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Abstract. We prove that the Besicovitch Covering Property (BCP) holds for homogeneous dis-
tances on the Heisenberg groups whose unit ball centered at the origin coincides with a Euclidean
ball. We thus provide the first examples of homogeneous distances that satisfy BCP on these
groups. Indeed, commonly used homogeneous distances, such as (Cygan–)Korányi and Carnot–
Carathéodory distances, are known not to satisfy BCP. We also generalize those previous results
by giving two geometric criteria that imply the non-validity of BCP and showing that in some
sense our examples are sharp. To put our result in another perspective, inspired by an observation
of D. Preiss, we prove that in a general metric space with an accumulation point, one can always
construct bi-Lipschitz equivalent distances that do not satisfy BCP.
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1. Introduction

Covering theorems are known to be among the fundamental tools of measure theory.
They reflect the geometry of the space and are commonly used to establish connections
between local and global behavior of measures. Covering theorems and their applications
have been studied for example in [5] and [9]. There are several types of covering results,
all with the same purpose: from an arbitrary cover of a set in a metric space, one extracts
a subcover as disjoint as possible. More specifically, we will consider the so-called Besi-
covitch Covering Property (BCP) which originates from the work of Besicovitch ([1], [2],
see also [5, 2.8], [20], [21]) in connection with the theory of differentiation of measures.
See Section 1.1 for a more detailed presentation of the Besicovitch Covering Property and
its applications.

The geometric setting we are interested in is the setting of Carnot groups, and more
specifically the Heisenberg groups Hn (see Section 1.2), equipped with so-called homo-
geneous distances (see Definition 1.9). Our main result, Theorem 1.14, states that BCP
holds for those homogeneous distances on Hn, denoted by dα in the rest of this paper,
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whose unit ball centered at the origin coincides with a Euclidean ball centered at the ori-
gin in exponential coordinates. This gives the first examples of Carnot groups on which
one can construct homogeneous distances satisfying BCP. Moreover these distances have
simple descriptions, geometrically by means of their unit ball centered at the origin, and
also through an explicit algebraic expression (see (1.12)).

Any two homogeneous distances on Hn are bi-Lipschitz equivalent. Recall that two
distances d and d are said to be bi-Lipschitz equivalent if there exists C > 1 such that
C−1d ≤ d ≤ Cd . Hence, for many purposes, the choice of a specific homogeneous
distance doest not matter, and Theorem 1.14 is expected to have several applications. One
of them is the extension to Hn of a result of J. Heinonen and P. Koskela [11, Theorem 1.4]
about quasiconformal mappings. This also allows one to replace a “lim sup” by a “lim inf”
in the definition of quasiconformal mappings, which suffices for quasisymmetry (see [11,
remark after Theorem 1.4] for more details).

Another noticeable consequence of Theorem 1.14 is the validity of the Differentiation
Theorem for every locally finite Radon measure on Hn equipped with some homogeneous
distance dα (see Section 1.1 and in particular Theorem 1.5). In connection with recent
developments in geometric measure theory on Carnot groups, this allows one to get a
simpler proof of the structure theorem for finite perimeter sets in Hn (see [7], [8]).

It has already been noticed that two commonly used homogeneous distances on Hn
do not satisfy BCP, namely the Cygan–Korányi distance, usually also called Korányi or
gauge distance1 [13], and the Carnot–Carathéodory distance [22]. It turns out that the
validity of BCP strongly depends on the distance the space is endowed with, and more
specifically on the geometry of its balls. To give some more evidence for this fact and to
put our result in perspective, we also prove two criteria that imply the non-validity of BCP.
They give two large families of homogeneous distances on Hn that do not satisfy BCP,
and show that in some sense our example for which BCP holds is sharp (see Section 6, in
particular Theorems 6.1 and 6.3).

As a matter of fact, our first criterion applies to the Cygan–Korányi and Carnot–
Carathéodory distances, thus also giving new geometric proofs of the failure of BCP
for these distances, but the criterion is more general. It also applies to the so-called box-
distance (the terminology might not be standard although this distance is a standard ho-
mogeneous distance on Hn, see (6.2)), thus proving the non-validity of BCP for the latter
homogeneous distance as well.

Going back to the distances considered in the present paper and for which we prove
that BCP holds, Hebisch and Sikora showed [10] that in any Carnot group, there are ho-
mogeneous distances whose unit ball centered at the origin coincides with a Euclidean
ball centered at the origin with a small enough radius. In the specific case of the Heisen-
berg groups, these distances are related to the Cygan–Korányi distance. They can indeed
be expressed in terms of the quadratic mean of the Cygan–Korányi distance (at least for
some specific value of the radius of the Euclidean ball which coincides with the unit ball

1 We adopt here the terminology Cygan–Korányi distance, which may not be standard, to empha-
size the fact that Cygan [4] was the first to observe that the natural gauge in the Heisenberg group
actually induces a distance; also Korányi [12] himself attributes this distance to Cygan.
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centered at the origin) together with the pseudo-distance on Hn given by the Euclidean
distance between horizontal components.

These distances have been previously considered in the literature. Lee and Naor [18]
proved that these metrics are of negative type on Hn. Recall that a metric space (M, d) is
said to be of negative type if (M,

√
d) is isometric to a subset of a Hilbert space. Combined

with the work of Cheeger and Kleiner [3] about a weak notion of differentiability for
maps from Hn into L1, which leads in particular to the fact that Hn equipped with a
homogeneous distance does not admit a bi-Lipschitz embedding into L1, this provides a
counterexample to the Goemans–Linial conjecture in theoretical computer science, which
was the motivation for those papers. Let us remark that the Cygan–Korányi distance is not
of negative type on Hn.

We refer to Section 1.2 for the precise definition of our distances dα and their con-
nection with the Cygan–Korányi distance and the distances of negative type considered
in [18].

1.1. Besicovitch Covering Property

Let (M, d) be a metric space. When speaking of a ball B in M , it will be understood
that B is a closed ball and that it comes with a fixed center and radius (although these in
general are not uniquely determined by B as a set). Thus B = Bd(p, r) for some p ∈ M
and some r > 0 where Bd(p, r) = {q ∈ M; d(q, p) ≤ r}.

Definition 1.1 (Besicovitch Covering Property). One says that the Besicovitch Covering
Property (BCP) holds for the distance d on M if there exists an integer N ≥ 1 with the
following property. Let A be a bounded subset of (M, d) and let B be a family of balls
in (M, d) such that each point of A is the center of some ball of B. Then there is a
subfamily F ⊂ B whose balls cover A and which has the property that every point in M
belongs to at most N balls of F , that is,

χA ≤
∑
B∈F

χB ≤ N,

where χA denotes the characteristic function of the set A.

When equipped with a homogeneous distance, the Heisenberg groups turn out to be
doubling metric spaces. Recall that this means that there exists an integer C ≥ 1 such
that each ball of radius r > 0 can be covered with less than C balls of radius r/2. When
(M, d) is a doubling metric space, BCP turns out to be equivalent to a covering prop-
erty, strictly weaker in general, which we call the Weak Besicovitch Covering Property
(w-BCP) (the terminology might not be standard) and with which we shall work in this
paper. First, let us fix some more terminology.

Definition 1.2 (Family of Besicovitch balls). We say that a family B of balls in (M, d)
is a family of Besicovitch balls if B = {B = Bd(xB , rB)} is a finite family of balls such
that xB 6∈ B ′ for all distinct B,B ′ ∈ B, and

⋂
B∈B B 6= ∅.
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Definition 1.3 (Weak Besicovitch Covering Property). One says that the Weak Besicov-
itch Covering Property (w-BCP) holds for the distance d on M if there exists an integer
N ≥ 1 such that CardB ≤ N for every family B of Besicovitch balls in (M, d).

The validity of BCP implies the validity of w-BCP. We stress that there exist metric spaces
for which w-BCP holds although BCP does not. However, when the metric is doubling,
both properties are equivalent, as can be proved by following [19, proof of Theorem 2.7]
(see also [17]):

Characterization 1.4 (BCP in doubling metric spaces). Let (M, d) be a doubling met-
ric space. Then BCP holds for the distance d on M if and only if w-BCP does.

As already said, covering theorems and especially the Besicovitch Covering Property
and the Weak Besicovitch Covering Property play an important role in many situations in
measure theory, regularity and differentiation of measures, as well as in many problems in
harmonic analysis. This is particularly well illustrated by the connection between w-BCP
and the so-called Differentiation Theorem. The validity of BCP in the Euclidean space is
due to Besicovitch and was a key tool in his proof of the fact that the Differentiation The-
orem holds for each locally finite Borel measure on Rn ([1], [2], see also [5, 2.8], [20]).
Moreover, as emphasized in Theorem 1.5, the validity of w-BCP actually turns out to
be equivalent to the validity of the Differentiation Theorem for each locally finite Borel
measure as shown in [21].

Theorem 1.5 (Preiss [21]). Let (M, d) be a complete separable metric space. Then the
Differentiation Theorem holds for each locally finite Borel measure µ on (M, d), that is,

lim
r→0+

1
µ(Bd(p, r))

∫
Bd (p,r)

f (q) dµ(q) = f (p)

for µ-almost every p ∈ M and for each f ∈ L1(µ) if and only if M =
⋃
n∈NMn where,

for each n ∈ N, w-BCP holds for the family of balls centered onMn with radii less than rn
for some rn > 0.

As already stressed, the fact that BCP holds in a metric space depends strongly on the
distance with which the space is endowed. On the one hand, under very mild assump-
tions on the metric space (namely, as soon as there exists an accumulation point), one
can indeed always construct bi-Lipschitz equivalent distances as close as we want to the
original distance and for which BCP is not satisfied, as shown in the following result.

Theorem 1.6. Let (M, d) be a metric space. Assume that there exists an accumulation
point in (M, d). Let 0 < c < 1. Then there exists a distance d onM such that cd ≤ d ≤ d
and for which w-BCP, and hence BCP, does not hold.

A slightly different version of this result is stated in [21, Theorem 3]. For the sake of
completeness, in Section 8 we give a construction of a distance as stated in Theorem 1.6.

On the other hand, the question whether a metric space can be remetrized so that BCP
holds is in general significantly more delicate. As already explained, the main result of
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the present paper, Theorem 1.14, is a positive answer to this question for the Heisenberg
groups equipped with ad-hoc homogeneous distances, namely those whose unit ball at
the origin coincides with a Euclidean ball with a small enough radius.

1.2. The Heisenberg group

As a set, we identify the Heisenberg group Hn with R2n+1 and we equip it with the
Euclidean topology. We choose the following convention for the group law:

(x, y, z) · (x′, y′, z′) :=
(
x + x′, y + y′, z+ z′ + 1

2 〈x, y
′
〉 −

1
2 〈y, x

′
〉
)

(1.7)

where x, y, x′, y′ belong to Rn, z, z′ belong to R and 〈·, ·〉 denotes the usual scalar product
in Rn. This corresponds to a choice of exponential and homogeneous coordinates.

The one-parameter family of dilations on Hn is given by (δλ)λ>0 where

δλ(x, y, z) := (λx, λy, λ
2z). (1.8)

These dilations are group automorphisms.

Definition 1.9 (Homogeneous distance). A distance d on Hn is said to be homogeneous
if it is left invariant, that is, d(p · q, p · q ′) = d(q, q ′) for all p, q, q ′ ∈ Hn, and one-
homogeneous with respect to the dilations, that is, d(δλ(p), δλ(q)) = λd(p, q) for all
p, q ∈ Hn and all λ > 0.

We stress that homogeneous distances on Hn induce the Euclidean topology on Hn. This
is a nontrivial fact which follows from the continuity of the dilations with respect to the
Euclidean topology together with the homogeneity of the distance as stated in Defini-
tion 1.9 (see [15] and [17]).

It turns out that homogeneous distances on Hn do exist in abundance and make it a
doubling metric space. It is also well known that any two homogeneous distances are bi-
Lipschitz equivalent. See for example [6] for more details about the Heisenberg groups
and more generally Carnot groups.

The (family of) homogeneous distance(s) we consider in this paper can be defined
in the following way. For α > 0, we denote by Bα the Euclidean ball in Hn ' R2n+1

centered at the origin with radius α, that is,

Bα := {(x, y, z) ∈ Hn; ‖x‖2Rn + ‖y‖
2
Rn + |z|

2
≤ α2
},

where ‖ · ‖Rn denotes the Euclidean norm in Rn, and we set

dα(p, q) := inf{r > 0; δ1/r(p
−1
· q) ∈ Bα}. (1.10)

Hebisch and Sikora [10] proved that if α > 0 is small enough, then dα actually defines
a distance on Hn. More generally, this holds true in any Carnot group starting from the
set Bα given by the Euclidean ball centered at the origin with radius α > 0 small enough,
where one identifies in the usual way the group with some Rm where m is the topological
dimension of the group.
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It then follows from the very definition that dα is the homogeneous distance on Hn
for which the unit ball centered at the origin coincides with the Euclidean ball of radius α
centered at the origin. The geometric description of arbitrary balls that can then be de-
duced from the unit ball centered at the origin via dilations and left translations is actually
of crucial importance for understanding the reasons why BCP eventually holds for these
distances.

On the other hand, it is particularly convenient to note that in the specific case of the
Heisenberg groups, one also has a fairly simple analytic expression for distances whose
unit ball at the origin is given by a Euclidean ball centered at the origin. This will ac-
tually be technically extensively used in our proof of Theorem 1.14. This also gives the
explicit connection with the Cygan–Korányi distance and the distances of negative type
considered by Lee and Naor [18].

Set

ρ(p) :=

√
‖x‖2Rn + ‖y‖

2
Rn and ‖p‖g,α := (ρ(p)

4
+ 4α2

|z|2)1/4 (1.11)

for p = (x, y, z) ∈ Hn. Then, as verified in Section 2, one has

dα(p, q) =

√
ρ(p−1

· q)2 + ‖p−1
· q‖2g,α

2α2 . (1.12)

First, note that dρ(p, q) := ρ(p−1
·q) is a left-invariant pseudo-distance on Hn that is

one-homogeneous with respect to the dilations. Next, when α = 2, ‖ · ‖g,2 is nothing but
the Cygan–Korányi norm which is well known to be a natural gauge in Hn. It can actually
be checked by direct computations that dg,α(p, q) := ‖p−1

· q‖g,α satisfies the triangle
inequality for any 0 < α ≤ 2, and hence defines a homogeneous distance on Hn. This was
first proved by Cygan in [4] when α = 2. One then recovers from the analytic expression
(1.12) that dα actually defines a homogeneous distance on Hn for any 0 < α ≤ 2, giving
also an explicit range of values of α in Hn for which this fact holds and was first observed
in [10] for general Carnot groups and for small enough values of α.

Theorem 1.13. For any 0 < α ≤ 2, dα defines a homogeneous distance on Hn.

There might be other values of α > 2 such that dα defines a homogeneous distance on Hn.
These distances turn out to be those considered by Lee and Naor [18]. They actually

proved that d2 is of negative type in Hn, in order to provide a counterexample to the so-
called Goemans–Linial conjecture. Let us mention that it can easily be checked that the
proof in [18] extends to the distances dα for all 0 < α ≤ 2.

Let us now state our main result.

Theorem 1.14. Let α > 0 be such that dα defines a homogeneous distance on Hn. Then
BCP holds for the distance dα .

For technical and notational simplicity, we will focus our attention on the first Heisenberg
group H = H1. We shall point out briefly in Section 7 the minor modifications needed to
make our arguments work in any Heisenberg group Hn.
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The rest of the paper is organized as follows. In Section 2 we fix some conventions
about H and the distance dα and state three technical lemmas on which the proof of The-
orem 1.14 is based. The proofs of these lemmas are given in Sections 4 and 5. Section 3
is devoted to the proof of Theorem 1.14 itself. In Section 6 we prove two criteria, The-
orems 6.1 and 6.3, for homogeneous distances on H that imply that BCP does not hold.
Theorem 1.6 is proved in Section 8.

In [17], in part based on some results of the present paper, we prove that on stratified
groups of step 2, homogeneous distances satisfying BCP do exist, whereas such homoge-
neous distances do not exist on stratified groups of step higher than 3.

2. Preliminary results

As already mentioned, in Sections 2 to 6 we will focus on the first Heisenberg group
H = H1. The modifications needed to handle the case of Hn for any n ≥ 1 will be
indicated in Section 7.

We first fix some conventions and notation. Next, we state the main lemmas on which
the proof of Theorem 1.14 will be based.

Recall that we identify the Heisenberg group H with R3 equipped with the group law
given in (1.7) and we endow it with the Euclidean topology.

We define the projection π : H→ R2 by

π(x, y, z) := (x, y). (2.1)

When considering a specific point p ∈ H, we usually denote its coordinates by
(xp, yp, zp) and we set

ρp :=

√
x2
p + y

2
p. (2.2)

From now on in this section, as well as in Sections 3, 4 and 5, we fix α > 0 such that
dα as given in (1.10) defines a homogeneous distance on H, and all metric notions and
properties will be understood relative to the distance dα . In particular we shall denote the
closed balls with center p ∈ H and radius r > 0 by B(p, r) without explicit reference to
the distance dα .

Remembering (1.10), we have the following properties.

Proposition 2.3. For p = (xp, yp, zp) ∈ H, we have

dα(0, p) ≤ r ⇔
ρ2
p

r2 +
z2
p

r4 ≤ α
2, (2.4)

dα(0, p) = r ⇔
ρ2
p

r2 +
z2
p

r4 = α
2, (2.5)

from which we get

dα(0, p) =

√√√√ρ2
p +

√
ρ4
p + 4α2z2

p

2α2 . (2.6)
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For a point p ∈ H, we set
rp := dα(0, p). (2.7)

Using left translations, we have the following properties for any p, q ∈ H:

dα(p, q) ≤ r ⇔
ρ2
p−1·q

r2 +

z2
p−1·q

r4 ≤ α2 (2.8)

and

dα(p, q) =

√√√√ρ2
p−1·q

+

√
ρ4
p−1·q

+ 4α2z2
p−1·q

2α2 (2.9)

where

ρp−1·q =

√
(xq − xp)2 + (yq − yp)2, zp−1·q = zq − zp −

xpyq − ypxq

2
,

by definition of the group law (1.7). Note that if p = (xp, yp, zp) ∈ H then p−1
=

(−xp,−yp,−zp).
Let us point out that balls in (H, dα) are convex in the Euclidean sense when identi-

fying H with R3 with our chosen coordinates. Indeed, the unit ball centered at the origin
is by definition the Euclidean ball of radius α in H ' R3 and thus is Euclidean convex.
Next, dilations (1.8) are linear maps and left translations (see (1.7)) are affine maps, hence

B(p, r) = p · δr(B(0, 1))

is also a Euclidean convex set in H ' R3. This will be of crucial use for some of our
arguments and we state it below as a proposition for further reference.

Proposition 2.10. Balls in (H, dα) are convex in the Euclidean sense when identifying H
with R3 with our chosen coordinates.

We shall also use the following isometries of (H, dα). First, rotations around the z-axis
are defined by

Rθ : (x, y, z) 7→ (x cos θ − y sin θ, x sin θ + y cos θ, z) (2.11)

for some angle θ ∈ R. Next, the reflection R is defined by

R(x, y, z) := (x,−y,−z). (2.12)

Using (2.9), one can easily check that these maps are isometries of (H, dα).
We now state the main lemmas on which the proof of Theorem 1.14 will be based.
For θ ∈ (0, π/2) and a, b > 0, we set (see Figure 1)

P(a, b, θ) := {p ∈ H; xp > a, |zp| < b, |yp| < xp tan θ}. (2.13)
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Fig. 1. Two views of the region P(a, b, θ).

Lemma 2.14. There exists θ0 ∈ (0, π/4), which depends only on α, such that for all
θ ∈ (0, θ0), there exists a0(θ) ≥ 1 such that for all a > a0(θ) and all b ∈ (0, 1), the
following holds. Let p ∈ H and q ∈ H be such that p /∈ B(q, rq) and q /∈ B(p, rp). Then
at most one of these two points belongs to P(a, b, θ).

For a, b > 0, we set (see Figure 2(a))

T (a, b) := {p ∈ H; zp < −a, ρp < b}. (2.15)

(a) The truncated cylinder T (a, b) (b) The conic sector C(θ).

Fig. 2. The regions T (a, b) and C(θ).

Lemma 2.16. There exist a1 ≥ 1 and b1 ∈ (0, 1), depending only on α, such that for all
a > a1 and all b ∈ (0, b1), the following holds. Let p, q ∈ H be such that p /∈ B(q, rq)

and q /∈ B(p, rp). Then at most one of these two points belongs to T (a, b).

These two lemmas will be proved in Section 4.
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For θ ∈ (0, π/2), we set (see Figure 2(b))

C(θ) := {p ∈ H; |yp| < xp tan θ}. (2.17)

Lemma 2.18. There exists θ1 ∈ (0, π/8), which depends only on α, such that for all
θ ∈ (0, θ1) the following holds. Let p, q ∈ H be such that

zq ≤ 0 and zp ≤ 0, (2.19)
ρq ≤ ρp, (2.20)
q ∈ C(θ) and p ∈ C(θ), (2.21)
q 6∈ B(p, rp) and p 6∈ B(q, rq). (2.22)

Then

zq < 2zp, (2.23)
ρq < ρp cos(2θ). (2.24)

This lemma will be proved in Section 5.

3. Proof of Theorem 1.14

This section is devoted to the proof of Theorem 1.14. Recall that we consider here the case
H = H1 equipped with the homogeneous distance dα as defined in (1.10) (see Section 7
for the general case Hn, n ≥ 1). Recall also that due to Characterization 1.4, Theorem 1.14
will follow if we find an integer N ≥ 1 such that CardB ≤ N for every family B of
Besicovitch balls (see Definition 1.2).

We first reduce the proof to the case of some specific families of Besicovitch balls.
In what follows, when considering families {pj } of points we shall simplify the notation

and set pj = (xj , yj , zj ), ρj =
√
x2
j + y

2
j and rj = dα(0, pj ). Recall that C(θ) is defined

in (2.17).

Lemma 3.1. Let θ ∈ (0, π/2) and let B be a family of Besicovitch balls. Then there exists
a finite family {pj } of points such that F = {B(pj , rj )} is a family of Besicovitch balls
with the following properties. For every point pj in the family, we have

zj ≤ 0, (3.2)
pj ∈ C(θ), (3.3)
CardB ≤ 2(π/θ + 1)CardF + 2. (3.4)

Proof. Let B = {B(qj , tj )}kj=1 be a family of Besicovitch balls where k = CardB. Take

q ∈
⋂k
j=1 B(qj , tj ). Set pj = q−1

· qj . Remembering that left translations are isome-

tries and that, by convention, we set rj = dα(0, pj ), we get 0 ∈
⋂k
j=1 B(pj , rj ) and

dα(pj , pi) = dα(qj , qi) > max(tj , ti) ≥ max(rj , ri), hence B′ = {B(pj , rj )}kj=1 is a
family of Besicovitch balls.
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Since balls are Euclidean convex (see Proposition 2.10) and since 0 ∈ ∂B(pj , rj ) for
all j = 1, . . . , k, there are at most two balls in B′ with center on the z-axis.

Next, up to replacing the family {pj } by {R(pj )} (see (2.12) for the definition of the
reflection R) and up to reindexing the points, one can find l points p1, . . . , pl that satisfy
(3.2) such that π(p1), . . . , π(pl) 6= 0 (see (2.1) for the definition of the projection π ) and
2l ≥ k − 2.

Finally, up to a rotation around the z-axis (see (2.11) for the definition of rotations)
and up to reindexing the points, we infer by the pigeonhole principle that there exists an
integer k′ such that

(π/θ + 1)k′ ≥ l

and pj satisfies (3.3) for all j = 1, . . . , k′. Then the family F = {B(pj , rj )}k
′

j=1 gives the
conclusion. ut

We are now ready to conclude the proof of Theorem 1.14 using Lemmas 2.14, 2.16
and 2.18.

Proof of Theorem 1.14. We fix some values of θ ∈ (0, π/8) and a, b > 0 such that the
conclusions of Lemmas 2.14, 2.16 and 2.18 hold.

Next, we fix some R > 0 large enough so that

{p ∈ H; xp ∈ [0, a], |zp| < b, |yp| < xp tan θ} ⊂ U(0, R),
{p ∈ H; zp ∈ [−a, 0], ρp < b} ⊂ U(0, R),

where U(0, R) denotes the open ball with center 0 and radius R in (H, dα). Such an R ex-
ists since in the above two inclusions, the sets on the left are bounded. As a consequence,

(H \ U(0, R)) ∩ {p ∈ H; |zp| < b, |yp| < xp tan θ} ⊂ P(a, b, θ), (3.5)
(H \ U(0, R)) ∩ {p ∈ H; zp ≤ 0, ρp < b} ⊂ T (a, b) (3.6)

(see (2.13) for the definition of P(a, b, θ) and (2.15) for the definition of T (a, b)).
Let us now consider a family F = {B(pj , rj )}kj=1 of Besicovitch balls where, by

convention, rj = dα(0, pj ) and the centers pj satisfy (3.2) and (3.3). Noting that the
family {B(δλ(pj ), λrj )}kj=1 has the same properties for all λ > 0, one can assume with no
loss of generality that

R = min{dα(0, pj ); j = 1, . . . , k}

up to a dilation by a factor λ = R/min{r1, . . . , rk}.
Let m,M > 0 be defined via

−m := min{zp; p ∈ B(0, R)}, M := max{ρp; p ∈ B(0, R)}.

We will bound k = CardF in terms of the constants m, M , b and θ .
We reindex the points so that 0 < ρ1 ≤ · · · ≤ ρk. Let l ∈ {1, . . . , k} be such that

dα(0, pl) = R. By choice of l and by definition of m and M , we have

ρl ≤ M and −m ≤ zl .
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Let j0 ≥ 1 be a large enough integer such that M cosj0(2θ) < b. Then l ≤ j0 + 1.
Indeed, otherwise (2.24) would yield

0 < ρ1 < ρ2 cos(2θ) < · · · < ρl cosl−1(2θ) ≤ M cosj0+1(2θ) < b cos(2θ),

and hence ρ1 < ρ2 < b. Then, by choice of R (recall (3.6)), p1 and p2 would be distinct
points in T (a, b), which contradicts Lemma 2.16.

Let j1 ≥ 1 be a large enough integer such that 2−j1m < b. Then k − l ≤ j1. Indeed,
otherwise (2.23) would give

−m ≤ zl < · · · < 2k−l−1zk−1 < 2k−lzk ≤ 0,

and hence |zk| < |zk−1| < 2−(k−l−1)m ≤ 2−j1m < b. Then, by choice of R (recall (3.5)),
pk−1 and pk would be distinct points in P(a, b, θ), which contradicts Lemma 2.14.

Altogether we get the following bound on CardF = k:

CardF ≤ log2(m/b)+ logcos(2θ)(b/M)+ 3.

Combining this with (3.4) in Lemma 3.1, we get a bound on the cardinality of an arbitrary
family B of Besicovitch balls:

CardB ≤ 2(π/θ + 1)
(
log2(m/b)+ logcos(2θ)(b/M)+ 3

)
+ 2,

which concludes the proof of Theorem 1.14. ut

4. Proof of Lemmas 2.14 and 2.16

We begin with a remark that will be technically useful. Given p, q ∈ H, we set

Ap(q) := r
2
p(x

2
q+y

2
q−2xqxp−2yqyp)+

(
zq−

xpyq−xqyp

2

)2

−2zp

(
zq−

xpyq−xqyp

2

)
.

Recall that, following (2.7), we have rp = dα(0, p) by convention.

Lemma 4.1. We have q ∈ B(p, rp) if and only if Ap(q) ≤ 0.

Proof. Recalling (2.8), we have

dα(p, q) ≤ rp ⇔
(xq − xp)

2

r2
p

+
(yq − yp)

2

r2
p

+

(
zq − zp −

xpyq−xqyp
2

)2
r4
p

≤ α2.

Combining this with (2.5), which gives

x2
p + y

2
p

r2
p

+
z2
p

r4
p

= α2,

we get the conclusion. ut
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4.1. Proof of Lemma 2.14

Lemma 4.2. There exist constants c1, c2 > 0, depending only on α, such that, for all
θ ∈ (0, π/4) and all a, b > 0 with a2

≥ b, we have

c1xp ≤ rp ≤ c2xp for all p ∈ P(a, b, θ).

Proof. By (2.6), we always have r2
p ≥ x2

p/(2α
2). On the other hand, we can bound r2

p

from above using tan θ < 1 (since θ < π/4) and |zp| < b ≤ a2
≤ x2

p if p ∈ P(a, b, θ)
(see (2.13) for the definition of P(a, b, θ)). Namely, we have

r2
p =

x2
p + y

2
p +

√
(x2
p + y

2
p)

2 + 4α2z2
p

2α2

≤

x2
p(1+ tan2 θ)+

√
(x2
p(1+ tan2 θ))2 + 4α2z2

p

2α2

≤

2x2
p +

√
4x4
p + 4α2b2

2α2 ≤
2+
√

4+ 4α2

2α2 x2
p. ut

For t ∈ R, b > 0 and θ ∈ (0, π/2), we set (see Figure 3(a))

R(t, b, θ) := {p ∈ H; xp = t, |zp| < b, |yp| < xp tan θ}.

(a) The quadrilateral R(t, b, θ) (b) The disc D(t, b)

Fig. 3. The surfaces R(t, b, θ) and D(t, b).

Lemma 4.3. There exists θ0 ∈ (0, π/4), which depends only on α, such that for all
θ ∈ (0, θ0), there exists a0(θ) ≥ 1 such that for all a > a0(θ) and all b ∈ (0, 1), we have

R(t, b, θ) ⊂ B(p, rp) for all p ∈ P(a, b, θ) and all t ∈ [1, xp].

Proof. Take θ ∈ (0, π/4), a ≥ 1 > b, p ∈ P(a, b, θ), t > 0 and consider q ∈ R(t, b, θ).
By Lemma 4.1, showing that q ∈ B(p, rp) is equivalent to proving that Ap(q) ≤ 0.
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Since xq = t , we have

Ap(q) = r
2
p(t

2
+ y2

q − 2txp − 2yqyp)

+

(
zq −

xpyq − typ

2

)2

− 2zp

(
zq −

xpyq − typ

2

)
≤ r2

p(t
2
+ y2

q − 2txp + 2|yqyp|)

+

(
|zq | +

|xpyq | + t |yp|

2

)2

+ 2|zp|
(
|zq | +

|xpyq | + t |yp|

2

)
.

Note that all terms in the last inequality are positive except −2txp, since both t and xp
are positive.

We now use the conditions |yq | < t tan θ , |zq | < b, xp > a, |yp| < xp tan θ , |zp| < b,
b < 1 and tan θ < 1 (since θ < π/4) to get

Ap(q) ≤ r
2
p(t

2
+ t2 tan2 θ − 2txp + 2xpt tan2 θ)+ (b+ txp tan θ)2+ 2b2

+ 2btxp tan θ

≤ −2txpr2
p + r

2
p(t

2
+ t2 tan2 θ + 2xpt tan2 θ)+ (1+ xpt tan θ)2+ 2(1+ xpt).

We now consider separately the cases t = 1 and t = xp.
For t = 1, we bound, using Lemma 4.2,

Ap(q) ≤ −2xpr2
p + r

2
p(1+ tan2 θ + 2xp tan2 θ)+ (1+ xp tan θ)2 + 2(1+ xp)

≤ −2c2
1x

3
p + c

2
2x

2
p(1+ tan2 θ + 2xp tan2 θ)+ (1+ xp tan θ)2 + 2(1+ xp)

≤ −2(c2
1 − c

2
2 tan2 θ) x3

p + 2c2
2x

2
p + (1+ xp)

2
+ 2(1+ xp).

Hence Ap(q) ≤ −2(c2
1 − c

2
2 tan2 θ) x3

p + o(x
3
p) as xp → ∞. Thus, choosing θ small

enough so that c2
1 − c

2
2 tan2 θ > 0, we get Ap(q) ≤ 0 provided xp is large enough.

For t = xp, we use Lemma 4.2 once again to get

Ap(q) ≤ −2r2
px

2
p + r

2
p(x

2
p + 3x2

p tan2 θ)+ (1+ x2
p tan θ)2 + 2(1+ x2

p)

≤ −c2
1x

4
p + 3c2

2x
4
p tan2 θ + (1+ x2

p tan θ)2 + 2(1+ x2
p)

≤ −(c2
1 − 3c2

2 tan2 θ − tan2 θ)x4
p + 1+ 2x2

p + 2(1+ x2
p).

Hence Ap(q) ≤ −(c2
1 − 3c2

2 tan2 θ − tan2 θ)x4
p + o(x

4
p) as xp → ∞. Thus, choosing θ

small enough so that c2
1 − 3c2

2 tan2 θ − tan2 θ > 0, we get Ap(q) ≤ 0 provided xp is large
enough.

Altogether we have showed that one can find θ0 ∈ (0, π/4), depending only on α, and
for all θ ∈ (0, θ0(α)), some a0(θ) ≥ 1, such that for a > a0(θ) and b < 1 and for all
p ∈ P(a, b, θ), we have

R(1, b, θ) ⊂ Bα(p, rp) and R(xp, b, θ) ⊂ Bα(p, rp).
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Since Bα(p, rp) is Euclidean convex by Proposition 2.10, we conclude the proof by not-
ing that R(t, b, θ), for t ∈ [1, xp], is in the Euclidean convex hull of R(1, b, θ) and
R(xp, b, θ). ut

Proof of Lemma 2.14. Let θ0 ∈ (0, π/4) be given by Lemma 4.3. Let θ ∈ (0, θ0) and
let a0(θ) ≥ 1 be given by Lemma 4.3. Let a > a0(θ) and b ∈ (0, 1). Let p, q ∈ H
be such that p /∈ B(q, rq) and q /∈ B(p, rp). Assume with no loss of generality that
xq ≤ xp. Then, if both p and q were in P(a, b, θ), by Lemma 4.3 we would have
q ∈ R(xq , b, θ) ⊂ B(p, rp) since xq ∈ [1, xp]. But this would contradict the assump-
tions. ut

4.2. Proof of Lemma 2.16

Lemma 4.4. Let a ≥ 1 and b > 0. Then for all p ∈ T (a, b), we have

r2
p ≤

b2
+
√
b4 + 4α2

2α2 |zp|.

Proof. Let p ∈ T (a, b) (see (2.15) for the definition of T (a, b)). Since 1 ≤ a < |zp| and
ρp < b, we have (recall (2.6))

r2
p ≤

|zp|ρ
2
p +

√
z2
pρ

4
p + 4α2z2

p

2α2 =

ρ2
p +

√
ρ4
p + 4α2

2α2 |zp| ≤
b2
+
√
b4 + 4α2

2α2 |zp|.

ut

For t ∈ R and b > 0, we set (see Figure 3(b))

D(t, b) := {p ∈ H; zq = t, ρp < b}.

Lemma 4.5. There exist a1 ≥ 1 and b1 ∈ (0, 1), depending only on α, such that for all
a > a1 and all b ∈ (0, b1), we have

D(t, b) ⊂ B(p, rp) for all p ∈ T (a, b) and all t ∈ [zp,−1].

Proof. Take a ≥ 1 > b, p ∈ T (a, b), t < 0 and consider q ∈ D(t, b). By Lemma 4.1,
showing that q ∈ B(p, rp) is equivalent to proving that Ap(q) ≤ 0. Since zq = t , we
have

Ap(q) = r
2
p(x

2
q + y

2
q − 2xqxp − 2yqyp)

+

(
t −

xpyq − xqyp

2

)2

− 2zp

(
t −

xpyq − xqyp

2

)
≤ r2

p(x
2
q + y

2
q + 2|xqxp| + 2|yqyp|)+

(
|t | +

|xpyq | + |xqyp|

2

)2

− 2tzp + |zp|(|xpyq | + |xqyp|).

Note that all terms in the last inequality are positive except −2tzp, assuming both t and
zp are negative. Using Lemma 4.4 and the fact that the absolute value of each of the first
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two components of p and q is smaller than b, we bound

Ap(q) ≤ 6
b2
+
√
b4 + 4α2

2α2 b2
|zp| + (|t | + b

2)2 − 2tzp + 2b2
|zp|

≤ −zp + (|t | + 1)2 − 2tzp,

where in the last inequality we have assumed that b is small enough, b < b1 for some b1
which depends only on α.

We now consider separately the cases t = −1 and t = zp. For t = −1, we need
zp+4 ≤ 0, which is true as soon as zp ≤ −4. For t = zp, we need−zp+(−zp+1)2−2z2

p

= −z2
p − 3zp + 1 ≤ 0, which is true as soon as |zp| is large enough.

Altogether we have shown that one can find a1 ≥ 1 and b1 ∈ (0, 1), depending only
on α, such that, for all a > a1 and b ∈ (0, b1) and all p ∈ T (a, b), we have

D(−1, b) ⊂ B(p, rp) and D(zp, b) ⊂ B(p, rp).

Recall that the set B(p, rp) is Euclidean convex by Proposition 2.10. This concludes
the proof since D(t, b), for t ∈ [zp,−1], is in the Euclidean convex hull of D(−1, b)
and D(zp, b). ut

Proof of Lemma 2.16. Let a1 ≥ 1 and b1 ∈ (0, 1) be given by Lemma 4.5. Let a > a1
and b ∈ (0, b1). Let p, q ∈ H be such that p /∈ B(q, rq) and q /∈ B(p, rp). Assume with
no loss of generality that zp ≤ zq . Then, if both p and q were in T (a, b), by Lemma 4.5
we would have q ∈ D(zq , b) ⊂ B(p, rp) since zq ∈ [zp,−1]. But this would contradict
the assumptions. ut

5. Proof of Lemma 2.18

We first fix some notation. For z ∈ R, we set pz := (0, 0, z). For θ ∈ (0, π/2), p ∈ H
and z ∈ R, let C(z, π(p), θ) denote the two-dimensional Euclidean half-cone in H ' R3

contained in the plane {q ∈ H; zq = z} with vertex pz, axis the half-line starting at pz
and passing through (xp, yp, z), and aperture 2θ . See Figure 4(a).

For θ ∈ (0, π/2), p ∈ H and z ∈ R, let Q(z, π(p), θ) denote the two-dimensional
Euclidean equilateral quadrilateral contained in the plane {q ∈ H; zq = z} with ver-
tices pz, p+θ := (xp − yp tan θ, yp + xp tan θ, z), p−θ := (xp + yp tan θ, yp − xp tan θ, z)
and p̌z := (2xp, 2yp, z). Note that it is the Euclidean convex hull in H ' R3 of these four
points. See Figure 4(b).

Recall (2.17) for the definition of C(θ). Note that q ∈ C(θ) if and only if (xq , yq , 0) ∈
C(0, π((1, 0, 0)), θ).

We have the following properties:

p, q ∈ C(θ)⇒ q ∈ C(zq , π(p), 2θ), (5.1)
Q(z, π(p), θ) ⊂ C(z, π(p), θ). (5.2)
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(0, 0, z).

p .

θ

(a) The cone C(z, π(p), θ) containing the quadri-
lateral Q(z, π(p), θ).

(0, 0, z) p̌z

.

p+θ

.

(xp, yp, z)
.

p−θ

.

(b) The quadrilateral Q(z, π(p), θ).

Fig. 4. The surfaces C(z, π(p), θ) and Q(z, π(p), θ).

For θ ∈ (0, π/4), we have

C(z, π(p), θ) ∩ {q ∈ H; ρq cos θ ≤ ρp} ⊂ Q(z, π(p), θ). (5.3)

This follows from elementary geometry by noting that the angle between the half-
lines starting at p+θ and passing through pz and p̌z respectively is larger than π/2.

Lemma 5.4. There exists θ2 ∈ (0, π/2), which depends only on α, such that

Q(z, π(p), θ) ⊂ B(p, rp)

for all 0 < θ ≤ θ2, all p ∈ H \ {0} and all z ∈ R such that |z− zp| ≤ |zp|.

Proof. Recalling Proposition 2.10, we only need to prove that the vertices pz, p+θ , p−θ
and p̌z of Q(z, π(p), θ) belong to B(p, rp).

We have |z− zp| ≤ |zp| and, recalling (2.5) and (2.7),

ρ2
p

r2
p

+
|zp|

2

r4
p

= α2,

hence
ρ2
p

r2
p

+
|z− zp|

2

r4
p

≤
ρ2
p

r2
p

+
|zp|

2

r4
p

= α2,

that is, recalling (2.8), pz = (0, 0, z) ∈ B(p, rp).
Similarly we have

(2xp − xp)2

r2
p

+
(2yp − yp)2

r2
p

+
|z− zp|

2

r4
p

=
ρ2
p

r2
p

+
|z− zp|

2

r4
p

≤ α2,

hence p̌z = (2xp, 2yp, z) ∈ B(p, rp).
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Next, let us prove that p+θ = (xp − yp tan θ, yp + xp tan θ, z) ∈ B(p, rp). Set

1 :=
(z− zp − ρ

2
p tan θ/2)2

r4
p

+
ρ2
p tan2 θ

r2
p

.

We need to prove that 1 ≤ α2. We have

1 =
(z− zp)

2

r4
p

+
ρ4
p tan2 θ

4r4
p

−
ρ2
p(z− zp) tan θ

r4
p

+
ρ2
p tan2 θ

r2
p

≤
z2
p

r4
p

+
ρ4
p tan2 θ

4r4
p

+
ρ2
p|z− zp| tan θ

r4
p

+
ρ2
p tan2 θ

r2
p

≤ α2
−
ρ2
p

r2
p

+
ρ2
p

r2
p

(
α2 tan2 θ

4
+ α tan θ + tan2 θ

)
where the last inequality follows from the fact that

ρ2
p

r2
p

+
z2
p

r4
p

= α2,

which implies in particular that ρ2
p/r

2
p ≤ α

2 and |z− zp|/r2
p ≤ α. Hence

1 ≤ α2
−
ρ2
p

r2
p

(
1− (1+ α2/4) tan2 θ − α tan θ

)
.

Choosing θ2 ∈ (0, π/2) small enough so that 1− (1+ α2/4) tan2 θ − α tan θ ≥ 0 for all
0 < θ ≤ θ2, we get the conclusion.

The fact that p−θ ∈ B(p, rp) is proved in a similar way. ut

Proof of Lemma 2.18. Let θ1 = min(θ2/2, π/8) where θ2 is given by Lemma 5.4. Let
θ ∈ (0, θ1) and let p, q ∈ H satisfy (2.19)–(2.22).

Let us first prove (2.23). Assume for contradiction that 2zp ≤ zq ≤ 0. Then |zq − zp|
≤ |zp|. Hence Q(zq , π(p), 2θ) ⊂ B(p, rp) according to Lemma 5.4. On the other hand,
it follows from (2.21), (5.1), (2.20) and (5.3) that q ∈ Q(zq , π(p), 2θ), and hence q ∈
B(p, rp), which contradicts (2.22).

Thus zq < 2zp ≤ zp ≤ 0, and so |zp − zq | ≤ |zq |. It follows from (2.21),
(5.1) and (2.22) that p ∈ C(zp, π(q), 2θ) \ B(q, rq). Finally, Lemma 5.4 implies that
p ∈ C(zp, π(q), 2θ) \Q(zp, π(q), 2θ), and then (2.24) follows from (5.3). ut

6. Two criteria for distances for which BCP does not hold

In this section we prove two criteria which imply the non-validity of BCP. This shows that
in some sense our example of homogeneous distance dα for which BCP holds is sharp.
Roughly speaking, the first criterion applies to homogeneous distances whose unit sphere
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centered at the origin either has inward cone-like singularities in the Euclidean sense at the
poles (i.e., at the intersection of the sphere with the z-axis), or is flat at the poles with zero
curvature in the Euclidean sense. The second criterion applies to homogeneous distances
whose unit sphere at the origin has outward cone-like singularities in the Euclidean sense
at the poles. Note that the unit sphere centered at the origin of our distance dα is smooth
with positive curvature in the Euclidean sense.

6.1. Distances with ingoing corners or second-order flat at the poles

Let d be a homogeneous distance on H and let B denote the closed unit ball centered at
the origin in (H, d).

In this subsection, most of the time we shall identify H with R3 equipped with its
usual differential structure.

For p ∈ H, Ev ∈ R3, Ev 6= (0, 0, 0), and α ∈ (0, π/2), let Cone(p, Ev, α) denote the
Euclidean half-cone in H, identified with R3, with vertex p, axis p+R+Ev and opening 2α.

We say that Ev ∈ R3, Ev 6= (0, 0, 0), points out of B at p ∈ ∂B if there exists an open
neighborhood U of p and some α ∈ (0, π/2) such that

B ∩ Cone(p, Ev, α) ∩ U = {p}.

Let τp denote the left translation defined by τp(q) := p ·q. We consider it as an affine
map from H, identified with R3, to R3 whose differential, in the usual Euclidean sense
in R3, is thus a constant linear map and will be denoted by (τp)∗. Let π̂ be defined by
π̂(x, y, z) := (x, y, 0).

For Ev ∈ R3, Ev 6= (0, 0, 0), and ε > 0, let �(Ev) denote the set of points q ∈ ∂B such
that (τq−1)∗(Ev) points out of B at q−1, and let �ε(Ev) denote the set of points q ∈ �(Ev)
such that π̂(q) ∈ R+ Ew for some Ew ∈ Im(π̂) such that ‖ Ew − Ev‖R3 ≤ ε (here ‖ · ‖R3

denotes the Euclidean norm in R3).

Theorem 6.1. Assume that there exists Ev ∈ Im(π̂), Ev 6= (0, 0, 0), and ε > 0 such that
�ε(Ev) 6= ∅ for all 0 < ε ≤ ε. Then BCP does not hold in (H, d).

Proof. We first construct a sequence (qn)n≥0 of points in ∂B such that qn ∈ �(Ev) for all
n ≥ 0 and (τ

q−1
k
)∗(π̂(qn)) points out of B at q−1

k for all n ≥ 1 and all 0 ≤ k ≤ n− 1.
Note that if q ∈ �(Ev) then there exists ε(q) > 0 such that (τq−1)∗(Ev + Eε) points out

of B at q−1 for all Eε ∈ R3 such that ‖Eε‖R3 ≤ ε(q) (note that the set of vectors that point
out of B at some point p ∈ ∂B is open).

Let us start by choosing some q0 ∈ �(Ev). By induction assume that q0, . . . , qn have
already been chosen. Let ε = min(ε(q0), . . . , ε(qn), ε) where each ε(qk) is associated to
qk ∈ �(Ev) as above. Then we choose qn+1 ∈ �ε(Ev). We have π̂(qn+1) = λ(Ev + Eε) for
some λ > 0 and some Eε ∈ Im(π̂) such that ‖Eε‖R3 ≤ ε. Hence, by choice of ε and of
the qk’s, the vector (τ

q−1
k
)∗(π̂(qn+1)) = λ (τ

q−1
k
)∗(Ev + Eε) points out of B at q−1

k for all
0 ≤ k ≤ n as wanted.

Next, we claim that if q, q ′ ∈ ∂B are such that π̂(q ′) 6= (0, 0, 0) and (τq−1)∗(π̂(q
′))

points out of B at q−1, then there exists λ > 0 such that d(q, δλ(q ′)) > 1 for all
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0 < λ ≤ λ. Indeed, [0,∞) 3 λ 7→ q−1
· δλ(q

′) is a smooth curve starting at q−1

and whose tangent vector at λ = 0 is given by (τq−1)∗(π̂(q
′)). Since this vector points

out of B at q−1, it follows that q−1
· δλ(q

′) 6∈ B for all λ > 0 small enough, and hence
d(q, δλ(q

′)) = d(0, q−1
· δλ(q

′)) > 1 as desired.
It follows that for all n ≥ 1, one can find λn > 0 such that for all 0 < λ ≤ λn and all

0 ≤ k < n, one has
d(qk, δλ(qn)) > 1.

Then we set r0 = 1 and by induction we construct a decreasing sequence (rn)n≥0 so that

d(qk, δrn/rk (qn)) > 1

for all n ≥ 1 and all 0 ≤ k < n. For n ≥ 0, we set pn = δrn(qn). By construction we have

d(pk, pn) > max(rk, rn)

for all k ≥ 0 and n ≥ 0 such that k 6= n. It follows that {Bd(pn, rn); n ∈ J } is a family
of Besicovitch balls for any finite set J ⊂ N, and hence BCP does not hold. ut

Let us give some examples of homogeneous distances to which the criterion given in
Theorem 6.1 applies.

A first class of examples is given by rotationally invariant homogeneous distances d
for which there exists p ∈ ∂B such that (xp, yp) 6= (0, 0) and

zp = max{z > 0; (x, y, z) ∈ ∂B for some (x, y) ∈ R2
}.

By rotationally invariant distances, we mean distances for which rotations Rθ , θ ∈ R, are
isometries (see (2.11) for the definition of Rθ ).

Indeed, consider Ev = (1, 0, 0), and for ε > 0 set

λ =

(
x2
p + y

2
p

1+ ε2

)1/2

.

Then consider q = (λ, λε,−zp). By rotational and left invariance (which implies in
particular that d(0, q) = d(0, q−1) for all q ∈ H), one has q ∈ ∂B. On the other hand,
since {(x, y, z) ∈ H; z > zp} ∩ B = ∅, any vector with a positive third coordinate points
out of B at q−1. In particular (τq−1)∗(Ev) = (1, 0, λε/2) points out of B at q−1. Hence
q ∈ �ε(Ev).

This class of examples includes the so-called box-distance d∞ defined by d∞(p, q)
:= ‖p−1

· q‖∞ with

‖p‖∞ := max((x2
p + y

2
p)

1/2, 2|zp|1/2) (6.2)

for which the fact that BCP does not hold was not known. It also includes the Carnot–
Carathéodory distance, which gives a new proof that BCP fails for this distance. See [22]
for a previous different proof.

Other examples of homogeneous distances d to which Theorem 6.1 applies can be
obtained in the following way. Assume that B, respectively ∂B, can be described as
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{q ∈ H; f (q) ≤ 0}, respectively {q ∈ H; f (q) = 0}, for some C1 real valued func-
tion f in a neighborhood of a point p ∈ ∂B. Then the outward normal to ∂B at some
point q ∈ ∂B is given in a neighborhood of p by ∇f (q) (here it is still understood that
we identify H with R3 and ∇ denotes the usual gradient in R3). Then Theorem 6.1 ap-
plies if one can find a nonzero vector Ev ∈ Im(π̂) such that for all ε small enough, the
following holds. There exists q ∈ ∂B such that π̂(q) ∈ R+ Ew for some Ew ∈ Im(π̂) with
‖ Ew − Ev‖R3 ≤ ε and such that q−1 lies in a neighborhood of p and

〈∇f (q−1), (τq−1)∗(Ev)〉 > 0

where 〈·, ·〉 denotes the usual scalar product in R3.
A particular example is when B, respectively ∂B, can be described near the north pole

(intersection of ∂B with the positive z-axis) as the subgraph {(x, y, z) ∈ H; z ≤ ϕ(x, y)},
respectively the graph {(x, y, z) ∈ H; z = ϕ(x, y)}, of a C2 function ϕ whose first and
second order partial derivatives vanish at the origin. Indeed, in that case one can choose
for example Ev = (1, 0, 0) and for a fixed ε > 0, one looks for some q ∈ �ε(Ev) of the form
q = (λ, λε,−ϕ(−λ,−λε)) for some λ > 0. Then q−1

= (−λ,−λε, ϕ(−λ,−λε)) ∈ ∂B

lies near the north pole for λ > 0 small and we have

〈∇f (q−1), (τq−1)∗(Ev)〉 = −∂xϕ(−λ,−λε)+
1
2λε,

which is equivalent to λε/2 > 0 when λ > 0 is small enough. Hence �ε(Ev) 6= ∅.
This argument applies to the Cygan–Korányi distance dg,2, and more generally to dg,α

for all α > 0 such that dg,α defines a distance, thus in particular for all α ≤ 2. Recall
from (1.11) that dg,α(p, q) := ‖p−1

· q‖g,α where

‖p‖g,α := ((x
2
p + y

2
p)

2
+ 4α2 z2

p)
1/4,

and that dg,2 is the Cygan–Korányi distance. Hence Theorem 6.1 gives in particular a new
geometric proof that BCP does not hold for the Cygan–Korányi distance on H (see [13]
and [23] for previous analytic proofs).

6.2. Distances with outgoing corners at the poles

Let d be a homogeneous distance on H and let B denote the closed unit ball centered at
the origin in (H, d). Set S+ := ∂B ∩ {p ∈ H; zp > 0}.

Theorem 6.3. Assume that there exist two sequences of points p+n , p
−
n ∈ S

+ and some
a, x > 0 such that

p−n = (x
−
n , 0, z−n ), p+n = (x

+
n , 0, z+n ), x−n < 0 < x+n ,

lim
n→0

(x+n − x
−
n ) = 0, z−n > z+n > 0, z+n − z

−
n < −a (x

+
n − x

−
n ),

{p ∈ H; x+n ≤ xp ≤ x, yp = 0, zp > z+n } ⊂ H \ B.

Then BCP does not hold in (H, d).
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The geometric meaning of the above assumptions is the following. In some vertical plane
(here we take the xz-plane for simplicity) one can find two sequences of points, p+n
and p−n , on the unit sphere centered at the origin. The points p+n and p−n are on different
sides of the z-axis. The two sequences converge to the north pole. The slope between p−n
and p+n is assumed to be bounded away from zero. We further assume that at the north
pole the intersection of the sphere and the xz-plane can be written both as x = x(z) and
as z = z(x). See Figure 5.

p+n
p−n

Fig. 5. Intersection of the xz-plane and the unit sphere at the origin of the distance dκ,α when
κ = 1 and α = 2.

Theorem 6.3 applies in particular if the intersection of B with the xz-plane can be
described near the north pole as {p ∈ H; −ε < xp < ε, yp = 0, 0 < zp ≤ f (xp)} for
some function f of class C1 on (−ε, ε) \ {0} such that f ′(0−) and f ′(0+) exist and are
finite with f ′(0+) < 0. This is for instance the case of the following distances built from
the Cygan–Korányi distance, and more generally from the distances dg,α , and given by

dκ,α(p, q) := ‖p
−1
· q‖κ,α with ‖p‖κ,α := κρ(p)+ ‖p‖g,α

for some κ > 0. See (1.11) for the definition of ρ(·) and ‖ · ‖g,α . Figure 5 is exactly the
intersection of the xz-plane and the unit sphere at the origin when κ = 1 and α = 2.

Note that it follows in particular that the l1-sum of the pseudo-distance dρ with the
distance dg,α does not satisfy BCP, in contrast with their l2-sum which is a multiple of
the distance dα .

Proof of Theorem 6.3. By induction, we construct a sequence of points qk = (xk, 0, zk)
such that

zk+1 < zk < 0 < xk+1 < xk and rk+1 > rk

for all k ∈ N, where rk = d(0, qk), and such that

ql 6∈ Bd(qk+1, rk+1) for all k ∈ N and all 0 ≤ l ≤ k.

Then we will have d(ql, qk) > max(rl, rk) for all l ∈ N and k ∈ N such that l 6= k, so
that {Bd(qk, rk); k ∈ J } is a family of Besicovitch balls for any finite set J ⊂ N. Hence
BCP does not hold.
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We start from a point q0 = (x0, 0, z0) with z0 < 0 < x0. Next assume that q0, . . . , qk
have been constructed and choose n large enough so that

rk <
xk

x+n − x
−
n

, (6.4)

−a <
x+n − x

−
n

x2
k

zk < 0, (6.5)

x0 ≤
xk

x+n − x
−
n

x. (6.6)

We set
rk+1 :=

xk

x+n − x
−
n

and qk+1 := δrk+1(p
−
n )
−1. (6.7)

Note that d(0, qk+1) = rk+1 since p−n ∈ ∂B. We have rk+1 > rk by choice of n (see
(6.4)). We also have

xk+1 = −rk+1x
−
n =

−x−n

x+n − x
−
n

xk < xk.

Hence it remains to check that zk+1 < zk and ql 6∈ B(qk+1, rk+1) for 0 ≤ l ≤ k.
Using dilation, left translation and the assumption {p ∈ H; x+n ≤ xp ≤ x, yp = 0,

zp > z+n } ⊂ H \ B, it follows that

{p ∈ H; xk ≤ xp ≤ rk+1x−rk+1x
−
n , yp = 0, zp > zk+1+r

2
k+1z

+
n } ⊂ H\B(qk+1, rk+1).

Hence, taking into account the fact that zk < · · · < z0 and xk < · · · < x0, to prove
that zk+1 < zk and that ql 6∈ B(qk+1, rk+1) for 0 ≤ l ≤ k, we only need to check that
x0 ≤ rk+1x− rk+1x

−
n , which follows from (6.6), and that zk > zk+1+ r

2
k+1z

+
n . Using the

fact that z+n − z
−
n < −a (x

+
n − x

−
n ), (6.5) and (6.7), we have

zk+1 + r
2
k+1z

+
n = r

2
k+1(z

+
n − z

−
n ) < −a (x

+
n − x

−
n )r

2
k+1

<
(x+n − x

−
n )

2zk

x2
k

·
x2
k

(x+n − x
−
n )

2
= zk,

which gives the conclusion. ut

7. Generalization to any Heisenberg group Hn

The case of Hn for n ≥ 1 arbitrary can be easily handled similarly by adopting the fol-
lowing convention. For p ∈ Hn, we set p = (xp, yp, zp) where xp ∈ R, yp ∈ R2n−1 and
zp ∈ R. Note that this is different from the more standard presentation adopted in the in-
troduction (Section 1). To avoid any confusion, the explicit correspondence between the-
ses two conventions is the following. If x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn
and z ∈ R denote the exponential and homogeneous coordinates of p ∈ Hn as in (1.7),
by denoting p = (xp, yp, zp) with xp ∈ R, yp ∈ R2n−1 and zp ∈ R, we mean xp = x1,
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yp = (x2, . . . , xn, y1, . . . , yn) and zp = z. It follows that y2
p should be replaced by

‖yp‖
2
R2n−1 and |yp| by ‖yp‖R2n−1 where ‖ · ‖R2n−1 denotes the Euclidean norm in R2n−1.

In particular, we get

ρp =

√
x2
p + ‖yp‖

2
R2n−1 ,

and setting

P(a, b, θ) := {p ∈ Hn; xp > a, |zp| < b, ‖yp‖R2n−1 < xp tan θ},
T (a, b) := {p ∈ Hn; zp < −a, ρp < b},

one can easily check that Lemmas 2.14 and 2.16 hold true in Hn with essentially the same
proofs.

Lemma 2.18 and its proof extend to the case of Hn by setting

C(θ) := {p ∈ Hn; ‖yp‖R2n−1 < xp tan θ}

and considering the analogue of the sets C(z, π(p), θ) and Q(z, π(p), θ) (introduced in
Section 5) defined in the following way.

The set C(z, π(p), θ) is now defined as the 2n-dimensional Euclidean half-cone con-
tained in the hyperplane {q ∈ Hn; zq = z} with vertex pz = (0, 0, z), axis the half-line
starting at pz and passing through (xp, yp, z), and aperture 2θ .

The set Q(z, π(p), θ) is defined as the 2n-dimensional Euclidean convex hull in the
hyperplane {q ∈ Hn; zq = z} of pz, p̌z = (2xp, 2yp, z) and the (2n − 1)-dimensional
Euclidean ball {q ∈ Hn; zq = z, 〈π(q) − π(p), π(p)〉R2n = 0, ‖π(q) − π(p)‖R2n =

ρp tan θ}. Here π denotes the obvious analogue of the map defined in (2.1), π :
Hn→ R2n, π(xp, yp, zp) := (xp, yp).

8. A general construction giving bi-Lipschitz equivalent distances without BCP

This section is devoted to the proof of Theorem 1.6. The construction is inspired by the
construction given by the first-named author in [14, Theorem 1.6] where it is proved
that there exist translation-invariant distances on R that are bi-Lipschitz equivalent to the
Euclidean distance but that do not satisfy BCP.

Proof of Theorem 1.6. Let (M, d) be a metric space. Assume that x is an accumulation
point in (M, d) and let (xn)n≥1 be a sequence of distinct points in M such that xn 6= x

for all n ≥ 1 and limn→∞ d(xn, x) = 0. Set

ρn :=
n

n+ 1
d(xn, x).

Up to taking a subsequence, one can assume that the sequence (ρn)n≥1 is decreasing.
Fix 0 < c < 1 and n0 ∈ N large enough so that

c(n0 + 1) < n0. (8.1)
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Set

θ(x, y) :=

{
ρn if {x, y} = {xn, x} for some n ≥ n0,

d(x, y) otherwise,

d(x, y) := inf
N−1∑
i=0

θ(ai, ai+1),

where the infimum is taken over allN ∈ N∗ and all chains of points a0 = x, . . . , aN = y.
Then d is a distance on M such that cd ≤ d ≤ d: this follows from Lemmas 8.3 and 8.5
below.

Next, we will prove that x is an isolated point of Bd(xn, ρn) for all n ≥ n0. More
precisely, by definition of d we have, for all n ≥ n0,

d(xn, x) ≤ θ(xn, x) = ρn,

hence x ∈ Bd(xn, ρn) for all n ≥ n0. On the other hand, we will prove in Lemma 8.6 that

Bd(xn, ρn) ∩ Bd

(
x,

ρn

n(n+ 1)

)
= {x} for all n ≥ n0. (8.2)

Then let us extract a subsequence (xnk )k≥0 starting at xn0 in such a way that

d(x, xnk ) <
ρnj

nj (nj + 1)
for all k ≥ 1 and j ∈ {0, . . . , k − 1}.

It follows from (8.2) that

d(xnk , xnj ) > ρnj = max{ρnj , ρnk } for all k ≥ 1 and j ∈ {0, . . . , k − 1}

(remember that the sequence (ρh)h≥1 is assumed to be decreasing). Then {Bd(xnk , ρnk );
k ∈ J } is a family of Besicovitch balls for any finite set J ⊂ N, which implies that
w-BCP, and hence BCP, does not hold in (M, d). ut

Lemma 8.3. We have cd ≤ d ≤ d .

Proof. By definition of θ , one has θ(x, y) ≤ d(x, y) for all x, y ∈ M . It follows that

d(x, y) ≤ inf
{N−1∑
i=0

d(ai, ai+1); a0 = x, . . . , aN = y
}
= d(x, y).

Note that since d is a distance, one indeed has

d(x, y) = inf
{N−1∑
i=0

d(ai, ai+1); a0 = x, . . . , aN = y
}
,

which follows from the triangle inequality and from the fact that one can considerN = 1,
a0 = x and a1 = y, so that d(x, y) ≥ inf{

∑N−1
i=0 d(ai, ai+1); a0 = x, . . . , aN = y}.
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On the other hand, since s 7→ s/(s + 1) is increasing, it follows from the definition
of θ(x, y) and from (8.1) that

θ(x, y) ≥
n0

n0 + 1
d(x, y) ≥ cd(x, y) for all x, y ∈ M . (8.4)

Hence

d(x, y) ≥ c inf
{N−1∑
i=0

d(ai, ai+1); a0 = x, . . . , aN = y
}
= cd(xy). ut

Lemma 8.5. d is a distance on M .

Proof. Lemma 8.3 shows that if d(x, y) = 0, then d(x, y) = 0 and hence x = y.
Since θ(x, y) = θ(y, x), one has d(x, y) = d(y, x). To prove the triangle inequality,
consider x, y and z in M and two arbitrary chains of points a0 = x, . . . , aN = z, b0 =

z, . . . , bN ′ = y. Since a0 = x, . . . , aN = z = b0, . . . , bN ′ = y is a chain of points from
x to y, one has

d(x, y) ≤

N−1∑
i=0

θ(ai, ai+1)+

N ′−1∑
i=0

θ(bi, bi+1),

and hence
d(x, y) ≤ d(x, z)+ d(z, y). ut

Lemma 8.6. Let n ≥ n0. Assume that 0 < d(x, y) < ρn/(n(n+ 1)). Then d(xn, y) > ρn.

Proof. For contradiction, assume that 0 < d(x, y) < ρn/(n(n+ 1)) for some n ≥ n0
and d(xn, y) ≤ ρn. Let ε > 0 and a0 = xn, . . . , aN = y be such that

N−1∑
i=0

θ(ai, ai+1) ≤ ρn + ε. (8.7)

First, we claim that {ai, ai+1} 6= {xn, x} for all i ∈ {0, . . . , N − 1} provided ε is
small enough. Indeed, otherwise, with no loss of generality, we would have a0 = xn and
a1 = x, and hence

N−1∑
i=0

θ(ai, ai+1) = θ(xn, x)+

N−1∑
i=1

θ(ai, ai+1) = ρn +

N−1∑
i=1

θ(ai, ai+1) ≤ ρn + ε,

which implies that
N−1∑
i=1

θ(ai, ai+1) ≤ ε.

On the other hand, (8.4) together with the triangle inequality would give

cd(x, y) ≤ c

N−1∑
i=1

d(ai, ai+1) ≤

N−1∑
i=1

θ(ai, ai+1) ≤ ε,

which is impossible as soon as ε < cd(x, y).
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Next, we claim that

θ(ai, ai+1) ≥
n+ 1
n+ 2

d(ai, ai+1) (8.8)

for all i ∈ {0, . . . , N − 1}.
Indeed, first, if {ai, ai+1} = {x, xm} for some m ≥ n0, then we must have m > n.

Otherwise, since (ρh)h≥1 is decreasing, we would have ρm ≥ ρn−1. Hence we would get

ρn−1 ≤ ρm = θ(ai, ai+1) ≤

N−1∑
j=0

θ(aj , aj+1) ≤ ρn + ε,

which is impossible as soon as ε < ρn−1 − ρn.
Next, if {ai, ai+1} = {x, xm} for some m > n, then, by definition of θ and remember-

ing that s 7→ s/(s + 1) is increasing, we have

θ(ai, ai+1) = ρm =
m

m+ 1
d(ai, ai+1) ≥

n+ 1
n+ 2

d(ai, ai+1),

which gives (8.8).
Finally, if {ai, ai+1} 6= {x, xm} for all m ≥ n0, then it follows from the definition of θ

that

θ(ai, ai+1) = d(ai, ai+1) ≥
n+ 1
n+ 2

d(ai, ai+1),

which also gives (8.8).
Now, it follows from (8.7) and (8.8) that

ρn + ε ≥

N−1∑
i=1

θ(ai, ai+1) ≥
n+ 1
n+ 2

N−1∑
i=1

d(ai, ai+1) ≥
n+ 1
n+ 2

d(xn, y)

for all ε small enough. Letting ε ↓ 0, we get

ρn ≥
n+ 1
n+ 2

d(xn, y) ≥
n+ 1
n+ 2

(d(xn, x)− d(x, y)) ≥
n+ 1
n+ 2

(
n+ 1
n

ρn − d(x, y)

)
,

and hence d(x, y) ≥ ρn/(n(n+ 1)), which contradicts the assumptions and concludes
the proof. ut
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