p = 2a − 1 is a Mersenne prime and n = 2a = p + 1. Moreover, soc(G) is a
regular elementary abelian subgroup of order n, G = soc(G) o G1, and G1 is a
Frobenius group of order pe for some e | a, with kernel of order p. If H 1(G, k) 6= 0,
then |G| = np.

Proof. Note that G is primitive and contains a p-cycle. Hence we can apply [65] and see
that either (i) holds, or n = 2a = p+ 1 and G = soc(G)oG1, with soc(G) ∼= Ca2 being
regular, andG1 ≤ GLa(2) has Cp as a composition factor. Applying [38] toG1, we arrive
at (ii). ut

Lemma 4.9. Let S := Sp2a(2) with p = 2a ± 1 and let V = F2a
2 denote the natural

module for S. Let X ≤ S be a group with Cp as a composition factor and p > 3. Then
there is a normal elementary abelian 2-subgroup E < X such that X/E is a Frobenius
group of order pe with kernel of order p, where e | 2a. Furthermore, if E 6= 1 then
p = 2a − 1. Moreover, X acts reducibly on V precisely when p = 2a − 1 and either
E 6= 1 or |X| is odd, in which case X stabilizes a maximal totally isotropic subspace
of V .

Proof. (a) It is easy to see that Y := Op′(X) can be reducible on V only when p = 2a−1.
Let P ∈ Sylp(X) and consider the action of X on the natural module V = F2a

2 for S. If
P �X, then X is contained in NS(P ), a Frobenius group of order 2ap, in which case we
set E = 1. It follows that if p = 2a − 1 in addition, then X is reducible on V precisely
when |X| is odd. So we will assume that P 5 X. It follows that P 5 Y := Op′(X).
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Suppose that the Y -module V is reducible, and so p = 2a − 1 and a ≥ 3 is odd. Then
Y stabilizes a proper subspace U 6= 0 of V of dimension ≤ a. Choosing U minimal, we
see that U is irreducible over Y . If U ∩ U⊥ = 0, then Y is contained in the p′-subgroup
Sp(U)×Sp(U⊥), a contradiction. HenceU ⊆ U⊥. Now if dimU < a then Y is contained
in the p′-subgroup StabS(U), again a contradiction. Thus dimU = a and U is a maximal
totally isotropic subspace. Setting Q := O2(R) for R := StabS(U) and F := Q ∩ Y , we
see that F is an elementary abelian 2-subgroup and Y/F is a subgroup of R/Q ∼= GLa(2)
with Cp as a composition factor. By the main result of [38], Y/F is a Frobenius group of
order pb for some b | a. In particular, |Y/F | is odd, and so F = O2(Y ) � X. Note that
F 6= 1 as otherwise P � Y , a contradiction. Also, Y/F acts irreducibly on V/U . Since
Y/F acts on CV (F ) ⊇ U and F 6= 1, it follows that CV (F ) = U , and so U is fixed byX.
Thus X ≤ R and we are done by setting E := Q ∩X ≥ F .

(b) From now on we may assume that VY is irreducible. Hence V is absolutely irre-
ducible over k0 := EndF2Y (V ). We will consider V as a b-dimensional vector space V ′

over k0 (for some b | 2a). Thus W := V ′ ⊗k0 k is an irreducible kY -module for k := k̄0.
Observe that b ≤ 2a ≤ p − 1. Also, Z(Y ) is cyclic by Schur’s lemma.

Note that if N � Y then the N -module W is homogeneous. Indeed, VN is the direct
sum of t ≤ b < p homogeneous N -components Vi . Hence any p-element 1 6= g ∈ Y

stabilizes each Vi , whence Vi is fixed by Y = Op′(Y ) and t = 1.
(c) Now we show E(Y ) = 1. Suppose E(Y ) 6= 1 and write E(Y ) = L1 ∗ · · · ∗ Ln,

a central product of n quasisimple groups. Since |S|p = p and Cp is a composition
factor of Y , E(Y ) is a p′-group. By (b), WE(Y )

∼= e(W1 ⊗ · · · ⊗ Wn), where Wi is an
irreducible kLi-module of dimension ≥ 2. Hence b ≥ 2n, and so n < p. It follows that
every p-element 1 6= g ∈ Y normalizes each Li , and so does Y . On the other hand,
if Y centralizes Li , then Li ≤ Z(Y ), a contradiction. So some p-element 1 6= g ∈ Y

normalizes but does not centralize L1. As in the proof of Lemma 4.6, we see that L1 is a
quasisimple group of Lie type defined over Fq with q = rcp for some prime r and some
integer c, and conclude that dimW1 > p when r 6= 2. If r = 2, then by [66], |L1| is
divisible by some prime divisor ` of 2p − 1 that does not divide

∏p−1
i=1 (2

i
− 1), whence

` - |S|, again a contradiction.
Next we observe that every normal abelian subgroup A of Y must be central, and so

cyclic. Indeed, A acts by scalars on W by (b), and so A ≤ Z(Y ).
(d) We have shown that F ∗(Y ) = F(Y ). Now if p divides |F(Y )|, then since |S|p=p,

we have P = Op(F (Y )) � Y , a contradiction. Also, if F(Y ) ≤ Z(Y ), then Y ≤
CY (F (Y )) ≤ F(Y ), and so Y = F(Y ) is nilpotent, again a contradiction. So F(Y ) is
a p′-group and moreover N := Or(F (Y )) is noncentral in Y for some prime r 6= p.
By (c), every characteristic abelian subgroup of N is cyclic. Hence by Hall’s theorem,
N = F ∗D, where F is an extraspecial r-group, and eitherD is cyclic, or r = 2 and C is
dihedral, generalized quaternion, or semi-dihedral. Arguing as in [25, part (3) of the proof
of Theorem 6.7], we can find a characteristic subgroup L of N such that L = Z(L)E,
where E is an extraspecial r-group of order r2c+1 for some c ≥ 1 and Z(L) is cyclic.
Note that Z(L) ≤ Z(Y ) by (c). It also follows by (b) that rc | b and r 6= 2, whence a ≥ 3
must be odd (recall that p = 2a ± 1 is prime). As L 6≤ Z(Y ), some p-element 1 6= g ∈ Y
normalizes but does not centralize L, and centralizes Z(L). It follows that p divides the
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order of the group Outc(L) of outer automorphisms of L that act trivially on Z(L). Since
Outc(L) ↪→ Sp2c(r), we get p | (rd ± 1) for some d ≤ c. Since p ≥ 2a − 1 and rc | a, we
arrive at a contradiction. ut

Now we can prove Theorem 1.3 in a slightly stronger version.

Theorem 4.10. Let G be a finite irreducible subgroup of GL(V ) ∼= GLd(k) with k al-
gebraically closed of characteristic p > 3. Assume that G has a composition factor of
order p and d < 2p − 2. Then d = p − 1, p or p + 1, a Sylow p-subgroup of G has
order p, G is solvable and one of the following holds:

(i) d = p − 1, p = 2a + 1 is a Fermat prime, F ∗(G) = Z(G)O2(G), G/F ∗(G) is a
Frobenius group of order pe for some e | 2a with kernel of order p, and O2(G) is a
group of symplectic type with O2(G)/Z(O2(G)) ∼= C

2a
2 .

(ii) d = p and G has a normal abelian p′-subgroup N = F ∗(G) such that G/N is a
Frobenius group of order pe for some e | (p − 1) with kernel of order p.

(iii) d = p + 1, p = 2a − 1 is a Mersenne prime and either

(a) G has an abelian normal p′-subgroup N , where the action of G/N on the d
distinct eigenspaces of N induces a subgroup of Sd as described in Lemma 4.8,
or

(b) F ∗(G) = Z(G)O2(G), G/F ∗(G) is a Frobenius group of order 2bp for some
b | a with kernel of order p, and O2(G) is a group of symplectic type with
O2(G)/Z(O2(G)) ∼= C

2a
2 .

Moreover, H 1(G, k) 6= 0 if and only if one of the conclusions of Theorem 1.3 holds.

Proof. (a) First we show thatG+ is irreducible on V . To this end, letW be an irreducible
summand of VG+ . Also let K1 and K2 denote the kernel of the action of G+ on W and
on a G+-invariant complement V ′ to W in V . Then K1 ∩ K2 = 1 and so K1 embeds
in G+/K2 as a normal subgroup. Since Cp is a composition factor of G+, it follows
that it is a composition factor of G+/K1 or of G+/K2. Replacing W by another irre-
ducible G+-summand in V ′ if necessary, we may assume that G+/K1 has a composition
factor of order p. Then dimW ≥ p − 1 by Theorem 2.1. This is true for all other irre-
ducibleG+-summands in V and dimV < 2p−2, whence the claim follows. In particular,
Z(G+) = Z(G) ∩G+.

(b) By Lemma 4.1, we know that Q 6≤ Z(G+) and so Q 6≤ Z(G) for Q :=
Op′(G

+) � G. Suppose that Q contains a noncentral (in G) abelian subgroup K � G.
Decompose V =

⊕n
i=1 Vi intoK-eigenspaces. By Clifford’s theorem,G acts transitively

on {V1, . . . , Vn}, with kernel N , and G+ does as well. Note that n > 1 as K 6≤ Z(G).
SinceG+ is generated by p-elements, we have n ≥ p. But d < 2p, so dimVi = 1 and N
is an abelian p′-group. Now we can apply Lemma 4.8 to G/N ↪→ Sd . If d = p, we are
in case (ii) and F ∗(G) = N . If d > p, then d = p+ 1 = 2a and G/N has the prescribed
structure, i.e. case (iii)(a) holds.

(c) Assume now that Q contains no abelian noncentral (in G) subgroup K � G.
Let N be minimal among subgroups of Q that are normal but noncentral in G, so N
is nonabelian. By Lemma 4.6, Q contains no components of G. Hence E(N) = 1 and
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F ∗(N) = F(N). If F(N) < N , the minimality of N implies that F(N) ≤ Z(G), but
then F(N) = F ∗(N) ≥ CN (F ∗(N)) = N , a contradiction. So N = F(N) is nilpotent,
and the minimality of N again implies that N is an r-group for some prime r 6= p. Let A
be any characteristic abelian subgroup of N . Then by the assumption, A ≤ Z(G), and so
A is cyclic. Thus every characteristic abelian subgroup of N is cyclic (and central in G),
and so Hall’s theorem applies to N . Arguing as in part (d) of the proof of Lemma 4.9
and using the minimality of N , we see that N = Z(N)E, where E is an extraspecial
r-group of order r2a+1 for some a and Z(N) ≤ Z(G) is cyclic; in particular, ra | d. Since
N 6≤ Z(G+), there is a p-element x that induces a nontrivial outer automorphism of N
acting trivially on Z(N). As Outc(N) ≤ Sp2a(r), we see that p divides r2b

− 1 for some
1 ≤ b ≤ a. On the other hand, ra ≤ d ≤ 2p − 3. This implies that r = 2, p = 2a ± 1 is
either a Mersenne or a Fermat prime, d = 2a , andN acts irreducibly on V . The latter then
implies that CG(N) = Z(G) and X := G/Z(G)N is a subgroup of Outc(N) ≤ Sp2a(2)
with Cp as a composition factor. Now we can apply Lemma 4.9 to X. Note that if X
stabilizes a maximal totally isotropic subspace of N/Z(N), then its inverse image in N is
an abelian normal noncentral subgroup of G, contrary to our assumptions. Hence either
p = 2a + 1 and we are in case (i), or p = 2a − 1 and we are in case (iii)(b). Also note
that F ∗(G) = Z(G)N in either case.

(d) If G satisfies any of the conclusions of Theorem 1.3 then H 1(G, k) 6= 0. Con-
versely, suppose that H 1(G, k) 6= 0. Then G possesses a normal subgroup L of index p.
Thus we can apply the above results to G. In particular, |G|p = p and so L = Op′(G).
Now the description of G in (i)–(iii) shows that G must satisfy one of the conclusions of
Theorem 1.3. ut

One can also consider an analogue of Theorem 4.10 for p = 3. In this case, d ≤ 3 and
the analogous result is straightforward by examining subgroups of GL2 and GL3.

5. Bounding Ext1G(V , V ) and Ext1G(V , V
∗)

The following result is well known:

Lemma 5.1. Let X be a finite group and let k be an algebraically closed field of charac-
teristic p. Let U and V be irreducible kX-modules belonging to a kX-block B with cyclic
defect subgroups. Then dimk Ext1X(U, V ) ≤ 1.

Proof. By [23, Lemma 7.1], we may assume U 6∼= V . It is known [53] that P(V ) has
simple head and simple socle, both isomorphic to V , and rad(P(V ))/V is a direct sum
of at most two uniserial submodules. Also, note that Ext1(U, V ) ∼= HomG(U,P(V )/V ).
So if dimk Ext1X(U, V ) ≥ 2, then at least two edges of the Brauer tree of B correspond
to U , which is impossible. ut

Lemma 5.2. Let H be a finite group with Sylow p-subgroups of order p. Suppose that
H = Op′(H) and H has no composition factor of order p. Then H/Op′(H) is a non-
abelian simple group.
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Proof. Replacing H by H/Op′(H), we can assume that Op′(H) = 1. Together with the
condition that H has no composition factor of order p, this implies that F(H) = 1, and
so

F ∗(H) = E(H) = S1 × · · · × Sn

is a product of nonabelian simple groups. It also follows that Op′(F
∗(H)) = 1, whence

n = 1 and F ∗(H) = S1 has order divisible by p. Now H/S1 is a p′-group and H =
Op′(H). Consequently, H = S1. ut

Proposition 5.3. Let G be a finite group with a faithful kG-module V . Suppose that
V = W1 ⊕ · · · ⊕ Wt is a direct sum of kG+-submodules, and for each i the subgroup
Hi ≤ GL(Wi) induced by the action of G+ on Wi has Sylow p-subgroups of order p.
Suppose in addition that G has no composition factor of order p. Then

G+/Op′(G
+) ∼= S1 × · · · × Sn

is a direct product of nonabelian simple groups Si , each of order divisible by p.

Proof. By assumption,Hi has no composition factor of order p, |Hi |p = p, and Op′(Hi)

= Hi . By Lemma 5.2, Hi/Op′(Hi) is simple nonabelian. Hence the claim follows from
[23, Lemma 2.3]. ut

Proposition 5.4. Let k = k be of characteristic p and let H be a finite group such that
H = Op′(H) and

H/J = S1 × · · · × Sn

is a direct product of nonabelian simple groups of order divisible by p, where J :=
Op′(H). Suppose that W1 and W2 are irreducible kH -modules such that the image of H
in GL(Wi) has Sylow p-subgroups of order p for i = 1, 2, and Ext1H (W1,W2) 6= 0. Then
the actions of H on W1 and W2 have the same kernel.

Proof. Let Ki denote the kernel of the action of H on Wi , so that |H/Ki |p = p. Note
thatH , and soK1∩K2 as well, has no composition factor of order p, whenceK1∩K2 =

Op(K1 ∩K2). Hence by Lemma 3.4 there is no loss to assume that

K1 ∩K2 = 1. (5.1)

We aim to show in this case that K1 = K2 = 1. Note that the condition H = Op′(H)

implies that n ≥ 1.
(i) Suppose for instance that J1 := J ∩K1 6= 1. This implies by (5.1) that J1 6≤ K2,

i.e. J1 does not act trivially on W2. Since J1 � H , we see that (W2)J1 is a direct sum
of nontrivial kJ1-modules. On the other hand, the p′-group J1 acts trivially on W1 and
on W ∗1 . Setting M := W ∗1 ⊗k W2, we then have MJ1 = 0, and so

Ext1H (W1,W2) ∼= H
1(H,M) ∼= H

1(H/J1,M
J1) = 0,

a contradiction.
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(ii) We have shown that J ∩K1 = J ∩K2 = 1. Hence

K1 ∼= K1J/J �H/J = S1 × · · · × Sn,

and soK1 is isomorphic to the direct product
∏
i∈I Si for some subset I ⊆ {1, . . . , n}. As

|H/K1|p = p and p | |Si | for all i, we may assume that

K1 ∼= JK1/J = S2 × · · · × Sn. (5.2)

In particular, if n = 1 then K1 = 1 and similarly K2 = 1, whence we are done.
(iii) Now we assume that n ≥ 2. Consider X := JK2 ∩K1. Then X ∩K2 ≤ K1 ∩K2

= 1, and so
X ∼= XK2/K2 � JK2/K2 ∼= J

is a p′-group. On the other hand, X � K1, and so by (5.2) we again have X ∼=
∏
i∈I ′ Si

for some subset I ′ ⊆ {2, . . . , n}. As p | |Si | for all i, we conclude that X = 1. Similarly
JK1 ∩K2 = 1. Together with (5.2), this implies that

K2 ↪→ H/JK1 ∼= (H/J )/(JK1/J ) ∼= S1.

Furthermore, as shown in (ii), JK2/J ∼= K2 ∼=
∏
i∈I ′′ Si for some subset I ′′ ⊆ {1, . . . , n}

of cardinality n− 1. It follows that n = 2, K2 ∼= S1, K1 ∼= S2, and

H = JK2K1 ∼= JK2 ×K1 = (J ×K2)×K1 ∼= J ×K1 ×K2.

Now we can write

W1 ∼= A1 ⊗k k ⊗k B2, W2 ∼= A2 ⊗k B1 ⊗k k,

where A1, A2 ∈ IBrp(J ) and Bi ∈ IBrp(Ki) for i = 1, 2. In this case, if B1 6∼= k and
B2 6∼= k, then Ext1H (W1,W2) = 0 by Lemma 3.3(i), a contradiction. So we may assume
that B1 ∼= k, i.e. K1 acts trivially on W2. It then follows that K1 ≤ K1 ∩ K2 = 1,
contradicting (5.2) and the equality n = 2. ut

Proof of Theorem 1.6. We take the convention that V ε is V for ε = + and V ∗ if ε = −,
and the same holds for other modules. Assume that Ext1G(V , V

ε) 6= 0 for some ε = ±.
Decompose

VG+ = e

t⊕
i=1

Wi, V ε
G+
= e

t⊕
i=1

W ε
i

where W1, . . . ,Wt are pairwise nonisomorphic and G-conjugate irreducible kG+-mod-
ules. By assumption, the image ofG+ in each GL(Wi) has Sylow p-subgroups of order p,
and G+ has no composition factor of order p. By Proposition 5.3,

G+/Op′(G
+) = S1 × · · · × Sn (5.3)

is a direct product of nonabelian simple groups of order divisible by p.
(i) First we consider the case k = k. Recall that G+ = Op′(G+). So by Proposition

5.4 we have Ext1
G+
(Wi,W

ε
j ) = 0, unless G+ has the same kernel on Wi and W ε

j .
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Let Ki denote the kernel of G+ on Wi , and on W ε
i as well. Relabeling W1, . . . ,Wt ,

we may assume thatK1, . . . , Ks are pairwise distinct, with s := |{K1, . . . , Kt }|. Defining

Vi := e
⊕

j :Kj=Ki

Wj

for 1 ≤ i ≤ s, we then have

V = V1 ⊕ · · · ⊕ Vs, V ε = V ε1 ⊕ · · · ⊕ V
ε
s .

Certainly, G acts transitively on {W1, . . . ,Wt }, {V1, . . . , Vs}, and on {K1, . . . , Ks} via
conjugation. Also,H := NG(K1)�G

+ stabilizes V1 and has index s inG. It follows that
H = StabG(V1), V ∼= IndGH (V1), and so V1 is an irreducible kH -module.

By the definition of Vi , we have Ext1
G+
(V1, V

ε
i ) = 0 for all i > 1. As H/G+ is a

p′-group, it follows that Ext1H (V1,
⊕

i>1 V
ε
i ) = 0. Now by Frobenius’ reciprocity,

Ext1G(V , V
ε) = Ext1G(IndGH (V1), V

ε) ∼= Ext1H (V1, (V
ε)H ) = Ext1H (V1, V

ε
1 ).

Recall that K1 acts trivially on V1 and V ε1 , and |H/K1|p = |G
+/K1|p = p. Hence

dimk Ext1H/K1
(V1, V

ε
1 ) ≤ 1 by Lemma 5.1. Finally, K1 has no composition factor of

order p by (5.3). So Ext1H (V1, V
ε
1 )
∼= Ext1H/K1

(V1, V
ε
1 ) by Lemma 3.4, and so we are

done.
(ii) Now we consider the general case. By [32, Theorem 9.21], W1 ⊗k k is a direct

sum of irreducible kG+-modules W11, . . . ,W1m, which form a Galois conjugacy class
over k. By assumption, |G+/K1|p = p, where K1 is the kernel of G+ on W1. Certainly,
K1 is contained in the kernel K11 of the action of G+ on W11, whence |G+/K11|p ≤ p.
If |G+/K11|p < p, then the equality G+ = Op′(G+) implies that K11 = G

+, whence
G+ acts trivially on W11, and so on W1 and on V as well, contradicting the faithfulness
of V and the assumption Ext1G(V , V

ε) 6= 0. Hence we must have |G+/K11|p = p. Since
the dimension of Ext1G(V , V

ε) does not change under field extensions, we are done by
replacing V by V ⊗k k and applying the result of (i). ut

A key ingredient of the proof of Theorem 1.5 is the following statement:

Proposition 5.5. Let X be a finite group with a normal subgroup Y ≥ Op′(X). Let A, B,
W , W ′ be kX-modules, where A and B are absolutely irreducible and Y acts via scalars
on both A and B. Suppose in addition that AY ∼= BY . Then

dimk Ext1X(A⊗k W,B ⊗k W
′) ≤ dimk Ext1Y (WY ,W

′

Y ).

Proof. Since the dimensions of Ext1-spaces do not change under field extensions, we
may assume that k is algebraically closed. By assumption, X/Y is a p′-group and Y acts
trivially on A∗ ⊗k B. Without loss we may assume that dimk B ≤ dimk A. Denoting

H := H 1(Y, (WY )
∗
⊗k W

′

Y )
∼= Ext1Y (WY ,W

′

Y ),
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we then have dimk B ⊗k H ≤ (dimk A)(dimk H), and so

dimk HomkX(A,B ⊗k H) ≤ dimk H = dimk Ext1Y (WY ,W
′

Y ).

Applying the inflation-restriction spectral sequence, we obtain

dimk Ext1X(A⊗k W,B ⊗k W
′) = dimk (H

1(Y,A∗ ⊗k B ⊗k W
∗
⊗k W

′))X/Y

= dimk (A
∗
⊗k B ⊗k H)

X/Y
= dimk HomkX(A,B ⊗k H)

≤ dimk Ext1Y (WY ,W
′

Y ). ut

Proposition 5.6. Let k be an algebraically closed field of characteristic p. Assume the
hypothesis of Theorem 1.2 and write VG+ =

⊕t
i=1 Vi , where Vi ∼= eWi and W1, . . . ,Wt

are pairwise nonisomorphic irreducible kG+-modules. Suppose that there is a unique
j ≥ 1 such that Ext1

G+
(W1,Wj ) 6= 0. Then

dimk Ext1G(V , V ) ≤ dimk Ext1
G+
(W1,Wj ).

Proof. Let G1 := StabG(V1) be the inertia group of W1 in G. Since G+ � G1, the
uniqueness of j implies that G1 = StabG(Vj ) as well. Next, V ∼= IndGG1

((V1)G1), and so

Ext1G(V , V ) = Ext1G(IndGG1
((V1)G1), V )

∼= Ext1G1
((V1)G1 , VG1)

∼= Ext1G1
((V1)G1 , (Vj )G1)⊕ Ext1G1

(
(V1)G1 ,

⊕
i 6=j

(Vi)G1

)
.

Since G+ contains a Sylow p-subgroup of G1, Ext1G1
((V1)G1 ,

⊕
i 6=j (Vi)G1) injects in

Ext1
G+

(
(V1)G+ ,

⊕
i 6=j

(Vi)G+
)
∼= e

2
⊕
i 6=j

Ext1
G+
(W1,Wi) = 0,

and so it is zero.
It remains therefore to show that

dimk Ext1G1
((V1)G1 , (Vj )G1) ≤ dimk Ext1

G+
(W1,Wj ).

Let X denote a universal p′-cover of G1 (so that G1 ∼= X/Z for some p′-subgroup
Z ≤ Z(X) ∩ [X,X]), and let Y := Op′(X). Now we view V1 as an irreducible kX-
module by inflation and note that

dimk Ext1G1
((V1)G1 , (Vj )G1) = dimk Ext1X((V1)X, (Vj )X)

as Z is a p′-group. Since Z acts trivially on V1, we also have (V1)Y ∼= e(W1)Y and
YZ/Z ∼= G+. Hence (W1)Y is irreducible, and similarly for Wj . Moreover,

dimk Ext1Y ((W1)Y , (Wj )Y ) = dimk Ext1
G+
(W1,Wj ).

Fix a basis of W1 and the corresponding representation 8 of Y on W1 in this basis.
By Clifford theory, we can decompose the irreducible representation 2 of X on V1 as a
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tensor product of an irreducible projective representation 3 of X/Y (of degree e) and an
irreducible projective representation 9 of X, with

9(y) = 8(y)

for all y ∈ Y . Since X is p′-centrally closed, there is a function f : X→ k× such that

9 ′ : x 7→ f (x)9(x)

is a linear representation. Note that fY ∈ Hom(Y, k×) since 9Y = 8 is a linear represen-
tation, and so fY = 1Y as Y = Op′(Y ). In particular, 9 ′(y) = 8(y) for all y ∈ Y . Now
we inflate 3 to a projective representation of X and define

3′ : x 7→ f (x)−13(x)

so that2(x) = 3′(x)⊗9 ′(x) for all x ∈ X. Then3′ is also a linear representation of X,
and furthermore 3′Y is trivial (since fY = 1Y ). Thus we can decompose

(V1)X = A⊗k W,

where the kX-modules A and W are irreducible, Y acts trivially on A, and WY
∼= (W1)Y .

Similarly,
(Vj )X = B ⊗k W

′,

where the kX-modules B andW ′ are irreducible, Y acts trivially on B, andW ′Y ∼= (Wj )Y .
Now our statement follows by applying Proposition 5.5. ut

The same proof as above yields:

Proposition 5.7. Let k be an algebraically closed field of characteristic p. Assume the
hypothesis of Theorem 1.2 and write VG+ =

⊕t
i=1 Vi , where Vi ∼= eWi and W1, . . . ,Wt

are pairwise nonisomorphic irreducible kG+-modules. Suppose that there is a unique
j ≥ 1 such that Ext1

G+
(W1,W

∗

j ) 6= 0. Then

dimk Ext1G(V , V
∗) ≤ dimk Ext1

G+
(W1,W

∗

j ). ut

Lemma 5.8. Given the assumption of Theorem 1.5, suppose thatH is as in the extraspe-
cial case (e) of Theorem 2.1. Then Ext1G(V , V

∗) = 0.

Proof. Write VG+ = e
⊕t

i=1Wi as usual. It suffices to show that Ext1
G+
(Wi,W

∗

j ) = 0 for
all i, j . Recall that J := Op′(G) acts irreducibly onWi andW ∗j by [23, Theorem 2.4(ii)].
Since J is a p′-group, we have M = CM(J )⊕ [M,J ] for M := W ∗i ⊗W

∗

j . As J has no
fixed point on [M,J ], we obtain H 1(G+, [M,J ]) = 0. Also,

CM(J ) ∼= HomJ (Wi,W
∗

j )

is either 0 or k. Hence

Ext1
G+
(Wi,W

∗

j )
∼= H

1(G+,M) ∼= H
1(G+,CM(J )) ↪→ H 1(G+, k).

AsG+ is perfect by [23, Theorem 2.4], we haveH 1(G+, k) = 0, and so we are done. ut
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Proof of Theorem 1.5. (i) Assume that (G, V ) satisfies all the hypotheses of Theorem 1.5.
We take the convention that V ε is V for ε = + and V ∗ if ε = −, and the same holds
for other modules. Since the dimension of Ext1G(V , V

ε) does not change under field ex-
tensions, we will assume that k = k. Assume that Ext1G(V , V

ε) 6= 0 for some ε = ±.
It suffices to show that G then fulfills the conditions of Propositions 5.6 and 5.7 (with
Ext1

G+
(W1,W

ε
j )
∼= k for the index j indicated in these propositions). By [23, Lemma 7.2],

there is some j such that
Ext1

G+
(W1,W

ε
j ) 6= 0. (5.4)

Note that Ext1G(V , V
ε) = 0 in the extraspecial case (e) of Theorem 2.1, by [23, Propo-

sition 10.4] and Lemma 5.8. So we may assume that the image H of G+ in GL(W) is a
central product of quasisimple groups, whence, by [23, Theorem 2.4],

G+ = L1 ∗ · · · ∗ Ln

is also a central product of quasisimple groups Li . Moreover, if some Li is not a quasi-
simple group of Lie type in characteristic p, then by [23, Theorem 2.4], the image of G+

in each GL(Wi) has Sylow p-subgroups of order p, and so Theorem 1.6 applies. So in
what follows we may assume that all Li are quasisimple groups of Lie type in character-
istic p. Correspondingly, we can decompose

W1 = A1 ⊗ · · · ⊗ An, W ε
j = B1 ⊗ · · · ⊗ Bn,

whereAi andBi are irreducible kLi-modules andLi′ acts trivially onAi andBi whenever
i′ 6= i. By Lemma 3.3 and (5.4), we may assume that

Ai ∼= Bi

for i > 1, and furthermore Ext1L1
(A1, B1) 6= 0. Since dimkW1 = dimkWj , it follows that

dimk Ai = dimk Bi for all i.
Note that if dimk Ai = 1, then Ai ∼= k as Li is perfect, and similarly Bi ∼= k, whence

Ext1Li (Ai, Bi) = 0. In fact, Ext1Li (Ai, Bi) = 0 if dimk Ai ≤ (p − 3)/2 by the main result
of [19]. It follows that dimk A1 ≥ (p − 1)/2. Since dimkW1 ≤ p − 1, we arrive at two
possible cases:

(a) dimk Ai = 1 (and so Ai ∼= Bi ∼= k) for all i > 1; or
(b) p ≥ 5, dimk Ai = 1 (and so Ai ∼= Bi ∼= k) for all i > 2, and {dimk A1, dimk A2} =

{(p − 1)/2, 2}.

(ii) Suppose we are in case (b). Then the quasisimple group Lm (for somem ∈ {1, 2})
is acting irreducibly on Am ∼= k2. As Lm is a Lie-type group in characteristic p, we
have Lm ∼= SL2(p

a) for some a ≥ 1. By Lemma 4.3, L1 ∼= SL2(p) (modulo a central
subgroup), dimA1 = (p − 1)/2, Ext1L1

(A1, B1) ∼= k, and A1 ∼= B1. We have shown that
Ai ∼= Bi for all i; in particular Wj ∼= W ε

1 . Now we have m = 2, and dimk Ext1L2
(A2, B2)

equals 0 if pa > 5, and 1 if pa = 5 [23, Lemma 8.1]. Again by Lemma 3.3,

dimk Ext1
G+
(W1,W

ε
j ) = 1+ dimk Ext1L2

(A2, B2).
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In the case pa = 5, we have (dimW,H) = (4, �+4 (5)) and conclude by Propositions
5.6 and 5.7 that Ext1G(V , V ) and Ext1G(V , V

∗) are at most 2-dimensional. Moreover,
Example 5.9(i) shows that the upper bound 2 can indeed be attained. If pa > 5, then
Ext1

G+
(W1,W

ε
j )
∼= k and Wj ∼= W ε

1 for any j satisfying (5.4).
(iii) Now we consider case (a). Then

Ext1L1
(A1, B1) ∼= Ext1

G+
(W1,W

ε
j ) 6= 0 (5.5)

by Lemma 3.3.
Suppose first that p = 3. Then L1 ∼= SL2(3a) for some a ≥ 2, and

W1 = A1 ⊗k k ⊗k . . .⊗k k,Wj = B
ε
1 ⊗k k ⊗k . . .⊗k k.

We may also assume that A1 is the natural kL1-module. If a = 2, then by (5.5) and
[2, Corollary 4.5] we see that B1 is isomorphic to the Frobenius twist A(3)1 of A1, and
Ext1L1

(A1, B1) ∼= k
2. Thus Wj is uniquely determined, and so dimk Ext1G(V , V

ε) ≤ 2 by
Propositions 5.6 and 5.7. Suppose now that a > 2. Since G1 := StabG(V1) stabilizes the
isomorphism class of W1, we see that G1 normalizes each of L1 and L2 ∗ · · · ∗ Ln, and
induces an inner-diagonal automorphism of L1. Next, by (5.5) and [2, Corollary 4.5], B1

is isomorphic to one of the Frobenius twists A(3)1 , A(3
a−1)

1 of A1, and Ext1L1
(A1, B1) ∼= k.

Thus there are at most two possibilities for Wj , each stabilized by G1. If only one of
them occurs among the submodules Wi , then dimk Ext1G(V , V

ε) ≤ 1 by Propositions
5.6 and 5.7. Suppose that both of them occur, say for j1 and j2. It follows that G1 =

StabG(Vj1) = StabG(Vj2), and furthermore both Vj1 and Vj2 are irreducible over G1.
Then, arguing as in the proof of Proposition 5.6 we deduce that

Ext1G(V , V
ε) = Ext1G(IndGG1

((V1)G1), V
ε) ∼= Ext1G1

((V1)G1 , V
ε
G1
)

∼= Ext1G1
((V1)G1 , (V

ε
j1
)G1)⊕ Ext1G1

((V1)G1 , (V
ε
j2
)G1)

has dimension at most 2. In fact, Example 5.9 shows that the upper bound 2 can indeed
be attained.

Suppose now that p > 3. Then by Lemma 4.3, L1 = SL2(p) (modulo a central
subgroup), A1 ∼= B1, Ext1L1

(A1, B1) ∼= k, Wj ∼= W ε
1 , and Ext1

G+
(W1,W

ε
j )
∼= k.

(iv) We have shown that in the case of Theorem 1.5(i), there is a unique j such that
Ext1

G+
(W1,W

ε
j ) 6= 0, in which case it has dimension 1. Hence we are done by Proposi-

tions 5.6 and 5.7. ut

Example 5.9. (i) Let p = 5 and let S = L1 × L2, with Li ∼= SL2(5), be acting on
V = W1 ⊗ W2, where Wi

∼= k2 is an irreducible kLi-module and Li acts trivially on
W3−i . Note that the kernel of this action is the diagonal cyclic subgroup Z ∼= C2 of
Z(L1) × Z(L2). Now G = G+ := S/Z ∼= �

+

4 (5) acts faithfully and irreducibly on V ,
and dimk Ext1G(V , V ) = 2 by Lemma 3.3. Also, V ∼= V ∗.

(ii) Let p = 3, S = SL2(3a) for some a ≥ 2 coprime to 3, let W1 = k
2 be the natural

kS-module, and let Wi+1 denote the Frobenius (W1)
(3i ) twist of W1 for 1 ≤ i ≤ a − 1.
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ThenG = So 〈σ 〉 (with σ being the field automorphism of S, of order a) acts irreducibly
and faithfully on V = W1 ⊕ · · · ⊕Wa , G+ = S, and

Ext1G(V , V ) ∼=
a⊕
i=1

Ext1S(W1,Wi) ∼= k
2 (5.6)

by [2, Corollary 4.5]. (Indeed, if a = 2 then Ext1S(W1,W2) ∼= k2. If a ≥ 3, then
Ext1S(W1,W2) ∼= Ext1S(W1,Wa) ∼= k. All other summands in the middle term of (5.6)
are zero.) Also, V ∼= V ∗.

(iii) Let p = 2f + 1 be a Fermat prime and let H = Op′(H)P (with P ∼= Cp and
Op′(H) ∼= 21+2f

− ) acting faithfully and absolutely irreducibly onW1 = k
p−1 as in case (i)

of Theorem 2.1. Note that the kH -module W1 is self-dual. Let n be coprime to p and let

G = H1 o Cn = (H1 × · · · ×Hn)o Cn

with Hi ∼= H1 = H , so that G+ = H1 × · · · × Hn. Inflate W1 to a kG+-module and
consider V := IndG

G+
(W1). Note that J := Op′(G

+) acts absolutely irreducibly on W1,
and

W ∗1 ⊗W1 = CW ∗1⊗W1(J )⊕ [W
∗

1 ⊗W1, J ]

with CW ∗1⊗W1(J )
∼= k. Since G+/J ∼= Cnp , it now follows that

Ext1
G+
(W1,W1) ∼= H

1(G+,W ∗1 ⊗W1) ∼= H
1(G+/J, k) ∼= k

n.

On the other hand, the actions of J on W1 and Wj have different kernels for any j > 1,
and so Ext1

G+
(W1,Wj ) = 0. Hence V ∼= V ∗ and

Ext1G(V , V ) ∼= Ext1
G+
(W1, VG+)

∼= Ext1
G+
(W1,W1) ∼= k

n.

Next we strengthen Theorem 1.5 in the case of dimW small.

Theorem 5.10. Let k be a field of characteristic p and let V and V ′ be absolutely irre-
ducible faithful kG-modules. Suppose that dimkW +dimkW

′
≤ p−2, whereW andW ′

are irreducible kG+-submodules of V and V ′, respectively. ThenH 1(G,M) = 0 for any
subquotient M of the G-module V ⊗ V ′.

Proof. It suffices to prove H 1(G+,M) = 0. Note that VG+ =
⊕t

i=1Wi and V ′
G+
=⊕s

j=1W
′

j with Wi,W
′

j ∈ IBrp(G+), and Op(G
+) ≤ Op(G) = 1. Since

dimkWi + dimkW
′

j ≤ p − 2, (5.7)

by the main result of [19] we have Ext1
G+
(W ∗i ,W

′

j ) = 0. It follows that Ext1
G+
(V ∗
G+
, V ′

G+
)

= 0, i.e. H 1(G+, (V ⊗ V ′)G+) = 0. By [55, Corollary 1, Theorem 1], (5.7) also implies
that the G+-module V ⊗ V ′ is semisimple. Thus M is isomorphic to a direct summand
of (V ⊗ V ′)G+ , whence H 1(G+,M) = 0, as desired. ut

Corollary 5.11. Let k be a field of characteristic p and let V be an absolutely irre-
ducible faithful kG-module. Suppose that dimkW < (p− 1)/2 for any irreducible kG+-
submodule of V . Then H 1(G,Sym2(V )) = H 1(G,

∧2(V )) = 0. 2
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6. Modules of dimension p

Let p be a prime and let k be algebraically closed of characteristic p. The aim of this
section is to show that if G is an irreducible subgroup of GLp(k) = GL(V ), then al-
most always (G, V ) is adequate (using Thorne’s new definition). We begin with some
observations.

Remark 6.1. Suppose that G ≤ GL(V ) is a finite irreducible subgroup. Note that to
show (G, V ) is adequate it suffices to show that G+ is adequate on V . Indeed, any sub-
group being weakly adequate implies that the spanning condition holds for G. Next, ad-
equacy for any subgroup containing a Sylow p-subgroup of G implies the necessary
vanishing of H 1 for G.

Lemma 6.2. Let G be a finite group with a Sylow p-subgroup P of order p and let
V ∈ IBrp(G) be such that p | dimV . Then V is projective.

Proof. Assume that V is nonprojective and set N := NG(P ). By the Green correspon-
dence [29, Lemma 4.1.1], in this case we have VN = W⊕M , whereW is a nonprojective
indecomposable N -module and M is a projective N -module (or zero). Now W belongs
to an N -block b of defect 1. By [29, Lemma 4.2.14], W is a uniserial (nonprojective)
quotient of P(U) where U := head(W) ∈ IBrp(N). By [29, Lemma 4.2.13], P(U) has
length p, so W has length l < p. According to [29, Remark 4.2.11], all simple kN -
modules in b are of the same dimension d and have P in their kernel. It follows that d
divides |N/P |, and so d is coprime to p. Hence p - dl = dimW , and so p - dimV (as
p | dimM), a contradiction. ut

Lemma 6.3. LetG be a finite group with a cyclic Sylow p-subgroup P and p = char(k).
Suppose that G = Op(G). Then H 1(G, k) = H 2(G, k) = 0.

Proof. The vanishing of H 1(G, k) is obvious. Suppose that H 2(G, k) 6= 0. Since the
dimension of H 2 does not change under extension of scalars, we may assume that
H 2(G,Cp) 6= 0. As moreover H 1(G,Cp) = 0, it follows that p divides the order of
the Schur multiplier of G. It is well known that the latter then implies that Sylow p-
subgroups of G are noncyclic (see e.g. [32, Corollary (11.21)]). ut

Next we give an example showing that for modules of dimension 2p, we can satisfy all
conditions aside from the spanning condition.

Example 6.4. Assume that p > 2. Let C be a nontrivial cyclic group of order coprime
to p, with a faithful character λ : C → k×, and let G = C o D where D is a dihedral
group of order 2p. Let V be the irreducible kG-module of dimension 2p induced from
the 1-dimensional representation with character

λ⊗ 1C ⊗ · · · ⊗ 1C

of the abelian normal subgroup A = C × · · · × C ∼= C2p of G. Let E be the unique
subgroup of D of order p. Note that V = V1 ⊕ V2, where the Vi are irreducible AE-
submodules of V (of dimension p). Then the following statements hold:
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(i) H 1(G, k) = H 2(G, k) = 0 by Lemma 6.3.
(ii) Ext1G(V , V ) = 0 (indeed, V is projective by Lemma 6.2).

(iii) The span M of the p′-elements of G in End(V ) is precisely A ⊕ Hom(V1, V2) ⊕

Hom(V2, V1), where A is the image of kA in End(V1)⊕ End(V2).

Now we describe all irreducible linear groups of degree p:

Proposition 6.5. Let k be an algebraically closed field of characteristic p and let G <

GLp(k) be a finite irreducible subgroup. Then one of the following holds:

(i) G is imprimitive onW := kp,G < GL1(k) oSp, and furthermore A := G∩GL1(k)
p

is noncentral in G.
(ii) G is almost quasisimple. Furthermore, H := G(∞) is quasisimple of order divisible

by p acting irreducibly on W , and so (H,W) is as described in Theorem 2.2.

Proof. By the hypothesis, G acts irreducibly on W = kp. Suppose that the action is
imprimitive. Then G permutes transitively the p summands of a decomposition W =
W1⊕· · ·⊕Wp, with kernel say A. If A 6≤ Z(G), we arrive at (i). Assume that A ≤ Z(G).
Note that S := G/A is a transitive subgroup of Sp, and so we can apply the main result
of [65] to S. In particular, if S is solvable, then S = P : C with P ∼= Cp and C ≤ Cp−1.
Then AP is a normal abelian subgroup of G, whence by Ito’s theorem the degree of any
χ ∈ Irr(G) divides [G : AP ] | (p − 1). On the other hand, G is solvable, and so by
the Fong–Swan theorem, W lifts to an irreducible complex module of dimension p, a
contradiction. Thus S is nonsolvable, which implies by [65] that S is almost simple, G is
almost quasisimple, and H := G(∞) is a normal subgroup of index coprime to p. Since
dimW = p, the last condition also implies that H is irreducible on W , and so we arrive
at (ii).

We may now assume that the G-module W is primitive. Since dimW = p is prime,
this module cannot be tensor decomposable or tensor induced. Now we can apply Asch-
bacher’s theorem in the version given in [28, Proposition 2.8] to (G,W) to conclude that
G is almost quasisimple: S �G/Z(G) ≤ Aut(S) for some nonabelian simple group S. In
particular,H = G(∞)�G is quasisimple, and moreover irreducible onW by [28, Lemma
2.5]. Hence we can apply Theorem 2.2 to (H,W). ut

6.1. Imprimitive case

Proposition 6.6. Suppose we are in case (i) of Proposition 6.5. Then (G,W) is adequate
if and only if |G/A| 6= p.

Proof. Let P ∈ Sylp(G), so that |P | = p (if P = 1 thenG cannot act irreducibly onW ).
If |G/A| = p, then G = AP , A = Op′(G) contains all the p′-elements of G but does
not act irreducibly on W (as A is a p′-group), whence G is not weakly adequate.

Now assume that |G/A| 6= p; in particular, p > 2. Suppose that G has a normal
p-complement K . Then K = Op′(G) > A (as otherwise G = AP and so |G/A| = p),
and H := G/A ≤ Sp has a normal p-complement K/A 6= 1. Thus H is a transitive
subgroup of Sp with Cp as a composition factor. But then Op′(H) = 1 by Lemma 4.8,
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a contradiction. Thus G cannot have a normal p-complement, and so H i(G, k) = 0 for
i = 1, 2 by Lemma 6.3. Also, W is projective as a G-module by Lemma 6.2, whence
Ext1G(W,W) = 0.

Since A 6≤ Z(G), A has p distinct eigenspaces W1, . . . ,Wp on W permuted transi-
tively by P . Thus, it remains only to prove that

End(W) ∼=
⊕

1≤i,j≤p

Hom(Wi,Wj )

is spanned by the images of the p′-elements of G. Given 1 ≤ i 6= j ≤ p, we claim that
there exists a p′-element x ∈ G with xWi = Wj . Since P is transitive on {W1, . . . ,Wp},
we can choose y ∈ P with yWi = Wj . Note that N acts on this set as the Frobenius
subgroup Cp o Cs of Sp, with kernel A ∩ N , and all the elements of (Cp o Cs) \ Cp
are p′-elements. So, since s > 1, we can find z ∈ N \ AP such that zWj = Wj and set
x := zy. Then xWi = Wj and x ∈ N \ AP , whence x is a p′-element.

Now B := 〈A, x〉 is a p′-group. Note that WA =
⊕p

a=1Wa is a direct sum of p
nonisomorphic simple A-submodules. Hence WB =

⊕t
b=1 Ub is a direct sum of t ≥ 1

nonisomorphic simple B-modules, with U1 ⊇ Wi ⊕Wj . By the Artin–Wedderburn theo-
rem, the image of kB in End(W) is just

⊕t
b=1 End(Ub), and so it contains

End(U1) ⊇ End(Wi)⊕ End(Wj )⊕ Hom(Wi,Wj )⊕ Hom(Wj ,Wi),

and the result follows. ut

6.2. Chevalley groups in characteristic p

We first point out the following:

Proposition 6.7. Let H be a quasisimple finite group of Lie type in characteristic p. Let
k be an algebraically closed field of characteristic p. Let W be a faithful irreducible
kH -module of prime dimension r ≤ p. Then one of the following statements holds:

(i) H = SL2(p
a) for r = 2 and H = PSL2(p

a) for r > 2.
(ii) H = SLr(pa) or SUr(pa), and r > 2.

(iii) H = �r(pa) and r ≥ 5.
(iv) r = 7 and H = G2(p

a).

Proof. Since char(k) = p and V is faithful, we have Op(H) = 1. Hence there is a simple
simply connected algebraic group G in characteristic p and a Frobenius endomorphism
F : G → G such that H ∼= G/Z for G := GF and Z ≤ Z(G). Inflate W to a kG-module.
Since r = dimW is prime, W is tensor indecomposable and in particular is a twist of
a restricted representation. So we may assume that W is restricted and extend W to a
kG-module. By [36], it follows thatW = L(λ) where λ is a dominant weight, and dimW

equals the dimension of the Weyl module V (λ) labeled by λ. Thus, we can apply the same
result for characteristic 0 which was proved by Gabber [39, 1.6]. ut

Proposition 6.8. Suppose we are in case (ii) of Proposition 6.5. Assume in addition that
H = G(∞) is a quasisimple group of Lie type in characteristic p > 3. Then (G,W) is
adequate.
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Proof. By the hypothesis, H is quasisimple and irreducible on W . So we can apply
Proposition 6.7 to H ; in particular WH = L(λ) is a restricted module (up to a Frobe-
nius twist; in what follows we will ignore this twist). In the caseH = PSL2(p

a), we have
λ = (p − 1)$1, where $1 is the fundamental weight. Since WH is G-invariant, we see
that G cannot induce nontrivial field automorphisms on H ; in particular, G+ = H . In
other cases, applying [41, Propositions 5.4.11 and 5.4.12], we see that WH

∼= N or N ∗
where N is the natural kH -module of dimension p (with highest weight $1), and again
G+ = H .

By Remark 6.1, without loss we may now assume G = H . Note that all the classical
groups given in the previous proposition when r = p contain an irreducible subgroup
L ∼= PSL2(p). Indeed, the irreducible kL-representation of degree p embeds L in M ∼=
�p(p). In turn, M embeds in SLp(q) and SUp(q) for any q = pa . The same is true
for G2(p) with p = 7: G2(7) > G2(2) > PSL2(7). (It is well known—see e.g. [40]—
that H = G2(7) contains a maximal subgroup X ∼= G2(2) which acts irreducibly on
the minimal 7-dimensional H -module W . Next, X contains a maximal subgroup Y ∼=
PSL2(7) (see [10]). Using [34] one can check that Y is irreducible on W .) Thus weak
adequacy follows by [23, Proposition 3.1].

It is well known that H 1(G, k) = H 2(G, k) = 0 (since p > 3). Thus, it suffices to
show that Ext1G(W,W) = 0. If G = PSL2(p

a), the result follows by [2]. If G = �5(5),
one computes directly that Ext1G(W,W) = 0 (this was done by Klaus Lux). In all other
cases, Ext1G(W,W) = 0 by the main result of [48]. ut

6.3. Remaining cases

Lemma 6.9. Let k = k̄, H = Ap+1 with p ≥ 5, and let W be an irreducible kH -module
of dimension p. Then (H,W) is weakly adequate.

Proof. Note that W is irreducible over a subgroup L ∼= PSL2(p) of H . Hence the claim
follows by [23, Proposition 3.1]. ut

We record the following useful observation:

Lemma 6.10. Let X be a finite p′-subgroup of G < GL(W) where W is a finite-dimen-
sional vector space over k. Suppose WX is multiplicity-free. Then (End(W)/M)X = 0.

Proof. Note that theX-module End(W) is semisimple. Furthermore, the multiplicity-free
assumption implies M ⊇ End(W)X by the Artin–Wedderburn theorem. Hence the claim
follows. ut

Proposition 6.11. Let k = k̄, H = PSp2n(q) with 2 < p = (qn ± 1)/2, and let W be an
irreducible kH -module of dimension p. Then (H,W) is weakly adequate.

Proof. (a) Note thatW is a Weil module and restricts irreducibly to a subgroup PSL2(q
n)

of H . So without loss we may assume n = 1. We will inflate W to a kL-module for
L := SL2(q). Note that W is obtained by reducing modulo p one of the four complex
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Weil modules of L, with characters ηi of degree (q − 1)/2 and ξi of degree (q + 1)/2,
where i = 1, 2 and ξi + ηi is a reducible Weil character of L (see e.g. [24] and [64]).
Let τ denote the permutation character of L acting on the set of all vectors of the natural
module N := F2

q . Using the character table of L as given in [13, p. 155], we see that

(ξi + ηi)(ξ̄i + η̄i) = τ. (6.1)

Let P := StabL(〈v〉Fq ) for some 0 6= v ∈ N with normal subgroup Q := StabL(v) of
order q, and let ϕ denote the Brauer character ofW . Assume the contrary: M 6= End(W),
and let ϑ denote the Brauer character of Q := End(W)/M.

(b) Consider the case p = (q + 1)/2, whence ϕ = ξ◦i and P is a p′-group. In-
specting the values of ϕP , we see that WP = W1 ⊕ W2 with W1,W2 ∈ Irr(P ) of
dimension 1 and (q − 1)/2 > 1. Moreover, (W1)Q is trivial, and WQ

2 = 0. By the
Artin–Wedderburn theorem applied to P , M ⊇ End(W1) ⊕ End(W2); in particular,
dimMP

≥ 2 = dim End(W)P . Hence we conclude that for any composition factor Y of
End(W)/M, we have YQ = 0 and dimY ≤ q − 1.

Let ρ denote the permutation character of L acting on the 1-spaces of N . Then ρ =
1L+St, where St is the Steinberg character of L. Moreover, all irreducible constituents of
τ−ρ−1L have degree q+1 or (q+1)/2, and thus have p-defect 0. Note that St◦ = 1L+ψ
with ψ ∈ IBrp(L) (see [7]), and ρ is the character of the PIM P(1L) of 1L. Since ϕ = ξ◦i
has degree p and (the projective module) End(W) contains a trivial simple submodule, we
see that End(W) is the direct sum of P(1L) and some p-defect 0 modules of dimension
q + 1 or (q + 1)/2. In particular, since ψ is the Brauer character of the heart of P(1L),
it cannot be afforded by a quotient of End(W), and so ϑ 6= ψ . Since ϑ(1) ≤ q − 1, it
follows that all irreducible constituents of ϑ are of degree 1 (with multiplicity ≤ 2) and
(q + 1)/2 (with multiplicity ≤ 1). But the principal character and the Weil characters of
degree (q + 1)/2 of L all contain 1Q when restricted to Q, a contradiction.

(c) Now assume that p = (q − 1)/2; in particular, ϕ = η◦i and q ≡ 3 (mod 4).
Consider a cyclic subgroup C ∼= C(q+1)/2 of H . It is straightforward to check that for
any χ ∈ Irr(H), either [χQ, 1Q]Q 6= 0 or [χC, 1C]C 6= 0. Since irreducible p-Brauer
characters ofH lift to complex characters [7], it follows that for any U ∈ IBrp(H), either
UQ 6= 0, or UC 6= 0.

Now we may assume ϕ = η◦1 and observe that both ϕQ and ϕC are multiplicity-
free. Hence, neither Q nor C has nonzero fixed points on End(W)/M by Lemma 6.10.
Consequently, M = End(W). ut

Proposition 6.12. Let k = k̄ and letH = SLn(q), where either 3 < p = (qn−1)/(q−1)
or (n, p) = (2, q−1). LetW be an irreducible kH -module of dimension p. Then (H,W)
is weakly adequate.

Proof. Let N = 〈e1, . . . , en〉Fq denote the natural FqH -module, and let P :=

StabH (〈e1〉Fq ). Since SL2(4) ∼= PSL2(5) and SL3(2) ∼= PSL2(7), we may assume
(n, q) 6= (2, 4), (3, 2). Also, let ϕ denote the Brauer character of W .

(a) First we consider the case p = (qn−1)/(q−1). In this case,W is induced from a
1-dimensional kP -module with character say λ. So we can write W =

⊕
ω∈PN Wω as a
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direct sum of 1-dimensional subspaces Wω permuted transitively by H , where PN is the
set of 1-spaces in N .

(a1) Assume in addition that n ≥ 3. It suffices to show that, for any two distinct
ω1 = 〈e〉Fq , ω2 = 〈f 〉Fq ∈ PN ,

M ⊇ End(Wω1)⊕ Hom(Wω1 ,Wω2)⊕ Hom(Wω2 ,Wω1). (6.2)

Since H acts transitively on those pairs (ω1, ω2), we may assume that e = e1 and e = e2.
Consider an opposite parabolic subgroupR :=StabH (N1) for N1 :=〈e1, . . . , en−1〉Fq ,

which is a p′-subgroup. Then R stabilizes the subspace W1 :=
⊕

ω∈PN1
Wω of dimen-

sion (qn−1
− 1)/(q − 1). Note that the unipotent radical Q of R acts trivially on W1.

Indeed, q ≥ 3 since we are assuming n ≥ 3 and (n, q) 6= (3, 2). Now the Levi sub-
group L := StabH (N1, 〈en〉Fq ) of R acts transitively on qn−1

− 1 > dimW1 nontrivial
linear characters of Q, whence the claim follows. Now we identify L with GLn−1(q) via
diag(X, det(X)−1) 7→ X. Then the L-character of W1 is just induced from the character
λP∩L 6= 1P∩L of the maximal parabolic subgroup P ∩ L (of index (qn−1

− 1)/(q − 1))
of L. HenceW1 is an irreducible Weil module of dimension (qn−1

−1)/(q−1) for L, and
it is irreducible over R. Note that λ is a linear character of order dividing q − 1 = |P/P ′|
and so it takes value 1 on any unipotent element of P . Using this, one can check that
ϕ(t) = (qn−1

− 1)/(q − 1) for any 1 6= t ∈ Q. In particular,

ϕQ =
qn−1

− 1
q − 1

· 1Q +
∑

ν∈Irr(Q)

ν = (dimW1 + 1) · 1Q +
∑

1Q 6=ν∈Irr(Q)

ν.

It now follows (by Clifford’s theorem) that WR = W1 ⊕ W2 ⊕ W3, where W2 has di-
mension 1, WQ

= W1 ⊕ W2, and W3 is irreducible of dimension qn−1
− 1. Applying

the Artin–Wedderburn theorem, we see that M ⊇ End(W1). Since e1, e2 ∈ N1, (6.2)
follows.

(a2) Assume now that n = 2, and so p = q + 1 ≥ 17. In this case, ϕ is real, and so
W is self-dual and supports a nondegenerate H -invariant symmetric bilinear form (·, ·).
Write P = QT where Q is elementary abelian of order q and T ∼= Cq−1. We also
consider another parabolic subgroup P ] = Q]T := StabH (〈e2〉Fq ), with T = P ∩ P ].
Letting ρ denote the regular character of T and ν := λT , we see that

ϕT = ρ + ν + ν
−1, ϕQ = 1Q +

∑
α∈Irr(Q)

α. (6.3)

Next, using (6.3) one can see that WP = CW (Q) ⊥ [W,Q], a direct orthogonal sum of
two P -submodules. Here, C := CW (Q) is of dimension 2 and affords the T -character
ν+ν−1, [W,Q] is of dimension q−1 and affords theQ-character

∑
1Q 6=α∈Irr(Q) α and the

T -character ρ (as T permutes cyclically and transitively the q−1 nonprincipal irreducible
characters ofQ). It also follows that these two subspaces are nondegenerate and self-dual
P -submodules. Next, we can further decompose

[W,Q] = A ⊥ B
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as an orthogonal sum of two self-dual T -modules, where A affords the T -character ρ −
ν − ν−1, and B affords the T -character ν + ν−1. Summarizing, we have

WP = A ⊥ B ⊥ C,

where A ⊥ B is an irreducible P -module of dimension q− 1, and C is a sum of two irre-
ducible P -modules of dimension 1. Applying the Artin–Wedderburn theorem to (P,W),
we obtain

M ⊃ End(A⊕ B) := {f ∈ End(W) | f (A⊕ B) ⊆ A⊕ B, f (C) = 0}. (6.4)

Repeating the above argument for P ] instead of P , we see that

WP ] = A
]
⊥ B] ⊥ C],

where A] affords the T -character ρ − ν − ν−1, B] affords the T -character ν + ν−1, and
C] = CW (Q]) affords the T -character ν + ν−1, and

M ⊃ End(A] ⊕ B]) := {f ∈ End(W) | f (A] ⊕ B]) ⊆ A] ⊕ B], f (C]) = 0}. (6.5)

Comparing with (6.3), we see that A] = A. Furthermore, C ∩ C] is centralized by
〈Q,Q]

〉 = H , so C ∩ C] = 0. But both C and C] are of dimension 2 and orthog-
onal to A = A], whence C ⊕ C] = A⊥. Next, B ∩ B] is a subspace of the nonde-
generate subspace A⊥ which is orthogonal to both C and C], so B ∩ B] = 0. Since
dimB + dimB] = 4 = dimA⊥, we have shown that

A] = A, A⊥ = B ⊕ B] = C ⊕ C], W = A ⊥ (B ⊕ B]).

Suppose now that f ∈ End(W) belongs to both End(A⊕B) and End(A⊕B]) as identified
in (6.4) and (6.5). Then f = 0 on C ⊕ C] = A⊥, i.e. f (A⊥) = 0. Next,

f (A) ⊆ (A⊕ B) ∩ (A⊕ B]) = A.

It follows that

End(A⊕ B) ∩ End(A⊕ B]) ⊆ End(A) := {f ∈ End(W) | f (A) ⊆ A, f (A⊥) = 0},

and so by (6.4), (6.5) we have

dimM ≥ 2(q − 1)2 − (q − 3)2 = q2
+ 2q − 7,

i.e. codimEnd(W)M ≤ 8.
On the other hand, all nonprincipal ψ ∈ IBrp(H) have degree ≥ q − 1 ≥ 15.

So, assuming M 6= End(W), we see that all composition factors of the H -module
Q := End(W)/M are trivial. Since H is perfect, it follows that H acts trivially on Q.
But dim HomkH (End(W), 1H ) = 1, so M is contained in the unique submodule E0 :=

{f ∈ End(W) | tr(f ) = 0} of codimension 1 in End(W). But this is a contradiction,
since by (6.4), M contains the map g which acts as identity on A⊕B and as 0 on C, with
tr(g) = q − 1 = p − 2 6= 0.
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(b) Now we handle the case p = q − 1 (so 2 | q ≥ 8). Then for the unipotent radical
Q of P we have

WQ =

⊕
1Q 6=α∈Irr(Q)

Wα

with Wα affording the Q-character α. Next, let S ∼= Cq+1 be a nonsplit torus in H . Then
there is some 1S 6= γ ∈ Irr(S) such that

WS =

⊕
β∈Irr(S), β 6=γ,γ−1

Wβ

with Wβ affording the S-character β. Thus both Q and S are multiplicity-free on W . By
Lemma 6.10, we see that UQ = US = 0 for any composition factor U of End(W)/M.
On the other hand, inspecting the (Brauer) character table of H (see [7]), one sees that
UQ 6= 0 if dimU = 1, q, q + 1 and US 6= 0 if dimU = q − 1, for any U ∈ IBrp(H).
Hence we conclude that M = End(W). ut

Proposition 6.13. Let k = k̄ and let H = SUn(q) with 3 < p = (qn + 1)/(q + 1)
and n ≥ 3. Let W be an irreducible kH -module of dimension p. Then (H,W) is weakly
adequate.
Proof. Let ϕ denote the Brauer character of W and let N := Fn

q2 denote the natural
Fq2H -module. Recall that H possesses the so-called reducible Weil character

ζn,q : g 7→ (−1)n(−q)
dimF

q2 Ker(g−1)
(6.6)

for all g ∈ H , which decomposes as the sum of q+1 distinct irreducible Weil characters,

ζn,q =

q∑
i=0

ζ in

(of degree (qn − q)/(q + 1) for i = 0 and (qn + 1)/(q + 1) for i > 0; see [64]). Then
ϕ can be obtained by restricting some ζ jn with j > 0 to p′-elements of H . We also let
P := StabH (U) for a maximal totally singular subspace U of N , with unipotent radical
Q (so P is a p′-group), and let ρ denote the permutation character of H acting on the
set � of singular 1-spaces of N .

(a) First we show that

• the only irreducible constituents of ζ jn ζ̄
j
n that are not of p-defect 0 are 1H and (possibly)

another one, σ , of degree

σ(1) =
(qn − q)(qn + q2)

(q2 − 1)(q + 1)
; (6.7)

• all p-defect 0 constituents of ζ jn ζ̄
j
n have degree > 2p if n > 3;

• σ is the Steinberg character St of H if n = 3 and it is a constituent of ρ if n > 3.
Indeed, (6.6) implies that (ζn,q)2 is just the permutation character ofH acting on the point
set of N , and at the same time it equals the restriction toH of the reducible Weil character
ζ2n,q of SU2n(q), if we embed H diagonally into SU2n(q): X 7→ diag(X,X). Assume
n > 3. Then all irreducible constituents of the latter restriction are described by [44,
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Proposition 6.3], and their degrees are listed in [44, Table III]. It follows that (ζn,q)2 has
exactly two non-p-defect 0 irreducible constituents, namely 1H (with multiplicity q + 1)
and another one σ of indicated degree (with multiplicity q). Certainly, the permutation
representation of H on (the point set of) N contains the permutation representation of G
on � as a subrepresentation (no matter if n > 3 or not). On the other hand, ρ contains an
irreducible constituent of degree as listed in (6.7) (see [57, Table 2]), so ρ = 1H + σ +ψ
(and ψ ∈ Irr(H) has p-defect 0). One also easily checks that all defect 0 constituents of
(ζn,q)

2 have degree > 2p.
Suppose that n = 3; in particular 3 - (q + 1) and q > 2. Inspecting the character

table of H = SU3(q) as given in [17], we see that the only non-p-defect 0 irreducible
characters ofH are 1H , the Weil character ζ 0

3 of degree q2
−q, the Steinberg character St

of degree q3 matching (6.7), and (q2
− q)/3 characters χ (u)

(q+1)2(q−1). Direct calculations

show that [ζ j3 ζ̄
j

3 , χ
(u)

(q+1)2(q−1)]H = 0. Next, observe that

(ζ3,q)
2
= 1H + 1HQ + (q − 1)1HL ,

where Q = StabH (u) is the unipotent radical of P as above (if U = 〈u〉F
q2 ) and L =

StabH (v) ∼= SU2(q) for some nonsingular v ∈ N . Furthermore,

[(ζ 0
3 )Q, 1Q]Q = 0, (ζ 0

3 )L =

q∑
i=1

ζ i2.

The former relation implies [ζ 0
3 , 1HQ]H = 0. On the other hand, by [64, Lemma 4.7(ii)],

each ζ i2 in the latter relation is obtained by restricting an irreducible character of degree
q−1 ≥ 2 of GU2(q)�L to L. It follows by Clifford’s theorem that [ζ 0

3 , 1HL ]H = 0. Thus
we have shown that ζ 0

3 is not a constituent of (ζ3,q)
2, as claimed.

(b) Now we show that if β is an irreducible constituent of ϕϕ̄ and β 6= 1H , then either
β(1) ≥ 2p, or n = 3, β(1) = p, and [βQ, 1Q]Q > 0. Indeed, suppose that β(1) < 2p.
Suppose for the moment that n > 3. Then by the results of (a), β is a constituent of the
Brauer character σ ◦. But according to [43], σ ◦−1H ∈ IBrp(H), so β(1) = σ(1)−1 > 2p
by (6.7), a contradiction. Thus n = 3. If moreover β is in a block of p-defect 0, then using
[17, Table 3.1] we see that β(1) = p, β = (ζ i3)

◦ for some i > 0 and so βQ contains 1Q.
Otherwise, by the results of (a), β is a constituent of St◦. In this case, according to [17,
Theorem 4.2], St◦ − 1H ∈ IBrp(H) and so β(1) = St(1) − 1 = q3

− 1 > 2p, again a
contradiction.

(c) When n ≥ 5, according to [24, Lemmas 12.5 and 12.6], ϕZ(Q) contains a nonprin-
cipal linear character λ, whose P -orbit O has length (qn−1

− 1)/(q + 1); moreover, any
irreducible character ofQ above λ has degree q. Since ϕ(1) = (qn+1)/(q+1), it follows
that WP = A⊕ B, where B := CW (Z(Q)) has dimension 1, A := [W,Z(Q)] ∈ Irr(P )
has dimension (qn− q)/(q+ 1) = p− 1 and affords the Z(Q)-character q

∑
α∈O α. The

same is also true for n = 3 (see [17, Tables 2.1 and 3.1]). Applying the Artin–Wedderburn
theorem to (P,W), we see that

M ⊇ End(A)⊕ End(B).
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In particular, if M 6= End(W), then any composition factor X of the H -module
End(W)/M has dimension ≤ 2p − 2, and moreover XQ ⊆ XZ(Q)

= 0. But this is
impossible by the results of (b). ut

Lemma 6.14. Let k = k̄ and let W be an irreducible kH -module of dimension p ≥ 3,
where H is quasisimple and (H,W) is one of the nonserial examples listed in Tables I,
IIa, IIb, or III. Then (H,W) is weakly adequate.

Proof. Let ϕ denote the Brauer character of W . Note that the cases (H, p) = (A5, 3),
(A6, 5) are covered by Proposition 6.11 since A5 ∼= PSp2(5) and A6 ∼= PSL2(9).

Suppose that (H, p) = (Sp6(2), 7). Then H > L ∼= SL2(8), and ϕL is irreducible
(see [34]), so we are done by Proposition 6.12.

Assume that (H, p) = (M11, 11). ThenH contains a p′-subgroupL = M10 ∼= A6 ·23,
and using [16] we can check that ϕL = λ + ψ , where λ,ψ ∈ Irr(L) are rational of
degree 1 and 10 (and λ 6= 1L). It follows that WL = A ⊕ B, where A affords the
character λ and B affords the character ψ . Applying the Artin–Wedderburn theorem to
(L,W) we see that M ⊇ End(A) ⊕ End(B). In particular, if M 6= End(M), then any
composition factor U of the H -module End(W)/M has dimension ≤ 20, and moreover
all composition factors of UL afford the character λψ = ψ . The latter condition also
implies that dimU = 10 or 20. On the other hand, using [34] and [16] we see that any
such U must be of dimension 10 and its character restricted to L yields an irreducible
nonrational character, different from ψ . Hence M = End(W).

Assume that (H, p) = (M12, 11). Then H contains a maximal subgroup L ∼=

PSL2(11), and using [16] we can check that ϕL is irreducible. So we are done by [23,
Proposition 3.1].

Assume that (H, p) = (M24, 23). Then H contains a maximal subgroup L ∼=

PSL2(23), and using [16] we can check that ϕL is irreducible. So we are done by [23,
Proposition 3.1].

Assume that (H, p) = (Co2, 23) or (Co3, 23). Then H contains a p′-subgroup
L ∼= McL, and using [10] we can check that ϕL = 1L+ψ , withψ ∈ Irr(L). It follows that
WL = A ⊕ B, where A := CW (L) has dimension 1 and B affords the character ψ . Ap-
plying the Artin–Wedderburn theorem to (L,W) we see that M ⊇ End(A)⊕End(B). In
particular, if M 6= End(M), then any composition factorU of theH -module End(W)/M
has dimension ≤ 44, and moreover UL = 0. On the other hand, using [49] we see that
the only irreducible kH -modules of dimension ≤ 44 are k andW , and both have nonzero
L-fixed points. Hence we conclude that M = End(W). ut

Now we can prove Theorem 1.7, which we restate:

Theorem 6.15. Let k = k̄ be of characteristic p and letG be a finite group with a faithful
irreducible kG-module V of dimension p. Then precisely one of the following holds:

(i) G is adequate on V .
(ii) G contains an abelian normal subgroup A of index p (and G permutes p 1-dimen-

sional summands of V with kernel A).
(iii) p = 3 and the image of G in PGL(V ) is PSL2(9).
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Proof. First assume that p > 3. Apply Proposition 6.5 to G. In case (i) of the proposi-
tion, we are done by Proposition 6.6. So we may assume that G is almost quasisimple,
H := G(∞) is quasisimple, with simple quotient S, and H is irreducible on V . If S is
of Lie type in characteristic p, we can apply Proposition 6.8. Assume we are in the re-
maining cases. In all these cases, the outer automorphism group Out(S) is a p′-group
and the Schur multiplier Mult(S) is a p′-group as well (as p > 3). The first condition
implies that G+ = H , whence by Remark 6.1 without loss we may assume G = H ,
and so H 1(G, k) = 0. The second condition implies that H 2(G, k) = 0. Furthermore,
in all cases V lifts to a complex module of p-defect 0, whence V is projective, and so
Ext1G(V , V ) = 0. Finally, H is weakly adequate on V by Propositions 6.11–6.13, and
Lemmas 6.9 and 6.14.

Now consider the cases when p = 2 or 3. If V is imprimitive, the result follows as
above. So assume that V is primitive. Set H = G(∞).

Suppose that G = H = SL2(p
a) or PSL2(p

a). Then a ≥ 2 and the result follows
by Corollary 9.4. If G > H then since V g ∼= V as H -modules for all g ∈ G, G/H
is a p′-group and G is adequate on V whenever H is. Thus the last case to consider is
H = PSL2(9) ∼= A6. The normalizer of H in PGL(V ) is PGL2(9) (the normalizer is just
the subgroup of the automorphism group which fixes the isomorphism class of V ). If the
image of G in PGL(V ) is PGL2(9), then H 1(G, k) = H 2(G, k) = 0 (see the proof of
Corollary 9.5), and since Ext1G(V , V ) = 0, V is adequate in this case.

By Proposition 6.5 and Theorem 2.2, the remaining cases to consider are G almost
quasisimple, p = 3 and H ∈ {A5,PSL2(7),SL3(3a),SU3(3a)}. In the first two cases,
the order of G is not divisible by 9, whence V is projective, and so Ext1G(V , V ) = 0.
Note also that H 1(G, k) = H 2(G, k) = 0. In the first case, V ⊗ V ∗ is a direct sum of
the projective cover of k and a 3-dimensional module. Elements of order 5 have nonzero
trace and 3-dimensional fixed space. Since elements of order 5 have only a 2-dimensional
fixed space on the projective cover of k, it follows that those elements generate V ⊗V ∗. In
the second case, V ⊗ V ∗ is the projective cover of k, and since the trace of an irreducible
character cannot be identically 0, it follows that H is weakly adequate on V in this case
as well. Thus, (G, V ) is adequate.

In the last two cases, weak adequacy follows from the fact that V ⊗ V ∗ is a uniserial
module with trivial socle and head. It follows by the main result of [48] that Ext1G(V , V )
= 0 for a > 2. One computes directly that Ext1G(V , V ) = 0 in all other cases (Klaus
Lux did the computation; also see [37] for the case of SL3(3a)). Since H 1(G, k) =

H 2(G, k) = 0, the result follows. ut

7. Certain PIMs for simple groups

For a finite group X and a fixed prime p, let B0(X) denote the principal p-block of X.
We will sometimes use the same notation for an irreducible kX-module and its Brauer
character.

First we describe the submodule structure of the PIMs for some nonprojective modu-
lar representations of simple groups H described in Theorems 2.1 and 2.2.
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Assume that H has a Sylow p-subgroup P of order p and furthermore that P =
CH (P ). In this case, P has a unique block b with defect group P and canonical charac-
ter 1P (see [46, Theorem 4.6.12]). According to Brauer’s theorem [46, Theorem 4.12.1],
H has a unique p-block B of defect d > 0 (hence d = 1), and B = bG. In particular, B =
B0(H). Note that the number of exceptional characters inB equals (p−1)/|NH (P )/P | in
this situation, and all of them are p-conjugate (and so nonrational if |NH (P )/P | < p−1)
(see [46, Theorem 4.12.1 and Corollary 4.12.2]). We will use [46, Theorem 4.12.1] to find
PIMs P(ϕ) for some ϕ ∈ IBrp(B).

7.1. The case H = PSLn(q) with p = (qn − 1)/(q − 1) and n ≥ 2

First suppose that n ≥ 3. Then B contains unipotent characters χ0 = 1H , χ1, and χ2
labeled by the partitions (n), (n− 1, 1), and (n− 2, 12), and Brauer characters ϕ0 = 1H ,
ϕ1 of degree p − 2 (afforded by D), and ϕ2 of degree

(qn − 2q2
+ 1)(qn − q)

(q2 − 1)(q − 1)
+ 1

(afforded by a kH -module, say U) among others (see e.g. [26, Proposition 3.1]). More
precisely,

χ◦0 = ϕ0, χ◦1 = ϕ0 + ϕ1, χ◦2 = ϕ1 + ϕ2. (7.1)

Note that
dimU = ϕ2(1) > 2p

unless (n, q) = (3,≤ 3). Since χi are rational for i = 0, 1, 2, they are all nonexceptional.
Next, the character of any PIM in B is of the form ψ1 + ψ2, where ψ1 ∈ Irr(B) is
nonexceptional, and either ψ2 ∈ Irr(B), or ψ2 is the sum of all (p − 1)/n exceptional
characters in B. Hence the relations (7.1) show that:

• P(ϕ0) affords the character (χ0+χ1)
◦
= 2ϕ0+ϕ1. In fact, one can see that P(k) is the

uniserial module (k|D|k). In particular, this shows that Ext1H (k,U) = Ext1H (U , k) = 0.
• P(ϕ1) affords the character (χ1 + χ2)

◦
= ϕ0 + 2ϕ1 + ϕ2. By [46, Corollary 4.12.5],

the module P(ϕ1) = P(D) has socle series (D|k ⊕ U |D). Since ϕ1 is real, P(D) is
self-dual. Furthermore, the only nonzero proper submodules of P(D) are

D = soc(P(D)), (D|k), (D|U), (D|k ⊕ U) = rad(P(D))

(see [46, Figure 4.3]), and so none is of the form (D|k|D).

Next, let H = SL2(q) and p = q + 1. The decomposition numbers for B0(H) are
given in [7]. In particular, Irr(B) consists of χ0 = 1H , χ1 = St of degree q, and q/2
exceptional characters θi , 1 ≤ i ≤ q/2, of degree q − 1, and IBrp(B) = {1H , ϕ1},
with ϕ1 afforded by D. So as before, P(k) = (k|D|k) is uniserial. Next, P(D) = P(ϕ1)

affords the character (
St+

q/2∑
i=1

θi

)◦
= 1H + (q/2+ 1)ϕ1.
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If we let Dj = (D| . . . |D) denote a uniserial module with Brauer character jϕ1, then
P(D) = (D|k⊕D(q−2)/2|D) (see [46, Corollary 4.12.5]). Furthermore, the only nonzero
proper submodules of P(D) are Dj or (D|k ⊕Dj−1) with 1 ≤ j ≤ q/2.

7.2. The case H = PSUn(q) with p = (qn + 1)/(q + 1), n ≥ 3, (n, q) 6= (3, 2)

Note that in this case H̃ ∼= Z(H̃ ) × H for H̃ := GUn(q); moreover, the unipotent
characters of H̃ as well as the characters in B0(H̃ ) are all trivial at Z(H̃ ). Hence without
loss we may assume H = GUn(q). We will consider the unipotent characters χ0 = 1H ,
χ1,2,3, labeled by the partitions (n), (n−1, 1), (n−2, 12), and (n−3, 13) (the latter being
considered only when n > 3). Using the description of Brauer trees for H given in [15,
§6], we see that, when n ≥ 5, there exist Brauer characters ϕ0 = 1H and ϕ1,2,3 such that

χ◦0 = ϕ0, χ◦1 = ϕ1, χ◦2 = ϕ0 + ϕ2, χ◦3 = ϕ1 + ϕ3. (7.2)

In particular, ϕ0 = 1H , ϕ1 is a Weil character of degree p − 1,

ϕ2(1) = p
qn + q2

− q − 1
q2 − 1

− 2 > 8p,

ϕ3(1) = p
(qn − q)(qn − q3

+ q2
− 1)

(q2 − 1)(q3 − 1)
− 2p + 2 > 28p.

Since χi are all rational, they are all nonexceptional, so as in §7.1, the relations (7.2) and
[46, Corollary 4.12.5] show that both P(ϕ0,1) are uniserial:

P(ϕ0) = (ϕ0|ϕ2|ϕ0), P(ϕ1) = (ϕ1|ϕ3|ϕ1),

where we have used the same notation for the module and its Brauer character.
Suppose now that n = 3 and q ≥ 3. Then P(ϕ0) = (ϕ0|ϕ2|ϕ0) is still uniserial for

ϕ0 = 1H and ϕ2(1) > 2p. For the Weil character ϕ1 of degree p − 1, now P(ϕ1) affords
the character (

χ1 +

(p−1)/3∑
i=1

θi

)◦
=
p + 2

3
ϕ1 +

p − 1
3

ϕ2,

where θi are exceptional characters in B, of degree (q2
− 1)(q + 1) > 2p, for 1 ≤ i ≤

(p − 1)/3. We claim that

P(ϕ1) = (ϕ1|ϕ2|ϕ1| . . . |ϕ2|ϕ1)

is self-dual, uniserial of length (2p + 1)/3, with the composition factors ϕ1 and ϕ2 al-
ternating. The first statement follows since ϕ1 is real. The second one holds because
in this case, both the socle soc(P(ϕ1)) and head P(ϕ1)/rad(P(ϕ1)) are simple and
rad(P(ϕ1))/soc(P(ϕ1)) is uniserial. By [63, Theorem 1.1],H has a unique complex char-
acter of degree equal to ϕ0(1) or ϕ1(1). Hence the last statement holds by Lemma 3.1
since ϕ0,1 each has a unique lift to characteristic 0.
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7.3. The case H = SL2(q) and p = q − 1 ≥ 3

The decomposition numbers for B0(H) are given in [7]. In particular, Irr(B) consists of
χ0 = 1H , χ1 = St of degree q, and (q − 2)/2 exceptional characters θi , 1 ≤ i ≤ q/2, of
degree q + 1, and IBrp(B) = {ϕ0 = 1H , ϕ1}, with ϕ1 = St◦ afforded by D. Clearly, both
ϕ0,1 have a unique complex lift, so by Lemma 3.1 they have no self-extensions. Arguing
as in §7.2 and using [46, Corollary 4.12.5], we see that both

P(ϕ0) = (ϕ0|ϕ1|ϕ0| . . . |ϕ1|ϕ0), P(ϕ1) = (ϕ1|ϕ0|ϕ1| . . . |ϕ0|ϕ1)

are self-dual and uniserial of length p, and with the composition factors ϕ0 and ϕ1 alter-
nating.

7.4. The case H = Ap with p ≥ 7

Consider the irreducible complex characters χ0,1,2 of Sp labeled by (p), (p − 1, 1), and
(p − 2, 12). By Peel’s theorem [54],

χ◦0 = ϕ0, χ◦1 = ϕ0 + ϕ1, χ◦2 = ϕ1 + ϕ2, (7.3)

where ϕ0,1,2 ∈ IBrp(Sp), ϕ0(1) = 1, ϕ1(1) = p− 2, ϕ2(1) = (p− 2)(p− 3)/2. It is well
known that χ0,1,2 and ϕ0,1 are all irreducible over H . Restricting to Sp−1, it is easy to see
that ϕ2 is irreducible over H as well. We will use the same notation for the restrictions of
these characters toH . Since χ0,1,2 are rational, they are nonexceptional in B0(H). Hence,
(7.3) and [46, Theorem 4.12.1] imply that P(ϕ0) = (ϕ0|ϕ1|ϕ0) is uniserial and P(ϕ1) has
socle series (ϕ1|ϕ0⊕ϕ2|ϕ1). In particular, there is no kH -module of the form (ϕ1|ϕ0|ϕ1).

8. Indecomposable modules of dimension less than 2p − 2

First we record a simple observation:

Lemma 8.1. Let b ∈ N and let V be a kG-module of dimension ≤ b with a
G+-composition factor U . Suppose that any quotient of length 2 of P(U) or P(U∗)
has dimension > b. Then U is a direct summand of the G+-module V . If moreover U
has multiplicity 1, then the G-module V is either irreducible of dimension dimU , or
decomposable.

Proof. Suppose that W is an indecomposable subquotient of length 2 of the G+-module
V with U as a composition factor. Replacing W by W ∗ if necessary, we may assume that
head(W) ∼= U , and so W is a quotient of P(U). But then by the hypothesis, dimW >

b ≥ dimV , a contradiction. So U is a direct summand of the G+-module V by Lemma
3.5(i): VG+ = U1⊕M withU1 ∼= U . The last claim now follows from Lemma 3.7(ii). ut

Given a nontrivialU ∈ IBrp(X), we call any kX-module V U -special if V hasU orU∗ as
composition factors of total multiplicity ≤ 1, and moreover all other composition factors
of V are trivial.
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Lemma 8.2. Let N = Op(N), b ∈ N, and let U ∈ IBrp(N) be a nontrivial module.
Suppose that the only U -special quotients of P(k), P(U), and P(U∗) of dimension ≤ b
are uniserial modules in the list

X := {k, Y, (k|Y ), (Y |k), (k|Y |k) | Y = U or U∗}.

Let V be any U -special kN -module of dimension ≤ b. Then V ∼=
⊕m

i=1Xi for some
Xi ∈ X .

Proof. We induct on the length of V . Suppose V has length ≥ 2. If all composition
factors of V are trivial, then N acts trivially on V since N = Op(N), and we are done.
Replacing V by V ∗ if necessary, we may assume that V has U as a composition factor of
multiplicity 1, and all other composition factors of V are k.

Suppose that U embeds in head(V ) := V/R, where R := rad(V ). Then all composi-
tion factors of R are trivial, and so N acts trivially on R. Assume in addition that V/R is
not simple. Then V/R = M/R⊕Y/R for some submodulesM,Y with Y/R ∼= k. Again,
N acts trivially on Y , so we can write Y = R ⊕ Z for some submodule Z ∼= k. It follows
that V = M ⊕ Z, and we are done by induction. Assume now that V/R ∼= U . Then the
surjection P(U) → V/R lifts to a surjection P(U) → V . Since dimV ≤ b, we must
then have V ∈ X .

The case U ↪→ soc(V ) now follows from the previous case by duality.
Now we may assume that U embeds neither in head(V ) nor in soc(V ). Letting W :=

[N,V ] and T := rad(W), we see that W has no trivial quotient. But W/T is semisimple,
soW/T ∼= U . Applying the induction hypothesis to V/T and noting thatU is in the socle
but not in the head of V/T , we see that V/T ∼= L/T ⊕ Y/T , where L/T ∼= (U |k) and
N acts trivially on Y/T . In this case, N acts trivially on Y as well. If moreover Y 6= T ,
then we can decompose Y = T ⊕Z for some submodule Z 6= 0, whence V = L⊕Z and
we are done by induction. Thus we may assume V/T ∼= (U |k). Consider any maximal
submodule M of V . Since U X↪→ head(V ), V/M ∼= k and so M ⊇ W . It follows that
R ⊇ T and R/T = rad(V/T ) ∼= U . Hence V/R ∼= k. In this final case, the surjection
P(k) → V/R lifts to a surjection P(k) → V . Since dimV ≤ b, we must again have
V ∈ X . ut

Corollary 8.3. LetG+ be perfect, b ∈ N, and let U ∈ IBrp(G+) be a nontrivial module.
Suppose that the only U -special quotients of dimension ≤ b of P(k), P(U), and P(U∗)
are uniserial modules in the list

X := {k, Y, (k|Y ), (Y |k), (k|Y |k) | Y = U or U∗}.

Let V be any indecomposable kG-module of dimension ≤ b such that VG+ is U -special.
Then VG+ is also indecomposable and belongs to X .

Proof. We may assume that exactly one indecomposable direct summandA of VG+ hasU
as a composition factor, and so VG+ = A⊕B withG+ acting trivially on B. Hence B = 0
by Lemma 3.7(ii). ut
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Theorem 8.4. LetG be a finite group, k an algebraically closed field of characteristic p,
Op(G) = 1, and let V be a faithful, indecomposable kG-module of dimension less than
2p−2. Assume in addition thatG+ is quasisimple but not of Lie type in characteristic p.
Then one of the following statements holds, where U,W ∈ IBrp(G+):

(i) V is irreducible.
(ii) (G+, p, dimU) = (SL2(q), q − 1, p + 1), (Ap, p, p − 2), (SLn(q), (qn − 1)/

(q − 1), p − 2), (M11, 11, 9), (M23, 23, 21). Furthermore, VG+ is uniserial of the
form (k|U), (U |k), or (k|U |k), and U ∼= U∗.

(iii) (G+, p, dimU) = (SL2(q), q + 1, p − 2), U ∼= U∗, and VG+ is indecomposable
of the form (U |U), (U |k ⊕ U), or (k ⊕ U |U).

(iv) (G+, p, dimU) = (2A7, 7, 4), VG+ = (U |U) is uniserial, and U ∼= U∗.
(v) (G+, p) = (M11, 11) and VG+ = (U |W) is uniserial, {dimU, dimW } = {9, 10}.

(vi) (G+, p, dimU) = (3A6, 5, 3), VG+ = (U |U) is uniserial, and U 6∼= U∗.
(vii) (G+, p, dimU) = (2B2(8), 13, 14), VG+ is uniserial of the form (k|U) or (U∗|k)

for a fixed U 6∼= U∗.

Proof. (a) Note that the statement is vacuous for p = 2. Throughout the proof, we as-
sume that p > 2, V is reducible, and let U be a composition factor of the G+-module V
of largest dimension. Also set b := 2p − 3 whenever we apply Lemma 8.2 and Corol-
lary 8.3. Note that VG+ is (reducible) indecomposable by Corollary 4.5. Next, G+ must
act irreducibly and nontrivially on some subquotient X of VG+ . Applying Theorems 2.1
and 2.2 to the action of G+ on X, we see that Mult(G+/Z(G+)), and so Z(G+), has
p′-order. The indecomposability of VG+ then implies that Z(G+) acts via scalars on V
and that G+ acts faithfully on U (and so we may identify G+ with its image in GL(U)).
In particular, if k is a composition factor of VG+ , thenG+ is simple. This must be the case
if dp(G+) ≥ p − 1. Also, if Z(G+) 6= 1, then G+ acts faithfully on every composition
factor of VG+ .

(b) Assume first that (G+, p) = (J1, 11). According to [34], the only ϕ ∈ IBrp(G+)
of degree < 2p are ϕ1,7,14. Here we write ϕj for the unique ϕ ∈ IBrp(G+) of degree j .
Moreover, using [49] we see that

P(ϕ1) = (ϕ1|ϕ119|ϕ1), P(ϕ7) = (ϕ7|ϕ49⊕ϕ69|ϕ7), P(ϕ14) = (ϕ14|ϕ106⊕ϕ119|ϕ14).

(8.1)

Since dimV < 2p, each composition factor X of the G+-module V must afford the
Brauer character ϕi for some i ∈ {1, 7, 14}. Now (8.1) shows that Ext1

G+
(X, Y ) = 0 for

any two such composition factors X and Y . Hence the G+-module V is semisimple by
Lemma 3.5, a contradiction.

From now one we may assume thatG+ 6∼= J1, and so dp(G
+) ≥ p−3 by Theorem 2.1.

In particular, dimU ≥ p − 3 and Corollary 3.9 applies.
(c) Here we consider the case where dimU > p. Since dimV ≤ 2p − 3 and VG+ is

reducible, it follows that k is a composition factor of VG+ , and so G+ is simple as noted
in (a). Also, all composition factors of VG+ other than U are trivial. Now we apply The-
orem 2.2 to (G+, U).
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Suppose that G+ = An with n ≥ p as in the first row of Table I. Since p + 1 ≤
dimU ≤ 2p − 3, we see that 5 ≤ p - n and p + 2 ≤ n ≤ 2p − 2. By [51, Lemma 6.10],
H 1(An, U) = 0, whence Ext1

G+
(k, U) = Ext1

G+
(U, k) = 0. Also, Ext1

G+
(k, k) =

Ext1
G+
(U,U) = 0 by Lemma 3.1. It follows by Lemma 3.5 that VG+ is semisimple, a

contradiction.
Next suppose that (G+, p, dimU) = (SL2(q), q − 1, p+ 1) as in Table IIa. Then, as

shown in §7.3, (G+, U) satisfies the hypothesis of Corollary 8.3, and so we arrive at (ii).
In the cases where (G+, p, dimU) = (A7, 7, 10), (SL3(3), 13, 16), (SU4(2), 5, 6),

(Sp4(4), 17, 18), (G2(3), 13, 14), (J1, 11, 14), (J1, 19, 22 or 34), (M12, 11, 16), or
(M11, 11, 16), using the information on decomposition numbers given in [49], one can
check that U satisfies the hypothesis of Lemma 8.1, and so V is decomposable, a contra-
diction.

Assume that (G+, p, dimU) = (2B2(8), 13, 14). Then V isU -special, and using [49]
one can check that the only quotients of dimension ≤ 23 of P(k), P(U), and P(U∗) are
k, Y , (k|Y ), or (Y |k), with Y = U or U∗. Applying Corollary 8.3, we arrive at (vii).

(d) Next we consider the case dimU = p, and apply Theorem 2.2 to (G+, U). By
Lemma 6.2, U is projective, and so it is a direct summand of VG+ , a contradiction.

(e) Assume now that dimU = p − 1, and apply Theorem 2.1 to (G+, U). Note
that U has multiplicity 1 as dimV < 2p − 2. First we consider the case (G+, p) =
(SUn(q), (qn+ 1)/(q+ 1)). In this case,G+ is simple, dp(G+) = p− 1, and so all other
composition factors of the G+-module V are trivial. As shown in §7.2,

Ext1
G+
(k, U) = Ext1

G+
(U, k) = Ext1

G+
(k, k) = Ext1

G+
(U,U) = 0.

It follows by Lemma 3.5 that VG+ is semisimple, a contradiction.
Suppose now that (G+, p) = (Sp2n(q), (q

n
+ 1)/2), (2Ru, 29, 28), (3J3, 19, 18),

(2A7, 5, 4), (3A7, 7, 6), (6A7, 7, 6), (2J2, 7, 6), (61 · PSU4(3), 7, 6), (6 · PSL3(4), 7, 6),
(2M12, 11, 10), (2M22, 11, 10), (6Suz, 13, 12), or (2G2(4), 13, 12). Since Z(G+) 6= 1,
G+ acts faithfully on every composition factorX of VG+ as noted in (a), whence dimX ≥

p − 1 > (dimV )/2 by Theorem 2.1. It follows that VG+ is irreducible, a contradiction.
Assume that (G+, p, dimU) = (M11, 11, 10). The Brauer tree of B0(G

+) is given in
[46, Example 4.12.11]. Using this information, we see that the only quotient of length 2 of
dimension ≤ 19 of P(U) is of the form (W |U), where W ∈ IBrp(M11) has dimension 9.
Arguing as in the proof of Lemma 8.1, we arrive at (v).

(f) Next we consider the case dimU = p− 2 and apply Theorem 2.1 to (G+, U). We
can exclude the subcase (G+, p) = (SL3(2) ∼= PSL2(7), 7).

(f1) First we assume that (G+, p) = (SLn(q), (qn − 1)/(q − 1)) or (Ap, p), and
moreover U is a composition factor of V of multiplicity 2. Since dimV ≤ 2p − 3, we
have two cases.

• dimV = 2p − 3, and so k is also a composition factor of the G+-module V . Suppose
that head(VG+) is not simple. Then VG+ contains two maximal submodules A,B of
length 2 and A ∩ B ⊆ soc(VG+). On the other hand, the indecomposability of VG+
implies that soc(VG+) ⊆ rad(VG+) ⊆ A ∩ B, whence soc(VG+) = A ∩ B is simple.
So up to duality, we may assume that head(VG+) is simple. It follows that VG+ is a
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quotient of P(U) or P(k). The structure of PIMs described in §§7.1, 7.4 shows that
(iii) holds.
• dimV = 2p − 4, and so VG+ has exactly two composition factors, both isomorphic

to U . As VG+ is indecomposable, it is a quotient of P(U). Using the results of §§7.1,
7.4, we again arrive at (iii).

(f2) Now we assume that (G+, p) = (SLn(q), (qn − 1)/(q − 1)) or (Ap, p), and
moreover U is a composition factor of V of multiplicity 1. By Theorem 2.1, U is the only
nontrivial irreducible kG+-module of dimension ≤ p − 1. Since dimV ≤ 2p − 3, it fol-
lows that all other composition factors of VG+ are trivial, i.e. VG+ is U -special. The struc-
ture of PIMs described in §§7.1, 7.4 shows that the only U -special quotients of dimension
at most b = 2p − 3 of P(U) and P(k) all belong to {k, U, (U |k), (k|U), (k|U |k)}. Also,
U ∼= U∗. Hence we arrive at (ii) by Corollary 8.3.

(f3) Assume that (G+, p, dimU) = (M23, 23, 21). Then U ∼= U∗, P(k) = (k|U |k),
and the only quotient of length 2 of dimension ≤ 43 of P(U) is (k|U). Arguing as in the
case of Ap in (e1) and (e2), we arrive at (ii).

Consider the case (G+, p, dimU) = (M11, 11, 9). Then U ∼= U∗ and P(k) =
(k|U |k). Using [46, Example 4.12.11] as above, we see that P(U) has only two non-
simple quotients of dimension ≤ 19, namely (k|U) and (W |U) with W ∈ IBrp(G+) of
dimension 10. Arguing as above we arrive at (ii).

Suppose now that (G+, p, dimU) = (3A7, 5, 3). Recall that U is a composition fac-
tor of largest dimension of VG+ and Z(G+) acts via scalars on V . Using [34] one can then
check that all composition factors of VG+ are isomorphic to U . But Ext1

G+
(U,U) = 0 by

Lemma 3.1. Hence VG+ is semisimple by Lemma 3.5(ii), a contradiction.
Suppose that (G+, p, dimU) = (3A6, 5, 3). As in the case of (3A7, 5, 3), we see

that all composition factors of VG+ are isomorphic to U . But dimV ≤ 7 and VG+ is
indecomposable, so head(VG+) ∼= U . Inspecting the structure of P(U) using [49], we
conclude that VG+ ∼= (U |U) is uniserial, i.e. (vi) holds.

(g) Finally, let dimU = p − 3. By Theorem 2.1, we have (G+, p) = (2A7, 7). As in
the case of (3A7, 5, 3), we see that all composition factors of VG+ are isomorphic to U .
But dimV ≤ 11 and VG+ is indecomposable, so head(VG+) ∼= U . Note that P(U) =
(U |U ⊕W |U), where W ∈ IBrp(G+) has dimension 16 (as one can see using [49]). It
follows that VG+ ∼= (U |U), the unique quotient of dimension 8 of P(U), and we arrive
at (iv). ut

Lemma 8.5. Suppose that p = 3 and V is a reducible, faithful, indecomposable kG-
module of dimension ≤ 2p − 3. Then Op(G) 6= 1.

Proof. Suppose first that everyG+-composition factor of V is of dimension 1, and so∼= k
(as G+ = Op′(G+)). By faithfulness, G+ is a p-group; moreover G+ 6= 1 as otherwise
G is a p′-group. Thus 1 6= G+ = Op(G).

Since VG+ is reducible, it remains to consider the case where VG+ has exactly two
composition factors, U of dimension 2 andW of dimension 1, and moreover Op(G) = 1.
Let K denote the kernel of the action of G+ on U . Again, G+ = Op′(G+) acts trivially
on W . It follows by faithfulness of G on V that K ≤ Op(G

+) ≤ Op(G) = 1. Next,
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since G+ = Op′(G+), the image of G+ in GL(U) is contained in SL(U). Now if |G+|
is odd, then G+ is solvable, and so by the Fong–Swan theorem cannot act irreducibly
on U of dimension 2. SoG+ contains an element of order 2, which must then act as −1U
and belong to Z(G+). Thus U and W have different central characters, and so VG+ is
semisimple, contradicting Lemma 3.7. ut

Next we will prove some criteria to decide the type of a self-dual indecomposable module.

Lemma 8.6. Let k = k be of characteristic p > 2 and let V be a self-dual indecompos-
able kG-module with dim EndkG(V ) ≤ 2. Then V supports a nondegenerateG-invariant
bilinear form that is either symmetric or alternating. Furthermore, all such forms have
the same, symmetric or alternating, type.

Proof. Let 8 denote the matrix representation of G on V relative to a fixed basis
(e1, . . . , en) of V . Since V ∼= V ∗ as G-modules, we can find b ∈ GLn(k) such that
t8(g)−1

= b8(g)b−1, and so b yields a nondegenerate G-invariant bilinear form on V .
Note that the map π : X 7→ bX yields a k-space isomorphism between EndkG(V ) and the
space B of G-invariant bilinear forms on V . In particular, dimB ≤ 2, and since p > 2, it
is a direct sum S ⊕ A of symmetric and alternating G-invariant forms. Hence the claims
follow if dim EndkG(V ) = 1. Assume dim EndkG(V ) = 2. Since V is indecomposable,
EndkG(V ) is a local algebra [46, Corollary 1.6.5], and its unique maximal ideal J , which
then has dimension 1, consists of (nilpotent) nonunits. Thus π(J ) is contained in the sub-
set D of degenerateG-invariant bilinear forms on V . But π−1(D) is obviously contained
in J . It follows thatD = π(J ) is a subspace and dimD = 1. Hence we are also done if S
or A is zero. Assume S,A 6= 0, whence both of them are 1-dimensional. Now if Y ∈ D,
then tY ∈ B and it is degenerate. As p > 2 and dimD = 1, it follows that tY = ±Y .
Thus D is either S or A, and so the nonzero forms in the other subspace are precisely the
nondegenerate G-invariant forms on V that are either symmetric or alternating. ut

Lemma 8.7. Suppose thatG is a finite group with a Sylow p-subgroup P of order p > 2
such that NG(P )/P is abelian. Let V be a reducible self-dual indecomposableG-module
over k = k of characteristic p, of even dimension d < 2p. Then V is not orthogonal if
d < p, and V is not symplectic if d > p.

Proof. For 1 ≤ i ≤ p, let Xi denote the unique indecomposable kP -module of dimen-
sion i (so Xp is projective). By the Green correspondence (see e.g. [46, Theorem 4.9.2]),
VN = X⊕Y forN := NG(P ), whereX is nonprojective indecomposable and Y is projec-
tive (if nonzero). LetM denote any indecomposable kN -module. According to [1, p. 42],
M is uniserial. Also, Lemma 8 of [1, §5] says that the P -radical filtration agrees with the
N -radical filtration onM; in particular, rad(M) = rad(MP ). As N/P is abelian, any irre-
ducible kN -module remains irreducible as over P . It follows thatMP is indecomposable.
Applying this to X and Y , we see that VP = Xd if d < p, while VP = Xd−p ⊕ Xp
if d > p. Now suppose that V is equipped with a nondegenerate G-invariant bilinear
form of a fixed parity. The claim then follows by using the description of Jordan forms of
unipotent elements in classical groups (see e.g. [45, Theorem 3.1]). ut
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Proof of Theorem 1.9. There is nothing to prove for p = 2; furthermore p 6= 3 by
Lemma 8.5. So we may assume p > 3. By Proposition 4.4, the self-duality of V implies
thatG+ is quasisimple. If furthermoreG+ is not a Lie-type group in characteristic p, then
by Theorem 8.4 we arrive at (i) and (ii). Assume thatG+ is of Lie type in characteristic p.
By Lemma 4.3(i), G+ ∼= SL2(q) or PSL2(q) for some q = pa . By Corollary 4.5, VG+ is
indecomposable of length ≥ 2. Applying Proposition 3.10, we arrive at (i) and (ii).

Note that in each of the listed cases, there is a unique (up to isomorphism) reducible
indecomposable G+-module V of the indicated shape (indeed, if W := head(VG+) then
there is a unique quotient of P(W) of this shape). Since W ∗ ∼= W ∼= soc(VG+), it fol-
lows that VG+ is self-dual. Thus all the listed cases give rise to examples of reducible
indecomposable self-dual modules (at least for G+).

It remains to determine the type of each indecomposable module. Note that in all
cases dim EndkG+(V ) = 2, whence dim EndkG(V ) ≤ 2, and Lemma 8.6 applies to both
G andG+. Thus V supports a nondegenerateG-invariant form that is either symmetric or
alternating. If dimV is odd, then all such forms must be symmetric. Consider the case of
dimV even. Note that in all cases |P | = p and NG+(P )/P is abelian for P ∈ Sylp(G

+).
So by Lemma 8.7, all such forms are symmetric when dimV > p, and alternating when
dimV < p. 2

Recall from [56] that for G a connected reductive group over an algebraically closed
field k and forG ≤ G a subgroup we say thatG is G-cr if wheneverG ≤ P for a parabolic
subgroup P of G, then G is contained in a Levi subgroup of P . If G = Sp(V ) or SO(V )
for some finite-dimensional vector space equipped with a nondegenerate alternating or
symmetric bilinear form, then this is equivalent to saying that for any G-stable isotropic
subspace W ⊂ V there exists a G-stable isotropic subspace W ′ ⊂ V with W + W ′

nondegenerate. For these G and provided p > 2, a subgroup G ≤ G is G-cr if and only if
the kG-module V is completely reducible [56, §3.2.2].

We can extend Serre’s notion to the disconnected group G = O(V ) by saying that
a subgroup G is O(V )-cr if for any G-stable isotropic subspace W ⊂ V there exists a
G-stable isotropic subspace W ′ ⊂ V with W +W ′ nondegenerate. We then see using the
same argument as in [56, §3.2.2], as well as Lemma 3.7(i), that forG ≤ O(V ) and p > 2
the following are equivalent:

(i) G is O(V )-cr.
(ii) G ∩ SO(V ) is SO(V )-cr.

(iii) The kG-module V is completely reducible.

The next result shows that for G = Sp(V ) or O(V ), the finite non-G-cr subgroups of G
are made up from the groups with a nontrivial unipotent normal subgroup and the groups
described in Theorem 1.9.

Proposition 8.8. Let k = k be of characteristic p > 0 and let G be either Sp(V ) or O(V )
with dimk V ≤ 2p − 3. Suppose that G < G is a finite subgroup such that the G-
module V is not completely reducible. Then there is a G-invariant decomposition V =
V1 ⊕ V2 ⊕ V3 of V into an orthogonal direct sum of three subspaces, where Vi is either
zero or nondegenerate, at least one of the Vi’s is zero and at least one of V1 and V2 is
nonzero, and the following conditions hold for the images Gi of G in GL(Vi):
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(i) If V1 6= 0, then Op(G1) = 1, the kG-module V1 is reducible indecomposable, and
(G1, V1) is as described in Theorem 1.9.

(ii) If V2 6= 0, then Op(G2) 6= 1.
(iii) If V3 6= 0, then V3 is an orthogonal direct sum of nondegenerate subspaces, each

being an irreducible G-module.
Proof. (a) First note that p > 2. Setting V2 = V when Op(G) 6= 1, we may assume
Op(G) = 1. Setting V1 = V when VG is indecomposable, we may assume that VG is
decomposable.

First we consider the case where no composition factor of G has order p. Choose a
decomposition VG = A⊕B with A,B 6= 0 beingG-invariant and A of smallest possible
dimension. Then dimA ≤ p − 2 and the image X of G in GL(A) has Op(X) = 1.
By [19], the X-module A is completely reducible, whence it is irreducible by its choice.
If A is nondegenerate, then VG = A ⊕ A⊥. Consider the case A ∩ A⊥ 6= 0. By the
irreducibility of A, we have A ⊆ A⊥, and so A⊥ = A ⊕ C for C := B ∩ A⊥. It is
easy to see that C ∩ C⊥ = 0, and so VG = C ⊕ C⊥. Note that C⊥ 6= 0. Also, C 6= 0
as otherwise A⊥ = A, B ∼= V/A = V/A⊥ ∼= A∗ is an irreducible G-module, and so
VG is semisimple, a contradiction. Thus in either case V is an orthogonal direct sum of
nonzero nondegenerate G-invariant subspaces. Repeating this process for the summands,
we obtain an orthogonal direct sum V =

⊕n
i=1 Ui , where each Ui is nondegenerate and

indecomposable as a kG-module, and n ≥ 2. Since VG is not semisimple, we may assume
thatU1 is reducible. Again the image Yi ofG in GL(Ui) has Op(Yi) = 1. By Theorem 1.9,
dimU1 ≥ p − 1, whence all Ui with i ≥ 2 must be irreducible over G. Setting V1 = U1
and V3 =

⊕n
i=2 Ui , we are done. Note that in this case dimV > dimU1 ≥ p − 1.

(b) Let W1, . . . ,Wm denote all the composition factors of VG+ (with counting multi-
plicities) and let J := Op′(G

+).
Consider the case p = 3. If dimWi = 1 for all i, then the first paragraph of the proof

of Lemma 8.5 shows that Op(G) 6= 1, contrary to our hypotheses. As VG is decomposable
of dimension ≤ 3, it follows that VG+ = W1 ⊕W2 with {dimW1, dimW2} = {1, 2} and
this decomposition isG-invariant. Thus VG is completely reducible, again a contradiction.
So we must have p > 3.

Suppose that J acts by scalars on each of the Wi’s. Then, in a suitable basis
of V , [J,G+] is represented by unitriangular matrices, and so it is a p-subgroup. But
Op(G) = 1, so J ≤ Z(G+). Applying Lemma 4.1 to G+, we see that G+, and so G as
well, has no composition factors of order p. Thus we are done by (a).

So we may now assume that J does not act by scalars onW1. It follows that the image
of G+ in GL(W1) contains a nonscalar normal p′-subgroup. Applying Theorem 2.1, we
see that dimW1 ≥ p − 1. Since dimV ≤ 2p − 3, it follows that J acts by scalars on
each Wi with i > 1, and m ≥ 2 as VG is reducible. Since J is a p′-group, we have
VJ ∼= W1 ⊕

⊕m
i=2Wi , and this decomposition is G-invariant. It follows that G fixes a

decomposition V = W1 ⊕ U where UG+ has composition factors Wi , 2 ≤ i ≤ m. Since
J acts by scalars on each Wi with i > 1 but not on W1, it also follows that U = W⊥1 ,
whence W1 is nondegenerate. If Op(Y ) = 1 for the image Y of G in GL(U), then UG is
semisimple by [19] (as dimU ≤ p − 2), a contradiction. So we can now set V2 = U and
V3 = W1. Note that in this case dimV > dimW1 ≥ p − 1. ut
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Proof of Corollary 1.10. Suppose that the kG-module V is not completely reducible.
If VG is indecomposable, then we are done by Theorem 1.9. Otherwise, the proof of
Proposition 8.8 shows that dimV ≥ p. 2

9. Adequacy for SL2(q)

The aim of this section is to prove the following statement which extends the results of
[23, §3]:

Proposition 9.1. Any nontrivial irreducible representation V of G := SL2(p
r) over Fp

is weakly adequate, except when q := pr ≤ 3.

By the Steinberg tensor product theorem we can write

V = L(a) :=

r−1⊗
i=0

L(ai)
(i)

for some a =
∑r−1
i=0 aip

i , 0 ≤ ai ≤ p − 1, where L(1) is the natural 2-dimensional
FpG-representation, L(b) = Symb(L(1)), and (i) denote the ith Frobenius twist. Also,
G ∼= SL2 denotes the underlying algebraic group for G.

Lemma 9.2. We have

headG(End(V )) ∼=
⊕

b0,...,br−1 : 0≤bi≤min((p−1)/2,ai )

r−1⊗
i=0

L(2bi)(i).

Moreover, if a < q − 1 then

headG(End(V )) = headG(End(V )),

whereas if a = q − 1, then

headG(End(V )) = headG(End(V ))⊕ L(q − 1).

Proof. As End(V ) is self-dual, we may replace “head” by ”socle”. By [14, Lemmas 1.1
and 1.3], for 0 ≤ b ≤ (p − 1)/2 we have

L(b)⊗ L(b) ∼=

b⊕
i=0

T (2i),

and for (p − 1)/2 ≤ b ≤ p − 1,

L(b)⊗ L(b) ∼=

p−2−b⊕
i=0

T (2i)⊕
b(p−1)/2c⊕
i=p−1−b

T (2p − 2− 2i),

where T (λ) denotes the tilting module of G with highest weight λ ≥ 0. Recall that T (λ) =
L(λ) if λ ≤ p − 1, and that, when 0 ≤ λ ≤ p − 2, T (2p − 2 − λ) is uniserial of shape
(L(λ)|L(2p − 2− λ)|L(λ)) and T (2p − 2− λ) ∼= Q1(λ) in the notation of [2, §3].
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The statement will follow if we can show for any 0 ≤ bi ≤ 2p − 2 that
(i) socG(

⊗r−1
i=0 T (bi)

(i)) is simple, and (ii) socG(
⊗r−1

i=0 T (bi)
(i)) is simple if bi <

2p − 2 for at least one i and isomorphic to L(0) ⊕ L(q − 1) otherwise. Let ci :=
min(bi, 2p − 2− bi) ≤ p − 1 and c :=

∑r−1
i=0 cip

i . Then

r−1⊗
i=0

T (bi)
(i) ↪→

r−1⊗
i=0

Q1(ci)
(i)
= Qr(c)

in the notation of [2, §3]. By [2, Theorem 3.7], socG(Qr(c)) = L(c). Furthermore, by
[2, Lemma 4.1], socG(Qr(c)) = L(c) if c 6= 0 and socG(Qr(c)) = L(0) ⊕ L(q − 1) if
c = 0 (note that “⊗” should be “⊕” in [2, Lemma 4.1(b)]). Finally, if c = 0 then it is easy
to check that L(q − 1) does not occur in

⊗r−1
i=0 T (bi)

(i), unless bi = 2p− 2 for all i. ut
Proof of Proposition 9.1. By [23, Proposition 3.1] we may assume that r > 1. We will
follow the same strategy of proof. It suffices to show M = headG(End(V )), where M
denotes the span of the images of all p′-elements of G in headG(End(V )).

Suppose that k =
∑r−1
i=0 kip

i with 0 ≤ ki ≤ min((p−1)/2, ai). By [23, Lemma 3.5],
the G-subrepresentation L(2k) in End(V ) is generated by the weight 0 element 1k :=⊗r−1

i=0 1
(i)
ki

, where 1ki ∈ End(L(ai)) is defined in [23, Lemma 3.5]. Let δk := tr(− ◦

1k) ∈ (End(V ))∗. For ` =
∑r−1
i=0 `ip

i with 0 ≤ `i ≤ ai , let π` :=
⊗r−1

i=0 π
(i)
`i
∈ End(V ),

where π`i ∈ End(L(ai)) is the projection XjY ai−j 7→ δj`iX
jY ai−j . For any other ` let

π` := 0. Also let pk(`) := δk(π`) ∈ Fp. Then pk(`) =
∏r−1
i=0 pki (`i), where pki (`i)

agrees with a polynomial of degree ki for 0 ≤ `i ≤ ai . In particular, as ki ≤ ai , there
exist 0 ≤ `i ≤ ai such that pki (`i) 6= 0 for all i. Thus pk(`) 6= 0 for some `.

(a) Suppose a < q − 1 and p > 2. Also, suppose that there exists a k =
∑r−1
i=0 kip

i

with 0 ≤ ki ≤ min((p− 1)/2, ai) such that M does not contain L(2k). Then δk(M) = 0,
so the action of the split Cartan subgroup gives∑

`≡`′ (mod (q−1)/2)

pk(`) = 0, ∀`′.

As in [23, §3], the action of a nonsplit Cartan subgroup similarly gives∑
`≡`′ (mod (q+1)/2)

pk(`) = 0, ∀`′.

Therefore, if 0 ≤ ` < (q − 1)/2, then pk(`) = −pk(` + (q − 1)/2) = pk(` − 1), and
so by induction pk(`) = pk(` − 1) = · · · = pk(−1) = 0. Similarly, pk(`) = 0 for
` > a − (q − 1)/2, and so pk(`) = 0 for all `, a contradiction.

(b) Now we consider the case a = q − 1 and p > 2.
(b1) Suppose that M does not contain L(2k) for some k < (q − 1)/2. The same

argument as in (a) shows that

pk(0) = pk(1) = · · · = pk((q − 3)/2) = −pk((q + 1)/2) = · · · = −pk(q − 1)

and pk((q − 1)/2) = 0. Hence pki ((p− 1)/2) = 0 for some i. As r > 1, we deduce that
pk(`) = 0 for some 0 ≤ ` < (q − 1)/2 (e.g. ` = pi(p − 1)/2), so pk(`) = 0 for all `,
again a contradiction.
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(b2) Suppose that M does not contain L(q − 1)⊕2. By [23, §3], the G-representation
generated by v :=

⊗r−1
i=0
[(
X ∂
∂Y

)(p−1)/2](i) is the unique G-subrepresentation L(q − 1)
in End(V ). Note that the upper-triangular Borel subgroup B := ( ∗ ∗∗ ) ⊂ G fixes v2

=⊗r−1
i=0
[(
X ∂
∂Y

)p−1](i) and that v and v2 are linearly independent. As v2 /∈ (End(V ))G

= Fp, theG-representation generated by v2 is isomorphic toL(q−1) or toL(q−1)⊕L(0)
∼= IndGB (1). In particular, for some c ∈ Fp, v2

+ c generates the second copy of L(q − 1)
in End(V ). A calculation as in [23, §3] shows that c = (−1)r . Now we can deduce that
pk(`) = 0 for all ` exactly as in [23, part (b2) of the proof of Proposition 3.1].

(c) Suppose now that p = 2. Note that headG(End(V )) is multiplicity-free. IfM does
not contain L(0), then the argument in (a) (but using only a nonsplit Cartan subgroup)
shows that p0(`) = 0 for all ` (as q + 1 > a), a contradiction. (In fact, we could alterna-
tively use only a split Cartan subgroup, even when a = q = 1.) Suppose that a = q − 1
and that M does not contain L(q − 1). By (b2),

⊗r−1
i=0
(
X ∂
∂Y

)(i)
+ 1 generates the unique

G-subrepresentation L(q− 1) of End(V ). However, as in [23, (b2) of the proof of Propo-
sition 3.1],

tr
((
α

α−1

)
◦

r−1⊗
i=0

(
X
∂

∂Y

)(i))
6= 0

for any α ∈ F×q \ {1} 6= ∅, and this gives a final contradiction. ut

Remark 9.3. The results of [2] play a key role in our analysis of SL2(q)-representations.
We should also point out some minor inaccuracies in [2, §4]. The first line of the displayed
formula right before [2, Corollary 4.5] should have the extra condition λ,µ 6= p − 1.
Furthermore, in the case n = 2 of [2, Corollary 4.5(b)], there are four (not just two as
stated) cases when dim Ext1 = 2, namely when λ0, λ1 ∈ {(p − 3)/2, (p − 1)/2} and
µi = p − 2 − λi for all i = 0, 1. (Also, the k and i in [2, Corollary 4.5(a)] satisfy
0 ≤ i, k ≤ n− 1.)

Corollary 9.4. Let V be nontrivial absolutely irreducible representation of G =

SL2(p
r) in characteristic p. Then either V is adequate, or one of the following holds:

(i) r = 1, 1 < dimV = (p ± 1)/2, and dim Ext1G(V , V ) = 1.
(ii) pr = 2, 3, 4 and dimV = pr .

(iii) pr = 9 and dimV = 3, 6, 9.

Proof. The case r = 1 is already treated by [23, Corollary 1.4], so we will assume r > 1.
In this case, Ext1G(V , V ) = 0 by [2, Corollary 4.5(a)]. Suppose that pr 6= 4, 9. Then
H 2(G, k) = 0, and furthermore H 1(G, k) = 0 as G is perfect. It follows that V is
adequate. The same conclusion holds if p - dimV .

Now we consider the case pr = 4, 9 and keep the notation of the proof of Proposition
9.1. The proof of Lemma 9.2 shows that the one-dimensional subspace End(V )G is con-
tained in the direct summand W := T (b0) ⊗ T (b1)

(1), where bi = 0 if ai < p − 1 and
bi = 2p−2 if ai = p−1. AsH 1(G,End(V )) = 0, we deduce thatH 1(G,End(V )/k) =
H 1(G,W/k).
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(a) If a0 = a1 = p − 1, then W = Q2(0) ∼= P(1)⊕ L(p2
− 1) by [2, Lemma 4.1].

Hence H 1(G,End(V )/k) ∼= H 1(G,P(1)/k) ∼= H 2(G, k), which is 1-dimensional.
(b) Suppose that precisely one of a0, a1 is p − 1. Without loss we may assume that

a0 = p − 1 > a1. Then W ∼= T (2p − 2). Note that T (2p − 2) has composition factors
L(0) = 1 (twice) and L(p − 2) ⊕ L(1)(1). As T (2p − 2) is self-dual and injects into
Q2(0), we deduce that it is uniserial with trivial socle and head. Thus the sequence

0→ k→ H 1(G,L(p − 2)⊗ L(1)(1))→ H 1(G,End(V )/k)→ H 1(G, k) = 0

is exact, whence

dimH 1(G,End(V )/k) = dim Ext1G(k, L(p − 2)⊗ L(1)(1))− 1 =

{
1 if p = 3,
0 if p = 2,

by [2, Corollary 4.5]. ut

If one replaces SL2(q) by GL2(q), then in fact there are no exceptions to adequacy for
q > 3 odd (if q = 3 and dimV = 3, then weak adequacy fails).

Corollary 9.5. Let G be a finite group and V be a faithful absolutely irreducible repre-
sentation of G in odd characteristic p. If the image of G in PGL(V ) is PGL2(p

a) with
pa > 3, then (G, V ) is adequate.

Proof. Without loss we may assume that V is an irreducible kG-module with k = k.
Let H be the inverse image of PSL2(p

a) under the projection from G onto PGL2(p
a) <

PGL(V ). ThenH/Z(H) ∼= PSL2(p
a) and Z(H) = Z(G) is a p′-group. Since the univer-

sal p′-cover of PSL2(p
a) is SL2(p

a), it follows that H = Z(H)L, where L := [H,H ] is
the quotient of SL2(p

a) by a central subgroup (of order 1 or 2). Moreover,G normalizesL
and centralizes Z(H), and in factG induces the full subgroup of inner-diagonal automor-
phisms ofL. It is well known that any irreducible kL-representation is invariant under any
inner-diagonal automorphism. It follows that ifW is an irreducible kH -summand of V |H ,
thenG preserves the isomorphism class ofW . ButG/H ∼= C2, henceW extends to a kG-
module W̃ (see e.g. [50, Theorem 8.12]), and so by Frobenius’ reciprocity, V ∼= W̃ ⊗k A
for some 1-dimensional k(G/H)-module A. We have shown that VH is irreducible. By
Proposition 9.1, (H, V ) is weakly adequate, hence so is (G, V ). Also, as Op(H) = H

and G/H ∼= C2, we see that Op(G) = G, and so H 1(G, k) = 0. Moreover, since p 6= 2,
the inflation-restriction sequence in cohomology implies that adequacy of (H, V ) yields
the same for (G, V ). So by Corollary 9.4, it suffices to consider the following cases:

(a) a = 1 and dimV = (p ± 1)/2;
(b) pa = 9 and dimV = 3, 6, 9.

In the first case, G has a cyclic Sylow p-subgroup P of order p. It follows that H 2(G, k)

= 0, and so it it suffices to show that Ext1G(V , V ) = 0. Note that V has no lifts to
characteristic 0 (since NG(P ) acts transitively on the p − 1 nontrivial elements of P ,
an element g ∈ P of order p would have at least p − 1 distinct eigenvalues in any
characteristic 0 lift). Thus, Ext1G(V , V ) = 0 by Lemma 3.1 and (G, V ) is adequate.
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In the second case, note that H 2(PGL2(9), k) = 0 [10]. Since G/Z(G) ∼= PGL2(9)
and Z(G) is a p′-group, it follows that H 2(G, k) = 0. So again it suffices to show
that Ext1G(V , V ) = 0. Note that the p′-group Z(H) acts trivially on V ⊗k V ∗ and
H 1(L, V ⊗k V

∗) = Ext1L(V , V ) = 0 by [23, Lemma 8.1]. Hence,H 1(H, V ⊗k V
∗) = 0.

Since G/H ∼= C2, it follows that H 1(G, V ⊗k V
∗) = 0, and so we are done. ut

10. Adequacy for SLn(q)

In this section, we give another family of examples of modules that are adequate. The
result follows from [9, Lemma 2.5.6] if p > n. Also, recall that the case n = 2 was
considered in the previous section.

Theorem 10.1. Let p be a prime and q a power of p. Let k be an algebraically closed
field of characteristic p and V = kn with n > 2. Suppose that G < GL(V ) is a finite
group that contains a normal subgroup S ∼= SLn(q). Then (G, V ) is adequate.

Proof. By [41, Proposition 5.4.11], any nontrivial irreducible kS-representations of di-
mension ≤ n is quasi-equivalent to the natural n-dimensional kS-module U . It follows
that the kS-module V is irreducible and quasi-equivalent to U . Next, the only automor-
phisms of S that preserve the isomorphism class of U (hence of V ) are the inner-diagonal
automorphisms. Therefore, G induces only inner-diagonal automorphisms of S, and so
p - [G : S]. This implies that it is enough to prove the statement for S with V being the
standard representation.

Note that V ⊗ V ∗ = W ⊕ k with W irreducible if p - n and that V ⊗ V ∗ is uniserial
(of length three) with trivial head and socle if p | n. Let W denote the unique nontrivial
irreducible composition factor of V ⊗ V ∗. Since there are semisimple elements in S with
nonzero trace on V and since not all semisimple elements of S are scalars, it follows that
End(V ) is spanned by the images of the semisimple elements of S.

By the table in [37] or by [59, Theorem 9], it follows that Ext1S(V , V ) = 0, whence
the result holds as long as p - n. If p | n, then using the fact that H 1(S, k) = 0 and
H 0(S,W) = 0 and the long exact sequence for cohomology we see thatH 1(S, V⊗V ∗/k)

= 0 if and only if dimH 1(S,W) = 1. By [37], this is the case, and so the result follows
(one can give an alternative proof using [59] as well). ut

A slight modification of the proof shows that if gcd(n, q) = 1, then (G, V ) is in fact
big. Indeed, we need only observe the obvious fact that there exists a semisimple regular
element g ∈ SLn(q) with nonzero trace.

11. Asymptotic adequacy

In this section, we extend [21, Theorem 1.2] to include disconnected groups as well as to
allow the possibility that p divides dimV . First we prove some statements relating dis-
crete cohomology (i.e. of abstract groups) and rational cohomology (i.e. in the category
of rational modules), of linear algebraic groups on the one side, and cohomology of finite
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groups of Lie type on the other side. We use subscripts disc and rat to make distinction be-
tween these two types of cohomology groups. First we record the following result (which
essentially is a special case of a result of van der Kallen [52, p. 239]):

Lemma 11.1. Let k = Fp and let G be a linear algebraic group defined over Fq ⊂ k.
Let V be a finite-dimensional rational kG(k)-module. If H 1(G(Fqf ), V ) = 0 for large
enough f , then H 1

disc(G(k), V ) = 0.

Proof. First we note that if U is any finite-dimensional kG(k)-module, then G(Fqf )
and G(k) have the same subspace of fixed points on U when f is divisible by some in-
teger N = N(U). Indeed, let Uj denote the fixed point subspace for G(Fqj !) on U . Then
U1 ⊇ U2 ⊇ · · · , and so Uj stabilizes when j ≥ j0 for some j0. But each element of G(k)
is contained in G(Fqj !) for some j ≥ j0. It follows that CU (G(k)) = Uj0 = CU (G(Fqj !))
for all j ≥ j0. In particular, we can choose N = j0!.

Consider any exact sequence 0 → V → W → k → 0 of kG(k)-modules. By
assumption, it is split over G(Fqf ) for f large enough. Hence CW (G(Fqf )) has dimen-
sion equal to dimk CV (G(Fqf )) + 1, which by our claim is equal to dimk CV (G(k)) + 1
when N(U) | f . Again by our claim, CW (G(Fqf )) = CW (G(k)) for N(W) | f . It fol-
lows that dimk CW (G(k)) = dimk CV (G(k)) + 1, whence W is split over G(k). Hence
H 1

disc(G(k), V ) = 0. ut

Next we observe that the results of [35, Prop. II.2.14] and [8, Theorem 6.6] hold in more
generality than they were stated.

Proposition 11.2. Let k be an algebraically closed field of characteristic p and let G
be a (not necessarily connected) reductive algebraic group defined over k. Let V be a
finite-dimensional rational kG-module.

(i) Suppose that p - [G : G0
] and V is irreducible. Then Ext1G(V , V )rat = 0.

(ii) Suppose G is connected and defined over Fq ⊂ k. Then for e and f large enough
(depending on V and n),

H n
rat(G, V (e)) ∼= H n(G(Fqf ), V (e)) ∼= H n(G(Fqf ), V ),

where V (e) is the eth Frobenius twist of V .

Proof. (i) Since p - [G : G0
], it suffices to show that Ext1G0(X, Y )rat = 0 for any two

irreducible G0-submodulesX, Y of V . Assume the contrary: Ext1G0(X, Y )rat 6= 0 for some
such X and Y . By Clifford’s theorem, Y ∼= g(X) for some g ∈ G. Given a pair (T ,B) of
a maximal torus T and a Borel subgroup B containing T of G0, we have g−1(T ,B)g =
h−1(T ,B)h for a suitable h ∈ G0. Replacing g by gh−1, we see that g normalizes both T
and B, and Y ∼= g(X). Suppose that X = L(λ) for some dominant weight λ with respect
to T . Then τ(λ) is dominant and Y = L(τ(λ)), where τ is the outer automorphism
(possibly trivial) of G0 induced by g. By [35, Proposition II.2.14], Ext1G0(X, Y )rat 6= 0
implies that λ 6= τ(λ) but λ and τ(λ) are comparable, say λ > τ(λ). Since τ fixes (T ,B),
it fixes the set of positive roots with respect to T , whence τ i(λ) > τ i+1(λ) for all i ≥ 0.
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Also, note that the action of τ on the weight lattice X(T ) has finite order N . Thus we
arrive at the chain

λ > τ(λ) > τ 2(λ) > · · · > τN (λ) = λ,

a contradiction.
(ii) Consider the action of the central torus Z := Z(G)0 on V and decompose V =

V ′ ⊕ [Z, V ] with V ′ := CV (Z). Then H n
rat(G, [Z, V ]) = 0, and so H n

rat(G, V ) ∼=
H n

rat(G, V ′). The same holds for Frobenius twists V (e) of V ; moreover, V ′(e)∼=CV (e)(Z).
Applying [8, Theorem 6.6] to the semisimple group H := G/Z (and recalling that Z is a
torus), for e and f large enough we get

H n
rat(G, V ′(e)) ∼= H n

rat(H, V ′(e)) ∼= H n(H(Fqf ), V ′(e)) ∼= H n(H(Fqf ), V ′).

On the other hand, H(Fqf ) is isomorphic to G(Fqf )/Z(Fqf ) (by the Lang–Steinberg
theorem). Moreover, for f large enough, Z and Z(Fqf ) have the same eigenspaces on V .
It follows that [Z, V ] = [Z(Fqf ), V ] and V ′ = CV (Z(Fqf )), whence

H n(G(Fqf ), V ) = H n(G(Fqf ), V ′) = H n(H(Fqf ), V ′)

(as Z(Fqf ) is a p′-group). The same holds for V (e), and so the statement follows. ut

Lemma 11.3. Let p be a prime and let k be an algebraically closed field of charac-
teristic p. Let G be a connected reductive algebraic group over k and V be a rational
G-module. If H 1

rat(G, V (e)) = 0 for all Frobenius twists V (e) of V with e large enough,
then H 1

disc(G(k), V ) = 0.

Proof. If the result fails, then there exists a (possibly nonrational) kG(k)-module W and
a nonsplit extension 0→ V → W → k→ 0.

LetK be the algebraic closure of Fp in k. Note that G can be defined over Fq ⊂ k for q
sufficiently large (as it can be defined over K by the isomorphism theorem for reductive
groups). Also, let T (k) be a maximal torus of G(k) containing a maximal torus T (K)
of G(K). For e and f large enough, we have by assumption and by Proposition 11.2(ii)
that H 1(G(Fqf ), V ) = H 1

rat(G, V (e)) = 0. It follows by Lemma 11.1 that W is split
over G(K), whence

dimk CW (G(K)) = dimk CV (G(K))+ 1,
dimk CW (T (K)) = dimk CV (T (K))+ 1.

(11.1)

We claim that CW (T (K)) = CW (T (k)). Clearly, the fixed point subspace U :=
CW (T (K)) is T (k)-invariant. Also, since V is a rational kG(k)-module, T (k) acts triv-
ially on U ∩V = CV (T (K)), which has codimension 1 in U by (11.1). Thus, T (k)maps
into a unipotent subgroup of GL(U). Note that T (k) is p-divisible, and hence so is any
homomorphic image of it. It follows that T (k) acts trivially on U , as stated.

Thus, the fixed point subspace of 〈T (k),G(K)〉 on W is the fixed point subspace of
〈T (K),G(K)〉 = G(K) on W . Observe that G(k) = 〈T (k),G(K)〉. (Indeed, if Uα(k) ⊇
Uα(K) are root subgroups corresponding to a root α with respect to T , then T (k) acts
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transitively on Uα(k) \ {1}. Since G(K) ⊃ Uα(K) and G(k) is generated by T (k) and all
the root subgroups Uα(k), the claim follows.) Hence, CW (G(k)) = CW (G(K)), and so

dimk CW (G(k)) ≥ dimk CV (G(k))+ 1

by (11.1). Hence W is split as a G(k)-module, a contradiction. ut

Corollary 11.4. Let k be an algebraically closed field of characteristic p and let G be a
reductive algebraic group over k. Let V be an irreducible rational kG(k)-module. Assume
that p - [G : G0

]. Then

H 1(H(k), k) = Ext1H(k)(V , V ) = H
1(H(k), (V ∗ ⊗ V )/k) = 0,

both as rational and discrete cohomology groups, and for both H = G, G0.

Proof. Since p - [G : G0
], it suffices to prove the statement for G0. As shown in Propo-

sition 11.2(i), Ext1G0(V , V )rat = 0. Also, H i
rat(G0, k) = 0 for i > 0 by [35, Corollary

II.4.11]. We have therefore shown that H 1
rat(G0, k) = H 1

rat(G0, (V ∗ ⊗ V )/k) = 0. The
same applies to Frobenius twists. Hence Ext1G0(k)

(V , V )disc = 0 and H 1
disc(G

0(k), k) =

H 1
disc(G

0(k), (V ∗ ⊗ V )/k) = 0 by Lemma 11.3. ut

We finally show that adequacy holds over a sufficiently large field and also for (not nec-
essarily connected) reductive algebraic groups (whether one uses rational cohomology or
discrete cohomology in the definition). Note that if p does divide [G : G0

], then adequacy
may fail (the spanning may fail, as also can the cohomological conditions even assuming
that p - dimV—one can construct examples precisely as in [20]).

Theorem 11.5. Let k be an algebraically closed field k of characteristic p. Let G be a
reductive algebraic group defined over Fq ⊂ k such that p - [G : G0

], and let V be a
finite-dimensional faithful irreducible rational kG-module. Then:

(i) (G, V ) is adequate.
(ii) Assume that every coset of G0 in G is defined over Fq . Then (G(Fqf ), V ) is adequate

for f sufficiently large (with f possibly depending upon V ).

Proof. (a) Arguing precisely as in [22], we see that the set of semisimple elements in any
coset of G0 is Zariski dense in G. It follows that the linear span of semisimple elements
of G is Zariski dense in the linear span of G in End(V ). Thus, the span of the semisimple
elements in G is all of End(V ).

Let T ⊂ B be a maximal torus and a Borel subgroup of G0 that are defined over Fq .
Choose f large enough so that T (Fqf ) has exactly the same weight spaces on End(V )
and V as does T . Let N := NG(T ,B) denote the simultaneous normalizer of (T ,B)
in G. Then N ∩ G0

= T , hence every element of N is semisimple (as p - [G : G0
]).

Conversely, if g ∈ G is semisimple, then by [58, 7.5], g normalizes some pair (T ′,B′) of
a maximal torus T ′ contained in a Borel subgroup B′. We deduce that

Gss =
⋃
x∈G

xNx−1, (11.2)

where Gss denotes the set of semisimple elements in G.
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Let W be the linear span of G(Fqf )ss := G(Fqf ) ∩ Gss in End(V ). Then W is
G(Fqf )-stable, and hence in particular T -stable (as T and T (Fqf ) have the same eigen-
spaces on End(V )). Arguing as in [21], we see that 〈T ,G(Fqf )〉 is Zariski dense in G. It
follows thatW is G-stable. Since N /T ↪→ G/G0 and every coset of G0 is defined over Fq ,
we deduce by Lang’s theorem that N = N (Fqf ) · T . Moreover, as T (Fqf ) and T have
the same eigenspaces on V , T (Fqf ) and T span the same subspace of End(V ). Now W

contains the span of N (Fqf ) ⊂ G(Fqf )ss, hence contains the span of N . Since W is
G-stable, we deduce from (11.2) that W contains the span of Gss. Thus for f sufficiently
large we have W = End(V ); in particular, G(Fqf ) acts absolutely irreducibly on V .

(b) From Corollary 11.4 we get H 1
disc(G(k), k) = H 1

disc(G(k), (V
∗
⊗ V )/k) = 0.

Together with (a), this implies (i).
We also have H 1

rat(G0, k) = H 1
rat(G0, (V ∗ ⊗ V )/k) = 0, and the same holds

for all Frobenius twists. Applying Proposition 11.2(ii) we obtain (for f large enough)
H 1(G0(Fqf ), k) = H 1(G0(Fqf ), (V ∗ ⊗ V )/k) = 0, and therefore H 1(G(Fqf ), k) =
H 1(G(Fqf ), (V ∗ ⊗ V )/k) = 0 as well since p - [G : G0

]. Hence (ii) holds. ut

Acknowledgments. The first author was partially supported by NSF grants DMS-1001962, DMS-
1302886 and the Simons Foundation Fellowship 224965. He also thanks the Institute for Advanced
Study for its support. The second author was partially supported by a Sloan Fellowship and an
NSERC grant. The third author was partially supported by the NSF grant DMS-1201374 and the
Simons Foundation Fellowship 305247.

We thank Barry Mazur and Jack Thorne for thoughtful discussion of various questions consid-
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Appendix B by M.-F. Vignéras). Publ. Math. Inst. Hautes Études Sci. 108, 1–181 (2008)
Zbl 1169.11020 MR 2470687

[10] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: An ATLAS of Finite
Groups. Clarendon Press, Oxford (1985) Zbl 0568.20001 MR 0827219
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