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Abstract. Let A be a matrix whose columns X1, . . . , XN are independent random vectors in Rn.
Assume that the tails of the 1-dimensional marginals decay as P(|〈Xi , a〉| ≥ t) ≤ t−p uniformly in
a ∈ Sn−1 and i ≤ N . Then for p > 4 we prove that with high probability A/

√
n has the Restricted

Isometry Property (RIP) provided that the Euclidean norms |Xi | are concentrated around
√
n. We

also show that the covariance matrix is well approximated by empirical covariance matrices and
establish corresponding quantitative estimates on the rate of convergence in terms of the ratio n/N .
Moreover, we obtain sharp bounds for both problems when the decay is of the type exp(−tα) with
α ∈ (0, 2], extending the known case α ∈ [1, 2].

Keywords. Random matrices, norm of random matrices, approximation of covariance matrices,
compressed sensing, restricted isometry property, log-concave random vectors, concentration in-
equalities, deviation inequalities, heavy tails, spectrum, singular values, order statistics

1. Introduction and main results

Fix positive integers n,N and letA be an n×N random matrix whose columnsX1, . . . , XN
are independent random vectors in Rn. For a subset I ⊂ {1, . . . , N} of cardinality m, de-
note byAI the n×mmatrix whose columns areXi, i ∈ I . We are interested in estimating
the interval of fluctuation of the spectrum of some matrices related to A when the ran-
dom vectors Xi , i ≤ N , have heavy tails; firstly, uniform estimates of the spectrum of
(AI )>AI which is the set of squares of the singular values of AI , where I runs over all
subsets of cardinalitym for some fixed parameterm, and secondly estimates for the spec-
trum of AA>. The first problem is related to the notion of Restricted Isometry Property
(RIP) with m a parameter of sparsity, whereas the second is about approximation of a
covariance matrix by empirical covariance matrices.
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These questions have been substantially developed over recent years and many papers
devoted to these notions were written. In this work, we say that a random vector X in Rn
satisfies hypothesis H(φ) with parameter τ ≥ 1 if

H(φ) : ∀a ∈ Sn−1
∀t > 0 P(|〈X, a〉| ≥ t) ≤ τ/φ(t) (1)

for a certain function φ, and we assume thatXi satisfies H(φ) for all i ≤ N . We will focus
on two choices of the function φ, namely φ(t) = tp with p > 4, which means heavy tail
behavior for marginals, and φ(t) = (1/2) exp(tα) with α ∈ (0, 2], which corresponds
to an exponential power type tail behavior and extends the known subexponential case
(α = 1, see [3, 4]).

The concept of the Restricted Isometry Property was introduced in [10] in order to
study an exact reconstruction problem by means of the `1-minimization algorithm, clas-
sical in compressed sensing. Although it provided only a sufficient condition for recon-
struction, it played a decisive role in the development of the theory, and it is still an
important property. This is mostly due to the fact that a large number of important classes
of random matrices have RIP. It is also noteworthy that the problem of reconstruction can
be reformulated in terms of convex geometry, namely in terms of neighborliness of the
symmetric convex hull of X1, . . . , XN , as was shown in [12].

Let us recall the intuition of RIP (for the definition see (9) below). For an n × N
matrix T and 1 ≤ m ≤ N , the isometry constant of order m of T is the parameter
0 < δm(T ) < 1 such that the squares of the Euclidean norms |T z| and |z| are ap-
proximately equal, up to a factor 1 + δm(T ), for all m-sparse vectors z ∈ RN (that is,
|supp(z)| ≤ m). Equivalently, this means that for every I ⊂ {1, . . . , N} with |I | ≤ m, the
spectrum of (T I )>T I is contained in the interval [1 − δm(T ), 1 + δm(T )]. In particular
when δm(T ) < θ for small θ , then the squares of all singular values of the matrices T I

belong to [1−θ, 1+θ ]. Note that in compressed sensing, for the reconstruction of vectors
by `1-minimization, one does not need RIP for all θ > 0 (see [12] and [11]). The RIP
implicitly contains a normalization, in particular it implies that the Euclidean norms of
the columns belong to an interval centered around one.

Let A be an n × N random matrix whose columns are X1, . . . , XN . In view of
the example of matrices with i.i.d. entries, centered and with variance one, for which
E|Xi |2 = n, we normalize the matrix by considering A/

√
n and we introduce the con-

centration function

P(θ) := P
(

max
i≤N

∣∣∣∣ |Xi |2n − 1
∣∣∣∣ ≥ θ). (2)

Until now the only known cases of random matrices satisfying RIP have been sub-
gaussian [9, 10, 12, 23] and subexponential [5] matrices. Our first main theorem says that
matrices we consider have RIP of order m, with “large” m of the form m = nψ(n/N)

with ψ depending on φ and possibly on other parameters. In particular, when N is pro-
portional to n, then m is proportional to n. We now present a simplified version of our
result; for the detailed version see Theorem 3.1 below.
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Theorem 1.1. Let 0 < θ < 1. Let A be a random n × N matrix whose columns
X1, . . . , XN are independent random vectors satisfying hypothesis H(φ) for some φ. As-
sume that n,N are large enough. Then there exists a function ψ depending on φ and θ
such that with high probability (depending on the concentration function P(θ)) the matrix
A/
√
n has RIP of order m = [nψ(n/N)] with a parameter θ (that is, δm(A/

√
n) ≤ θ).

The second problem we investigate goes back to a question of Kannan, Lovász and Si-
monovits (KLS). As before, assume that A is a random n × N matrix whose columns
X1, . . . , XN are independent random vectors satisfying hypothesis H(φ) for some φ. Ad-
ditionally assume that Xi’s are identically distributed as a centered random vectorX. The
KLS question asks how fast the empirical covariance matrix U := (1/N)AA> converges
to the covariance matrix 6 := (1/N)EAA> = EU . Of course this depends on assump-
tions on X. In particular, is it true that with high probability the operator norm satisfies
‖U − 6‖ ≤ ε‖6‖ for N proportional to n? Originally this was asked for log-concave
random vectors, but the general question of approximating the covariance matrix by sam-
ple covariance matrices is an important subject in statistics as well as in its own right. The
corresponding question in random matrix theory is about the limit behavior of smallest
and largest singular values. In the case of Wishart matrices, that is, when the coordinates
of X are i.i.d. centered random variables of variance one, the Bai–Yin theorem [7] states
that under the assumption of boundedness of the fourth moments the limits of minimal
and maximal singular numbers ofU are (1±

√
β)2 as n,N →∞ and n/N → β ∈ (0, 1).

Moreover, it is known [6, 30] that boundedness of the fourth moment is necessary in order
to have the convergence of the largest singular value. The asymptotic non-limit behavior
(also called “non-asymptotic” in statistics), i.e., sharp upper and lower bounds for singu-
lar values in terms of n andN , when n and N are sufficiently large, was studied in several
works. To keep the notation more compact and clear we set

M := max
i≤N
|Xi |, S := sup

a∈Sn−1

∣∣∣∣ 1
N

N∑
i=1

(〈Xi, a〉
2
− E〈Xi, a〉2)

∣∣∣∣. (3)

Note that if E〈X, a〉2 = 1 for every a ∈ Sn−1 (that is, X is isotropic), then the bound
S ≤ ε is equivalent to the fact that the singular values of U belong to the interval
[1 − ε, 1 + ε]. For Gaussian matrices it is known [13, 32] that with probability close
to one,

S ≤ C
√
n/N, (4)

where C is a positive absolute constant. In [3, 4] the same estimate was obtained for
a large class of random matrices, in particular without requiring that the entries of the
columns are independent, or that the Xi’s are identically distributed. In particular this
solved the original KLS problem. More precisely, (4) holds with high probability under
the assumptions that the Xi’s satisfy hypothesis H(φ) with φ(t) = et/2 and that M ≤
C(Nn)1/4 with high probability. Both conditions hold for log-concave random vectors.

Until recently, quite strong conditions on the tail behavior of the one-dimensional
marginals of the Xi were imposed, typically of subexponential type. Of course, in view
of the Bai–Yin theorem, it is a natural question whether one can replace the function
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φ(t) = et/2 by φ(t) = et
α
/2 with α ∈ (0, 1) or φ(t) = tp, for p ≥ 4. The first attempt in

this direction was done in [34], where the bound S ≤ C(p,K)(n/N)1/2−2/p(ln ln n)2 was
obtained for every p > 4 provided that M ≤ K

√
n. Clearly, ln ln n is a “parasitic” term,

which, in particular, does not allow one to solve the KLS problem with N proportional
to n. This problem was solved in [24, 31] under strong assumptions and in particular
when M ≤ K

√
n and X has i.i.d. coordinates with bounded p-th moment with p > 4.

Very recently, in [25], the “right” upper bound S ≤ C(n/N)1/2 was proved for p > 8
provided that M ≤ C(Nn)1/4. The methods used in [25] play an influential role in the
present paper.

The problems of estimating the smallest and the largest singular values are quite dif-
ferent. One expects weaker assumptions for estimating the smallest singular value. This
already appeared in the work [31] and was pushed further in recent works [19, 33, 35] and
in [14, 20, 26] which led to new bounds on the performance of `1-minimization methods.

In this paper we solve the KLS problem for 4 < p ≤ 8 in Theorem 1.2. Our argument
works also in other cases and makes the bridge between the known cases p > 8 and the
exponential case.

Theorem 1.2. Let X1, . . . , XN be independent random vectors in Rn satisfying hypoth-
esis H(φ) with φ(t) = tp for some p ∈ (4, 8]. Let ε ∈ (0, 1) and γ = p − 4 − 2ε > 0.
Then

S ≤ C

((
M2

n

)(
n

N

)
+ C(p, ε)

(
n

N

)γ /p)
(5)

with probability larger than 1− 8e−n − 2ε−p/2 max{N−3/2, n−(p/4−1)
}.

In particular, ifN is proportional to n andM2/n is bounded by a constant with high prob-
ability, which is the case for large classes of random vectors, then with high probability

S ≤ C(n/N)γ /p.

Let X have i.i.d. coordinates distributed as a centered random variable with finite
p-th moment, p > 2. Then by Rosenthal’s inequality [29] (see also [17] and Lemma 6.3
below),X satisfies hypothesis H(φ)with φ(t) = tp. LetX1, . . . , XN be independent ran-
dom vectors distributed asX. It is known [6], [30] (see also [22] for a quantitative version)
that when N is proportional to n and the fourth moment is unbounded, M2/n → ∞ as
n→∞. Hence, bounds for S involving the term M2/n like the bound (5) are of interest
only for p ≥ 4. We do not know if (5) holds in the case p = 4.

The main novelty of our proof is a delicate analysis of the behavior of norms of
submatrices, namely quantities Ak and Bk , k ≤ N , defined in (6) below. This analysis is
done in Theorem 2.1, which is the heart of the technical part of the paper. The estimates
for Bk are responsible for RIP, Theorem 1.1, while the estimates for Ak are responsible
for the KLS problem, Theorem 1.2.

As usual,C,C0,C1, . . . , c, c0, c1, . . . always denote absolute positive constants whose
values may vary from line to line.

The paper is organized as follows. In Section 2, we formulate the main technical
result. For the reader’s convenience, we postpone its proof till Section 5. In Section 3,
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we discuss the results on RIP. The fully detailed formulation of the main result in this
direction is Theorem 3.1, while Theorem 1.1 is a very simplified corollary. In Section 4,
we deduce Theorem 1.2 from Theorem 4.5. The case p > 8 and the exponential cases are
proved in Theorem 4.7 using the same argument. Symmetrization and formulas for sums
of the k smallest order statistics of independent non-negative random variables with heavy
tails allow us to reduce the problem at hand to estimates for Ak . In the last Section 6, we
discuss optimality of the results.

An earlier version of the main results of this paper was announced in [15].

2. Norms of submatrices

We start with a few general preliminaries and notation. We denote by Bn2 and Sn−1 the
standard unit Euclidean ball and the unit sphere in Rn, and by | · | and 〈·, ·〉 the corre-
sponding Euclidean norm and inner product. Given a set E ⊂ {1, . . . , N}, |E| denotes its
cardinality and BE2 denotes the unit Euclidean ball in RE , with the convention B∅2 = {0}.

A standard volume argument implies that for every integer n and every ε ∈ (0, 1)
there exists an ε-net 3 in Bn2 of cardinality not exceeding (1 + 2/ε)n; that is, for every
x ∈ Bn2 , miny∈3 |x − y| < ε. In particular, if ε ≤ 1/2 then the cardinality of 3 is not
larger than (2.5/ε)n.

We denote by M the class of increasing functions φ : [0,∞)→ [0,∞) such that the
function lnφ(1/

√
x) is convex on (0,∞). The examples of such functions considered in

this paper are φ(x) = xp for some p > 0 and φ(x) = (1/2) exp(xα) for some α > 0.
Recall that hypothesis H(φ) has been defined in the introduction by (1). Note that this

hypothesis is satisfied if
sup

a∈Sn−1
Eφ(|〈X, a〉|) ≤ τ.

For k ≤ N and random vectors X1, . . . , XN in Rn we define

Ak := sup
a∈SN−1

|supp(a)|≤k

∣∣∣ N∑
i=1

aiXi

∣∣∣, B2
k := sup

a∈SN−1

|supp(a)|≤k

∣∣∣∣∣∣∣ N∑
i=1

aiXi

∣∣∣2 − N∑
i=1

a2
i |Xi |

2
∣∣∣∣. (6)

Note that Ak is the supremum of the norms of submatrices consisting of k columns of A,
while Bk plays a crucial role for RIP estimates. We provide more details on the role of Ak
and Bk in the next section.

Recall also a notation from the introduction:

M = max
i≤N
|Xi |.

We now formulate the main technical result, Theorem 2.1, which is the key result for
bounds of both Ak and Bk . The role of Ak and Bk in RIP estimates will be explained in
the next section. We postpone the proof to Section 5.
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Theorem 2.1. Let p > 4, σ ∈ (2, p/2), α ∈ (0, 2], t > 0, and τ, λ ≥ 1. LetX1, . . . , XN
be independent random vectors in Rn satisfying hypothesis H(φ) with parameter τ either
for φ(x) = xp or for φ(x) = (1/2) exp(xα). For k ≤ N define M1, β and Cφ in the
following two cases.

Case 1: φ(x) = xp. Assume that λ ≤ p and let Cφ := e4,

M1 := C1(σ, λ, p)
√
k

(
Nτ

k

)σ/p
and β := C2(σ, λ)(τN)

−λ
+ C3(σ, λ, p)

N2τ

tp
,

where

C1(σ, λ, p) := 32e4

√
σ + λ

1+ λ/2

(
2p

p − 2σ

)1+2σ/p(
σ + λ

σ − 2

)2σ/p

(20e)σ/p,

C2(σ, λ) :=

(
2(σ + λ)
5e(σ − 2)

)λ 1
2λ− 1

and C3(σ, λ, p) :=
(σ + λ)p

4(2(σ − 2))p
.

Case 2: φ(x) = (1/2) exp(xα). Assume that λ ≥ 2 and let Cφ := C1/α , where C is an
absolute positive constant, and

M1 := (Cλ)
1/α
√
k

(
ln

2Nτ
k
+

1
α

)1/α

,

β :=
1

(10Nτ)λ
exp

(
−

λkα/2

(3.5 ln(2k))2α

)
+

N2τ

2 exp((2t)α)
.

In both cases assume also that β < 1/32. Then with probability at least 1−
√
β,

Ak ≤ (1− 4
√
β)−1(M + 2

√
Cφ tM +M1

)
,

B2
k ≤ (1− 4

√
β)−2(4√β M2

+ (8Cφ t +M1)M + 2M2
1
)
.

We emphasize that Ak and Bk are of different nature. In particular, Theorem 2.1 in the
case φ(x) = xp has to be applied with different choices of σ . We summarize those
choices in the following remark.

Remark. In the case φ(x) = xp we will use the following two choices for σ :

1. Choosing σ = p/4 and assuming p > 8 we get

M1 ≤ C

√
p

λ

√
p

p − 8

√
k

(
Nτ

k

)1/4

,

β ≤

(
2(p + 4λ)

5eNτ(p − 8)

)λ 1
2λ− 1

+
N2τ(p + 4λ)p

4(2t (p − 8))p
.



On the interval of fluctuation of the singular values of random matrices 1475

2. Choosing σ = 2+ ε with ε ≤ min{1, (p − 4)/4}, we get

M1 ≤ C

(
p

p − 4

)1+(4+2ε)/p(
λ

ε

)2(2+ε)/p√
k

(
Nτ

k

)(2+ε)/p
,

β =

(
2(3+ λ)
5eεNτ

)λ 1
2λ− 1

+
N2τ(3+ λ)p

4(2εt)p
.

Remarks on optimality

1. The case φ(x) = xp, p > 4. Let τ ≥ 1, N ≥ (64C2(σ, λ))
1/λ and t =

(64N2C3(σ, λ, p))
1/p. Then β ≤ 1/32 and

√
tM ≤ C4(σ, λ, p)(M +M1). Hence with

probability larger than 3/4 we have

Ak ≤ C(σ, λ, p)
(
M +

√
k(Nτ/k)σ/p

)
.

In Proposition 6.5 below we show that there exist independent random vectors Xi satis-
fying the conditions of Theorem 2.1 with τ = 1 and such that

Ak ≥ C(p)
√
k(N/k)1/p(ln(2N/k))−1/p

with probability at least 1/2. Note that M = A1 ≤ Ak . Therefore

max{M,C(p)
√
k(N/k)1/p(ln(2N/k))−1/p

} ≤ Ak ≤ C(σ, λ, p)
(
M +

√
k(N/k)σ/p

)
(7)

with probability at least 1/4.

2. The case φ(x) = (1/2) exp(xα), α ∈ [1, 2]. Let λ = 2 and t = (lnN)1/α . Then
β ≤ 1/32. Hence with probability larger than 3/4 we have

Ak ≤ C
(
M + C1/α

√
k(ln(61/ατN/k))1/α

)
.

In Proposition 6.7 below we show that there exist independent random vectors Xi’s sat-
isfying the conditions of Theorem 2.1 with τ bounded by an absolute constant and such
that

Ak ≥
√
k/2 (ln(N/(k + 1)))1/α

with probability at least 1/2. Using again M = A1 ≤ Ak we observe that

max{M,
√
k/2(ln(N/(k + 1)))1/α} ≤ Ak ≤ C

(
M + C1/α

√
k(ln(61/αN/k))1/α

)
(8)

with probability at least 1/4.
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3. Restricted Isometry Property

We need more definitions and notation. Let T be an n × N matrix and let 1 ≤ m ≤ N .
The m-th isometry constant of T is defined as the smallest number δm = δm(T ) such that

(1− δm)|z|2 ≤ |T z|2 ≤ (1+ δm)|z|2 (9)

for all z ∈ RN with |supp(z)| ≤ m. For m = 0, we set δ0(T ) = 0. Let δ ∈ (0, 1). The
matrix T is said to satisfy the Restricted Isometry Property of order m with parameter δ,
for short RIPm(δ), if 0 ≤ δm(T ) ≤ δ.

Recall that a vector z ∈ RN is called m-sparse if |supp(z)| ≤ m. The subset of
m-sparse unit vectors in RN is denoted by

Um = Um(RN ) := {z ∈ RN : |z| = 1, |supp(z)| ≤ m}.

Let X1, . . . , XN be random vectors in Rn and let A be the n × N matrix whose
columns are the Xi’s. By the definition of Bm (see (6)) we clearly have

max
i≤N

∣∣∣∣ |Xi |2n − 1
∣∣∣∣ = δ1

(
A
√
n

)
≤ δm

(
A
√
n

)
= sup
z∈Um

∣∣∣∣ |Az|2n
− 1

∣∣∣∣
≤
B2
m

n
+max

i≤N

∣∣∣∣ |Xi |2n − 1
∣∣∣∣. (10)

Thus, in order to have a good bound on δm(A/
√
n) we require a strong concentration of

each |Xi | around
√
n and we need to estimate Bm.

To control the concentration of |Xi |, we consider the function P(θ), defined in the
introduction by (2). Note that this function estimates the concentration of the maximum.
Therefore, when it is small, we have much better concentration of each |Xi | around

√
n.

We are now ready to state the main result about RIP. Theorem 1.1, announced in the
introduction, is a very simplified form of it.

Theorem 3.1. Let p > 4, α ∈ (0, 2], τ ≥ 1 and 1 ≤ n ≤ N . Let X1, . . . , XN be
independent random vectors in Rn satisfying hypothesis H(φ) with parameter τ either
for φ(x) = xp or for φ(x) = (1/2) exp(xα). Let P(·) be as in (2) and θ ∈ (0, 1).

Case 1: φ(x) = xp. Let ε ≤ min{1, (p − 4)/4}. Assume that

28

εθτ
≤ N ≤ cθ(cεθ)p/2np/4

√
τ

and set

m := [C(θ, ε, p)n(Nτ/n)−2(2+ε)/(p−4−2ε)
] and β :=

4
3e2ε2N2τ 2 +

5pN2τ

4(2cεθ)pnp/2
,

where

C(θ, ε, p) := c

(
p − 4
p

)2(p+4+2ε)/(p−4−2ε)

ε4(2+ε)/(p−4−2ε)θ2p/(p−4−2ε), (11)

and c and C are absolute positive constants.
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Case 2: φ(x) = (1/2) exp(xα). Assume that

1
τ

max{21/α, 4/θ} ≤ N ≤ cθ
√
τ exp((1/2)(cθ

√
n)α)

and set

m :=
[
C−2/αθ2n

(
ln(C2/αNτ/(θ2n))

)−2/α]
,

β :=
1

(10Nτ)2
exp

(
−2mα/2

(3.5 ln(2m))2α

)
+
N2τ

2
exp(−c(θ

√
n)α),

where c and C are absolute positive constants.

Then in both cases we have

P(δm(A/
√
n) ≤ θ) ≥ 1−

√
β − P(θ/2).

Remarks. 1. Note that for instance in Case 1, the constraint N ≤ c(θ, ε, τ, p)np/4 is not
important because for N � np/4 one has

m = [C(θ, ε, p)n(Nτ/n)−2(2+ε)/(p−4−2ε)
] = 0.

A similar remark is valid in the second case.

2. In most applications P(θ) → 0 very fast as n,N → ∞. For example, for so-called
isotropic log-concave random vectors this follows from the results of Paouris [27, 28]
(see also [18, 16] or [5, Lemma 3.3]). As another example consider the model when
Xi’s are i.i.d. and moreover the coordinates of X1 are i.i.d. random variables distributed
as a random variable ξ . If ξ is of variance 1 and has finite p-th moment, p > 4, then by
Rosenthal’s inequality P(θ) is well bounded (for a precise bound see Corollary 6.4 below;
see also [31, Proposition 1.3]). Another case is when ξ is the Weibull random variable of
variance 1, that is, consider ξ0 such that P(|ξ0| > t) = exp (−tα) for α ∈ (0, 2] and let
ξ = ξ0/

√
Eξ2

0 . By [5, Lemma 3.4] (see also [11, Theorem 1.2.8]), P(θ) satisfies (37)
below.

3. Optimality. Taking ε in Case 1 of order (p − 4)2/ln(2Nτ/n) and assuming that it
satisfies the condition of the theorem, we observe that in Case 1,

m =

[
C(θ, p)n

(
Nτ

n

)−4/(p−4)(
ln

2Nτ
n

)−8/(p−4)]
.

Moreover, Proposition 6.6 below shows that for q > p > 4 there are independent random
vectors Xi satisfying hypothesis H(φ) with parameter τ = τ(p, q) and such that for
θ = 1/2, N ≤ C(p, q)np/4(ln(2N/n))−p/2 one cannot get a better estimate than

m ≤ 8(N/n)−2/(q−2)n.

4. Optimality. In Case 2 with τ bounded by an absolute constant and α ∈ [1, 2], let
c0n ≤ N ≤ c1 exp(c2n

α/2), θ = 0.4 and assume that P(θ/2) is small enough. Then
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P(δm ≤ 1/2) ≥ 1/2 provided that m = n(C ln(C2/αN/n))2/α . Proposition 6.7 below
shows that the estimate for m is sharp, that is, in general m cannot be larger than m =
n(C ln(2N/n))2/α .

Proof of Theorem 3.1. We first pass to the subset�0 of our initial probability space where

max
i≤N

∣∣∣∣ |Xi |2n − 1
∣∣∣∣ ≤ θ/2.

Note that by (2) the probability of this event is at least 1−P(θ/2), and if this event occurs
then we also have

max
i≤N
|Xi | ≤ 3

√
n/2.

We will apply Theorem 2.1 with k = m and t = θ
√
n/(100Cφ), where Cφ is the

constant from Theorem 2.1. Additionally we assume that β ≤ 2−9θ2 and M1 ≤ t . Then
with probability at least 1−

√
β − P(θ/2) we have

B2
m ≤ (16

√
β + θ/4)n ≤ θn/2.

Together with (10) this proves δm(A/
√
n) ≤ θ . Thus we only need to check when the

estimates for β and M1 are satisfied.

Case 1: φ(x) = xp. We start by proving the estimate for M1. We let σ = 2 + ε, ε ≤
min{1, (p − 4)/4} and λ = 2. Then by Theorem 2.1 (see also the Remark following it),
for some absolute constant C we have

M1 ≤ C

(
p

p − 4

)1+(4+2ε)/p(1
ε

)2(2+ε)/p
√
m

(
Nτ

m

)(2+ε)/p
.

Therefore the estimate M1 ≤ cθ
√
n with c = 1/(100e4) is satisfied provided that

m = [C(θ, ε, p)n(Nτ/n)−2(2+ε)/(p−4−2ε)
],

with C(θ, ε, p) defined in (11) and the absolute constants properly adjusted.
Now we estimate the probability. From Theorem 2.1 (and the Remark following it),

with our choice of t and λ we have

β ≤
4

3e2ε2N2τ 2 +
5pN2τ

4(2cεθ)pnp/2
≤ 2−9θ2

provided that 28/(εθτ) ≤ N ≤ 2−4θ
√
τ(0.4cεθ)p/2np/4. This completes the proof of

the first case.

Case 2: φ(x) = (1/2) exp(xα). As in the first case, we start with the condition M1 ≤ t .
We choose λ = 4. Note that Nτ/m ≥ 21/α as Nτ ≥ 21/αn. Therefore for some absolute
constant C,

M1 ≤
√
m(C ln(2Nτ/m))1/α.
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Hence the condition M1 ≤ t is satisfied provided that

m ≤ C
−2/α
1 θ2n

(
ln(C2/α

1 Nτ/(θ2n))
)−2/α

for an absolute positive constant C1. This justifies the choice of m.
Now we estimate the probability. From Theorem 2.1 with our choice of t and λ we

have

β ≤
1

(10Nτ)2
exp

(
−2mα/2

(3.5 ln(2m))2α

)
+
N2τ

2
exp(−c(θ

√
n)α) ≤ 2−9θ2

provided that 4/(θτ) ≤ N ≤ 2−5θ
√
τ exp(c(θ

√
n)α). This completes the proof. ut

4. Approximating the covariance matrix

We start with the following ε-net argument for bilinear forms, which will be used below.

Lemma 4.1. Let m ≥ 1 be an integer and T be an m × m matrix. Let ε ∈ (0, 1/2) and
N be an ε-net in Bm2 (in the Euclidean metric). Then

sup
x∈Bm2

|〈T x, x〉| ≤ (1− 2ε)−1 sup
y∈N
|〈Ty, y〉|.

Proof. Let S := T + T ∗. For any x, y ∈ Rm,

〈Sx, x〉 = 〈Sy, y〉 + 〈Sx, x − y〉 + 〈S(x − y), y〉.

Therefore |〈Sx, x〉| ≤ |〈Sy, y〉| + 2|x − y| ‖S‖. Since S is symmetric, we have

‖S‖ = sup
x∈Bm2

|〈Sx, x〉|.

Thus, if |x − y| ≤ ε, then

‖S‖ ≤ sup
y∈N
|〈Sy, y〉| + 2ε‖S‖

and
sup
x∈Bm2

|〈Sx, x〉| ≤ (1− 2ε)−1 sup
y∈N
|〈Sy, y〉|.

Since T is a real matrix, for every x ∈ Rm we have 〈Sx, x〉 = 2〈T x, x〉. This concludes
the proof. ut

Now we can prove the following technical lemma, which emphasizes the role of the pa-
rameter Ak in estimates of the distance between the covariance matrix and the empirical
one. This role was first recognized in [8] and [3]. Other versions of the lemma appeared
in [5, 2]. Its proof uses the symmetrization method as in [25].
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Recall that (s∗i )i denotes a non-increasing rearrangement of (|si |)i .

Lemma 4.2. Let τ ≥ 1, 1 ≤ k < N and X1, . . . , XN be independent random vectors
in Rn. Let p ≥ 2 and α ∈ (0, 2]. Let φ be either φ(t) = tp in which case we set
Cφ := 8τ 2/pN2/min(p,4) and assume

∀1 ≤ i ≤ N ∀a ∈ Sn−1 E|〈Xi, a〉|p ≤ τ,

or φ(t) = (1/2) exp(tα) in which case we assume that Xi’s satisfy hypothesis H(φ) with
parameter τ and set Cφ := 8

√
CαNτ , where Cα := (8/α)0(4/α) and 0(·) is the Gamma

function. Then, for every A,Z > 0,

sup
a∈Sn−1

∣∣∣ N∑
i=1

(〈Xi, a〉
2
− E〈Xi, a〉2)

∣∣∣ ≤ 2A2
+ 6
√
nZ + Cφ

with probability larger than

1− 4 exp(−n)− 4P(Ak > A)− 4 · 9n sup
a∈Sn−1

P
((∑

i>k

(〈Xi, a〉
∗)4
)1/2

> Z
)
.

The term involving Z in the upper bound will be bounded later using general estimates in
Lemma 4.4. Thus Lemma 4.2 clearly stresses the fact that in order to estimate the distance
between the covariance matrix and the empirical one, it will remain to estimate Ak , to
get A.

Proof of Lemma 4.2. Let 3 ⊂ Rn be a (1/4)-net in the unit Euclidean ball (in the Eu-
clidean metric) of cardinality not greater than 9n. Let (εi)1≤i≤N be i.i.d. ±1 Bernoulli
random variables of parameter 1/2. By Hoeffding’s inequality, for every t > 0 and every
(si)1≤i≤N ∈ RN ,

P(εi )
(∣∣∣ N∑
i=1

εisi

∣∣∣ ≥ t( N∑
i=1

|si |
2
)1/2)

≤ 2 exp(−t2/2).

Fix an arbitrary 1 ≤ k < N . For every (si)1≤i≤N ∈ RN+ there exists a permutation π
of {1, . . . , N} such that ∣∣∣ N∑

i=1

εisi

∣∣∣ ≤ k∑
i=1

s∗i +

∣∣∣ N∑
i=k+1

επ(i)s
∗

i

∣∣∣.
Also, it is easy to check using (6) that for any a ∈ Sn−1 and any I ⊂ {1, . . . , N} with

|I | ≤ k,
∑
i∈I 〈Xi, a〉

2
≤ A2

k .
Thus, for every a ∈ Sn−1,

P(εi )
(∣∣∣ N∑
i=1

εi〈Xi, a〉
2
∣∣∣ ≤ A2

k + t
( N∑
i=k+1

(〈Xi, a〉
∗)4
)1/2)

≥ 1− 2 exp(−t2/2).
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Note that
∑N
i=1 εi〈Xi, a〉

2
=
∑
i∈E〈Xi, a〉

2
−
∑N
i∈Ec 〈Xi, a〉

2 for some setE⊂{1, . . . , N}
and we can apply a union bound argument indexed by 3 together with Lemma 4.1. We
get

P(εi )
(

sup
a∈Sn−1

∣∣∣ N∑
i=1

εi〈Xi, a〉
2
∣∣∣ ≤ 2

[
A2
k + t sup

a∈3

( N∑
i=k+1

(〈Xi, a〉
∗)4
)1/2])

≥ 1− 2 · 9n exp(−t2/2).

Using again a union bound argument and the triangle inequality to estimate the probability
that the Xi satisfy

sup
a∈3

( N∑
i=k+1

(〈Xi, a〉
∗)4
)1/2

> Z,

and choosing t = 3
√
n (so that 2 · 9n exp(−t2/2) ≤ e−n), we get

sup
a∈Sn−1

∣∣∣ N∑
i=1

εi〈Xi, a〉
2
∣∣∣ ≤ 2A2

+ 6
√
nZ

with probability larger than

1− e−n − P(Ak > A)− 9n sup
a∈Sn−1

P
(( N∑

i=k+1

(〈Xi, a〉
∗)4
)1/2

> Z
)
.

Now we transfer the result from Bernoulli random variables to centered random vari-
ables (see [21, Section 6.1]). By the triangle inequality, for every s, t > 0,

m(s)P
(

sup
a∈Sn−1

∣∣∣ N∑
i=1

(〈Xi, a〉
2
− E〈Xi, a〉2)

∣∣∣ > s + t
)
≤ 2P

(
sup

a∈Sn−1

∣∣∣ N∑
i=1

εi〈Xi, a〉
2
∣∣∣ > t

)
,

where m(s) := infa∈Sn−1 P(|
∑N
i=1(〈Xi, a〉

2
− E〈Xi, a〉2)| ≤ s).

To conclude the proof it is enough to find s such that m(s) ≥ 1/2. To this end we
will use a general Lemma 4.3 below. First consider φ(t) = tp. For a ∈ Sn−1, set
Zi = |〈Xi, a〉|

2/τ 2/p and q = p/2. Then by Lemma 4.3 we have m(s) ≥ 1/2 for
s = 4τ 2/pN1/r and r = min(p/2, 2). Now consider φ(t) = (1/2) exp(tα). Then for
every a ∈ Sn−1 and every i ≤ N , using hypothesis H(φ) we have

E|〈Xi, a〉|4 ≤ 8τ
∫
∞

0
t3 exp(−tα)dt =

8τ
α
0

(
4
α

)
=: τCα.

Given a ∈ Sn−1, set Zi := |〈Xi, a〉|2/
√
τCα . Then EZ2

i ≤ 1. Applying again Lemma 4.3
(with q = 2), we observe that m(s) ≥ 1/2 for s = 4

√
CαN . ut

It remains to prove the following general lemma. For convenience of the argument above,
we formulate this lemma using two powers q and r rather than just one.
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Lemma 4.3. Let q ≥ 1 and Z1, . . . , ZN be independent non-negative random variables
satisfying

∀1 ≤ i ≤ N EZqi ≤ 1.

Let r := min(q, 2). Then

∀z ≥ 4N1/r P
(∣∣∣ N∑
i=1

(Zi − EZi)
∣∣∣ ≤ z) ≥ 1

2
.

Proof. By definition of r , we have EZri ≤ 1 for all i = 1, . . . , N . Since the Zi’s are
independent, we deduce by a classical symmetrization argument that

E
∣∣∣ N∑
i=1

(Zi − EZi)
∣∣∣ ≤ 2EE(εi )

∣∣∣ N∑
i=1

εiZi

∣∣∣ ≤ 2E
( N∑
i=1

Z2
i

)1/2
≤ 2E

( N∑
i=1

Zri

)1/r

since r ∈ [1, 2]. From EZri ≤ 1 we get

E
∣∣∣ N∑
i=1

(Zi − EZi)
∣∣∣ ≤ 2E

( N∑
i=1

Zri

)1/r
≤ 2

( N∑
i=1

EZri
)1/r
≤ 2N1/r .

By Markov’s inequality we get

P
(∣∣∣ N∑
i=1

(Zi − EZi)
∣∣∣ ≥ 4N1/r

)
≤

1
2
,

and since z ≥ 4N1/r , this implies the required estimate. ut

The following lemma is standard (cf. [21, Lemma 5.8], which however contains a mis-
print).

Lemma 4.4. Let q > 0 and let Z1, . . . , ZN be independent non-negative random vari-
ables satisfying

∀1 ≤ i ≤ N ∀t ≥ 1 P(Zi ≥ t) ≤ 1/tq .

Then, for every s > 1, with probability larger than 1− s−k ,

N∑
i=k

Z∗i ≤



(2es)1/q

1− q
N1/qk1−1/q if 0 < q < 1,

2esN ln(eN/k) if q = 1,

12q(es)1/q

q − 1
N if q > 1.
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Proof. Assume first that 0 < q ≤ 1. It is clear that

∀1 ≤ i ≤ N P(Z∗i > t) ≤

(
N

i

)
t−iq ≤ (Ne/(itq))i,

where we have used the inequality
(
N
i

)
≤ (Ne/i)i . Thus if eNt−q ≤ 1, then

P
(

sup
i≥k

i1/qZ∗i > t
)
≤

∑
i≥k

(Ne/tq)i =

(
eN

tq

)k
(1− eNt−q)−1.

Hence if eNt−q ≤ 1/2, then P(supi≥k i
1/qZ∗i > t) ≤ (2eNt−q)k. Since this inequality

is trivially true if eNt−q ≥ 1/2, it is proved for every t > 0. Therefore for q < 1 we have

N∑
i=k

Z∗i ≤ t

∞∑
i=k

i−1/q
≤ t

(
k−1/q

−
k1−1/q

1− 1/q

)
≤

t

1− q
k1−1/q

with probability larger than 1 − (2eN/tq)k . Choosing t = (2esN)1/q , we obtain the
estimate in the case 0 < q < 1.

For q = 1 we have

N∑
i=k

Z∗i ≤ t

N∑
i=k

i−1
≤ t (1/k + ln(N/k)) ≤ t ln(eN/k)

with probability larger than 1−(2eN/t)k . To obtain the desire estimate choose t = 2esN .
Now assume that q > 1. Set ` := dlog2 ke. The same computation as before for the

scale (2i/q) instead of (i1/q) gives

P
(

sup
i≥`

2i/qZ∗2i > t
)
≤

∑
i≥`

(Net−q)2
i

≤ (2eNt−q)2
`

.

Note also that P(k1/qZ∗k > t) ≤ (Net−q)k. Thus

N∑
i=k

Z∗i ≤ kZ
∗

k +

dlog2 Ne∑
i=`

2iZ∗2i ≤ t
(
k1−1/q

+ (4N)1−1/q/(21−1/q
− 1)

)
≤ t

(
k1−1/q

+
2q

1− q
(4N)1−1/q

)
≤ t

3q
1− q

(4N)1−1/q

with probability larger than (Net−q)k + (2Net−q)k . Thus, taking t = (4esN)1/q , we
obtain

P
( N∑
i=k

Z∗i ≤
12q(es)1/q

q − 1
N

)
≥ 1− s−k. ut

We are now ready to tackle the problem of approximating the covariance matrix by em-
pirical covariance matrices, under hypothesis H(φ) with φ(t) = tp. As our proof works
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for all p > 4, we also include the case p > 8 originally solved in [25] (under an addi-
tional assumption on maxi |Xi |). For clarity, we split the result into two theorems. The
case 4 < p ≤ 8 has been stated as Theorem 1.2 in the Introduction.

Before we state our result, let us remark that p > 2 is a necessary condition. In-
deed, let (ei)1≤i≤n be an orthonormal basis of Rn and let Z be a random vector such
that Z =

√
n ei with probability 1/n. The covariance matrix of Z is the identity I . Let

A be an n × N random matrix with independent columns distributed as Z. Note that
if ‖(1/N)AA> − I‖ < 1 with some probability, then AA> is invertible with the same
probability. It is known (coupon collector’s problem) that N ∼ n log n is needed to have
{Zi : i ≤ N} = {

√
n ei : i ≤ n} with probability, say, 1/2. Thus for the vector Z, hypoth-

esis H(φ) with φ(t) = t2 is satisfied but N ∼ n log n is needed for the covariance matrix
to be well approximated by empirical covariance matrices with probability 1/2.

We also mention that we do not know how sharp the power γ /p appearing in the
bound below is. In particular, it is not clear if it can be improved to 1/2.

Theorem 4.5. Let 4 < p ≤ 8 and φ(t) = tp. Let X1, . . . , XN be independent random
vectors in Rn satisfying hypothesis H(φ). Let ε ≤ min{1, (p−4)/4} and γ := p−4−2ε.
Then with probability larger than

1− 8e−n − 2ε−p/2 max{N−3/2, n−(p/4−1)
}

one has

sup
a∈Sn−1

∣∣∣∣ 1
N

N∑
i=1

(〈Xi, a〉
2
− E〈Xi, a〉2)

∣∣∣∣ ≤ C( 1
N

max
i≤N
|Xi |

2
+ C(p, ε)

(
n

N

)γ /p)
,

where C(p, ε) := (p − 4)−1/2ε−4(2+ε)/p and C is an absolute constant.

An immediate consequence is the following corollary.

Corollary 4.6. Under the assumptions of Theorem 4.5, assuming additionally that
maxi |Xi |2 ≤ Cnγ /pN1−γ /p with high probability, we have with high probability

sup
a∈Sn−1

∣∣∣∣ 1
N

N∑
i=1

(〈Xi, a〉
2
− E〈Xi, a〉2)

∣∣∣∣ ≤ C1C(p, ε)

(
n

N

)γ /p
,

where C and C1 are absolute positive constants.

Theorem 4.7. There exists a universal positive constant C such that the following holds.
Let p > 8 and α ∈ (0, 2]. Let φ and Cφ be either φ(t) = tp and Cφ = C, or φ(t) =
(1/2) exp(tα) and Cφ = (C/α)2.5/α . Let X1, . . . , XN be independent random vectors
in Rn satisfying hypothesis H(φ). In the case φ(t) = tp define

p0 := 8e−n + 2
(

3p − 8
6(p − 8)

)p/2
N−(p−8)/8n−p/8,
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and in the case φ(t) = (1/2) exp(tα), assume N ≥ (4/α)8/α and define

p0 := 8e−n +
1

(10N)4
exp

(
4nα/2

(3.5 ln(2n))2α

)
+

N2

2 exp((2nN)α/4)
.

Then in both cases, with probability larger than 1− p0,

sup
a∈Sn−1

∣∣∣∣ 1
N

N∑
i=1

(〈Xi, a〉
2
− E〈Xi, a〉2)

∣∣∣∣ ≤ C

N
max
i≤N
|Xi |

2
+ Cφ

√
n

N
.

As our argument works in all cases, we prove both theorems together.

Proof of Theorems 4.5 and 4.7. We first consider the case φ := tp. Note that in this case

E|〈Xi, a〉|4 ≤ 1+
∫
∞

1
P(|Xi |4 > t) dt ≤ 1+

∫
∞

1
4s3−pds =

p

p − 4
.

Thus, by Lemma 4.2 it is enough to estimate A2
+
√
nZ +

√
p/(p − 4)

√
N and the

corresponding probabilities. We choose k = n.
In the case φ(t) = tp we apply Lemma 4.4 withZi = |〈Xi, a〉|4, i ≤ N , q = p/4 > 1

and s = 9e. It gives

P
((∑

i>n

(〈Xi, a〉
∗)4
)1/2

> Z
)
≤ (9e)−n

for

Z =

√
12q
q − 1

(es)1/2q
√
N =

√
12p
p − 4

(3e)4/p
√
N.

Now we estimate An, using Theorem 2.1.

Case 1: 4 < p ≤ 8 (Theorem 4.5). We apply Theorem 2.1 (and the Remark following
it) with σ = 2 + ε, where ε < (p − 4)/4, λ = 3 and t = 3N2/pnδ for δ = 1/2 − 2/p.
Then

M1 ≤ C(p, ε)
√
n(N/n)(2+ε)/p,

where

C0(p, ε) := C

(
1

p − 4

)(p−4−2ε)/p(1
ε

)2(2+ε)/p

and

β ≤
1
5

(
12

5eεN

)3

+
1

4(p − 4)pnδp
≤ ε−p max{N−3, n−δp} ≤ 1/64

provided that n is large enough. Then, using δ = 1/2− 2/p, we obtain

A2
n ≤ C

(
max
i≤N
|Xi |

2
+N2/pnδ max

i≤N
|Xi | + C

2
0(p, ε)n(N/n)

2(2+ε)/p
)

≤ 2C
(

max
i≤N
|Xi |

2
+ C2

0(p, ε)n(N/n)
2(2+ε)/p

)
.
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Combining all estimates and noticing that (p − 4)−γ < 2, we conclude that the desired
estimate holds with probability

1− 8e−n − 2ε−p/2 max{N−3/2, n−(p/4−1)
}.

Case 2: p > 8 (Theorem 4.7). In this case we apply Theorem 2.1 (see also the Remark
following it) with σ = p/4, λ = (p − 4)/2, t = 3(nN)1/4. Then M1 ≤ C

√
n(N/n)1/4

and

β ≤

(
2(3p − 8)

5e(p − 8)N

)(p−4)/2 1
p − 5

+
(3p − 8)p

4(6(p − 8))pN (p−8)/4np/4

≤

(
3p − 8

6(p − 8)

)p
N−(p−8)/4n−p/4 ≤ 1/64

provided that N is large enough. Thus with probability at least 1−
√
β we have

A2
n ≤ C

(
max
i≤N
|Xi |

2
+ (nN)1/4 max

i≤N
|Xi | +

√
nN

)
≤ 2C

(
max
i≤N
|Xi |

2
+
√
nN

)
.

Combining all estimates shows that the desired estimate holds with probability

1− 8e−n − 2
(

3p − 8
6(p − 8)

)p/2
N−(p−8)/8n−p/8.

Case 3: φ(t) = (1/2) exp(tα) (Theorem 4.7). As in Case 2 we apply Lemma 4.2. It
implies that it is enough to estimate A2

+
√
nZ+

√
C(α)N , with C(α) from Lemma 4.2,

and the corresponding probabilities. A direct calculation shows that in this case we have,
for C′α := (4/α)

1/α and t > 1,

P
(
(|X|/C′α)

4 > t
)
≤ 2 exp(C′α)t

α/4
≤ 1/t2.

We apply Lemma 4.4 with Zi = |〈Xi, a〉|4/
√
C′α , i ≤ N , q = 2 and s = 9e. It gives

P
((∑

i>k

(〈Xi, a〉
∗)4
)1/2

> Z
)
≤ (9e)−n,

for Z := (C′α)
1/46
√

6e
√
N.

To estimate An we use Theorem 2.1 with t = (nN)1/4 and

λ = 10(N/n)α/4 min{1, (α ln(2N/n))−1
}.

Note that
max{4, 10(N/n)α/4(ln(2N/n))−1

} ≤ λ ≤ 10(N/n)α/4.

Then for absolute positive constants C, C′,

M1 ≤
√
n (Cλ)1/α

(
ln

2N
n
+

1
α

)1/α

≤

(
C′

α

)1/α

(nN)1/4,

β ≤
1

(10N)4
exp

(
4nα/2

(3.5 ln(2n))2α

)
+

N2

2 exp((2nN)α/4)
≤ 1/64
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provided that N ≥ (4/α)8/α . Thus with probability at least 1−
√
β we have

A2
n ≤ C

′′max
i≤N
|Xi |

2
+ (C′′′/α)2/α

√
nN,

where C′′ and C′′′ are absolute positive constants. This together with the estimate for Z
completes the proof (note that C(α) ≤ C(2/α)5/α). ut

5. The proof of Theorem 2.1

In this section we prove the main technical result of this paper, Theorem 2.1, which es-
tablishes upper bounds for norms of submatrices of random matrices with independent
columns. Recall that for 1 ≤ k ≤ N the parameters Ak and Bk are defined by (6).

5.1. Bilinear forms of independent vectors

Let X1, . . . , XN be independent random vectors and a ∈ RN . Given disjoint sets T , S ⊂
{1, . . . , N} we let

Q(a, T , S) :=

∣∣∣〈∑
i∈T

aiXi,
∑
j∈S

ajXj

〉∣∣∣, (12)

with the convention that
∑
i∈∅ aiXi = 0.

The following two lemmas are in the spirit of [25, Lemma 2.3]. Recall that (s∗i )i
denotes a non-increasing rearrangement of (|si |)i .

Lemma 5.1. Let X1, . . . , XN be independent random vectors in Rn. Let γ ∈ (1/2, 1),
I ⊂ {1, . . . , N}, and a ∈ RN . Let k ≥ |supp(a)|. Then there exists ā ∈ RN such that
supp(ā) ⊂ supp(a), |supp(ā)| ≤ γ k, |ā| ≤ |a|, and

Q(a, I, I c) ≤ Q(ā, I, I c)+max
{m+`−1∑

i=m

V ∗i ,

m+`−1∑
i=m

W ∗i

}
,

where ` := d(1− γ )ke, m := d(γ − 1/2)ke, and

Vi :=
〈
aiXi,

∑
j∈I c

ajXj

〉
for i ∈ I,

Wj :=
〈∑
i∈I

aiXi, ajXj

〉
for j ∈ I c.

Proof. Let E ⊂ {1, . . . , N} be such that supp(a) ⊂ E and |E| = k. Everything is clear
when k = 0 or 1, because then Q(a, I, I c) = 0. Thus we may assume that k ≥ 2.
Let F1 := E ∩ I and F2 := E ∩ I c. First assume that s := |F1| ≥ k/2. Note that
(1 − γ )k ≤ k/2 ≤ s, so that ` ≤ s. Let J ⊂ F1 be a set with |J | = ` such that the set
{|Vj | : j ∈ J } consists of ` smallest values among the values {|Vi | : i ∈ F1}. (That is,
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J ⊂ F1 is such that |J | = ` and for all j ∈ J and i ∈ F1 \ J we have |Vi | ≥ |Vj |.) Now
we let

F̄1 := F1 \ J and F̄2 := F2.

Define the vector ā ∈ RN by the conditions

ā
|F̄1
= a
|F̄1
, ā

|J̄ = 0, ā
|F̄2
= a
|F̄2
.

Thus ā differs from a only on coordinates from J ; in particular its support has cardinality
less than or equal to |supp(a)| − |J | = s − ` ≤ k − ` = γ k. Moreover,

Q(a, I, I c) =

∣∣∣〈∑
i∈F1

aiXi,
∑
j∈F2

ajXj

〉∣∣∣
≤

∣∣∣〈∑
i∈J

aiXi,
∑
j∈F2

ajXj

〉∣∣∣+ ∣∣∣〈 ∑
i∈F1\J

aiXi,
∑
j∈F2

ajXj

〉∣∣∣
=

∣∣∣∑
i∈J

〈
aiXi,

∑
j∈F2

ajXj

〉∣∣∣+Q(ā, I, I c).
Then we have

Q(a, I, I c) ≤ Q(ā, I, I c)+
∑
i∈J

∣∣∣〈aiXi,∑
j∈F2

ajXj

〉∣∣∣
≤ Q(ā, I, I c)+

s∑
i=s−`+1

V ∗i ≤ Q(ā, I, I
c)+

m+`−1∑
i=m

V ∗i ,

wherem = d(γ−1/2)ke and we have used s−`+1 ≥ k/2−d(1−γ )ke+1 > (γ−1/2)k.
If |F1| < k/2 then |F2| ≥ k/2 and we proceed similarly interchanging the roles of F1

and F2 to obtain

Q(a, I, I c) ≤ Q(ā, I, I c)+

m+`−1∑
i=m

W ∗i . ut

Lemma 5.2. Let τ ≥ 1 andX1, . . . , XN be independent random vectors in Rn satisfying
hypothesis H(φ) for some function φ ∈M with parameter τ . Let a ∈ RN with |a| = 1.
In the notation of Lemma 5.1, for every t > 0 one has

P
(m+`−1∑
i=m

U∗i > tAk

)
≤ (2τ)k

(
φ

(
t
√
m

`

))−m
≤ (2τ)k

(
φ

(
t
√
γ0k

(1− γ )k + 1

))−γ0k

,

where {Ui}i denotes either {Vi}i or {Wi}i , and γ0 := γ − 1/2.

Remarks. 1. Taking φ(t) = tp for some p > 0, we see that if

P(|〈Xi, a〉| ≥ t) ≤ t−p (13)
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then

P
(m+`−1∑
i=m

U∗i > tAk

)
≤ (2τ)k

(
t
√
m

`

)−mp
. (14)

Note that the condition (13) is satisfied if

sup
i≤N

sup
a∈Sn−1

E|〈Xi, a〉|p ≤ τ.

2. Taking φ = (1/2) exp(xα) for some α > 0, we find that if

P(|〈Xi, a〉| ≥ t) ≤ 2 exp(−tα) (15)

then

P
(m+`−1∑
i=m

U∗i > tAk

)
≤ (2τ)k+m exp

(
−m

(
t
√
m

`

)α)
. (16)

Note that the condition (15) is satisfied if

sup
i≤N

sup
a∈Sn−1

E exp(|〈Xi, a〉|α) ≤ 2τ.

Proof of Lemma 5.2. Without loss of generality assume that Ui = Vi for every i. Then

m+`−1∑
i=m

V ∗i ≤ `V
∗
m.

Let F1 := supp(a)∩ I and F2 := supp(a)∩ I c. Note that V ∗m > s means that there exists
a set F ⊂ F1 of cardinality m such that Vi > s for every i ∈ F (if the cardinality of F1 is
smaller than m, the estimate for probability is trivial). Since |F1| ≤ k, we obtain

P
(m+`−1∑
i=m

V ∗i > tAk

)
≤ P(`V ∗m > tAk) ≤

(
k

m

)
max
F⊂F1
|F |=m

P(∀i ∈ F : |Vi | > tAk/`).

Denote Z :=
∑
j∈F2

ajXj . Since |a| ≤ 1, we have |Z| ≤ Ak , and note that the Xi’s for
i ∈ F1 are independent of Z. Thus, conditioning on Z we obtain

P
(m+`−1∑
i=m

V ∗i > tAk

)
≤ 2k max

F⊂F1
|F |=m

∏
i∈F

P(|ai | |〈Xi, Z〉| > tAk/`)

≤ (2τ)k max
F⊂F1
|F |=m

∏
i∈F

(
φ

(
t

`|ai |

))−1

.

Now we show that for every s > 0,∏
i∈F

(φ(s/|ai |))
−1
≤ (φ(s

√
m))−m.
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Indeed, this estimate is equivalent to

1
m

∑
i∈F

lnφ(s/|ai |) ≥ lnφ(s
√
m),

which holds by convexity of lnφ(1/
√
x), the facts that |a| ≤ 1 and |F | = m, and since φ

is increasing. Taking s = t/`, we obtain

P
(m+`−1∑
i=m

V ∗i > tAk

)
≤ (2τ)k(φ(t

√
m/`))−m.

Finally, note that m = d(γ − 1/2)ke ≥ γ0k and ` = d(1 − γ )ke ≤ (1 − γ )k + 1. Since
φ is increasing, we obtain the last inequality, completing the proof. ut

5.2. Estimates for the off-diagonal part of bilinear forms

For 1 ≤ k ≤ N and I ⊂ {1, . . . , N} we define

Qk(I ) := sup
E⊂{1,...,N}
|E|≤k

sup
a∈BE2

Q(a,E ∩ I, E ∩ I c). (17)

Lemmas 5.1, 5.2 and 4.1 imply the following proposition.

Proposition 5.3. Let τ ≥ 1 and X1, . . . , XN be independent random vectors in Rn sat-
isfying hypothesis H(φ) with parameter τ for some function φ ∈ M. Let ε ∈ (0, 1/2),
2 ≤ k ≤ N , I ⊂ {1, . . . , N}, γ ∈ (1/2, 1), and γ0 := γ − 1/2. Then for every t > 0,

P
(
Qk(I ) >

Q[γ k](I )+ tAk

1− 2ε

)
≤ exp

(
k

(
ln

5τeN
kε
− γ0 lnφ

(
t
√
γ0k

(1− γ )k + 1

)))
.

Moreover, letting M := maxi |Xi | one has, for all ` > 1 and t > 0,

P(Q`(I ) > tM) ≤
N2τ

4φ(4t/`)
.

Proof. For every E ⊂ {1, . . . , N} with |E| = k let NE be an ε-net in BE2 of cardinality
at most (2.5/ε)k . Let N denote the union of the NE’s. Lemma 4.1 yields

Qk(I ) ≤ (1− 2ε)−1 sup
E⊂{1,...,N}
|E|≤k

sup
a∈NE

Q(a,E ∩ I, E ∩ I c).

Therefore, applying Lemmas 5.1 and 5.2, we observe that the event

Qk(I ) ≤ (1− 2ε)−1
(

sup
E⊂{1,...,N}
|E|≤γ k

sup
a∈N

Q(a,E ∩ I, E ∩ I c)+ tAk

)
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occurs with probability at least

1−
(
N

k

)(
2.5
ε

)k
(2τ)k

(
φ

(
t
√
γ0k

(1− γ )k + 1

))−γ0k

.

This implies the first estimate.
Now we prove the “moreover” part. For every E ⊂ {1, . . . , N} of cardinality ` denote

F1 := E ∩ I , F2 := E ∩ I
c and m := |F1| (so |F2| = `−m). We also set

M0 := max
i∈I

max
j∈I c
|〈Xi, Xj 〉| and M1 := max

j∈I c
|Xj |.

Then for any a ∈ BE2 we have∣∣∣〈∑
i∈F1

aiXi,
∑
j∈F2

ajXj

〉∣∣∣ ≤ ∣∣∣∑
i∈F1

ai
∑
j∈F2

aj

∣∣∣M0

≤

√
m(`−m)

(∑
i∈F1

a2
i

)1/2(∑
j∈F2

a2
j

)1/2
M0 ≤

`

2
M0

2
.

Therefore, by the union bound,

P(Q`(I ) > tM1) ≤ P(M0 > 4tM1/`)

≤

∑
i∈I

∑
j∈I c

P(|〈Xi, Xj 〉| > 4tM1/`).

Finally, using the fact thatXi is independent ofXj for i 6= j , |Xj | ≤ M1 for every j ∈ I c,
and using the tail behavior of the variables 〈Xi, z〉, we obtain

P(Q`(I ) > tM) ≤ P(Q`(I ) > tM1) ≤
|I | |I c|

φ(4t/`)
≤

N2τ

4φ(4t/`)
. ut

Proposition 5.4. Let 1 ≤ k ≤ N . Let τ ≥ 1 and X1, . . . , XN be independent random
vectors in Rn satisfying hypothesis H(φ) with parameter τ for some function φ ∈M. Let
t > 0 and λ ≥ 1.

Case 1: φ(x) = xp for some p > 4. Let σ ∈ (2, p/2). Then

Qk(I ) ≤ e
4
(
t max
i≤N
|Xi | + C2(σ, λ, p)

√
k

(
5τeN
k

)σ/p
Ak

)
occurs with probability at least

1−
(

2(σ + λ)
5τeN(σ − 2)

)λ 1
2λ− 1

−
N2τ(σ + λ)p

4(2t (σ − 2))p
(18)

and

C2(σ, λ, p) := 8

√
σ + λ

1+ λ/2

(
2p

p − 2σ

)1+2σ/p(2(σ + λ)
σ − 2

)2σ/p

.



1492 Olivier Guédon et al.

Case 2: φ(x) = (1/2) exp(xα) for some α > 0. Then for every t > 0,

Qk(I ) ≤ C
1/α
(
t max
i≤N
|Xi | + (Cλ)

1/α
√
k

((
ln

20τeN
k

)1/α

+

(
1
α

)1/α)
Ak

)
with probability at least

1−
1

(10τN)λ
exp

(
−

λkα/2

(3.5 ln(2k))2α

)
−

N2τ

2 exp((2t)α)
.

Proof. Let γ ∈ (1/2, 1) to be chosen later. For integers s ≥ 0 denote k0 = k, ks+1 =

[γ ks]. Clearly, the sequence is strictly decreasing whenever ks ≥ 1 and ks ≤ γ sk. Assume
that k ≥ 1/(1−γ ). Definem to be the largest integerm ≥ 1 such that km−1 ≥ 1/(1−γ ).
Note that γ km−1 ≥ 1. Therefore

1 ≤ km <
1

1− γ
≤ km−1. (19)

By Proposition 5.3 we observe that for every positive ts and εs ∈ (0, 1/2), 0 ≤ s ≤ m,
the event

Qk(I ) ≤
(
Qkm(I )+

m−1∑
s=0

tsAks

) m−1∏
s=0

(1− 2εs)−1

occurs with probability at least

1− 2
m−1∑
s=0

exp
(
ks

(
ln

5τeN
ksεs

− γ0 lnφ
(

ts
√
γ0k

(1− γ )k + 1

)))
. (20)

Let ε > 0 and a positive decreasing sequence (εs)s to be chosen later and set

ts =
(1− γ )ks + 1
√
γ0ks

φ−1
((

5τeN
ksεs

)(1+ε)/γ0
)
,

where φ−1(s) := min{t ≥ 0 : φ(t) ≥ s}.
We start estimating Qk(I ). Since ln(1 − x) ≥ −2x on (0, 3/4], we observe that for

εs < 3/8,
m−1∑
s=0

ln(1− 2εs) ≥
m−1∑
s=0

−4εs

so that
m−1∏
s=0

(1− 2εs)−1
≤ exp

(
4
m−1∑
s=0

εs

)
Note that

m−1∑
s=0

tsAks ≤ Ak

m−1∑
s=0

ts .
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Thus by (20) and by our choice of ts ,

Qk(I ) ≤ exp
(

4
m−1∑
s=0

εs

)(
Qkm(I )+ Ak

m−1∑
s=0

ts

)
(21)

with probability at least

1− 2
m−1∑
s=0

exp
(
−ksε ln

5τeN
ksεs

)
≥ 1− 2 exp

(
−km−1ε ln

5τeN
km−1

)m−1∑
s=0

εksεs .

Since km−1 ≥ 1/(1− γ ), this probability is larger than

1− 2 exp
(
−

ε

1− γ
ln(5τe(1− γ )N)

)m−1∑
s=0

εksεs . (22)

Thus it is enough to choose εs appropriately and to estimate
∑m−1
s=0 ts , Qkm(I ) and∑m−1

s=0 ε
ksε
s . We distinguish two cases for φ.

Case 1: φ(x) = xp. In this case we choose εs = (s + 2)−2 so that

m−1∑
s=0

εksεs =

m−1∑
s=0

(s + 2)−2ksε ≤

m−1∑
s=0

(s + 2)−2km−1ε ≤
1

2km−1ε − 1
.

Choose ε = λ(1 − γ ). Since λ ≥ 1 and km−1 ≥ 1/(1 − γ ), we have 2km−1ε ≥

2ε/(1− γ ) = 2λ and
m−1∑
s=0

(s + 2)−2ksε ≤
1

2λ− 1
.

Using again km−1 ≥ (1− γ )−1, we conclude that the probability in (22) is larger than

1− (5τeN(1− γ ))−λ
2

2λ− 1
. (23)

Now we estimate
∑m−1
s=0 ts . We have

ts =
(1− γ )ks + 1
√
γ0ks

φ−1
((

5τeN
ksεs

)(1+ε)/γ0
)
=
(1− γ )ks + 1
√
γ0ks

(
5τeN
ksεs

)(1+ε)/(γ0p)

.

Recall that γ > 1/2, km−1 ≥ 1/(1−γ ), so that (1−γ )ks+1 ≤ 2(1−γ )ks for s ≤ m−1.
Thus

ts ≤
2(1− γ )

√
ks

√
γ0

(
5τeN
ksεs

)(1+ε)/(γ0p)

.

Let b = (1+ ε)/(γ0p). Assume that b < 1/2. Since ks ≤ γ sk, we have

m−1∑
s=0

ts ≤
2(1− γ )k1/2−b(5τeN)b

√
γ0

m−1∑
s=0

(s + 2)δbγ s(1/2−b). (24)
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Since the function h(z) = z2bγ z(1/2−b) on R+ is first increasing and then decreasing, we
get

m−1∑
s=0

(s + 2)2bγ s(1/2−b) = γ−2(1/2−b)
m+1∑
s=2

h(s) ≤ γ−1
(

sup
z>0

h(z)+

∫
∞

0
h(z) dz

)

≤ 2
((

2b
(1/2− b)e ln(1/γ )

)2b

+
0(1+ 2b)

((1/2− b) ln(1/γ ))1+2b

)
.

As 2b ≤ 1, 0(1 + 2b) ≤ 1. Using also ln(1/γ ) ≥ 1 − γ , we observe that the previous
quantity does not exceed

4
((1/2− b)(1− γ ))1+2b .

Coming back to (24), we get

m−1∑
s=0

ts ≤
8k1/2−b(5τeN)b

(1/2− b)1+2b(1− γ )2b
√
γ − 1/2

. (25)

To conclude this computation, we choose the parameter

γ =
1+ λ+ σ/2
σ + λ

.

Note that γ ∈ (1/2, 1) as required, since λ ≥ 1 and 2 < σ . With such a choice of γ , we
have b = σ/p < 1/2, since σ < p/2. Thus from (25) and (23),

m−1∑
s=0

ts ≤ 8
√
k

(
5τeN
k

)σ/p(
p

p/2− σ

)1+2σ/p(
σ + λ

σ/2− 1

)2σ/p
√
σ + λ

1+ λ/2

with probability larger than

1−
(

5τeN
σ/2− 1
σ + λ

)−λ 2
2λ− 1

.

Finally, to estimate Qkm , we note that

km <
1

1− γ
=

σ + λ

σ/2− 1
,

and apply the “moreover” part of Proposition 5.3 (with ` = km). Note that at the beginning
of the proof we assumed that k ≥ 1/(1−γ ). In the case k < 1/(1−γ ) the result trivially
holds by the “moreover” part of Proposition 5.3 applied with ` = k.

Case 2: φ(x) = (1/2) exp(xα). In this case we choose γ = 2/3, so that γ0 = 1/6. As
before we assume that k ≥ 1/(1− γ ) = 3 (otherwise Qk(I ) ≤ Q2(I )). By (19) we have
km < 3, hence, by (21),

Qk(I ) ≤ exp
(

4
m−1∑
s=0

εs

)(
Q2(I )+ Ak

m−1∑
s=0

ts

)
.
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We define ks by

εs =
1
2

exp
(
−

(
k

ks

)α/2 1
(s + 2)2α

)
.

Observe that since ks ≤ γ sk and γ = 2/3, one has

εs ≤
1
2

exp
(
−

(
3
2

)αs/2 1
(s + 2)2α

)
≤

1
2e
(s + 2)2α

(
2
3

)sα/2
,

which implies
m−1∑
s=0

εs ≤
C

α
(26)

for a positive absolute constant C.
We have

ts =
√

6
ks/3+ 1
√
ks

φ−1
((

5τeN
ksεs

)6(1+ε))
=
√

6
ks/3+ 1
√
ks

(
ln
(

2
(

5τeN
ksεs

)6(1+ε)))1/α

.

By (19) we have km < 3 ≤ km−1, hence

ts ≤
√

6
2
3

√
ks (6(1+ ε))1/α

(
ln

20τeN
ksεs

+ ln
1

2εs

)1/α

≤
√

6
2
3

21/α
√
ks (6(1+ ε))1/α

((
ln

20τeN
ksεs

)1/α

+

(
ln

1
2εs

)1/α)
.

By the choice of εs we obtain

m−1∑
s=0

√
ks

(
ln

1
2εs

)1/α

≤
√
k

m−1∑
s=0

(s + 2)−2
≤ 3
√
k. (27)

Since 3−sk ≤ ks ≤ (2/3)sk, we observe

m−1∑
s=0

√
ks

(
ln

20τeN
ksεs

)1/α

≤
√
k

m−1∑
s=0

(
2
3

)s/2(
ln

20τeN3s

k

)1/α

≤
√
k

(m−1∑
s=0

(
2
3

)s/2
21/α

(
ln

20τeN
k

)1/α

+

m−1∑
s=0

(
2
3

)s/2
(2s ln 3)1/α

)

≤ C
1/α
1

√
k

((
ln

20τeN
k

)1/α

+ 0(1+ 1/α)
)
,

where C1 is an absolute positive constant. This together with (27) implies that

m−1∑
s=0

ts ≤ (C2(1+ ε))1/α
√
k

((
ln

20τeN
k

)1/α

+ 0(1+ 1/α)
)
, (28)

where C2 is an absolute positive constant.
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Now we estimate the probability. By the choice of ks we have

m−1∑
s=0

εεkss =

m−1∑
s=0

exp(−εks ln(1/εs)) =
m−1∑
s=0

exp
(
−εks(ln 2+ (k/ks)α/2(s + 2)−2α)

)
≤

m−1∑
s=0

exp(−εk1−α/2
s kα/2(s + 2)−2α).

Since ks ≥ km−1 ≥ 1/(1− γ ) and s + 2 ≤ m+ 1 for every s ≤ m− 1, we get

m−1∑
s=0

εεkss ≤ m exp
(
−

ε

(1− γ )1−α/2
kα/2

(m+ 1)2α

)
.

Since m is chosen such that 1/(1− γ ) ≤ km−1 ≤ (2/3)m−1k, we observe that

m− 1 ≤
ln(k(1− γ ))

ln(3/2)
.

Therefore,

m−1∑
s=0

εεkss ≤

(
1+

ln(k/3)
ln(3/2)

)
exp

(
−

ε

(1/3)1−α/2
kα/2

(2.5 ln k)2α

)

≤ 2 exp
(
−3ε

kα/2

3α/2(2.5 ln k)2α

)
,

which shows that the probability in (22) is at least

1−
4

(15τeN)3ε
exp

(
−3ε

kα/2

(3.5 ln k)2α

)
.

Finally, to estimate Q2(I ) we apply the “moreover” part of Proposition 5.3 (with ` = 2).
Choosing ε = λ/3 and combining estimates (26) and (28) with the estimate for Q2(I )

we obtain the desired result. ut

5.3. Estimating Ak and Bk

We are now ready to pass to the proof of Theorem 2.1. We need two simple lemmas.

Lemma 5.5. Let β ∈ (0, 1). Let P1 and P2 be probability measures on �1 and �2 re-
spectively and let V ⊂ �1 ⊗�2 be such that

P1 ⊗ P2(V ) ≥ 1− β.

Then there exists W ⊂ �2 such that

P2(W) ≥ 1−
√
β and ∀x2 ∈ W, P1({x1 : (x1, x2) ∈ V }) ≥ 1−

√
β.
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Proof. Fix some δ ∈ (0, 1). Let

W :=
{
x2 ∈ �2 : P1({x1 ∈ �1 : (x1, x2) ∈ V }) ≥ 1− δ

}
.

Clearly,
W c
=
{
x2 ∈ �2 : P1({x1 ∈ �1 : (x1, x2) ∈ V

c
}) ≥ δ

}
.

Then
β ≥ P1 ⊗ P2(V

c) =

∫
�2

P1({x1 ∈ �1 : (x1, x2) ∈ V
c
}) dP2(x2)

≥

∫
W c

P1({x1 ∈ �1 : (x1, x2) ∈ V
c
}) dP2(x2) ≥ δP2(W

c),

which means P2(W) ≥ 1− β/δ. The choice δ =
√
β completes the proof. ut

The following lemma is obvious.

Lemma 5.6. Let x1, . . . , xN ∈ Rn. Then∑
i 6=j

〈xi, xj 〉 = 22−N
∑

I⊂{1,...,N}

∑
i∈I

∑
j∈I c

〈xi, xj 〉.

Proof of Theorem 2.1. From Lemma 5.6 we have∣∣∣∣∣∣∣ N∑
i=1

aiXi

∣∣∣2 − N∑
i=1

a2
i |Xi |

2
∣∣∣∣ = 22−N

∣∣∣ ∑
I⊂{1,2,...,N}

〈∑
i∈I

aiXi,
∑
j∈I c

ajXj

〉∣∣∣.
We deduce that

B2
k ≤ 22−N sup

a∈Uk

∑
I⊂{1,...,N}

Q(a, I, I c) ≤ 22−N
∑

I⊂{1,...,N}

sup
a∈Uk

Q(a, I, I c)

≤ 22−N
∑

I⊂{1,...,N}

Qk(I ).

Let I ⊂ {1, . . . , N} be fixed. Proposition 5.4 implies

P(Qk(I ) ≤ M0) ≥ 1− β, (29)

where
M0 := Cφ t max

i≤N
|Xi | + (M1/4)Ak.

Consider two probability spaces, {I : I ⊂ {1, . . . , N}} with the normalized counting
measure µ, and our initial probability space (�,P), on which the Xi’s are defined. By
(29) we observe that the µ ⊗ P probability of the event V := {Qk(I ) ≤ M0} is at least
1− β. Then Lemma 5.5 implies that there exists W ⊂ � such that P(W) ≥ 1−

√
β and

µ({Qk(I ) ≤ M0}) ≥ 1 −
√
β for every ω ∈ W . Since Qk(I ) ≤ A

2
k , we deduce that for

every ω ∈ W ,
B2
k ≤ 4M0 + 4

√
β A2

k.
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Since A2
k ≤ maxi≤N |Xi |2 + B2

k , we have

A2
k ≤

4M0 +maxi≤N |Xi |2

1− 4
√
β

and B2
k ≤

4(M0 +
√
β maxi≤N |Xi |2)

1− 4
√
β

. (30)

Therefore

A2
k ≤ (1− 4

√
β)−1

(
max
i≤N
|Xi |

2
+ 4Cφ t max

i≤N
|Xi | +M1Ak

)
.

Using
√
u2 + v2 ≤ u+ v and denoting γ = (1− 4

√
β)−1 (recall M = maxi≤N |Xi |) we

obtain
Ak ≤

√
γ M + 2

√
Cφγ tM + γM1,

which proves the estimate for Ak . Plugging this into (30), we also observe

B2
k ≤ γ (4

√
β M2

+ 4Cφ tM + γM2
1 +
√
γ MM1 + 2

√
Cφγ tM M1)

≤ γ (4
√
β M2

+ 8Cφ tM + 2γM2
1 +
√
γ MM1). ut

6. Optimality

In this section we discuss optimality of the estimates in Theorems 2.1 and 3.1. In Propo-
sitions 6.5–6.7 we will prove results justifying the remarks on optimality following those
theorems.

To obtain the lower estimates on Am we use the following observation.

Lemma 6.1. Let A = (Xij )i≤n, j≤N be an n×N matrix with i.i.d. entries. Then

P(Am ≥ t) ≥
1
2

whenever P
(
|X11| ≥

t
√
m

)
≥
m+ 1
N

. (31)

Proof. For every i ≤ N , let Xj ∈ Rn be the j -th column of A. For m ≤ N we have

Am = sup
a∈Um

∣∣∣ N∑
j=1

ajXj

∣∣∣ ≥ sup
a∈Um

∣∣∣ N∑
j=1

ajX1j

∣∣∣ ≥ sup
a∈Um

aj∈{±1/
√
m,0}

∣∣∣ N∑
j=1

ajX1j

∣∣∣
=

1
√
m

m∑
j=1

X∗1j ≥
√
mX∗1m.

Therefore, using independence, we have

P(Am ≥ t) ≥ P(X∗1m ≥ t/
√
m) = P(Y ≥ m),

where Y is a real random variable with a binomial distribution of size N and parameter
v = P(|X11| ≥ t/

√
m). It is well known that the median of Y satisfies

bNvc ≤ med(Y ) ≤ dNve.

Thus P(Am ≥ t) ≥ 1/2 whenever m ≤ bNvc. This implies the result. ut

To evaluate RIP, we will use the following simple observation.
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Lemma 6.2. Let n ≤ N and m ≤ N . Let A be an n×N random matrix satisfying

P(Am ≥ t
√
m) ≥ 1/2.

Assume also that A satisfies RIPm(δ) for some δ < 1 with probability greater than 1/2.
Then

mt2 ≤ 2n.

Proof. As A satisfies RIPm(δ) for some δ < 1 with probability greater than 1/2, clearly

A2
m = sup

a∈Um

∣∣∣∑ aiXi

∣∣∣2 ≤ 2n

with probability greater than 1/2. Therefore, with positive probability one has

t
√
m ≤ Am ≤

√
2n,

which implies the result. ut

In order to show that a matrix with i.i.d. entries satisfies condition H(φ) with φ(t) = tp

we need Rosenthal’s inequality [29] (see also [17]). As usual, by ‖ · ‖q for a random
variable ξ we mean its Lq -norm and for an a ∈ Rn its `q -norm, that is,

‖ξ‖q = (E|ξ |q)1/q and ‖a‖q =
( n∑
i=1

|ai |
q
)1/q

.

Note that originally the Rosenthal inequality was proved for symmetric random variables,
but using the standard symmetrization argument (i.e., passing from random variables ξi
to (ξi − ξ ′i )’s, where (ξ ′i )’s have the same distribution and are independent), one can pass
to centered random variables.

Lemma 6.3. Let q > 2 and a ∈ Rn. Let ξ1, . . . , ξn be i.i.d. centered random variables
with finite q-th moment. Then there exists a positive absolute constant C such that

1
2
Mq ≤

∥∥∥ n∑
i=1

aiξi

∥∥∥
q
≤ C

q

ln q
Mq (32)

where Mq := max{‖a‖2‖ξ1‖2, ‖a‖q‖ξ1‖q}.

The following is an almost immediate corollary of Rosenthal’s inequality. It should be
compared with [31, Proposition 1.3].

Corollary 6.4. Let p > 4. Let ξ be a random variable of variance one and with a finite
p-th moment. Let ξij , i ≤ n, j ≤ N , be i.i.d. random variables distributed as ξ . Then for
every t > 0,

P
(

max
j≤N

∣∣∣∣1n
n∑
i=1

ξ2
ij − 1

∣∣∣∣ > t

)
≤

(
Cp

t lnp

)p/2
E|ξ |p

N

np/4
,

where C is a positive absolute constant.
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Proof. Let ξ1, . . . , ξn be i.i.d. random variables distributed as ξ . We apply Rosenthal’s
inequality to the random variables ξ2

i − 1 with q = p/2 and a = (1, . . . , 1). Then

∥∥∥ n∑
i=1

(ξ2
i − 1)

∥∥∥
p/2
≤ Cp

√
n ‖ξ2

− 1‖p/2 ≤ Cp
√
n (‖ξ2

‖p/2 + 1) ≤ 2Cp
√
n ‖ξ‖2p,

where Cp := Cp/lnp for an absolute positive constant C. Using Chebyshev’s inequality
we observe

P
(∣∣∣∣1n

n∑
i=1

ξ2
i − 1

∣∣∣∣ > t

)
≤

E
∑n
i=1 |ξ

2
i − 1|p/2

(tn)p/2
≤
(2Cp)p/2‖ξ‖

p
p

tp/2np/4
.

The result follows by the union bound. ut

As is mentioned in the remarks on optimality following Theorem 2.1, the next proposition
gives a lower bound for Am to be compared with Case 1 of Theorem 2.1.

Proposition 6.5. Let p > 2 and 1 ≤ m ≤ N . There exists a sequence X1, . . . , XN of
independent random vectors in Rn satisfying

∀1 ≤ i ≤ N ∀a ∈ Sn−1 E|〈Xi, a〉|p ≤ 1 (33)

and such that

P
(
Am ≥

Cp

lnp
√
m

(
N

m

)1/p(
ln
(

2N
m

))−1/p)
≥

1
2
,

where C is an absolute positive constant.

Proof. Let λ ≥ 1 to be set later and define

fp(x) :=


p

2(1− λ−p)|x|p+1 if 1 ≤ |x| ≤ λ,

0 otherwise.

We have
∫
fp(x) dx = 1 and

a
p
p :=

∫
|x|pfp(x) dx = p

ln λ
1− λ−p

.

Consider the random variable ξ(ω) = ω with respect to the density fp and let (Xij ) be
i.i.d. copies of ξ/ap. Clearly, E|X11|

p
= 1. Since, for s ∈ [1, λ],

P(|ξ | > s) =
1

1− λ−p

(
1
sp
−

1
λp

)
,
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a short computation using (31) shows that P(Am ≥ t) ≥ 1/2 provided that

t ≤

(
1− λ−p

p ln λ

)1/p
√
m

(
N

(m+ 1)(1− λ−p)+Nλ−p

)1/p

=
√
m

(
1

p ln λ

)1/p(
N

m+ 1+N/(λp − 1)

)1/p

.

Choosing λ with λp − 1 = N/(m+ 1), we obtain P(Am ≥ t) ≥ 1/2 provided that

t ≤
√
m

(
N

2(m+ 1) ln(2N/(m+ 1))

)1/p

.

Finally, to satisfy condition (33), we pass from a matrix A to A′ := A/cp = (Xij/cp)ij ,
where cp ≤ Cp/lnp is the constant in Rosenthal’s inequality (32). By Rosenthal’s in-
equality, the sequence of columns of A′ satisfies condition (33). ut

The next proposition gives an upper bound on the size of sparsitym in order to satisfy RIP
under the assumption of Case 1 of Theorem 3.1 (see Remark 3 following that theorem).

Proposition 6.6. Let q > p > 2, n ≤ N and m ≤ N . There exist an absolute positive
constant C and an n×N matrix A whose columns X1, . . . , XN are independent random
vectors satisfying

∀1 ≤ i ≤ N ∀a ∈ Sn−1 E|〈Xi, a〉|p ≤
(
Cp

lnp

)p
q

q − p

(
q − 2
q

)p/2
, (34)

and for every t ∈ (0, 1),

P
(

max
i≤N

∣∣∣∣ |Xi |2n − 1
∣∣∣∣ ≥ t) ≤ tp/2 (35)

provided that

N ≤

(
q lnp

C(q − 2)p

)p/2
q − p

q
tpnp/4.

Assume that A satisfies RIPm(δ) for some δ < 1 with probability greater than 1/2. Then

m

(
N

m+ 1

)2/q

≤
2(q − 2)

q
n.

Proof. Consider the density

f (x) :=


q

2|x|q+1 if |x| ≥ 1,

0 otherwise.

We have
∫
f (x) dx = 1,∫
|x|pf (x) dx =

q

q − p
and a2

2 :=

∫
|x|2f (x) dx =

q

q − 2
.
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Consider the random variable ξ(ω) = ω with respect to the density f and let (Xij )ij be
i.i.d. copies of ξ/a2. Clearly,

E|X11|
2
= 1 and E|X11|

p
=

q

q − p

(
q − 2
q

)p/2
.

Then Rosenthal’s inequality (32) implies (34), and Corollary 6.4 implies (35).
Now we estimate Am for the matrix A whose columns are (Xij )i , j ≤ N . Since

P(|ξ | > s) = s−q for s ≥ 1, by (31) we obtain P(Am ≥ t) ≥ 1/2 provided that

t ≤
√
m

√
q − 2
q

(
N

m+ 1

)1/q

.

This means

P
(
Am ≥

√
m

√
q − 2
q

(
N

m+ 1

)1/q)
≥

1
2
,

and we complete the proof applying Lemma 6.2. ut

The next proposition shows the optimality (up to absolute constants) of the sparsity pa-
rameter in Case 2 of Theorem 3.1 (see Remark 4 following that theorem) as well as
optimality of the bounds for Am in Case 2 of Theorem 2.1 (see remarks on optimality
following that theorem).

Proposition 6.7. There exist absolute positive constants c, C such that the following
holds. Let α ∈ [1, 2], 1 ≤ m ≤ N/2 and suppose n satisfies N ≤ exp(cnα/2). There
exists an n × N matrix A whose columns X1, . . . , XN are independent random vectors
satisfying

∀1 ≤ i ≤ N ∀a ∈ Sn−1 E exp(|〈Xi, a〉|α) ≤ C (36)

and

P
(

max
i≤N

∣∣∣∣ |Xi |2n − 1
∣∣∣∣ ≥
√

2− 1
2

)
≤ 2 exp(−cnα/2), (37)

and such that

P
(
Am ≥

√
m

2

(
ln

N

m+ 1

)1/α)
≥

1
2
. (38)

Additionally, if n ≤ N and if A satisfies RIPm(δ) for some δ < 1 with probability greater
than 1/2, then

m

(
ln

N

m+ 1

)2/α

≤ 4n.
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Proof. We consider a symmetric random variable ξ with distribution defined by P(|ξ |>t)
= exp(−tα). It is easy to check that

E exp(|ξ |α/2) = 2 and a := Eξ2
= 0(2/α + 1) ∈ [1, 2].

LetXij , i ≤ n, j ≤ N , be i.i.d. copies of ξ/
√
a, A = (Xij )ij , and letXj ’s be its columns.

Applying [5, Lemma 3.4] (see also [11, Theorem 1.2.8]) we observe that the Xi’s satisfy
conditions (36) and (37). By (31) we observe that P(Am ≥ t) ≥ 1/2 provided that

P
(
|ξ | ≥

√
a t
√
m

)
= exp(−(

√
a t/
√
m)α) ≥

m+ 1
N

.

Thus it is enough to take

t ≤

√
m

a

(
ln

N

m+ 1

)1/α

.

This proves (38).
Finally, the “additionally” part follows by Lemma 6.2. ut
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[7] Bai, Z. D., Yin, Y. Q.: Limit of the smallest eigenvalue of a large dimensional sample covari-
ance matrix. Ann. Probab. 21, 1275–1294 (1993) Zbl 0779.60026 MR 1235416

[8] Bourgain, J.: Random points in isotropic convex sets. In: Convex Geometric Analysis (Berke-
ley, CA, 1996), Math. Sci. Res. Inst. Publ. 34, Cambridge Univ. Press, Cambridge, 53–58
(1999) Zbl 0941.52003 MR 1665576

[9] Candés, E. J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inac-
curate measurements. Comm. Pure Appl. Math. 59, 1207–1223 (2006) Zbl 1098.94009
MR 2230846

[10] Candés, E. J., Tao, T.: Decoding by linear programming. IEEE Trans. Inform. Theory 51,
4203–4215 (2005) Zbl 1264.94121 MR 2243152
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