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Abstract. Let q be odd and squarefree, and let χq be the quadratic Dirichlet character of conduc-
tor q. Let uj be a Hecke–Maass cusp form on 00(q) with spectral parameter tj . By an extension of
work of Conrey and Iwaniec, we show L(uj × χq , 1/2)�ε (q(1+ |tj |))1/3+ε , uniformly in both
q and tj . A similar bound holds for twists of a holomorphic Hecke cusp form of large weight k.
Furthermore, we show that |L(1/2 + it, χq )| �ε ((1 + |t |)q)1/6+ε , improving on a result of
Heath-Brown.

As a consequence of these new bounds, we obtain explicit estimates for the number of Heegner
points of large odd discriminant in shrinking sets.
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1. Introduction

1.1. Cubic moments

Let χq be a real, primitive character of conductor q (odd, squarefree). Suppose that uj is
a Hecke–Maass cuspidal newform of level dividing q, and that f ∈ Bk(q) where Bk(q)
denotes the set of weight k holomorphic Hecke newforms of level dividing q.

In a remarkable paper in the analytic theory of L-functions, Conrey and Iwaniec [CI]
showed ∑

f∈Bk(q)

L(f × χq , 1/2)3 �k,ε q
1+ε (1.1)

for k ≥ 12, and ∑
tj≤T

L(uj × χq , 1/2)3 �T ,ε q
1+ε. (1.2)

Consequently, L(π × χq , 1/2) � q1/3+ε for π associated to f or uj , by the nonnega-
tivity of these central values [W], [KZ], [KS], [Gu]. Since the conductor of the twisted
L-function is q2, this amounts to a Weyl-type subconvexity exponent (meaning the expo-
nent is 1/6, compared to the convexity bound which has exponent 1/4) in the q-aspect.
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Along with the Maass forms, one naturally also includes the continuous spectrum fur-
nished by the Eisenstein series which leads to bounds for Dirichlet L-functions, namely
L(1/2 + it, χq) �t q

1/6+ε. This subconvexity bound of Conrey and Iwaniec gave the
first improvement on the Burgess bound [Bu] of q3/16+ε, for real characters. There is also
work of Heath-Brown [H-B1] that improves on the Burgess bound but for moduli that
factor in a favorable way.

The bounds (1.1) and (1.2) depend polynomially on k and T , respectively, but in an
unspecified way (Conrey and Iwaniec state that perhaps k3 is acceptable). Motivated by
some problems related to the equidistribution of Heegner points, it is desirable to obtain
bounds as strong as possible in the T -aspect; see Section 2 below for further discussion
of applications. Along these lines, we mention a handful of results that estimate a cubic
moment in the spectral/weight aspect with fixed level (often level 1). Ivić [Iv] showed∑

T≤tj≤T+1

L(uj , 1/2)3 � T 1+ε, (1.3)

where the Maass forms are of level 1. For reference, Weyl’s law for 00(q)\H gives∑
T≤tj≤T+1

1 � qT ,

uniformly in both q, T � 1 (here the notation f (x) � g(x) means there exist constants
c1, c2 > 0 such that c1f (x) ≤ g(x) ≤ c2g(x) for all x under consideration). Ivić’s
approach is quite different from that of [CI], and also leads to a Weyl-type subconvexity
bound for level 1 in the archimedean (spectral parameter) aspect. The weight k analog is
due to Zhao Peng [Pen] who showed∑

f∈Bk(1)

L(f, 1/2)3 � k1+ε.

Again this implies a Weyl-type subconvexity bound in the weight aspect (with fixed
level 1). Analogs of these cubic moments were used by Xiaoqing Li [Li] to give the first
subconvexity bound for a self-dual L-function on GL3 in the t-aspect (as well as certain
GL3×GL2 Rankin–Selberg twists). Furthermore, Blomer [Bl] obtained subconvexity for
twists of a self-dual GL3 form by a quadratic Dirichlet character in the q-aspect. Q. Lu
[Lu] has modified Xiaoqing Li’s [Li] method to handle variations of (1.3) with tj in a
larger window (T ≤ tj ≤ T + T 3/8+ε) and for level q (however, no dependence on q is
given).

Recently, Petrow [Pet] has extended the Conrey–Iwaniec bound (1.1) to all weights
k ≥ 2 which then implies corresponding bounds for Fourier coefficients of weight
(k + 1)/2 cusp forms. Petrow’s work is complementary to our results here as we focus on
large k (or T ). The main idea of Petrow’s work is the development of a Motohashi-type
spectral summation formula for the cubic moment, which is crucial in establishing (1.1)
in the especially interesting case k = 2.

Our main result is
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Theorem 1.1. With notation as above, we have∑
f∈Bk(q)

L(f × χq , 1/2)3 �ε (kq)
1+ε (1.4)

for χq(−1) = ik (otherwise the central values all vanish), and for T � 1,∑
∗

T≤tj≤T+1

L(uj × χq , 1/2)3 �ε (q(1+ T ))1+ε,

where the star on the sum indicates the sum is restricted to even Maass forms (again,
otherwise the central values vanish). Similarly for the Eisenstein series:∫ T+1

T

|L(1/2+ it, χq)|6 dt �ε (q(1+ T ))1+ε. (1.5)

The estimate (1.4) holds for any even k ≥ 12.

The new feature here compared to the previously mentioned results is that our estimates
are completely uniform in q and T (or k) together. This leads to a Weyl-type subconvexity
exponent valid in a wide range in (q, T ) parameter space, namely

L(uj × χq , 1/2)� (q(1+ T ))1/3+ε,

and similarly for the holomorphic forms. For reference, the analytic conductor of
L(uj ×χq , 1/2) is q2(1+ T 2). The previously best-known subconvexity bound for these
twisted L-functions with uniformity in both q and T (or k) is apparently due to Blomer
and Harcos [BH]. Their bound is of Burgess quality, meaning that in the q-aspect the
exponent is 3/8 + ε instead of 1/3 + ε; however, their result is more general in that it
allows uj (or f ) to have arbitrary level, and the twisting character does not have to be
quadratic.

One pleasant feature of our proof is that in large part it handles the holomorphic
and Maass cases simultaneously, and there is no need to use the intricate asymptotic
expansions of Bessel functions uniform in both the index and the argument.

The bound (1.5) implies |L(1/2 + it, χq)| � (q(1 + |t |))1/6+ε, which improves
on results of Heath-Brown [H-B1], [H-B2] and Huxley and Watt [HW], for quadratic
characters.

1.2. Arithmetical applications of the cubic moments

We will see in Section 2 that for applications to equidistribution of Heegner points on thin
sets, the cubic moment itself is more useful than the subconvexity bound that it implies.
One easy-to-state application is the following

Proposition 1.2. Suppose −D < 0 is a sufficiently large, odd fundamental discriminant.

(1) Fix 4/9 < η ≤ 1/2. There exist solutions to b2
≡ −D (mod 4a) for some a and b

with b � Dη.
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(2) Fix 1/3 < η ≤ 1/2. There exist solutions to b2
≡ −D (mod 4a) for some a and b

with a � Dη.

In both cases, the number of solutions is � h(−D)/D1/2−η, where h(−D) is the class
number, but the implied constant is ineffective.

These are both special cases of a more general result on the distribution of Heegner points
in shrinking sets. See Theorem 2.1 below and following discussion for elaboration. In
principle, a subconvexity bound of the form L(uj × χ−D, 1/2)� D1/2−δ(1+ |tj |)B (for
some δ, B > 0) would lead to a version of Proposition 1.2 with some η < 1/2. One
purpose in this paper is to strive for a small numerical value of η.

2. Applications

In this section we discuss some arithmetical applications of the new hybrid subconvexity
bound. These all can be expressed as certain lattice point estimates.

The Heegner points of (fundamental) discriminant −D < 0 can be identified with
the collection of SL2(Z)-orbits of binary quadratic forms ax2

+ bxy + cy2 of discrim-
inant b2

− 4ac = −D. For each such quadratic form, one has the Heegner point τ =
(−b + i

√
D)/(2a) which of course can be chosen to lie inside the usual fundamental

domain F for SL2(Z)\H. Let 3D denote the set of SL2(Z)-classes of Heegner points of
discriminant −D. The cardinality of 3D is h(−D), the class number.

Duke [D] showed that 3D becomes equidistributed in SL2(Z)\H as D→∞, in part
by extending work of Iwaniec [Iw1] bounding the Fourier coefficients of half-integral
weight cusp forms. Duke used a period formula of Maass to relate the Weyl sums over
the Heegner points to these Fourier coefficients.

Following the method of Harcos and Michel [HM], here we directly relate the Weyl
sums to central L-values, which is provided by a formula of Waldspurger/Zhang [W], [Z].
Suppose that uj is a Hecke–Maass cusp form, orthonormalized with dxdy/y2 (not prob-
ability measure), and define the Weyl sum

WD,uj =

∑
τ∈3D

uj (τ ).

Then (e.g., see [LMY, (5.1)] for this particular formulation entirely in terms of L-func-
tions)

|WD,uj |
2
=

√
DL(uj × χ−D, 1/2)L(uj , 1/2)

2L(sym2 uj , 1)
. (2.1)

A similar formula holds for Eisenstein series (see [IK, (22.45)] or [LMY, (5.8)]), namely
if we define WD,t =

∑
τ∈3D

E(τ, 1/2+ it), then

|WD,t | = c(D)D
1/4 |L(1/2+ it, χ−D)ζ(1/2+ it)|

|ζ(1+ 2it)|

for some function 0 < c(D) ≤ 10 (in fact c(D) only depends on the number of units of
Q(
√
−D)).
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Next we will set up equidistribution of Heegner points on thin sets, somewhat simi-
larly to [Y] (which treated QUE for thin sets). In [LMY] we studied Heegner points with
varying level, which is another notion of “thin”: the number of Heegner points is indepen-
dent of the level q (if say q is prime), yet the volume of00(q)\H increases with q. The dif-
ference here is that we are fixing the level to be 1, and varying the archimedean aspect. For
a given V ≥ 1, choose a smooth and compactly-supported function φ : SL2(Z)\H→ R
satisfying |1nφ(x + iy)| ≤ C(n)V 2n for all n = 0, 1, 2, . . . . We view the list of C(n) as
fixed, and V may vary with the discriminant −D.

Theorem 2.1. Let φ be as above, and let −D < 0 be an odd fundamental discriminant.
Then∑
τ∈3D

φ(τ) = h(−D)

∫
F
φ(z)

3
π

dxdy

y2 +O
(
‖φ‖2D

5/12+εV 1+ε
+ (DV )−100). (2.2)

The implied constant depends only on ε > 0 and the C(n). If one assumes the Lin-
delöf hypothesis for L(uj ×χ−D, s) and L(s, χ−D), then (2.2) holds withD5/12 replaced
by D1/4.

The point is that we are able to explicitly give the dependence of the error term on φ
(previous works on equidistribution such as [D] typically treated φ as fixed). The im-
plied constant is in principle effective (but quite difficult to compute); the ineffectivity in
Proposition 1.2 arises from ensuring the main term is larger than the error term, which in
turn relies on Siegel’s lower bound on the class number.

Proof of Theorem 2.1. By a spectral decomposition of φ, we have∑
τ∈3D

φ(τ) = h(−D)〈φ, 3/π〉 +
∑
j

〈φ, uj 〉WD,uj + (Eisenstein).

We bound the spectral coefficients by

(1/4+ t2j )
N
〈φ, uj 〉 = 〈φ,1

Nuj 〉 = 〈1
Nφ, uj 〉 � V 2N .

Thus if tj � V (DV )ε, then 〈φ, uj 〉 is very small. Therefore,∣∣∣ ∑
τ∈3D

φ(τ)− h(−D)〈φ, 3/π〉
∣∣∣

≤

∑
tj�V (DV )

ε

|〈φ, uj 〉WD,uj | + |(Eisenstein)| +O((DV )−100). (2.3)

By Cauchy’s and Bessel’s inequalities, we see that (2.3) is

� ‖φ‖2

( ∑
tj�V (DV )

ε

|WD,uj |
2
)1/2
+ |(Eisenstein)| + (DV )−100.
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Next we use (2.1) and Hölder’s inequality (with exponents 3, 3, 3), showing that (2.3) is

� ‖φ‖2D
1/4+εV 1/3+ε

×

( ∑
tj�V (DV )

ε

L(uj × χ−D, 1/2)3
)1/6( ∑

tj�V (DV )
ε

L(uj , 1/2)3
)1/6
+ · · · ,

where the dots indicate the continuous spectrum and the error term. By Theorem 1.1, this
is

� ‖φ‖2D
5/12+εV 1+ε

+ (DV )−100.

Note that the sums over tj are over level 1 Maass forms, which when applying Theo-
rem 1.1 are included into all Maass forms of level dividing D. This remark explains how
the Lindelöf hypothesis replaces D5/12 by D1/4 in (2.2).

Although we have not explicitly written the contribution of the Eisenstein series, need-
less to say that the same bound holds for this part as for the Maass form contribution. ut

Next we interpret this bound arithmetically. There are a variety of choices one can make.
One particularly simple option is to choose φ to approximate the region 1/(2V ) ≤ |x|
≤ 1/V , 1 ≤ y ≤ 2. One can choose φ so that ‖φ‖1 � V −1 and ‖φ‖2 � V −1/2.
Theorem 2.1 implies that there exists a τ ∈ 3D inside the support of φ provided
that h(−D)/V � D5/12+εV 1/2, which is valid for V � D1/18−ε by Siegel’s inef-
fective lower bound on the class number. Therefore, there exists a solution (actually,
� h(−D)/V solutions) to b2

≡ −D (mod 4a) with
√
D/a � 1 and |b/a| � V −1. That

is, a �
√
D and b �

√
D/V , so setting V = D1/2−η we see that any 4/9 < η ≤ 1/2 is

allowable. This gives part (1) of Proposition 1.2.
Part (2) could be proved along similar lines as part (1), giving the same value η > 4/9.

Inspired by a comment of W. Duke1, we can obtain the numerical improvement as fol-
lows. For z ∈ F , let φ(x + iy) = g(y/V ) where g is nonnegative, has support on [1, 2],
and satisfies g(y) = 1 for 1.25 ≤ y ≤ 1.75. Then 〈φ, uj 〉 = 0 by a direct calculation
using the Fourier expansion. Similarly, the projection of φ onto Eisenstein series picks up
only the constant term of the Fourier expansion, giving

〈φ,E(·, 1/2+ it)〉 =
∫
∞

0

(
y1/2+it

+
ζ ∗(1− 2it)
ζ ∗(1+ 2it)

y1/2−it
)
g(y/V )

dy

y2 ,

which is� V −1/2
|̃g(−1/2+ it)|. Therefore, (2.3) simplifies in this case to∣∣∣ ∑

τ∈3D

φ(τ)− h(−D)〈φ, 3/π〉
∣∣∣

�
D1/4

V 1/2

∫
∞

−∞

|̃g(−1/2+ it)|
|L(1/2+ it, χ−D)ζ(1/2+ it)|

|ζ(1+ 2it)|
dt.

1 Talk, “The distribution of modular closed geodesics revisited” at the Analysis, Spectra, and
Number Theory Conference, December 2014.
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Since g is fixed, g̃(−1/2+ it) has rapid decay, and so by the original bound of Conrey–
Iwaniec we have ∑

τ∈3D

φ(τ)�
h(−D)

V
+O(V −1/2D1/4+1/6+ε).

The main term is larger than the error term provided V � D1/6−ε. A Heegner point in
the support of this φ has a � V −1D1/2, which can be made as small as D1/2−1/6+ε, as
claimed. These Heegner points are approaching the cusp∞ fairly quickly. The Lindelöf
hypothesis would imply that a � Dε is allowable.

Finally, we mention one other variation where we only ask for an upper bound on the
number of Heegner points in a small box.

Corollary 2.2. Fix x0 + iy0 ∈ F , and let V � 1. Then the number of Heegner points
τ ∈ F of discriminant −D such that |τ − (x0 + iy0)| � V −1 is

� h(−D)/V 2
+D5/12+εV ε.

The implied constant depends on x0 + iy0 and ε.

One pleasing feature of this upper bound is that it is o(D1/2) for a wide range of values
of V . To prove Corollary 2.2, we apply Theorem 2.1 with a nonnegative function φ that
equals 1 on |τ − (x0 + iy0)| � V −1, such that ‖φ‖1 � V −2 and ‖φ‖2 � V −1.

3. High-level sketch of the method

Here we give a brief overview of the proof focusing on the essential details. By an ap-
proximate functional equation, it suffices to show∑

n1,n2,n3�(qT )1+ε

∑
∗

T≤tj≤T+1

w∗j
χq(n1n2n3)λj (n1)λj (n2)λj (n3)

√
n1n2n3

� (qT )1+ε, (3.1)

where w∗j are weights arising in the Kuznetsov formula, so that
∑
T≤tj≤T+1w

∗

j � qT

(so the weights are � 1 on average, by Weyl’s law), and where 1 is an arbitrarily small
power of T . The Kuznetsov formula converts the sum over tj into a sum of Kloosterman
sums, transforming the left hand side of (3.1) to the form

q
∑

n1,n2,n3�(qT )1+ε

∑
c≡0 (mod q)

1
c

χq(n1n2n3)S(n1n2, n3; c)
√
n1n2n3

B

(
4π
√
n1n2n3

c

)
, (3.2)

where B is given as a certain integral transform. This weight function takes the rough
shape

B(x) ≈
1T
√
x

cos
(
x − 2

T 2

x
+ · · ·

)
,
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and is very small for x � 1T 1−ε, meaning that we may truncate the sum over c at
√
n1n2n3/(1T ). Actually, we need to treat two different types of B because we need to

restrict to a sum over the even part of the spectrum, but for Theorem 1.1 both cases are
fairly similar. Suppose that ni � Ni for each i, where Ni � (qT )1+ε.

Following [CI], we apply Poisson summation to each sum over ni modulo c, trans-
forming (3.2) into an expression of the form∑

m1,m2,m3

∑
c≡0 (mod q)

q

c
G(m1, m2, m3; c)K(m1, m2, m3, c),

where with ec(x) = e(x/c), we define

G(m1, m2, m3; c)

= c−3
∑

a1,a2,a3 (mod c)

χq(a1a2a3)S(a1a2, a3; c)ec(a1m1 + a2m2 + a3m3) (3.3)

and

K(m1, m2, m3, c)

= (N1N2N3)
−1/2

∫
R3
B

(
4π
√
t1t2t3

c

)
ec(−m1t1 −m2t2 −m3t3)dt1dt2dt3.

Conrey and Iwaniec evaluated G, showing that if some mild coprimality restrictions are
in place then with c = qr , we have

G(m1, m2, m3; c) =
χq(−1)ec(m1m2m3)

q2r
H(rm1m2m3; q),

where H is a certain two-variable complete character sum (see (9.3) below for its defini-
tion or (3.5) for a close variant). As for K , by an elaborate stationary phase analysis,

K(m1, m2, m3, c) ≈
c21T

(N1N2N3)1/2
ec(−m1m2m3)e

(
α

T 2c

m1m2m3
+ · · ·

)
, (3.4)

where α 6= 0 is a fixed constant. Furthermore, K is very small unless mi � Mi =√
N1N2N3/Ni ; this is already a square-root saving in each variable due to a reduction

in length compared to Ni . Note the quite remarkable cancellation in the primary phase
ec(m1m2m3), as well as the common feature that G and K essentially only depend on
m1m2m3/r and q. This feature allows for a particularly efficient separation of variables.
Our work departs from [CI] in the analysis of K . When T is large, then K multiplied by
ec(m1m2m3) is oscillatory, which makes the separation of variables nontrivial.

Next we discuss how the variables are separated, first arithmetically and then analyti-
cally. It suffices to consider a variant ofH where the variables inside the summation have
a coprimality condition, that is,

H ∗(w; q) =
∑

u,v (mod q)
(uv−1,q)=1

χq(uv(u+ 1)(v + 1))eq((uv − 1)w), (3.5)
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in which case from [CI, (11.9)],

H ∗(w; q) =
1

φ(q)

∑
ψ (mod q)

τ(ψ)g(χ,ψ)ψ(w).

Here g(χ,ψ) is O(q1+ε) by Deligne’s bound, but otherwise we do not need any proper-
ties of g. A similar separation of variables applies to K by the Mellin transform, giving

K(m1, m2, m3, c) ≈
c3/21

(N1N2N3)1/4
ec(−m1m2m3)L(m1, m2, m3, c),

where

L(m1, m2, m3, c) =

∫
|u|�U

`(u)

(
m1m2m3

c

)iu
du, U =

T 2c

(N1N2N3)1/2
�

T

1
,

and `(u) � 1 slightly depends on the variables m1, m2, m3, c, but for this sketch we
pretend that it does not.

Therefore, in all, we have transformed (3.1) into an expression of the form

∑
m1,m2,m3
mi�Mi

∑
r

C3/21

(N1N2N3)1/4
1

φ(q)

∑
ψ (mod q)

τ(ψ)g(χ,ψ)

(qr)2
ψ(rm1m2m3)

×

∫
|u|�U

`(u)

(
m1m2m3

qr

)iu
du,

where we have further restricted to c = qr � C (with C �
√
N1N2N3/(1T )). At this

point the expression can be pleasantly arranged into a bilinear structure as

∑
ψ (mod q)

∫
|u|�U

1q−1/2+ε
|`(u)g(χ,ψ)|

C1/2(N1N2N3)1/4

∣∣∣ ∑
m1,m2

ψ(m1m2)(m1m2)
iu
∣∣∣

×

∣∣∣∣∑
m3,r

ψ(rm3)

(
m3

r

)iu∣∣∣∣ du.
The hybrid large sieve inequality of Gallagher [Ga] bounds this by

1q1/2+ε

C1/2(N1N2N3)1/4
(qU +M1M2)

1/2
(
qU +

M3C

q

)1/2(
M1M2M3C

q

)1/2

.

An easy calculation shows this is bounded by

1(qT/1)1/2(qT )1/2+ε = 11/2(qT )1+ε,

consistent with our claim (3.1) (taking 1 = T ε).
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4. Initial setup

Many of the early structural steps are similar to [CI] (and could now be considered stan-
dard), so in places we will refer to [CI] for the details.

Let T ≥ 100 and q be an odd squarefree integer, and let 2 ≤ 1 < T/2. Towards
(1.4), we shall obtain the bound∑

∗

T≤k≤T+1

∑
f∈Bk(q)

w∗fL(f × χq , 1/2)3 � 1T q(T q)ε, (4.1)

where the star indicates that k (necessarily even) satisfies χq(−1) = ik , which in turn
simply fixes k (mod 4) (assuming q is chosen). For the Maass forms, we will show∑

∗

T≤tj≤T+1

w∗j L(uj × χq , 1/2)3 � 1T q(T q)ε, (4.2)

where w∗f and w∗j are certain weights arising in the Petersson/Kuznetsov formula, satis-
fying w∗f � (kq)−ε and w∗j � (T q)−ε. These are the same weights used by Conrey and
Iwaniec, up to a simple scaling, so we refer to [CI] for details on these weights. The sums
are over newforms of level dividing q. A similar bound holds for the Eisenstein series,
namely ∫ T+1

T

|L(1/2+ it, χq)|6 dt � 1T q(T q)ε. (4.3)

All the twisted L-functions are newforms of level q2.
In our work, we will assume T � qη for some fixed η > 0; in practice this will

mean that expressions of the formO(T −A) with A > 0 arbitrarily large areO((qT )−A
′

),
with A′ arbitrarily large. We are able to restrict to this case because Conrey and Iwaniec
showed an upper bound of the form T Aq1+ε (with some fixed but unspecified A > 0) for
the cubic moment, so if T � qη with η arbitrarily small, then their bound is satisfactory
for Theorem 1.1. We will also suppose that T η

′

� 1 for some η′ > 0 fixed but arbitrarily
small; note that if we prove (4.1)–(4.3) for such 1, then it extends to larger values of 1
automatically by dissecting the longer interval into these shorter pieces.

In the case of Maass forms, it is technically convenient to introduce the function

h(t) =
1

cosh
(
t−T
1

) + 1

cosh
(
t+T
1

) .
This choice of h is analytic for |Im(t)| < (π/2)1 (which we may assume is large),
nonnegative on R ∪ {iy : −1 ≤ y ≤ 1}, and even. Furthermore, h(t) � 1 for T ≤ t ≤
T +1, and h(t) is very small outside of |t ∓ T | ≤ 1. To prove (4.2), it therefore suffices
to show ∑

tj

w∗j h(tj )L(uj × χq , 1/2)3 � 1T q(T q)ε.

For the holomorphic case, it is also convenient to sum over k with a smooth weight func-
tion but in this case we can take h(k) = w

(
k−1−2T

1

)
where w is any smooth, nonnegative,
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compactly supported function where w(t) = 1 for 1 ≤ t ≤ 2, and zero for t ≤ 1/2 and
t ≥ 3 (here we chose to center w at 2T + 1 to simplify some later formulas).

After some initial steps, eventually our method handles the Maass and holomorphic
cases in a unified way. We shall more carefully treat the Maass case since it is a bit more
complicated.

5. Approximate functional equation and separation of variables

Since all the L-functions under consideration have +1 as the sign in their functional
equation, by [IK, Theorem 5.3] we have

L(uj × χq , 1/2) = 2
∞∑
n=1

λj (n)χq(n)
√
n

Vtj (n/q),

where

Vr(y) =
1

2πi

∫
(1)

0
( 1/2+s+ir

2

)
0
( 1/2+s−ir

2

)
0
( 1/2+ir

2

)
0
( 1/2−ir

2

) G(s)(πy)−s
ds

s
.

HereG(s) is an even, analytic function satisfyingG(0) = 1. We chooseG(s) = es
2

(this
G should not be confused with (3.3)). In order to more simply sum over tj , we wish to
separate the variables r and y in Vr(y). By symmetry, we may as well suppose r > 0.

By Stirling, if |Im(z)| → ∞ (with fixed real part), but |s| � |z|1/2, then

0(z+ s)

0(z)
= zs

(
1+

N∑
k=1

Pk(s)

zk
+O

(
(1+ |s|)2N+2

|z|N+1

))
for certain polynomials Pk(s) of degree ≤ 2k. SinceG(s) has exponential decay, we may
truncate at |Im(s)| � T ε with only a small error in Vr(y). With these assumptions on s
and r , we have

0
( 1/2+s+ir

2

)
0
( 1/2+s−ir

2

)
0
( 1/2+ir

2

)
0
( 1/2−ir

2

) = (r/2)s
(

1+
N∑
k=1

Pk(s)

rk
+O

(
(1+ |s|)2N+2

rN+1

))
for a different collection of polynomials Pk(s). For convenience, set P0(s) = 1.

Hence

Vr(y) =

N∑
k=0

r−k
1

2πi

∫
(1)
G(s)Pk(s)

(
r

2πy

)s
ds

s
+O

(
r−N−1

(
1+

y

r

)−A)
, (5.1)

where the extra factor (1+y/r)−A arises from moving the contour to Re(s) = A if y ≥ r ,
and to Re(s) = −1 if y ≤ r . We further refine (5.1) by approximating r by T , which is a
good approximation since in our application h(r) is very small unless |r−T | � 1 log T ,
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and 1 is a small power of T . We may assume that |s(r − T )/T | � 1, so that by expan-
sion into Taylor series we have

rs = T ses log(1+ r−T
T
)
= T s

N∑
l=0

Ql(s)

(
r − T

T

)l
+O

(
(1+ |s|)N+1

(
|r − T |

T

)N+1)
for certain polynomials Ql(s) of degree ≤ l. We then derive for r � T that

Vr(y) =

N∑
k=0

N∑
l=0

1
T k

(
r − T

T

)l
Vk,l

(
y

T

)
+O

((
1+ |r − T |

T

)N+1(
1+

y

T

)−A)
,

where Vk,l is a function of the form

Vk,l(y) =
1

2πi

∫
(1)
Pk,l(s)(2πy)−sG(s)

ds

s
(5.2)

for some polynomial Pk,l of degree ≤ 2k + l.
In light of this form of the approximate functional equation, it suffices to show

∑
∗

tj

hk,l(tj )w
∗

j

∞∑
n1,n2,n3=1

χq(n1n2n3)λj (n1)λj (n2)λj (n3)

(n1n2n3)1/2

3∏
i=1

Vi

(
ni

T q

)
+ (cts)

� 1(qT )1+ε, (5.3)

where (cts) represents the obvious continuous spectrum contribution (which is also non-
negative), and

hk,l(r) =
(
(r − T )lT −k−l + (−r − T )lT −k−l

)
h(r), (5.4)

and Vi are functions of the form (5.2). To prepare this for the Kuznetsov formula, we use
the Hecke relation λj (n1)λj (n2) =

∑
d|(n1,n2)

λj (n1n2/d
2), implying that (5.3) equals

∑
(d,q)=1

d−1
∑

n1,n2,n3

V1

(
n1

d−1T q

)
V2

(
n2

d−1T q

)
V3

(
n3

T q

)
χq(n1n2n3)

(n1n2n3)1/2

×

∑
∗

j

hk,l(tj )w
∗

j λj (n1n2)λj (n3). (5.5)

The Kuznetsov formula says∑
∗

j

hk,l(tj )w
∗

j λj (n1n2)λj (n3)+ (Continuous)

= Dδn1n2=n3 +

∑
±

q
∑

c≡0 (mod q)

S(n1n2,±n3; c)

c
B±

(
4π
√
n1n2n3

c

)
,
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where D is the size of the diagonal term. We have chosen our weights w∗j so that D �
1T q, and it is easy to see that the bound arising from the diagonal terms is of the desired
magnitude. Here

B+(x) =
i

π

∫
∞

−∞

(
J2ir(x)− J−2ir(x)

cosh(πr)

)
hk,l(r)r dr, (5.6)

B−(x) =
4
π2

∫
∞

−∞

K2ir(x) sinh(πr)hk,l(r)r dr. (5.7)

To prove Theorem 1.1 (that is, the Maass and Eisenstein cases of the theorem), it
suffices to show the following

Theorem 5.1. Let 1 � N1, N2, N3 � (qT )1+ε, and let each wi be a smooth weight
function with support on x � Ni , and satisfying w(k)i (x)� N−ki . Suppose that B is given
by (5.6) or (5.7), with h = hk,l of the form (5.4). Then

∑
n1,n2,n3

w1(n1)w2(n2)w3(n3)χq(n1n2n3)
∑

c≡0 (mod q)

S(n1n2,±n3; c)

c
B

(
4π
√
n1n2n3

c

)
� (N1N2N3)

1/21T (qT )ε. (5.8)

This follows by applying a smooth dyadic partition of unity to each ni-sum.
Next we reduce the holomorphic case of Theorem 1.1 (that is, (1.4)) to a variation

on Theorem 5.1. The separation of variables in the approximate functional equation is
quite similar to the Maass case, so we omit the details. In this way, we quickly reduce to
estimating an expression of the form (5.5) but with the sum over tj replaced with a sum
of the form ∑

k≡a (mod 4)

w

(
k − 1− 2T

1

) ∑
f∈Bk(q)

w∗f λf (n1n2)λf (n3). (5.9)

By the Petersson formula, (5.9) equals

Dδn1n2=n3 + q
∑

c≡0 (mod q)

S(n1n2, n3; c)

c
Bholo

(
4π
√
n1n2n3

c

)
,

where D � 1T q, and

Bholo(x) = T
∑

k≡a (mod 4)

w

(
k − 1− 2T

1

)
Jk−1(x). (5.10)

Here the factor T arises because we chose the weights w∗f so that
∑
f∈Bk(q)

w∗f � k � T

(often in the literature, e.g. [Iw2, Theorem 3.6], the weights do not grow with k so here
it is necessary to multiply by T ). At this point we have reduced the proof of (1.4) to
extending Theorem 5.1 to hold for B = Bholo.
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6. Exponential integrals

In Section 8 below we require extensive information on some oscillatory integrals. The
stationary phase estimates we need are in principle standard, but the error terms occur-
ring in the literature are generally not good enough for our purposes here. The issue is
that Theorem 1.1 has to hold uniformly in (q, T )-parameter space. The weight function
analysis is entirely in the T -aspect, and it has to commute with the q-aspect analysis.
In practice this means that we require the error terms in the T -aspect to be very strong,
as otherwise if T is only a small power of q then this error term is not much smaller
than the main term, and we cannot apply savings in the q-aspect on the error term from
the T -aspect. For this reason, we will quote some convenient results of [BKY] that have
sufficiently strong errors.

First we begin with a useful definition.

Definition 6.1. Suppose that f (x1, . . . , xn) is a smooth function on Rn. We say that f is
inert if

x
i1
1 . . . x

in
n f

(i1,...,in)(x1, . . . , xn)� 1,

with an implied constant depending on i1, . . . , in and with the superscript denoting partial
differentiation.

Remark 6.2. In practice we require that the implied list of constants is uniform in terms
of certain parameters (e.g., q, T ,1,Ni, C, but not necessarily ε). It is then appropriate to
say that f is uniformly inert (in terms of those parameters).

We remark that an inert function that is also say Schwartz class (e.g., with compact sup-
port) can have its variables separated almost for free, in the sense that

f (x1, . . . , xn) =

∫
Rn
f̂ (y1, . . . , yn)e(x1y1) . . . e(xnyn) dy1 . . . dyn,

where f̂ (y1, . . . , yn) � (1 + |y1|)
−A . . . (1 + |yn|)−A. There exists a similar Mellin

formula, of course. Note that the product of two inert functions is also inert (with new
implied constants). Also if f (t) is inert and α1, . . . , αn ∈ R, then

g(x1, . . . , xn) = f
( n∏
i=1

(xi/Xi)
αi
)

(6.1)

is inert (with uniformity in the Xi but not the αi). Virtually all our constructions of inert
functions are variations of (6.1).

Next we synthesize both Lemma 8.1 and Proposition 8.2 of [BKY] along with some
simplified choices of parameters, with the following

Lemma 6.3. Suppose that w is a smooth weight function with compact support on
[X, 2X], satisfying wj (t) � X−j for X � 1 (in particular, w is inert with uniformity
in X). Also suppose that φ is smooth and satisfies φ(j)(t) � Y/Xj for some Y � Xε.
Let

I =

∫
∞

−∞

w(t)eiφ(t) dt.
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(1) If φ′(t)� Y/X for all t in the support of w, then I �A Y
−A for A arbitrarily large.

(2) If φ′′(t) � Y/X2 for all t in the support of w, and there exists t0 ∈ R such that
φ′(t0) = 0 (note t0 is necessarily unique), then

I =
eiφ(t0)
√
φ′′(t0)

F (t0)+O(Y
−A),

where F is an inert function (depending on A, but uniformly in X and Y ) supported
on t0 � X.

Technically, [BKY] did not show that F is inert in all auxilliary variables. This more
robust statement is proved in [KY, Lemma 5.5], which we reproduce here, with some
minor simplifications.

Lemma 6.4. Suppose w is inert in t1, . . . , td , supported on t1 � X, ti � Xi for i =
2, . . . , d , and φ satisfies

∂a1+···+ad

∂t
a1
1 . . . ∂t

ad
d

φ(t1, . . . , td)�
Y

Xa1

Xa2+···+ad

X
a2
2 . . . X

ad
d

on the support of φ. Assume that the conditions in Lemma 6.3(2) hold for t = t1 (uni-
formly in t2, . . . , td), and that t0 satisfies

∂b2+···+bd

∂t
b2
2 . . . ∂t

bd
d

t0 �b2,...,bd

t0

X
b2
2 . . . X

bd
d

(6.2)

for t0 � X. Then F is inert in t2, . . . , td .

A simple yet common situation is when t0 is monomial in the other variables, meaning

t0 = ct
α2
2 . . . t

αd
d , (6.3)

where the αi are fixed real numbers and c is some constant (depending on the tuple T ).
It is easy to check that if t0 satisfies (6.3), then it satisfies (6.2). All the applications of
Lemma 6.3 in this paper will have the stationary point of the form (6.3).

As a fairly direct consequence of Lemma 6.3, we shall obtain the following asymptotic
formula for a certain 2-dimensional oscillatory integral. This will be used in Section 8.

Lemma 6.5. Suppose α, β, γ ∈ R, let X � 1, and suppose that f1(t1) and f2(t2) are
(uniformly) inert functions with support on t1 � X1, t2 � X2 with X1, X2 � X. If
α/(X1X2)� X, βX1 � X, γX2 � X, then∫

∞

−∞

∫
∞

−∞

f1(t1)f2(t2)e

(
−
α

t1t2
− βt1 − γ t2

)
dt1 dt2

=

(
X1X2

βγ

)1/2

e(−3(αβγ )1/3)f3(α, β, γ )+OA((X1 +X2)X
−A), (6.4)
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where f3 is an inert function (depending on A, uniform in X1, X2, X), having support on

α/β � X2
1X2, α/γ � X1X

2
2. (6.5)

More generally, if

|α|

X1X2
� X, |β|X1 � X, |γ |X2 � X, (6.6)

then the integral in (6.4) is O((X1 + X2)X
−A) if α, β, γ do not all have the same sign.

If α, β, γ < 0, then (6.4) remains valid, with the convention (−1)1/3 = −1. Finally, if
exactly one or exactly two of the inequalities (6.6) are valid, then the integral in (6.4) is
O((X1 +X2)X

−A).

Proof. The basic idea is to use stationary phase analysis in each variable. Let us first ex-
amine the t1-integral, under the assumption α, β, γ > 0. Let Z1 = α/(X1X2)+ βX1. By
repeated integration by parts (Lemma 6.3(1)), the integral is small (namely, OA(Z−A1 ) =

OA(X
−A)) except possibly if α/(X1X2) � βX1. Furthermore, this argument shows the

integral is very small unless α and β have the same sign (so by symmetry, α and γ have the
same sign too). There exists a stationary point at t01 =

√
α/(βt2) . Therefore, Lemma 6.3

gives ∫
∞

−∞

f1(t1)e

(
−
α

t1t2
− βt1

)
dt1 =

X
1/2
1
β1/2 e

(
−2
√
αβ
√
t2

)
F(t2)+O(Z

−A
1 ),

where F(t2) is a function that is inert in terms of α, β, t2 (see (6.1) and surrounding
discussion), and has support on an interval of the form t2 � α/(βX

2
1).

Next we insert this expansion into the t2-integral, so we need to evaluate∫
∞

−∞

e

(
−2
√
αβ
√
t2
− γ t2

)
f2(t2)F (t2) dt2. (6.7)

Again, (6.7) is O(Z−A2 ), where Z2 = α/(X1X2) + γX2, except possibly if X2 � t
0
2 :=

(αβ)1/3/γ 2/3, in which case there is a stationary point at t02 . So we conclude that (6.7)
equals

X
1/2
2
γ 1/2 e(−3(αβγ )1/3)f (α, β, γ )+O(X−A),

where f is inert (uniformly in all relevant variables), and is supported on α/(X1X2) �

βX1, and X2 � (αβ)1/3/γ 2/3. Note that this latter estimate can be replaced by α/γ �
X1X

2
2 , which is more symmetric. Putting everything together, and simplifying, we ob-

tain (6.4). It is easy to derive the same formula in case α, β, γ < 0 by conjugation.
The final sentence of Lemma 6.5 was proved implicitly along the way, since at least

one of Z1 and Z2 will be large under these conditions. ut

7. Analytic properties of B

Our goal in this section is to deduce some useful estimates for B±(x) and Bholo(x). Even
more valuable is an integral representation forB that allows us to unify the different cases.
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Lemma 7.1. Let B+(x) be given by (5.6). Then for x � T , we have B+(x) � 1x.
Furthermore, there exists a function g depending on 1 and T , satisfying g(j)(x) �j,A
(1+ |x|)−A, and such that

B+(x) = 1T

∫
|v|≤1ε/1

cos(x cosh(v))e
(
vT

π

)
g(1v) dv +O(T −A). (7.1)

Furthermore, B+(x) � T −A unless x � 1T 1−ε. In addition, dk

dxk
B+(x) is bounded by

a polynomial (depending on k) of 1, T , x, and x−1.

One can find the asymptotic behavior of B+ given by Jutila and Motohashi [JM, (3.19)],
which essentially shows that for x � 1T 1−ε it is of the shape 1T

√
x

cos(x + φ(x, T )),

where φ = −2T 2/x + · · · , with the dots indicating lower-order terms (again, with
x � 1T 1−ε). This comes from asymptotically evaluating the v-integral in (7.1) by sta-
tionary phase. Our plan is to simply retain this v-integral until a later stage, and apply the
stationary phase method at the very end.

The bound B+(x) � 1x for x � T is used only for very large values of c, giving
a way to initially truncate the sum over c. Note that the error term in (7.1) is problematic
for very large values of c, since one needs to recover the convergence of the sum of
Kloosterman sums.

Proof of Lemma 7.1. Firstly, we show that B+(x)� 1x for x � T . For this, we use the
integral representation

B+(x) =
2i
π

∫
∞

−∞

J2ir(x)

cosh(πr)
h(r)r dr,

shift the contour to Re(2ir) = 1+ δ, 0 < δ < 1, and apply the uniform bound (for t real
and x > 0) J1+δ+2it (x)� cosh(πt)

(
x

1+|t |

)1+δ , which in turn follows directly from [GR,
8.411.4]. This gives

B+(x)� x|h(−i/2)|+
∫
∞

−∞

(
x

1+ |t |

)1+δ∣∣∣∣h(− i2− iδ2 +it
)∣∣∣∣·∣∣∣∣− i2− iδ2 +it

∣∣∣∣ dt � 1x,

as no other poles are crossed besides r = −i/2.
Now we treat the case where x is not extremely small. We have (see [GR, 8.411.11])

J2ir(x)− J−2ir(x)

cosh(πr)
= tanh(πr)

2
πi

∫
∞

−∞

cos(x cosh(v))e
(
rv

π

)
dv,

so

B+(x) =

∫
∞

−∞

cos(x cosh(v))
4
π2

∫
∞

0
rh(r) tanh(πr)e

(
rv

π

)
dr dv. (7.2)

The inner integral over r is essentially the Fourier transform of a function effectively
supported on r = T + O(1 log T ) (outside of this region, h is exponentially small in
terms of T ), so that

B+(x) = 1T

∫
∞

−∞

cos(x cosh(v))e
(
vT

π

)
g(1v) dv +O(T −A),
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where g is a function satisfying g(k)(x) �k,A (1 + |x|)−A. By the rapid decay of g,
the contribution to the integral from |v| � 1−1+ε is also O(T −A), so (7.1) holds. Next
we argue that B+(x) � T −A unless x � 1T 1−ε. This follows from Lemma 6.3 (re-
peated integration by parts). Furthermore, a minor variation of these estimates shows
dk

dxk
B+(x)�k,A T

−A unless x � 1T 1−ε, for k = 1, 2, . . . .

In order to show dk

dxk
B+(x) is polynomially bounded by 1, T , x, and x−1, we take

the integral representation (7.2) and treat |v| ≤ 1 and |v| > 1 separately. For |v| ≤ 1
we simply differentiate inside the integral sign, and use cosh(v) ≤ cosh(1) in this range;
everything else is polynomially bounded in the other parameters. For |v| ≥ 1, we cannot
so simply differentiate inside the integral sign because this introduces powers of cosh(v),
which causes convergence problems. To get around this, we simply first repeatedly inte-
grate by parts to save a large enough power of eπ |v| to cancel these powers of cosh(v). An
alternative approach would be to use the recursion formulas for d

dx
Jν(x). ut

Lemma 7.2. Let B−(x) be given by (5.7). Then for x�T , we have B−(x)�δ1T
δx1−δ

for any 0 < δ < 1. Furthermore, there exists a function g depending on 1 and T ,
satisfying g(j)(x)�j,A (1+ |x|)−A, and such that

B−(x) = 1T

∫
|v|≤1ε/1

cos(x sinh(v))e
(
vT

π

)
g(1v) dv +O(T −A). (7.3)

Furthermore, B−(x) � (x + T )−A unless x � T . In addition, dk

dxk
B−(x) is bounded by

a polyomial (depending on k) in 1, T , x, and x−1.

Proof. We quote the relation [GR, 8.486.10]

Kν(x) =
x

2ν
Kν+1(x)−

x

2ν
Kν−1(x),

which implies

B−(x) =
x

iπ2

∫
∞

−∞

(
K1+2ir(x)−K1−2ir(x)

)
sinh(πr)h(r) dr. (7.4)

Next by [GR, 8.432.5], we have for Re(ν) ≥ −1/2,

Kν(x) =
0(ν + 1/2)(2/x)ν

0(1/2)

∫
∞

0

cos(xv)
(v2 + 1)ν+1/2 dv,

so that if Re(ν) = δ > 0, for y ∈ R we have, by Stirling and a trivial bound,

|Kδ+2iy(x)| �δ

(1+ |y|)δ

xδ cosh(πy)
. (7.5)

For the part of (7.4) with K1+2ir(x), we shift the contour to Re(1 + 2ir) = δ > 0,
and apply (7.5). A similar procedure (shifting the other direction) works for the part with
K1−2ir(x), so in all we obtain the bound

B−(x)�δ x
1−δ

∫
∞

−∞

(1+ |y|)δ exp
(
−

∣∣∣∣y − T21

∣∣∣∣)dy �δ 1T
δx1−δ.
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Next we derive (7.3). For this we use [GR, 8.432.4], which states

K2ir(x) cosh(πr) =
1
2

∫
∞

−∞

cos(x sinh v) cos(2rv) dv.

The integral does not converge absolutely, but it does converge uniformly as one can
integrate by parts once to save a factor 1/sinh(v). Thus we derive

B−(x) =

∫
∞

−∞

cos(x sinh(v))
1
π2

∫
∞

0
rh(r) tanh(πr)e

(
rv

π

)
dr dv.

Compare this with (7.2). At this point, all the arguments from Lemma 7.1 carry over
almost without change, so we omit the details. The main difference is that sinh(v) ∼ v

for v = o(1), so by Lemma 6.3, B−(x) is small unless x � T . ut

Next we consider Bholo(x) defined originally by (5.10). By [Iw2, pp. 85–86], we have

Bholo(x) =
T

4

∫
∞

−∞

W(t)c(t) dt,

where

W(t) =

∫
∞

−∞

w

(
y − 2T
1

)
e(ty) dy,

c(t) = −2i sin(x sin(2πt))+ 2i−a sin(x cos(2πt)).

By direct calculation, W(t) = 1e(2tT )ŵ(−1t), and therefore there exists a function g
such that g(j)(x)� (1+ |x|)−A so that

Bholo(x) = 1T

∫
∞

−∞

e

(
vT

π

)
g(1v)

(
2i sin(x sin(v))+ 2i−a sin(x cos(v))

)
dv.

We can thus decompose Bholo(x) into two pieces that are precisely of the form (7.1)
and (7.3) but with T replaced by T ′, cosh(v) replaced by cos(v), sinh(v) replaced by
sin(v), and cos(x) replaced by sin(x). In this holomorphic case it is quite easy to show
Bholo(x)� T x since sin(x)� x.

We close this section by applying these results to the cubic moment problem. Recall
that we wish to show (5.8). With w1, w2, w3 as in Theorem 5.1, define

S±(N1, N2, N3;C; f ) =∑
c�C

c≡0 (mod q)

∑
n1,n2,n3

χq(n1n2n3)S(n1n2,±n3; c)w1(n1)w2(n2)w3(n3)f

(
4π
√
n1n2n3

c

)
.

(7.6)

Theorem 5.1 amounts to a bound on this S with f = B. Using the weak bound B(x) �
T x3/4, and the Weil bound for Kloosterman sums, we obtain

S±(N1, N2, N3;C;B)� T (N1N2N3)
11/8(qT )εC−1/4+ε,
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which is satisfactory if C is a large power of qT , using Ni � (qT )1+ε. Therefore, it
suffices to bound S when C � (qT )A for some fixed but large A. For a similar reason, it
suffices to bound the terms with B(x) replaced by B0(x) defined by

B0(x) = 1T

∫
|v|≤1ε/1

e(xφ(v))e

(
vT

π

)
g(1v) dv, (7.7)

where
φ(v) ∈ ±{cos(v), cosh(v), sin(v), sinh(v)}. (7.8)

By this discussion, we have reduced the proofs of (4.1)–(4.3) (and hence Theorem 1.1) to
the following

Proposition 7.3. Let B0 be a function of the form (7.7), where g is a function satisfying
g(j)(x)�j,A (1+ |x|)−A. Then for Ni � (qT )1+ε and C � (qT )A with some fixed A,

S(N1, N2, N3;C;B0)� (N1N2N3)
1/21T (qT )ε. (7.9)

8. Analytic separation of variables

Following the method of [CI], we begin by applying Poisson summation to each of
n1, n2, n3 modulo c in (7.6). That is,

S±(N1, N2, N3; c;B0) =
∑

m1,m2,m3∈Z
G±(m1, m2, m3; c)K(m1, m2, m3, c), (8.1)

where

G±(m1, m2, m3; c)

= c−3
∑

a1,a2,a3 (mod c)

χq(a1a2a3)S(a1a2,±a3; c)ec(a1m1 + a2m2 + a3m3) (8.2)

and

K(m1, m2, m3, c)

=

∫
R3
w1(t1)w2(t2)w3(t3)B0(4π

√
t1t2t3/c)ec(−m1t1 −m2t2 −m3t3)dt1dt2dt3.

(8.3)

By changing variables a3 →−a3, one derives

G−(m1, m2, m3; c) = χq(−1)G+(m1, m2,−m3; c),

which will allow us to mainly focus on the + sign case. Let G = G+ as shorthand.
The sum G was studied extensively by Conrey and Iwaniec [CI], so we will quote

their results. Our work differs from [CI] in the nature of the weight function K . Conrey
and Iwaniec showed, for T essentially bounded, that K has a phase ec(−m1m2m3), and
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is small except for mi � (N1N2N3)
1/2/Ni . The difficuly in extending their work is that

for T larger, one needs to more carefully treat the lower-order terms in the phase of K .
More generally, what we show is that K still has a phase as mentioned above, but has
a lower-order phase that still contains the factor m1m2m3/c in a block. This still allows
us to use a Mellin technique to separate these four variables with a single integral. The
important properties of K are summarized in

Lemma 8.1. Suppose that |mi | � Mi for each i, and c � C.

(1) Suppose φ(v) is ± cos(v) or ± cosh(v). Then

K(m1, m2, m3, c) =
C3/21T (N1N2N3)

1/2ec(−m1m2m3)

(M1M2M3)1/2
L(m1, m2, m3, c)

+O
(
T −A

3∏
i=1

(1+ |mi |)−2
)
, (8.4)

where L is a function that takes the form

L(m1, m2, m3, c)

=
1
V

∫
|y|≤T ε

m
iy1
1 m

iy2
2 m

iy3
3 ciy4

∫
|u|�U

`(u, y)
(
m1m2m3

c

)iu
du dy, (8.5)

where y = (y1, y2, y3, y4), V = T , and

U =
T 2C

(N1N2N3)1/2
. (8.6)

Here `(u, y)� 1 does not depend on c or the mi . Furthermore, L vanishes unless

C �
(N1N2N3)

1/2

11−εT
and Mi �

(N1N2N3)
1/2

Ni
, i = 1, 2, 3. (8.7)

(2) Suppose φ(v) is ± sin(v) or ± sinh(v). Then

K(m1, m2, m3, c) =
C3/21T (N1N2N3)

1/2ec(m1m2m3)

(M1M2M3)1/2
L(m1, m2, m3, c)

+O
(
T −A

3∏
i=1

(1+ |mi |)−2
)
, (8.8)

with the following parameters. IfMiNi/C � T ε for some i, thenL is defined as (8.5)
but with V = T , U = X1/3T 2/3, and X = M1M2M3/C. In addition, L vanishes
unless

C �
(N1N2N3)

1/2

T
, Mi �

(N1N2N3)
1/2

Ni11−ε , (8.9)

and M1N1 � M2N2 � M3N3. If MiNi/C � T ε for all i then K has the same
form as (8.4) with L defined as (8.5) but with V = T −εX−1/2, U = T ε, and X =
M1M2M3/C.
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Remarks. Here the y-integral is practically harmless, so in effect Lemma 8.1 ex-
presses K in terms of an integral of length U , and has all variables m1, m2, m3, c

separated. The expressions (8.4) and (8.8) are identical except for the sign in
ec(∓m1m2m3); in both cases, this phase cancels a factor coming from the calcu-
lation of G±(m1, m2, m3; c) defined by (8.2) below. Actually, the appearance of
ec(m1m2m3) in (8.8) is artificial in the sense that this phase is of lower order than
the phase implicit in L(m1, m2, m3, c) and we could have equally well showed that
ec(m1m2m3)L(m1, m2, m3, c) has a representation in the form (8.5).

A careful reader may notice that we have not stated an expression for K that is a true
analog of (3.4). The reason for this omission is that for the large sieve method, it is de-
sirable to have the variables m1, m2, m3, and c separated in multiplicative (Mellin) form,
and so developing an asymptotic expansion of the new phase of L is at odds with this
goal. It should be possible to develop the correct form of (3.4) by applying the stationary
phase method to (8.16). Instead, the key idea is that in (8.15), the variables m1, m2, m3, c

only occur in the block form m1m2m3/c. It then suffices to understand the Mellin trans-
form of 8 in a somewhat crude form (upper bounds suffice), which is a bit easier than
forming an asymptotic evaluation with many lower-order terms.

Proof of Lemma 8.1. As our first step, we integrate by parts three times in each of the ti
for which mi 6= 0, allowing us to obtain a crude bound of the form

K(m1, m2, m3, c)� P(T ,1,N1, N2, N3, c)

3∏
i=1

(1+ |mi |)−3,

where P is some fixed polyomial. This bound is sufficient for Lemma 8.1 when some mi
is� T A

′

for some large A′ depending polynomially on A.
For the rest of the proof, suppose that |mi | � T A

′

for some A′, and each i. Then in
the expansion for B(x) we may assume x � T , since otherwise B0 is extremely small,
and we obtain the desired bound for Lemma 8.1.

Before we jump into more intricate analysis, we can fix the sizes of C as stated in
(8.7) and (8.9) using x � (N1N2N3)

1/2/C, and Lemmas 7.1 and 7.2.
It is a bit awkward to directly treatK by stationary phase in each ti , so instead we use

the following workaround. By the change of variables t3 = u/(t1t2), we obtain

K(m1, m2, m3, c) =

∫
∞

0
B0

(
4π
√
u

c

)
I (u) du+O(T −A),

where

I (u) =

∫
∞

0

∫
∞

0
w3

(
u

t1t2

)
w1(t1)w2(t2)ec

(
−
m3u

t1t2
−m1t1 −m2t2

)
dt1 dt2

t1t2
.

The asymptotic expansion of I (u) will be derived from Lemma 6.5. This saves the more
difficult case of stationary phase with B0 for last when the integral is one-dimensional.
This feature pleasantly allows us to unify cases for as long as possible since we do not
use any properties of B0 until the later stages.
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Suppose that
MiNi/C � T ε, i = 1, 2, 3, (8.10)

so that the integrand defining I (u) is oscillatory. The opposite case is somewhat easier
and we will return to it later. Lemma 6.5 then shows that

I (u) =
c

(m1m2N1N2)1/2
e

(
−

3(m1m2m3u)
1/3

c

)
w4(u)+O(T

−A),

where w4 is a smooth function supported on u � N1N2N3, depending on m1, m2, m3, c,
etc., but that is inert in all variables. Furthermore, we derive from (6.5) that w4 vanishes
unless

m1N1 � m2N2 � m3N3. (8.11)

Hence we derive

K =

(
c1T

(m1m2N1N2)1/2

∫
|v|≤1ε/1

e

(
vT

π

)
g(1v)

×

∫
∞

0
e

(
2
√
u

c
φ(v)−

3(m1m2m3u)
1/3

c

)
w4(u) du dv

)
+O(T −A). (8.12)

The u-integral can also by analyzed by stationary phase, as (8.10) and Lemma 6.3(1)
show that it is small unless a stationary point exists, which implies

|φ(v)| � |m1m2m3|
1/3(N1N2N3)

−1/6 (8.13)

(additionally, φ(v)must have the same sign asm1m2m3). Note that if φ(v) = ± cos(v) or
± cosh(v) then |φ(v)| � 1, so this implies |m1m2m3| � (N1N2N3)

1/2, which by (8.11)
leads to the assumption Mi � (N1N2N3)

1/2/Ni in Lemma 8.1(1).
However, if φ(v) = ± sin(v) or ± sinh(v), then |v| � |m1m2m3|

1/3(N1N2N3)
−1/6,

and since |v| ≤ 1−1+ε, we conclude that |m1m2m3| � (N1N2N3)
1/21−3+ε. Again

using (8.11) leads to the upper bound on Mi in (8.9).
Assuming (8.13), the stationary point at u0 = (m1m2m3)

2/φ(v)6 potentially lies
inside the support of w4, so

∫
∞

0
e

(
2
√
u

c
φ(v)−

3(m1m2m3u)
1/3

c

)
w4(u) du

=
c1/2(N1N2N3)

5/6

|m1m2m3|1/6
e

(
−
m1m2m3

cφ(v)2

)
w5(v)+O(T

−A), (8.14)

where w5 is inert in terms of v as well as the mi and c, and w5 has support on (8.13). The
fact that w5 is inert in terms of v perhaps requires some discussion. We naturally obtain
an inert function in terms of φ(v), but since φ(v) has bounded derivatives for |v| ≤ 1, we
do in fact obtain an inert function of v.
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By inserting (8.14) into (8.12), and using (8.11) to obtain a more symmetric expres-
sion, we derive

K(m1, m2, m3, c) =
c3/21T (N1N2N3)

1/2

|m1m2m3|1/2
e

(
∓
m1m2m3

c

)
8

(
m1m2m3

c

)
+O(T −A),

(8.15)
where

8(x) =

∫
|v|≤1ε/1

e

(
vT

π

)
g(1v)e

(
x(±1− φ(v)−2)

)
w6(v) dv, (8.16)

and w6 is another inert function having the same properties as w5. Here the ∓ sign in
(8.15) is − for the cos(v) or cosh(v) cases, and + for the sin(v) or sinh(v) cases, and the
sign in (8.16) respects these.

Finally, we shall use the Mellin technique to analyze 8(x).

Lemma 8.2. Suppose that g is a function satisfying g(j)(x) �j,A (1 + |x|)−A, φ(v) is
given via (7.8), and 8 is defined by (8.16) for some inert function w6. Then for x � X,

8(x) =
1
T

∫
|t |�U

λX,T (t)x
it dt +O(T −A),

where λX,T and U depend on X, T , and the choice of φ(v), and satisfy λX,T (t)� 1 and{
U = T 2/X, φ(v) = ± cosh(v) or ± cos(v),
U = X1/3T 2/3, φ(v) = ± sinh(v) or ± sin(v).

(8.17)

Proof. Suppose that 1 ≤ Y < y < 2Y , and let w(y) be a smooth function such that
w(y) = 1 on this interval, and w(y) = 0 for y < Y/2 and y > 3Y . By the Mellin
inversion formula, for Y < y < 2Y , we have

e(y) = w(y)e(y) =

∫
∞

−∞

f (t)yit dt, f (t) =
1

2π

∫
∞

0
w(y)e(y)y−it

dy

y
.

Integration by parts shows f (t)�(|t | + Y )−A unless t�Y , in which case f (t)�Y−1/2,
by stationary phase. We sometimes write f = fY to help us remember the parameter
associated to f .

We will use this in 8(x), but we need to treat the two types of φ a bit differently.
If φ(v) = ± sin(v) or ± sinh(v), we have |φ(v)| � |v| = o(1), so x|1 + φ(v)−2

| �

X/|v|2 � T ε, and thus letting |v0| = |m1m2m3|
1/3(N1N2N3)

−1/6 (recall v is supported
for |v| � |v0|), we have

8(x) =

∫
|t |�X/|v0|2

fX/v2
0
(t)xit

(∫
|v|≤1ε/1

e

(
vT

π

)
g(1v)(φ(v)−2

+ 1)itw6(v) dv

)
dt

+O(T −A).

We need to bound the inner integral over v. By a Taylor expansion, we have

(φ(v)−2
+ 1)it = e−2it log v+it (d2v

2
+d4v

4
+··· )
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for certain constants di (depending only on the choice of sin(v) or sinh(v)), so the v-in-
tegral is small except near the stationary point |v| � t/T . Note that |v0| � |t |/T �

X/(v2
0T ), so that |v0| � (x/T )1/3. As a pleasant consistency check, note that x �

M1M2M3/C, and so (x/T )1/3 � (M1M2M3)
1/3(N1N2N3)

−1/6, using (8.9). The length
of the t-integral is therefore seen to be X/|v0|

2
� X1/3T 2/3, consistent with the claimed

size of U in the second line of (8.17). In the inner v-integral, the second derivative of the
phase is of size t/v2

0 , so we have∫
|v|≤1ε/1

e

(
vT

π

)
g(1v)(1+ φ(v)−2)itw6(v) dv �

|v0|
√
|t |
,

and therefore fX/v2
0
(t)|v0|/

√
|t | � |v0|

2/(
√
X
√
|t |) � |v0|

3/X � T −1, leading to the
bound on λX,T (t) in the second line of (8.17).

Next we treat φ(v) = ± cos(v) or ± cosh(v). Here we have, for certain constants d ′i ,

1− φ(v)−2
=

1
2v

2
+ d ′4v

4
+ d ′6v

6
+ · · · ,

so in this case we may initially restrict the v-integral so that v � T/x (prior to aplying
the t-integral formula for e(y)), using Lemma 6.3 again. In this range, x(1− φ(v)−2) �

T 2/X, so that

8(x) =

∫
|t |�T 2/X

fT 2/X(t)x
it

(∫
|v|�T/X

e

(
vT

π

)
g(1v)(1− φ(v)−2)itw6(v) dv

)
dt

+O(T −A).

Now we have
(1− φ(v)−2)it = e2it log v+it log(1+c4v

2
+c6v

4
+··· ).

The second derivative of the phase is of size t/v2
� X. Hence∫

|v|≤1ε/1

e

(
vT

π

)
g(1v)(1− φ(v)−2)itw6(v) dv � X−1/2,

and fT 2/X(t)X
−1/2
� T −1. ut

Now we apply Lemma 8.2 to (8.15), where recall that we restrict to c � C, and |mi |�Mi .
Then we have X = C−1M1M2M3, and so in the ± cos(v) or ± cosh(v) cases, we have
U = T 2/X = T 2C/M1M2M3 � T 2C/(N1N2N3)

1/2, so we have shown (8.4). The
± sin(v) or ± sinh(v) cases are similar.

Finally, we consider the case where

MiNi/C � T ε. (8.18)

In the ± cos(v) or ± cosh(v) cases, we claim that K is very small. To see this, we go
back to the original definition (8.3), combined with (7.7). We also recall that B(x) is
small unless x � 1T 1−ε, which means that each ti-integral is oscillatory. Therefore,
Lemma 6.3 shows that K is small unless Mi � (N1N2N3)

1/2/Ni ; in other words, the
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inequalities in (8.7) remain valid. But then

MiNi/C � (N1N2N3)
1/2/C � 1T 1−ε,

which is not consistent with (8.18) (meaning K is small).
Next we study the ± sin(v) or ± sinh(v) cases. Again we use (8.3) and (7.7), and

change variables ti → Ni ti , to obtain

K = 1T (N1N2N3)

∫
R3

( 3∏
i=1

wi(Ni ti)ec(−miNi ti)
)

×

∫
|v|≤1ε/1

e

(
2
√
N1N2N3

c

√
t1t2t3φ(v)

)
e

(
vT

π

)
g(1v) dv dt1 dt2 dt3 +O(T

−A).

(8.19)

The v-integral is small unless
√
N1N2N3/C � T . The phase of each ti-integral is then

of size T |v| + O(T ε), by using (8.18). Thus if |v| � T −1+ε, then repeated integra-
tion by parts shows K is small, so in (8.19) we may shorten the v-integral by assum-
ing |v| � T −1+ε, without creating a new error term. Next we artificially multiply K
by ec(−m1m2m3)ec(m1m2m3), and use a Mellin transform to separate the variables in
ec(−m1m2m3) (we keep the plus sign part as it is, since it is visible in (8.8)). The cost in
doing this is an integral of length O(T ε), by (8.18). Thus in all we obtain an expression
of the form

K = 1(N1N2N3)ec(m1m2m3)L(m1, m2, m3, c)+O(T
−A),

where L is of the form (8.5) with V = T −ε and U = T ε. To put this into the form
of (8.4), we use

1N1N2N3 � 1T (N1N2N3)
1/2C =

C3/21T (N1N2N3)
1/2

(M1M2M3)1/2

(
M1M2M3

C

)1/2

,

which is now of the desired form by absorbing X−1/2 into the V appearing in (8.5). ut

9. Arithmetic separation of variables and the large sieve

The material in this section is logically independent of Section 8.
According to [CI, Lemma 10.2], we have an evaluation of G as follows. Let c = qr

with q squarefree, and suppose

(m3, r) = 1 and (m1m2, q, r) = 1. (9.1)

Then

G(m1, m2, m3; c)

= ec(m1m2m3)
hχkl(−1)
rq2φ(k)

Rk(m1)Rk(m2)Rk(m3)H(rhkm1m2m3; l), (9.2)
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where h = (r, q), k = (m1m2m3, q), l = q/(hk), and Rk(m) = S(0, m; k) is the
Ramanujan sum. If the coprimality conditions (9.1) are not satisfied then G vanishes.
Here

H(w; q) =
∑

u,v (mod q)

χq(uv(u+ 1)(v + 1))eq((uv − 1)w). (9.3)

Also [CI, (11.7)] gives

H(w; q) =
∑

q1q2=q

µ(q1)χq1(−1)H ∗(q1w; q2), (9.4)

where

H ∗(w; q) =
∑

u,v (mod q)
(uv−1,q)=1

χq(uv(u+ 1)(v + 1))eq((uv − 1)w),

and from [CI, (11.9)],

H ∗(w; q) =
1

φ(q)

∑
ψ (mod q)

τ(ψ)g(χ,ψ)ψ(w). (9.5)

Lemma 9.1 (Hybrid large sieve, [Ga, Theorem 2]). Suppose U ≥ 1, and let an be a
sequence of complex numbers. Then∫ U

−U

∑
ψ (mod q)

∣∣∣∑
n≤N

anψ(n)n
iu
∣∣∣2du� (qU +N)

∑
n≤N

|an|
2.

Lemma 9.2. Suppose that q is odd and squarefree, and let αm1 , βm2 , γm3 , δr be any se-
quence of complex numbers. Suppose (b1b2, q) = 1, a is a nonzero real number, and
U ≥ 1. Then

∫
|u|≤U

∣∣∣∣ ∑
m1,m2,m3
mi�Mi

∑
r�R

αm1βm2γm3δrH
∗(b1rb2m1m2m3; q)

(
m1m2m3

ar

)iu∣∣∣∣ du
� q1/2+ε(qU +M1M2)

1/2(qU +M3R)
1/2
( ∑
m1,m2,m3,r

|αm1βm2γm3δr |
2
)1/2

. (9.6)

The implied constant depends only on ε. Furthermore, (9.6) holds withH ∗ replaced byH .
In addition, if we restrict the sums over m3 and r so that (m3, r) = 1, then the left hand
side of (9.6) (with either H ∗ or H) is

� q1/2+ε(qU +M1M2)
1/2(qU +M3R)

1/2
( ∑
d,m1,m2,m3,r

d1+ε
|αm1βm2γdm3δdr |

2
)1/2

(9.7)
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This is a variation on [CI, Lemma 11.1] where the main difference is that here we have
an integral which detects orthogonality in the archimedean aspect.

Proof of Lemma 9.2. By (9.5), the left hand side of (9.6) equals∫
|u|≤U

∣∣∣∣ 1
φ(q)

∑
ψ (mod q)

∑
m1,m2,m3
mi�Mi

∑
r�R

αm1βm2γm3δrτ(ψ)g(χ,ψ)ψ(b1rb2m1m2m3)

×

(
m1m2m3

ar

)iu∣∣∣∣ du, (9.8)

which we arrange into a bilinear form by grouping together m1 and m2 as well as m3
and r; this shows that (9.8) is bounded by∫
|u|≤U

∑
ψ (mod q)

|g(χ,ψ)τ(ψ)|

φ(q)

∣∣∣ ∑
m1,m2

αm1βm2ψ(m1m2)(m1m2)
iu
∣∣∣

×

∣∣∣∣∑
m3,r

γm3δrψ(rm3)

(
m3

r

)iu∣∣∣∣ du. (9.9)

Conrey and Iwaniec showed |g(χ,ψ)| � q1+ε, and of course |τ(ψ)| ≤ q1/2 (see e.g.
[IK, Lemma 3.1]). By Cauchy’s inequality and some rearrangements, this is

� q1/2+ε
(∫
|u|≤U

∑
ψ (mod q)

∣∣∣ ∑
n�M1M2

anψ(n)n
iu
∣∣∣2du)1/2

×

(∫
|u|≤U

∑
ψ (mod q)

∣∣∣ ∑
n�M3R

bnψ(n)n
iu
∣∣∣2du)1/2

,

where (an) is the Dirichlet convolution of (αm1) and (βm2), and likewise for (bn). By
Lemma 9.1, we obtain the bound (9.6), as desired.

The case with (m3, r) = 1 follows similar lines. In (9.9) we use Möbius inversion,
writing

∑
d|(m3,r)

µ(d) to detect this condition. Then we move the sum over d to the
outside, and apply Cauchy’s inequality, in the form |

∑
d ad |

2
≤ ζ(1+ ε)

∑
d d

1+ε
|ad |

2.
The remaining steps are identical to the previous case.

To replace H ∗ by H , we use (9.4) and apply (9.6) or (9.7), whichever is appropriate.
ut

Lemma 9.3. Let conditions be as in Lemma 9.2. Then∫
|u|≤U

∣∣∣∣ ∑
m1,m2,m3
mi�Mi

∑
r�R

αm1βm2γm3δrG(m1, m2, m3, qr)e−qr(m1m2m3)

(
m1m2m3

qr

)iu∣∣∣∣du
�
q1/2+ε

Rq2 (qU +M1M2)
1/2(qU +M3R)

1/2
( ∑
d,m1,m2,m3,r

d1+ε
|αm1βm2γdm3δdr |

2
)1/2

.

(9.10)
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Remark: If γm3 � 1 and δr � 1, which is all that we require in our use of Lemma 9.3,
then the extra sum over d does not change the bound arising from d = 1.

Proof. By (9.2), the left hand side of (9.10) is of the form∫
|u|≤U

∣∣∣∣ ∑
∗

m1,m2,m3
mi�Mi

∑
r�R

αm1βm2γm3δr
hχkl(−1)
rq2φ(k)

× Rk(m1)Rk(m2)Rk(m3)H(rhk m1m2m3; l)

(
m1m2m3

qr

)iu∣∣∣∣ du,
where h, k, l are functions of the other variables, and the star on the sum indicates that
(9.1) holds. Lemma 9.2 immediately shows that the most important terms h = k = 1,
l = q give the stated bound, but of course we need to treat all cases. We may assume
that the coefficients are zero unless mi � Mi , and r � R. Next we write r = hr ′ where
h | q and (r ′, q/h) = 1. Note that (9.1) means (m1, h) = (m2, h) = (m3, h) = 1 and
(m3, r

′) = 1. We also move the sum over k to the outside, showing that the left hand side
of (9.10) is

�

∑
hk|q

h

Rq2φ(k)

∫
|u|≤U

∣∣∣∣ ∑
∗

m1,m2,m3
(m1m2m3,q)=k

∑
∗

(r ′,m3)=1

αm1βm2γm3δhr ′

× Rk(m1)Rk(m2)Rk(dm3)H(r ′h2k m1m2m3; l)

(
m1m2m3

r ′

)iu∣∣∣∣ du, (9.11)

where the stars on the sums indicate the already listed coprimality conditions. The key
point is that these conditions are only of the form (m′i, s) = 1 where s is an integer
independent of the other m′i and r ′ (and similarly for the condition on r ′). In this way,
we can absorb these conditions into the definition of the coefficients without altering the
upper bound on their magnitude.

The next problem is that the condition (m1m2m3, q) = k is in terms of the product
of the mi , and so these variables are not separated. However, this is easily solved as
follows. Since q is squarefree, for fixed k | q, the condition (m1m2m3, q) = k means
(m1m2m3, k) = k and (m1, q/k) = (m2, q/k) = (m3, q/k) = 1. We can parameterize
the solutions to (m1m2m3, k) = k as follows. Suppose (m1, k) = k1, and write m1 =

k1m
′

1 and k = k1k
′, so (m1, k

′) = 1. Now (m2m3, k
′) = k′, so we can repeat this

argument giving say (m2, k
′) = k2, m2 = k2m

′

2, k′ = k2k3, and therefore (m3, k3) = k3,
so we may write m3 = k3m

′

3. In this way we separate the m′i .
Thus (9.11) is

�

∑
hk|q

k=k1k2k3

h

Rq2φ(k)

∫
|u|≤U

∣∣∣∣ ∑
∗

m′1,m
′

2,m
′

3

∑
∗

r ′�R/h

(r ′,m′3)=1

αk1m
′

1
βk2m

′

2
γk3m

′

3
δhr ′

× Rk(m
′

1k1)Rk(m
′

2k2)Rk(m
′

3k3)H(r ′h2m′1m
′

2m
′

3; l)

(
m1m2m3

r ′

)iu
du

∣∣∣∣.
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Using |Rk(m)| ≤ (m, k), we easily see that∑
∗

m′1�M1/k1

|αk1m
′

1
|
2
|Rk1k2k3(k1m

′

1)|
2
≤ k2

1

∑
m1�M1

|αm1 |
2,

and similarly form′2 andm′3. Therefore, Lemma 9.2 shows that the left hand side of (9.10)
is

�

∑
h|q

∑
k1k2k3=k|q

h

Rq2φ(k)

(
q

hk

)1/2+ε(
qU

hk
+
M1M2

k1k2

)1/2(
qU

hk
+
M3R

k3h

)1/2

×

(
k2

∑
d,m1,m2,m3,r

d1+ε
|αm1βm2γdm3δdr |

2
)1/2

.

One easily checks that larger values of h and k do not create a larger error term than the
case with h = k = 1, so the proof is complete. ut

10. Completion of the proof

In this section we combine estimates from Sections 8 and 9, and prove Proposition 7.3,
which in turn implies Theorem 1.1.

Proof of Proposition 7.3. Using (8.1), Lemma 8.1, and (9.2), we obtain

S±(N1, N2, N3;C;B0)�
∑

M1,M2,M3 dyadic

∫
|y|≤T ε

C1/21T (N1N2N3)
1/2

(M1M2M3)1/2V

×

∫
|u|�U

∣∣∣∣ ∑
mi�Mi

∑
r�C/q

m
iy1
1 m

iy2
2 m

iy3
3 ciy4G(m1, m2, m3, qr)eqr(−m1m2m3)

×

(
m1m2m3

qr

)iu
du

∣∣∣∣,
plus an error term of sizeO(T −A). Recall we wish to show the bound (7.9). We need this
for the three choices of U and V appearing in Lemma 8.1, so we do not specialize them
yet. By Lemma 9.3 (and the following remark), we bound this by

C1/21T (N1N2N3)
1/2

(M1M2M3)1/2V

q1/2+εT ε

Cq
(qU +M1M2)

1/2
(
qU +

M3C

q

)1/2(
M1M2M3C

q

)1/2

.

Without using any specializations yet, this simplifies as

1T (N1N2N3)
1/2(qT )ε

[
1
qV

(qU +M1M2)
1/2
(
qU +

M3C

q

)1/2]
. (10.1)

As the desired bound 1T (N1N2N3)
1/2(qT )ε is already visible in front, we treat the part

of (10.1) inside the square brackets.
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First consider case (1) from Lemma 8.1 where Mi � (N1N2N3)
1/2/Ni , V = T ,

and U and C are given by (8.6) and (8.7). Here we have qU � (qT /1)T ε, M3C/q �
N1N2
1T q

T ε � (qT /1)T ε (recalling Ni � (qT )1+ε), and M1M2 � N3 � (qT )1+ε. Thus
(10.1) simplifies as

11/2T (N1N2N3)
1/2(qT )ε.

Next consider case (2) from Lemma 8.1 withMiNi/C�T
ε. Here X=M1M2M3/C,

V = T , U = X1/3T 2/3, (8.9) holds, and M1N1 � M2N2 � M3N3. Using (8.9), we
easily deduce X � T1−3+ε. This implies U � (T /1)T ε, exactly as in (1). Similarly,
M3C/q �

N1N2
qT1

T ε � (qT )1+ε, as in (1), and M1M2 � N31
−2T ε, which is slightly

smaller than in (1). It is now clear that (2) gives the same bound as (1).
Finally, we treat the case of MiNi/C � T ε (which holds for all i, otherwise K is

small); then the expression in brackets is, using X � T ε,

�
T ε

q
(q +M1M2)

1/2
(
q +

M3C

q

)1/2

�
T ε

q

(
q +

C2

N1N2

)1/2(
q +

C2

N3q

)1/2

.

It still remains true that C � (N1N2N3)
1/2/T , so we quickly bound the expression in

brackets by (qT )ε, as desired. ut
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