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Abstract. A closed geodesic on the modular surface is “low-lying” if it does not travel “high” into
the cusp. It is “fundamental” if it corresponds to an element in the class group of a real quadratic
field. We prove the existence of infinitely many low-lying fundamental geodesics, answering a
question of Einsiedler–Lindenstrauss–Michel–Venkatesh.
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1. Introduction

In this paper, we answer a question of Einsiedler–Lindenstrauss–Michel–Venkatesh on
the abundance of “low-lying” closed geodesics on the modular surface which are “funda-
mental” (see the definitions below). The main difficulty is to produce a strong “level of
distribution” for a particular set coming from a “thin orbit.”
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1.1. Statement of the main theorem

Let D > 0 be a fundamental discriminant, that is, the discriminant of a real quadratic
fieldKD = Q(

√
D), and let CD be the class group ofKD , with class number hD = |CD|.

To each class γ ∈ CD , we associate in the standard way a closed geodesic (by abuse of
notation also called γ ) in the unit tangent bundle

X := PSL2(Z)\PSL2(R) ∼= T 1(PSL2(Z)\H)

of the modular surface. Not every closed geodesic on X corresponds to an element of the
class group of a real quadratic field; we call those that do fundamental. The following
rank-one question arose around 2004 in the work of Einsiedler–Lindenstrauss–Michel–
Venkatesh on higher rank analogues of Duke’s Theorem (see [ELMV09, §1.5] and the
discussion below).

Question 1.1. Does there exist a compact subset Y ⊂ X which contains infinitely many
fundamental geodesics?

Geodesics confined to a compact region obviously never enter “high” in the cusp, and
hence cannot equidistribute in X ; we refer to these as low-lying (in Y). A natural set of
candidate such, as observed by Sarnak, are the geodesics coming from Markov triples (see
[Sar07, pp. 226, 234]), the difficulty being to understand when these are fundamental. (In
fact, this very question initiated the study of the Affine Sieve [BGS06, BGS10, SGS13].)
While we are unable to show the infinitude of fundamental Markov geodesics (which, if
they exist, are extremely rare [Zag82]), our main goal (see Theorem 1.8 below) is to give
an affirmative answer to Question 1.1, in a strong quantitative sense.

Before stating our result, we put Question 1.1 in perspective, by first recalling Duke’s
equidistribution theorem. Let µX be the probability Haar measure on X , and associate
to each class γ ∈ CD (or rather, the corresponding geodesic) the probability arc-length
measure µγ . Then Duke’s theorem [Duk88] asserts the equidistribution of µγ ’s to µX on
average over CD , for large discriminant:

1
hD

∑
γ∈CD

µγ
weak*
−−→ µX as D→∞. (1.2)

The goal of asking Question 1.1 is to try to understand to what extent it is necessary
to average over CD in (1.2), or whether perhaps the equidistribution already happens at
the level of individual closed geodesic orbits (as is expected in higher rank analogues
from rigidity phenomena conjectured by Cassels/Swinnerton-Dyer, Furstenberg, Mar-
gulis, etc.). This question turns out to be quite subtle, as we indicate below.

It will be instructive to keep in mind the two examples illustrated in Figure 1. First re-
call some basic notions. Write [A,B,C] for the binary quadratic form Ax2

+Bxy+Cy2,
and {[A,B,C]} for the corresponding class. The discriminant

D = B2
− 4AC, (1.3)
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(a) D = 1337, hD = 1
= {[19, 27,−8]}

(b) D = 1365, hD = 4
= {[35, 35,−1]}, = {[7, 35,−5]},
= {[23, 33,−3]}, = {[19, 23,−11]}

Fig. 1. Fundamental geodesics in CD

assumed throughout to be positive, is fundamental if eitherD is square-free (in which case
D ≡ 1 (mod 4)), or D ≡ 0 (mod 4), in which case D/4 is square-free and D/4 ≡ 2, 3
(mod 4). To associate a closed geodesic to a class γ = {[A,B,C]}, connect the two real
Galois-conjugate roots

α, ᾱ =
−B ±

√
D

2A
(1.4)

by a geodesic in T 1H, and project modulo PSL2(Z). We first consider the situation in

Example I (D = 1337 = 7 × 191, Figure 1a). While infinitely many closed geodesics
are defined over K = Q(

√
1337), only one of them is fundamental, because K has

class number one, h1337 = 1. This one fundamental geodesic, corresponding to the class
{[19, 27,−8]}, is not particularly “low-lying” (of course that depends on one’s choice of
the compact region Y), illustrating the difficulty of Question 1.1.

In fact, whenever the field KD has class number one (as conjecturally happens infinitely
often), there is obviously no averaging in Duke’s theorem (1.2), and the one geodesic in
the class is individually becoming equidistributed. Moreover, Popa’s refinement [Pop06]
of Waldspurger’s theorem, together with a subconvex bound for certain Rankin–Selberg
L-functions (see [HM06]), implies that, as long as the class number is not too large,

hD < Dη for some small η > 0,
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then every geodesic in CD is individually becoming equidistributed, that is, without av-
eraging over CD as in (1.2). Assuming the Lindelöf hypothesis (which is a consequence
of GRH) for such L-functions, Popa’s work implies that the exponent η can be taken as
large as 1/4−ε. Meanwhile, it is widely believed that the same individual equidistribution
holds with η as large as 1/2− ε, for any fixed ε > 0. So to even have a chance of seeing
any non-equidistributing behavior (as in Theorem 1.8), one must take the class number
almost as large as possible,

hD > D1/2−o(1). (1.5)

On the other hand, such discriminants should be quite rare. Indeed, it is a longstanding
open problem that the average class number satisfies, crudely,∑

0<D<T
fundamental

hD
?
= T 1+o(1) (T →∞).

If true, this estimate and the above heuristic would imply that there can only be very few
discriminants with such large class number,

#{0 < D fundamental < T : hD > D1/2−o(1)
}

?
< T 1/2+o(1). (1.6)

Despite this rarity, there does exist a standard way of making large class numbers,
namely, by considering discriminants of the special form

D = t2 − 4. (1.7)

Then the fundamental solution to the Pellian equation

T 2
−DS2

= 4

is (T , S) = (t, 1), whence the fundamental unit εD is as small as possible,

εD =
t +
√
D

2
�
√
D.

Dirichlet’s Class Number Formula and Siegel’s (ineffective) Theorem then give, crudely,

hD =
√
D
L(1, χD)

log εD
> D1/2−o(1).

Not surprisingly, we will be looking for low-lying (and hence non-equidistributing) be-
havior among fundamental discriminants of the special form (1.7). (And since there are
about

√
T such up to T , we are not losing too much from (1.6).) This brings us to:

Example II (D = 1365 = 372
− 4 = 3 × 5 × 7 × 13, Figure 1b). The class num-

ber is h1365 = 4, and the behavior of the four fundamental geodesics defined over
Q(
√

1365) varies dramatically. The identity element of the class group C1365 is the
class {[35, 35,−1]}, and the corresponding geodesic shoots high up into the cusp; mean-
while the geodesic corresponding to {[19, 23,−11]} is very low-lying, not reaching above
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Im z = 2. Nevertheless, the four geodesics taken together equidistribute about as well as
the one geodesic in Example I, beautifully illustrating why one must average over CD for
Duke’s theorem (1.2) to hold.

Returning to Question 1.1, we may now state our main result.

Theorem 1.8. There exist infinitely many low-lying fundamental geodesics. More pre-
cisely, for each ε > 0, there is a compact region Y = Y(ε) ⊂ X , and a set D = D(ε) of
positive fundamental discriminants, such that:

(1) for each D ∈ D , many of the geodesics in the corresponding class group are low-
lying:

#{γ ∈ CD : γ ⊂ Y} > |CD|1−ε, (1.9)

(2) compared to (1.6), there are many discriminants in D:

#(D ∩ [1, T ]) > T 1/2−ε (T →∞). (1.10)

There are (at least) two ways to interpret this result. One can let ε → 0, so that the
inequalities (1.9)–(1.10) give more and more “low-lying” fundamental geodesics; unfor-
tunately the compact region Y(ε) will then approach X , giving less and less meaning to
“low-lying.” Alternatively, one can let ε be a fixed constant, say, ε = 1/100; then Y is
a fixed region containing infinitely many fundamental geodesics, giving an affirmative
answer to Question 1.1.

Again, in light of (1.6), the estimate (1.10) is almost sharp. In the Appendix, we show
(by more-or-less standard ergodic-theoretic techniques, combining Duke’s theorem and
mixing) that (1.9) is also essentially sharp, in the following sense.

Theorem 1.11. For any compact region Y ⊂ X , there is an ε = ε(Y) > 0 such that

#{γ ∈ CD : γ ⊂ Y} < |CD|1−ε

as D→∞ through all non-square integers.

1.2. Ingredients

We now describe some of the tools going into the proof of Theorem 1.8, beginning with
a series of reformulations.

1.2.1. Step 1: Convert to continued fractions. By the well-known connection [Hum16,
Art24, Ser85] between continued fractions and the cutting sequence of the geodesic flow
on X , the condition that a geodesic γ be low-lying can be reformulated as a Diophantine
property of the corresponding visual point α in (1.4), as follows. Given any α ∈ R, write
its continued fraction expansion as

α = a0 +
1

a1 +
1

a2 +
. . .

= [a0, a1, a2, . . . ],
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where a0 ∈ Z and aj ∈ Z≥1 for j ≥ 1; the numbers aj are called the partial quotients
of α. When α is a visual point of a closed geodesic, it is a quadratic irrational, and hence
has an eventually periodic continued fraction expansion. By applying a PSL2(Z) action,
we may assume that α is reduced, meaning that−1 < ᾱ < 0 < 1 < α; then the continued
fraction expansion of α is exactly (as opposed to eventually) periodic.

Cutting off the cusp of X at some height C < ∞ leaves a compact region Y = X ∩
{Im z ≤ C}, and the condition that a geodesic γ is low-lying (in Y) is essentially equiva-
lent to its visual point α having all partial quotients bounded by some A = A(C) <∞.

To illustrate this fact, we return for a moment to Figure 1. In Example I, the one
fundamental geodesic in the class C1337 corresponds to a reduced visual point α having
the continued fraction expansion

{[19, 27,−8]} ! [1, 1, 2, 17, 1, 8, 5, 8, 1, 17, 2, 1, 1, 3, 1, 35, 1, 3].

The large partial quotient 35 is responsible for the high excursion of the geodesic in Fig-
ure 1a.

Meanwhile, the four geodesics in Example II correspond to the continued fraction
expansions

{[35, 35,−1]} ! [1, 35],
{[7, 35,−5]} ! [5, 7],
{[23, 33,−3]} ! [1, 1, 1, 11],
{[19, 23,−11]} ! [1, 1, 1, 2, 1, 2],

and the very small partial quotients of the last of these explain the corresponding low-
lying geodesic in Figure 1b.

To ensure that a fundamental geodesic is low-lying, one can try to force its visual
point to have all partial quotients bounded by some height A <∞. Alternatively, one can
first consider all reduced quadratic irrationals with partial quotients bounded by A, and
try to understand when these come from fundamental geodesics. We will take the latter
approach, which turns out to be a sieving problem on a certain “thin orbit.”

1.2.2. Step 2: Convert to thin orbits. It is elementary that the matrix

γ =

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·

(
a` 1
1 0

)
(1.12)

fixes the quadratic irrational
α = [a0, a1, . . . , a`], (1.13)

thus converting questions on continued fractions into ones about matrix products. In par-
ticular, we will be interested in the traces of matrices of the form (1.12), in light of

Lemma 1.14. A sufficient condition for a closed geodesic [γ ] to be fundamental is that

tr(γ )2 − 4 is square-free. (1.15)
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Note that the corresponding discriminant D = tr(γ )2 − 4 is then fundamental and of the
special form (1.7). Here is a quick proof: The fixed points of γ =

(
a b
c d

)
are easily seen

to be

α, ᾱ =
a − d ±

√
tr(γ )2 − 4

2c
. (1.16)

Now assume that D := tr(γ )2 − 4 is square-free. Comparing (1.16) with (1.4), we set
B := d− a and A := c. Solving (1.3) for C gives C = −b. Then the equivalence class of
the form Q = [A,B,C] has fundamental discriminant D, and hence corresponds to the
fundamental geodesic [γ ], as desired.

Thus to study the traces of matrix products of the form (1.12) with all aj ≤ A, we
should introduce the semigroup of finite products of such matrices,1

GA :=
〈(
a 1
1 0

)
: a ≤ A

〉+
⊂ GL2(Z). (1.17)

Preferring to work in SL2, we immediately pass to the even-length (determinant-one)
subsemigroup

0A := GA ∩ SL2(Z), (1.18)

which is (finitely) generated by the products
(
a 1
1 0

)
·
(
b 1
1 0

)
for a, b ≤ A.

The reason we call 0A “thin” is the following. Let N be a growing parameter, and let

BN ⊂ SL2(R) (1.19)

be a ball about the origin of size N in the Frobenius norm

‖g‖2 = tr(tgg).

A theorem of Hensley [Hen89] states that

#(0A ∩ BN ) �A N2δA (N →∞), (1.20)

where δA is the Hausdorff dimension of the Cantor-like fractal of all numbers with partial
quotients bounded by A:

δA := H.dim {[a0, a1, a2, . . . ] : aj ≤ A} ∈ (0, 1). (1.21)

This dimension has been studied extensively, and it is known [Hen92] that it can be made
arbitrarily close to 1 by taking A large,

δA = 1−
6

π2A
+ o

(
1
A

)
(A→∞). (1.22)

On the other hand, the set of Z-points in the Zariski closure of 0A is just SL2(Z), and
it is classical that #(SL2(Z) ∩ BN ) � N2, instead of the much “thinner” count N2δA as
in (1.20).

In light of Lemma 1.14 and (1.20), the main Theorem 1.8 will follow without much
effort from

1 The superscript + in (1.17) denotes generation as a semigroup, that is, no inverses.
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Theorem 1.23. Many elements in 0A have traces satisfying (1.15). More precisely, for
any η > 0, there is an A = A(η) <∞ such that

#{γ ∈ 0A ∩ BN : tr(γ )2 − 4 is square-free} > N2δA−η (N →∞). (1.24)

The problem is thus reduced to

1.2.3. Step 3: Try to execute a sieve. This subsection is purely expository and heuris-
tic; we will give a rough discussion of the sieving procedure, deferring the precise (and
somewhat technical) statements to §3.

To sieve for square-free values of tr(γ )2 − 4, we need to understand their distribution
modulo q, as γ ranges roughly in 0A ∩ BN , taking q as large as possible relative to N .
Since tr(γ )2 − 4 is of size N2 when γ is of size N , we introduce the parameter

T = N2. (1.25)

Letting β(q) be the proportion of matrices in SL2(q) for which tr(γ )2 − 4 ≡ 0 (mod q),
one might expect that

rq(T ) :=
∑

γ∈0A∩BN
tr(γ )2−4≡0 (q)

1− β(q)
∑

γ∈0A∩BN

1

is a “remainder” term, which should be “small” in the following sense. We would like
that for some large Q, these remainders summed up to Q still do not exceed the total size,∑

q<Q
|rq(N)| = o(#(0A ∩ BN )). (1.26)

If this can be rigorously established, then we call Q a level of distribution (for A). Note
that this is not a quantity intrinsic to our problem, but rather a function of what one can
prove. The larger this quantity, the more control one has on the distribution of the set of
traces on such arithmetic progressions. If moreover (1.26) can be confirmed with Q as
large as a power of the parameter T ,

Q = T α, α > 0, (1.27)

then we say that α is an exponent of distribution for A.
The by-now “standard” Affine Sieve procedure applies in this context, and produces

some (weak) exponent of distribution α > 0. We briefly sketch the method now, before
explaining why it is insufficient in our context. A theorem of Bourgain–Gamburd–Sarnak
[BGS11] says very roughly (see Theorem 2.2 for a precise statement) that we do have
equidistribution in 0A mod q, in the sense that there are constants

2 > 0 (1.28)

and C <∞ such that, for all q ≥ 1 and all γ0 ∈ SL2(q),∣∣∣∣ ∑
γ∈0A∩BN
γ≡γ0 (q)

1−
1

|SL2(q)|

∑
γ∈0A∩BN

1
∣∣∣∣ “� ” qCN2δ−2, (1.29)
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where the implied constant is independent of γ0 and q. (We reiterate that the error in
(1.29) is heuristic only; a statement of this strength is not currently known. That said, the
true statement serves the same purpose in our application.) The positivity of2 in (1.28) is
called the “spectral gap” or “expander” property of 0A, and follows from a resonance-free
region for the resolvent of a certain “congruence” transfer operator (see §2.1). Summing
(1.29) over those γ0 ∈ SL2(q) with tr(γ0)

2
− 4 ≡ 0 (mod q), and then over q up to Q,

one proves (1.26) with Q = Nα and exponent of distribution

α = 2/C − ε (1.30)

for any ε > 0. (The value of C may change from line to line.)
It turns out that this standard procedure is just shy of giving our main result! To

successfully execute the sieve (that is, convert (1.26) into Theorem 1.23), one needs the
exponent of distribution to be strong enough to overcome the thinness of 0A, in the sense
that we need something like

α > 10(1− δA) (1.31)

(see §7.1). The term on the right can be made arbitrarily small (cf. (1.22)), so it seems
that by taking A large enough, we should establish (1.31). Unfortunately, the spectral
gap 2 in (1.28) coming from the proof in [BGS11] is a priori a function of A, and it
is an extremely important open problem to understand its behavior with respect to A.
Presumably 2 should not deteriorate to zero as A increases, but present methods are
insufficient to show this, rendering the exponent (1.30) useless towards (1.31). Of course
one can try to directly follow the proof in [BGS11], but then the A dependence will be
abysmal, and insufficient relative to (1.22) to produce the required inequality (1.31).

Rather than attacking this difficult problem head-on, we circumvent it as follows.

1.2.4. Step 4: Prove an exponent of distribution beyond expansion. Instead of control-
ling the remainders (1.26) using only expansion (1.29), we seek to go beyond the direct
procedure of the Affine Sieve, producing a stronger exponent of distribution to ensure
that (1.31) is satisfied. We employ two novel techniques here, which appear in some form
already in [BK10, BK11, BK14a, BK14b, BK15]. The first is to take inspiration from
Vinogradov’s method, replacing the full archimedean ball 0A ∩ BN by a product of sev-
eral such, which more readily captures the semigroup structure, and moreover allows de-
velopment of techniques from estimating “bilinear” forms. The second innovation is, for
larger values of q, to capture the condition tr(γ )2 − 4 ≡ 0 (mod q) by abelian harmonic
analysis, rather than the “spectral” method in (1.29). One then faces various exponential
sums over our thin semigroup 0A, but after some applications of Cauchy–Schwarz, one
uses positivity to replace 0A by the full ambient group SL2(Z), allowing employment of
more classical tools. This loss is acceptable as long as the dimension δA of 0A is suffi-
ciently near 1, that is, as long as A is large enough. In the end, we are able to produce the
strong exponent of distribution (for A large) of

α = 1/34. (1.32)

In fact, our methods prove the exponent α = 1/32−ε (and further refinements would give
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α = 1/8− ε), but (1.32) is already more than sufficient for (1.31); for ease of exposition,
we will not strive for optimal exponents.

Inserting the strong exponent of distribution in (1.32) into (1.31), we are able to sieve
down to square-free values of tr(γ )2 − 4, thus establishing Theorem 1.23, from which
Theorem 1.8 follows easily.

The proof of Theorem 1.11 is by completely different methods, namely, a combination
of mixing, Duke’s theorem, and standard tools in ergodic theory.

1.3. Organization

In §2, we collect some preliminaries needed in the sieve analysis. We spend §3 construct-
ing the main “bilinear” set 5 ⊂ 0A used for sieving, and stating the main sieving theo-
rems. The main term is analyzed in §4, while the errors are handled in §5. We prove the
main sieving theorem (see Theorem 3.15) in §6, and derive Theorem 1.8 in §7. Finally,
the appendix proves Theorem 1.11.

1.4. Notation

We use the following notation throughout. Set e(x) = e2πix and eq(x) = e(x/q). We use
f ∼ g to mean f/g → 1. The symbols f � g and f = O(g) are used interchangeably
to mean the existence of an implied constant C > 0 such that f (x) ≤ Cg(x) for all
x > C; moreover f � g means f � g � f . The letters c, C denote positive constants,
not necessarily the same at each occurrence. Unless otherwise specified, implied constants
may depend at most on A, which is treated as fixed. The letter ε > 0 is an arbitrarily small
constant, not necessarily the same at each occurrence. When it appears in an inequality,
the implied constant may also depend on ε without further specification. The symbol 1{·}
is the indicator function of the event {·}. The trace of a matrix γ is denoted tr(γ ). The
number of divisors of n is denoted τ(n). The greatest common divisor of n and m is
written (n,m) and their least common multiple is [n,m]. The symbol ν(n) denotes the
number of distinct prime factors of n. The cardinality of a finite set S is denoted |S| or #S.
The transpose of a matrix g is written tg. When there can be no confusion, we use the
shorthand a ≡ b (q) for a ≡ b (mod q). The prime symbol ′ in

∑
′

r mod q means the range
of r mod q is restricted to (r, q) = 1.

2. Preliminaries

In this section, we state two results that are needed later, namely Propositions 2.9 and
2.17. We recommend the reader to skip the proofs on the first pass, instead proceeding
directly to §3.

2.1. Expansion

In this subsection, we make precise the “expansion” theorem heuristically stated in (1.29).
We will only require expansion for the fixed value A0 = 2, so as to make the expan-
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sion constants absolute, and not dependent on A (see the discussion after (1.31) and Re-
mark 6.8).

To this end, let 02 ⊂ SL2(Z) be the semigroup as in (1.18) corresponding to A0 := 2.
It is easy to see that 02 is free, that every non-identity matrix γ ∈ 02 is hyperbolic, and
that

tr γ � ‖γ ‖.

Note also that the group 〈02〉 generated by the semigroup 02 is all of SL2(Z). This im-
mediately implies that for any q ≥ 1, the mod q reduction of 02 is everything,

02 mod q ∼= SL2(q). (2.1)

The following theorem is a consequence of the general expansion theorem proved by
Bourgain–Gamburd–Sarnak [BGS11].

Theorem 2.2 ([BGS11]). Let 02 be the semigroup above. There exists an absolute
square-free integer

B ≥ 1, (2.3)

absolute constants c, C > 0, and an absolute “spectral gap”

2 = 2(A0) > 0, (2.4)

such that, for any square-free q ≡ 0 (B) and any ω ∈ SL2(q), as Y →∞, we have

#{γ ∈ 02 ∩ BY : γ ≡ ω (q))} =
|SL2(B)|

|SL2(q)|
|{γ ∈ 02 ∩ BY : γ ≡ ω (B)}|

+O(#{γ ∈ 02 : ‖γ ‖ < Y } · E(Y ; q)), (2.5)

where

E(Y ; q) :=

{
e−c
√

logY if q ≤ C logY,
qCY−2 if q > C logY.

(2.6)

Remark 2.7. This theorem is proved in [BGS11, Theorem 1.5] under the assumption
that, instead of 02, one is given a convex-cocompact subgroup of SL2(Z). But the proof
is the same when the group is replaced by our free semigroup 02; we emphasize again
that 02 has no parabolic elements. The error term (2.6) is consequence of a Tauberian
argument applied to a resonance-free region [BGS11, Theorem 9.1] of the form

σ > δA0 − Cmin
{

1,
log q

log(1+ |t |)

}
, σ + it ∈ C, (2.8)

for the resolvent of a certain “congruence” transfer operator (see [BGS11, §12] for de-
tails). For small q, we only obtain a “Prime Number Theorem”-quality error (given here
in crude form), while for larger q, (2.8) is as good as a resonance-free strip.
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We have stated the result only for the case B | q. The distribution modulo B cannot be
obtained directly from present methods, even though all reductions of 02 are surjective
(see (2.1)). Nevertheless, one can construct a set which has the desired equidistribution
for all q, as claimed in

Proposition 2.9. Given any Y � 1, there is a non-empty subset ℵ = ℵ(Y ) ⊂ 02 ∩ BY
such that, for all square-free q and all a0 ∈ SL2(q),∣∣∣∣#{a ∈ ℵ : a ≡ a0 (q)}

|ℵ|
−

1
|SL2(q)|

∣∣∣∣� E(Y ; q). (2.10)

Here E is given in (2.6).

Note that we do not have particularly good control on the cardinality of ℵ; regardless, the
estimate (2.10) is only nontrivial if q < Y2/C . The construction of the set ℵ proceeds in
a similar way to [BK14a, §8]; we give a sketch for the reader’s convenience.

Proof of Proposition 2.9 (sketch). Let the constants B, c, C, and2 be as in Theorem 2.2;
they depend only on A0 = 2, that is, they are absolute.

Let U be a parameter to be chosen later relative to Y . Let

R := |SL2(B)| � 1, S(U) := {γ ∈ 02 : ‖γ ‖ < U}.

From (1.20), we have
#S(U)� U2δ2 ,

where δ2 = δA0 is the corresponding Hausdorff dimension. Then by the pigeonhole prin-
ciple, there exists some sU ∈ S(U) such that the set

S ′(U) := {γ ∈ 02 : ‖γ ‖ < U, γ ≡ sU (B)}

has cardinality

#S ′(U) ≥
1
R

#S(U)� U2δ2 .

Observe that the elements in S ′(U) · sR−1
U are all congruent to the identity mod B.

Write SL2(B) = {γ1, . . . , γR}, and find x1, . . . , xR ∈ 0 with xj ≡ γj (B). Such xj can be
found of size ‖xj‖ � 1.

For each j = 1, . . . , R, let

S ′j (U) := S ′(U) · sR−1
U · xj .

This is a subset of 02 in which each element s has size

‖s‖ � UR.

Choose U � Y 1/R so that all elements s ∈
⋃
j S ′j (U) satisfy ‖s‖ < Y . Then we claim

that

ℵ :=

R⊔
j=1

S ′j (U)

gives the desired special set.
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Indeed, applying Theorem 2.2 shows that for each j=1, . . . , R, any q with q≡0 (B),
and any ω ∈ SL2(q) with ω ≡ xj (B), we have

#{s ∈ S ′j (U) : s ≡ ω (q)} = #{s ∈ S ′(U) : s ≡ ω(sR−1
U xj )

−1 (q)}

= #{s ∈ S(U) : s ≡ ω(sR−1
U xj )

−1 (q)}

=
|SL2(B)|

|SL2(q)|
#{s ∈ S(U) : s ≡ sU (B)} +O(E(U ; q))

=
|SL2(B)|

|SL2(q)|
#S ′j (U)+O(E(U ; q)).

Then the sets S ′j (U) each have good modular distribution properties for distinct residues
mod B. Note that they also all have the same cardinality, namely that of S ′(U). Moreover,
after renaming constants, we have E(U ; q)� E(Y ; q).

The equidistribution (2.10) is now clear for any q ≡ 0 (B), while the same for other
q is obtained by summing over suitable arithmetic progressions. ut

2.2. An exponential sum over SL2(Z)

In this subsection, we state an estimate, showing roughly that there is cancellation in a
certain exponential sum over SL2(Z) in a ball. We identify Z4 withM2×2(Z), and observe
that for A,B ∈ M2×2(Z),

tr(tAB) = A · B, (2.11)

where the operation on the right is the dot product in Z4. We first give the following local
result.

Lemma 2.12. For any square-free q ≥ 1, any vector s ∈ Z4 with (s, q) = 1, and any
ε > 0, ∣∣∣ ∑

γ∈SL2(q)

eq(γ · s)
∣∣∣� q3/2+ε.

Proof. We could appeal to Deligne, but in fact the estimate is elementary, involving only
Weil’s bound for Kloosterman sums. The left hand side is multiplicative and q is square-
free, so we may consider just the case of q = p prime. Writing s = (x, y, z, w), we
may assume that, say, y 6≡ 0 (p). Writing γ ∈ SL2(p) as γ =

(
a b
c d

)
, we break the sum

according to whether or not c ≡ 0. The former case contributes∑
′

amodp

∑
bmodp

ep(ax + by + āw) = 0,

since y 6≡ 0 (p). When c 6≡ 0, we have∑
′

cmodp

∑
a,d modp

ep
(
ax + c̄(ad − 1)y + cz+ dw

)
=

∑
′

cmodp

ep(cz− c̄y)
∑

amodp

ep(ax)
∑

d modp

ep(d(c̄ay + w)).
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The d sum vanishes except for the one value of a ≡ −cȳw (p), in which case it con-
tributes p. What remains is a Kloosterman sum in c, which is bounded by 2

√
p, since

y 6≡ 0 (p). ut

The next result we record is well-known (see, e.g., a special case of [BK15, Theorem 2.9]).

Lemma 2.13. Let X � 1 be a growing parameter. There exists a function

ϕX : SL2(R)→ R≥0

which approximates the indicator of an archimedean ball, by which we mean the follow-
ing. We have the lower bound

ϕX(g) ≥ 1 (2.14)

on ‖g‖ ≤ X, and the upper bound∑
ξ∈SL2(Z)

ϕX(ξ) � X2. (2.15)

Moreover, for any q ≥ 1, and any γ0 ∈ SL2(q),∑
ξ∈SL2(Z)
ξ≡γ0 (q)

ϕX(ξ) =
1

|SL2(q)|

∑
ξ∈SL2(Z)

ϕX(ξ)+O(X
3/2). (2.16)

The error term in (2.16) comes from applying Selberg’s 3/16th spectral gap [Sel65]; of
course better estimates are now known [KS03], but since we are not optimizing exponents,
we will use the simplest results which suffice.

Combining the previous two lemmata, we obtain the main result of this subsection

Proposition 2.17. Let ϕX be as in Lemma 2.13. For any square-free q ≥ 1, any vector
s ∈ Z4 with (s, q) = 1, and any ε > 0,∣∣∣ ∑

ξ∈SL2(Z)
ϕX(ξ)eq(ξ · s)

∣∣∣� q−3/2+εX2
+ q3X3/2 (X→∞). (2.18)

Proof. Decompose the left side of (2.18) according to the residue class of ξ in SL2(q),
and apply (2.16) and (2.15), to get∣∣∣ ∑

ξ∈SL2(Z)
ϕX(ξ)eq(ξ · s)

∣∣∣ = ∣∣∣ ∑
γ∈SL2(q)

eq(γ · s)
∑

ξ∈SL2(Z)
ξ≡γ (q)

ϕX(ξ)

∣∣∣
�

∣∣∣ ∑
γ∈SL2(q)

eq(γ · s)
∣∣∣ X2

|SL2(q)|
+O(q3X3/2).

The estimate follows from Lemma 2.12. ut
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3. Construction of 5 and the sieving theorem

3.1. Construction of the set 5

The first goal in this subsection is to construct an appropriate subset 5 of 0A ∩ BN in
which to execute our sieve. Let A < ∞ be fixed, let 0A be the semigroup in (1.18), and
let δA be the corresponding dimension (1.21), assumed to be near 1. Since A is fixed, we
henceforth drop the subscripts, writing 0 = 0A and δ = δA. Recall also that implied
constants may depend on A without further specification.

Recall that N is our main growing parameter, and let

X = Nx, Y = Ny, Z = Nz, x, y, z > 0 (3.1)

be some parameters to be chosen later; they will decompose N , in the sense that

N = XYZ, that is, x + y + z = 1. (3.2)

We think of X as large, X > N1−η, and Y and Z as tiny.
Let ℵ = ℵ(Y ) ⊂ 02 ⊂ 0 be the set constructed in Proposition 2.9, and let

40 := {ξ ∈ 0 : ‖ξ‖ < X}, �0 := {ω ∈ 0 : ‖ω‖ < Z} (3.3)

be norm balls in 0. While we do not have good control on the size of |ℵ|, recall from
(1.20) that

|40| � X
2δ, |�0| � Z

2δ. (3.4)
We will want the products

ξ0 · a · ω0

to be unique for ξ0 ∈ 40, a ∈ ℵ, ω0 ∈ �0; since 0A is a free finitely-generated semi-
group, this will be the case if the wordlength `(·) in the generators (1.17) is fixed in each
norm ball. It is easy to see that the wordlength metric is commensurable to the log-norm,

`(γ ) � log ‖γ ‖ . (3.5)

Then by the pigeonhole principle and (3.4), there is some `X � logX such that, defining

4 := {γ ∈ 40 : `(γ ) = `X},

we have
#4� X2δ/logX. (3.6)

Similarly, there is some `Z � logZ such that if we define� to be the subset of�0 having
wordlength exactly `Z , then

#�� Z2δ/logZ. (3.7)
Then the product

5 := 4 · ℵ ·� (3.8)
is a subset (and not a multi-set, since the products are unique) of 0. By (3.2), we clearly
have

5 ⊂ 0 ∩ B100N . (3.9)
The set 5 will have our desired “bilinear” (in fact, multi-linear) structure, suitable for
sieving.
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3.2. Statement of the sieving theorem

We can finally state the main sieving theorems for 5.

Theorem 3.10. Let 5AP denote the set of elements $ ∈ 5 for which tr($)2 − 4 is
“almost prime,” in particular having no “small” prime factors,

5AP := {$ ∈ 5 : p | (tr($)2 − 4)⇒ p > N1/350
}.

Then for any sufficiently small η > 0, there is an A = A(η) sufficiently large, and a
choice of the parameters X, Y , Z in (3.1), such that

#5AP > N2δ−η (N →∞). (3.11)

Theorem 3.10 will easily imply Theorem 1.23, and will itself be easily implied by the
following “level of distribution” result.

Define the sifting sequence A = {aN } by

aN (n) :=
∑
$∈5

1{tr($)2−4=n}. (3.12)

Note that, by (3.9),
suppA ⊂ {n� T }, (3.13)

where T = N2 (see (1.25)). For a parameter Q and any square-free q < Q, we define

|Aq| :=

∑
n≡0 (q)

aN (n). (3.14)

Theorem 3.15. For any sufficiently small η > 0, there is an A = A(η) sufficiently large
such that the sequence A has level of distribution

Q = T 1/32−η. (3.16)

More precisely, there is a multiplicative function β : N → R satisfying the “quadratic
sieve” condition ∏

w≤p<z

(1− β(p))−1
≤ C

(
log z
logw

)2

(3.17)

for some C > 1 and any 2 ≤ w < z; and a decomposition

|Aq| = β(q)|5| + r(q) (3.18)

such that, for all K <∞, ∑
q<Q

square-free

|r(q)| �K |5|(logN)K . (3.19)

Moreover, we can choose
X = N1−η (3.20)

in the decomposition (3.8) of 5, so that

#5� N2δ−η. (3.21)
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We now give a quick

Sketch of Theorem 3.10 assuming Theorem 3.15. The deduction is standard. The content
of the latter is that the sifting sequence A has “sieve dimension” κ = 2, and any exponent
of distribution α < 1/32; this confirms the discussion below (1.32). Taking α = 1/34,
say (again, we are not striving for optimal exponents), and using the crudest Brun sieve
(see, e.g., [FI10, Theorem 6.9]), one shows that∑

n
(n,Pz)=1

aN (n)� |5|/(logN)2, (3.22)

where Pz =
∏
p<z p and z does not exceed T α/(9κ+1)

= T 1/646
= N1/323; we take

z = N1/350. Of course any n = tr($)2 − 4 coprime to Pz has no prime factors below z.
Then (3.22) and (3.21) confirm (3.11) after renaming constants. ut

We focus henceforth on establishing Theorem 3.15.

3.3. The decomposition

The decomposition (3.18) is determined as follows. Inserting (3.12) into (3.14) gives

|Aq| =

∑
$∈5

1{tr($)2−4≡0 (q)} =
∑

tmodq
t2
≡4 (q)

∑
$∈5

1{tr($)≡t (q)}.

Rather than applying expansion (that is, the analogue of (1.29)) directly, we first cap-
ture the indicator function by abelian harmonic analysis, writing

|Aq| =

∑
tmodq
t2
≡4 (q)

∑
$∈5

1
q

∑
q|q

∑
′

r mod q

eq(r(tr($)− t)).

Introducing a new parameterQ0 < Q, we obtain the decomposition (3.18) from breaking
the penultimate sum above according to whether q < Q0 or not. To this end, we write

|Aq| =Mq + r(q), (3.23)

say, where

Mq :=

∑
tmodq
t2
≡4 (q)

∑
$∈5

1
q

∑
q|q
q<Q0

∑
′

r mod q

eq(r(tr($)− t)) (3.24)

will be treated as a “main” term, the remainder r(q) being an error. The two terms are
handled separately in the next two sections.
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4. Main term analysis

First we wish to record the following elementary calculation. Recall that ν(n) is the num-
ber of distinct prime factors of n.

Lemma 4.1. For q square-free,

#{t ∈ Z/qZ : t2 ≡ 4 (q)} = 2ν(q)−1{2|q} . (4.2)

Proof. Since q is square-free, the equation is multiplicative. If q is prime, then t2 ≡ 4
implies t ≡ ±2, which has two solutions unless q = 2. ut

We now analyze the Mq term in (3.24), proving the following

Proposition 4.3. Let β be the multiplicative function given at primes by

β(p) :=
1+ 1{p 6=2}

p

(
1+

1
p2 − 1

)
. (4.4)

There is a decomposition

Mq = β(q)|5| + r
(1)(q)+ r(2)(q), (4.5)

where ∑
q<Q
|r(1)(q)| � |5|(logQ)2

(
1

ec
√

logY
+QC

0 Y
−2

)
, (4.6)

and ∑
q<Q
|r(2)(q)| � |5|

Qε

Q0
. (4.7)

Proof. Inserting the definition (3.8) of 5 into (3.24) gives

Mq =

∑
tmodq
t2
≡4 (q)

∑
ξ∈4

∑
ω∈�

1
q

∑
q|q
q<Q0

∑
′

r mod q

∑
a∈ℵ

eq(r(tr(ξaω)− t))

=

∑
tmodq
t2
≡4 (q)

∑
ξ∈4

∑
ω∈�

1
q

∑
q|q
q<Q0

∑
′

r mod q

∑
a0∈SL2(q)

eq(r(tr(ξa0ω)− t))
[ ∑

a∈ℵ
a≡a0 (q)

1
]
.

Applying (2.10) to the innermost sum gives

Mq =M(1)
q + r

(1)(q),

say, where

M(1)
q :=

∑
tmodq
t2
≡4 (q)

|5| ·
1
q

∑
q|q
q<Q0

∑
′

r mod q

1
|SL2(q)|

∑
a0∈SL2(q)

eq(r(tr(a0)− t)),
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and

|r(1)(q)| � τ(q)|5| ·
1
q

∑
q|q
q<Q0

q4E(Y ; q).

Here we have used (4.2), and the error E is as given in (2.6). (Recall that τ(n) is the
number of divisors of n.) We estimate∑

q<Q
|r(1)(q)| � |5|

∑
q<Q0

q4E(Y ; q)
∑
q<Q

τ(q)

q

� |5|(logQ)2[(logY )Ce−c
√

logY
+QC

0 Y
−2
],

thus proving (4.6).
Returning to M(1)

q , we add back in the large divisors q of q, writing

M(1)
q =M(2)

q + r
(2)(q),

say, where

M(2)
q :=

∑
tmodq
t2
≡4 (q)

|5| ·
1
q

∑
q|q

∑
′

r mod q

1
|SL2(q)|

∑
a0∈SL2(q)

eq(r(tr(a0)− t)),

(That is, the condition q < Q0 has been dropped in M(2)
q .) Given t, let ρt(q) be the

multiplicative function given at primes by

ρt(p) :=
1

|SL2(p)|

∑
γ∈SL2(p)

∑
′

r modp

ep(r(tr(γ )− t)),

so that
M(2)

q =

∑
tmodq
t2
≡4 (q)

|5| ·
1
q

∏
p|q

(1+ ρt(p)).

Since t2 ≡ 4 (q) and p | q, we have t ≡ ±2 (p). By an elementary computation, we
then evaluate explicitly

ρt(p) =
1

p2 − 1
.

Using (4.2), we obtain
M(2)

q = |5|β(q),

with β as given in (4.4).
Lastly, we deal with r(2). Since we crudely have |ρt(q)| ≤ 1/q, we obtain the bound

|r(2)(q)| � τ(q)|5| ·
1
q

∑
q|q
q≥Q0

1
q
� |5|

qε

q

1
Q0
.

The estimate (4.7) follows immediately, completing the proof. ut
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Remark 4.8. Since Y in (3.1) is a small power of N , the first error term in (4.6) saves
an arbitrary power of logN , as required in (3.19). For the rest of the paper, all other error
terms will be power saving. In particular, if we set

Q0 = N
α0 , α0 > 0, (4.9)

the error in (4.7) is already a power saving, while the second term in (4.6) requires that

α0 < y2/C. (4.10)

It is here that we crucially use the expander property for 0 (in fact, it is only needed for
02 ⊂ 0); of course our whole point is to make the final level of distribution much larger.

5. Error term analysis

Returning to the decomposition (3.23), it remains to control the error term r(q) on aver-
age. Define

E :=
∑
q<Q
|r(q)| =

∑
q<Q

∣∣∣ ∑
t2≡4 (q)

∑
π∈5

1
q

∑
q|q
q≥Q0

∑
′

r mod q

eq(r(tr(ξaω)− t))
∣∣∣. (5.1)

Recall the decomposition N = XYZ from (3.2). Our main result is

Theorem 5.2. For any ε > 0, and any 1� Q0 < Q < N →∞,

E � Nε
|5|(XZ)1−δ

[
1

Q
1/4
0

+
1
Z1/4 +

Q4

X1/4

]
. (5.3)

As a first step, we massage E into a more convenient form. Let ζ(q) := |r(q)|/r(q) be the
complex unit corresponding to the absolute value in (5.1), and rearrange terms as

E =
∑

Q0≤q<Q

1
q

∑
′

r mod q

∑
$∈5

eq(r tr($)) · ζ1(q, r),

where we have set

ζ1(q, r) := q
∑
q<Q

q≡0 (q)

ζ(q)

q

∑
t2≡4 (q)

eq(−rt).

Decomposing 5 as in (3.8) and leaving the special set ℵ alone, we break the q-sum into
dyadic pieces. This gives

E �
∑
a∈ℵ

∑
Q0≤Q<Q

dyadic

1
Q
|E1(Q; a)|, (5.4)
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where we have defined

E1(Q; a) :=
∑
q�Q

∣∣∣ ∑′

r mod q

ζ1(q, r)
∑
ξ∈4

∑
ω∈�

eq(r tr(ξaω))
∣∣∣. (5.5)

Theorem 5.2 follows immediately from the following estimate on E1(Q; a).

Theorem 5.6. We have

|E1(Q; a)| � NεQ|4| |�|(XZ)1−δ
[

1
Q1/4 +

1
Z1/4 +

Q4

X1/4

]
. (5.7)

Proof. To begin, capture the absolute value in (5.5) by another factor |ζ2(q)| = 1, and
apply Cauchy–Schwarz in the “long” variable ξ in (5.5), obtaining

|E1(Q; a)|
2
� |4|

∑
ξ∈SL2(Z)

ϕX(ξ)

∣∣∣∑
q�Q

ζ2(q)
∑
′

r mod q

ζ1(q, r)
∑
ω∈�

eq(r tr(ξaω))
∣∣∣2.

Here we have used positivity and (2.14) to insert the weighting function ϕX from Propo-
sition 2.17 and extend the ξ -sum to all of SL2(Z). Since the trace of a product is a dot-
product (on identifying Z4 with M2×2(Z) as in (2.11)), it is linear, and hence when we
open the square, we obtain

|E1(Q; a)|
2
� Qε

|4|
∑

q,q ′�Q

∑
ω,ω′

∑
′

r mod q
r ′mod q ′

∣∣∣∣ ∑
ξ∈SL2(Z)

ϕX(ξ) e

(
ξ ·

[
r

q
aω−

r ′

q ′
aω′

])∣∣∣∣. (5.8)

Here we have used the crude estimate |ζ1(q, r)| � Qε.
Write the bracketed expression in lowest terms as

s
q0
:=

r

q
aω −

r ′

q ′
aω′, (5.9)

with s = s(q, q ′, r, r ′, ω, ω′, a) ∈ Z4 being coprime to q0 ≥ 1; here q0 depends on the
same parameters as s. To study this expression in greater detail, we introduce some more
notation. All variables labelled q, however decorated, denote square-free numbers.

Write

q̃ := (q, q ′), q = q1q̃, q ′ = q ′1q̃, q̂ := [q, q ′] = q1q
′

1q̃,

and observe from (5.9) that q1q
′

1 | q0 and q0 | q̂. Hence we can furthermore write

q̃0 := (q0, q̃), q̂ = q0q̂0 = q1q
′

1q̃0q̂0,

whence q0 = q1q
′

1q̃0. Note also that Q� q̂ � Q2.
Observe further that (5.9) implies

q ′1rω ≡ q1r
′ω′ (̂q0),
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and using detω = detω′ = 1 gives

(q ′1r)
2
≡ (q1r

′)2 (̂q0).

Since (q1r
′, q̂0) = 1 = (q ′1r, q̂0), we obtain

q ′1r ≡ uq1r
′ (̂q0), (5.10)

where u2
≡ 1 (̂q0). There are at most 2ν(q̂0) � Nε such u mod q̂0, where ν(m) is the

number of distinct prime factors of m. It follows that

ω ≡ uω′ (̂q0). (5.11)

To make full use of this last condition, we extend the ω-summation to all of SL2(Z),
again inserting the smoothing function ϕ, now to parameter Z. In summary, we have

|E1(Q, a)|
2
� |4|

∑
Q�q̂�Q2

∑
q1q
′

1q̃0q̂0=q̂
q:=q1q̃0q̂0�Q
q ′:=q ′1q̃0q̂0�Q

q0:=q1q
′

1q̃0

∑
umod q̂0
u2
≡1 (̂q0)

∑
′

r mod q

∑
′

r ′mod q ′
q ′1r≡uq1r

′ (q̂0)

∑
ω′∈�

∑
ω∈SL2(Z), ω≡uω′ (̂q0)

s:=q0(
r
q
aω− r′

q′
aω′)∈Z4

(s,q0)=1

ϕZ(ω)

∣∣∣ ∑
ξ∈SL2(Z)

ϕX(ξ)eq0(ξ · s)

∣∣∣.

Working from the inside out, apply (2.18) to the innermost ξ -sum, and (2.16) to the ω-
sum, estimating the ω′-sum trivially. There are at most q ′/q̂0 values for r ′, and at most q
values for r; note that

qq ′

q̂0
=
qq ′q0

q̂
�
Q2q0

q̂
.

The u-sum contributesNε, as does the sum over divisors of q̂. Putting everything together
gives

|E1(Q, a)|
2
� |4|Nε

∑
Q�q̂�Q2

∑
q0q̂0=q̂

Q2q0

q̂
|�|

[
Z2

q̂3
0
+ Z3/2

][
X2

q
3/2
0

+ q3
0X

3/2
]

� NεQ2
|4|2|�|2(XZ)2(1−δ)

∑
Q�q̂�Q2

1
q̂

[
1
q̂ 1/2 +

1
Z1/2 +

Q8

X1/2

]
,

where we have used (3.6) and (3.7). Theorem 5.6 follows immediately, as does Theo-
rem 5.2. ut
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6. Proof of the sieving theorem

In this section, we combine the analyses of the previous two to prove Theorem 3.15.
Let A = {aN (n)}n≥1 be as constructed in (3.12). Combining (3.23) and (4.5) gives

the decomposition

|Aq| = β(q)|5| + r
(1)(q)+ r(2)(q)+ r(q),

as in (3.18), with β given by (4.4). It is classical that (3.17) holds, so it remains to verify
(3.19) with Q being the level of distribution. Write

X = Nx, Y = Ny, Z = Nz, Q = T α = N2α, Q0 = N
α0 ,

with
x + y + z = 1. (6.1)

The bounds (4.6) and (4.7) are sufficient as long as y, α0 > 0 and

α0 < y2/C. (6.2)

The three error terms in (5.3) are sufficiently controlled if

α0/4 > (x + z)(1− δ), (6.3)
z/4 > (x + z)(1− δ), (6.4)
x/4 > 8α + (x + z)(1− δ). (6.5)

Remark 6.6. If we take y and α0 very small and x and δ very near 1, it is clear that (6.5)
will not allow us to do better than α < 1/32; this is what we achieve below.

Now, let η > 0 be given, sufficiently small, and set

α = 1/32− η,

as claimed in (3.16). We will assume further that

δ > 1− η

(more stringent restrictions on δ follow), and set

x = 1− η,

so that (3.20) and (3.21) are satisfied. Then an elementary computation shows that (6.5)
is satisfied.

After more elementary manipulations, we may set

z =
η

1+ C/2
, y = z ·

C

2
, α0 =

5
6
z,

and assume that
δ > 1−

η

5(1+ C/2)
. (6.7)



1354 Jean Bourgain, Alex Kontorovich

Then y2/C = 6
5α0 > α0, whence (6.2) is satisfied. Likewise,

z/4 > α0/4 = 5
24z >

1
5z > 1− δ > (x + z)(1− δ),

so that (6.3) and (6.4) hold. The condition (6.7) is guaranteed by taking A sufficiently
large (see (1.22)). This completes the proof of Theorem 3.15.

Remark 6.8. We emphasize again that it is in the last step here that we need ℵ to come
from the fixed group 02 ⊂ 0A. Indeed, the constants 2 and C are then absolute (see
Theorem 2.2), and do not depend on A, so (6.7) can be ensured by taking A large.

7. Proof of Theorem 1.8

Having established Theorem 3.15 (and hence Theorem 3.10) in the last section, we are in
a position to prove Theorem 1.23, from which we will deduce Theorem 1.8.

7.1. Proof of Theorem 1.23

The deduction from Theorem 3.10 is straightforward, but we give the details. We begin
by first bounding the trace multiplicity.

Lemma 7.1. For any A <∞, and any t ≥ 1,

#{γ ∈ 0A : tr(γ ) = t} � t1+ε. (7.2)

Proof. Let
(
a b
c d

)
∈ 0A have trace a + d = t . Since the entries of 0A are all positive,

there are at most t choices of a, whence d = t − a is determined. Then bc = ad− 1 ≤ t2

is determined, and there are� tε choices for the divisors b and c. ut

Returning to Theorem 1.23, let η > 0 be given. Applying Theorem 3.10 gives a suffi-
ciently large A = A(η) and a set5 ⊂ 0A∩BN such that (3.11) holds. To illustrate more
clearly the mechanism below, write

α = 1/350,

so that
5AP = {$ ∈ 5 : p | (tr($)2 − 4) ⇒ p > Nα

}.

Now, we have

#{γ ∈ 0A ∩ BN : tr(γ )2 − 4 is square-free}

≥ #{γ ∈ 5AP : tr(γ )2 − 4 is square-free} > N2δ−η
− #5�

AP, (7.3)

where we have used (3.11) and defined

5�
AP := {γ ∈ 5AP : tr(γ )2 − 4 is not square-free}.
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Now, for each γ ∈ 5�
AP, there is a prime p with p2

| (tr(γ )2 − 4). Since γ ∈ 5AP, we
thus have p > Nα , and moreover p2 divides either tr(γ ) + 2 or tr(γ ) − 2; in particular,
p � N1/2. Therefore, reversing orders and applying (7.2), we have

#5�
AP ≤

∑
Nα<p�N1/2

∑
t<N

t2−4≡0 (p2)

#{γ ∈ 0A ∩ BN : tr(γ ) = t}

�

∑
Nα<p�N1/2

N

p2N
1+ε
� N2−α+ε.

Inserting this estimate into (7.3) gives

#{γ ∈ 0A ∩ BN : tr(γ )2 − 4 is square-free} > N2δ−η
−O(N2−α+ε).

The above estimate is sufficient to establish (1.24), as long as, roughly,

2δ > 2− α. (7.4)

This explains (up to constants) the discussion on p. 1339 that the exponent of distribution
needs to be strong enough to overcome the thinness of 0A. Of course, since we have
proved the above with the absolute quantity α = 1/350, it follows that as long as δ −
η/2 > 1 − 1/700 (equivalently, A sufficiently large), we ensure that (7.4) holds. This
completes the proof of Theorem 1.23.

7.2. Proof of Theorem 1.8

Again, this will be an easy consequence of Theorem 1.23. Let

T := {t ≥ 1 : t2 − 4 is square-free},

and for an integer t and A <∞, let the trace multiplicity be

MA(t) := #{γ ∈ 0A : tr(γ ) = t}.

Our main claim is that, for any η > 0, there is an A sufficiently large such that∑
t∈T ∩[1,N ]

1{MA(t)≥t2δ−1−η} > N2δ−1−η. (7.5)

Indeed, from Theorem 1.23, we have

N2δ−η <
∑

t∈T ∩[1,N ]
MA,N (t) =

∑
t∈T ∩[1,N ]

MA,N (t)(1{MA,N (t)≥W } + 1{MA,N (t)<W }),

where we have introduced a parameter W to be chosen later. Using (7.2) gives

N2δ−η
� N1+ε

∑
t∈T ∩[1,N ]

1{MA,N (t)≥W } + NW,

from which (7.5) follows on setting W = N2δ−1−2η, say, and renaming constants.
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Now let ε > 0 be given, and take η > 0 small enough and A large enough that

2δ − 1− η > 1− ε. (7.6)

This choice of A = A(ε) corresponds to a compact region

Y = Y(ε) ⊂ X (= T 1(PSL2(Z)\H)),

as in §1.2.1. Define the set D = D(ε) to be

D := {D = t2 − 4 : t ∈ T , MA(t) > t2δ−1−η
}.

All D ∈ D are square-free, and hence fundamental, as are the corresponding geodesics
by Lemma 1.14. Moreover,

#(D ∩ [1, T ]) ≥ #{t ∈ T ∩ [1,
√
T ] :MA(t) > t2δ−1−η

} > T 1/2−ε

by (7.5) and (7.6). This confirms (1.10).
For each D = t2 − 4 ∈ D , the corresponding trace multiplicity satisfies

MA(t) > t1−ε > (
√
D)1−ε � |CD|

1−ε . (7.7)

Now, it is not the case that each γ ∈ 0A corresponds uniquely to a closed geodesic
on X , but since the corresponding visual points (1.13) of the geodesic are all reduced,
any two differ by a cyclic permutation of their partial quotients. Recalling from (3.5)
that the wordlength metric is commensurable with the log-norm, there can be at most
C log t such permutations. Together with (7.7), this gives (1.9), and completes the proof
of Theorem 1.8.

Appendix. Proof of Theorem 1.11

In this appendix, we prove Theorem 1.11; it is a pleasure to thank Elon Lindenstrauss for
suggesting the argument given here. Again, the method is more-or-less standard in the
ergodic-theory community, so we only give a sketch.

Let Y ⊂ X be a given compact region, and let D be a large non-square number (we
do not require that D be fundamental in this section), with corresponding class group CD
and class number hD . Recall again that Duke’s theorem (now in effective form) states
that, for a smooth function ψ on X = T 1(SL2(Z)\H), we have∫

X
ψ dµD =

∫
X
ψ dµX +O(D

−cSψ) (D→∞), (A.1)

where, as in (1.2),µX is Haar measure on X ,µD is the measure associated to CD , namely,

µD =
1
hD

∑
γ∈CD

µγ ,
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and Sψ is a finite-order Sobolev norm of ψ (see, e.g., [CU04]). The constant c > 0 in
the error rate of (A.1) could be made precise in terms of subconvexity bounds for certain
L-functions, but we prefer to keep the exponent qualitative for ease of exposition.

Let 0 ≤ F ≤ 1 be a fixed function on X which smoothly approximates the indicator
function of the complement X \ Y; in particular, we assume the support of F is outside
of Y . Now suppose that γ ∈ CD is a low-lying geodesic, γ ⊂ Y . Then, writing T for the
time-1 shift under the geodesic flow, we see for any x ∈ γ that T `.x ∈ γ , and hence

{x, T .x, . . . , T k−1.x} ∩ suppF = ∅.

Let
M :=

∫
X
F dµX

be the mean of F , so that F0 := F −M has mean zero. Furthermore, for a parameter k to
be chosen later (of size roughly logD), define

f :=
1
k
(F0 + T .F0 + · · · + T

k−1.F0).

Note that for such x, we have f (x) = −M , and hence

1
hD

∑
γ∈CD

1{γ⊂Y} ≤ µD({x : {x, T .x, . . . , T k−1.x} ∩ suppF = ∅})

≤ µD({x : |f (x)| ≥ M}) ≤
1
M2`

∫
X
f 2` dµD,

where we have introduced another parameter 1 ≤ ` ≤ k to be chosen later (of size a small
constant times k).

Apply Duke’s theorem (A.1) to the last term, getting

1
hD

∑
γ∈CD

1{γ⊂Y} ≤
1
M2`

∫
X
f 2` dµX +O(D

−cCk), (A.2)

where we have estimated S(f 2`) < Ck , since F is fixed. Now, the geodesic flow is a
Bernoulli flow, and hence mixing of all orders. It follows that∫

X
f 2` dµX �F0

(
2`
k

)`
. (A.3)

Inserting (A.3) into (A.2) gives

1
hD

∑
γ∈CD

1{γ⊂Y} �Y

(
2`
kM2

)`
+D−cCk. (A.4)

Choosing
k =

c

2 logC
· logD,
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say, makes the second error in (A.4) of size D−cCk = D−c/2. Choosing

` =
M2

4
· k,

say, makes the first term in (A.4) of size(
2`
kM2

)`
=

(
1
2

)`
= D−cM

2 log 2/(8 logC).

This last exponent determines ε = ε(Y), completing the proof.
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