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Abstract. For a sufficiently regular open bounded set D ⊂ R2 let us consider the equation
(−1)1/2ϕ(x) = 1 for x ∈ D with the Dirichlet exterior condition ϕ(x) = 0 for x ∈ Dc. Its
solution ϕ(x) is the expected value of the first exit time from D of the Cauchy process in R2 start-
ing from x. We prove that ifD ⊂ R2 is a convex bounded domain then ϕ is concave onD. To do so
we study the Hessian matrix of the harmonic extension of ϕ. The key idea of the proof is based on a
deep result of Hans Lewy concerning the determinants of Hessian matrices of harmonic functions.

Keywords. Fractional Laplacian, concavity, Hessian matrix, harmonic function, Cauchy process,
first exit time

1. Introduction

Let D ⊂ R2 be an open bounded set which satisfies a uniform exterior cone condition on
∂D and consider the following Dirichlet problem for the square root of the Laplacian:

(−1)1/2ϕ(x) = 1, x ∈ D, (1)
ϕ(x) = 0, x ∈ Dc, (2)

where we understand that ϕ is a continuous function on R2. The operator (−1)1/2 in R2

is given by

(−1)1/2f (x) =
1

2π
lim
ε→0+

∫
|y−x|>ε

f (x)− f (y)

|y − x|3
dy,

whenever the limit exists.
It is well known that (1)–(2) has a unique solution, which has a natural probabilistic

interpretation. Let Xt be the Cauchy process in R2 (that is, a symmetric α-stable process
in R2 with α = 1) with transition density pt (x) = 1

2π t (t
2
+ |x|2)−3/2 and let τD =

inf{t ≥ 0 : Xt /∈ D} be the first exit time of Xt from D. Then ϕ(x) = Ex(τD), x ∈ R2,
where Ex is the expected value of the process Xt starting from x [18]. The function
Ex(τD) plays an important role in the potential theory of symmetric stable processes (see
e.g. [5], [4], [11]).

T. Kulczycki: Faculty of Pure and Applied Mathematics,
Wrocław University of Science and Technology,
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About 10 years ago R. Bañuelos asked about p-concavity of Ex(τD) for symmetric
α-stable processes. The problem was inspired by a beautiful result of Ch. Borell about
1/2-concavity of Ex(τD) for the Brownian motion.

The main result of this paper is the following theorem. It solves the problem posed by
R. Bañuelos for the Cauchy process in R2.

Theorem 1.1. If D ⊂ R2 is a bounded convex domain then the solution of (1)–(2) is
concave on D.

To the best of the author’s knowledge this is the first result concerning concavity of solu-
tions of equations for fractional Laplacians on general convex domains. There is a recent
interesting paper of R. Bañuelos and R. D. DeBlassie [1] in which the first eigenfunc-
tion of the Dirichlet eigenvalue problem for fractional Laplacians on Lipschitz domains
is studied, but in that paper superharmonicity and not concavity of the first eigenfunction
is proved (similar results were also obtained by M. Kaßmann and L. Silvestre [22]). In
[3] concavity of the first eigenfunction for fractional Laplacians was studied, but only for
boxes and not for general convex domains.

Now let D ⊂ Rd , d ≥ 1, be an open bounded set which satisfies a uniform exterior
cone condition on ∂D, let α ∈ (0, 2] and consider a more general Dirichlet problem for
the fractional Laplacian

(−1)α/2ϕ(x) = 1, x ∈ D, (3)
ϕ(x) = 0, x ∈ Dc, (4)

where we understand that ϕ is a continuous function on Rd . The operator (−1)α/2 in Rd
for α ∈ (0, 2) is given by

(−1)α/2f (x) = Ad,−α lim
ε→0+

∫
|y−x|>ε

f (x)− f (y)

|y − x|d+α
dy,

whenever the limit exists, with Ad,−α = 2α0((d + α)/2)/(πd/2|0(−α/2)|). For α = 2
the operator (−1)α/2 is simply −1.

It is well known that (3)–(4) has a unique solution. It is the expected value of the first
exit time from D of the symmetric α-stable process in Rd .

Remark 1.2. For α = 2, i.e. for the Laplacian, it is well known that if D ⊂ Rd is
a bounded convex domain then the solution of (3)–(4) is 1/2-concave, that is,

√
ϕ is

concave. This was proved for d = 2 in 1969 by L. Makar-Limanov [32], and for d ≥ 3
in 1983 by Ch. Borell [8] and independently by A. Kennington [23], [24] using ideas of
N. Korevaar [25].

Remark 1.3. Let α ∈ (0, 2] and ϕ be a solution of (3)–(4) for D = B(0, r) ⊂ Rd ,
d ≥ 1, the open ball with centre 0 and radius r > 0. Then ϕ is given by the explicit
formula [18] (see also [21], [17]) ϕ(x) = CB(r

2
− |x|2)α/2 for x ∈ B(0, r), where

CB = 0(d/2)(2α0(1+ α/2)0(d/2+ α/2))−1. In particular ϕ is concave on B(0, r).
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Remark 1.4. For any α ∈ (1, 2) and d ≥ 2 there exists a bounded convex domain
D ⊂ Rd (a sufficiently narrow bounded cone) such that ϕ is not concave on D. This is
justified in Section 7. In particular, this implies that the assertion of Theorem 1.1 is not
true for problem (3)–(4) for α ∈ (1, 2).

For general α ∈ (0, 2) and d ≥ 2 we have the following regularity result.

Theorem 1.5. Let α ∈ (0, 2), d ≥ 2 and let ϕ be a solution of (3)–(4). If D ⊂ Rd is a
bounded convex domain then

(a) for any x0 ∈ ∂D, x ∈ D and λ ∈ (0, 1),

ϕ(λx + (1− λ)x0) ≥ λ
αϕ(x),

(b) for any x, y ∈ D and λ ∈ (0, 1),

ϕ(λx + (1− λ)y) ≥ max(λαϕ(x), (1− λ)αϕ(y)).

The proof of this theorem is in Section 7. It is based on a tricky observation and is much
easier than the proof of Theorem 1.1. Clearly, Theorem 1.5 does not imply p-concavity
of ϕ for any p ∈ [−∞, 1]. Some conjectures concerning p-concavity of solutions of
(3)–(4) are presented in Section 7.

Below we present the idea of the proof of Theorem 1.1. The proof is in the spirit
of papers by L. Caffarelli and A. Friedman [9] and N. Korevaar and J. Lewis [26], in
which they study the geometric properties of solutions of some PDEs using the constant
rank theorem and the method of continuity. In the proof of Theorem 1.1 the role of the
constant rank theorem is played by the following result of Hans Lewy from 1968.

Theorem 1.6 (Hans Lewy, [31]). Let u(x1, x2, x3) be real and harmonic in a domain �
of R3 and let H(u) denote the determinant of the Hessian matrix of u. Suppose H(u)
vanishes at a point x0 ∈ � without vanishing identically in �. Then H(u) assumes both
positive and negative values near x0.

This result is key to the proof of Theorem 1.1. S. Gleason and T. Wolff [20] generalized
Theorem 1.6 to higher dimensions. Their result gives some hope that it is also possible to
extend Theorem 1.1 to higher dimensions (see Conjecture 7.1).

Let us now present the idea of the proof of Theorem 1.1. We prove the theorem for a
sufficiently smooth bounded convex domain D ⊂ B(0, 1) ⊂ R2, whose boundary has a
strictly positive curvature (the result for an arbitrary bounded convex domain then follows
by approximation and scaling). Let us consider the harmonic extension u of ϕ. Namely,
let

K(x) = CK
x3

(x2
1 + x

2
2 + x

2
3)

3/2
, x ∈ R3

+, (5)

where CK = 1/(2π) and R3
+ = {x = (x1, x2, x3) ∈ R3

: x3 > 0}. Set u(x1, x2, 0) =
ϕ(x1, x2) for (x1, x2) ∈ R2 and

u(x1, x2, x3) =

∫
D

K(x1−y1, x2−y2, x3)ϕ(y1, y2) dy1 dy2, (x1, x2, x3) ∈ R3
+. (6)
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Note that K(x1 − y1, x2 − y2, x3) is the Poisson kernel of R3
+ for x = (x1, x2, x3) ∈ R3

+

and (y1, y2, 0) ∈ ∂R3
+. We denote ∂f

∂xi
by fi and ∂2f

∂xi∂xj
by fij . It is well known that

u3(x1, x2, 0) = −(−1)1/2ϕ(x1, x2) for (x1, x2) ∈ D, so u satisfies

1u(x) = 0, x ∈ R3
+, (7)

u3(x) = −1, x ∈ D × {0}, (8)
u(x) = 0, x ∈ Dc × {0}, (9)

where 1u = u11 + u22 + u33.
The idea of studying equations for fractional Laplacians via harmonic extensions is

well known. It was used for the first time by F. Spitzer [35] and then by many other au-
thors, e.g. by S. A. Molchanov and E. Ostrovskiı̆ [34], R. D. DeBlassie [14], P. Méndez-
Hernández [33], R. Bañuelos and T. Kulczycki [2], A. El Hajj, H. Ibrahim and R. Mon-
neau [16] and L. Caffarelli and L. Silvestre [10].

In the next step of the proof we extend u to R3
− = {x = (x1, x2, x3) ∈ R3

: x3 < 0}
by setting

u(x1, x2, x3) = u(x1, x2,−x3)− 2x3, (x1, x2, x3) ∈ R3
−. (10)

Note that u is continuous on R3 and for (x1, x2) ∈ D it satisfies

u3−(x1, x2, 0) = lim
h→0−

u(x1, x2, h)− u(x1, x2, 0)
h

= lim
h→0−

u(x1, x2,−h)− 2h− u(x1, x2, 0)
h

= −1.

By standard arguments, u is harmonic in R3
+ ∪ R3

− ∪ (D × {0}) = R3
\ (Dc × {0}).

Let Hess(u) be the Hessian matrix of u, and H(u) = det(Hess(u)). The general
strategy of the proof is as follows:

1. We show that H(u)(x) > 0 for every x ∈ R3
\ (Dc × {0}).

2. We show that for x = (x1, x2, 0) ∈ D × {0} the Hessian matrix has the form

Hess(u)(x) =

u11(x) u12(x) 0
u12(x) u22(x) 0

0 0 u33(x)

 =
ϕ11(x1, x2) ϕ12(x1, x2) 0
ϕ12(x1, x2) ϕ22(x1, x2) 0

0 0 u33(x)


and u33(x) > 0.

Since 1u(x) = 0, the two assertions above immediately imply that ϕ11(x1, x2) < 0 and
ϕ22(x1, x2) < 0 for (x1, x2) ∈ D, so ϕ is strictly concave on D.

The proof is almost entirely the justification of the first assertion. This is done by the
continuity method, i.e. by deforming the domainD to the unit ball B(0, 1). The continuity
method requires the maximum principle forH(u) (Lewy’s theorem), estimates of uij near
∂D × {0} (see Sections 3 and 4) and the result for the unit ball (Section 5). Roughly
speaking, estimates of uij justify that zeroes of H(u) do not “emerge” from ∂D × {0}
along the deformation. Lewy’s theorem implies that zeroes of H(u) cannot appear in
compact subdomains of R3

\ (Dc × {0}) along the deformation.
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Below, we briefly present the main steps in the continuity method. It can be easily
shown that H(u)(x) → 0 as x → x0 ∈ int(Dc) × {0}. This causes some technical
difficulties in the proof. To deal with this problem we add an auxiliary harmonic function
to u. Namely, for any ε ≥ 0 we consider v(ε,D)(x) = u(D)(x) + ε(−x2

1/2 − x
2
2/2 + x

2
3)

(where u(D) denotes the u corresponding to D). We consider the family {D(t)}t∈[0,1]
of domains such that D(0) = D, D(1) = B(0, 1), all D(t) are smooth bounded convex
domains whose boundaries have strictly positive curvature and ∂D(t)→ ∂D(s) as t → s

in an appropriate sense. For large M we set (see Figure 8)

�(M,D(t)) = {x ∈ R3
: x2

1 + x
2
2 < M2, x3 ∈ (−M,M)} \ (D(t)

c
× {0}).

We fix a large M and a sufficiently small ε > 0 (ε ∈ (0, C(M)]), and define

T = {t ∈ [0, 1] : H(v(ε,D(t)))(x) > 0 for all x ∈ �(M,D(t))}.

Next, one can show that 1 ∈ T (the result for the unit ball). Then we prove that T is closed,
which follows from Lewy’s theorem applied to v(ε,D(t)). Next, we show that T is open
(relatively in [0, 1]), which follows from the fact that for any fixed large M and any fixed
ε ∈ (0, C(M)] and all t ∈ [0, 1] we have H(v(ε,D(t)))(x) > c > 0 near ∂�(M,D(t)),
where c does not depend on t (in the proof of this estimate the results from Section 4 are
used). This implies that T = [0, 1]. By taking ε → 0 (and again using Lewy’s theorem)
we deduce that H(u(D))(x) > 0 for x ∈ �(M,D). Letting M → ∞ we conclude that
H(u(D))(x) > 0 for all R3

\ (Dc × {0}).
The paper is organized as follows. In Section 2 we present notation and collect some

known facts needed in the rest of the paper. Sections 3 and 4 are the most technical parts.
In Section 3 we estimate ϕ(D)ij near ∂D. This is done by using an explicit formula for
the Poisson kernel PB(x, y) for a ball B corresponding to (−1)1/2. Note that due to the
nonlocality of (−1)1/2 the corresponding harmonic measure PB(x, y) dy is concentrated
not on ∂B but on Bc. The results for ϕ(D)ij are obtained by estimating integrals involving
the Poisson kernel and its derivatives over different subdomains of D. This method is
very technical. Nevertheless, this is a standard method for boundary value problems for
fractional Laplacians used by many authors, e.g. K. Bogdan, Z.-Q. Chen, R. Song. It
seems that the reason the estimates of ϕ(D)i , ϕ(D)ij are quite long and technical is just the
nonlocality of the equation (−1)1/2ϕ = 1. The results of Section 3 are used only in
Section 4, where estimates of u(D)ij near ∂D × {0} are obtained. These estimates are also

quite technical. The reason is that u(D)ij is singular near ∂D × {0} and its behaviour is
quite complicated. For example, in an appropriate coordinate system (see Figure 4) in a
neighborhood of 0 ∈ ∂D×{0}we have u(D)11 (x) ≈ (dist(x, ∂D×{0}))−3/2 at some points,
u
(D)
11 (x) vanishes at some other points, and u(D)11 (x) ≈ −(dist(x, ∂D × {0}))−3/2 at some

other points. In order to control all six different u(D)ij and ultimately control H(v(ε,D)),
we have to consider many cases. The results of Section 4 are used only in the proofs of
Proposition 6.2 and Lemma 5.2. Let us point out that the only aim of Sections 3 and 4 is
to get control on H(v(ε,D)) and H(u(D)) near ∂D × {0}.



1366 Tadeusz Kulczycki

In Section 5 we prove thatH(u(B(0,1)))(x) > 0 for x ∈ R3
\(B(0, 1)c×{0}). The func-

tion u(B(0,1)) is given by an explicit formula but it seems hard to showH(u(B(0,1)))(x) > 0
using this formula directly. Instead, the proof is based on an auxiliary function and Lewy’s
theorem.

The most important part of the paper is Section 6, which contains the proof of the main
theorem. In particular, it contains the proof of positivity of H(u(D)) via the continuity
method, which was briefly described above. It is worth emphasizing that all the derivative
estimates obtained in Sections 3 and 4 are used in Section 6 only in the proof of Proposi-
tion 6.2. The results of Section 5 are used only in the proof of Proposition 6.5. Corollary
6.6, in which estimates of H(v(ε,D)) near ∂�(M,D) (see Figure 8) and H(v(ε,B(0,1))) in
�(M,B(0, 1)) are formulated, is a direct consequence of Propositions 6.2 and 6.5. Let
us point out that the results of Sections 3–5 are invoked in the proof of the main theorem
only through Corollary 6.6.

In Section 7 some extensions and conjectures are presented.

2. Preliminaries

For x ∈ Rd and r > 0 we let B(x, r) = {y ∈ Rd : |y − x| < r}. For a, b ∈ R
we write a ∧ b for min(a, b) and a ∨ b for max(a, b). For x ∈ Rd and D ⊂ Rd we
set δD(x) = dist(x, ∂D). For ψ : Rd → R we denote ψi(x) =

∂ψ
∂xi
(x) and ψij (x) =

∂2ψ
∂xi∂xj

(x) for i, j ∈ {1, . . . , d}. We write R3
+ = {(x1, x2, x3) ∈ R3

: x3 > 0} and

R3
− = {(x1, x2, x3) ∈ R3

: x3 < 0}. The uniform exterior cone condition is defined e.g.
in [19, p. 195].

Let us define a subclass of bounded, convex C2,1 domains in R2 with strictly positive
curvature, which will be suitable for our purposes.

Definition 2.1. Let C1, R1 > 0 and κ2 ≥ κ1 > 0, and fix a Cartesian coordinate system
CS in R2. We say that a domain D ⊂ R2 belongs to the class F(C1, R1, κ1, κ2) when:
1. D is convex and in CS coordinates we have

{(y1, y2) : y
2
1 + y

2
2 < R2

1} ⊂ D ⊂ {(y1, y2) : y
2
1 + y

2
2 < 1}.

2. For any x ∈ ∂D there exists a Cartesian coordinate system CSx with origin at x
obtained by translation and rotation of CS, and there exist R > 0 and f : [−R,R] →
[0,∞) (R, f depend on x) such that f ∈ C2,1

[−R,R], f (0) = 0, f ′(0) = 0 and
in CSx coordinates

{(y1, y2) : y2 ∈ [−R,R], y1 ∈ (f (y2), R]} = D ∩ {(y1, y2) : y1, y2 ∈ [−R,R]}.

3. For any y ∈ ∂D we have
κ1 ≤ κ(y) ≤ κ2,

where κ(y) denotes the curvature of ∂D at y.
4. For any y, z ∈ ∂D we have

|κ(y)− κ(z)| ≤ C1|y − z|.

For brevity, we will often use the notation 3 = {C1, R1, κ1, κ2} and write D ∈ F(3).
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Let C1, R1 > 0, κ2 ≥ κ1 > 0, and3 = {C1, R1, κ1, κ2}. LetD ∈ F(3). For any y ∈ ∂D
we denote by En(y) the unit inner normal vector at y, and by ET (y) the unit tangent vector
at y which agrees with the negative (clockwise) orientation of ∂D. We set e1 = (1, 0),
e2 = (0, 1).

It may be easily shown that there exists R̃ = R̃(3) such that for any y ∈ D with
δD(y) ≤ R̃ there exists a unique y∗ ∈ ∂D such that |y − y∗| = δD(y). For any y ∈ D
such that δD(y) ≤ R̃ we define En(y) = En(y∗) and ET (y) = ET (y∗). For any ψ ∈ C2(D),
y ∈ D, v1(y), v2(y) ∈ R and Ev(y) = v1(y)e1 + v2(y)e2 we set

∂ψ

∂ Ev
(y) = v1(y)ψ1(y)+ v2(y)ψ2(y)

(recall thatψi(y) =
∂ψ
∂xi
(y)). Similarly, for anyw1(y), w2(y) ∈ R and Ew(y) = w1(y)e1+

w2(y)e2 we write

∂2ψ

∂ Ev∂ Ew
(y) = v1(y)w1(y)ψ11(y)+ v2(y)w2(y)ψ22(y)+ (v1(y)w2(y)

+ v2(y)w1(y))ψ12(y).

Lemma 2.2. Let C1, R1 > 0, κ2 ≥ κ1 > 0, 3 = {C1, R1, κ1, κ2} and fix a Cartesian
coordinate system CS in R2. Fix D ∈ F(3) and x0 ∈ ∂D. Choose a new Cartesian
coordinate system CSx0 with origin at x0 obtained by translation and rotation of CS such
that the positive coordinate halflines y1, y2 are in the directions En(x0), ET (x0) respectively.

From now on all points and vectors are in this new coordinate system CSx0 , in particu-
lar En(0, 0) = (1, 0) = e1, ET (0, 0) = (0, 1) = e2. For any y ∈ ∂D define α(y) ∈ (−π, π]
such that ET (y) = sinα(y) e1 + cosα(y) e2 (the angle between e2 and ET (y)). For any
y ∈ D with δD(y) < R̃ define α(y) = α(y∗), where y∗ ∈ ∂D is the unique point such
that |y − y∗| = δD(y).

y1

y2

r
D.

Fig. 1

There exist r0 = r0(3) ≤ R̃ ∧ (1/2), c1 = c1(3), c2 = c2(3), c3 = c3(3), c4 =

c4(3), c5 = c5(3), c6 = c6(3) and f : [−r0, r0] → [0,∞) such that f ∈ C2,1
[−r0, r0],

f (0) = 0, f ′(0) = 0, c4r0 ≤ 1/4 and for any fixed r ∈ (0, r0] we have (see Figure 1):

1. {(y1, y2) : (y1 − r)
2
+ y2

2 < r2
} ⊂ D,

W := {(y1, y2) : y2 ∈ [−r, r], y1 ∈ (f (y2), r]} = D ∩ {(y1, y2) : y1, y2 ∈ [−r, r]}.
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2. For any y ∈ W we have α(y) ∈ [−π/4, π/4] and

c1|y2| ≤ |sinα(y)| ≤ c2|y2|,

ET (y) = sinα(y) e1 + cosα(y) e2, (11)
En(y) = cosα(y) e1 − sinα(y) e2. (12)

3. For any y2 ∈ [−r, r] we have

c3y
2
2 ≤ f (y2) ≤ c4y

2
2 .

4. For any y ∈ W we have e1 = cosα(y) En(y)+ sinα(y) ET (y), e2 = − sinα(y) En(y)+
cosα(y) ET (y). For any ψ ∈ C2(D) and y ∈ W we have

∂ψ

∂ ET
(y) = sinα(y)ψ1(y)+ cosα(y)ψ2(y), (13)

∂ψ

∂ En
(y) = cosα(y)ψ1(y)− sinα(y)ψ2(y), (14)

ψ1(y) = cosα(y)
∂ψ

∂ En
(y)+ sinα(y)

∂ψ

∂ ET
(y),

ψ2(y) = − sinα(y)
∂ψ

∂ En
(y)+ cosα(y)

∂ψ

∂ ET
(y),

ψ11(y) = cos2 α(y)
∂2ψ

∂ En2 (y)+ sin2 α(y)
∂2ψ

∂ ET 2
(y)+ 2 sinα(y) cosα(y)

∂2ψ

∂ En∂ ET
(y),

ψ22(y) = cos2 α(y)
∂2ψ

∂ ET 2
(y)+ sin2 α(y)

∂2ψ

∂ En2 (y)− 2 sinα(y) cosα(y)
∂2ψ

∂ En∂ ET
(y),

ψ12(y) = (cos2 α(y)− sin2 α(y))
∂2ψ

∂ En∂ ET
(y)− sinα(y) cosα(y)

(
∂2ψ

∂ En2 (y)−
∂2ψ

∂ ET 2
(y)

)
.

5. For any y ∈ {(y1, y2) ∈ W : y2 > 0} we have

c5(f
−1(y1)− y2)f

−1(y1) ≤ δD(y) ≤ c6(f
−1(y1)− y2)f

−1(y1),

where f−1
: [0, f (r)] → [0, r].

This lemma follows by elementary geometry and its proof is omitted.

Lemma 2.3. Let C1, R1 > 0, κ2 ≥ κ1 > 0 and 3 = {C1, R1, κ1, κ2}. There exists a
constant c = c(3) such that for any D ∈ F(3) we have∫

D

δ
−1/2
D (x) dx ≤ c. (15)

Proof. By Definition 2.1 we have B(0, R1) ⊂ D ⊂ B(0, 1). Let x0 ∈ ∂D. By convexity
ofD the convex hull of B(0, R1)∪{x0} is a subset ofD. Using this fact andD ⊂ B(0, 1)
one can easily show that for every x in the line segment between 0 and x0 we have
|x − x0| ≤ cδD(x), where c depends only on R1. Hence δ−1/2

D (x) ≤ c1/2
|x − x0|

−1/2.
Now (15) easily follows by using polar coordinates with centre at 0. ut
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In what follows we will use the method of continuity (cf. [26, p. 20], [9]). Roughly
speaking, we will deform a convex bounded domain D to the ball B(0, 1). To do this
we will consider the following construction. Let C1, R1 > 0 and κ2 ≥ κ1 > 0. For any
D ∈ F(C1, R1, κ1, κ2) and t ∈ [0, 1] we define

D(t) = {x : ∃y ∈ D, z ∈ B(0, 1) such that x = (1− t)y + tz}. (16)

Lemma 2.4. For any C1, R1 > 0 and κ2 ≥ κ1 > 0 there exist C′1, R
′

1 > 0 and
κ ′2 ≥ κ ′1 > 0 such that for any D ∈ F(C1, R1, κ1, κ2) and any t ∈ [0, 1] we have
D(t) ∈ F(C′1, R

′

1, κ
′

1, κ
′

2).

This lemma seems to be standard, similar results are well known (cf. [19, Appendix,
pp. 381–384] or [9, proof of Theorem 3.1]). Therefore we omit its proof.

Now we state some properties of the solution of (1)–(2) and its harmonic extension
which will be needed in the rest of the paper.

Let D ⊂ R2 be an open bounded set and ϕ(D) be the solution of (1)–(2) for D. Then
the following scaling property is well known [4, (1.61)]:

ϕ(aD)(ax) = aϕ(D)(x), x ∈ D, a > 0. (17)

For any open bounded sets D1,D2⊂R2 set d(D1,D2)=[sup{dist(x, ∂D2) : x ∈∂D1}]

∨ [sup{dist(x, ∂D1) : x ∈ ∂D2}].

Lemma 2.5. Let {Dn}∞n=0 be a sequence of bounded convex domains in R2 and ϕ(Dn) be
the solution of (1)–(2) for Dn. If d(Dn,D0) → 0 as n → ∞ then for any x ∈ D0 we
have ϕ(Dn)(x)→ ϕ(D0)(x) as n→∞.

This lemma seems to be well known and follows easily from (17), so we omit its proof
(in fact, it holds not only for convex domains, but we need it only in this case).

Lemma 2.6. Let C1, R1 > 0, κ2 ≥ κ1 > 0 and 3 = {C1, R1, κ1, κ2}. There exist a
constant c1 = c1(3) and an absolute constant c2 such that for any D ∈ F(3) we have

ϕ(x) ≤ 2/π, x ∈ D,

c1δ
1/2
D (x) ≤ ϕ(x) ≤ c2δ

1/2
D (x), x ∈ D,

where ϕ is the solution of (1)–(2) for D.

Proof. We have D ⊂ B(0, 1), so for any x ∈ D we get

ϕ(x) = Ex(τD) ≤ E
x(τB(0,1)) =

2
π
(1− |x|2)1/2.

Let x ∈ D and let x∗ ∈ ∂D be such that |x−x∗| = δD(x). Define z = x∗− En(x∗), where
En(x∗) is the unit inner normal vector at x∗ (clearly |z − x∗| = 1). By convexity of D we
get B(z, 1) ⊂ Dc. Set

U = {y ∈ R2
: 1 < |y − z| < 3}.
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Since D ⊂ B(0, 1), we get diam(D) ≤ 2. Clearly, x∗ ∈ ∂D ∩ ∂U , which implies that
D ⊂ U and δD(x) = δU (x). By [13] there exists an absolute constant c2 such that

ϕ(x) = Ex(τD) ≤ E
x(τU ) ≤ c2δ

1/2
U (x) = c2δ

1/2
D (x).

Now we will prove the lower bound of ϕ. Since D ⊂ B(0, 1), we have δD(x) ≤ 1.
Let x ∈ D. If δD(x) ≥ r0, where r0 = r0(3) is the constant from Lemma 2.2, then

ϕ(x) = Ex(τD) ≥ E
x(τB(x,r0)) =

2
π
r0 ≥

2
π
r0δ

1/2
D (x).

If δD(x) < r0 then we may choose a coordinate system as in Lemma 2.2 (see Figure 1)
and assume that x = (x1, 0) and δD(x) = x1. Set B = B((r0, 0), r0). By Lemma 2.2 we
have B ⊂ D. Clearly x ∈ B and δD(x) = δB(x) = x1. It follows that

ϕ(x) = Ex(τD) ≥ E
x(τB) =

2
π

(
r2

0 − |(r0, 0)− (x1, 0)|2
)1/2
≥

2
π
r

1/2
0 δ

1/2
D (x). ut

Lemma 2.7. Let C1, R1 > 0, κ2 ≥ κ1 > 0, D ∈ F(C1, R1, κ1, κ2), ϕ be the solu-
tion of (1)–(2) for D, and u the harmonic extension of ϕ given by (6)–(10). For any
(x1, x2, x3) ∈ R3

+ we have H(u)(x1, x2,−x3) = H(u)(x1, x2, x3).

Proof. For x = (x1, x2, x3) set x̂ = (x1, x2,−x3). For x ∈ R3
+ we have uii(x̂) = uii(x)

for i = 1, 2, 3, u12(x̂) = u12(x), u13(x̂) = −u13(x) and u23(x̂) = −u23(x). Hence
H(u)(x̂) = H(u)(x). ut

We recall the definition of an α-harmonic function, α ∈ (0, 2). A Borel function h on Rd
is said to be α-harmonic on an open set D ⊂ Rd if for any x0 ∈ Rd and r > 0 such that
B(x0, r) ⊂ D we have

h(x) =

∫
B(x0,r)c

Pr(x − x0, y − x0)h(y) dy,

where the integral is absolutely convergent and Pr(x, y) is the Poisson kernel for the ball
B(0, r) corresponding to (−1)α/2. The explicit formula for the Poisson kernel is well
known (see e.g. [4, (1.57)]. For α = 1 and d = 2 the Poisson kernel for B(z, s) is given
by (19). It is well known that h is α-harmonic on an open set D ⊂ Rd if and only if h
is C2 on D and (−1)α/2h(x) = 0 for any x ∈ D. A Borel function h on Rd is said to be
singular α-harmonic on an open set D ⊂ Rd if it is α-harmonic on D and h ≡ 0 on Dc.

We will need the following formulas for derivatives of K(x) = CKx3(x
2
1 + x

2
2

+ x2
3)
−3/2:

K1(x) = −3CKx3x1(x
2
1 + x

2
2 + x

2
3)
−5/2,

K2(x) = −3CKx3x2(x
2
1 + x

2
2 + x

2
3)
−5/2,

K3(x) = CK(x
2
1 + x

2
2 − 2x2

3)(x
2
1 + x

2
2 + x

2
3)
−5/2
;
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K11(x) = CKx3(12x2
1 − 3x2

2 − 3x2
3)(x

2
1 + x

2
2 + x

2
3)
−7/2,

K22(x) = CKx3(12x2
2 − 3x2

1 − 3x2
3)(x

2
1 + x

2
2 + x

2
3)
−7/2,

K33(x) = CKx3(6x2
3 − 9x2

1 − 9x2
2)(x

2
1 + x

2
2 + x

2
3)
−7/2,

K12(x) = 15CKx3x1x2(x
2
1 + x

2
2 + x

2
3)
−7/2,

K13(x) = CKx1(12x2
3 − 3x2

1 − 3x2
2)(x

2
1 + x

2
2 + x

2
3)
−7/2,

K23(x) = CKx2(12x2
3 − 3x2

1 − 3x2
2)(x

2
1 + x

2
2 + x

2
3)
−7/2.

Remark 2.8. All constants appearing in this paper are positive and finite. We write C =
C(a, . . . , z) to emphasize that C depends only on a, . . . , z. We adopt the convention that
constants denoted by c (or c1, c2, etc.) may change their value from one use to the next.

Remark 2.9. In Sections 3, 4 and in the proof of Proposition 6.2 we use the following
convention. Constants denoted by c (or c1, c2, etc. ) depend on 3 = {C1, R1, κ1, κ2},
which appears in Definition 2.1. We write f (x) ≈ g(x) for x ∈ A ⊂ R2 to indicate
that there exist constants c1 = c1(3) and c2 = c2(3) such that for any x ∈ A we have
c1g(x) ≤ f (x) ≤ c2g(x) (in particular, it may happen that both f , g are positive on A or
both f , g are negative on A).

3. Estimates of derivatives of ϕ near ∂D

In this section we obtain estimates of ϕi , ϕij near ∂D. These results are used in this paper
only in Section 4, where the behaviour of uij near ∂D×{0} is studied. To obtain the esti-
mates of ϕi , ϕij we use the well known representation (18) below. This formula involves
the Poisson kernel P(x, y) for a ball corresponding to (−1)1/2. Recall that due to non-
locality of this operator the support of the corresponding harmonic measure P(x, y) dy
for a ball B is equal to Bc. This makes proofs in this section quite long and compli-
cated because we have to obtain estimates of integrals involving the Poisson kernel and
its derivatives over different subdomains ofD. Most of the techniques used in this section
are similar to the standard methods used by Z.-Q. Chen and R. Song [12], T. Kulczycki
[28], and K. Bogdan, T. Kulczycki and A. Nowak [6]. These methods were used in esti-
mates of the Green function corresponding to (−1)α/2, α ∈ (0, 2), on smooth domains
[12], [28] and in estimates of gradients of α-harmonic functions [6].

It should be mentioned that similar estimates for derivatives of α-harmonic functions
were simultaneously obtained by the author’s student G. Żurek in his Master Thesis [36].

The most difficult part of this section is the proof of Lemma 3.7. In this lemma
estimates of ϕ22(x1, 0) are obtained (the y2 axis is tangent to the boundary of D at
(0, 0) ∈ ∂D, see Figure 3). To the best of the author’s knowledge the idea of that proof is
new. Roughly speaking, the proof is based on the representation

ϕ22(x1, 0) =
∫
D\B

P2((x1, 0), y)ϕ2(y) dy

and the precise control of the derivatives of ϕ in normal and tangent directions in a small
neighbourhood of (0, 0).



1372 Tadeusz Kulczycki

In the whole section we fix C1, R1 > 0, κ2 ≥ κ1 > 0, D ∈ F(C1, R1, κ1, κ2) and
x0 ∈ ∂D. We write 3 = {C1, R1, κ1, κ1}, and ϕ is the solution of (1)–(2) for D. Unless
otherwise stated we fix the coordinate system CSx0 and notation as in Lemma 2.2 (see
Figure 1). In particular, x0 is (0, 0) in CSx0 coordinates.

Let r ∈ (0, r0], z = (r, 0), s ∈ (0, r] and B = B(z, s) (where r0 is the constant from
Lemma 2.2). It is well known (see e.g. [4, (1.50), (1.56), (1.57)]) that

ϕ(x) = h(x)+

∫
Bc
P(x, y)ϕ(y) dy, x ∈ B, (18)

where h(x) = CB(s2
− |x − z|2)1/2 for x ∈ B and

P(x, y) = CP
(s2
− |x − z|2)1/2

(|y − z|2 − s2)1/2|x − y|2
, x ∈ B, y ∈ (B)c, (19)

with CB = 2/π and CP = π−2.
We have h1(x) = CB(r − x1)(s

2
− |x − z|2)−1/2 for x ∈ B. Write Pi(x, y) =

∂
∂xi
P(x, y), i = 1, 2. For any x ∈ B and y ∈ (B)c we have P1(x, y) = A(x, y)+E(x, y)

where

A(x, y) = −CP
(s2
− |x − z|2)−1/2(x1 − r)

(|y − z|2 − s2)1/2|x − y|2
, (20)

E(x, y) = −2CP
(s2
− |x − z|2)1/2(x1 − y1)

(|y − z|2 − s2)1/2|x − y|4
. (21)

In this section we use only those geometric properties of the domain D which are
stated in Lemmas 2.2 and 2.3, and additionally the facts that D ⊂ B(0, 1) and D is
convex. Recall that all constants in the assertions of Lemmas 2.2 and 2.3 depend only
on 3. Hence all constants in the estimates of this section also depend only on 3. In the
whole section we use the convention stated in Remark 2.9.

Lemma 3.1. There exists r1 = r1(3) ∈ (0, r0/4] such that ϕ1(x1, 0) ≈ x
−1/2
1 for any

x1 ∈ (0, r1].

Proof. Set r = r0. We will use (18) for s = r , in particular B = B(z, r). Note that for
x = (x1, 0) we have r2

− |x − z|2 = x1(r + |x1 − r|) ≤ 2rx1. Define

k(x) = 1B(x)
∫
Bc
P(x, y)ϕ(y) dy + 1Bc (x)ϕ(x), x ∈ R2.

We have k(x) ≥ 0 on R2, by (18) k(x) ≤ ϕ(x) on B, and k is 1-harmonic on B. For
the definition and basic properties of α-harmonic functions see Section 2 and [4, pp. 20–
21, 61]. The fact that k is 1-harmonic follows from [4, p. 61]. By [6, Lemma 3.2] (cf.
also [30]) and Lemma 2.6,

k1(x1, 0) ≤ 2
k(x1, 0)
x1

≤ 2
kϕ(x1, 0)

x1
≤ cx

−1/2
1 for x1 ∈ (0, r].
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y1

y2

x1

x1

p1

D1

B = B(z, r)

D2

D3

∂D
∂B

Fig. 2

By the formula for h1 and the formula for r2
− |x − z|2 we get h1(x1, 0) = CB(r − x1)

×(2r−x1)
−1/2x

−1/2
1 ≤ CBr

1/2x
−1/2
1 . Hence ϕ1(x1, 0) = h1(x1, 0)+k1(x1, 0) ≤ cx−1/2

1
for x1 ∈ (0, r/4].

What remains is to show that ϕ1(x1, 0) ≥ cx−1/2
1 . For x1 ∈ (0, r]we have ϕ1(x1, 0) =∫

Bc
P1((x1, 0), y)ϕ(y) dy + h1(x1, 0). We will estimate

∫
Bc
P1ϕ.

Let x1 ∈ (0, f (r/2)∧ f (−r/2)]. By Lemma 2.2 we have f (r/2) ≤ c4(r/2)2 ≤ r/16
(because c4r ≤ 1/4), so x1 ∈ (0, r/16]. Note that f (r/2) ∧ f (−r/2) ≥ c3r

2/4, where
c3 and r = r0 are the constants from Lemma 2.2, and c3r

2/4 depends only on 3. Let
p1 ∈ (0, r/2] be such that f (p1) = x1, and p2 ∈ [−r/2, 0) be such that f (p2) = x1
(recall that f is defined in Lemma 2.2). By Lemma 2.2, f (x1) < c4x

2
1 ≤ (1/2)x1 and

f (−x1) ≤ (1/2)x1, so p1 > x1 and |p2| > x1. Let f1 : [−r, r] → R be defined by
f1(y2) = r − (r

2
− y2

2)
1/2. Denote (see Figure 2)

D1 = {(y1, y2) : y2 ∈ [−x1, x1], y1 ∈ (f (y2), f1(y2))},

D2 = {(y1, y2) : y2 ∈ (x1, p1] ∪ [p2,−x1), y1 ∈ (f (y2), f1(y2) ∧ x1)},

D3 = D \ (D1 ∪D2 ∪ B).

Note that
∫
D\B

A((x1, 0), y)ϕ(y) dy > 0 and
∫
D3
E((x1, 0), y)ϕ(y) dy > 0, because we

have A((x1, 0), y) > 0 for y ∈ D \ B and E((x1, 0), y) > 0 for y ∈ D3.
Recall that we use (18) for s = r . We have f1(y2) ≤ y

2
2/r = cy2

2 . By Lemma 2.6,
ϕ(y) ≤ cδ

1/2
D (y). For y ∈ D1 ∪ D2 we also have δD(y) ≤ y1 ≤ f1(y2) ≤ cy2

2 . It
follows that ϕ(y) ≤ c|y2| for y ∈ D1 ∪D2. Note that for y ∈ D1 we have |y2| ≤ x1, so
ϕ(y) ≤ cx1. Note also that |y−z|2−r2

= (|y−z|+r)(|y−z|−r). This is bounded from
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above by 3r(f1(y2)− y1) and from below by r(f1(y2)− y1)/2. Hence for y ∈ D1 ∪D2
we have |y − z|2 − r2

≈ f1(y2)− y1. For y ∈ D1 we obtain

0 < y1 ≤ f1(x1) =
x2

1

r + (r2 − x2
1)

1/2
≤
x2

1
r
≤
x1

16
,

because x1 ∈ (0, r/16]. Hence for y ∈ D1 we have |x − y| ≥ |x1 − y1| ≥ 15x1/16 and
|x1 − y1| ≤ x1. It follows that∣∣∣∣∫

D1

E((x1, 0), y)ϕ(y) dy
∣∣∣∣ ≤ cx−3/2

1

∫
D1

dy

(|y − z|2 − r2)1/2

≈ x
−3/2
1

∫ x1

−x1

dy2

∫ f1(y2)

f (y2)
(f1(y2)− y1)

−1/2 dy1

= 2x−3/2
1

∫ x1

−x1

(f1(y2)− f (y2))
1/2 dy2 ≤ cx

1/2
1 .

For y ∈ D2 we have |x−y| = ((x1−y1)
2
+y2

2)
1/2
≥ |y2| and |x1−y1| ≤ |x1|+|y1| ≤ 2x1.

Note also that by Lemma 2.2 we have p1 ≤ c
√
x1 ∧ (r/2) and |p2| ≤ c

√
x1 ∧ (r/2), so∣∣∣∣∫

D2

E((x1, 0), y)ϕ(y) dy
∣∣∣∣

≤ cx
3/2
1

∫ c
√
x1∧(r/2)

x1

dy2 y
−3
2

∫ f1(y2)∧x1

f (y2)
(f1(y2)− y1)

−1/2 dy1

≤ cx
3/2
1

∫ c
√
x1∧(r/2)

x1

y−3
2 (f1(y2)− f (y2))

1/2 dy2 ≤ cx
1/2
1

(here we omit
∫
−x1
p2

. . . because it can be estimated in the same way).
We have

ϕ1(x1, 0) = h1(x1, 0)+
∫
D\B

Aϕ +

∫
D1

Eϕ +

∫
D2

Eϕ +

∫
D3

Eϕ.

By the formula for h1 we easily get h1(x1, 0) ≥ (2
√

2)−1CBr
1/2x

−1/2
1 . It follows that

ϕ1(x1, 0) ≥ (2
√

2)−1CBr
1/2x

−1/2
1 − cx

1/2
1 = x

−1/2
1

(
(2
√

2)−1CBr
1/2
− cx1

)
.

Set c1 = (2
√

2)−1CBr
1/2. For sufficiently small x1 we have c1 − cx1 ≥ c1/2 and

ϕ1(x1, 0) ≥ (c1/2)x
−1/2
1 (one can take x1 ≤ r1 := (c1/(2c)) ∧ (r/4)). ut

Lemma 3.2. Set r1 = r0/4. For any x1 ∈ (0, r1] we have |ϕ2(x1, 0)| ≤ cx1/2
1 |log x1|.

Proof. Set r = r0. We will use (18) for s = r , in particular B = B(z, r). Let x1 ∈

(0, r/4]. We have ϕ2(x1, 0) =
∫
Bc
P2((x1, 0), y)ϕ(y) dy + h2(x1, 0), h2(x1, 0) = 0 and

P2((x1, 0), y) = 2CP
(r2
− |x − z|2)1/2y2

(|y − z|2 − r2)1/2|x − y|4
, y ∈ (B)c.
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Let f1 be as in the proof of Lemma 3.1. Define

D1 = {(y1, y2) : y2 ∈ [−x1, x1], y1 ∈ (f (y2), f1(y2))},

D2 = {(y1, y2) : y2 ∈ (x1, r/2] ∪ [−r/2,−x1), y1 ∈ (f (y2), f1(y2))},

D3 = D \ (D1 ∪D2 ∪ B).

By the same arguments as in the proof of Lemma 3.1, for x = (x1, 0)we have r2
−|x−z|2

≤ 2rx1 and for y ∈ D1 ∪ D2 we have |y − z|2 − r2
≈ f1(y2) − y1. Note also that for

y ∈ D1 ∪ D2 we have δD(y) ≤ y1 ≤ f1(y2) ≤ cy
2
2 , so ϕ(y) ≤ c|y2| (by Lemma 2.6).

For y ∈ D1 we have |y2| ≤ x1, so ϕ(y) ≤ cx1 and |x − y| ≥ 3x1/4. Hence∣∣∣∣∫
D1

P2((x1, 0), y)ϕ(y) dy
∣∣∣∣ ≤ cx−3/2

1

∫
D1

dy

(|y − z|2 − r2)1/2
.

By the same estimates as in the proof of Lemma 3.1 this is bounded by cx1/2
1 .

For x = (x1, 0) and y ∈ D2 we have |x − y| ≥ y2 and f1(y2) ≤ cy
2
2 . It follows that∣∣∣∣∫

D2

P2((x1, 0), y)ϕ(y) dy
∣∣∣∣ ≤ cx1/2

1

∫ r/2

x1

dy2y
−2
2

∫ f1(y2)

f (y2)
(f1(y2)− y1)

−1/2 dy1

≤ cx
1/2
1

∫ r/2

x1

y−2
2 (f1(y2)− f (y2))

1/2 dy2 ≤ cx
1/2
1 |log x1|.

For x = (x1, 0) and y ∈ D3 we have |y−z|2− r2
= (|y−z|+ r)δB(y) ≥ rδB(y) and

y2/|x−y|
4
≤ |x−y|−3

≤ (r/2)−3. Set B1 = {w /∈ B : δB(w) ≤ 2}. SinceD ⊂ B(0, 1),
we have D \ B ⊂ B1. Hence∣∣∣∣∫

D3

P2((x1, 0), y)ϕ(y) dy
∣∣∣∣ ≤ cx1/2

1

∫
B1

δ
−1/2
B (y) dy

= cx
1/2
1

∫ 2

r

ρ

(ρ − r)1/2
dρ = cx

1/2
1 .

It follows that |ϕ2(x1, 0)| ≤ cx1/2
1 |log x1|. ut

In the following corollary we simply restate Lemmas 3.1 and 3.2 for an arbitrary point
y ∈ D (with δD(y) ≤ r1). Recall that ET (y), En(y) are given by (11), (12), and ∂ψ

∂ ET
(y),

∂ψ
∂ En
(y) are given by (13), (14).
By Lemmas 3.1, 3.2 and 2.2 we obtain

Corollary 3.3. There exists r1 = r1(3) ∈ (0, r0/4] such that for any y ∈ D with
δD(y) ≤ r1 we have

∂ϕ

∂ En
(y) ≈ δ

−1/2
D (y), (22)∣∣∣∣ ∂ϕ

∂ ET
(y)

∣∣∣∣ ≤ cδ1/2
D (y)|log δD(y)|, (23)

|∇ϕ(y)| ≤ cδ
−1/2
D (y). (24)
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Lemma 3.4. For any y ∈ D we have |∇ϕ(y)| ≤ cδ−1/2
D (y).

Proof. Let r1 = r1(3) be the constant from Corollary 3.3. If y ∈ D satisfies
δD(y) ≤ r1 then the assertion follows from Corollary 3.3. Fix y0 ∈ D such that
δD(y0) > r1 and write B = B(y0, r1). We are going to estimate |∇ϕ(y0)|. For
y ∈ B we have ϕ(y) = h(y) + k(y), where h(y) = CB(r

2
1 − |y − y0|

2)1/2 and
k(y) = 1B(y)

∫
D\B

P(y − y0, z − y0)ϕ(z) dz + 1Bc (y)ϕ(y), where P is given by
(19) with s = r1. Clearly ∇h(y0) = 0. Now, k is a 1-harmonic function on B and
k(y) ≤ ϕ(y) ≤ 2/π (the last inequality follows from Lemma 2.6). By [6, Lemma 3.2],
|∇k(y0)| ≤ 2k(y0)/r1 ≤ 4/(πr1) ≤ 4δ−1/2

D (y)/(πr1). ut

The definition of α-harmonic functions (see Section 2) on an open set U ⊂ Rd demands
that the function be defined on the whole Rd . The functions ϕ1, ϕ2 are well defined on D
and also onDc\∂D. They are not well defined on ∂D but ∂D has Lebesgue measure zero.
One may formally define ϕ1 = ϕ2 = 0 on ∂D. For the definition of singular α-harmonic
functions, see Section 2.

Lemma 3.5. ϕ1, ϕ2 are singular 1-harmonic on D.

The proof of this lemma is omitted. By standard arguments (translation invariance and
regularity of ϕ) it can be easily shown that (−1)1/2

(
∂ϕ
∂xi

)
(x) = ∂

∂xi
((−1)1/2ϕ)(x) = 0

for x ∈ D.

Remark 3.6. ϕ11, ϕ22 are not 1-harmonic on D because they are not locally integrable
on R2 (see Corollary 3.10).

Lemma 3.7. There exists r2 = r2(3) ∈ (0, r0/4] such that ϕ22(x1, 0) ≈ −x−1/2
1 for any

x1 ∈ (0, r2].

Proof. Set r = r0. Let r1 be the constant from Corollary 3.3. In this proof we take
s ∈ (r − (r1/2)2, r), i.e. 0 < r − s < (r1/2)2. Recall that z = (r, 0), B = B(z, s)

and P is given by (19). For any x1 ∈ (r − s, r] by Lemma 3.5 we have ϕ2(x1, 0) =∫
D\B

P((x1, 0), y)ϕ2(y) dy. It follows that ϕ22(x1, 0) =
∫
D\B

P2((x1, 0), y)ϕ2(y) dy.

We have P2((x1, 0), y) = 2CP
(s2
−|x−z|2)1/2y2

(|y−z|2−s2)1/2|x−y|4
. Take x1 =

√
r − s (we have

√
r − s <

r1/2). Let f1 : [−s, s] → R be defined by f1(y2) = r −

√
s2
− y2

2 . Set (see Figure 3)

D1 = {(y1, y2) : y2 ∈ [−x1, x1], y1 ∈ (f (y2), f1(y2))},

D2 = {(y1, y2) : y2 ∈ (x1, r1/2] ∪ [−r1/2,−x1), y1 ∈ (f (y2), f1(y2))},

D3 = D \ (D1 ∪D2 ∪ B).

By Lemma 2.2, for y ∈ D1 ∪D2 we have

ϕ2(y) = cosα(y)
∂ϕ

∂ ET
(y)− sinα(y)

∂ϕ

∂ En
(y).
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y1

y2

z = (r, 0)
r − s

x1

r/2

−x1

−r/2

B

D1

D2

D2

D3

D3

.

s

Fig. 3

Note that by definition of s we have δD(y) < r1 for y ∈ D1 ∪ D2. For such y, by
Corollary 3.3, ∣∣∣∣ ∂ϕ

∂ ET
(y)

∣∣∣∣ ≤ c(y1 − f (y2))
1/2
|log(y1 − f (y2))|,

∂ϕ

∂ En
(y) ≈ (y1 − f (y2))

−1/2.

Hence ∣∣∣∣cosα(y)
∂ϕ

∂ ET
(y)

∣∣∣∣ ≤ c(y1 − f (y2))
1/2
|log(y1 − f (y2))|,

− sinα(y)
∂ϕ

∂ En
(y) ≈ −y2(y1 − f (y2))

−1/2.

Note also that for y ∈ D1 ∪D2 we have (|y − z|2 − s2)1/2 ≈ (−y1 + f1(y2))
1/2. Recall

that we have chosen x1 =
√
r − s. It follows that

−

∫
D1

P2((x1, 0), y) sinα(y)
∂ϕ

∂ En
(y) dy

≈ −x
−7/2
1

∫ x1

−x1

dy2 y
2
2

∫ f1(y2)

f (y2)
dy1 (−y1 + f1(y2))

−1/2(y1 − f (y2))
−1/2
≈ −x

1/2
1 ,
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because
∫ b
a
(x − a)−1/2(b − x)−1/2 dx = const. Similarly,

−

∫
D2

P2((x1, 0), y) sinα(y)
∂ϕ

∂ En
(y) dy

≈ −x
1/2
1

∫ r1/2

x1

dy2 y
−2
2

∫ f1(y2)

f (y2)
dy1 (−y1 + f1(y2))

−1/2(y1 − f (y2))
−1/2
≈ −x

1/2
1 .

On the other hand,∣∣∣∣∫
D1

P2((x1, 0), y) cosα(y)
∂ϕ

∂ ET
(y) dy

∣∣∣∣
≤ cx

−7/2
1

∫ x1

−x1

dy2 y2

∫ f1(y2)

f (y2)
dy1 (−y1+f1(y2))

−1/2(y1−f (y2))
1/2
|log(y1−f (y2))|

≤ cx
1/2
1 |log x1|,∣∣∣∣∫

D2

P2((x1, 0), y) cosα(y)
∂ϕ

∂ ET
(y) dy

∣∣∣∣
≤ cx

1/2
1

∫ r1/2

x1

dy2 y
−3
2

∫ f1(y2)

f (y2)
dy1 (−y1+f1(y2))

−1/2(y1−f (y2))
1/2
|log(y1−f (y2))|

≤ cx
1/2
1 |log x1|

2.

By Lemmas 2.3 and 3.4 we obtain∣∣∣∣∫
D3

P2((x1, 0), y)ϕ2(y) dy

∣∣∣∣ ≤ cx1/2
1

∫
D3

δ
−1/2
B (y)δ

−1/2
D (y) dy ≤ cx

1/2
1 .

It follows that

−c1x
−1/2
1 − c2x

1/2
1 |log x1|

2
≤ ϕ22(x1, 0) ≤ −c3x

−1/2
1 + c4x

1/2
1 |log x1|

2,

where x1 =
√
r − s. It is important that c1, c2, c3, c4 do not depend on s. Hence there

exists r2 = r2(3) ∈ (0, r/4] such that ϕ22(x1, 0) ≈ −x−1/2
1 for any x1 ∈ (0, r2]. ut

Lemma 3.8. There exists r2 = r2(3) ∈ (0, r0/4] such that ϕ11(x1, 0) ≈ −x−3/2
1 for any

x1 ∈ (0, r2].

Proof. First we show that |ϕ11(x1, 0)| ≤ cx
−3/2
1 for x1 ∈ (0, r2]. We will use similar

notation to that in Lemma 3.7. Set r = r0. Let r1 be the constant from Corollary 3.3.
We take s ∈ (r − (r1/2)2, r), z = (r, 0), B = B(z, s), and P is given by (19). For any
x1 ∈ (r−s, r] by Lemma 3.5 we have ϕ1(x1, 0) =

∫
D\B

P((x1, 0), y)ϕ1(y) dy. It follows
that

ϕ11(x1, 0) =
∫
D\B

P1((x1, 0), y)ϕ1(y) dy

=

∫
D\B

A((x1, 0), y)ϕ1(y) dy +

∫
D\B

E((x1, 0), y)ϕ1(y) dy,

where A, E are given by (20), (21).
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Take x1 =
√
r − s (we have

√
r − s < r1/2 ≤ r/8). By (24), |ϕ1(y)| ≤ cδ

−1/2
D (y)

for y ∈ D. We have∫
D\B

A((x1, 0), y)ϕ1(y) dy =
r − x1

s2 − (x1 − r)2

∫
D\B

P((x1, 0), y)ϕ1(y) dy,∣∣∣∣∫
D\B

P((x1, 0), y)ϕ1(y) dy

∣∣∣∣ = |ϕ1(x1, 0)| ≤ cx−1/2
1

and r−x1
s2−(x1−r)2

≈ x−1
1 , so∣∣∣∣∫

D\B

A((x1, 0), y)ϕ1(y) dy

∣∣∣∣ ≤ cx−3/2
1

for x1 =
√
r − s.

Let f1, D1, D2, D3 be as in the proof of Lemma 3.7. Using |ϕ1(y)| ≤ cδ
−1/2
D (y) and

similar arguments to the proof of Lemma 3.7 we get the estimates∣∣∣∣∫
D1

E((x1, 0), y)ϕ1(y) dy

∣∣∣∣
≤ cx

−5/2
1

∫ x1

−x1

dy2

∫ f1(y2)

f (y2)
dy1 (−y1+f1(y2))

−1/2(y1−f (y2))
−1/2
≤ cx

−3/2
1 , (25)∣∣∣∣∫

D2

E((x1, 0), y)ϕ1(y) dy

∣∣∣∣
≤ cx

1/2
1

∫ r1/2

x1

dy2 y
−4
2

∫ f1(y2)

f (y2)
dy1 (−y1 + f1(y2))

−1/2(y1 − f (y2))
−1/2(x1 + y1)

≤ cx
−3/2
1 (26)

(here we have used the estimate y1 ≤ cy
2
2 ). By Lemmas 2.3 and 3.4 we obtain∣∣∣∣∫

D3

E((x1, 0), y)ϕ1(y) dy

∣∣∣∣ ≤ cx1/2
1

∫
D3

δ
−1/2
B (y)δ

−1/2
D (y) dy ≤ cx

1/2
1 .

It follows that |ϕ11(x1, 0)| ≤ cx−3/2
1 , where c does not depend on s and x1 =

√
r − s.

Since s ∈ (r − (r1/2)2, r) we get |ϕ11(x1, 0)| ≤ cx−3/2
1 for x1 ∈ (0, r1/2].

Now we will show that ϕ11(x1, 0) ≤ −cx−3/2
1 for x1 ∈ (0, r2]. Here we will use

notation similar to the notation used in the proof of Lemma 3.1. We will use (18) for
s = r , in particular B = B(z, r). By (18), for x1 ∈ (0, r] we get

ϕ11(x1, 0) = h11(x1, 0)+
∫
D\B

P11((x1, 0), y)ϕ(y) dy

= h11(x1, 0)+
∫
D\B

∂A

∂x1
((x1, 0), y)ϕ(y) dy +

∫
D\B

∂E

∂x1
((x1, 0), y)ϕ(y) dy.
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One easily gets h11(x1, 0) ≈ −x−3/2
1 for x1 ∈ (0, r/4]. For x ∈ B and y ∈ (B)c we have

∂A

∂x1
(x, y) =

−CP (r
2
− |x − z|2)−3/2(x1 − r)

2

(|y − z|2 − r2)1/2|x − y|2
+
−CP (r

2
− |x − z|2)−1/2

(|y − z|2 − r2)1/2|x − y|2

+
−2CP (r2

− |x − z|2)−1/2(r − x1)(x1 − y1)

(|y − z|2 − r2)1/2|x − y|4

= A(1)(x, y)+ A(2)(x, y)+ A(3)(x, y),

∂E

∂x1
(x, y) =

−2CP (r2
− |x − z|2)−1/2(r − x1)(x1 − y1)

(|y − z|2 − r2)1/2|x − y|4
+
−2CP (r2

− |x − z|2)1/2

(|y − z|2 − r2)1/2|x − y|4

+
8CP (r2

− |x − z|2)1/2(x1 − y1)
2

(|y − z|2 − r2)1/2|x − y|6

= E(1)(x, y)+E(2)(x, y)+E(3)(x, y).

Let x1 ∈ (0, r/8] and y ∈ (B)c. We have A(1)(x, y), A(2)(x, y) ≤ 0. Moreover
A(3)(x, y) ≥ 0 iff y1 ≥ x1. Let f1 be as in the proof of Lemma 3.1. Let p′1 > 0 be
such that f1(p

′

1) = x1, and p′2 < 0 be such that f1(p
′

2) = x1 (we have p′2 = −p
′

1).
Note that p′1 ≈

√
x1 and |p′2| ≈

√
x1. Furthermore f1(r/2) = r(1 −

√
3/2) > r/8 and

f1(p
′

1) = x1 ≤ r/8, so p′1 < r/2. Define

D′1 = {(y1, y2) : y2 ∈ [p
′

2, p
′

1], y1 ∈ (f (y2), f1(y2))},

D′2 = {(y1, y2) : y2 ∈ (p
′

1, r/2] ∪ [−r/2, p
′

2), y1 ∈ (f (y2), f1(y2))},

D′3 = D \ (D
′

1 ∪D
′

2 ∪ B).

We have
∫
D′1
A(3)((x1, 0), y)ϕ(y) dy ≤ 0. Note that for y ∈ D′2 we have y1 ≤ f1(y2) ≤

cy2
2 , which gives ϕ(y) ≤ cδ1/2

D (y) ≤ c(y2
2)

1/2
= cy2 by Lemma 2.6. Hence∫

D′2

A(3)((x1, 0), y)ϕ(y) dy

≤ cx
−1/2
1

∫ r/2

c
√
x1

dy2 y
−4
2

∫ f1(y2)

f (y2)
dy1 (y1 − f1(y2))

−1/2y1ϕ(y)

≤ cx
−1/2
1

∫ r/2

c
√
x1

dy2 ≤ cx
−1/2
1 ,∣∣∣∣∫

D′3

A(3)((x1, 0), y)ϕ(y) dy
∣∣∣∣ ≤ cx−1/2

1

∫
D′3

δ
−1/2
B (y) dy ≤ cx

−1/2
1 .

Note that E(1)(x, y) = A(3)(x, y) and E(2)(x, y) ≤ 0. To estimate
∫
D\B

E(3)ϕ we set

D′′1 = {(y1, y2) : y2 ∈ [−x1, x1], y1 ∈ (f (y2), f1(y2))},

D′′2 = {(y1, y2) : y2 ∈ (x1, r/2] ∪ [−r/2,−x1), y1 ∈ (f (y2), f1(y2))},

D′′3 = D \ (D
′′

1 ∪D
′′

2 ∪ B).
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Note that for y ∈ D′′1 we have (x1 − y1)
2
≤ x2

1 , which gives ϕ(y) ≤ cδ1/2
D (y) ≤ cx1 by

Lemma 2.6. Hence∫
D′′1

E(3)((x1, 0), y)ϕ(y) dy ≤ cx−7/2
1

∫ x1

−x1

dy2

∫ f1(y2)

f (y2)
dy1 (y1 − f1(y2))

−1/2ϕ(y)

≤ cx
−1/2
1 .

Moreover, for y ∈ D′′2 we have (x1− y1)
2
≤ x2

1 + y
2
1 ≤ x

2
1 + cy

4
2 and ϕ(y) ≤ cδ1/2

D (y) ≤

cy2, so∫
D′′2

E(3)((x1, 0), y)ϕ(y) dy

≤ cx
1/2
1

∫ r/2

x1

dy2 y
−6
2 (x2

1 + y
4
2)

∫ f1(y2)

f (y2)
dy1 (y1 − f1(y2))

−1/2ϕ(y)

≤ cx
5/2
1

∫ r/2

x1

y−4
2 dy2 + cx

1/2
1

∫ r/2

x1

dy2 ≤ cx
−1/2
1 .

We also have
∫
D′′3
E(3)((x1, 0), y)ϕ(y) dy ≤ cx1/2

1 .

It follows that for sufficiently small x1 we have ϕ11(x1, 0) ≤ −cx−3/2
1 . ut

Lemma 3.9. There exists r2 = r2(3) ∈ (0, r0/4] such that |ϕ12(x1, 0)| ≤ cx−1/2
1 |log x1|

for any x1 ∈ (0, r2].

Proof. We will use similar notation to that in Lemma 3.7. Set r = r0. Let r1 be the
constant from Corollary 3.3. We take s ∈ (r − (r1/2)2, r). Recall that z = (r, 0), B =
B(z, s), and P is given by (19). For any x1 ∈ (r−s, r] by Lemma 3.5 we have ϕ2(x1, 0) =∫
D\B

P((x1, 0), y)ϕ2(y) dy. It follows that

ϕ12(x1, 0) =
∫
D\B

P1((x1, 0), y)ϕ2(y) dy

=

∫
D\B

A((x1, 0), y)ϕ2(y) dy +

∫
D\B

E((x1, 0), y)ϕ2(y) dy.

Take x1 =
√
r − s (we have

√
r − s < r1/2 ≤ r/8). We obtain∫

D\B

A((x1, 0), y)ϕ2(y) dy =
r − x1

(s2 − (x1 − r)2)

∫
D\B

P((x1, 0), y)ϕ2(y) dy.

By Lemma 3.2,∣∣∣∣∫
D\B

P((x1, 0), y)ϕ2(y) dy

∣∣∣∣ = |ϕ2(x1, 0)| ≤ cx1/2
1 |log x1|.
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Since (r − x1)(s
2
− (x1 − r)

2)−1
≈ x−1

1 , we obtain∣∣∣∣∫
D\B

A((x1, 0), y)ϕ2(y) dy

∣∣∣∣ ≤ cx−1/2
1 |log x1|,

for x1 =
√
r − s.

Let f1,D1,D2,D3 be as in the proof of Lemma 3.7. By Lemma 2.2, for y ∈ D1∪D2
we have

ϕ2(y) = cosα(y)
∂ϕ

∂ ET
(y)− sinα(y)

∂ϕ

∂ En
(y).

By the arguments in the proof of Lemma 3.7, for such y,∣∣∣∣cosα(y)
∂ϕ

∂ ET
(y)

∣∣∣∣ ≤ c(y1 − f (y2))
1/2
|log(y1 − f (y2))| ≤ cy

1/2
1 |log y1|,∣∣∣∣sinα(y)

∂ϕ

∂ En
(y)

∣∣∣∣ ≤ cy2(y1 − f (y2))
−1/2.

Much as in the proofs of Lemmas 3.7 and 3.8, we obtain∣∣∣∣∫
D1

E((x1, 0), y) cosα(y)
∂ϕ

∂ ET
(y) dy

∣∣∣∣
≤ cx

−5/2
1

∫ x1

−x1

dy2

∫ f1(y2)

f (y2)
dy1 (−y1 + f1(y2))

−1/2y
1/2
1 |log y1| ≤ cx

1/2
1 |log x1|.

Here we have used the inequalities y1/2
1 |log y1| ≤ cy2|log y2| ≤ cx1|log x1| and∫ f1(y2)

f (y2)
(−y1 + f1(y2))

−1/2 dy1 ≤ cf
1/2
1 (y2) ≤ cy2 ≤ cx1.

Using similar arguments we get∣∣∣∣∫
D2

E((x1, 0), y) cosα(y)
∂ϕ

∂ ET
(y) dy

∣∣∣∣
≤ cx

1/2
1

∫ r/2

x1

dy2 y
−4
2

∫ f1(y2)

f (y2)
dy1 (−y1 + f1(y2))

−1/2y
1/2
1 |log y1|(x1 + y1)

≤ cx
1/2
1 |log x1|.

By the same arguments as in (25), (26) one can easily obtain∣∣∣∣∫
D1

E((x1, 0), y)y2(y1 − f (y2))
−1/2 dy

∣∣∣∣ ≤ cx−1/2
1 ,∣∣∣∣∫

D2

E((x1, 0), y)y2(y1 − f (y2))
−1/2 dy

∣∣∣∣ ≤ cx−1/2
1 + cx

1/2
1 |log x1|,

By Lemmas 2.3 and 3.4,∣∣∣∣∫
D3

E((x1, 0), y)ϕ2(y) dy

∣∣∣∣ ≤ cx1/2
1

∫
D3

δ
−1/2
B (y)δ

−1/2
D (y) dy ≤ cx

1/2
1 .
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It follows that |ϕ12(x1, 0)| ≤ cx
−1/2
1 |log x1|, where c does not depend on s, and x1 =

√
r − s. Since s ∈ (r − (r1/2)2, r) we get |ϕ12(x1, 0)| ≤ cx

−1/2
1 |log x1| for all x1 ∈

(0, r1/2]. ut

By Lemmas 2.2, 3.7, 3.8, 3.9 and Corollary 3.3 we obtain

Corollary 3.10. There exists r2 = r2(3) ∈ (0, r0/4] such that for any y ∈ D with
δD(y) ≤ r2 we have (22)–(24) and

∂2ϕ

∂ En2 (y) ≈ −δ
−3/2
D (y),

∂2ϕ

∂ ET 2
(y) ≈ −δ

−1/2
D (y),∣∣∣∣ ∂2ϕ

∂ En∂ ET
(y)

∣∣∣∣ ≤ cδ−1/2
D (y)|log(δD(y))|.

Lemma 3.11. There exists r3 = r3(3) ∈ (0, r0/4] such that for any y = (y1, y2) ∈

B((r3, 0), r3) we have

|ϕ2(y)| ≤ c(y
1/2
1 |log y1| + |y2|y

−1/2
1 ), (27)

|ϕ12(y)| ≤ c(y
−1/2
1 |log y1| + |y2|y

−3/2
1 ), (28)

|ϕ22(y)| ≈ −y
−1/2
1 , (29)

and for any y = (y1, y2) ∈ Wr3 = {(y1, y2) : y2 ∈ [−r3, r3], y1 ∈ (f (y2), r3]} we have

ϕ1(y) ≈ δ
−1/2
D (y). (30)

Proof. We may assume that y2 > 0. Let r ∈ (0, r2] where r2 is the constant from Corol-
lary 3.10 (recall that r2 ≤ r0/4). Let y = (y1, y2) ∈ B((r, 0), r) with y2 > 0. By Lemma
2.2 we have sinα(y) ≈ y2, cosα(y) ≈ c. Moreover, δD(y) ≈ y1 and y2

2 ≤ cy1.
By Corollary 3.10 we get

∂ϕ

∂ En
(y) ≈ −δ

−1/2
D (y) ≈ −y

−1/2
1 ,

∣∣∣∣ ∂ϕ
∂ ET
(y)

∣∣∣∣ ≤ cδ1/2
D (y)|log(δD(y))| ≤ cy

1/2
1 |log y1|.

Using this and the formula for ϕ2 from Lemma 2.2 we get (27).
By Corollary 3.10 we have∣∣∣∣ ∂2ϕ

∂ En∂ ET
(y)

∣∣∣∣ ≤ cδ−1/2
D (y)|log(δD(y))| ≤ cy

−1/2
1 |log y1|,∣∣∣∣∂2ϕ

∂ En2 (y)−
∂2ϕ

∂ ET 2
(y)

∣∣∣∣ ≤ cδ−3/2
D (y) ≤ cy

−3/2
1 .

Using this and the formula for ϕ12 from Lemma 2.2 we get (28).
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By Corollary 3.10 we have ∂2ϕ

∂ ET 2 (y) ≈ −δ
−1/2
D (y) ≈ −y

−1/2
1 , ∂

2ϕ

∂ En2 (y) ≈ −δ
−3/2
D (y) ≈

−y
−3/2
1 , sin2 α(y) ≈ y2

2 ≤ cy1 and∣∣∣∣sinα(y) cosα(y)
∂2ϕ

∂ En∂ ET
(y)

∣∣∣∣ ≤ cy2y
−1/2
1 |log y1| ≤ c|log y1|.

Using this and the formula for ϕ22 from Lemma 2.2 we get (29) for sufficiently small r .
By (22), (23) and the formula for ϕ1 from Lemma 2.2 we deduce (30) for sufficiently

small r . ut

We have (−1)1/2ϕ(x) = 1 for x ∈ D. We need to estimate (−1)1/2ϕ(x) for x ∈ (D)c.
For such x we have (−1)1/2ϕ(x) = −(2π)−1 ∫

D
ϕ(y)

|y−x|3
dy.

Lemma 3.12. Let x = (−x1, 0) with x1 > 0. We have

|(−1)1/2ϕ(x)| ≈ δ
−1/2
D (x)(1+ |x|)−5/2.

Proof. Set r = r0. When x1 ∈ (−∞,−r/2) we have∫
D

ϕ(y)

|y − x|3
dy ≈ |x|−3

≈ δ
−1/2
D (x)(1+ |x|)−5/2.

When x1 ∈ [−r/2, 0), using Lemma 2.6 we obtain∫
D

ϕ(y)

|y − x|3
dy ≈

∫
D∩B(0,δD(x))

δ
−5/2
D (x) dy +

∫
D∩(B(0,r/2)\B(0,δD(x)))

|y|−5/2 dy

+

∫
D∩Bc(0,r/2)

|y|−5/2 dy ≈ δ
−1/2
D (x). ut

Lemma 3.12 immediately yields

Corollary 3.13. For any x ∈ (D)c we have

|(−1)1/2ϕ(x)| ≈ δ
−1/2
D (x)(1+ |x|)−5/2.

4. Estimates of derivatives of u near ∂D × {0}

In this section we study the behaviour of uij near ∂D × {0}. The ultimate aim of these
estimates is to control the determinants of the Hessian matrices of u and v(ε,D) (which is
equal to u plus a small auxiliary harmonic function; for a precise definition see Section
6) near ∂D × {0}. The estimates are quite long and technical because the uij are singular
near ∂D × {0} and their behaviour is quite complicated.

In the whole section we fix C1, R1 > 0, κ2 ≥ κ1 > 0, D ∈ F(C1, R1, κ1, κ2)

and x0 ∈ ∂D. We write 3 = {C1, R1, κ1, κ1}; ϕ is the solution of (1)–(2) for D and
u is the harmonic extension of ϕ given by (6)–(10). Unless otherwise stated, we fix a
2-dimensional coordinate system CSx0 and notation as in Lemma 2.2 (see Figure 1). In
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h−h

h
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particular x0 is (0, 0) in CSx0 coordinates. To study u we also use a 3-dimensional Carte-
sian coordinate system 0x1x2x3 (see Figure 4), which is formed (roughly speaking) by
adding the 0x3 axis to the above 2-dimensional coordinate system. Recall that in the
whole section we use the convention stated in Remark 2.9.

Set r = r1 ∧ r2 ∧ r3 ∧ f (r0/4) ∧ f (−r0/4), where r0, r1, r2, r3 are the constants
from Lemma 2.2, Corollary 3.3, Corollary 3.10 and Lemma 3.11. Note that f (r0/4) ∧
f (−r0/4) ≥ c3r

2
0/16, where c3 is the constant from Lemma 2.2; here c3r

2
0/16 depends

only on 3. Define f1 : [−r, r] → R by f1(y2) = r −
√
r2
− y2

2 and g1 : [0, r] → R
by g1(y1) =

√
r2 − (y1 − r)2 (the graphs of f1, g1 are parts of the circle {(y1, y2) :

(y1 − r)
2
+ y2

2 = r
2
}). For any h ∈ (0, r] we denote (see Figure 4)

S1(h) = {(x1, x2, x3) : x1 = −h, x2 = 0, x3 ∈ (0, h/4]},
S2(h) = {(x1, x2, x3) : x1 = −h, x2 = 0, x3 ∈ (h/4, h]}

∪ {(x1, x2, x3) : x1 ∈ (−h, 0], x2 = 0, x3 = h},

S3(h) = {(x1, x2, x3) : x1 ∈ (0, h], x2 = 0, x3 = h}

∪ {(x1, x2, x3) : x1 = h, x2 = 0, x3 ∈ (h/4, h]},
S4(h) = {(x1, x2, x3) : x1 = h, x2 = 0, x3 ∈ (0, h/4]}.

The main tool which we use in this section is the formula

u(x) =

∫
D

K(x1 − y1, x2 − y2, x3)ϕ(y1, y2) dy1 dy2.

To obtain estimates of uij we differentiate under the integral sign in the above formula.
The results concerning estimates of uij are divided into six propositions. In the proof of
Proposition 4.1 we use the formula

u22(x) =

∫
D

K2(x1 − y1, x2 − y2, x3)ϕ2(y1, y2) dy1 dy2

(for brevity we simply write u22 =
∫
D
K2ϕ2), the estimates of ∂ϕ/∂ En, ∂ϕ/∂ ET from

Corollary 3.3 and the estimate of |∇ϕ| from Lemma 3.4. In this proof we also use the
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formula ϕ2(y1, y2)− ϕ2(y1,−y2) = 2y2ϕ22(y1, ξ) and the estimate of ϕ22 from Lemma
3.11. In the proof of Proposition 4.2 (which is the easiest result of this section) we use the
formulas u11 =

∫
D
K11ϕ, u13 =

∫
D
K13ϕ and the estimate ϕ(x) ≤ cδ1/2

D (x). In the proof
of Proposition 4.3 we use the formulas u11 =

∫
D
K1ϕ1, u13 =

∫
D
K3ϕ1, the estimate of

ϕ1 from Lemma 3.11 and the estimate of |∇ϕ| from Lemma 3.4. The proof of Proposition
4.4 is based on a different idea than the proofs of the previous propositions. Namely,
we use the fact that u3(y1, y2, 0) = −(−1)1/2ϕ(y1, y2) for (y1, y2) /∈ ∂D. We also
use the formulas u13 =

∫
R2 K1u3, u33 =

∫
R2 K3u3 and the estimate of |(−1)1/2ϕ| from

Corollary 3.13. In the proof of Proposition 4.5 we use the formulas u12 =
∫
D
K12ϕ, u23 =∫

D
K23ϕ, ϕ(y1, y2)− ϕ(y1,−y2) = 2y2ϕ2(y1, ξ), the estimate of ϕ(x) from Lemma 2.6

and the estimate of ϕ2 from Lemma 3.11. Moreover, we apply the formula ϕ(z1+h, z2)−

ϕ(−z1+h, z2)−ϕ(z1+h,−z2)+ϕ(−z1+h,−z2) = 4z1z2ϕ12(ξ1+h, ξ2) and the estimate
of ϕ12 from Lemma 3.11. The most difficult result of this section is Proposition 4.6. In
this proposition we study u23 on S4(h) using two different formulas: u23 =

∫
R2 K2u3 and

u23 =
∫
D
K23ϕ. We use the estimate of |(−1)1/2ϕ| from Corollary 3.13, the estimates of

ϕ2, ϕ12, ϕ22 from Lemma 3.11 and the estimate of ϕ(x) from Lemma 2.6. In Lemma 4.7
we obtain results concerning ui3(x1, x2, 0) for i = 1, 2, 3 and (x1, x2) ∈ D.

In this section we only use those geometric properties of the domain D which are
stated in Lemmas 2.2 and 2.3 (and additionally the fact that D is convex and D ⊂
B(0, 1)). Let us recall that all constants in Lemmas 2.2 and 2.3 depend only on 3. We
only use those inequalities for ϕ, ϕi , ϕij which are stated in Section 3 and in Lemma
2.6. The constants in those inequalities depend only on 3. Therefore all constants in the
estimates of uij obtained in Section 4 depend only on 3.

Proposition 4.1. There exists h0 = h0(3) ∈ (0, r/8] such that for any h ∈ (0, h0] we
have u22(x) ≈ −x3h

−3/2 for x ∈ S1(h)∪S2(h)∪S3(h), u22(x) ≈ −h
−1/2 for x ∈ S4(h).

Proof. Let h ∈ (0, r/8]. We have

u22(x) =

∫
D

K2(x1 − y1,−y2, x3)ϕ2(y1, y2) dy1 dy2. (31)

Denote (see Figure 5)

D1 = {(y1, y2) : y1 ∈ [f1(h), h], y2 ∈ [−g1(y1), g1(y1)]},

D2 = {(y1, y2) : y1 ∈ (h, r], y2 ∈ [−g1(y1), g1(y1)]},

D3 = {(y1, y2) : y2 ∈ [−h, h], y1 ∈ (f (y2), f1(h))},

D4 = {(y1, y2) : y2 ∈ [−r/2,−h] ∪ [h, r/2], y1 ∈ (f (y2), f1(y2))},

D5 = D \ (D1 ∪D2 ∪D3 ∪D4).

For i = 1, 2, 3, 4 we also set Di+ = {(y1, y2) ∈ Di : y2 > 0}, Di− = {(y1, y2) ∈ Di :

y2 < 0}.
Note that f1(h) ≤ h

2/r ≤ h/4.
We will estimate (31). The most important part is

∫
D1∪D2

K2ϕ2. By Lemma 3.11 for

y ∈ D1+ ∪D2+ we have ϕ2(y1, y2)− ϕ2(y1,−y2) = 2y2ϕ22(y1, ξ) ≈ −y2y
−1/2
1 , where
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ξ ∈ (−y2, y2). It follows that∫
D1∪D2

K2(x1 − y1,−y2, x3)ϕ2(y1, y2) dy1 dy2

= cx3

∫
D1+∪D2+

y2

((x1 − y1)2 + y
2
2 + x

2
3)

5/2

(
ϕ2(y1, y2)− ϕ2(y1,−y2)

)
dy1 dy2

≈ cx3

∫
D1+∪D2+

−y2
2y
−1/2
1

((x1 − y1)2 + y
2
2 + x

2
3)

5/2
dy1 dy2.

We have∫
D1+

−y2
2y
−1/2
1

((x1 − y1)2 + y
2
2 + x

2
3)

5/2
dy1 dy2

≈
1
h5

∫ h

f1(h)
dy1 y

−1/2
1

∫ h

0
dy2 (−y

2
2)+

∫ h

f1(h)
dy1 y

−1/2
1

∫ g1(y1)

h

dy2
−y2

2

y5
2
.
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Since f1(y2) = y2
2(r + (r

2
− y2

2)
1/2)−1 and g1(y1) = y

1/2
1 (2r − y1)

1/2, we obtain
c1y

2
2 ≤ f1(y2) ≤ c2y

2
2 and c3y

1/2
1 ≤ g1(y1) ≤ c4y

1/2
1 and the constants c1, c2, c3, c4

depend only on 3. Hence the last expression is comparable to −h−3/2 (with constants
depending only on 3).

By similar arguments we have∫
D2+

−y2
2y
−1/2
1

((x1 − y1)2 + y
2
2 + x

2
3)

5/2
dy1 dy2

≈

∫ r

h

dy1

∫ y1

0
dy2
−y2

2y
−1/2
1

y5
1

+

∫ r

h

dy1

∫ g1(y1)

y1

dy2
−y2

2y
−1/2
1

y5
2

≈ −h−3/2.

It follows that
∫
D1∪D2

K2ϕ2 ≈ −x3h
−3/2.

Now we will estimate
∫
D3∪D4

K2ϕ2. It is sufficient to estimate
∫
D3+∪D4+

K2ϕ2. The
estimate of

∫
D3−∪D4−

K2ϕ2 is the same. By Lemma 2.2 and Corollary 3.3, for y ∈ D3+ ∪

D4+ we get

|ϕ2(y)| =

∣∣∣∣cosα(y)
∂ϕ

∂ ET
(y)− sinα(y)

∂ϕ

∂ En
(y)

∣∣∣∣
≤ cδ

1/2
D (y)|log(δD(y))| + cy2δ

−1/2
D (y)

≤ c(f−1(y1)− y2)
1/2(f−1(y1))

1/2
|log((f−1(y1)− y2)f

−1(y1))|

+ cy2(f
−1(y1)− y2)

−1/2(f−1(y1))
−1/2.

It follows that∣∣∣∣∫
D3+

K2(x1 − y1,−y2, x3)ϕ2(y1, y2) dy1 dy2

∣∣∣∣
≤
cx3

h5

∫ f1(h)

0
dy1

∫ f−1(y1)

0
dy2 y2|ϕ2(y1, y2)|

≤
cx3

h5

∫ f1(h)

0
dy1

∫ f−1(y1)

0
dy2 (f

−1(y1)− y2)
1/2(f−1(y1))

1/2

× |log((f−1(y1)− y2)f
−1(y1))|y2

+
cx3

h5

∫ f1(h)

0
dy1

∫ f−1(y1)

0
dy2 (f

−1(y1)− y2)
−1/2(f−1(y1))

−1/2y2
2 .

By substituting w = f−1(y1) − y2 and using y2 = f
−1(y1) − w ≤ f

−1(y1), f−1(y1)

≈ y
1/2
1 and f1(h) ≤ ch

2 this is bounded from above by

cx3

h5

∫ f1(h)

0
dy1

∫ f−1(y1)

0
dww1/2(f−1(y1))

3/2
|log(wf−1(y1))|

+
cx3

h5

∫ f1(h)

0
dy1

∫ f−1(y1)

0
dww−1/2(f−1(y1))

3/2
≤ cx3|logh| + cx3h

−1.
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In the above estimate we have used the inequality f−1(y1) ≤ cy
1/2
1 , which follows from

Lemma 2.2 (property 3), so the constant c depends only on 3.
In the same way we get∣∣∣∣∫
D4+

K2(x1 − y1,−y2, x3)ϕ2(y1, y2) dy1 dy2

∣∣∣∣
≤ cx3

∫ r/2

h

dy2

∫ f1(y2)

f (y2)
dy1

y2

y5
2
|ϕ2(y1, y2)|

≤ cx3

∫ f1(r/2)

f (h)

dy1

∫ f−1(y1)

g1(y1)
dy2 y

−4
2 (f−1(y1)− y2)

1/2(f−1(y1))
1/2

× |log((f−1(y1)− y2)f
−1(y1))|

+ cx3

∫ f1(r/2)

f (h)

dy1

∫ f−1(y1)

g1(y1)
dy2 y

−3
2 (f−1(y1)− y2)

−1/2(f−1(y1))
−1/2.

Similarly to the estimate of
∫
D3+

K2ϕ2, using the substitution w = f−1(y1)− y2 we find
that the above is bounded from above by cx3|logh|2 + cx3h

−1. By Lemma 3.4 we get∣∣∣∣∫
D5

K2(x1 − y1,−y2, x3)ϕ2(y1, y2) dy1 dy2

∣∣∣∣ ≤ cx3

∫
D5

δ
−1/2
D (y) dy.

By Lemma 2.3 this is bounded from above by cx3. We finally obtain
∫
D1∪D2

K2ϕ2 ≈

−x3h
−3/2 and |

∫
D3∪D4∪d5

K2ϕ2| ≤ cx3h
−1, where all constants depend only on 3. It is

clear that one can choose h0 = h0(3) such that for any h ∈ (0, h0] we have u22(x) =∫
D1∪···∪D5

K2ϕ2 ≈ −x3h
−3/2 for x ∈ S1(h) ∪ S2(h) ∪ S3(h).

Now we estimate u22(x) for x ∈ S4(h). Set A = B((h, 0), h/2), A+ = {y ∈ A :
y2 > 0} and A1+ = {y ∈ B((h, 0), x3) : y2 > 0}, A2+ = A+ \ A1+. By similar
arguments to those above we obtain

∫
D\A

K2ϕ2 ≈ −x3h
−3/2 and for y ∈ A we get

ϕ2(y1, y2) − ϕ2(y1,−y2) ≈ −y2y
−1/2
1 ≈ −y2h

−1/2. Note that for x ∈ S4(h) we have
x = (h, 0, x3), where x3 ∈ (0, h/4]. It follows that∫

A

K2(x1 − y1,−y2, x3)ϕ2(y1, y2) dy1 dy2

=

∫
A+

K2(x1 − y1,−y2, x3)(ϕ2(y1, y2)− ϕ2(y1,−y2)) dy1 dy2

≈ −x3h
−1/2

∫
A1+∪A2+

y2
2

((h− y1)2 + y
2
2 + x

2
3)

5/2
dy1 dy2

≈
−h−1/2

x4
3

∫ x3

0
ρ3 dρ − x3h

−1/2
∫ h/2

x3

ρ−2 dρ ≈ −h−1/2. ut

Proposition 4.2. There exists h0 = h0(3) ∈ (0, r/8] such that |u11(x)| ≤ cx3h
−5/2,

|u33(x)| ≤ cx3h
−5/2 and |u13(x)| ≤ ch

−3/2 for any h ∈ (0, h0] and any x ∈ S1(h) ∪

S2(h) ∪ S3(h).
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Proof. Let h ∈ (0, r/8]. We have

u11(x) =

∫
D

K11(x1 − y1,−y2, x3)ϕ(y1, y2) dy1 dy2,

Set D1 = D ∩ B(0, h). By Lemma 2.6, for y ∈ D1 we have ϕ(y) ≤ ch1/2, while for
y ∈ D \D1 we have ϕ(y) ≤ c(dist(0, y))1/2. It follows that∣∣∣∣∫

D1

K11ϕ

∣∣∣∣ ≤ cx3
h2

h7 h
1/2
∫
D1

dy ≈ cx3h
−5/2,∣∣∣∣∫

D\D1

K11ϕ

∣∣∣∣ ≤ cx3

∫
∞

h

ρ2

ρ7 ρ
1/2ρ dρ ≈ cx3h

−5/2.

Since u11(x) + u22(x) + u33(x) = 0 and, by Lemma 4.1, u22(x) ≈ −x3h
−3/2 for

x ∈ S1(h) ∪ S2(h) ∪ S3(h), we get |u33(x)| ≤ cx3h
−5/2.

Similarly we have

u13(x) =

∫
D

K13(x1 − y1,−y2, x3)ϕ(y1, y2) dy1 dy2,∣∣∣∣∫
D1

K13ϕ

∣∣∣∣ ≤ chh2

h7 h
1/2
∫
D1

dy ≈ ch−3/2,∣∣∣∣∫
D\D1

K13ϕ

∣∣∣∣ ≤ c ∫ ∞
h

ρ3

ρ7 ρ
1/2ρ dρ ≈ ch−3/2. ut

Proposition 4.3. There exists h0 = h0(3) ∈ (0, r/8] such that for any h ∈ (0, h0]

we have u13(x) ≈ h−3/2 for x ∈ S1(h), and u11(x) ≈ h−3/2, u33(x) ≈ −h
−3/2 for

x ∈ S2(h).

Proof. Let h ∈ (0, r/8]. We have

u13(x) =

∫
D

K3(x1 − y1,−y2, x3)ϕ1(y1, y2) dy1 dy2,

K3(x1 − y1,−y2, x3) = CK
(x1 − y1)

2
+ y2

2 − 2x2
3

((x1 − y1)2 + y
2
2 + x

2
3)

5/2
.

Set D1 = {(y1, y2) : y2 ∈ (−r, r), y1 ∈ (f (y2), r)}. By Lemma 3.11 we get ϕ1(y) ≈

δ
−1/2
D (y) for y ∈ D1. We also have K3(x1 − y1,−y2, x3) ≥ 0 for y ∈ D1 and x ∈ S1(h).

Let β(y) be the acute angle between 0y and the y1 axis. Define D2 = {(y1, y2) : |y| ∈

(h, r), β(y) ∈ [0, π/6)}. Clearly, D2 ⊂ D1. For y ∈ D2 we have ϕ1(y) ≈ δ
−1/2
D (y) ≈

|y|−1/2 and K3(x1 − y1,−y2, x3) ≥ c|y|
−3. It follows that∫

D1

K3ϕ1 ≥

∫
D2

|y|−7/2 dy ≈ h−3/2.

By Lemmas 3.4 and 2.3 we get∣∣∣∣∫
D\D1

K3ϕ1

∣∣∣∣ ≤ c ∫
D\D1

δ
−1/2
D (y) dy ≤ c.
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Hence u13(x) ≥ ch−3/2 for x ∈ S1(h) and sufficiently small h. By Proposition 4.2,
|u13(x)| ≤ ch

−3/2, so u13(x) ≈ h
−3/2.

We have

u11(x) =

∫
D

K1(x1 − y1,−y2, x3)ϕ1(y1, y2) dy1 dy2,

K1(x1 − y1,−y2, x3) = 3CK
x3(y1 − x1)

((x1 − y1)2 + y
2
2 + x

2
3)

5/2
.

HereK1(x1− y1,−y2, x3) ≥ 0 for y ∈ D1 and x ∈ S2(h). For y ∈ D2 and x ∈ S2(h) we
have K1(x1 − y1,−y2, x3) ≥ ch|y|

−4. It follows that∫
D1

K1ϕ1 ≥ ch

∫
D2

|y|−9/2 dy ≈ h−3/2.

By Lemmas 3.4 and 2.3 we get |
∫
D\D1

K1ϕ1| ≤ c. Hence u11(x) ≥ ch
−3/2 for x ∈ S2(h)

and sufficiently small h. By Proposition 4.2, |u11(x)| ≤ ch
−3/2, so u11(x) ≈ h

−3/2. Since
u11(x)+ u22(x)+ u33(x) = 0 and, by Proposition 4.1, u22(x) ≈ −h

−1/2 for x ∈ S2(h),
we get u33(x) ≈ −h

−3/2. ut

Proposition 4.4. There exists h0 = h0(3) ∈ (0, r/8] such that for any h ∈ (0, h0] we
have |u13(x)| ≤ ch−3/2 for x ∈ S4(h), u13(x) ≈ −h

−3/2 for x ∈ S3(h), u13(x) ≤

−cx3h
−5/2 for x ∈ S4(h), and u33(x) ≈ h

−3/2, u11(x) ≈ −h
−3/2 for x ∈ S4(h).

Proof. Let h ∈ (0, r/8]. We have

u13(x) =

∫
R2
K1(x1 − y1,−y2, x3)u3(y1, y2, 0) dy1 dy2,

K1(x1 − y1,−y2, x3) = 3CK
x3(y1 − x1)

((x1 − y1)2 + y
2
2 + x

2
3)

5/2
.

For y ∈ D we have u3(y1, y2, 0) = −1 and for y ∈ (D)c, by Corollary 3.13,

u3(y1, y2, 0) = −(−1)1/2ϕ(y) ≈ (1+ |y|−5/2)δ
−1/2
D (y).

Denote (see Figure 6)

A1 = {y ∈ B(0, h) : y1 ≤ 0},
A2 = {y ∈ B(0, r) \ B(0, h) : y1 < 0, |y2| ≤ |y1|},

A3 = {y ∈ B(0, r) \ B(0, h) : y1 ≤ 0, |y2| ≥ |y1|},

A4 = {y : y2 ∈ [−h, h], y1 ∈ (0, f (y2)]},

A5 = {y : y2 ∈ (h, r] ∪ [−r,−h), y1 ∈ (0, f (y2)]},

A6 = D
c
\ (A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5).

Clearly A1, A2, A3, A4, A5, A6 ⊂ D
c. We also set D1 = B((h, 0), h/2).
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y1

y2

A4

A4

A1A2

A3

A3

A5

A5

D

A6

A6

A6

r

−r

h

−h

Fig. 6

Let x ∈ S3(h) ∪ S4(h). We have∣∣∣∣∫
A1

K1u3

∣∣∣∣ ≤ ch−3
∫
A1

δ
−1/2
D (y) dy ≤ ch−3/2,∫

A2

K1u3 ≈ −x3

∫
A2

|y|−9/2 dy ≈ −x3h
−5/2,∣∣∣∣∫

A3

K1u3

∣∣∣∣ ≤ ch ∫ r

h/
√

2
dy2

∫ 0

−y2

dy1 |y1|
−1/2y−4

2 ≤ ch
−3/2.

For x ∈ S3(h) ∪ S4(h) and y ∈ A4 we estimate |y1 − x1| ≤ y1 + h ≤ ch, f (y2) ≤ cy
2
2 .

Hence ∣∣∣∣∫
A4

K1u3

∣∣∣∣ ≤ cx3h
−4
∫ h

−h

dy2

∫ f (y2)

0
dy1 (−y1 + f (y2))

−1/2
≤ cx3h

−2.

For x ∈ S3(h) ∪ S4(h) and y ∈ A5 we estimate |y1 − x1| ≤ y1 + h ≤ c|y2| and
f (y2) ≤ cy

2
2 . Hence∣∣∣∣∫

A5

K1u3

∣∣∣∣ ≤ cx3

∫ r

h

dy2

∫ f (y2)

0
dy1 (−y1 + f (y2))

−1/2y−4
2 ≤ cx3h

−2.

Moreover, ∣∣∣∣∫
A6

K1u3

∣∣∣∣ ≤ cx3

∫
A6

|y|−13/2δ
−1/2
D (y) dy ≤ cx3.
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For x ∈ S3(h) we have∣∣∣∣∫
D1

K1u3

∣∣∣∣ = ∣∣∣∣∫
D1

K1

∣∣∣∣ ≤ cx3h
−4
∫
D1

dy ≈ x3h
−2.

For x ∈ S4(h) we have∣∣∣∣∫
D1

K1u3

∣∣∣∣ = cx3

∫
D1

y1 − h

((y1 − h)2 + y
2
2 + x

2
3)

5/2
dy1 dy2 = 0.

For x ∈ S3(h) ∪ S4(h) we also have∣∣∣∣∫
D\D1

K1u3

∣∣∣∣ ≤ cx3

∫
D\D1

((y1 − h)
2
+ y2

2)
−2 dy ≤ cx3h

−2.

It follows that for x ∈ S3(h) ∪ S4(h),

|u13(x)| =

∣∣∣∣∫
R2
K1u3

∣∣∣∣ ≤ ch−3/2 (32)

(for x ∈ S3(h) such an estimate also follows from Proposition 4.2).
Now note that K1(x1− y1,−y2, x3) ≤ 0 and u3(y1, y2, 0) ≥ 0 for x ∈ S3(h)∪ S4(h)

and y ∈ A1 ∪ A3. So
∫
A1∪A3

K1u3 ≤ 0. It follows that for x ∈ S3(h) ∪ S4(h) we have

u13(x) =

∫
R2
K1u3 ≤

∫
A2∪A4∪A5∪A6∪D

K1u3 ≤ −cx3h
−5/2
+ c1x3h

−2.

It is clear that one can choose sufficiently small h0 = h0(3) such that for any h ∈ (0, h0]

and x ∈ S3(h)∪S4(h) we have u13(x) ≤ −c2x3h
−5/2. Using this and (32) we also obtain

u13(x) ≈ −h
−3/2 for any h ∈ (0, h0] and x ∈ S3(h).

Now we will estimate u33(x) for x ∈ S4(h). We have

u33(x) =

∫
R2
K3(x1 − y1,−y2, x3)u3(y1, y2, 0) dy1 dy2,

K3(x1 − y1,−y2, x3) = CK
(x1 − y1)

2
+ y2

2 − 2x2
3

((x1 − y1)2 + y
2
2 + x

2
3)

5/2
.

For x ∈ S4(h) and y ∈ Dc we have K3(x1 − y1,−y2, x3) > 0 and u3(y1, y2, 0) ≈
(1+ |y|−5/2)δ

−1/2
D (y). For y ∈ D we have u3(y1, y2, 0) = −1. We obtain∣∣∣∣∫

A1∪A4

K3u3

∣∣∣∣ ≤ c

h3

∫
A1∪A4

δ
−1/2
D (y) dy

≤
c

h3

∫ h

0
dy2

∫ f (y2)

−h

dy1 (−y1 + f (y2))
−1/2
≈ h−3/2,∫

A2

K3u3 ≈

∫
A2

|y|−7/2 dy ≈ h−3/2,
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∣∣∣∣∫
A3∪A5

K3u3

∣∣∣∣ ≤ c ∫ r

h/
√

2
dy2

∫ f (y2)

−y2

dy1
(−y1 + f (y2))

−1/2

y3
2

≈ h−3/2,∣∣∣∣∫
A6

K3u3

∣∣∣∣ ≤ c ∫
A6

|y|−11/2δ
−1/2
D (y) dy ≤ c,∣∣∣∣∫

D\D1

K3u3

∣∣∣∣ ≤ c ∫
D\D1

((y1 − h)
2
+ y2

2)
−3/2 dy ≤ ch−1.

The integral over D1 is computed directly. Recall that D1 = B((h, 0), h/2) and x =
(x1, x2, x3) ∈ S4(h), so x1 = h, x2 = 0 and x3 ∈ (0, h/4]. We have∫

D1

K3(x1 − y1,−y2, x3)u3(y1, y2, 0) dy1 dy2

= CK

∫
D1

(h− y1)
2
+ y2

2 − 2x2
3

((h− y1)2 + y
2
2 + x

2
3)

5/2
dy1 dy2. (33)

Let us introduce polar coordinates h − y1 = ρ cos θ , y2 = ρ sin θ . Then (33)

equals 2πCK
∫ h/2

0
ρ2
−2x2

3
(ρ2+x2

3 )
5/2 ρ dρ. The substitution t = ρ2 shows that this is equal

to πCK
∫ h2/4

0
t−2x2

3
(t+x2

3 )
5/2 dt . By elementary calculations this in turn equals −πCKh

2

2(h2/4+x2
3 )

3/2 .

Hence |
∫
D1
K3u3| ≤ c/h.

It follows that |u33(x)| ≤ ch−3/2. Since for x ∈ S4(h) and y ∈ (D)c we have
K3(x1 − y1,−y2, x3) > 0 and u3(y1, y2, 0) > 0, we get

u33(x) =

∫
R2
K3u3 ≥

∫
A2∪D

K3u3 ≥

∫
A2

K3u3 −

∣∣∣∣∫
D

K3u3

∣∣∣∣ ≥ ch−3/2
− c1h

−1.

It follows that u33(x) ≈ h−3/2 for x ∈ S4(h) and sufficiently small h. Since u11(x) +

u22(x) + u33(x) = 0 and, by Proposition 4.1, u22(x) ≈ −h
−1/2 for x ∈ S4(h), we get

u11(x) ≈ −h
−3/2. ut

Proposition 4.5. There exists h0 = h0(3) ∈ (0, r/8] such that for any h ∈ (0, h0] we
have |u12(x)| ≤ cx3h

−3/2
|logh| for x ∈ S1(h)∪S2(h)∪S3(h), |u12(x)| ≤ ch

−1/2
|logh|

for x ∈ S4(h), and |u23(x)| ≤ ch
−1/2
|logh| for x ∈ S1(h) ∪ S2(h) ∪ S3(h).

Proof. Let h ∈ (0, r/8]. We have

u12(x) =

∫
D

K12(x1 − y1,−y2, x3)ϕ(y1, y2) dy1 dy2, (34)

K12(x1 − y1,−y2, x3) = −15CK
x3(x1 − y1)y2

((x1 − y1)2 + y
2
2 + x

2
3)

7/2
.

Let D1,D2,D3,D4,D5 and Di+, Di− for i = 1, 2, 3, 4 be as in the proof of Proposi-
tion 4.2. We have
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D1∪D2

K12ϕ

= −cx3

∫
D1+∪D2+

(x1 − y1)y2

((x1 − y1)2 + y
2
2 + x

2
3)

7/2
(ϕ(y1, y2)− ϕ(y1,−y2)) dy1 dy2.

For y ∈ D1+ ∪D2+ by Lemma 3.11 we get |ϕ(y1, y2)−ϕ(y1,−y2)| = |2y2ϕ2(y1, ξ)| ≤

cy2(y2y
−1/2
1 + y

1/2
1 |log y1|) for some ξ ∈ (−y2, y2). Hence∣∣∣∣∫

D1

K12ϕ

∣∣∣∣ ≤ cx3

∫
D1+

|x1 − y1|

((x1 − y1)2 + y
2
2 + x

2
3)

7/2
(y3

2y
−1/2
1 + y2

2y
1/2
1 |log y1|) dy1 dy2

≤ cx3h
−6
∫ h

0
dy1

∫ h

0
dy2 (y

3
2y
−1/2
1 + y2

2y
1/2
1 |log y1|)

+ cx3h

∫ h

0
dy1

∫ c1y
1/2
1

h

dy2 (y
−4
2 y
−1/2
1 + y−5

2 y
1/2
1 |log y1|)

≤ cx3h
−3/2
|logh|.

Note that for y ∈ D2 we have |x1 − y1| ≤ cy1. We obtain∣∣∣∣∫
D2

K12ϕ

∣∣∣∣ ≤ cx3

∫
D2+

|x1 − y1|

((x1 − y1)2 + y
2
2 + x

2
3)

7/2
(y3

2y
−1/2
1 + y2

2y
1/2
1 |log y1|) dy1 dy2

≤ cx3

∫ r

h

dy1

∫ y1

0
dy2 (y

3
2y
−13/2
1 + y2

2y
−11/2
1 |log y1|)

+ cx3

∫ r

h

dy1

∫ r

y1

dy2 (y
−4
2 y

1/2
1 + y−5

2 y
3/2
1 |log y1|)

≤ cx3h
−3/2
|logh|.

By Lemma 2.6 for y ∈ D3 ∪D4 we have ϕ(y) ≤ cδ1/2
D (y) ≤ cy2. Note also that |x1− y1|

≤ 2h for y ∈ D3 and |x1 − y1| ≤ h+ y1 for y ∈ D4. We get∣∣∣∣∫
D3

K12ϕ

∣∣∣∣ ≤ cx3h
−5
∫ h

0
dy2

∫ f1(h)

0
dy1y2 ≤ cx3h

−1,∣∣∣∣∫
D4+

K12ϕ

∣∣∣∣ ≤ cx3

∫ r

h

dy2

∫ c1y
2
2

0
dy1(h+ y1)y

−5
2 ≤ cx3h

−1.

The estimate of |
∫
D4−

K12ϕ| is the same, so |
∫
D4
K12ϕ| ≤ cx3h

−1. Note that for y ∈ D5
we have |x1 − y1| ≤ cy1 and ϕ(y) ≤ c. Hence∣∣∣∣∫

D5

K12ϕ

∣∣∣∣ ≤ cx3

∫
Bc(0,c1r2)

y1|y2|

(y2
1 + y

2
2)

7/2
dy1 dy2 ≤ cx3.

For x ∈ S1(h) ∪ S2(h) ∪ S3(h) we obtain

u23(x) =

∫
D

K23(x1 − y1,−y2, x3)ϕ(y1, y2) dy1 dy2.
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The proof of |
∫
D
K23ϕ| ≤ ch

−1/2
|logh| is very similar to that of the estimate |

∫
D
K12ϕ|

≤ cx3h
−3/2
|logh| and is omitted.

We have

u12(x) =

∫
D

K12(x1 − y1,−y2, x3)ϕ(y1, y2) dy1 dy2.

Set A = B((h, 0), h/2). By the same argument as above we obtain |
∫
D\A

K12ϕ| ≤

cx3h
−3/2
|logh|. We have∣∣∣∣∫

A

K12ϕ

∣∣∣∣ = ∣∣∣∣cx3

∫
A

(y1 − h)y2

((y1 − h)2 + y
2
2 + x

2
3)

7/2
ϕ(y1, y2) dy1 dy2

∣∣∣∣.
By the substitution z1 = y1 − h, z2 = y2 this is equal to∣∣∣∣cx3

∫
B(0,h/2)

z1z2

(z2
1 + z

2
2 + x

2
3)

7/2
ϕ(z1 + h, z2) dz1 dz2

∣∣∣∣
=

∣∣∣∣cx3

∫
W

z1z2g(z1, z2)

(z2
1 + z

2
2 + x

2
3)

7/2
dz1 dz2

∣∣∣∣, (35)

where g(z1, z2) = ϕ(z1 + h, z2)− ϕ(−z1 + h, z2)− ϕ(z1 + h,−z2)+ ϕ(−z1 + h,−z2)

and W = {z ∈ B(0, h/2) : z1, z2 ≥ 0}. Note that for z ∈ W we have g(z1, z2) =

4z1z2ϕ12(ξ1 + h, ξ2) for some ξ1 ∈ (−z1, z1), ξ2 ∈ (−z2, z2). By Lemma 3.11, for
z ∈ W and ξ1, ξ2 as above we have

|ϕ12(ξ1 + h, ξ2)| ≤ ch
−1/2
|logh| + cz2h

−3/2.

It follows that (35) is bounded from above by

cx3

∫
W

z2
1z

2
2(h
−1/2
|logh| + z2h

−3/2)

(z2
1 + z

2
2 + x

2
3)

7/2
dz1 dz2. (36)

Set W1 = {z : z1, z2 ∈ [0, x3]} and W2 = {z ∈ B(0, h/2) \ B(0, x3) : z1, z2 ≥ 0}. We
have W ⊂ W1 ∪W2. Thus (36) is bounded from above by

cx3

∫
W1

z2
1z

2
2(h
−1/2
|logh| + z2h

−3/2)

x7
3

dz1 dz2

+ cx3

∫
W2

z2
1z

2
2(h
−1/2
|logh| + z2h

−3/2)

(z2
1 + z

2
2)

7/2
dz1 dz2

≤ ch−1/2
|logh|. ut

Proposition 4.6. There exists h0 = h0(3) ∈ (0, r/8] such that for any h ∈ (0, h0] we
have |u23(x)| ≤ ch

−3/4
|logh| for x ∈ S4(h).
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Proof. Let h ∈ (0, r/8]. Set p = (−r, 0); recall that z = (r, 0). We have

u23(x) =

∫
R2
K2(x1 − y1,−y2, x3)u3(y1, y2, 0) dy1 dy2

=

∫
B(0,r/4)∩B(p,r)

K2u3 +

∫
(D∩B(0,r/4))\(B(p,r)∪B(z,r))

K2u3

+

∫
(Dc∩B(0,r/4))\(B(p,r)∪B(z,r))

K2u3 +

∫
B(0,r/4)∩B(z,r)

K2u3

+

∫
B(0,r/4)c

K2u3 = I+ II+ III+ IV+ V.

Note that u3(y1, y2, 0) = −(−1)1/2ϕ(y1, y2) for (y1, y2) ∈ R2
\ ∂D.

Set A = B(0, r/4) ∩ B(p, r). For y ∈ A by Corollary 3.13 we get |(−1)1/2ϕ(y)| ≤
cδ
−1/2
D (y) ≤ c|y1|

−1/2. It follows that

|I| ≤ cx3

∫
A

y2|y1|
−1/2

((h− y1)2 + y
2
2 + x

2
3)

5/2
dy1 dy2

≤ cx3

∫ h

0
dy2

∫
−f1(y2)

−r/4
dy1

y2|y1|
−1/2

h5 + cx3

∫ r/4

h

dy2

∫
−f1(y2)

−r/2
dy1

y2|y1|
−1/2

y5
2

≤ cx3h
−3.

We also have

|II| ≤ cx3

∫ h

0
dy2

∫ f1(y2)

0
dy1 y2h

−5
+ cx3

∫ r/2

h

dy2

∫ f1(y2)

0
dy1 y2y

−5
2 ≤ cx3h

−1.

For y ∈ (Dc∩B(0, r/4))\(B(p, r)∪B(z, r)) by Corollary 3.13 we get |(−1)1/2ϕ(y)| ≤
cδ
−1/2
D (y) ≈ (f (y2)− y1)

−1/2. Hence

|III| ≤ cx3

∫ r/4

0
dy2

∫ f (y2)

−f1(y2)
dy1 (f (y2)− y1)

−1/2 y2

h5 ∨ y5
2
.

For y2 ∈ (0, r/4) we have∫ f (y2)

−f1(y2)
(f (y2)− y1)

−1/2 dy1 =

∫ f1(y2)+f (y2)

0
z−1/2 dz ≤ cy2.

It follows that

|III| ≤ cx3

∫ h

0

y2
2
h5 dy2 + cx3

∫ r/4

h

y2
2

y5
2
dy2 ≤

cx3

h2 .

Clearly

IV =
∫
B(0,r/4)∩B(z,r)

−cx3y2

((h− y1)2 + y
2
2 + x

2
3)

5/2
dy1 dy2 = 0.
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Using Corollary 3.13 we get

|V| ≤ cx3

∫
D

dy + cx3

∫
Dc

δ
−1/2
D (y)

(1+ |y|)5/2
dy ≤ cx3.

It follows that for x ∈ S4(h) we have

|u23(x)| ≤ |I+ II+ III+ IV+ V| ≤ cx3/h
3. (37)

On the other hand, for x ∈ S4(h) we have

u23(x) =

∫
D

K23(x1 − y1,−y2, x3)ϕ(y1, y2) dy1 dy2.

Set W = B((h, 0), h/2) and W+ = {y ∈ W : y2 > 0}. For x ∈ S4(h) one may show
|
∫
D\W

K23ϕ| ≤ ch
−1/2
|logh|. The proof of this inequality is omitted; it is very similar

to the proof of |
∫
D\W

K12ϕ| ≤ cx3h
−3/2
|logh| (see the proof of Proposition 4.5).

We have∫
W

K23ϕ = −c

∫
W

12x2
3 − 3(y1 − h)

2
− 3y2

2

((y1 − h)2 + y
2
2 + x

2
3)

7/2
y2ϕ(y1, y2) dy1 dy2

= −c

∫
W+

12x2
3 − 3(y1 − h)

2
− 3y2

2

((y1 − h)2 + y
2
2 + x

2
3)

7/2
y2(ϕ(y1, y2)− ϕ(y1,−y2)) dy1 dy2. (38)

For y ∈ W+ we have ϕ(y1, y2) − ϕ(y1,−y2) = 2y2ϕ2(y1, ξ2) for some ξ2 ∈ (−y2, y2),
and ϕ2(y1, ξ2) = ϕ2(h, 0) + (y1 − h, ξ2) ◦ ∇ϕ2(ξ

′), where ξ ′ is a point between (h, 0)
and (y1, ξ2). It follows that (38) equals

−cϕ2(h, 0)
∫
W+

12x2
3 − 3(y1 − h)

2
− 3y2

2

((y1 − h)2 + y
2
2 + x

2
3)

7/2
2y2

2 dy1 dy2

− c

∫
W+

12x2
3 − 3(y1 − h)

2
− 3y2

2

((y1 − h)2 + y
2
2 + x

2
3)

7/2
2y2

2(y1 − h, ξ2) ◦ ∇ϕ2(ξ
′) dy1 dy2 = I+ II.

Set V = B(0, h/2) and V+ = {z ∈ V : z2 > 0}. By the substitution z1 = y1−h, z2 = y2
we obtain

I = −cϕ2(h, 0)
∫
V+

12x2
3 − 3z2

1 − 3z2
2

(z2
1 + z

2
2 + x

2
3)

7/2
2z2

2 dy1 dy2

= −cϕ2(h, 0)
∫
V

12x2
3 − 3z2

1 − 3z2
2

(z2
1 + z

2
2 + x

2
3)

7/2
z2

2 dy1 dy2.

By symmetry of z1, z2 the above integral equals

1
2

∫
V

12x2
3 − 3z2

1 − 3z2
2

(z2
1 + z

2
2 + x

2
3)

7/2
(z2

1 + z
2
2) dy1 dy2.
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Let us introduce polar coordinates z1 = ρ cos θ , z2 = ρ sin θ . Then the above expression

equals π
∫ h/2

0
12x2

3−3ρ2

(ρ2+x2
3 )

7/2 ρ
3 dρ. By elementary calculation this is equal to (3π/16)h4

×

(x2
3 + h

2/4)−5/2. By Lemma 3.11, ϕ2(h, 0) ≤ ch1/2
|logh|. Hence |I| ≤ ch−1/2

|logh|.
Now we estimate II. For y ∈ W+ and ξ2, ξ ′ as above we have

(y1 − h, ξ2) ◦ ∇ϕ2(ξ
′) = (y1 − h)ϕ12(ξ

′)+ ξ2ϕ22(ξ
′). (39)

For any w ∈ W by Lemma 3.11 we get |ϕ12(w)| ≤ ch
−1/2
|logh|, |ϕ22(w)| ≤ ch

−1/2, so
(39) is bounded from above by c|y1 − h|h

−1/2
|logh| + c|y2|h

−1/2. Set B+((h, 0), x3) =

{y ∈ B((h, 0), x3) : y2 > 0}. It follows that

|II| ≤
c

x5
3

∫
B+((h,0),x3)

|y − (h, 0)|3h−1/2
|logh| dy

+ c

∫
W+\B+((h,0),x3)

|y − (h, 0)|−2h−1/2
|logh| dy ≤ ch−1/2

|logh| |log x3|.

Hence for x ∈ S4(h) we have

|u23(x)| ≤

∣∣∣∣∫
D\W

K23ϕ

∣∣∣∣+ |I| + |II| ≤ ch−1/2
|logh| |log x3|. (40)

For any β > 0 and x ∈ S4(h) we get |u23(x)|
β
≤ c

β

1 x
β

3 h
−3β by (37). Using this and

(40) we get |u23(x)|
1+β
≤ cc

β

1 x
β

3 |log x3|h
−3β−1/2

|logh|. Setting β = 1/9 we obtain
|u23(x)| ≤ ch

−3/4
|logh|9/10

≤ ch−3/4
|logh|. ut

Lemma 4.7. For any (x1, x2) ∈ D we have u13(x1, x2, 0) = u23(x1, x2, 0) = 0 and
u33(x1, x2, 0) > 0.

Proof. The equalities u13(x1, x2, 0) = u23(x1, x2, 0) = 0 for (x1, x2) ∈ D follow easily
from (8). For (x1, x2) ∈ int(Dc) we have

u3(x1, x2, 0) = −(−1)1/2ϕ(x) =
1

2π

∫
D

ϕ(y)

|y − x|3
dy > 0.

By Corollary 3.13 we have f (x1, x2) = u3(x1, x2, 0) ∈ L1(R2). By the normal derivative
lemma [15, Lemma 2.33] we get u33(x1, x2, 0) > 0 for (x1, x2) ∈ D. ut

5. Harmonic extension for a ball

The aim of this section is to prove the following result.

Proposition 5.1. Let ϕ be the solution of (1)–(2) for the ball B(0, 1) ⊂ R2 and u be the
harmonic extension of ϕ given by (6)–(10). We have

H(u)(x) > 0, x ∈ R3
\ (B(0, 1)c × {0}). (41)
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Recall that H(u)(x) is the determinant of the Hessian matrix of u at x. Recall also that
the solution of (1)–(2) for the ball B(0, 1) is given by the explicit formula ϕ(x) =
CB(1 − |x|)1/2, CB = 2/π . Hence for x = (x1, x2, x3) where x3 > 0, the function u
is given by the explicit formula u(x) =

∫
B(0,1)K(x1 − y1, x2 − y2, x3)ϕ(y1, y2) dy1 dy2.

Applying this it is easy to check numerically that (41) holds (e.g. using Mathematica).
Unfortunately, it seems hard to formally prove (41) directly using the explicit formula
for u.

Instead, to show (41) we use a trick: we add an auxiliary function w to u and we use
Lewy’s Theorem 1.6. First, we briefly present the idea of the proof. We define

9(b)(x) = (1− b)u(x)+ bw(x), b ∈ [0, 1],

where w is an appropriately chosen auxiliary function, namely

w(x) = K(x1, x2, x3 +
√

3/2). (42)

Note that for any q ≥ 0 we have {(x1, x2, x3) : K33(x1, x2, x3 + q) = 0, x3 > −q} =

{(x1, x2, x3) : x
2
1 + x

2
2 = (2/3)(x3 + q)

2, x3 > −q}. The function w is chosen so that
w33(x) = 0 for x ∈ ∂B(0, 1)×{0}, i.e. for x = (x1, x2, 0)with x2

1+x
2
2 = 1. Such a choice

helps to control H(9(b))(x) near ∂B(0, 1) × {0}. One can directly check that 9(1) = w
satisfies H(9(1))(x) > 0 for x ∈ R3

+ ∪ B(0, 1) × {0} (recall that R3
+ = {(x1, x2, x3) :

x3 > 0}). If 9(0) = u does not satisfy H(9(0))(x) > 0 for x ∈ R3
+ ∪ B(0, 1)× {0}, one

can show that there exists b ∈ [0, 1) such thatH(9(b))(x) ≥ 0 for x ∈ R3
+∪B(0, 1)×{0}

and there exists x0 ∈ R3
+ for which H(9(b))(x0) = 0. This contradicts Theorem 1.6. If

9(0) = u does not satisfyH(9(0))(x) > 0 for x ∈ R3
−, one can use Lemma 2.7 and again

obtain a contradiction. This finishes the presentation of the idea of the proof.

Lemma 5.2. Let w be given by (42) and v = u + aw with a ≥ 0. There exist M1 ≥ 10
and h1 ∈ (0, 1/2] such that for any a ≥ 0 we have

H(v)(x) > 0, x ∈ A1 ∪ A2 ∪ A3 ∪ A4,

where

A1 = {(x1, x2, x3) : x
2
1 + x

2
2 ∈ [(1− h1)

2, (1+ h1)
2
], x3 ∈ (0, h1]},

A2 = {(x1, x2, x3) : x
2
1 + x

2
2 ∈ [(1+ h1)

2,M2
1 ], x3 ∈ (0, h1]},

A3 = {(x1, x2, 0) : x2
1 + x

2
2 < 1},

A4 = {(x1, x2, x3) ∈ R3
+ : x

2
1 + x

2
2 ≥ M

2
1 or x3 ≥ M1}.

Proof. First note that for any fixed x3 > 0 the function (x1, x2) 7→ v(x1, x2, x3) is
radial, so it is enough to show the assertion for x ∈ (A1 ∪A2 ∪A3 ∪A4)∩L, where L =
{(x1, x2, x3) : x2 = 0, x1 ≤ 0}. SetA′i = Ai∩L, i = 1, 2, 3, 4. For x ∈ A′1∪A

′

2∪A
′

3∪A
′

4
we have v12(x) = v23(x) = 0 and v22(x) < 0. Hence H(v)(x) = v22(x)f (a, x), where

f (a, x) =

∣∣∣∣ v11 v13
v13 v33

∣∣∣∣ = ∣∣∣∣u11 + aw11 u13 + aw13
u13 + aw13 u33 + aw33

∣∣∣∣, (43)

and it is enough to show f (a, x) < 0 for x ∈ A′1 ∪ A
′

2 ∪ A
′

3 ∪ A
′

4.
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We will consider four cases: x ∈ A′1, x ∈ A′2, x ∈ A′3, x ∈ A′4.

Case 1: x ∈ A′1. Set q0 =
√

3/2 and z0 = (−1, 0, 0). Note that w33(z0) = 0,
w11(z0) = CKq0(12 − 3q2

0 )(1 + q
2
0 )
−7/2

≈ 9.185CK(1 + q2
0 )
−7/2 and w13(z0) =

−CK(12q2
0 − 3)(1 + q2

0 )
−7/2

= −15CK(1 + q2
0 )
−7/2. Denote w11(x) = p1(x),

w13(x) = p2(x). It is clear that for sufficiently small h1 and x ∈ A′1 we have√
9/10 |p2(x)| > |p1(x)|. (44)

Let h0 denote the minimum of the constants h0 from Propositions 4.1–4.6. For any h ∈
(0, h0] denote

T1(h) = {(−1+ h, 0, x3) : x3 ∈ (0, h/4]},
T2(h) = {(−1+ h, 0, x3) : x3 ∈ (h/4, h]} ∪ {(x1, 0, h) : x1 ∈ [−1,−1+ h)},
T3(h) = {(x1, 0, h) : x1 ∈ [−

√
2/3h− 1,−1]},

T4(h) = {(x1, 0, h) : x1 ∈ [−1− h,−
√

2/3h− 1)} ∪ {(−1− h, 0, x3) : x3 ∈ (0, h)}.

Note that the value −
√

2/3h − 1 in the definition of T3(h), T4(h) is chosen so that
w33(−

√
2/3h − 1, 0, h) = 0. Note also that w33(x) ≥ 0 for x ∈ T1(h) ∪ T2(h) ∪ T3(h)

and w33(x) < 0 for x ∈ T4(h).
We will consider four subcases: x ∈ T1(h), x ∈ T2(h), x ∈ T3(h), x ∈ T4(h).

Subcase 1a: x ∈ T1(h). By (43), Propositions 4.1, 4.4 and definition of w we have

f (a, x) =

∣∣∣∣−b1(x)h
−3/2
+ p1(x)a −b2(x)h

−3/2
− p2(x)a

−b2(x)h
−3/2
− p2(x)a ε(x)a + b1(x)h

−3/2
+ b3(x)h

−1/2

∣∣∣∣,
where 0 < B ′1 ≤ b1(x) ≤ B1, 0 ≤ b2(x) ≤ B2, 0 < B ′3 ≤ b3(x) ≤ B3, 0 <

P ′1 ≤ p1(x) ≤ P1, 0 < P ′2 ≤ p2(x) ≤ P2, and 0 ≤ ε(x) ≤ E(h) ≤ E(h0) with
limh→0+ E(h) = 0. More precisely, the estimates of b1(x), b2(x) follow from the esti-
mates of u11(x), u13(x) on S4(h) in Proposition 4.4, while the estimates of b3(x) fol-
low from u33(x) = −u11(x) − u22(x) and the estimates of u11(x), u22(x) on S4(h) in
Propositions 4.1 and 4.4. The estimates of p1(x), p2(x) follow from the formulas for
w11(z0), w13(z0) and continuity of w11(x), w13(x) near z0. The estimates of ε(x) and
limh→0+ E(h) = 0 follow from w33(z0) = 0 and continuity of w33(x) near z0. Hence

f (a, x) = −ε(x)b1(x)ah
−3/2
− b2

1(x)h
−3
− b1(x)b3(x)h

−2
+ ε(x)p1(x)a

2

+b1(x)p1(x)ah
−3/2
+p1(x)b3(x)ah

−1/2
−b2

2(x)h
−3
−p2

2(x)a
2
−2b2(x)p2(x)ah

−3/2.

Note that for sufficiently small h we have

p1(x)b3(x)ah
−1/2 < p1(x)b1(x)ah

−3/2.

For sufficiently small h, using this and (44) we get

(9/10)p2
2(x)a

2
+ b2

1(x)h
−3 > p2

1(x)a
2
+ b2

1(x)h
−3
≥ 2b1(x)p1(x)ah

−3/2

> b1(x)p1(x)ah
−3/2
+ b3(x)p1(x)ah

−1/2.
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For sufficiently small h we also have p1(x)ε(x)a
2 < (1/10)p2

2(x)a
2. It follows that for

sufficiently small h1 > 0 and for all 0 < h ≤ h1, a ≥ 0, x ∈ T1(h) we have f (a, x) < 0.

Subcase 1b: x ∈ T2(h). By (43), Propositions 4.1, 4.2, 4.4 and definition of w we have

f (a, x) =

∣∣∣∣ b1(x)h
−3/2
+ p1(x)a −b2(x)h

−3/2
− p2(x)a

−b2(x)h
−3/2
− p2(x)a ε(x)a − b1(x)h

−3/2
+ b3(x)h

−1/2

∣∣∣∣,
where −B1 ≤ b1(x) ≤ B1, 0 < B ′2 ≤ b2(x) ≤ B2, 0 < B ′3 ≤ b3(x) ≤ B3,
0 < P ′1 ≤ p1(x) ≤ P1, 0 < P ′2 ≤ p2(x) ≤ P2, and 0 ≤ ε(x) ≤ E(h) ≤ E(h0) with
limh→0+ E(h) = 0. More precisely, the estimates of b1(x), b2(x) follow from the esti-
mates of u11(x), u13(x) on S3(h) in Propositions 4.2 and 4.4, while the estimates of b3(x)

follow from u33(x) = −u11(x)− u22(x) and the estimates of u11(x), u22(x) on S3(h) in
Propositions 4.1 and 4.2. The estimates of p1(x), p2(x), ε(x), and limh→0+ E(h) = 0,
follow by the same arguments as in Subcase 1a. Hence

f (a, x) = ε(x)b1(x)ah
−3/2
− b2

1(x)h
−3
+ b1(x)b3(x)h

−2
+ ε(x)p1(x)a

2

−b1(x)p1(x)ah
−3/2
+p1(x)b3(x)ah

−1/2
−b2

2(x)h
−3
−p2

2(x)a
2
−2b2(x)p2(x)ah

−3/2.

First assume that b1(x) ≥ 0. Then for sufficiently small h we have

ε(x)b1(x)ah
−3/2 < b2(x)p2(x)ah

−3/2,

p1(x)b3(x)ah
−1/2 < b2(x)p2(x)ah

−3/2,

b1(x)b3(x)h
−2 < b2

2(x)h
−3,

ε(x)p1(x)a
2 < p2

2(x)a
2,

which implies f (a, x) < 0.
Now assume that b1(x) < 0. By (44) for sufficiently small h we get

(9/10)p2
2(x)a

2
+ b2

1(x)h
−3 > p2

1(x)a
2
+ b2

1(x)h
−3
≥ |2b1(x)p1(x)ah

−3/2
|,

p1(x)ε(x)a
2 < (1/10)p2

2(x)a
2,

p1(x)b3(x)ah
−1/2 < 2b2(x)p2(x)ah

−3/2,

which implies f (a, x) < 0.
It follows that for sufficiently small h1 > 0 and for all 0 < h ≤ h1, a ≥ 0, x ∈ T2(h)

we have f (a, x) < 0.

Subcase 1c: x ∈ T3(h). By (43), Propositions 4.1–4.3 and definition of w we have

f (a, x) =

∣∣∣∣ b1(x)h
−3/2
+ p1(x)a −b2(x)h

−3/2
− p2(x)a

−b2(x)h
−3/2
− p2(x)a ε(x)a − b1(x)h

−3/2
+ b3(x)h

−1/2

∣∣∣∣,
where 0 < B ′1 ≤ b1(x) ≤ B1, −B2 ≤ b2(x) ≤ B2, 0 < B ′3 ≤ b3(x) ≤ B3,
0 < P ′1 ≤ p1(x) ≤ P1, 0 < P ′2 ≤ p2(x) ≤ P2, and 0 ≤ ε(x) ≤ E(h) ≤ E(h0) with
limh→0+ E(h) = 0. More precisely, the estimates of b1(x), b2(x) follow from the esti-
mates of u11(x), u13(x) on S2(h) in Propositions 4.2 and 4.3, while the estimates of b3(x)
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follow from u33(x) = −u11(x) − u22(x) and the estimates of u11(x), u22(x) on S2(h)

in Propositions 4.1–4.3. The estimates of p1(x), p2(x), ε(x), and limh→0+ E(h) = 0,
follow by the same arguments as in Subcase 1a.

For sufficiently small h we have

b3(x)h
−1/2 < b1(x)h

−3/2/2, (45)
2B2

B ′1
ε(x) <

P ′2
2
, (46)

ε(x)(p1(x)+ 2ε(x)) < p2
2(x)/4. (47)

If ε(x)a−b1(x)h
−3/2
+b3(x)h

−1/2 < 0 then clearly f (a, x) < 0. So we may assume
ε(x)a − b1(x)h

−3/2
+ b3(x)h

−1/2
≥ 0, which implies (see (45))

ε(x)a ≥ b1(x)h
−3/2
− b3(x)h

−1/2 > (b1(x)h
−3/2)/2, (48)

ε(x)a > ε(x)a − b1(x)h
−3/2
+ b3(x)h

−1/2
≥ 0. (49)

By (46) and (48) we get

|b2(x)|h
−3/2
=

2|b2(x)|

b1(x)

b1(x)h
−3/2

2
<

2B2

B ′1
ε(x)a <

P ′2a

2
<
p2(x)a

2
. (50)

By (47)–(50) we get

f (a, x) ≤ (p1(x)a + b1(x)h
−3/2)ε(x)a − (p2(x)a/2)2

≤ (p1(x)a + 2ε(x)a)ε(x)a − p2
2(x)a

2/4 < 0.

It follows that for sufficiently small h1 > 0 and for all 0 < h ≤ h1, a ≥ 0, x ∈ T3(h)

we have f (a, x) < 0.

Subcase 1d: x ∈ T4(h). Note that for x = (x1, 0, x3) ∈ T4(h) we have w33(x) < 0.
Moreover,

u33(x) =

∫
B(0,1)

K33(x1 − y1, x2 − y2, x3)ϕ(y1, y2) dy1 dy2.

Recall thatK33(x1−y1, x2−y2, x3) = CKx3((x1−y1)
2
+ (x2−y2)

2
+x2

3)
−7/2
× (6x2

3−

9(x1 − y1)
2
− 9(x2 − y2)

2). Hence to have K33(x1 − y1,−y2, x3) < 0 for all (y1, y2) ∈

B(0, 1) and x1 ≤ −1 it is sufficient to prove 6x2
3 − 9(x1 + 1)2 < 0. Note that for

x = (x1, 0, x3) ∈ T4(h) we have 0 < x3 < −
√

3/2 (x1 + 1), x1 < −1. It follows
that 6x2

3 − 9(x1 + 1)2 < 0 and u33(x) < 0. Hence u33(x) + aw33(x) < 0. Note that
u22(x)+ aw22(x) < 0, so u11(x)+ aw11(x) = −u22(x)− aw22(x)− u33(x)− aw33(x)

> 0. Together with (43) this implies that f (a, x) < 0 for any a ≥ 0 and x ∈ T4(h).

Case 2: x ∈ A′2. This case follows by the same arguments as in Subcase 1d.

Case 3: x ∈ A′3. Note that w33(x) > 0 for x ∈ A′3. Set x3 = x3 +
√

3/2 . We have

w11(x) = CKx3(x
2
1 + x

2
3)
−7/2(12x2

1 − 3x2
3).
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Note that

{(x1, 0, x3) : w11(x1, 0, x3) = 0, x1 ≤ 0, x3 > −
√

3/2 }

= {(x1, 0, x3) : x3 +
√

3/2 = −2x1}.

Set

T1 =

{
(x1, 0, 0) : x1 ∈

[
−
√

3

2
√

2
, 0
]}
, T2 =

{
(x1, 0, 0) : x1 ∈

(
−1,
−
√

3

2
√

2

)}
.

Then we have A′2 = T1 ∪ T2. Note that w11(−
√

3/(2
√

2), 0, 0)) = 0, w11(x) ≤ 0
for x ∈ T1 and w11(x) > 0 for x ∈ T2. Moreover for x = (x1, 0, 0) ∈ A′3 we have
u(x) = ϕ(x1, 0) = CB(1− x2

1)
1/2, so u11(x) < 0.

We will consider two subcases: x ∈ T1, x ∈ T2.

Subcase 3a: x ∈ T1. Note that w11(x) ≤ 0 and u11(x) < 0, so u11(x) + aw11(x) < 0
for a ≥ 0. It follows that u33(x)+ aw33(x) > 0 (because u33+ aw33 = −(u11+ aw11+

u22 + aw22)). Hence f (a, x) < 0.

Subcase 3b: x ∈ T2. For (y1, y2) ∈ B(0, 1) and y = (y1, y2, 0) we have u(y) =
ϕ(y1, y2) = CB(1− y2

1 − y
2
2)

1/2. Therefore for x ∈ T2 we obtain u11(x) = ϕ11(x1, 0) =
−CB(1−x2

1)
−3/2, u33(x) = −ϕ11(x1, 0)−ϕ22(x1, 0) = CB(1−x2

1)
−3/2(2−x2

1). Hence

u33(x) < 2|u11(x)|. (51)

For x ∈ T2 we also have −w22(x)− w11(x) = w33(x) > 0, so

|w22(x)| > |w11(x)|. (52)

Note that for x = (x1, x2, x3) = (x1, 0, 0) ∈ T2 we have x3/|x1| =
√

3/2 /|x1| and
x3/|x1| ∈ (

√
3/2, 2).

For x ∈ T2 we have

|w13(x)|

|w22(x)|
=
|x1|

x3

12x2
3 − 3x2

1

(3x2
1 + 3x2

3)
=
|x1|

x3

(
4−

5
(x3/|x1|)2 + 1

)
>

2|x1|

x3
> 1,

so
|w13(x)| > |w22(x)|. (53)

If a = 0 then by the explicit formulas, f (a, x) < 0. If a > 0 and u11(x)+ aw11(x) ≤ 0
then u33(x)+ aw33(x) = −(u11(x)+ aw11(x)+ u22(x)+ aw22(x)) > 0 and u13(x)+

aw13(x) = aw13(x) 6= 0 (see (53)), so f (a, x) < 0. So we may assume a > 0 and
u11(x)+ aw11(x) > 0.

Again by (43) and (51), (53) we get

f (a, x) <

∣∣∣∣u11(x)+ aw11(x) a|w22(x)|

a|w22(x)| 2|u11(x)| − aw11(x)− aw22(x)

∣∣∣∣.
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Hence

f (a, x) < −2|u11(x)|
2
+ 3|u11(x)|w11(x)a − |u11(x)| |w22(x)|a

−w2
11(x)a

2
+ w11(x)|w22(x)|a

2
− |w22(x)|

2a2.

By (52) this is bounded from above by

− 2|u11(x)|
2
+ 2|u11(x)| |w11(x)|a − w

2
11(x)a

2
+ w11(x)|w22(x)|a

2
− |w22(x)|

2a2

= −

(
√

2|u11(x)| −
w11(x)a
√

2

)2

−

(
w11(x)a
√

2
−
|w22(x)|a
√

2

)2

−

(
|w22(x)|a
√

2

)2

< 0.

Case 4: x ∈ A′4. Recall that x3 = x3 +
√

3/2 and write x = (x1, x2, x3). Recall also
that w(x) = K(x). We have

K11(x) = CKx3(x
2
1 + x

2
2 + x

2
3)
−7/2(12x2

1 − 3x2
2 − 3x2

3),

K13(x) = CKx1(x
2
1 + x

2
2 + x

2
3)
−7/2(12x2

3 − 3x2
1 − 3x2

2),

K33(x) = CKx3(x
2
1 + x

2
2 + x

2
3)
−7/2(6x2

3 − 9x2
1 − 9x2

2).

For any M ≥ 10 denote

T1(M) = {(x1, 0, x3) : x3 = M, x1 ≤ 0, x3 ≥ 3|x1|},

T2(M) = {(x1, 0, x3) : x3 = M, x1 ≤ 0,
√

3/2 |x1| ≤ x3 < 3|x1|},

T3(M) = {(x1, 0, x3) : x3 = M, x1 ≤ 0, |x1| ≤ x3 <
√

3/2 |x1|}

∪ {(x1, 0, x3) : x1 = −M, 0 < x3 < M}.

We will consider three subcases: x ∈ T1(M), x ∈ T2(M), x ∈ T3(M).

Subcase 4a: x ∈ T1(M). Set B = B(0, 1) ⊂ R2. We have

u11(x) =

∫
B

(K11(x1 − y1,−y2, x3)−K11(x))ϕ(y1, y2) dy1 dy2

+K11(x)

∫
B

ϕ(y1, y2) dy1 dy2,

K11(x) =
CKx3(12x2

1 − 3x2
3)

(x2
1 + x

2
3)

7/2
<
CKx

3
3(12/9− 3)

(x2
1 + x

2
3)

7/2
<
−c

x4
3
. (54)

For (y1, y2) ∈ B we also have

|K11(x1 − y1,−y2, x3)−K11(x)| ≤ (|y1| + |y2| + |x3 − x3|)|∇K11(ξ)| ≤ 4|∇K11(ξ)|,

where ξ is a point between (x1 − y1,−y2, x3) and x = (x1, 0, x3). For such ξ we have

|∇K11(ξ)| ≤ c/x
5
3 . (55)

By (54), (55) for sufficiently large M and all x ∈ T1(M) we have u11(x) < 0. We also
have aw11(x) = aK11(x) < 0 for a ≥ 0, x ∈ T1(M). Hence u11(x) + aw11(x) < 0,
which implies f (a, x) < 0. It follows that for sufficiently large M1 ≥ 10 and for all
M ≥ M1, a ≥ 0, x ∈ T1(M) we have f (a, x) < 0.
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Subcase 4b: x ∈ T2(M). First we need the following auxiliary lemma.

Lemma 5.3. Let f (y1, y3) = −6y3
1 − 3y2

1y3 + 24y1y
2
3 − 3y3

3 . For any y3 > 0 and
y1 ∈ [y3/3, y3] we have f (y1, y3) > 4y3

3 .

Proof. The proof is elementary. Fix y3 > 0 and set g(y1) = f (y1, y3). We have g′(y1) =

−18y2
1 − 6y1y3 + 24y2

3 , g′(y1) = 0 for y1 = (−8/6)y3 and y1 = y3, so g is increasing
for y1 ∈ [(−8/6)y3, y3]. We also have g(y3/3) = (40/9)y3

3 , so for any y1 ∈ [y3/3, y3]

we have g(y1) > 4y3
3 . ut

Set b =
∫
B
ϕ(y1, y2) dy1 dy2. For x ∈ T2(M) we have

f (a, x) =

∣∣∣∣K11(x)(a + b)+ ε11(x) K13(x)(a + b)+ ε13(x)

K13(x)(a + b)+ ε13(x) K33(x)(a + b)+ ε33(x)

∣∣∣∣,
where

εij (x) =

∫
B

(Kij (x1 − y1,−y2, x3)−Kij (x))ϕ(y1, y2) dy1 dy2

for (i, j) = (1, 1) or (1, 3) or (3, 3). For (y1, y2) ∈ B we have

|Kij (x1 − y1,−y2, x3)−Kij (x)| ≤ (|y1| + |y2| + |x3 − x3|)|∇Kij (ξ)| ≤ 4|∇Kij (ξ)|,

where ξ is a point between (x1 − y1,−y2, x3) and x = (x1, 0, x3). We have |∇Kij (ξ)|
≤ cx−5

3 , so
|εij (x)| ≤ cb/x

5
3 . (56)

Write

f1(a, x) =

∣∣∣∣K11(x)(a + b) K13(x)(a + b)

K13(x)(a + b) K33(x)(a + b)

∣∣∣∣.
We have |Kij (x)| ≤ cx−4

3 , so by (56) we obtain

|f (a, x)− f1(a, x)| ≤ c(a + b)bx
−9
3 . (57)

On the other hand,

|f1(a, x)| ≥ (a + b)
2(K2

13(x)−K11(x)K33(x))

≥ (a + b)2
(
K2

13(x)−

(
K11(x)+K33(x)

2

)2)
= (a + b)2

(
|K13(x)|

2
−

(
|K22(x)|

2

)2)
. (58)

We have

|K13(x)| − |K22(x)|/2 = 1
2CK(|x1|

2
+ x2

3)
−7/2(−6|x1|

3
− 3|x1|

2x3 + 24|x1|x
2
3 − 3x3

3).

By Lemma 5.3 we obtain

|K13(x)| − |K22(x)|/2 ≥ 1
2CK(|x1|

2
+ x2

3)
−7/24x3

3 ≥ cx
−4
3 .
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Using this and (58) yields

|f1(a, x)| ≥ (a + b)
2(|K13(x)| − |K22(x)|/2)2 ≥ c(a + b)2x−8

3 .

It follows that f1(a, x) < −c(a+b)
2x−8

3 . Using this and (57) we find that for sufficiently
large M1 ≥ 10 and for all M ≥ M1, a ≥ 0, x ∈ T2(M) we have f (a, x) < 0.

Subcase 4c: x ∈ T3(M). This subcase follows from the same arguments as in Sub-
case 1d. ut

Proof of Proposition 5.1. Assume on the contrary that there exists z = (z1, z2, z3) ∈

R3
\ (B(0, 1)c×{0}) such thatH(u)(z) ≤ 0. By Lemma 2.7 we may assume that z1 ≥ 0.

By the explicit formula for ϕ and Lemma 4.7 we may assume that z1 > 0. Define

9(b)(x) = (1− b)u(x)+ bw(x), b ∈ [0, 1],

where w is given by (42). By direct computation for any x = (x1, x2, x3) ∈ R3 with
x3 > −

√
3/2 we have

H(w)(x) = C3
K

27(x3 +
√

3/2 )(x2
1 + x

2
2 + 2(x3 +

√
3/2 )2)

(x2
1 + x

2
2 + (x3 +

√
3/2 )2)15/2

> 0.

Recall that R3
+ = {(x1, x2, x3) ∈ R3

: x3 > 0} and set� = R3
+\(A1∪A2∪A4), whereA1,

A2, A4 are sets from Lemma 5.2. By that lemma we find that z ∈ � and H(9(b))(x) > 0
for all b ∈ [0, 1] and x ∈ ∂�. Note that 9(0) = u, 9(1) = w, H(9(0))(z) < 0 and
H(9(1))(x) > 0 for all x ∈ �. Clearly, all second order partial derivatives of 9(b) are
uniformly Lipschitz continuous on �, that is,

∃c ∀b ∈ [0, 1] ∀x, y ∈ � ∀i, j ∈ {1, 2, 3} |9(b)ij (x)−9
(b)
ij (x)| ≤ c|x − y|.

It follows that there exists b0 ∈ [0, 1) such that H(9(b0))(z0) = 0 for some z0 ∈ � and
H(9(b0))(x) ≥ 0 for all x ∈ �. This contradicts Theorem 1.6. ut

6. Concavity of ϕ

In this section we prove the main result of this paper, Theorem 1.1. This is done by using
the method of continuity, Lewy’s Theorem 1.6 and results from Sections 3–5.

For any ε ≥ 0 we define

v(ε)(x) = u(x)+ ε(−x2
1/2− x

2
2/2+ x

2
3), x ∈ R3

\ (Dc × {0}), (59)

where u is the harmonic extension of ϕ given by (6)–(10) and ϕ is the solution of (1)–(2)
for an open bounded set D ⊂ R2. When D is not fixed, we will sometimes write v(ε,D)

instead of v(ε).

Lemma 6.1. Let C1, R1 > 0, κ2 ≥ κ1 > 0, D ∈ F(C1, R1, κ1, κ2), let ϕ be the solution
of (1)–(2) for D and u the harmonic extension of ϕ given by (6)–(10). For any ε ≥ 0
let v(ε) be given by (59). For any (x1, x2, x3) ∈ R3

+ we have H(v(ε))(x1, x2,−x3) =

H(v(ε))(x1, x2, x3).
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The proof of this lemma is similar to the proof of Lemma 2.7 and is omitted.

Proposition 6.2. Fix C1, R1 > 0, κ2 ≥ κ1 > 0 and D ∈ F(C1, R1, κ1, κ2). Denote
3 = {C1, R1, κ1, κ1}. Let ϕ be the solution of (1)–(2) for D, u the harmonic extension
of ϕ and v(ε) given by (59). For M ≥ 10, h ∈ (0, 1/2], η ∈ (0, 1/2] define (see Figure 7)

U1(M) = {x ∈ R3
: x2

1 + x
2
2 ≤ M

2, x3 = M or x3 = −M}

∪ {x ∈ R3
: x2

1 + x
2
2 = M

2, x3 ∈ [−M,M] \ {0}},

U2(h) = {x ∈ R3
: (x1, x2) ∈ D, δD((x1, x2)) ≤ h, x3 ∈ [−h, h]}

∪ {x ∈ R3
: (x1, x2) /∈ D, δD((x1, x2)) ≤ h, x3 ∈ [−h, h] \ {0}},

U3(M, h, η) = {x ∈ R3
: (x1, x2) /∈ D, δD((x1, x2)) ≥ h, x

2
1 + x

2
2 ≤ M

2,

x3 ∈ [−η, η] \ {0}},
U4(h) = {x ∈ R3

: (x1, x2) ∈ D, δD((x1, x2)) ≤ h, x3 = 0}.

Then

∃c1 = c1(3) ∈ (0, 1] ∃M0 ≥ 10 ∃h1 = h1(3) ∈ (0, 1/2] ∀M ≥ M0 ∀ε ∈ (0, c1M
−7
]

∃η = η(3,M, ε) ∈ (0, 1/2] ∃C = C(3,M, ε) > 0 ∀x ∈ U1(M)∪U2(h1)∪U3(M, h1, η)

H(v(ε))(x) ≥ C.

Moreover

∃h̃ = h̃(3) ∈ (0, 1/2] ∃C̃ = C̃(3) > 0 ∀x ∈ U4(h̃) H(u)(x) ≥ C̃. (60)

x1

x3

D

M

M

−M

−M

U3(M, h, η) U3(M, h, η)

U2(h) U2(h)

U1(M)

U1(M)

U1(M)

U1(M)

A cross section parallel to the x1x3 plane

Fig. 7
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Proof. In the whole proof we use the convention stated in Remark 2.9. We have
H(v(ε))(x) = W1(x)+W2(x)+W3(x), where

W1(x) = v
(ε)
12 (x)

(
v
(ε)
13 (x)v

(ε)
23 (x)− v

(ε)
12 (x)v

(ε)
33 (x)

)
,

W2(x) = −v
(ε)
23 (x)

(
v
(ε)
11 (x)v

(ε)
23 (x)− v

(ε)
13 (x)v

(ε)
12 (x)

)
,

W3(x) = v
(ε)
22 (x)f (ε, x),

f (ε, x) = v
(ε)
11 (x)v

(ε)
33 (x)− (v

(ε)
13 (x))

2.

The proof consists of three parts.

Part 1: Estimates on U1(M). We may assume in this part that x2 = 0, x3 > 0, x1 ≤ 0.
By the formulas uij (x) =

∫
D
Kij (x1 − y1, x2 − y2, x3)ϕ(y1, y2) dy1 dy2 and the explicit

formulas for Kij (see Section 2), there exist M1 ≥ 10 and c such that for any M ≥ M1
and x ∈ U1(M) we have |u11(x)| ≤ cx3M

−5, u22(x) ≈ −x3M
−5, |u33(x)| ≤ cx3M

−5,
|u13(x)| ≤ cM

−4, |u23(x)| ≤ cM
−5 and |u12(x)| ≤ cx3M

−6.
Fix M ≥ M1.
Let x ∈ U1(M) (recall that we assume that x2 = 0, x3 > 0, x1 ≤ 0). We have

|W1(x)| ≤ cx3M
−6(M−4M−5

+ x3M
−6(x3M

−5
+ 2ε)) ≤ cx3M

−15
+ cεM−10, (61)

|W2(x)| ≤ cM
−5((x3M

−5
+ ε)M−5

+M−4x3M
−6) ≤ cx3M

−15
+ cεM−10. (62)

Now we estimate W3(x). We have

v
(ε)
22 (x) = u22(x)− ε ≈ −cx3M

−5
− ε. (63)

The most important is the estimate of f (ε, x). To obtain this estimate we will consider
six cases.

Case 1.1: x3 = M , |x1| < x3/3. Set m(x) = CK(x2
1 + x

2
3)
−7/2. We have

u11(x) ≈ K11(x) = m(x)x3(12x2
1 − 3x2

3) < cM−7x3(12(x3/3)2 − 3x2
3),

so u11(x) ≤ −cM
−4. Moreover,

u33(x) ≈ K33(x) = m(x)x3(6x2
3 − 9x2

1) ≥ cM
−7x3(6x2

3 − 9(x3/3)2),

so u33(x) ≥ cM
−4. Therefore for any ε ≥ 0 we have v(ε)11 (x) ≤ −cM

−4 and v(ε)33 (x) ≥

cM−4. Hence f (ε, x) ≤ −cM−8.

Case 1.2: x3 = M , |x1| ∈ [x3/3, x3/
√

3/2 ]. By the arguments of Subcase 4b in the proof
of Lemma 5.2 we have u11(x)u33(x)− (u13(x))

2 < −cM−8 for sufficiently largeM . For
any ε ≥ 0 we have∣∣f (ε, x)− (u11(x)u33(x)− (u13(x))

2)∣∣ ≤ 2ε2
+ 2ε|u11(x)| + ε|u33(x)|.

For any c1 ∈ (0, 1] and all ε ∈ (0, c1M
−7
] this is bounded from above by cc1M

−11.
It follows that for sufficiently small c1 ∈ (0, 1], for sufficiently large M and all ε ∈
(0, c1M

−7
] we have f (ε, x) < −cM−8.
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Case 1.3: x3 = M , |x1| ∈ [x3/
√

3/2, x3]. We have

u11(x) ≈ K11(x) = m(x)x3(12x2
1 − 3x2

3) ≈ M
−7x3

(
12
x2

3
3/2
− 3x2

3

)
≈ M−4.

Moreover, for y ∈ D ⊂ B(0, 1),

K33(x1 − y1,−y2, x3) ≤ CKx3((x1 − y1)
2
+ y2

2 + x
2
3)
−7/2(6x2

3 − 9(x1 − y1)
2)

= CKx3((x1 − y1)
2
+ y2

2 + x
2
3)
−7/2(6x2

3 − 9x2
1 + 18x1y1 − 9y2

1) ≤ cM
−5,

so u33(x) ≤ cM−5. For sufficiently small c1 ∈ (0, 1] and all ε ∈ (0, c1M
−7
] we

obtain v
(ε)
11 (x) ≈ M−4 and v

(ε)
33 (x) ≤ cM−5. We also have u13(x) ≈ K13(x) =

m(x)x1(12x2
3 − 3x2

1) ≥ cM−4. It follows that for sufficiently small c1, for sufficiently
large M and all ε ∈ (0, c1M

−7
] we have f (ε, x) < −cM−8.

Case 1.4: x3 ∈ [M/4,M], x1 = −M . We have

u11(x) ≈ K11(x) = m(x)x3(12x2
1 − 3x2

3),

so u11(x) ≥ cM
−4. Moreover,

u33(x) ≈ K33(x) = m(x)x3(6x2
3 − 9x2

1),

so u33(x) ≤ −cM
−4. Therefore for sufficiently small c1 ∈ (0, 1] and all ε ∈ (0, c1M

−7
]

we have v(ε)11 (x) ≥ cM
−4 and v(ε)33 (x) ≤ −cM

−4. Hence f (ε, x) ≤ −cM−8.

Case 1.5: x3 ∈ [1,M/4], x1 = −M . We have

u13(x) ≈ K13(x) = m(x)x1(12x2
3 − 3x2

1),

so u13(x) ≤ −cM
−4. Moreover,

u11(x) ≈ K11(x) = m(x)x3(12x2
1 − 3x2

3),

u33(x) ≈ K33(x) = m(x)x3(6x2
3 − 9x2

1),

so u11(x) ≥ cM
−5 and u33(x) ≤ −cM

−5. Therefore for sufficiently small c1 ∈ (0, 1] and
all ε ∈ (0, c1M

−7
] we have v(ε)11 (x) ≥ cM

−5 and v(ε)33 (x) ≤ −cM
−5. Hence f (ε, x) ≤

−cM−8.

Case 1.6: x3 ∈ (0, 1], x1 = −M . By similar arguments to Case 1.5 we get u13(x) ≤

−cM−4, |u11(x)| ≤ cM
−5 and |u33(x)| ≤ cM

−5. Therefore for sufficiently small c1 ∈

(0, 1] and all ε ∈ (0, c1M
−7
] we have |v(ε)11 (x)| ≤ cM

−5 and |v(ε)33 (x)| ≤ cM
−5. Hence

for sufficiently small c1 ∈ (0, 1], for sufficiently large M and all ε ∈ (0, c1M
−7
] we have

f (ε, x) ≤ −cM−8.

Finally, in all six cases, for sufficiently small c1 ∈ (0, 1], for sufficiently large M and
all ε ∈ (0, c1M

−7
] we have f (ε, x) ≤ −cM−8. By (63) we get W3(x) = v

(ε)
22 (x)f (ε, x)

≥ cx3M
−13
+ cεM−8. By (61), (62) we have |W1(x)+W2(x)| ≤ cx3M

−15
+ cεM−10.
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Recall that H(v(ε))(x) = W1(x)+W2(x)+W3(x). It follows that there exist sufficiently
small c′1 = c′1(3) ∈ (0, 1] and sufficiently large M0 ≥ M1 ≥ 10 such that for any
M ≥ M0 and ε ∈ (0, c′1M

−7
] and all x ∈ U1(M) we have H(v(ε))(x) ≥ cεM−8.

Let us fix the above M0 and M ≥ M0 in the rest of the proof of the proposition.

Part 2: Estimates on U2(h). We will use the notation and results from Section 4 (Propo-
sitions 4.1–4.6). In particular we choose a point on ∂D and a Cartesian coordinate sys-
tem with origin at that point in the same way as in Section 4 (see Figures 1 and 4). Let
h ∈ (0, h0], where h0 denotes the minimum of the constants h0 from Propositions 4.1–
4.6. By Lemma 6.1 we may assume x3 ≥ 0, and by continuity we may assume x3 > 0.
Hence it is enough to estimateH(v(ε))(x) for x ∈ S1(h)∪S2(h)∪S3(h)∪S4(h). We will
consider two cases. Assume that ε ∈ (0, 1].

Case 2.1: x ∈ S1(h)∪S2(h)∪S3(h). If x ∈ S1(h)∪S3(h)we have (v(ε)13 (x))
2
= u2

13(x) ≥

ch−3, v(ε)11 (x)v
(ε)
33 (x) = u11(x)u33(x)+2εu11(x)− εu33(x)−2ε2, |2εu11(x)| ≤ cεh

−3/2

and |−εu33(x)| ≤ cεh
−3/2.

If u11(x) ≤ 0 or u33(x) ≤ 0 then u11(x)u33(x) ≤ 0 (recall that u11(x) + u33(x) =

−u22(x) > 0). If u11(x) > 0 and u33(x) > 0 then

u11(x)u33(x) ≤

(
u11(x)+ u33(x)

2

)2

=

(
u22(x)

2

)2

≤ ch−1.

Hence f (ε, x) = −(v(ε)13 (x))
2
+ v

(ε)
11 (x)v

(ε)
33 (x) ≤ −ch

−3 for sufficiently small h and all
ε ∈ (0, 1].

If x ∈ S2(h) we have u11(x) ≈ h
−3/2 and u33(x) ≈ −h

−3/2. Hence for sufficiently
small h and all ε ∈ (0, 1] we have v(ε)11 (x) ≈ h−3/2, v(ε)33 (x) ≈ −h

−3/2 and f (ε, x) ≤
−ch−3.

Hence for any x ∈ S1(h) ∪ S2(h) ∪ S3(h) for sufficiently small h and all ε ∈ (0, 1]
we obtain f (ε, x) ≤ −ch−3. We have v(ε)22 (x) ≈ −x3h

−3/2
− ε. It follows that W3(x) =

v
(ε)
22 (x)f (ε, x) ≥ cx3h

−9/2
+ cεh−3. Moreover,

|W1(x)| ≤ cx3h
−3/2
|logh|

(
h−3/2h−1/2

|logh| + (2ε + x3h
−5/2)x3h

−3/2
|logh|

)
≤ cx3h

−7/2
|logh|2 + cεh−1

|logh|2,

|W2(x)| ≤ ch
−1/2
|logh|

(
(ε + x3h

−5/2)h−1/2
|logh| + h−3/2x3h

−3/2
|logh|

)
≤ cx3h

−7/2
|logh|2 + cεh−1

|logh|2.

Hence there exists a sufficiently small h′1 such that for all h ∈ (0, h′1] and ε ∈ (0, 1] we
have H(v(ε))(x) ≥ cx3h

−9/2
+ cεh−3.

Case 2.2: x ∈ S4(h). For sufficiently small h and all ε ∈ [0, 1] we have W3(x) ≥

ch−1/2h−3
= ch−14/4 and

|W1(x)| ≤ ch
−1/2
|logh|(h−3/2h−3/4

|logh| + h−3/2h−1/2
|logh|)

≤ ch−11/4
|logh|2,
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|W2(x)| ≤ ch
−3/4
|logh|(h−3/2h−3/4

|logh| + h−1/2
|logh|h−3/2)

≤ ch−12/4
|logh|2.

So there exists a sufficiently small h′′1 such that for all h ∈ (0, h′′1] and ε ∈ [0, 1] we have
H(v(ε))(x) ≥ ch−14/4.

Since u = v(0) is continuous in a neighbourhood of any x ∈ D × {0}, we obtain (60).
Fix h1 = h

′

1 ∧ h
′′

1 in the rest of the proof of the proposition.

Part 3: Estimates on U3(M, h1, η). Choose a point on ∂D and a Cartesian coordinate
system as in Part 2. Note that it is enough to estimateH(v(ε))(x) for x ∈ U ′3(M, h1, η) =

{(x1, x2, x3) : x2 = 0, x1 ∈ [−M,−h1], x3 ∈ (0, η]} and sufficiently small η =
η(3,M, ε).

Let x ∈ U ′3(M, h1, 1/2). Note that dist(x, ∂D) ≥ h1. By the formulas uij (x) =∫
D
Kij (x1− y1, x2− y2, x3)ϕ(y1, y2) dy1 dy2 and the explicit formulas for Kij (see Sec-

tion 2) we have |u11(x)| ≤ cx3h
−5
1 , |u22(x)| ≤ cx3h

−5
1 , |u33(x)| ≤ cx3h

−5
1 , |u13(x)| ≤

ch−4
1 , |u23(x)| ≤ ch−4

1 and |u12(x)| ≤ cx3h
−5
1 . Note also that by our choice of coor-

dinate system for any y = (y1, y2) ∈ D we have y1 > 0. From now on we assume
additionally that x = (x1, x2, x3) ∈ U

′

3(M, h1, 1/2) with x3 ≤ |x1|/
√

6 (this condition
implies 12x2

3 ≤ 2x2
1 ). For such x = (x1, x2, x3) and any y = (y1, y2) ∈ D we have

12x2
3 − 3(x1 − y1)

2
− 3(x2 − y2)

2
≤ −(x1 − y1)

2
≤ −x2

1 ≤ −h
2
1.

It follows that

|u13(x)| =

∣∣∣∣CK ∫
D

(x1 − y1)(12x2
3 − 3(x1 − y1)

2
− 3(x2 − y2)

2)

((x1 − y1)2 + (x2 − y2)2 + x
2
3)

7/2
ϕ(y1, y2) dy1 dy2

∣∣∣∣
≥
C̃h3

1
M7 . (64)

The constant C̃ will play an important role in the rest of the proof, and this is why it is
not denoted by c as usual. Clearly, C̃ depends only on 3.

Recall that in Parts 1 and 2 of this proof we have fixed constants M0, M ≥ M0, h1.
At the end of Part 1 we have chosen a constant c′1 ∈ (0, 1]. Set

c1 = c
′

1 ∧
1
4 C̃h

3
1, (65)

where C̃ is the constant from (64). In the rest of the proof we fix this constant c1 and ε ∈
(0, c1M

−7
]. The reason for defining c1 by (65) is that 2ε2

≤ 2c2
1M
−14
≤

1
8 C̃

2h6
1M
−14,

which implies

2ε3
≤

1
4
ε

2
C̃2h6

1M
−14, (66)

which will be crucial in the following.
Note that for sufficiently small η = η(3,M, ε) and x ∈ U ′3(M, h1, η) we have x3 ≤

|x1|/
√

6 and

v
(ε)
22 (x) = −ε + u22(x) ≤ −ε + cx3h

−5
1 ≤ −ε/2,

v
(ε)
11 (x) = −ε + u11(x) ≤ −ε + cx3h

−5
1 ≤ −ε/2.
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We have

H(v(ε))(x) = v
(ε)
11 (x)v

(ε)
22 (x)v

(ε)
33 (x)+ 2v(ε)12 (x)v

(ε)
23 (x)v

(ε)
13 (x)

− v
(ε)
22 (x)(v

(ε)
13 (x))

2
− v

(ε)
11 (x)(v

(ε)
23 (x))

2
− v

(ε)
33 (x)(v

(ε)
12 (x))

2,

−v
(ε)
22 (x)(v

(ε)
13 (x))

2
≥
ε

2
C̃2h6

1
M14 , (67)

−v
(ε)
11 (x)(v

(ε)
23 (x))

2
≥ 0,

|v
(ε)
33 (x)(v

(ε)
12 (x))

2
| ≤ (cx3h

−5
1 )2(2ε + cx3h

−5
1 ), (68)

|v
(ε)
12 (x)v

(ε)
23 (x)v

(ε)
13 (x)| ≤ cx3h

−5
1 h−4

1 h−4
1 , (69)

|v
(ε)
11 (x)v

(ε)
22 (x)v

(ε)
33 (x)| ≤ (ε + cx3h

−5
1 )2(2ε + cx3h

−5
1 ). (70)

Note that the right hand sides of (68)–(70) are bounded by 2ε3
+ x3C(3, h1) (note

that h1 depends only on 3, so C(3, h1) = C(3)). By (66) and (67) we have
2ε3
≤ −

1
4v
(ε)
22 (x)(v

(ε)
13 (x))

2. Moreover, x3C(3, h1) < −
1
4v
(ε)
22 (x)(v

(ε)
13 (x))

2 for suffi-
ciently small η = η(3,M, ε) and x ∈ U ′3(M, h1, η). For such η and x we have

H(v(ε))(x) ≥ −
1
2
v
(ε)
22 (x)(v

(ε)
13 (x))

2
≥
ε

4
C̃2h6

1
M14 . ut

Lemma 6.3. Let ϕ be the solution of (1)–(2) for B(0, 1), u the harmonic extension of ϕ
and v(ε) given by (59). For M ≥ 10, h ∈ (0, 1/2], η ∈ (0, 1/2] we define

U1(M) = {x ∈ R3
: x2

1 + x
2
2 ≤ M

2, x3 = M or x3 = −M}

∪ {x ∈ R3
: x2

1 + x
2
2 = M

2, x3 ∈ [−M,M] \ {0}},

U2(h) = {x ∈ R3
: x2

1 + x
2
2 ∈ [(1− h)

2, 1), x3 ∈ [−h, h]}

∪ {x ∈ R3
: x2

1 + x
2
2 ∈ [1, (1+ h)

2
], x3 ∈ [−h, h] \ {0}},

U3(M, h, η) = {x ∈ R3
: x2

1 + x
2
2 ∈ [(1+h)

2,M2
], x2

1 + x
2
2 ≤ M

2, x3 ∈ [−η, η] \ {0}}.

Then

∃c1 ∈ (0, 1] ∃M0 ≥ 10 ∃h1 ∈ (0, 1/2] ∀M ≥ M0 ∃η = η(M) ∈ (0, 1/2]
∀ε ∈ (0, c1M

−7
] ∀x ∈ U1(M) ∪ U2(h1) ∪ U3(M, h1, η) H(v(ε))(x) > 0.

Remark 6.4. It is important here that η does not depend on ε.

Proof of Lemma 6.3. Existence of c1, M0, h1 and the estimate H(v(ε))(x) > 0 for x ∈
U1(M)∪U2(h1) (where M ≥ M0 and ε ∈ (0, c1M

−7
]) follow from the arguments in the

proof of Proposition 6.2.
Let ε ∈ (0, 1]. Fix M ≥ M0 and let x ∈ U3(M, h1, 1/2). We may assume that

x2 = 0, x3 > 0, x1 < 0. We have H(v(ε))(x) = v
(ε)
22 (x)f (ε, x), where f (ε, x) =
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v
(ε)
11 (x)v

(ε)
33 (x)−(v

(ε)
13 (x))

2. We have u22(x) < 0, so v(ε)22 (x) = u22(x)−ε < 0. Moreover,
|u11(x)| ≤ cx3h

−5
1 and |u33(x)| ≤ cx3h

−5
1 , which gives

v
(ε)
11 (x)v

(ε)
33 (x) = (u11(x)− ε)(u33(x)+ 2ε) < cx3h

−10
1 + cx3h

−5
1 .

Let us additionally assume that x3 is so small that x3 ≤ (|x1| − 1)/
√

6. For such x by the
arguments from the proof of Proposition 6.2 we have |u13(x)| ≥ ch

3
1M
−7, so |v(ε)13 (x)|

2
=

|u13(x)|
2
≥ ch6

1M
−14. Hence for sufficiently small η = η(M) and x ∈ U3(M, h1, η) we

have f (ε, x) < 0, which implies H(v(ε))(x) > 0. ut

Proposition 6.5. Let ϕ be the solution of (1)–(2) for B(0, 1), u the harmonic extension
of ϕ, and v(ε) given by (59). For M ≥ 10 define

�M = {x ∈ R3
: x2

1+x
2
2 ≤ M

2, x3 ∈ [−M,M]}\{x ∈ R3
: x2

1+x
2
2 ∈ [1,M

2
], x3 = 0}.

Let c1 and M0 be the constants from Lemma 6.3. Then

∀M ≥ M0 ∀ε ∈ (0, c1M
−7
] ∀x ∈ �M H(v(ε))(x) > 0.

Proof. Assume on the contrary that there exist M1 ≥ M0, ε1 ∈ (0, c1M
−7
1 ] and z ∈ �M1

such that H(v(ε1))(z) ≤ 0. By Lemma 6.3 there exist h1 ∈ (0, 1/2] and η1 = η1(M1) ∈

(0, 1/2] such that H(v(ε))(x) > 0 for all ε ∈ (0, c1M
−7
1 ] and x ∈ U1(M1) ∪ U2(h1) ∪

U3(M1, h1, η1).
Note that from v(0) = u and Proposition 5.1 we haveH(v(0))(x) > 0 for all x ∈ �M1 .

It follows that there exist ε2 ∈ (0, ε1] and z̃ ∈ �M1 \(U1(M1)∪U2(h1)∪U3(M1, h1, η1))

such that H(v(ε2))(z̃) = 0 and H(v(ε2))(x) ≥ 0 for all x ∈ �M1 . This contradicts Theo-
rem 1.6. ut

As a direct consequence of Propositions 6.2 and 6.5 we obtain
Corollary 6.6. Fix C1, R1 > 0, κ2 ≥ κ1 > 0 and D ∈ F(C1, R1, κ1, κ2). Denote 3 =
{C1, R1, κ1, κ1}. Let ϕ(D) be the solution of (1)–(2) for D, u(D) the harmonic extension
of ϕ(D) given by (6)–(10) and v(ε,D) given by (59). Then

∃c1 = c1(3) ∈ (0, 1] ∃c2 = c2(3) > 0 ∃M0 ≥ 10 ∃h1 = h1(3) ∈ (0, 1/2] ∀M ≥ M0

∀ε ∈ (0, c1M
−7
] ∃η = η(3,M, ε) ∈ (0, (1/2) ∧ ε] ∃c3 = c3(3,M, ε) > 0

∀x ∈ Q(M,D, ε) H(v(ε,D))(x) ≥ c3,

∀x ∈ �(M,B(0, 1)) H(v(ε,B(0,1)))(x) ≥ c3,

∀x ∈ Q4(D) H(u(D))(x) ≥ c2,

where (see Figure 8) Q(M,D, ε) = Q1(M) ∪Q2(M,D, ε) ∪Q3(M,D, ε),

Q1(M) = {x ∈ R3
: x2

1 + x
2
2 ≤ M

2, x3 = M or x3 = −M}

∪ {x ∈ R3
: x2

1 + x
2
2 = M

2, x3 ∈ [−M,M] \ {0}},

Q2(M,D, ε) = {x ∈ R3
: (x1, x2) ∈ D, δD((x1, x2)) ≤ h1, x3 ∈ [−η, η]},

Q3(M,D, ε) = {x ∈ R3
: (x1, x2) ∈ D

c, x2
1 + x

2
2 ≤ M

2, x3 ∈ [−η, η] \ {0}},

�(M,D) = {x ∈ R3
: x2

1 + x
2
2 < M2, x3 ∈ (−M,M)} \ (D

c
× {0}),

Q4(D) = {x ∈ R3
: (x1, x2) ∈ D, δD((x1, x2)) ≤ h, x3 = 0}.
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x1

x3

D

M

M

−M

−M

Q3(M,D, ε) Q3(M,D, ε)

Q2(M,D, ε) Q2(M,D, ε)

Q1(M)

Q1(M)

Q1(M)

Q1(M)

A cross section of �(M,D)

x2

x3

D M

M

−M

−M

�(M,D)

x1

Fig. 8

Proof of Theorem 1.1.

Step 1. In this step we will use the notation from Corollary 6.6. We will show that for
any3 = {C1, R1, κ1, κ2},D ∈ F(3) and x ∈ R3

\ (Dc×{0}) we have H(u(D))(x) > 0.
Fix 3 = {C1, R1, κ1, κ2} where C1, R1 > 0, κ2 ≥ κ1 > 0 and fix D0 ∈ F(3). Let

{D(t)}t∈[0,1] with D(0) = D0 and D(1) = B(0, 1) be the family of domains defined by
(16). By Lemma 2.4 there exists 3′ = {C′1, R

′

1, κ
′

1, κ
′

2} where C′1, R
′

1 > 0, κ ′2 ≥ κ
′

1 > 0
such that D(t) ∈ F(3′) for all t ∈ [0, 1]. Set v(ε,t) = v(ε,D(t)).

We will apply Corollary 6.6 to 3′ = {C′1, R
′

1, κ
′

1, κ
′

1}. Fix M ≥ M0 ≥ 10 and ε ∈
(0, c1M

−7
]. Let

T = {t ∈ [0, 1] : H(v(ε,t))(x) > 0 for all x ∈ �(M,D(t))}.

Let �+(M) = {x ∈ R3
: x2

1 + x
2
2 < M2, x3 ∈ (0,M)} and �−(M) = {x ∈ R3

:

x2
1 + x

2
2 < M2, x3 ∈ (−M, 0)}. Observe that H(v(ε,t))(x) > 0 for all x ∈ �(M,D(t))

if and only if H(v(ε,t))(x) > 0 for all x ∈ �+(M). Indeed, if the latter inequality holds
then H(v(ε,t))(x) > 0 for all x ∈ �−(M) by Lemma 6.1 and H(v(ε,t))(x) > 0 for all
x ∈ D(t)× {0} by Lewy’s theorem. It follows that

T = {t ∈ [0, 1] : H(v(ε,t))(x) > 0 for all x ∈ �+(M)}.

The reason to consider �+(M) instead of �(M,D(t)) is that �+(M) does not depend
on t . By Corollary 6.6 we have 1 ∈ T , so T is nonempty. We will show that T is both
open and closed (relatively in [0, 1]), which implies that T = [0, 1].

By Lemma 2.5 and standard arguments, v(ε,t)(x) → v(ε,s)(x) for x ∈ �+(M) as
[0, 1] 3 t → s.

Assume that {tn : n = 1, 2, . . .} ⊂ T and tn→ t0 as n→∞. Then H(v(ε,t0))(x) ≥ 0
for all x ∈ �+(M). By Corollary 6.6,H(v(ε,t0))(x) does not vanish identically in�+(M).
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By Lewy’s theorem H(v(ε,t))(x) > 0 for all x ∈ �+(M). Hence t0 ∈ T , which implies
that T is closed.

Now, assume on the contrary that T is not open. Then there exists t0 ∈ T and a
sequence {tn} such that [0, 1] 3 tn → t0 as n → ∞ and tn /∈ T for any n = 1, 2, . . . .
Hence there exist xn ∈ �+(M) such that H(v(ε,tn))(xn) ≤ 0. Taking a subsequence if
necessary, we may assume that xn → x0 ∈ �+(M) as n → ∞. If x0 ∈ D(t0)

c
× {0}

then for sufficiently large n we get xn ∈ Q2(M,D(tn), ε) ∪ Q3(M,D(tn), ε), contrary
to Corollary 6.6. If x0 ∈ �+(M) ∪Q1(M) ∪ (D(t0) × {0}) then by standard arguments
H(v(ε,tn))(xn)→ H(v(ε,t0))(x0) ≤ 0 as n→∞. If x0 ∈ �+(M)∪ (D(t0)×{0}) then we
get a contradiction with our assumption that t0 ∈ T . If x0 ∈ �1(M)we get a contradiction
to Corollary 6.6. So T is open.

It follows that for any fixed M≥M0≥10 and ε∈ (0, c1M
−7) we have H(v(ε,D0))(x)

> 0 for all x ∈ �(M,D0). By letting ε → 0 we obtain H(u(D0))(x) ≥ 0 for all
x ∈ �(M,D0). By the estimates of H(u(D0)) on Q4(D0) from Corollary 6.6 we de-
duce that H(u(D0))(x) does not vanish near ∂D0 × {0}. Hence Lewy’s theorem implies
that H(u(D0))(x) > 0 for all x ∈ �(M,D0). Since M ≥ M0 ≥ 10 was arbitrary, we get
H(u(D0))(x) > 0 for all x ∈ R3

\ (Dc0 × {0}).

Step 2. We denote by sign(Hess(u(y))) the signature of the Hessian matrix of u(y). In
this step we will show that for all 3 = {C1, R1, κ1, κ1}, D ∈ F(3) and y ∈ R3

\

(Dc × {0}) we have sign(Hess(u(y))) = (1, 2) and ϕ is strictly concave on D.
Fix 3 = {C1, R1, κ1, κ1} where C1, R1 > 0, κ2 ≥ κ1 > 0 and fix D ∈ F(3). Let

ϕ be the solution of (1)–(2) for D, and u the harmonic extension of ϕ. Let (x1, x2) ∈ D

and x = (x1, x2, 0). Denote f (x) = u11(x)u22(x) − u
2
12(x). By Lemma 4.7, u13(x) =

u23(x) = 0 and u33(x) > 0. By Step 1, H(u)(x) > 0. Hence f (x) > 0. We have
u11(x)+ u22(x)+ u33(x) = 0, so u11(x)+ u22(x) < 0. Therefore f (x) > 0 implies that
u11(x) < 0 and u22(x) < 0. Hence sign(Hess(u(x))) = (1, 2). Since H(u)(y) > 0 for
any y ∈ R3

\ (Dc × {0}), we get sign(Hess(u(y))) = (1, 2).
The inequalities f (x) > 0, u11(x) < 0 and u22(x) < 0 show that ϕ(x1, x2) =

u(x1, x2, 0) is strictly concave on D.

Step 3. In this step we will show that for any open bounded convex set D ⊂ R2, ϕ is
concave on D.

Fix an open bounded convex set D ⊂ B(0, 1) ⊂ R2. It is well known (see e.g. [9,
p. 451]) that there exists a sequence of sets Dn such that Dn ∈ F(3n) for some 3n =
{C1,n, R1,n, κ1,n, κ2,n} and

⋃
∞

n=1Dn = D, Dn ⊂ Dn+1, n ∈ N, and d(Dn,D) → 0
as n → ∞ (where C1,n, R1,n > 0, κ2,n ≥ κ1,n > 0). Let ϕ(n), ϕ denote solutions
of (1)–(2) for Dn and D. By Step 2, ϕ(n) are concave on Dn. By Lemma 2.5 we have
limn→∞ ϕ

(n)(x) = ϕ(x) for x ∈ D. So ϕ is concave on D.
By scaling we may relax the assumption D ⊂ B(0, 1). ut

7. Extensions and conjectures

Proof of Theorem 1.5. (a) It is well known that if ψr(x) = ψ(rx) for some r > 0 and
all x ∈ Rd then (−1)α/2ψr(x) = rα(−1)α/2ψ(rx) (see e.g. [4, p. 9]). Fix x0 ∈ ∂D and
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λ ∈ (0, 1). Set f (x) = ϕ(λx + (1 − λ)x0) − λ
αϕ(x). We have (−1)α/2f (x) = 0 for

x ∈ D and f (x) ≥ 0 for x ∈ Dc. Hence f (x) ≥ 0 for x ∈ D.
(b) Fix x, y ∈ D and λ ∈ (0, 1). Set z = λx + (1 − λ)y. Let l be the line through x

and y. Let x0 ∈ ∂D be the point on l which is closer to x than to y, and y0 ∈ ∂D be the
point on l which is closer to y than to x. We have

z = y
|z− x0|

|y − x0|
+ x0

(
1−
|z− x0|

|y − x0|

)
.

By (a) we get

ϕ(z) ≥

(
|z− x0|

|y − x0|

)α
ϕ(y) ≥

(
|z− x|

|y − x|

)α
ϕ(y) = (1− λ)αϕ(y).

Moreover,

z = x
|z− y0|

|x − y0|
+ y0

(
1−
|z− y0|

|x − y0|

)
.

Again by (a) we get

ϕ(z) ≥

(
|z− y0|

|x − y0|

)α
ϕ(x) ≥

(
|z− y|

|x − y|

)α
ϕ(x) = λαϕ(x). ut

Now we present some conjectures concerning solutions of (3)–(4).

Conjecture 7.1. Let α = 1 and d ≥ 3. If D ⊂ Rd is a bounded convex set then the
solution of (3)–(4) is concave on D.

It seems that one can show this conjecture by using the generalization of H. Lewy’s result
obtained by S. Gleason and T. Wolff [20, Theorem 1]. Let α = 1, d ≥ 3 and D ⊂ Rd be
a sufficiently smooth bounded convex set such that ∂D has a strictly positive curvature,
ϕ the solution of (3)–(4) and u its harmonic extension in Rd+1. It seems that using the
method of continuity, as in this paper, one can show that the Hessian matrix of u has
constant signature (1, d − 1). This implies concavity of ϕ on D. Anyway, Conjecture 7.1
remains an open challenging problem.

Conjecture 7.2. Let d ≥ 2, D ⊂ Rd be a bounded convex set and ϕ be the solution of
(3)–(4).

(a) If α ∈ (1, 2) then ϕ is 1/α-concave on D.
(b) If α ∈ (0, 1) then ϕ is concave on D.

Remark 7.3. For any α ∈ (1, 2), η ∈ (0, 1 − 1/α) and d ≥ 2 there exists a bounded
convex setD ⊂ Rd (a sufficiently narrow bounded cone) such that the solution of (3)–(4)
is not 1/α + η-concave on D.

Justification of Remarks 1.4 and 7.3. It is clear that it is sufficient to prove Remark 7.3.
For any θ ∈ (0, π/2) and d ≥ 2 let

D(θ) = {(x1, . . . , xd) :

√
x2

2 + · · · + x
2
d < x1 tan θ, |x| < 1}.

Let α ∈ (0, 2) and ϕ be the solution of (3)–(4) for D(θ).
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By [29, Theorem 3.13, Lemma 3.7] for any ε > 0 there exist θ ∈ (0, π/2) and c > 0
such that

ϕ(x) ≤ c|x|α−ε, x ∈ D(θ). (71)

Theorem 3.13 and Lemma 3.7 in [29] are formulated only for d ≥ 3, but small modifi-
cations of the proofs in [29] give these results also for d = 2. (71) for any d ≥ 2 also
follows from the recent paper [7].

Fix d ≥ 2, α ∈ (1, 2), η ∈ (0, 1− 1/α) and ε ∈
(
0, α2η

1+ηα

)
. There exist θ ∈ (0, π/2)

and c > 0 such that the solution ϕ of (3)–(4) for D(θ) satisfies ϕ(x) ≤ c|x|α−ε. Fix
x0 = (a, 0, . . . , 0) ∈ D(θ). If ϕ is 1/α + η-concave on D(θ) then for any λ ∈ (0, 1) we
have

ϕ(λx0) ≥ λ
α

1+ηα ϕ(x0) = λ
α−

α2η
1+ηα ϕ(x0).

On the other hand ϕ(λx0) ≤ cλ
α−ε
|x0|

α−ε, so

cλα−ε|x0|
α−ε
≥ λ

α−
α2η

1+ηα ϕ(x0),

which gives

λ
α2η

1+ηα−ε ≥ ϕ(x0)c
−1
|x0|

ε−α

for any λ ∈ (0, 1), a contradiction. ut

We finish this section with an open problem concerning p-concavity of the first eigen-
function for the fractional Laplacian with Dirichlet boundary condition.

Let α ∈ (0, 2), d ≥ 1, D ⊂ Rd be a bounded open set and consider the following
Dirichlet eigenvalue problem for (−1)α/2:

(−1)α/2ϕn(x) = λnϕn(x), x ∈ D, (72)
ϕn(x) = 0, x ∈ Dc. (73)

It is well known (see e.g. [13], [27]) that there exists a sequence of eigenvalues 0 < λ1 <

λ2 ≤ λ3 ≤ · · · , λn → ∞ and corresponding eigenfunctions ϕn ∈ L2(D). The ϕn form
an orthonormal basis in L2(D), they are continuous and bounded on D, and one may
assume that ϕ1 > 0 on D.

Open problem. For any α ∈ (0, 2) and d ≥ 2 find p = p(d, α) ∈ [−∞, 1] such that for
every open bounded convex setD ⊂ Rd the first eigenfunction of (72)–(73) is p-concave
on D. It is not clear whether such a p exists.

Any results, even numerical, concerning this problem would be very interesting.
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