J. Eur. Math. Soc. 19, 1577-1588 © European Mathematical Society 2017
DOI 10.4171/JEMS/700

Hanspeter Kraft - Andriy Regeta J E MS

Automorphisms of the Lie algebra of
vector fields on affine n-space

Received July 27, 2014

Abstract. We study the vector fields Vec(A™) on affine n-space A", the subspace Vec®(A") of

vector fields with constant divergence, and the subspace Vec? (A"™) of vector fields with divergence

zero, and we show that their automorphisms, as Lie algebras, are induced by the automorphisms
of A™:

Aut(A™) S Auty e (Vec(A™)) => Autyje(Vec® (A")) —> Autyje(Vec? (A)).

This generalizes results of the second author obtained in dimension 2 [Reg13]. The case of Vec(A")
goes back to Kulikov [Kul92].

This generalization is crucial in the context of infinite-dimensional algebraic groups, because
Vec (A") is canonically isomorphic to the Lie algebra of Aut(A"), and Vec®(A") is isomorphic
to the Lie algebra of the closed subgroup SAut(A") C Aut(A") of automorphisms with Jacobian
determinant equal to 1.
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1. Introduction

Let K be an algebraically closed field of characteristic zero. Denote by Vec(A") the Lie
algebra of polynomial vector fields on affine n-space A" = K":

3
Vec(A") = Der(K|[x1, . .., Xn]) = {Z fis—

i

fi EK[xl,...,xn]}

where we use the standard identification of a derivation § with ) ; S(xi)aixi. The group
Aut(A") of polynomial automorphisms of A” acts on Vec(A") in the usual way. For
¢ € Aut(A") and § € Vec(A") = Der(K [x1, ..., x,]) we define

Ad(@)8 = ¢* o080 p*
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where ¢*: K[x1,...,x,] = K[x1,...,x,], f — f o ¢, is the comorphism of ¢. It
is shown in [Kul92] that Ad: Aut(A") — Auty;.(Vec(A™)) is an isomorphism. We will
give a short proof in Section 3.

Recall that the divergence of a vector field § = ), f,% is defined by Divé :=

D g—g. This leads to the following subspaces of Vec(A"):

VecO(A") := {8 € Vec(A") | Divd = 0} C Vec(A") := {§ € Vec(A") | Divs € K},
which are Lie subalgebras, because Div[§, n] = §(Div ) — n(Div §). We have

3
Vec“(A") = Vec’(A") @ Kdp  where g := ) xi o i the Euler field.
. X
l

The aim of this note is to prove the following result about the automorphism groups of
these Lie algebras.

Main Theorem. There are canonical isomorphisms
Aut(A") S Autpie(Vec(A")) = Autyie(Vec® (A™) = Autyie(Vec?(A™)).

Remark 1.1. It is easy to see that the theorem holds for any field K of characteristic
zero. In fact, all the homomorphisms are defined over Q, and are equivariant with respect
to the obvious actions of the Galois group I' = Gal(K /K).

As a consequence, we will get the next result (see Corollary 4.4) which goes back to
Kulikov [Kul92, Theorem 4].

Corollary. If every injective endomorphism of the Lie algebra Vec(A") is an automor-
phism, then the Jacobian Conjecture holds in dimension n.

Remark 1.2. The Main Theorem has another interesting consequence. The group
Aut(A") is an infinite-dimensional algebraic group in the sense of Shafarevich [Sha66,
Sha81], briefly an ind-group (cf. [Kum02]), and its Lie algebra is canonically isomorphic
to Vec®(A™). It was recently shown by Belov-Kanel and Yu [BKY12] that every auto-
morphism of Aut(A") as an ind-group is inner. Using the Main Theorem above one can
give a new proof of this and extend it to the closed subgroup SAut(A") C Aut(A") of
automorphisms with Jacobian determinant equal to 1. The details can be found in [Kral5]
where we also show that the maps in the Main Theorem are isomorphisms of ind-groups.

We add here a lemma which will be used later on.
Lemma 1.3. Vec(A") and Vec?(A") are simple Lie algebras, and
Vec?(A") = [Vec®(A™), Vec® (A")].
Proof. The formula [%, Yifi %] =3, 0/i 0 shows that every nonzero ideal a of

prokr
n : d 3 31— _5.,9 io07;

Vec(A") contains a nonzero element from y°; K 5%, and [xga—xj, E] = —dig 7 implies
0 3 81 _of 8 _ n

that Zi K ox; C a. Now we use [f a5 ax,‘] = ~n 0 to conclude that a = Vec(A"),

hence Vec(A") is simple. (See also [Jor78, Theorem, p. 446].)
The second statement is proved in a similar way and can be found in [Sha81, Lem-
ma 3], and from that the last claim follows immediately. O
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2. Group actions and vector fields

If an algebraic group G acts on an affine variety X, we obtain a canonical linear map
Lie G — Vec(X) defined in the usual way (cf. [Krall, I1.4.4]). For every A € Lie G the
associated vector field £4 on X is defined by

(6a)x :==dux(A) forx € X .1

where uy: G — X, g — gx, is the orbit map in x € X. It is well-known that the
linear map A — &4 is an anti-homomorphism of Lie algebras, and that its kernel is
equal to the Lie algebra of the kernel of the action G — Aut(X). In particular, for any
algebraic subgroup G C Aut(A") we have a canonical injection Lie G < Vec(A");
we will denote the image by L(G). Let us point out that a connected G C Aut(A") is
determined by L(G), i.e., if L(G) = L(H) for algebraic subgroups G, H C Aut(A"),
then G° = HO.

Recall that the vector field § € Vec(A") is called locally nilpotent if the action of § on
K[x1, ..., x,]is locally nilpotent, i.e., for any f € K[xy, ..., x,] we have §" (f) = 0if
m is large enough. Every such § defines an action of the additive group KT on A" such
that § = &£ where 1 € K = Lie KT (see (2.1) above).

Lemma 2.1. Let u C Vec(A") be a finite-dimensional commutative Lie subalgebra con-
sisting of locally nilpotent vector fields. Then there is a commutative unipotent algebraic
subgroup U C Aut(A") such that L(U) = . If centyecany(w) = u, then U acts transi-
tively on A"

Proof. 1Ttis clear that u = L(U) for a commutative unipotent subgroup U C Aut(A"). In
fact, choose a basis (81, ..., 8,,) of u and consider the corresponding actions p; : K+ —
Aut(A"). Since the associated vector fields §; commute, the same holds for the actions p;,
so that we get an action of (K 7)™ It follows that the image U C Aut(A") is a commuta-
tive unipotent subgroup with L(U) = u.

Assume that the action of U is not transitive. Then all orbits have dimension < n,
because orbits of unipotent groups acting on affine varieties are closed (see [Bor91,
Chap. I, Proposition 4.10]). But then there is a nonconstant U-invariant function f €
K|[x1, ..., x,]. This implies that for every § € u the vector field f§ commutes with u and
thus belongs to centyec(an)(u), contradicting the assumption. ]

Any § € Vec(A") acts on the functions K[xy, ..., x,] as a derivation, and on the Lie
algebra Vec(A™) by the adjoint action, ad(§)u := [§, u] = § o u — p o 8. These two
actions are related as shown in the following lemma whose proof is obvious.

Lemma 2.2. Let §, u € Vec(A") be commuting vector fields and f € K[xi, ..., x,].
Then

ad(8)(fu) = 8(fn.

In particular, if ad(8) is locally nilpotent on Vec(A"), then § is locally nilpotent as a
vector field.
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3. Proof of the Main Theorem, part I

We first give a proof of the following result which goes back to Kulikov [Kul92, proof of
Theorem 4]; see also [Bav13].

Theorem 3.1. The canonical map Ad: Aut(A") — Autpi.(Vec(A")) is an isomorphism.

Denote by Aff, C Aut(A") the closed subgroup of affine transformations and by § =
(K™)" C Aff, the subgroup of translations. Then

L(Affy) = (xi0x;, O, | 1 <4, j,k <n) D L(S) = (x5 ..., Ox,) 3.1

where 9, := 9/0x;. Set aff, := Lie Aff, and saff, := [aff,, aff,] = Lie SAff, where
SAff, := (Aff,, Aff,) C Aff, is the commutator subgroup, i.e. the closed subgroup of
those affine transformations x +— gx + b where g € SL,. The next lemma is certainly
known. For the convenience of the reader we indicate a short proof.

Lemma 3.2. The canonical homomorphisms
Ad res
Aff, — Autie(aff,) — Autrie(saff,)

are isomorphisms.

Proof. It is clear that the homomorphisms
Ad: Aff, — Autrie(aff,) and res: Autrie(aff,) — Autpie(saff,)

are both injective. Thus it suffices to show that the composition res o Ad is surjective.

We write the elements of Aff,, in the form (v, g) withv € S = (K )", g € GL,, where
(v, g@)x = gx 4+ v for x € A", It follows that (v, g)(w, h) = (v + gw, gh). Similarly,
(a, A) € aff, means thata € s := Lie S = K", A € gl,, and (a, A)x = Ax + a. For the
adjoint representation of g € GL,, and of v € § on aff, we find

Ad(g)(@. A) = (sa,gAg™") and  AdW)(@. A) = (@~ Av.A). ()
and thus, for (b, B) € aff,,
ad(B)(a. A) = (Ba.[B,A]) and ad(b)(@,A) = (a— Ab,A).  (33)

Now let 6 be an automorphism of the Lie algebra saff,. Then 6(s) = s since s is the
solvable radical of saff,. Since g := 6|5 € GL,, we can replace # by Ad(g~!) o6 and thus
assume, by (3.2), that 6 is the identity on s. This implies that 0 (a, A) = (a + £(A), H(A))
where ¢: sl,, — s is a linear map and 0: sl, = sl, is a Lie algebra automorphism.
From (3.3) we get ad(b, B)(a, 0) = ad(B)(a, 0) = (Ba, 0) for all a € s, hence

(Ba, 0) = 6(Ba, 0) = #(ad(B)(a, 0))
= ad(6(B))(a, 0) = ad(@(B))(a, 0) = (6(B)a, 0).
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Thus §(B) = B, i.e. 0(a, A) = (a + £(A), A). Now an easy calculation shows that
{([A, B]) = A¢(B) — B{(A). This means that £ is a cocycle of sl,. Since sl,, is semi-
simple, £ is a coboundary, and thus £(A) = Av for a suitable v € K". In view of (3.3)
this implies that &8 = Ad(—v), and the claim follows. m]

Proof of Theorem 3.1. Tt is clear that the homomorphism
Ad: Aut(A") — Autpe(Vec(A"))

is injective. So let 8 € Auty ;. (Vec(A™)) be an arbitrary automorphism.

We have seen above that L(S) = (dy,,...,0x,) C Vec(A") where S C Aff, is
the subgroup of translations. Clearly, for every § € L(S) the adjoint action ad(§) on
Vec(A") is locally nilpotent, and the same holds for any element from u := 6(L(S)).
It follows from Lemma 2.2 that u consists of locally nilpotent vector fields. Hence, by
Lemma 2.1, u = L(U) for a commutative unipotent subgroup U of dimension n. More-
over, cenityvec(an)(L(S)) = L(S), and so centyecary(u) = u, which implies, again by
Lemma 2.1, that U acts transitively on A”. Thus every orbit map U — A" is an isomor-
phism. It follows that there is an automorphism ¢ € Aut(A") such that pUgp~! = §.In
fact, fix a group isomorphism ¥ : U 5 S and take the orbit maps us: S 5 A" and
uy: U 5 A" atthe origin 0 € A”. Then one easily sees that ¢ := g oy o /,LL_/I has the
property that p o o ¢! = (u) forallu € U.

It follows that the automorphism 0’ := Ad(p) 08 € Auty i (Vec(A™)) sends L(S) iso-
morphically onto itself. Now the relations [0y, , X0y, | = 8;;0y, imply that 0'(L(Aff,)) =
L(Aff,). By Lemma 3.2, there is an a € Aff, such that Ad(«) o 8’ is the identity
on L(Aff,). Hence, by the next lemma, Ad(a) o 8’ = id, because Ad(AE) acts by multi-
plication with A on L(S), and so 0 = Ad(p~ ' oa™!). o

Lemma 3.3. Let 6 be an injective endomorphism of one of the Lie algebras Vec(A™),
Vec®(A") or VecO(A"). If 0 is the identity on L(SL,,), then & = AdA(AE) for some }. € K*.

Proof. We consider the action of GL, on Vec(A"). Denote by Vec(A"); the homoge-
neous vector fields of degree d, i.e.

Vee(A") g 1= €D Klxt. ... Xula1 B, = Klxi, .o xnlas ® K.
i

Note that LE € GL, acts by scalar multiplication with 2~% on Vec(A")4. We have split
exact sequences of GL,-modules

0 — Vec®(A")y — Vec(A")y 2% Klx1. ... %)q — 0 (3.4)

where K[x1, ..., x,]—-1 = (0). Moreover, the SL,,-modules Vec? (A")4 (ford > —1) and
K[x1,...,x,]q (for d > 0) are simple and pairwise nonisomorphic (see Pieri’s formula
[Pro07, Chap. 9, Section 10.2]). The splitting of (3.4) is given by K|[x1, ..., x40 C
Vec(A")q where 0 = x10x, + -+ + X, 0y, is the Euler field. In fact, the Euler field is
fixed under GL,, and Div(fdg) = (d + 1) f for f € K[x1, ..., x3]4-
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Now let 8 be an injective endomorphism of Vec(A™). If 0 is the identity on L(SL,),
then 0 is SL,,-equivariant and thus acts as a scalar A4 on Vec? (A™")4 and as a scalar g on
K[x1,...,x,]49E, by Schur’s Lemma. The relations

[0y, 1101 = (d + Dafxf oy, — (e+ D xfay,, i #

show that A,Ay = Ae4q, hence Ay = A4 for A := A;. The relations
[x¢8g, x{0p] = (d — e)xt ™o

show that jejtg = flerq for e # d, which also implies that ug = u? for pu = p.
Finally, from the relation [9y,, x20g] = x20x,, we get A = u, and so 0 = Ad()\._l id).
This proves the claim for Vec(A"). The other two cases follow along the same lines. O

4. Etale morphisms and vector fields

In the first section we defined the action of Aut(A") on the vector fields Vec(A") by the
formula Ad(¢)é := go*_l 0 8 o ¢*. In more geometric terms, considering § as a section of
the tangent bundle TA" = A" x K" — A", one defines the pull-back of § by

0" () = dp) ' odop, ie, ¢ ®)= (dgpa)_l(&p(a)) fora € A".

Clearly, ¢p*(8) = Ad((p_l)& However, the second formula above shows the well-known
fact that the pull-back ¢*(8) of a vector field § is also defined for an étale morphism
¢: A" — A" In the holomorphic setting this can be understood as lifting the corre-
sponding integral curves.

Proposition 4.1. Let ¢: A" — A" be an étale morphism. For any vector field § €
Vec(A™) there is a vector field ¢*(8) € Vec(A") defined by ¢*(8), = (d(,o);1 8u(a)
fora € A". It is uniquely determined by

P O (f) =¢"(f) for f € Klxi, ..., xl. 4.1

The map ¢*: Vec(A™) — Vec(A") is an injective homomorphism of Lie algebras satis-
fying ¢*(h §) = ¢*(h)p*(8) for h € K|[x1, ..., x,]. Moreover, (n o ¢)* = ¢* o n*.

Proof. For a vector Ijeld S ~A” — TA~" anda € A" we have (dpod)y =deps(8s). Thus,
the equation (d¢)4(8q) = (8 0 @)q = 8y (q) for the field § has a unique solution, namely

80 := (d9a) " Bp(a))s

which is well-defined since d¢, is invertible. The Jacobian determinant det(Jac(g)) is a
nonzero constant, and so the inverse matrix J ac(go)’1 has entries in K[xp, ..., x,]. There-
fore, the vector field ¢*(§) := § defined above is polynomial, and it satisfies (4.1). This
proves the first part of the proposition and shows that ¢* is injective. Using (4.1) we find

9 ((8182) f) = " (81(821)) = 9™ (81" (82.1) = (9™ (619" (82))0™ (f),
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hence @*([81, 821f) = [¢*(81), 9™ (82)19*(f), and so ¢*([31, 62]) = [¢*(81), ¢*(82)].
Moreover,

9" (h8)p™ (f) = ™ (hd) ) = ¢*(Me™ (8f) = ¢* (M)¢™ ()™ (),

hence ¢*(h8) = ¢*(h)@*(8). This proves the second part of the proposition, and the last

claim is obvious. O
Remark 4.2. In the notation of the proposition above let ¢ = (f1, ..., fu). Then we get
©*(6x;) = *(®) fi = Zj g—gw*(S)xj. Hence, for § = 9y, , we obtain
afi
Sk = 9" O fi = Y 50" (0.
J

J
This shows that the matrix (¢* (9, )x;)(j k) is invertible, (go*(Bxk)xj)(_j}k) = Jac(¢p), and
a A
=3 i (0. (4.2)
T axj
J
Proposition 4.3. Let ¢: A" — A" be an étale morphism. Then the pull-back map
@*: Vec(A") — Vec(A™)
is an isomorphism if and only if ¢ is an automorphism.

Proof. Assume that ¢*: Vec(A") — Vec(A") is an isomorphism. Since ¢ is étale,

the comorphism ¢*: K[xi,...,x,] — K[x1,...,x,] is injective, and we only
have to show that it is surjective. Proposition 4.1 implies that ¢*(Vec(A")) =
D9 (K[x1, ..., x,)@*(3y,), and from (4.2) we get

Vec(A") = @ Klxi, ..., %10, = @D Klx1. ... xalo*(0y,).

Hence ¢*(Vec(A")) = Vec(A") if and only if ¢* (K [x1, ..., xs]) = K[x1,...,x,]. O

As a corollary of the two propositions above, we get the following result due to Kulikov
[Kul92, Theorem 4].

Corollary 4.4. If every injective endomorphism of the Lie algebra Vec(A") is an auto-
morphism, then the Jacobian Conjecture holds in dimension n.

Remark 4.5. The result of Kulikov is stronger. He proves that every injective endomor-
phism of Vec(A") is induced by an étale map ¢, which also implies the converse of the
statement above: If the Jacobian Conjecture holds in dimension n, then every injective
endomorphism of Vec(A") is an automorphism.

We finish this section by showing that if the divergence of a vector field is a constant,
then the divergence is invariant under an étale morphism. More generally, we have the
following result.
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Proposition 4.6. Let ¢: A" — A" be an étale morphism, and let § be a vector field. Then
Div ¢*(8) = ¢*(Div ). In particular, § € Vec®(A") if and only if p*(8) € Vec®(A"), and
in this case we have Div ¢*(8) = Div 4.

Proof. Seto = (f1,..., fu),8 = Zj hjdy; and 9*(8) = Zj ﬁjaxj. Then, by (4.1),

S fk

hk(fl,...,fn): h,g fOI'k:L...,I’l.
i 1

Applying alxj to the left hand side we get the matrix

oh af;
(Za—k(fl,m,fn)i> = H(f1,..., fu) - Jac(p)
Yi (k.j)

7 3)6/'

where H := Jac(hy, ..., h,). On the right hand side, we obtain similarly

dh; 9 . 92 ~ = 0
( —lﬁJrZh Jx ) =H-Jac(¢)+2hi—JaC(fﬂ)-
7 ) T 0x

7 8)6.,' 3)(,' laxiaxj
Multiplying this matrix equation on the right by Jac(¢)~! we finally get

- .
H(fi oo f) = H+ ZhiWJac(fp) Jac(p) ™.

Now we take traces on both sides. Using Lemma 4.7 below and the obvious equalities
Divé = tr H and Div§ = tr H, we finally get

Divé = Divd)(fi, ..., fn) = ¢*(Divé).
The claim follows. O

Lemma 4.7. Let A be an n x n matrix whose entries a;;(t) are polynomials in t. Then
d d
tr{ —A-Adj(A) ) = —detA
dt dt
where Adj(A) is the adjoint matrix of A.

The proof is a nice exercise in linear algebra which we leave to the reader. It holds for
rational entries a;;(t) over any field K, and in case K = R or C also for differentiable
entries a;; (1).
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5. Proof of the Main Theorem, part II

We have seen that the canonical map Ad: Aut(A”) — Autp;(Vec(A™)) is an iso-
morphism (Theorem 3.1). It follows from Proposition 4.6 that every automorphism of
Vec(A™) induces an automorphism of Vec®(A"). Moreover, since

Vec?(A") = [Vec® (A"), Vec® (AM)]

(Lemma 1.3), we get a canonical map Autyje(Vec®(A")) — Autje (Vec?(A™)), which is
easily seen to be injective. Thus the main theorem follows from the next result.

Theorem 5.1. The canonical map Ad: Aut(A") — Autpie(Vec®(A")) is an isomor-
phism.

The proof needs some preparation. The next proposition is a reformulation of some results
from [Now86] and [LD12]. For the convenience of the reader we will give a short proof.

Proposition 5.2. Let§y, ..., 8, € Vec(A") be pairwise commuting and K -linearly inde-
pendent vector fields. Then the following statements are equivalent:

(i) There is an étale morphism ¢ : A" — A" such that ¢*(dy,) = 8; for all i.
(i) Vec(A") =@P; Kl[xi,...,x,lé.
(iii) There exist f1, ..., fu € K[x1, ..., xy] such that 8; (f;) = &;.
@iv) 41, ..., 8, do not have a common Darboux polynomial.

Recall that a common Darboux polynomial of the §; is a nonconstant polynomial f €
K[x1,...,x,] such that §;(f) = h; f forsome h; € K[x1,...,x,),i =1,...,n

Proof. (a) It follows from Remark 4.2 that (i) implies (ii) and (iii). Clearly, (ii) implies (iv)
since a common Darboux polynomial for the §; is also a common Darboux polynomial
for the dy;, which does not exist.

(b) We now show that (ii) implies (i), hence (iii), using the following well-known fact.
dh;

Ifhy,...,h, € K[x1,...,x,] satisfy the conditions 7 % for all i, j, then there is
an f € K[x1,...,x,]suchthat h; = % forall i.
By (ii) we have 3y, = Y, hikSg fori = 1, ..., n. We claim that dh"‘ = 8h’k for all

i, j, k. In fact,
0= 030, — O 0, = Oy ) hjdi — Do Zhik&(
k

_ Z 8h’k 5k + Zhjkax,ak Z 8h—’k8k - Zh,kax,&c
k
— Z(aah_/k — %)81{ + (Z hjkh,-géSZSk — Zhikhj[8[8k>
Xi k¢ k.l

dhjx  Ohix Ohjr  Ohik
= _— = ) hikhjelSk, 8¢l = — — — ).
4 ( o o, ) k+Z ikhje[8k, 8¢l = ;( o o, k
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Hence h;; = g—ﬁ for suitable fi, ..., fu € K[x1, ..., x,]. Itis clear that the matrix (h;x)
is invertible. This implies that the morphism ¢ := (f1, ..., f,): A" — A’ is étale, and

0, =D g g_J;l:'Sk’ hence §; = ¢*(dy,), by equation (4.2).

(c) Assume that (iii) holds. Setting §; = Zk hikdy, and applying both sides to f;, we
see that the matrix (h;;) € M, (K[x1, ..., x,]) is invertible, hence (ii) holds. Thus the
first three statements of the proposition are equivalent, and they imply (iv).

(d) Finally, assume that (iv) holds. Set §; = ), hjxdy,. Since [§;, ;] = 0 we get
8i(hjr) = 8j(hiyx) for all 7, j, k. Now an easy calculation shows that & (det(h;;)) =
Div(8x) det(h;;), and so det(h;;) € K. If det(h;;) # 0, then (ii) follows.

If det(h;j) = O, then rank(}_;_, K[x1,...,x,18) = r < n, and we can assume that
rank(};_; K[x1,...,x,18) = r. Choose a nontrivial relation erill fi8; = 0 where
ged(fi, ..., fre1) = 1.Since 0 = 8; ("4 £i8:) = YiX! 8;(f)8; for any j, we see that
8;(fi) € Kl[x1, ..., x,]fi, and since the §; are K-linearly independent, at least one of the
fi is not a constant, hence a common Darboux polynomial, contradicting (iv). O

The second main ingredient for the proof is the following result.

Lemma 5.3. Let 81,8 € Vec? (A" be commuting vector fields. Assume that:

(a) &1 and 87 have a common Darboux polynomial f where 6; f #0,i =1, 2.
(b) Each §; acts locally nilpotently on Vec?(A™).

Then K[xi1,...,x,181 + K[x1,...,x,182 € Vec(A") is a K[xy, ..., x,]-submodule of
rank < 1.

Proof. We will show that there are nonzero polynomials pj, p2 such that p1§; = p26>.
We have §; () = h; f where h1, hy # 0. Since §; and §, commute, we get §1(h2 f) =
82(h1 f), and so 81hy = &2h1. In view of the formula Div(gd) = g + g Div(d), this
implies that § := h1éy — h2d1 € Vec(A"). Moreover, §f = 0, and so 8 € Vec?(A").
Since
[61, &1 = [81, h182] — [81, h2d1] = (81h1)82 — (81h2)d1,

we get (ad81)*8 = 81 (h1)82 — 81 (h2)81 and (ad81)*(f8) = 81 (fh1)S2 — 81 (fh2)d1.
Now, by assumption (b), there is a k > 0 such that (ad 81)k8 = (ad 81)k(f8) = 0, hence

SK(h1)8y = 8% (h)81 and  8¥(fh1)ss = 85 (fha)d1.

Thus the claim follows except if 8fh; = 8¥hy = 8¥(fh1) = 87 (fha) = 0. We will
show that this leads to a contradiction. Since &1 f = h; f, we get 611‘+1 f =0.Choose r, s
minimal with 6741 = 0 and 8] f = 0. By assumption, r, s > 1, and we get 8{'”_2(}11 =
87 hy - 8571 f # 0. On the other hand, 8" (i1 f) = 8 f = 0, and we end up with a
contradiction, because s — 1 <r +s5 — 2. O
Now we can prove the Theorem.

Proof of Theorem 5.1. The case n = 1 is handled in Lemma 3.2, so we can assume that
n > 2. Let 6 be an automorphism of Vec?(A") as a Lie algebra, and set §; := 6(dy;). Then
the vector fields 8y, ..., 8, are pairwise commuting and K-linearly independent. Since
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0y, acts locally nilpotently on Vec!? (A™), the same holds for §;. Moreover, the centralizer
of the §; in VecO(A") is the linear span of the §;, i.e. [6, ;] = O for all i implies that
8 € @, K ;. In the following we will use vector fields with rational coefficients:

n
Vec™ (A") 1= K (X1, ..., Xn) ®Klx....x, Vec(A") = @D K (x1. ..., x,)0y,.

(1) We first claim that the §; do not have a common Darboux polynomial. So assume
that there exists a nonconstant f € K[x1, ..., x,] such that §; f = h; f for all i and some
hl' € K[xl, ...,xn].

First assume that 41, = 0, i.e. §1f = 0. Then f8; € Vec?(A"), and for any & €
K[x1,...,x,] and every i we have [4;, hfd1] = §; (hf)d1 = (§;(h) + hh;) 61, and so

(ad(Si)k(K[xl, ceXnlf81) € K[xt, ..., x51f81 forallk > 0. ;.1
Setn := 9_1(f81). Then there are k, ..., k, € N such that
no == (ad 3,)*1 (ad 8,)*? - - - (ad 3,,)"'n € Ky, ® -+ ® Ky, \ {O}.

Hence, 6(19) = (ad )" (ad82)*2 - - - (ad 8,)* (f81) € K81 & --- ® K8, \ {0}, which
contradicts (5.1), because f ¢ K.

We are left with the case where no A; is zero. Then Lemma 5.3 above implies that
Zi K[x1,...,x,18; € Vec(A") has rank 1, i.e. there exist § € Vec(A") and nonzero
rational functions r; € K(xi,...,x,) such that §; = r;6 fori = 1,...,n. We can
assume that § is minimal, i.e., not of the form ¢ 8" with a nonconstant polynomial ¢. For
every u commuting with §;, we get 0 = [u, ;] = [u, i8] = u(ri)d + ri[u, &1, hence
[w, 8] € K(x1,...,x,)8. Itis easy to see that

= {& € Vec(A") | [£,8] € K(x1,...,x,)3}

is a Lie subalgebra of Vec(A") which contains all elements commuting with one of the §;.
Since Vec”(A") is generated, as a Lie algebra, by elements commuting with one of the y;
we see that 0(Vec?(A")) = Vec®(A") is generated by the elements commuting with
one of the §;. Thus Vec?(A”) C L, and so [Vec’(A"),8] € K(xi,...,x,)s. For § =
Z pidy; We get [0y, 8] =D ; ng dy, = s8 for some s € K (xy, ..., x,), hence %pj =

p, for all pairs 7, j. This implies tha ‘k i — 0in case p; # 0, ie. & does not
depend on xi. Since this holds for all k, we conclude that pj = c;jp; for some ¢j € K,
hence § = Z] cjd xjs because § is minimal. In particular, [dy,, 8] = O for all k. Now we
get [x¢0y,, 0] = —cedy, € K(x1,...,x,)8 for all k, £, which implies § = 0, hence a
contradiction.

(2) Now we use the implication (vi)=-(i) of Proposition 5.2 to see that there is an
étale morphism ¢: A" — A" with §; = ¢*(dy,) for all i. Then the composition ¢’ :=
0~ og*: Vec®(A") — Vec?(A") is an injective homomorphism of Lie algebras (Propo-
sition 4.1) and 6'(dy,) = dy,. Hence, Lemma 5.4 below implies that 0’ = Ad(s) = (s—hH*
where s € Aut(A") is a translation, hence 0 = (¢ o s)*. Now Proposition 4.3 implies that
¥ := @ o s is an automorphism of A", and so # = Ad(yy ') as claimed. O
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Lemma 5.4. Let 6 be an injective endomorphism of Vec®(A™) such that 0(0y;) = 0y

for all i. Then 6 = Ad(s) where s: A" 5 A" is a translation. In particular, 6 is an
automorphism.

Proof. We know that Zi K9, = L(S) where S C Aff, are the translations. Moreover,
L(Aff,) is the normalizer of L(S) in the Lie algebra Vec(A"). Hence 6 (L(SAff,)) =
L(SAff,), and so there is an affine transformation g such that Ad(g)| . (saft,) = 0|L(SAff,)
by Lemma 3.2. Since Ad(g) is the identity on L(S), we see that g is a translation. It
follows that Ad(g~") o @ is the identity on L(SL,), hence Ad(g™!) 0 & = Ad(LE) for
some A € K*, by Lemma 3.3. But A = 1, because 0 is the identity on L(S), and so
0 = Ad(g). O
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