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Abstract. When does Borel’s theorem on free subgroups of semisimple groups generalize to other
groups? We initiate a systematic study of this question and find positive and negative answers
for it. In particular, we fully classify fundamental groups of surfaces and von Dyck groups that
satisfy Borel’s theorem. Further, as a byproduct of this theory, we make headway on a question of
Breuillard, Green, Guralnick, and Tao concerning double word maps.
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1. Introduction

Let 0 be a group. What group-theoretic properties of 0 can we infer from the flexibility of
its representation theory? To systematically approach this basic question, we focus on the
following property: 0 has Borel’s property if for every connected semisimple group G,
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every proper subvariety V of G, and every nontorsion γ 6= 1 in 0, there exists a homo-
morphism φ : 0→ G(C) such that φ(γ ) 6∈ V (C). Loosely speaking, groups with Borel’s
property have so many representations that not only can every element be detected in any
semisimple group, but any element can be made to miss every proper subvariety.

Question 1. Which classes of groups have Borel’s property?

In 1983, Armand Borel demonstrated the remarkable fact that free groups have Borel’s
property. Question 1 also sheds light on double word maps (see §4) and, in fact, gives a
partial answer to [BGGT12, Problem 2]. That is, we obtain

Theorem 1.1. Let w1, w2 be two words in a free group, Fk , of rank k with w2 not in the
normal closure of w1, and 0w1 := Fk/〈〈w1〉〉 a torsion-free group with Borel’s property.
If Hom(0w1 ,G) is integral for every semisimple group G, then the double word map,
Gk → G×G, defined by w1, w2 is dominant. In particular, if k is even, one can choose
w1 to be a word of the form

[x1, x2] · · · [xk−1, xk],

where k ≥ 2.

The remainder of our main results revolve around applications of tools we have developed
for determining whether a group has Borel’s property. Let L be the class of groups that
satisfy Borel’s property. Let B be the class of torsion-free groups in L . We start with a
complete classification of fundamental groups of surfaces that are in L , which indicates
that our new line of study is not an empty theory.

Theorem 1.2. Let S be a compact surface without boundary. Then π1(S, ·) is in L if and
only if S is not the Klein bottle. In particular, π1(S, ·) is in B if and only if S is neither
the Klein bottle nor the real projective plane.

The examples in Theorem 1.2 are handled in different parts of the paper. The Klein bottle
group is handled in Corollary 3.18. In studying this case, we discovered a Tits alternative
for B:

Theorem 1.3. Let 0 be a finitely generated group that is in B. Then 0 contains a non-
abelian free group or is a free abelian group.

See §2.3 for a proof. Since the fundamental group of an oriented surface injects into a
direct product of free groups [Bau62], all such groups are in B (see Lemma 2.4), and the
same can be said for connected sums of four or more real projective planes. We are left
with the fundamental group of the connected sum of three projective planes. This group,
which has presentation

π1 := 〈a, b, c : a
2b2c2

= 1〉,

does not inject into a direct product of free groups [LS62] (for another example of a group
in B that is not residually free, see Theorem 3.12). Handling π1 requires new machinery
that we develop in §3.1 (see also Proposition 3.10).
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In §2, we show that in the context of finitely generated groups

residually free ⊆ B ⊆ L ∩ linear ⊆ L . (1)

The group π1, discussed above, shows that the first inclusion is strict. The last two inclu-
sions are shown to be strict in §2. Significant examples of linear groups in L which are
not in B are supplied by the next two theorems.

Theorem 1.4. For ` ≡ 1 (mod 3) prime, the group Z/` ∗ Z/` is in L .

Theorem 1.5. Let ` ≥ 19 be a prime that is ≡ 1 (mod 3). The group

〈x, y, z, t : x` = y` = z` = t` = xyzt = 1〉

is in L .

The proofs of Theorems 1.4 and 1.5 appear in §3.2. The proof of Theorem 1.4 relies on
a delicate strengthening of Borel’s original proof. The proof of the latter theorem follows
a similar track while relying, in addition, on a method developed by Avraham Aizenbud
and Nir Avni [AA16] and a new character theory estimate established in Appendix B.
The three previous theorems might lead to some hope that all Fuchsian groups are in L .
However, this is certainly not the case:

Theorem 1.6. No group containing infinitely many elements of order 2 is in L , and
therefore no group containing the infinite dihedral group is in L . Moreover, groups such
as a nonoriented Fuchsian group or an oriented Fuchsian group with an elliptic point of
order 2, cannot be in L .

It turns out that even subgroups consisting of orientation-preserving isometries in triangle
groups are not in L . Recall that a hyperbolic von Dyck group has presentation

0 = 〈x, y, z : xa = yb = zc = xyz = 1〉,

where a, b, c are positive integers with 1/a + 1/b + 1/c < 1.

Theorem 1.7. No hyperbolic von Dyck group is in L .

The proofs of Theorems 1.6 and 1.7 appear in §3.3. It would be interesting to understand,
in general, which Fuchsian groups are in L .

This article is organized as follows. In §2 basic notions are defined, groups in B are
shown to be linear, and a Tits alternative for B is established. Sections 3.1 and 3.2 give
general methods for proving a group is in B or L , respectively. Section 3.3 discusses
obstructions to membership in B or L . In §4 we give a partial answer to a question of
Emmanuel Breuillard, Ben Green, Robert Guralnick, and Terence Tao concerning double
word maps. For the convenience of the reader, Appendix A collects some basic definitions
and facts from algebraic geometry which are used in the paper. Appendix B gives some
bounds on irreducible characters of certain finite groups that are used in §3.2.
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2. General theory

In this section, we present some basic results and examples that we hope will cast light
on Question 1. Before we begin, we need some notation that allows us to succinctly
describe groups that satisfy Borel’s property to varying degrees for a given linear algebraic
group G.

2.1. Notation and terminology

For notation and terminology regarding algebraic geometry, see Appendix A. Here we
note only that we do not assume that our varieties are either irreducible or reduced, but
for our purposes infinitesimal structure will never matter. Algebraic groups will always
be linear and will be assumed to be defined over C unless some other field is specified
explicitly.

Let 0 be a finitely generated group. Denote by 0• the set 0 \ {1}. Let P be a class of
groups. We say that S ⊆ 0• is detected by P if there exists a homomorphism φ : 0→ P

with P ∈ P such that φ(S)∩ {1} = ∅. We say that S ⊆ 0 is almost detected by P if there
exists a homomorphism φ : 0 → P with P ∈ P such that φ(s) is nontorsion for every
nontorsion s ∈ S. When S = {γ } with γ nontrivial, we sometimes say that γ is [almost]
detected by P instead of {γ } is [almost] detected by P . If every element in 0• is [almost]
detected by P we say that 0 is [almost] detectable by P or is [almost] residually P .

Let G be a linear algebraic group defined over C. Let V be a subvariety of G. We
say S ⊆ 0 is detected by G rel V if there exists a homomorphism φ : 0 → G(C) such
that φ(S) ∩ V = ∅. If S = {γ } we sometimes say γ is detected by G rel V instead of
S is detected by G rel V . If every element in 0• is detected by G rel V for every proper
closed subvariety V of G, then we say that 0 is G-free. If every nontorsion element in 0
is detected by G rel V for every proper closed subvariety V of G, then we say that 0 is
almostG-free. Equivalently, 0 isG-free (resp. almostG-free) if and only if the evaluation
map

eG,γ : Hom(0,G(C))→ G(C)

has dense image for all γ 6= 1 (resp. all nontorsion γ ). In the definition of [almost]
G-free, if the representations can be taken to be faithful, we say that the group is [almost]
G-faithful.

2.2. Some basic results

We start by showing that groups in B are precisely those in L that are G-free for some
connected semisimple G.

Lemma 2.1. Let G be a connected semisimple algebraic group. Then any G-free group
must be torsion-free.
Proof. Let 0 be a group with an element γ of order k, where k ∈ Z>0. For any map
φ : 0 → G(C), we have φ(γ ) ∈ {A ∈ G : Ak = 1}. If eG,xk denotes the kth power map
on G, then e−1

G,xk
(G) is a proper closed subvariety of G, and γ cannot be detected by G

rel e−1
G,xk

(G). ut
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The following lemma is a slight strengthening of the fact that free groups are in B. While
the result is known, we include a proof for completeness.

Lemma 2.2. Finitely generated free groups are G-faithful for all connected semisimple
linear algebraic G.

Proof. Let Fd be a finitely generated free group of rank d. Let V be a subvariety of G,
where G is a connected semisimple linear algebraic G. By Borel’s Theorem [Bor83], we
have that

Lγ :=
{
φ ∈ Hom(Fd ,G(C)) : φ(γ ) /∈ V ∪ {1}

}
is nonempty for every γ ∈ F •d . Each complement of Lγ consists of the set of closed
points of a proper closed subvariety of Hom(Fd ,G) ∼= Gd and is therefore a closed
subset of G(C)d without interior points. As Fd is countable,⋂

γ∈F •d

Lγ

is nonempty by the Baire Category Theorem (Theorem A.5). Any representation lying
in this intersection is faithful and satisfies φ(F •d ) ∩ V = ∅, so F is G-faithful for any
semisimple G. ut

The following lemmas are useful tools for constructing elements in L or B. In particular,
by the next lemma, it follows that any residually free group is in B.

Lemma 2.3. Let P be a class of [almost]G-free groups. If 0 is [almost] detectable by P ,
then 0 is [almost] G-free.

Proof. Let γ ∈ 0• be a given [torsion-free] element. Let V be an arbitrary subvariety
ofG. Since 0 is [almost] detectable by P , there exists a homomorphism φ : 0→ P ∈ P
with φ(γ ) 6= 1 [φ(γ ) torsion-free]. Since P is [almost] G-free, there exists a homomor-
phism ψ : P → G with ψ(φ(γ )) /∈ V . Thus, the map ψ ◦φ : 0→ G has ψ ◦φ(γ ) /∈ V ,
as desired. ut

The next lemmas demonstrate that L , like the class of residually free groups, is closed
under direct products and passage to subgroups.

Lemma 2.4. Finite direct products of [almost] G-free groups are [almost] G-free.

Proof. Let G be a linear algebraic group and V an arbitrary subvariety of G. Let 0 =∏N
i=1 0i be a direct product of [almost]G-free groups. Set P = {0i}Ni=1. Using the natural

projections onto 0i , we see that 0 is [almost] detectable by P . Lemma 2.3 then implies
that 0 is [almost] G-free. ut

Lemma 2.5. Subgroups of [almost] G-free groups are [almost] G-free.

Proof. Let 0 be an [almost] G-free group and 1 ≤ 0. By using the injection map φ :
1 → 0 induced by 1 ≤ 0, we see that 1 is [almost] residually {0}. As 0 is [almost]
G-free, we conclude that 1 is [almost] G-free by Lemma 2.3. ut

The next lemma will be used in §3.
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Lemma 2.6. Let 0 be a Gi-free group for each i = 1, . . . , k. Then 0 is
∏k
i=1Gi-free.

Proof. Let G =
∏
i Gi . Then

Hom(0,G) =
∏
i

Hom(0,Gi), eG,γ (Hom(0,G)) =
∏
i

eGi ,γ (Hom(0,Gi)).

Given a finite collection of topological spaces Xi and dense subsets Di ⊂ Xi , by defi-
nition of product topology,

∏
i Di is dense in

∏
i Xi . Applying this to Di := eGi ,γ and

Xi := Gi , we obtain the lemma. ut

2.3. Connections with linearity and a Tits alternative

The next proposition, coupled with the fact that finite groups are never G-free (Lem-
ma 2.1), shows that for finitely generated groups, being G-free is a stronger condition
than being linear.

Remark 1. It is not true that an almost G-free group is necessarily linear. The first Grig-
orchuk group is a finitely generated [dlH00, Corollary VIII.15], residually finite [dlH00,
Proposition VIII.6], nonlinear [dlH00, Corollary VIII.19] group consisting only of torsion
elements [dlH00, Theorem VIII.17]. Hence, it is almostG-free for any semisimpleG, but
is not linear. It now follows that the rightmost inclusion in (1) cannot be reversed.

Proposition 2.7. If 0 is a finitely generated group that isG-free, then 0 is linear. If 0 is
a finitely generated group that is almost G-free, then 0 is an extension of a linear group
by a torsion group.

Proof. Since 0 is finitely generated, its representation variety is a subvariety of Grank(0),
and thus has finitely many irreducible components (see Appendix A). Let 8 be the finite
collection of irreducible components of Hom(0,G). For each nontorsion γ ∈ 0, there
exists some � ∈ 8 such that eG,γ (�) is dense in G. For any � ∈ 8, let S� denote the
collection of γ for which this density condition holds. Since 0 is almostG-free,

⋃
�∈8 S�

consists of all nontorsion elements of 0.
By the Baire Category Theorem (Theorem A.5), the intersection⋂

γ∈S�

{φ ∈ � : φ(γ ) 6= 1}

is always a nonempty subset (note that by convention,
⋂
γ∈∅{φ ∈ � : φ(γ ) 6= 1} = �).

For each � ∈ 8, we select a single φ� from this nonempty set. The kernel of the natural
homomorphism from 0 to ∏

�∈8

0/ker(φ�) (2)

contains only torsion elements since no γ ∈ S� lies in ker(φ�). On the other hand, each
0/ker(φ�) can be realized as a subgroup of G via φ�. Thus, 0 is an extension of a linear
group by a torsion group, and if 0 is torsion-free, it is linear. ut

The next lemma demonstrates that virtually solvable groups that are in B are actually
virtually free abelian. It is possible, however, for a solvable group that is not virtually
abelian to be in L :
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Remark 2. Let 0 be the lamplighter group Z/2Z oZ. Set1 =
⊕

i∈Z Z/2Z to be the base
group of 0 so 0/1 ∼= Z. Every element in 1 is of order 2. It follows from Lemma 2.3
that the lamplighter group is almost G-free for any semisimple group G.

Lemma 2.8. Let 0 be a finitely generated group. If 0 is virtually solvable andG-free for
some semisimple group G then it is virtually free abelian.

Proof. The unipotent elements in G form a proper closed subvariety as G is semisimple.
Following the proof of Proposition 2.7, there exist homomorphisms φ� : 0 → G(C),
one for each component of Hom(0,G), such that φ�(γ ) is not unipotent for all γ ∈ S�.
If Q� denotes the Zariski closure of φ�(0), then each Q� is virtually solvable, so each
identity componentQ◦� is connected solvable and therefore contained in a Borel subgroup
B� ⊂ G. If

0◦ := 0 ∩
⋂
�

φ−1
� (Q◦�(C)),

then 0◦ is of finite index in 0. If γ ∈ [0◦, 0◦], then

φ�(γ ) ∈ [B�(C), B�(C)]

is unipotent, so γ 6∈ S� for all �. It follows that γ = 1, which means that 0 is virtually
abelian. ut

We now present a version of Tits alternative for groups in B. Note that the condition that
0 be finitely generated is needed. For instance, Q is in B (the image of any element is
dense in a maximal torus) but is not virtually free abelian.

Proof of Theorem 1.3. By Tits’ alternative and Proposition 2.7, 0 is virtually solvable or
contains a nonabelian free group. We can therefore assume that 0 is virtually solvable. By
Lemma 2.8, the group 0 is virtually free abelian. Since 0 is torsion-free by Lemma 2.1,
we are done by Theorem 3.17 below. ut

3. Determining when a group satisfies Borel’s Theorem

3.1. Conditions for torsion-free groups

In this section, we present several variants of Borel’s original proof that free groups are
G-free for all semisimple groups G.

Lemma 3.1. Let 0 be a finitely generated group. If 0 is SLn-free for all n ≥ 2, then 0
is G-free for all semisimple G.

Proof. Let eG,γ : Hom(0,G) → G denote the evaluation map at γ . For any homomor-
phism φ : H → G, eG,γ contains φ(eH,γ (Hom(0,H))) and is closed under conjugation
by G. Therefore, if eH,γ has Zariski-dense image in H , and the union of G-conjugates
of φ(H) is Zariski-dense in G, then eG,γ (Hom(0,G)) is Zariski-dense in G. Also, if
eHi ,γ has Zariski-dense image for i = 1, . . . , n, then e∏

i Hi ,γ
has Zariski-dense im-

age (see Lemma 2.6). Every semisimple group admits a surjective homomorphism from
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a product of simply connected groups which are simple modulo center, and every semi-
simple group G which is simple modulo center admits a homomorphism from a group
of the form

∏
i SLni whose image contains a maximal torus of G, and therefore has the

property that the union of G-conjugates is Zariski-dense. (See, e.g., [Lar01, Lemma 4]
for the fact that every simple algebraic group admits a subgroup of type A of maximal
rank.) ut

Theorem 3.2. Let 0 be a finitely generated group such that

(1) Hom(0,SLn) is irreducible for all n ≥ 4.
(2) 0 is SL2-free.
(3) 0 is SL3-free.

Then 0 is G-free for all semisimple groups G.

Proof. Let en,γ : Hom(0,SLn)→ SLn denote the evaluation map at γ . Let Xn,γ denote
the closure of the image of en,γ . For γ 6= 1, by (2) and (3), X2,γ = SL2 and X3,γ = SL3.
We use induction on n to prove Xn,γ = SLn for all n ≥ 2.

If n ≥ 4, the obvious embedding SLn−1 ⊂ SLn and the induction hypothesis imply
Xn,γ contains SLn−1, and of course it is invariant under conjugation in SLn. The Zariski
closure of the set of all SLn-conjugates of SLn−1 is the codimension 1 subvariety of SLn
consisting of elements for which 1 is an eigenvalue. As Xn,γ is irreducible, it consists
either of this subvariety or of all SLn. Applying the induction hypothesis to the embedding
SLn−2×SL2 ⊂ SLn, we obtain SLn−2×SL2 ⊂ Xγ,n, which proves Xγ,n = SLn. The
theorem now follows from Lemma 3.1. ut

The conditions of Theorem 3.2 are in general not easy to check. For condition (1), we
have the following proposition:

Proposition 3.3. Suppose 0 is a group with d generators and r relations and for all
n ≥ 2 and m ≥ 1, and for each prime p sufficiently large,

|Hom(0,SLn(Fpm))| = (1+ o(1))pm(n
2
−1)(d−r).

Then condition (1) of Theorem 3.2 holds for 0.

Proof. By Theorem A.7, it suffices to prove that the characteristic p representation va-
riety Hom(0,SLn,Fp ) is geometrically irreducible for all p sufficiently large. By Theo-
rem A.8 and the estimate for |Hom(0,SLn,Fp )(Fpm)|, it follows that there is a unique
geometric component of Hom(0,SLn,Fp ) of dimension (d− r) dim SLn and that all other
geometric components are of lower dimension.

Let
0 = 〈x1, . . . , xd : R1 = · · · = Rr = 1〉

be a presentation of 0 with d generators and r relations. Applying Theorem A.4 to the
multiword map

(R1, . . . , Rr) : SLdn,Fp → SLrn,Fp ,

we see that the minimum dimension of a geometric component of Hom(0,SLn,Fp ) is at
least (d − r) dim SLn,Fp , and we are done. ut
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The point-counting hypothesis of Proposition 3.3 can be verified for some interesting
1-relator groups.

Proposition 3.4. Let 0 = Sg , the fundamental group of an oriented surface of genus
g ≥ 2. Then for each integer m ≥ 1 and prime p sufficiently large,

|Hom(0,SLn(Fpm))| = (1+ o(1))pm(n
2
−1)(2g−1).

Proof. By a theorem of Frobenius [Sha07, Proposition 4.1], the number of ways of rep-
resenting an element h of a finite group H as xyx−1y−1 for x, y ∈ H is

|H |
∑
χ

χ(h)

χ(1)
,

where the sum is taken over all irreducible characters χ of H . By the generalized orthog-
onality relation [Isa76, Th. 2.13] and induction on g, we obtain

|Hom(Sg, H)| = |H |2g−1
∑
χ

1
χ(1)2g−2 .

Following Liebeck and Shalev [LS05a], for each finite group H we define

ζH (s) :=
∑
χ

χ(1)−s,

where the sum is taken over the irreducible characters of H . By a result of the same
authors [LS05b, Th. 1.1], we have

lim ζG(Fq )(s)− 1 = 0 (3)

for s > 2/h, where the limit is taken over any sequence of groups of the form G(Fq),
where each G is a simply connected simple group over Fq of Coxeter number h, and q
tends to∞. In particular,

lim
∑
χ 6=1

1
χ(1)2g−2 = 0.

This implies the result of Li [Li93] that Hom(Sg,G) is irreducible not only for G of the
form SLn,C but for all simply connected semisimple groups G. ut

Likewise, we obtain

Proposition 3.5. If 0 = 〈x1, . . . , xk : x
2
1 · · · x

2
k = 1〉, k ≥ 3, n ≥ 2, (k, n) 6= (3, 2), and

m ≥ 1, then for each prime p sufficiently large,

|Hom(0,SLn(Fpm))| = (1+ o(1))pm(n
2
−1)(k−1).
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Proof. The formula counting homomorphisms from 0 to a finite group H is

|Hom(0,H)| = |H |k−1
∑
χ

ι(χ)k

χ(1)k−2 ,

where ι is the Frobenius–Schur indicator. The proof is essentially the same as before, the
starting point being the classical theorem of Frobenius and Schur [Isa76, Th. 4.5] that for
any finite groupH , the number of solutions inH of x2

= h is
∑
χ ι(χ)χ(h). For k ≥ 4 or

k = 3 and n ≥ 3, the proposition follows from equation (3) and the fact that the Coxeter
number of SLn is n. ut

Proposition 3.6. In Theorem 3.2, assuming Hom(0,SL2) is irreducible, we can deduce
hypothesis (2) from the assertion that there exists a homomorphism i2 : 0 → SL2(C)
such that i2(γ ) is not unipotent for γ 6= 1.

Proof. The condition on i2 is equivalent to trace(i2(γ )) 6= 2, so that trace ◦ e2,γ is a
nonconstant function in ρ ∈ Hom(0,SL2). As Hom(0,SL2) is irreducible, it follows
that the image of trace ◦ e2,γ is Zariski-dense in the affine line. Any closed subvariety
of SL2 which is invariant under conjugation and has a Zariski-dense set of traces is all
of SL2. Note that if i2 maps 0 to SU(2), it suffices to assume that it is injective. ut

If D is a central division algebra of degree n over a field K , following standard notation
[Tit66, Table II], we denote by SL1(D) the algebraic group over K whose K-points give
the elements of D× of reduced norm 1, while its K̄-points give SLn(K̄). We recall that
reduced trace gives a map D → K , and applying reduced trace to all integer powers
of an element of D, we see that the power sums of the eigenvalues of any element of
SL1(D) ⊂ SLn(K̄) lie in K . If K is of characteristic zero, this implies that the charac-
teristic polynomial of every element of SL1(D) has coefficients in K . If any element of
λ ∈ K is an eigenvalue of α ∈ SL1(D), then α − λ is not invertible, so it is zero, and
α = λ lies in the center of SL1(D). Moreover, if D is of degree 3 and the characteristic
polynomial of α ∈ SL1(D) has a multiple root r , then r ∈ K . Thus every element of
SL1(D) is central or regular semisimple.

In particular, 1 ∈ K , so 1 cannot be an eigenvalue of any α ∈ SL1(D)
•. Using this

observation, we can replace (3) in Theorem 3.2 as follows:

Proposition 3.7. If Hom(0,SLn) is irreducible for all n ≥ 3, 0 is SL2-free, and
there exists a degree 3 division algebra D ⊂ M3(C) such that Hom(0,SL1(D)) ⊂

Hom(0,SL3(C)) is Zariski-dense in Hom(0,SL3), then hypothesis (3) follows and
therefore 0 is G-free for all semisimple groups G.

Proof. Let γ ∈ 0 be a nontrivial element. As X2,γ = SL2, we see that X3,γ contains the
codimension 1 subvariety of SL3 consisting of matrices for which 1 is an eigenvalue. It
suffices to prove that there is at least one point of X3,γ for which 1 is not an eigenvalue.
However, for ρ ∈ Hom(0,SL1(D)) ⊂ Hom(0,SL3(C)), 1 can be an eigenvalue if and
only if ρ(γ ) = 1. If ρ(γ ) = 1 for all ρ ∈ Hom(0,SL1(D)), Zariski density implies the
same for all ρ ∈ Hom(0,SL3(C)), contrary to the nontriviality of X3,γ . ut

A related criterion for (3) is the following:
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Proposition 3.8. If Hom(0,SLn) is irreducible for all n ≥ 3, 0 is SL2-free, and there
exists a degree 3 division algebra D over a characteristic zero local field K such that
Hom(0,SL1(D)) contains a regular point of Hom(0,SL3(K̄)), then hypothesis (3) fol-
lows, and therefore 0 is G-free for all semisimple groups G.

Proof. Applying Theorem A.10 to X = X3,γ and identifying K̄ and C by the axiom of
choice, the proposition now follows from Proposition 3.7. ut

Proposition 3.9. Let π1 be the fundamental group of the connected sum of three projec-
tive planes. If Hom(π1,SLn) is irreducible for all n ≥ 3, and π1 is SL2-free, then π1 is
SL3-free.

Proof. The Brauer group of Qp is canonically isomorphic to Z/Q [Ser79, XIII Prop. 6],
so we can define D to be the (degree 3) division algebra over Qp with invariant 1/3.
To apply Proposition 3.8, we observe that the trivial representation π1 → SL3(C) is a
nonsingular point of Hom(π1,SL3).

Indeed, identifying Hom(0,SL3) with

e−1
SL3,x

2
1x

2
2x

2
3
(1),

it suffices by Theorem A.11 to note that the morphism SL3
3 → SL3 given by the word

x2
1x

2
2x

2
3 induces a surjective map on tangent spaces at (1, 1, 1). The induced map on tan-

gent spaces sl33 → sl3 sends (X1, X2, X3) to 2X1+2X2+2X3 and is therefore surjective.
ut

We can now apply the previous results to obtain a new class of groups in B.

Proposition 3.10. Let S be the connected sum of three or more projective planes. Then
π1(S, ·) is in B.

Proof. Let S be the connected sum of k projective planes, where k ≥ 3. Let π1 =

π1(S, ·). We break the proof into two cases, depending on k.

(1) If k = 3, then π1 = 〈x, y : x
2y2z2

= 1〉. This group is known not to be residually
free [LS62]. By Theorem 3.2 and Propositions 3.3, 3.5, 3.8, and 3.9 it suffices to show that
there exists some map φ : π1 → SL2(C) such that φ(π1) does not contain any unipotent
elements. To do this, identify π1 with a compact subgroup P of the isometries of the
hyperbolic plane which is the universal covering space of the connected sum of three
real projective planes, regarded as a hyperbolic surface. Let π denote the homomorphism
from

SL2(C) ∩ 〈i〉GL2(R)

to the group of all Möbius transformations given by Seppälä and Sorvali [SS93, §6]. Then
there exists a lift P̃ of P so that π gives an isomorphism P̃ → P [SS93, Theorem 6].
We claim that P̃ has no nontrivial unipotent elements. Indeed, P contains, as a subgroup
of index 2, a discrete and cocompact subgroup of PSL2(R) (the orientation-preserving
isometries of the hyperbolic plane). Let X be a nontrivial unipotent element in P̃ . Then
π(X2) = π(X)2 is unipotent and lies inside PSL2(R) and so π(X2) is parabolic. This is
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impossible, as no discrete and cocompact subgroup of PSL2(R) contains a parabolic ele-
ment [Kat92, Theorem 4.2.1]. It follows that P̃ does not contain any nontrivial unipotent
elements, as desired.

(2) If k > 3, then by [Bau67], π1 is residually free. Thus, by Lemma 2.3, π1 ∈ B. ut

3.2. Conditions for general groups

In this section, we present some conditions for a finitely generated group 0 to be almost
G-free for all semisimple groups G. Our main theorem is a variant of the results in the
previous section. This variation is forced on us. We cannot expect that Hom(0,SLn)
will be connected if 0 has nontrivial torsion elements. Indeed, there are typically several
different conjugacy classes of elements of SLn(C) of given orderm > 1. We therefore try
to pin down the class of the image of each torsion conjugacy class. We assume that 0 has
finitely many classes of nontrivial elements of finite order, and we denote by x1, . . . , xk
representatives of each class.

If G is a semisimple group defined over C and y ∈ G(C) is of finite order, it is
semisimple, and its conjugacy class is therefore closed. Since G is irreducible, its con-
jugacy classes are likewise irreducible. If y = (y1, . . . , ym) is an m-tuple of semisimple
elements of G(C), we denote by V (G, y) the closed subvariety

V (G, y) := e−1
x1,...,xk

(C1 × · · · × Ck) ⊂ Hom(0,G),

where Ci is the conjugacy class of yi , and

ex1,...,xk : Hom(0,G)→ Gk

is the multiword evaluation map. If G = SLn, we denote V (SLn, y) by Vn(y) for brevity.

Theorem 3.11. Let 0 be a finitely generated group with finitely many conjugacy classes
of nontrivial elements of finite order, represented by elements x1, . . . , xk . For each n ≥ 2,
let Yn ⊂ SLn(C)k be a nonempty set of k-tuples of semisimple elements. Suppose:

(1) For each n ≥ 2 and y ∈ Yn, the variety Vn(y) is irreducible.
(2) For each n ≥ 3 and each y ∈ Yn, there exists y′ ∈ Yn−1 and a 1-dimensional

character χ of 0 such that χ(xi)y′i ⊕ χ(xi)
1−n is conjugate in SLn(C) to yi for

i = 1, . . . , k.
(3) For each n ≥ 4 and each y ∈ Yn, there exist y1

∈ Yn−2, y2
∈ Y2 and 1-dimensional

characters χ1, χ2 of 0 such that χ1(xi)y
1
i ⊕ χ2(xi)y

2
i is conjugate in SLn(C) to yi

for i = 1, . . . , k.
(4) For each y ∈ Y2, there exists an injective homomorphism 0→ SL2(C) in V2(y) such

that ρ(0) contains no nontrivial unipotent element.
(5) For each y ∈ Y3, there exists a regular point in V3(y) corresponding to a homomor-

phism 0→ SL3(K̄) whose image lies in SL1(D) for some degree 3 division algebra
D over an `-adic field K .

Then 0 is almost G-free for all semisimple G.
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Proof. For any γ ∈ 0, the evaluation map eG,γ restricts to a map V (G, y) → G which
we denote eG,y,γ . For any homomorphism φ : G→ H we have a commutative diagram

V (G, y)
φ //

eG,y,γ

��

V (H, φ(y))

eH,φ(y),γ

��
G

φ // H

so the closure XH,φ(y),γ of the image of eH,φ(y),γ contains φ(XG,y,γ ). Also, V (G, y)
depends only on the conjugacy classes of the yi , and therefore admits a conjugacy action
by G which the evaluation maps respect. Thus XG,y,γ is a closed, conjugation-invariant
subvariety of G. It follows that if for all n ≥ 2 there exists y ∈ Yn such that XSLn,y,γ =
SLn, then eG,γ (Hom(0,G)) is dense in G for all semisimple G.

For n ≥ 2 and y ∈ Yn+1, there exist y′ and χ such that the homomorphism

Hom(0,SLn)→ Hom(0,SLn+1)

defined by
ρn 7→ ρn ⊗ χ ⊕ χ

⊗−n

and condition (2) guarantees that Vn(y′) maps to Vn+1(y). Thus, we have commutative
diagrams

Vn(y′) //

en,γ

��

Vn+1(y)

en+1,γ

��
SLn // SLn+1

where the bottom row sends

M 7→ χ(γ )M ⊕ χ(γ )−n.

Let S be the union of all conjugacy classes of the image of this function. Note that any
element in S has at least one eigenvalue which has order n.

For each y ∈ Yn+2 we have homomorphisms

Hom(0,SLn)× Hom(0,SL2)→ Hom(0,SLn+2)

defined by
(ρn, ρ2) 7→ ρn ⊗ χ1 ⊕ ρ2 ⊗ χ2

which map Vn(y1)× V2(y2)→ Vn+2(y), and there is a commutative diagram

Vn(y1)× V2(y2) //

en,γ×e2,γ

��

Vn+2(y)

en+2,γ

��
SLn×SL2 // SLn+2
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where the bottom row sends

M1 ×M2 7→ χ1(γ )M1 ⊕ χ2(γ )M2.

By conditions (4) and (5), the image of this map contains an element with no eigenvalues
which are roots of unity. It follows that this image contains an element which is not in S.
Thus, we can use induction on n to prove that the en,γ all have Zariski-dense image,
provided we can treat the base cases n = 2 and n = 3.

For n = 2, we use (4) together with the fact that an irreducible closed subvariety
of SL2 which is a union of conjugacy classes and contains both 1 and a nonunipotent
element is all of SL2. For n = 3, we use the fact that a conjugation-invariant closed ir-
reducible subvariety of SL3 which contains SL2 and some element without eigenvalue 1
is all of SL3. Although the particular homomorphism ρ3 whose existence is guaranteed
by (5) might have a nontorsion element γ in its kernel, the homomorphisms in an `-adic
neighborhood of ρ3 cannot be identitically trivial on γ . Indeed, they are Zariski-dense in
V3(y), and V3(y) contains at least one injective representation, namely the representation
coming via condition (1) from the injective SL2-representations of 0 guaranteed by con-
dition (4). ut

We can now prove Theorem 1.4: if ` is a prime which is 1 (mod 3), then0 := Z/`Z∗Z/`Z
is almost G-free for all semisimple G.

Proof of Theorem 1.4. Let γ1 and γ2 denote generators of the two free factors Z/`Z.
By [MKS04, Cor. 4.1.4 and Cor. 4.1.5], there are 2(`− 1) different conjugacy classes of
nontrivial elements of 0 of finite order, and they are represented by

x1 = γ1, x2 = γ
2
1 , . . . , x`−1 = γ

`−1
1 , x` = γ2, . . . , x2`−2 = γ

`−1
2 .

All of our y will be of the form

(y1, y
2
1 , . . . , y

`−1
1 , y2, y

2
2 , . . . , y

`−1
2 ),

where y1, y2 ∈ SLn(C) are of order `, so Vn(y) = C1×C2 , where C1 and C2 denote the
conjugacy classes of y1 and y2 respectively. This implies condition (1) of Theorem 3.11.

In order to define Yn precisely, we first define for each integer k ∈ [0, `− 1] a set Bk
of subsets S ⊂ F`. Since ` ≡ 1 (mod 3), there exists a unique 3-element subgroup
µ3 ⊂ F×` ⊂ F`. We let Bk consist of all S ⊂ F` of cardinality k which sum to 0 and
satisfy the additional condition for k ≥ 3 that S contains the image of µ3 under some
affine transformation. For any integer n ≥ 2, we define An to be the set of all functions

f : F`→ {bn/`c, dn/`e}

such that
{x ∈ F` : f (x) > n/`} ∈ Bk,

where k ∈ [0, `− 1] is the mod ` reduction of n.
We fix an injective homomorphism ψ from (F`,+) to C×, and to any f ∈ An we

associate the conjugacy classCf ⊂ SLn(C) consisting of those `th roots of the identity for
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which the eigenvalue ψ(x) occurs with multiplicity f (x). For each conjugacy class Cf ,
we select any element yf for which y1 = y2 belongs to Cf . We let

Yn = {yf : f ∈ An}.

Since there exists a character which takes the value ψ(1) on both γ1 and γ2, to
prove (2) it suffices to show that every element of An is the sum of a translate of an
element of An−1 and a translate of an element of A1. When ` - n, it suffices to prove that
for 1 ≤ k ≤ `−1, every element of Bk is the union of a single element of F` and an addi-
tive translate of an element of Bk−1. Clearly, every k-element subset of F` has a translate
which sums to zero, which proves the claim. To finish (2), we note that when ` | n, An
consists of the single element (n/`, . . . , n/`)which decomposes as the sum of an element
of An−1 and an element of A1:

(n/`, n/`, . . . , n/`) = (n/`− 1, n/`, . . . , n/`)+ (1, 0, . . . , 0).

Likewise, we can prove (3) when n reduces to k ≥ 2 (mod `) by showing that every
element of Bk is the union of a translate of an element of Bk−2 and a translate of an
element of B2. As every 2-element set is a translate of an element of B2, this is clear. So
we must deal with two cases: k = 0 and k = 1. In these two cases, An has only one
element, and we use the decompositions

(n/`, n/`, . . . , n/`) = (n/`− 1, n/`, . . . , n/`, n/`− 1)+ (1, 0, . . . , 0, 1),
(n/`+ 1, n/`, . . . , n/`) = (n/`, n/`, . . . , n/`, n/`− 1)+ (1, 0, . . . , 0, 1).

For condition (4), it suffices to prove that for any primitive `th root of unity ζ`, there
exists an injective homomorphism from 0 to SL2(C) sending γ1 and γ2 to matrices with
eigenvalues ζ±1

` and with no nontrivial unipotents in the image. If we realize 0 as a Fuch-
sian group of the second kind with signature (1;p, p), we achieve such an embedding
in SL2(R) for ζp = e2πi/p, and all other cases can be achieved by composing the result-
ing homomorphism 0 ↪→ SL2(C) with a suitable automorphism of C.

For condition (5), V3(y) is nonsingular, so it is just a matter of showing that some
homomorphism 0 → SL3(C) in V3(y) has image contained in a suitable SL1(D) ≤

SL3(C). As Gal(Q(ζ`)/Q) ∼= F×` , there exists an intermediate field E := Q(ζ`)µ3 such
that [Q(ζ`) : E] = 3. A rational prime p splits completely in E if and only if p re-
duces mod ` to an element of µ3; it splits completely in Q(ζ`) if and only if it reduces
mod ` to 1. By Dirichlet’s theorem, there exists a prime p which splits in E but not
in Q(ζ`). It follows that E ⊂ Qp but ζ` is algebraic of degree 3 over Qp. The Brauer
group of Qp is canonically isomorphic to Z/Q [Ser79, XIII Prop. 6], and we define D to
be the (degree 3) division algebra over Qp with invariant 1/3. Every degree 3 extension
of Qp can be embedded in D [Ser79, XIII Prop. 7]. In particular, there exists an injective
Qp-homomorphism i : Qp(ζ`)→ D, and it follows that

D ⊗Qp Qp(ζ`) ∼= M3(Qp(ζ`)).

If α ∈ Qp(ζ`) has minimal polynomial P(x) over Qp, then P(i(α)) = 0, but viewed as
an element of M3(Qp(ζ`)), i(α) has a characteristic polynomial with coefficients in Qp,
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which must then be P(x) as well. It follows that the eigenvalues of i(α) ∈ M3(Q̄p) are α
and its conjugates over Qp. In particular, if ζ` is a primitive `th root of unity, its conjugates
over E (and therefore over Qp) are ζ a` and ζ a

2

` , where the image of a in F` generates µ3.
Any element S ∈ B3 is a coset of the order 3 subgroup µ3 ⊂ F×` . On identifying Q̄p

and C, ψ(S) is therefore the Galois orbit of an element of Qp(ζl), and it follows that there
exists an element eS ∈ D ⊂ M3(C) with eigenvalues ψ(S). As

∑
s∈S s = 0, we have

eS ∈ SL1(D). The homomorphism sending γ1 and γ2 to eS is therefore of the desired
kind. ut

The same strategy can be used to prove Theorem 1.5: if ` ≥ 19 is a prime that is ≡ 1
(mod 3), then

0 := 〈x, y, z, t : x` = y` = z` = t` = xyzt = 1〉

is in L .

Proof of Theorem 1.5. Let x, y, z, and t be as in the presentation of 0. By [MKS04,
Cor. 4.4.5 and Th. 4.5], there are 4(` − 1) different conjugacy classes of nontrivial ele-
ments of 0 of finite order, and they are represented by

x, x2, . . . , x`−1, y, y2, . . . , y`−1, . . . , z, z2, . . . , z`−1, t, t2, . . . , t`−1.

All of our y will be of the form

(y1, y
2
1 , . . . , y

`−1
1 , y`−1

1 , y`−2
1 , . . . , y1, y1, y

2
1 , . . . , y

`−1
1 , y`−1

1 , y`−2
1 , . . . , y1),

where y1, y2 ∈ SLn(C) are of order `. Thus, Vn(y) is a subvariety of SLn(C)4 of the form

W := {(X, Y,Z, T ) ∈ C1 × C2 × C3 × C4 : XYZT = 1}, (4)

where Ci are specified conjugacy classes of semisimple elements in SLn(C)which satisfy
the condition C1 = C

−1
2 = C3 = C

−1
4 . Before showing condition (1) of Theorem 3.11,

we need to define Yn precisely.
We define Bk , An, ψ , and Cf exactly as in the proof of Theorem 1.4. For each Cf , we

select any element yf for which y1 = y
−1
2 belongs to Cf . We let

Yn = {yf : f ∈ An}.

Thus, the conjugacy classes appearing in W corresponding to Vn(y) have semisimple
elements with multiplicity at most dn/`e.

We now show condition (1) of Theorem 3.11 by showing that varieties of the form (4)
are geometrically irreducible. By [Ser92, Th. 7.2.1] and the fact that two semisimple
elements in SLn(Fp) are conjugate if and only if they are conjugate in GLn(Fp), the
number of elements in W(Fp) is

1
|GLn(Fp)|

|C1| · · · |C4|
∑
χ

χ(x1) · · ·χ(x4)

χ(1)2
=

1
|GLn(Fp)|

|C1|
4
∑
χ

|χ(x1)|
4

χ(1)2
, (5)
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where xi is a representative of the conjugacy class Ci in GLn(Fp) and χ runs
through all irreducible characters of GLn(Fp). As there are exactly q − 1 characters of
GLn(Fq) of degree 1, namely those characters which factor through the determinant map
GLn(Fq)→ F×q , it follows that the quantity (5) is given by

|C1|
4

|GLn(Fp)|

(
q − 1+

∑
χ(1)>1

|χ(x1)|
4

χ(1)2

)
.

Note that C1 is the conjugacy class of a semisimple element in a simply connected semi-
simple group, so by Steinberg’s theorem [Hum95, Th. 2.11], it is the quotient of SLn(Fq)
by the group of Fq -points of a geometrically connected group over Fq , so

|C1| = q
dim SLn− dimCSLn (x1)(1+ oq(1)).

In the special case where x1 is regular, this is qn
2
−n(1+ oq(1)).

Let Pq denote the set of ordered pairs (χ, χ ′) consisting of an irreducible charac-
ter χ of SLn(Fq) and an irreducible character χ ′ of GLn(Fq) such that χ is an irreducible
constituent of the restriction of χ ′, or (equivalently, by Frobenius reciprocity) χ ′ is a con-
stituent of the induced character of χ . Thus, Pq projects onto the set of irreducible repre-
sentations of SLn(Fq) and likewise onto the set of irreducible representations of GLn(Fq).
For (χ, χ ′) ∈ Pq , we have

χ(1) ≤ χ ′(1) ≤ [GLn(Fq) : SLn(Fq)]χ(1) = (q − 1)χ(1).

In particular, the number of characters χ ′ associated to a single χ is at most q − 1. The
characters of GLn(Fq) associated to the trivial character of SLn(Fq) are precisely the q−1
characters of degree 1. All other characters of GLn(Fq) have degree at least (qn−1

− 1)/2
by the bound of Landazuri and Seitz for degrees of nontrivial projective characters of
PSLn(Fq) [LS74]. The total number of characters of GLn(Fq) is O(qn) by a result of
Liebeck and Pyber [LP97]. If x1 is regular semisimple, then |χ(x1)| is bounded above by
a constant depending only on n [GLL12]. Thus, (5) is given by

q3n2
−4n+1(1+ oq(1)).

We would like to achieve a similar upper bound when x1 has an eigenvalue with
multiplicity greater than one. Let α = 1/10. If n is divisible by ` ≥ 19, each eigenvalue
has multiplicity n/` < αn. Otherwise, writing n = a`+ k, 1 ≤ k < `, we have a ≥ 1, so
each eigenvalue has multiplicity at most

a + 1 ≤
(a + 1)n
a`+ 1

≤
2n
`+ 1

≤ αn.

Let β = 4/9. By Theorem B.1, we have |χ(x1)| ≤ χ(1)β for all p sufficiently large and
any irreducible character χ of SLn(Fp).

By (3),
ζ SLn(Fp)(s) = 1+ op(1)
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if s > 2/n. It follows that

ζGLn(Fp)(s)

q − 1
− 1 ≤

∑
χ(1)6=1

∑
{χ ′ : (χ,χ ′)∈Pp}

χ ′(1)−s

p − 1
≤ ζSLn(Fp)(s)− 1 = op(1).

Thus,

|W(Fp)| =
1

|SLn(Fp)|
|C1|

4(1+ op(1)) = p3 dim SLn−4 dimCSLn (x1)(1+ op(1)). (6)

By Theorem A.4, every geometric component of W has dimension at least

3 dim SLn−4 dimCSLn(x1).

Coupling this with (6) and with Theorem A.8, we deduce that W/Fp is geometrically
irreducible, as desired.

The proofs that conditions (2), (3), and (4) of Theorem 3.11 are satisfied exactly par-
allel those in the proof of Theorem 1.4. For condition (5), we need an additional argument
to verify that V3(y) has a regular point. The last result in [Wei64] gives a sufficient con-
dition for a homomorphism from an oriented Fuchsian group 0 to an algebraic group G
in characteristic zero to be a regular point of Hom(0,G); it suffices that the space of
coinvariants of the adjoint action of 0 on the Lie algebra g of G is zero. Equivalently,
it suffices that the space of invariants of the coadjoint representation is zero, and if G is
semisimple, the adjoint and coadjoint representations are isomorphic, so it suffices that
the centralizer of the image of 0 in G is 0-dimensional.

We identify Qp with C as in the proof of Theorem 1.4 and conclude by showing that
we may find a (noninjective) homomorphism 0 → SL3(C) such that the centralizer of
the image is 0-dimensional. Fixing y ∈ Y3 fixes a regular semisimple conjugacy class C1
in SL1(D). We will choose a homomorphism γs,t : 0→ SL1(D) in V (y) defined by

(x, y, z, t) 7→ (s, s−1, t, t−1),

for s, t ∈ C1: Set s to be any element in C1 and let S denote the unique maximal torus
in SL3 containing s. By Zariski density of SL1(D) in SL3, there exists g ∈ SL1(D) that
does not lie in the normalizer of S (a proper subvariety of SL3). Set t = gsg−1. We
claim that the centralizer of γs,t (0) in SL1(D) is contained in the center of SL3(C). Let
z ∈ SL1(D) be an element in this centralizer. Then because z commutes with s, we have
z ∈ S. Further, z commutes with t , so g−1zg commutes with s and therefore lies in S.
Suppose that z is noncentral and in SL1(D). Then z is regular (see the observation before
Proposition 3.7), so it belongs to a unique maximal torus, which must be S. Thus, g nor-
malizes S, which is impossible by our choice of g. Hence, the only elements in SL1(D)

that commute with every element in γs,t (0) are in the center of SL3(C). Since the cen-
tralizer of γs,t (0) in SL1(D) is finite, it follows that the centralizer of γs,t (0) in SL3(C)
is 0-dimensional, as desired. ut

We finish the section by showing there exist G-free groups that are not residually free.
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Theorem 3.12. The group

〈a1, . . . , a7, b : ba1b
−1
= a2, ba2b

−1
= a3, . . . , ba6b

−1
= a7, ba7b

−1
= a1〉

is in B but is not residually free.

Proof. By construction, 0 is a semidirect product of F7 with Z. It maps onto the group

1 = 〈a, b1, b2, . . . , b7 : ab1a
−1
= b2, . . . , ab6a

−1
= b7, ab7a

−1
= b1, a

7
= 1〉,

which is contained inside Z/7 ∗ Z/7 and is almost G-free by Theorem 1.4. The entire
set F •7 is almost detected by 1. Any element of 0 \ F7 is detected by Z. Since 1 and Z
are both G-free, it follows that 0 is so by Lemma 2.3.

On the other hand, 0 is not residually free: Since free groups are residually 2-finite,
any residually free group must be residually 2-finite. However, the element b1b

−1
2 must

vanish in any 2-group quotient of 0. Indeed, the action of a on F7 has order 7, and so if
a2k
= 1 for any k, the action of a on F7 must be trivial. ut

3.3. Groups that fail to satisfy Borel’s Theorem

Here, we give examples of groups which fail to be G-free for some semisimple group G.
We start by showing that it is not always true that free products of G-free groups
are G-free.

Proposition 3.13. The group 0 := (F2×Z)∗Z is not residually {SL2(C)} but is the free
product of two groups that are in B.

Proof. The groups Z and F2 × Z are G-free for any semisimple G by Borel’s Theorem
[Bor83] and Lemma 2.4.

We now show that 0, which has presentation

0 = 〈a1, a2, b, c : [a1, b] = 1, [a2, b] = 1〉,

is not residually {SL2(C)}. Supposing, for the sake of contradiction, that the element

[[a1, a2], [b, c]]

does not vanish in the image of some homomorphism φ : 0 → SL2(C), the elements
φ(a1) and φ(a2) do not commute. Since [φ(b), φ(c)] 6= 1 and SL2(C) is commutative
transitive away from its center, it follows that φ(a1) and φ(a2) must commute. Thus,
φ([[a1, a2], [b, c]]) = 1. ut

For our next result, note that the lamplighter group Z/2Z o Z, mentioned in Remark 2,
below is not linear but has an element of order two with infinite conjugacy class. Thus,
dropping the linearity hypothesis from Theorem 3.14 is not possible. Further, we note
that as a consequence of the following theorem, neither SLn(Z), nor the infinite dihedral
group, nor any triangle group is almost SL2(C)-free.
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Theorem 3.14. Let 0 be a finitely generated linear group which has infinitely many ele-
ments of order two. Then 0 is not almost SL2(C)-free.

Proof. Let X be the set of all order two elements in 0. Any image of 0 in SL2(C) must
take 〈X〉 into Z(SL2(C)), and so if 〈X〉 contains a nontorsion element, the group 0 cannot
be almost SL2(C)-free. Thus, for the remainder of the proof, we assume that 〈X〉 does not
contain any nontorsion element.

Since 0 is a finitely generated linear group, by Selberg’s lemma, 0 contains a finite-
index normal subgroup 1 ≤ 0 that is torsion-free. Since 〈X〉 does not contain any non-
torsion elements, we have 〈X〉 ∩ 1 = {1}. Thus 〈X〉 embeds into the finite group 0/1.
This is impossible as X contains infinitely many distinct elements. ut

Before proving our next result concerning G-freeness of torsion-free virtually abelian
groups, we need two technical lemmas.

Lemma 3.15. Let 0 be a torsion-free and virtually abelian group that is not abelian.
Then 0 contains a solvable subgroup that is not abelian.

Proof. If 0 is solvable, then there is nothing to prove. Hence, we assume that 0 is not
solvable. In any group, the intersection of all possible conjugates of any finite-index sub-
group is finite-index. Thus, since 0 is virtually abelian, it follows that 0 contains a nor-
mal subgroup, N , of finite-index that is abelian. Let M be a maximal normal solvable
subgroup of 0 that contains N . Thus, 0/M is not solvable. By Feit–Thompson, it must
have an element of order two. If all order two elements commute in 0/M , then the group
they generate is a nontrivial, proper (because 0/M is not abelian), abelian, and normal
subgroup of 0/M , which is impossible by maximality of M . Thus, there exist two order
two elements in 0/M that do not commute. We lift these elements to 0 and let D be the
group they generate. There is a short exact sequence,

1→ D ∩M → D→ S → 1,

where S is solvable, as it is generated by two order two elements, and hence is the image of
an infinite dihedral group, which is solvable. It follows thatD is solvable and nonabelian,
so we are done. ut

Lemma 3.16. Let 0 be a group with normal abelian torsion-free subgroup 1 ≤ 0. Let
t ∈ 0 and a ∈ 1 be such that S = {tkat−k : k ∈ Z} is of cardinality r with 1 < r <∞.
Then 0 is not SLn(C)-free for any n > r .

Proof. We use additive notation for 1 and write at for tat−1 when a ∈ 1 and t ∈ 0. Set
S′ = {at

k
− at

k+1
: k ∈ Z}. Thus S′ forms a single orbit under 〈t〉, and

m := a − at 6= 0,

so all elements of the orbit are of infinite order (see Lemma 2.1). We have∑
b∈S′

b =
∑
c∈S

(c − ct ) =
∑
c∈S

c −
∑
c∈S

c = 0. (7)
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With this in hand, suppose, for the sake of contradiction, that 0 is SLn(C)-free for
some n > p. Let V be the union of the subvariety of SLn(C) consisting of elements
that are not regular semisimple and the variety of elements A ∈ SLn(C) with the fol-
lowing property: there exists a collection of complex numbers, x1, . . . , xr , each of which
is an eigenvalue of A, with x1x2 · · · xr = 1. Since V is a proper subvariety (guaran-
teed as r < n), there exists some φ : 0 → SLn(C) such that φ(m) /∈ V . However,∏
A∈φ(S′)A = 1 by (7). Since all the elements in φ(S′) commute with one another, they

are simultaneously diagonalizable, so φ(m) ∈ V , which is impossible. ut

Theorem 3.17. Let 0 be a torsion-free and virtually abelian group that is not abelian.
Then 0 is not SLn(C)-free for some n.

Proof. By Lemmas 3.15 and 2.5 we reduce to the case of 0 a solvable group. Thus, we
have a short exact sequence

1→ A→ 0→ H → 1

where A is abelian and H is a finite nontrivial solvable group. Let A′ be a maximal
normal abelian subgroup containing A, and let H ′ be the quotient 0/A′. Since 0 is not
abelian, H ′ is nontrivial. If A′ is non-central, we are in the situation of Lemma 3.16,
and we are done. We therefore assume it is central. Let D be a nontrivial abelian normal
subgroup of H ′ (which exists because H ′ is solvable). By maximality of A′, there exist
t ∈ D and a ∈ A′ such that tat−1

6= a. Since A′ is of finite index in H , we are in the
situation of Lemma 3.16. In fact, ifA′ is noncentral, then we are in the same situation. We
assume, then, that A′ is in the center of 0. Then D acts trivially on A′, so by maximality
of A′, there exist d1, d2 ∈ D such that [d1, d2] ∈ A

′
\ {1}. Suppose, for the sake of a

contradiction, that 0 is SL2(C)-free. Then we may find some image of 0 that detects
[d1, d2] in SL2(C) rel Z(SL2(C)). Since SL2(C) is commutative transitive away from its
center, this is impossible. Thus, 0 is not SL2(C)-free. ut

Corollary 3.18. Let S be the Klein bottle. Then π1(S, ·) is not in B. In fact, π1(S, ·) is
not SL2(C)-free.

Proof. We have π1 = 〈x, y : x
2y2
= 1〉. This group is torsion-free and virtually abelian

but nonabelian, so it cannot be in B by Theorem 3.17.
In fact, we can prove directly that π1 is not SL2(C)-free. Note first that the element

x2 is central and nontrivial in π1. Suppose that some image of π1 detects [x, y]. Then
x and y do not commute, but both commute with x2. By commutative transitivity of
SL2(C), it follows that the image of x2 is in Z(SL2(C)). But every noncentral square root
of an element in Z(SL2(C)) has trace 0, so x must map to the proper closed subvariety of
trace 0 elements in SL2. ut

Theorem 3.19. If 0 ∈ B is finitely generated, nontrivial, and not isomorphic to Z, then

dim Hom(0,G) ≥ dimG+ rkG (8)

for all simply connected semisimple G.
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Proof. If 0 is abelian, it must be free abelian of rank r ≥ 2. If γ1, γ2 are two generators,
then eG,γ1 is surjective, and the fiber over g ∈ G(C) maps onto CG(g) under eG,γ2 . Since
the dimension of every centralizer is at least rkG [Hum95, §1.6], this implies (8). We can
therefore, by Lemma 2.8 and Theorem 3.17, assume that 0 is not virtually solvable, and
every finitely generated subgroup of 0 which is virtually solvable is abelian.

We say g ∈ G(C) is torus-generic if it is regular semisimple and generates a Zariski-
dense subgroup of T := CG(g) (which is a maximal torus by Steinberg’s theorem
[Hum95, Th. 2.11]). We claim that the complement of the subset of torus-generic ele-
ments lies in the union of countably many proper closed subvarieties of G. Indeed, there
are countably many closed subgroups S of a maximal torus T [Bor91, Cor. 8.3], and for
each such S, the set of conjugates of elements of S is contained in the proper closed
subvariety of G which is the Zariski closure of the conjugation map ξ : G × S → G.
All fibers of this morphism have dimension ≥ dim T because if (h, s) ∈ ξ−1(g), then
(hT , s) ⊂ ξ−1(g). By Theorem A.4,

ξ(G× S) ≤ dimG+ dim S − dim T < dimG.

Suppose that there exists a homomorphism φ : 0 → G(C) and γ1, γ2, γ3 ∈ 0 such
that:

(i) φ belongs to a unique irreducible component � of Hom(0,G);
(ii) the restriction of eG,γi to � is dominant for i ∈ {1, 2, 3};

(iii) φ(γi) is torus-generic for i ∈ {1, 2, 3};
(iv) γ3 lies in the derived group of 〈γ1, γ2〉.

We claim that these conditions imply (8). Any element of G(C) which commutes
with φ(γ1) and φ(γ2) is semisimple by (iii). Thus the identity component S of
StabG(φ(γ1), φ(γ2)) is a torus. If S is nontrivial, let s be an element which generates
a Zariski-dense subgroup of S. Then the centralizer H = CG(S) equals CG(s), and by
Steinberg’s theorem, it is connected and reductive, and S belongs to the center of H .
Thus the derived group D of H has rank strictly smaller than rkH , and therefore strictly
smaller than rkG. However, γ3 ∈ D(C) is torus-generic, so this is impossible.

We conclude that the orbit of φ(γ2) under conjugation by the maximal torus T1 :=

CG(φ(γ1)) has dimension dim T1 = rkG. Since conjugation by T1 fixes φ(γ1), the fiber
of the restriction of eG,γ1 to � has dimension at least rkG. By Theorem A.4, dim� ≥

dimG+ rkG.
To construct γi as above, we use induction on n to prove the following claim: if 1

denotes the free group on two generators, x and y, and 11, . . . ,1n ⊂ 1 have union 1•,
then for some i there exist γ1, γ2 ∈ 1i and some element γ3 in the intersection of 1i and
the derived group of 〈γ1, γ2〉. The case n = 1 is trivial. If the statement is true for n and
1 = 11 ∪ · · · ∪ 1n+1, then we observe that as no two of the elements x, xy, xy2, . . .

commute with one another, at least one of the sets 1i , without loss of generality 1n+1,
contains elements α, β which fail to commute. If 1n+1 contains some element of the
derived group of 〈α, β〉, then we are done. If not, we replace 1 by any subgroup 1′ of
[〈α, β〉, 〈α, β〉] generated by two noncommuting elements and replace 11, . . . ,1n by
1′i := 1i ∩1

′. The claim now follows by induction.
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By Theorem 1.3, 0 contains a subgroup1 isomorphic to the free group on two gener-
ators. We define the1i to be the intersections of1 with S�, as defined in Proposition 2.7,
as� ranges over the irreducible components of Hom(0,G). We fix� such that there exist
γ1, γ2, γ3 ∈ S� ∩1, with γ3 in the derived group of 〈γ1, γ2〉. Conditions (i) and (ii) on φ
are nonempty and open, and condition (iii) is satisfied on the complement of a countable
union of proper closed subvarieties of �. By Theorem A.5, all three can be satisfied si-
multaneously, and the theorem follows. ut

Corollary 3.20. If w ∈ F2 is a word such that for some simply connected semisimple
group G, the word map G2

→ G is flat over some neighborhood of the identity in G,
then the one-relator group 0 determined by w is not in B.

Proof. Applying Theorem A.4 to eG,w : G2
→ G, we deduce that the dimension of

w−1(1) = Hom(0,G) is dimG < dimG+ rkG. ut

We also have a version of Theorem 3.19 for L :

Theorem 3.21. Suppose 0 ∈ L is finitely generated and linear over C. If every virtually
solvable subgroup of 0 is cyclic, but 0 itself is not, then

dim Hom(0,G) ≥ dimG+ rkG

for all simply connected semisimple G.

Proof. By the Tits alternative, every noncyclic subgroup of 0 contains a free subgroup on
two generators x and y. For any semisimple G, the union of the sets S� associated with
the irreducible components � of Hom(0,G) consists of all nontorsion elements of 0.
Therefore, we can find two elements of the form xyi, xyj which belong to the same S�.
The proof now finishes in exactly the same way as the proof of Theorem 3.19. ut

With a little work, we can now deduce Theorem 1.7.

Proof of Theorem 1.7. Every hyperbolic von Dyck group is of the form

0 = 〈x1, x2, x3 : x
a
1 = x

b
2 = x

c
3 = x1x2x3 = 1〉,

where a, b, c are positive integers with 1/a + 1/b + 1/c < 1. As 0 embeds in PSL2(R),
it is linear, so it suffices to show that all of its virtually solvable subgroups are cyclic and
dim Hom(0,SL2) ≤ 3.

Let 1 ⊂ 0 be a virtually solvable subgroup, and let H ⊂ PGL2 denote its Zariski
closure. As H is virtually solvable, it is a proper closed subgroup of PGL2, and there-
fore either 0-dimensional, contained in a Borel subgroup, or contained in the normalizer
of a maximal torus. Since every finite subgroup of a von Dyck group is cyclic, we need
only consider the remaining two cases. Since 0 is a discrete and cocompact subgroup of
PSL2(R), it has no nontrivial unipotent elements [Kat92, Theorem 4.2.1], so if H is con-
tained in a Borel, it is contained in a maximal torus. Thus, we can assume a subgroup 1◦

of 1 of index ≤ 2 is contained in a maximal torus.
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The fact that 0 contains a hyperbolic surface group as a subgroup of finite index
implies that 1◦ contains a finite-index subgroup which is abelian and embeds in a hyper-
bolic surface group. This subgroup must be isomorphic to Z. Thus1◦ is an abelian group
containing Z as a subgroup of finite index. Since the elements of finite order in 0 all
have finite centralizers, 0◦ is torsion-free and therefore isomorphic to Z. The only groups
which contain Z as a subgroup of index≤ 2 are Z itself, Z×Z/2, and the infinite dihedral
group. Theorem 3.14 rules out the second and third cases. Thus, 1 is, indeed, cyclic.

For the dimension computation, we note that for all homomorphisms φ with
φ(x1) = I , φ is determined by φ(x2), so the subvariety of the representation variety
satisfying this condition has dimension ≤ 3. Likewise for x2 and x3, and likewise if some
φ(xi) is−I . Therefore, we can assume that φ(xi) has order≥ 3 for all i, and therefore the
eigenvalues λ±1

i are pairwise distinct. There are finitely many possibilities for λ1, λ2, λ3,
given the values a, b, c. We fix these values and show that the resulting subvariety X has
dimension ≤ 3. Indeed, ex1,SL2 maps X to the (2-dimensional) conjugacy class Y of the
diagonal matrix

Dλ1 :=

(
λ1 0
0 λ−1

1

)
.

As this morphism respects the conjugation action of SL2, and Y consists of a single
SL2-orbit, the dimension of the fibers Xy does not depend on y. We therefore consider
the fiber XDλ1

. By Theorem A.4, it suffices to prove that this dimension is 1. To do this,
we note that if

φ(x2) =

(
z11 z12
z21 z22

)
then z11 and z22 are uniquely determined by the conditions trace(φ(x2)) = λ2 + λ

−1
2

and trace(φ(x3)) = λ3 + λ
−1
3 . The product z12z21 is then uniquely determined by the

determinant 1 condition on φ(x2). As φ is determined by φ(x1) and φ(x2), this implies
that dimXDλ1

= 1. ut

We remark that one could bypass Theorem 3.21 here by proving directly that there
are finitely many SL2(C) orbits of homomorphisms 0 → SL2(C). However, the argu-
ment above gives a nontrivial example in which the hypotheses of Theorem 3.21 can be
checked.

4. An application to double word maps

In [BGGT12], Breuillard, Green, Guralnick, and Tao prove the following:

Theorem 4.1. Let w1, w2 be elements in a free group of rank 2 that do not commute. Let
a, b be generic elements of a semisimple Lie group G over an algebraically closed field.
Then w1(a, b) and w2(a, b) generate a Zariski-dense subgroup of G.

In light of this result, they ask the following:
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Question 2 ([BGGT12, Problem 2]). Can one characterize the set of pairs of words
(w1, w2) in the free group F2 such that the double word map G×G→ G×G given by

ew1,w2(a, b) = (w1(a, b), w2(a, b))

is dominant?

Theorem 1.1 provides an interesting class of examples for which the double word map is,
indeed, dominant.

Proof of Theorem 1.1. It suffices to prove the theorem for G simply connected and sim-
ple. Let w1 and w2 be fixed, and let φ := ew1,w2 denote the double word map associated
to (w1, w2). It suffices to find a point a := (a1, . . . , ak) ∈ G

k(C) at which the map φ∗ of
tangent spaces is surjective. By Theorem A.11, this implies that φ is dominant.

Let 0 denote the quotient of the free group on k generators xi by the normal subgroup
generated by the conjugacy class of w1, and let w̄2 6= 1 denote the image of w2 in this
group. We can identify the homomorphism variety Hom(0,G) with the variety e−1

w1
(1).

By assumption, this is an integral variety, and at every regular point a ∈ w−1
1 (1) ⊂

Gk(C), by Theorem A.12, ew1 ∗ : TaG
k
→ T1G is surjective. As 0 is assumed to be G-

free, ew̄2 is dominant. By Theorem A.11, there is an nonempty open set on which ew̄2

induces a surjection of tangent spaces, so we may choose a to belong to this set as well.
We consider the map

φ∗ : Ta(G
k)→ T(1,w2(a))(G×G) = T1(G)⊕ Tw2(a)(G).

As composition with projection onto the first summand gives the map ew1 ∗, to prove the
surjectivity of φ∗, it suffices to prove that at a, φ∗ ker ew1 ∗ projects onto Tw2(a)(G). It is
clear that Tae

−1
w1
(1) lies in the kernel of ew1 ∗, and we have chosen a such that ew̄2 ∗ is

surjective. The theorem follows.
To finish, note that oriented surface groups are residually free, and therefore G-free.

Further, for an oriented surface group 0, Hom(0,G) is integral by [Wei64, Li93]. Thus,
when k is even, we can pick w1 = [x1, x2] · · · [xk−1, xk]. ut

It would be interesting to find other significant examples of words w1 satisfying the hy-
potheses of the theorem. For instance, do they hold in general for words of the form

w1 := h(x1, . . . , xk)h(xk+1, . . . , x2k)?

Appendix A. Algebraic geometry background

We collect here some basic terminology and known facts regarding algebraic varieties,
with special reference to representation varieties.

By a variety X over a field K , we mean in this paper an affine scheme of finite type
over K , i.e. X = SpecA, where A is a finitely generated K-algebra, the coordinate ring
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of X. Recall that as a set, X consists of the prime ideals of A. It is endowed with the
Zariski topology, where the closed sets

V (I) = {P ∈ SpecA : I ⊂ P }

are in one-to-one correspondence with radical ideals I = rad(I ) of A. Maximal ideals m
of A correspond to points ofX which are closed in the Zariski topology. The set of closed
points of X is Zariski-dense in X [Eis95, Th. 4.19]; note that this is a property of spectra
of finitely generated algebras over a field and is not true for general affine schemes. The
Zariski tangent space Tx(X) at a closed point x in X corresponding to a maximal ideal m
of A is the linear dual of m/m2 regarded as a vector space over A/m.

A topological space is irreducible if it cannot be realized as a finite union of proper
closed subsets. The closed set V (I) (where I is assumed to be radical) is irreducible if
and only I is a prime ideal. By the Hilbert Basis Theorem, A is a Noetherian ring; the
ascending chain condition on ideals implies the descending chain condition on closed
subsets, so the process of decomposing closed subsets of SpecA into finite unions of
proper closed subsets must terminate, and SpecA can be written as a finite union of
irreducible components. Each component can be regarded as a variety in its own right,
namely SpecA/P , where P is the prime ideal associated to the component. Every prime
ideal of A contains the nilradical radA, and X is irreducible if and only if radA is prime,
in which case it is the unique minimal prime ideal, which will be denoted η ∈ X. If
I ⊂ radA, every prime ideal of A contains I , so that from a topological point of view
there is no difference between SpecA and SpecA/I .

If L is an extension field of K , we denote by X(L) the set of L-points of X, i.e.,
the set of K-homomorphisms A → L. If K is algebraically closed, then by Hilbert’s
Nullstellensatz, X(K) is identified with the closed points of X, so X(K) is Zariski-dense
in X. We will usually consider the case K = C, and we sometimes fail to distinguish
between X and X(C) when this is unlikely to cause confusion.

We say SpecA is integral if A is an integral domain. This is the case if and only if
SpecA is irreducible and radA = (0).

A morphism of varieties f : X = SpecA → SpecB = Y is determined by a ho-
momorphism φ : B → A of K-algebras. If y ∈ Y corresponds to the prime ideal P
of B, then the fiber of f at y, denoted by Xy , is the variety over Frac(B/P ) associated to
A⊗K Frac(B/P ), where Frac denotes the field of fractions of an integral domain.

Theorem A.1. If f : X → Y is a morphism of varieties and X is irreducible, then the
Zariski closure of f (X) is irreducible.

Proof. As X is irreducible, the point η, corresponding to the nilradical of the coordi-
nate ring of A, is Zariski-dense in X. The closure of any point of a topological space is
irreducible, so f (η) is an irreducible subset of Y . As

{f (η)} ⊂ f (X) ⊂ f (η),

taking closures, we obtain f (X) = f (η). ut
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Let 0 be a group, K a field, and G an algebraic group over K , i.e., a group object in the
category of varieties over K . If X is a K-variety with coordinate ring A, 8 : 0 → G(A)

is a homomorphism, and B is a K-algebra, then every element of X(B) determines a
homomorphism A → B, therefore a homomorphism G(A) → G(B), and by composi-
tion with 8, a homomorphism 0 → G(B). If 0 is finitely generated, then there exists a
finitely generated K-algebra A and a homomorphism 8 : 0 → G(A) which is universal
in the sense that for all K-algebras B, there is a one-to-one correspondence between ho-
momorphisms 0 → G(B) and elements of X(B). (For a proof, see [LM85, Prop. 1.2],
where a valid general argument is given under the unnecessary hypotheses that K is al-
gebraically closed and of characteristic zero andG = GLn.) When 0 is a free group on d
generators, X = Gd . More generally, if 0 is a quotient of Fd , we can regard X as the
closed subvariety of Gd given by the conditions that each relation word γ ∈ kerFd → 0

maps to the identity in G. In particular, for a group 0 given by a single relation γ ∈ Fd ,
we can identify Hom(0,G) with the fiber of the evaluation morphism eFd ,γ : G

d
→ G at

the identity 1 ∈ G(K).
We observe (see [LM85]) that this construction works over a general commutative

ground ring R, so if G is an affine group scheme over R, then Hom(0,G) is represented
by SpecA for some finitely generated R-algebra A. This construction respects change
of base ring so for example if R = Z, G = SLn,Z, and Hom(0,G) is represented by a
Z-algebra A, then for all primes p, Hom(0,Fp) is represented by A⊗ Fp.

If Y is an irreducible variety, we say a morphism f : X → Y is dominant if f (X) is
Zariski-dense in Y . This is equivalent to the statement that f (�) is dense in Y for some
irreducible component � of X. The following theorem is an immediate consequence of
Chevalley’s Theorem [Eis95, Cor. 14.7]:

Theorem A.2. The image of a dominant morphism X → Y contains a nonempty open
subset of Y .

A morphism X = SpecA→ Y = SpecB corresponding to a K-algebra homomorphism
φ : B → A is flat if A is flat when regarded as a B-module via φ. We say X → Y is
flat in a neighborhood of a point x ∈ X corresponding to a prime ideal P if there exists
b ∈ B such that φ(b) 6∈ P and A[1/φ(b)] is flat as a B[1/b]-module. In particular, ifX is
irreducible, we say X→ Y is generically flat if it is flat in a neighborhood of the generic
point η of X. Note that generic here means generically in X.

Theorem A.3. If A and B are integral domains, then SpecA → SpecB is dominant if
and only if it is generically flat.

Proof. As B is an integral domain, if SpecA→ SpecB is dominant then φ : B → A is
injective. Grothendieck’s generic freeness lemma [Eis95, Th. 14.4] says that there exists
a nonzero b such that A[1/φ(b)] is free, and therefore flat, as a B[1/b]-module. Con-
versely, if there exists b ∈ B such that A[1/φ(b)] is flat as B[1/b]-module, then every
nonzero element of B[1/b] maps to a nonzero element of A[1/φ(b)]. Since B is an in-
tegral domain, B → A[1/φ(b)] is injective [Eis95, Cor. 6.3]. As this homomorphism
factors through B → A, the latter morphism is injective, and the generic point of SpecA
maps to the generic point of SpecB. ut
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By the dimension of X = SpecA, we mean the Krull dimension of A, which is the
maximum possible length n of a chain of prime ideals P0 ( P1 ( · · · ( Pn of A. Note
that the dimension of a variety is the maximum of the dimensions of its components.
For an irreducible variety SpecA, the dimension of X equals the transcendence degree
of Frac(A/radA) [Eis95, §8.2.1, Th. A]. Given a morphism X → Y , the function y 7→
dimXy is not in general constant on irreducible components of Y . However, we have the
following facts:

Theorem A.4. Let f : X→ Y be a morphism of irreducible varieties. Then:

(1) The function which assigns to each x ∈ X the dimension of the irreducible component
of Xf (x) to which x belongs is upper semicontinuous.

(2) If f is dominant, there exists a nonempty open set of Y on which every irreducible
component of Xy has dimension dimX − dimY .

(3) If f is dominant and flat in a neighborhood of y, then dimXy = dimX − dimY .
(4) Every component of Xy has dimension at least dimX − dimY .

Proof. The first part is a special case of [Eis95, Th. 14.8a]. For the remaining statements,
let us first assume that f is dominant, i.e., we have a homomorphism φ : B → A for which
f−1(radA) = radB. If we replace A and B by A/radA and B/radB respectively and φ
by the induced homomorphism A/radA → B/radB, then A and B become integral
domains and φ becomes an injection, but at the level of points nothing changes. So, we
can apply [Eis95, Cor. 13.5] and deduce that the dimension of the generic fiber (which
is irreducible since X is) satisfies dimXη = dimX − dimY . Item (1) now implies (2)
and (4) in the dominant case. Item (3) follows from (2) and [Eis95, Th. 10.10]. For (4),
if f is not dominant, we can replace B by B/kerφ, which means, topologically, that Y is
replaced by f (X). The general statement follows. ut

The following result is an algebraic analogue of the Baire Category Theorem.

Theorem A.5. Let K be an algebraically closed field and J a set whose cardinality is
strictly less than that of K . If X is an irreducible variety over K and {Xj : j ∈ J } a
collection of proper closed subvarieties, then

X(K) \
⋃
j∈J

Xj (K) 6= ∅.

Proof. Without loss of generality we can assume that X is irreducible over K . Replacing
A by A/radA does not change the underlying set, so without loss of generality we can
assume A is an integral domain. We use induction on dimX. If dimX = 1, every proper
subvariety has a finite number of 0-dimensional components, so it suffices to prove that
|X(K)| ≥ |K|. Let a denote any element of its fraction field which is not in K . Then
t 7→ a defines a morphism SpecA → SpecK[t]. The Zariski closure of the image is
irreducible, hence either a point or all of SpecK[t]. As a is not constant, Theorem A.2
implies that the image contains all but finitely many elements of K . Since K is infinite,
the cardinality of the image equals that of K , which finishes the base case.

For the induction step, we again use a morphism X→ SpecK[t] given by a noncon-
stant element a. Again the image contains all but finitely many points of SpecK[t], and
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by Theorem A.4 all components of all nonempty fibers of this morphism have dimension
dimX − 1. Therefore, no irreducible proper subvariety of X can contain a component of
more than one fiber, and no proper subvariety of X can contain components of more than
a finite number of fibers. It follows that some nonempty fiber has an irreducible compo-
nent X′ not contained in any of the Xj . By replacing X by X′ and each Xj by X′ ∩ Xj ,
the theorem follows by induction. ut

In particular, we apply this theorem in the case where K = C and J is countable.

Theorem A.6. The following three conditions on a finitely generated K-algebra A are
equivalent:

(1) SpecA⊗K L is irreducible for all finite K-extensions L.
(2) SpecA⊗K K̄ is irreducible for some algebraic closure K̄ of K .
(3) SpecA⊗K L is irreducible for all K-extensions L.

Proof. By [Gro65, Prop. 4.5.9], (1) implies (3). It is trivial that (3) implies (2). To see
that (2) implies (1), we note that AL := A ⊗K L fails to be irreducible for some finite
extension L if and only if there exist f, g ∈ AL which are not nilpotent and such that
fg = 0. Realizing L as a K-subextension of K̄ , we conclude that AK̄ also contains
nonnilpotent elements which multiply to zero. ut

We say a variety X = SpecA over K is geometrically irreducible if A satisfies any of
these equivalent conditions. From Theorem A.6 and the finiteness of the set of irreducible
components SpecAK̄ , which is a variety over K̄ , it follows that K has some finite ex-
tension L such that AL is a finite union of geometrically irreducible components. By the
proof of [Gro65, Cor. 4.5.11], the field of fractions of AK̄/P , where P is any minimal
prime ideal, contains a finite extension of Frac(A/radA), so the transcendence degrees
overK are equal. It follows that the dimension of every irreducible component of SpecAL
equals dimA.

Theorem A.7. Let A be a finitely generated Z-algebra. If there exist infinitely many
primes p such that A ⊗ Fp is a geometrically irreducible Fp-algebra of dimension n,
then A⊗ C is irreducible of dimension n.

Proof. This is a special case of [Gro66, Th. 9.7.9]. ut

Replacing X by Xred
:= SpecA/radA does not change X(L) for any field extension L

of K , so if K is a finite field Fq , we have |X(Fqn) = Xred(Fqn) for all n ∈ N. Now, Xred

is a variety in the sense of Lang–Weil [LW54], so by the result of that paper,

|X(Fqn)| = qn dimX(1+ o(1)).

If X is irreducible, then for some m ∈ N,

Xm := SpecA⊗Fq Fqm

decomposes as a union of c irreducible varieties of dimension dimX, and

|X(Fqmn)| = |Xm(Fqmn)| = cqmn dimX(1+ o(1)).
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For any variety, we can take m sufficiently divisible that Xm is a union of geometrically
irreducible components, and

|X(Fqmn)| = cdimXq
mn dimX(1+ o(1)),

where ck is the number of irreducible components of dimension k. From this we deduce:

Theorem A.8. If |X(Fqn)| = (1 + o(1))qkn, then X has a single component of dimen-
sion k, it is geometrically irreducible, and all other components have lower dimension.

A local ring B with maximal idealM is regular if dimB/M M/M
2
= dimB. In the special

case of B = Am where m is the maximal ideal corresponding to a closed point x, this is
equivalent to the condition dim TxX = dimX, and we say that X is regular at x. If all
local rings of A are regular, we say that X is nonsingular.

Theorem A.9. Suppose K is a perfect field and a K-variety X is regular at a closed
point x ∈ X(K). Then there exists an element f ∈ A which does not lie in the maximal
ideal associated to x, a morphism

Y = Spec[y1, . . . , ym] → Z = Spec[z1, . . . , zm−n],

and an isomorphism i : SpecA[1/f ] → Yz, where z corresponds to the ideal

(z1, . . . , zm−n),

such that the induced map of Zariski tangent spaces Ti(x)Y → TzZ is surjective. More-
over, there exists a morphism fromX to SpecK[t1, . . . , tn] which induces an isomorphism
of tangent spaces at x.

Proof. Conversely, since K is perfect, if X is regular at x, then Yz → SpecK is smooth
at i(x) in the sense of Grothendieck [Gro67, Cor. 17.15.3]. By [Mil80, I Prop. 3.24], for
some m ≥ n and some P1, . . . , Pm−n ∈ K[y1, . . . , ym], there exists f 6∈ m such that

A[1/f ] ∼= K[y1, . . . , ym]/(P1, . . . , Pm−n)

and

det
(
∂Pi

∂yj

)
1≤i,j≤m−n

is a unit in A[1/f ]. The K-homomorphism K[z1, . . . , zm−n] → K[y1, . . . ym] sending
zi 7→ Pi(y1, . . . , ym) determines a morphism Y → Z whose fiber over (z1, . . . , zm−n) is
isomorphic to SpecA[1/f ] and which induces a surjection of tangent spaces as claimed.
By [Gro67, Cor. 17.15.9], there is a morphism g : X→ SpecK[t1, . . . , tn] which is étale
at x and therefore smooth. Since the dimensions are equal, g induces an isomorphism of
tangent spaces at x [Gro67, Th. 17.11.1]. ut

Theorem A.10. If K is a local field, X/K a variety, and x a regular point of X corre-
sponding to a maximal ideal with A/m ∼= K , then X(K) is Zariski-dense in X.
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Proof. Let g be the morphism g : X → SpecK[t1, . . . , xn] of Theorem A.9. By the im-
plicit function theorem [Bou67, Th. 5.7.1], there exists a neighborhood of x in X(K)
which is aK-analytic manifold, and by a second application of the same result, g induces
an isomorphism from a neighborhood of x in X(K) to a neighborhood of g(i(x)) =
(0, . . . , 0) in Kn. If the Zariski closure of X(K) in X were of dimension < n, the
Zariski closure Z of its image in SpecK[t1, . . . , tn] would be a proper closed subvari-
ety of SpecK[x1, . . . , xn]. By induction on n, Z(K) ⊂ Kn cannot contain a subset of
the form Z1 × · · · × Zn where the Zi are all infinite. In particular, it cannot contain a
nonempty open subset of Kn. ut

Theorem A.11. Let f : X → Y be a morphism of integral varieties over C and x be a
regular point of X(C) such that f (x) is a regular point of Y (C). If TxX → Tf (x)Y is
surjective, then X → Y is dominant. Conversely, if X → Y is dominant, there exists a
nonempty open subset U ⊂ X(C) such that for all x ∈ U , TxX→ Tf (x)Y is surjective.

Proof. As x and y := f (x) are regular points,X→ SpecC and Y → SpecC are smooth
at x and y respectively. By [Gro67, Th. 17.11.1], surjectivity on the level of tangent spaces
now implies that X → Y is smooth (and therefore flat) at x. By [Gro66, Th. 11.1.1],
X→ Y is flat in a neighborhood of x, and hence is generically flat. By Theorem A.3, the
morphism is dominant.

For the converse, we use the Jacobian criterion for smoothness in the form [Eis95,
Cor. 16.23] to prove that there exists b ∈ B such that A[1/b] is smooth over B[1/b],
where A and B are the coordinate rings of X and Y respectively. ut

Theorem A.12. If f : X → Y is a dominant morphism of nonsingular irreducible va-
rieties over C, y ∈ Y (C), every component of Xy has dimension dimX − dimY , and
x ∈ Xy(C) is a nonsingular point, then TxX→ TyY is surjective.

Proof. By [Gro64, 0IV Cor. 17.1.3], X and Y are Cohen–Macaulay, and so by [Gro66,
Prop. 15.4.2], f is flat at every point of the fiber Xy . By [Gro67, Th. 17.5.1], f is smooth
at x, and by [Gro67, Th. 17.11.1], we conclude that TxX→ TyY is surjective. ut

Appendix B. Character bounds

Here, we present a character bound that is used in the proof of Theorem 1.5.

Theorem B.1. Given an integer n > 0 and positive real numbers α and β such that

α <
β2

1+ 2β
,

for all sufficiently large finite fields Fq , all irreducible characters χ of Gn := GLn(Fq),
and all semisimple elements x ∈ Gn whose maximal eigenvalue multiplicity is ≤ αn, we
have

|χ(x)| ≤ χ(1)β .
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We understand that Bezrukavnikov, Liebeck, Shalev, and Tiep have as yet unpublished
estimates of character values of groups of Lie types which are both stronger and more
general than this result. Our proof, however, is elementary, using only classical results on
the character theory of GLn(Fq) due to J. A. Green and Robert Steinberg.

Lemma B.2. Let n be an arbitrary natural number. There exists a real number Cn such
that if s is a natural number less than n and T : Fnq → Fnq is a semisimple linear
transformation whose eigenvalues all have algebraic multiplicity at most m, then the
number of s-dimensional Fq -subspaces of Fnq which are fixed by T is at most Cnqms .

Proof. Let V = Fnq decompose as a direct sum V
a1
1 ⊕· · ·⊕V

ar
r , where the Vi are pairwise

nonisomorphic irreducible Fq [T ]-modules of Fq -dimension b1, . . . , br respectively, and
a1, . . . , ar ≤ m. We can identify Vi with Fqbi in such a way that Fq [T ]-submodules
of V aii correspond to Fqbi -subspaces of Fai

qbi
. Every subspace W ⊂ V fixed by T is a

direct sum W1 ⊕ · · · ⊕ Wr , where each Wi is an Fq [T ]-submodule of V aii . For each
r-tuple of nonnegative integers wi such that

∑
i biwi = s, we can classify the subspaces

W such that dimF
qbi
Wi = wi by a product of r Grassmannians G(ai, wi)(Fqbi ). As

|G(ai, wi)(Fqbi )| =
∏ai
j=1(q

bij − 1)∏wi
k=1(q

bik − 1)
∏ai−wi
l=1 (qbi l − 1)

,

we have

logq
r∏
i=1

|G(ai, wi)(Fqbi )| =
r∑
i=1

biwi(ai − wi)+ o(1)

≤

r∑
i=1

biwim+ o(1) = ms + o(1). ut

Proof of Theorem B.1. Throughout the proof, we can and do assume without loss of
generality that q is sufficiently large in terms of n; o(1) means “smaller than any given
positive ε when q is large enough in terms of n and ε.” We also assume β < 1, since the
theorem is trivial otherwise.

We follow the notation and terminology of Green [Gre55]. For s a positive integer,
an s-simplex g is a q-Frobenius-orbit {φq

s
= φ, φq , φq

2
, . . . , φq

s−1
} of length s of

complex characters of the multiplicative group F×qs . We write s = d(g) and call it the
degree of s. By [Gre55, Th. 13], the irreducible characters ofGn are indexed by partition-
valued functions ν on the set S of simplices such that∑

g∈S

|ν(g)|d(g) = n,

where |p| denotes the sum of the parts of the partition p. Moreover, if g1, . . . , gk are the
simplices on which ν is supported, the character associated to ν is obtained by parabolic
induction from the characters of

G|ν(g1)|d(g1), . . . ,G|ν(gk)|d(g1k)
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associated with the partition-valued functions νi supported at gi and such that νi(gi) =
ν(gi). In particular, the degree of χ is at least |Gn/P |, where P is the parabolic subgroup
associated to the sequence

|ν(g1)|d(g1), . . . , |ν(gk)|d(gk).

We can assume the gi to be chosen in such an order that this sequence is nonincreasing.
If ν is supported on a single simplex, we say that the character is primary.

Let λ1 + · · · + λr = n express n as a sum of positive integers. If Pλ denotes the
stabilizer in Gn of a flag of Fq -spaces

(0) = V0 ⊂ V1 ⊂ · · · ⊂ Vr = Fnq , (9)

where dimFq Vi/Vi−1 = λi , then

|Gn/Pλ| =

∏n
i=1(q

i
− 1)∏r

i=1
∏λi
j=1(q

j − 1)
,

so

logq |Gn/Pλ| =
∑

1≤i<j≤r

λiλj + o(1) = n2/2−
r∑
i=1

λ2
i /2+ o(1).

In particular, if χ is a character of Gn induced from some character of Pλ, then

logq χ(1) ≥ n
2/2−

r∑
i=1

λ2
i /2+ o(1). (10)

If λ1 ≥ · · · ≥ λr , then

n2/2−
r∑
i=1

λ2
i /2 ≥

{
λ1(n− λ1) if λ1 ≥ n/2,
n2/4 if λ1 ≤ n/2.

(11)

Let a1, . . . , ak denote the eigenvalue multiplicities of x. As maxi ai ≤ αn and
∑
i ai = n,

we have
∑
i a

2
i ≤ αn

2. Since the centralizer C(x) of x in Gn is the group of Fq -points of
a connected reductive group of dimension

∑
i a

2
i ,

logq |C(x)| =
∑
i

a2
i + o(1) ≤ αn

2
+ o(1). (12)

By Schur’s lemma, |χ(x)| ≤ |C(x)|1/2, so if λ1 ≤ n/2, then by (10)–(12), |χ(x)| >
χ(1)β implies

βn2/4 ≤ β logq χ(1)+ o(1) < logq |χ(x)| + o(1) ≤
logq |C(x)|

2
+ o(1)

≤ (α/2)n2
+ o(1) <

β2

2+ 4β
n2
+ o(1),

impossible since β > 0. Thus, we assume λ1 > n/2.
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Let γ := α/β, so that γ < 1/2. We claim that if q is sufficiently large and
|χ(x)| > χ(1)β , then λ1 > (1− γ )n. Indeed, if n/2 ≤ λ1 ≤ (1− γ )n, then

αn2

2
≥

logq |C(x)|

2
+ o(1) ≥ logq |χ(x)| + o(1) > β logq χ(1)+ o(1)

≥ βλ1(n− λ1)+ o(1) ≥ βn2γ (1− γ )+ o(1) > αn2/2+ o(1),

which is impossible for large q. This justifies our claim. We therefore have

n− λ1 < γn < 2γ λ1.

Now χ arises by parabolic induction from an irreducible representation χ ′ of Gn−λ1

and a primary irreducible representation χ ′′ of Gλ1 , where n− λ1 < γn. Thus,

logq χ(1) = logq χ
′(1)+ logq χ

′′(1)+ λ1(n− λ1)+ o(1)

≥ logq χ
′′(1)+ λ1(n− λ1)+ o(1).

On the other hand, χ(x) can be written as a sum of terms of the form χ ′(x′)χ ′′(x′′), where
x′ ∈ Gn−λ1 , x′′ ∈ Gλ1 , and x′ ⊕ x′′ is conjugate to x. The terms in the sum are indexed
by elements of the Grassmannian of (n − λ1)-planes W ⊂ Fnq such that x preserves W ,
the action of x on W is conjugate to x′, and the action of x on Fnq/W is conjugate to x′′.

The dimension estimate

logq χ
′(1) ≤

(
n− λ1

2

)
+ o(1)

can be deduced from [Gre55], but can also be found in various forms in the literature.
(See, e.g., [Sei90, Th. 2.1], [LMT13, Th. 5.1].) By Lemma B.2, we have

logq |χ(x)| ≤ logq χ
′(1)+max

x′′
logq |χ

′′(x′′)| + α(n− λ1)n+ o(1)

< (n− λ1)
2/2+max

x′′
logq |χ

′′(x′′)| + α(n− λ1)n+ o(1)

< γλ1(n− λ1)+max
x′′

logq |χ
′′(x′′)| + α(n− λ1)n+ o(1)

< γ (n− λ1)n+max
x′′

logq |χ
′′(x′′)| + α(n− λ1)n+ o(1)

< β(n− λ1)n+max
x′′

logq |χ
′′(x′′)| + o(1) < β logq |χ(1)| + o(1)

provided that
logq |χ

′′(x′′)| ≤ β logq χ
′′(1)+ o(1)

for all semisimple x′′ ∈ Gλ1 with eigenvalue multiplicity less than or equal to

αn ≤
αλ1

1− γ
≤
β2λ1

1+ β
.

Replacing n by λ1 and χ ′′ by χ , we have a statement very similar to what we originally
set out to prove. The advantage over the original statement is that we can now assume that
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χ is primary; the disadvantage is that the upper bound on maximal eigenvalue multiplicity
as a fraction of matrix size is β2/(1+ β) instead of α = β2/(1+ 2β).

From now on we assume that χ is associated to a partition-valued function ν of sim-
plices supported on a single g. Denoting by s the degree of g and setting v = |ν(g)|, we
have n = sv. By [Gre55, Lemma 7.4], for each partition λ of v, there exists a rational
function {λ : t} such that

χ(1) =
( n∏
i=1

(qi − 1)
)
{ν(g) : qs}−1.

As this takes integer values for all prime powers q, it follows that the pole at t = ∞ of
{λ : t}−1 has order at most

(
v+1

2

)
. Thus,

logq χ(1) ≥
(
n+ 1

2

)
− s

(
v + 1

2

)
+ o(1) ≥

n2

4
+ o(1)

if s ≥ 2. If |χ(x)| > χ(1)β , then

β2

1+ β
n2
≥ logq |C(x)| + o(1) > 2 logq |χ(x)| + o(1)

≥ 2β logq χ(1)+ o(1) >
βn2

2
+ o(1),

which is impossible when q is sufficiently large since β < 1. Thus, we can assume that
s = 1, which means that after tensoring with a degree 1 character of Gn (which does not
affect |χ(x)|, of course), we can assume that ν is supported on the trivial simplex, i.e., χ
is a unipotent character.

Let χ = χλ denote the unipotent character associated with any partition λ1+· · ·+λr
= n. Let φλ be the permutation character associated with the same partition, i.e., the
character associated to the action ofGn on the set of Fq -flags (9). It is a classical theorem
of Steinberg [Ste51, §2, Cor. 1] that

φλ =
∑
µ

Kλ,µχµ,

where Kλ,µ is the Kostka number associated to λ and µ, and the sum is taken over all
partitionsµ of n. In particular,Kλ,µ = 0 unlessµ � λ in the partial order of majorization.
(This means thatµ1+· · ·+µs ≤ λ1+· · ·+λs for all s ≤ r , with equality when s = r .) It is
also known thatKλ,λ = 1, and from [Gre55, Lemma 7.4] it follows that dimχµ ≤ dimχλ
if q is sufficiently large and µ � λ. We can therefore proceed by induction with respect
to the partial order �. The base case is trivial, and it suffices to prove

logq |φλ(x)| ≤ β logq |φλ(1)| + o(1).

As the inner product of φλ with itself is bounded above independent of q, we have

logq |φλ(x)| ≤
logq |C(x)|

2
+ o(1) ≤

β2n2

2(1+ β)
+ o(1).
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Thus, by (10) and (11), λ1 > n/2. Now φλ(x) counts the number of x-stable flags (9)
with dimVi/Vi−1 giving the parts of the partition λ in some given order. We choose an
order such that dimFnq/Vr−1 = λ1. Each such flag determines the combinatorial data of
the multiplicities of the various eigenvalues of x on each Vi . This combinatorial data fixes
an irreducible component of the variety of x-stable flags. The number of possibilities for
the data is bounded independent of q, and each component is a product of flag varieties on
spaces of dimensions≤ β2n/(1+ β) whose dimensions add up to n−λ1. The dimension
of a flag variety on a space of dimension a is less than a2/2, and since the eigenspaces of
x all have dimension ≤ β2n/(1+ β), we deduce that

logq |φλ(x)| ≤
β2(n− λ1)n

2(1+ β)
+ o(1).

On the other hand,

logq φλ(1) =
n2
−
∑r
i=1 λ

2
i

2
+ o(1) ≥ λ1(n− λ1)+ o(1)

≥ (n− λ1)n/2+ o(1),

so this implies logq |φλ(x)| < β logq φλ(1) for all q sufficiently large. ut
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analytiques. Fascicule de résultats (Paragraphes 1 à 7). Actualités Sci. Indust. 1333,
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