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Abstract. We study the existence of a Chow-theoretic decomposition of the diagonal of a smooth
cubic hypersurface, or equivalently, the universal triviality of its CH0 group. We prove that for
odd-dimensional cubic hypersurfaces or for cubic fourfolds, this is equivalent to the existence of a
cohomological decomposition of the diagonal, and we translate geometrically this last condition.
For cubic threefolds X, this turns out to be equivalent to the algebraicity of the minimal class θ4/4!
of the intermediate Jacobian J (X). In dimension 4, we show that a special cubic fourfold with
discriminant not divisible by 4 has universally trivial CH0 group.
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1. Introduction

Let X be a smooth rationally connected projective variety over C. Then CH0(X) = Z,
as all points of X are rationally equivalent. However, if L is a field containing C, e.g.
a function field, the group CH0(XL) can be different from Z. As explained in [4], the
group CH0(XL) is equal to Z for any field L containing C if and only if, for L = C(X),
the diagonal (or generic) point δL is rationally equivalent over L to a constant point xL for
some (in fact any) point x ∈ X(C). Following [4], we will then say thatX has universally
trivial CH0 group. Observe that, on the other hand, the equality

δL = xL in CH0(XL) = CHn(XL), n = dimX,

is, by the localization exact sequence applied to Zariski open sets of X × X of the form
U × X, equivalent to the vanishing in CHn(U × X) of the restriction of 1X − X × x,
where U is a sufficiently small dense Zariski open subset of X and 1X ⊂ X × X is the
diagonal of X. This provides a Bloch–Srinivas decomposition of the diagonal

1X = X × x + Z in CHn(X ×X), (1)

where Z is supported on D × X for some proper closed subset D of X. As in [29], we
will call an equality (1) a Chow-theoretic decomposition of the diagonal. So, having uni-
versally trivial CH0 group is equivalent to admitting a Chow-theoretic decomposition of
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the diagonal, but the second viewpoint is much more geometric, and leads to the study of
weakened properties, like the existence of a cohomological decomposition of the diago-
nal, which is the cohomological counterpart of (1), studied for threefolds in [29]:

[1X] = [X × x] + [Z] in H 2n(X ×X,Z), (2)

where Z is supported onD×X for some proper closed algebraic subsetD of X. In these
notions, integral coefficients are essential in order to make the property restrictive, as the
existence of decompositions as above with rational coefficients already follows from the
assumption that CH0(X) = Z (see [7]).

Projective space has universally trivial CH0 group. It follows that rational or stably
rational varieties admit a Chow-theoretic (and a fortiori cohomological) decomposition
of the diagonal. More generally, if X is a unirational variety admitting a unirational
parametrization Pn 99K X of degree N , then there is a decomposition

N1X = N(X × x)+ Z in CHn(X ×X),

with Z supported on D ×X for some D ( X.
Note, however, that the existence of a decomposition of the diagonal is certainly not a

sufficient condition for stable rationality, as there are surfaces of general type (hence very
far from being rational or stably rational) which admit a Chow-theoretic decomposition
of the diagonal (see Corollary 2.2). It could also be the case that a smooth projective va-
riety X admits unirational parametrizations of coprime degrees Ni without being stably
rational (although we do not know such examples). Nevertheless, the existence of a de-
composition of the diagonal is a rather strong condition, and there are now a number of
unirational examples where the non-existence provides an obstruction to rationality or
stable rationality:

1) Examples of rationally connected varieties with no cohomological decomposition
of the diagonal include varieties with non-trivial Artin–Mumford invariant (this is the tor-
sion in H 3(X,Z) or the second unramified cohomology group with torsion coefficients),
or non-trivial third unramified cohomology group H 3

nr(X,Q/Z) (see [11] for examples),
as both of these groups have to be 0 when X has a cohomological decomposition of the
diagonal (see [29]).

2) Examples of rationally connected varieties with no Chow-theoretic decomposi-
tion of the diagonal include varieties with non-trivial unramified cohomology groups
H i

nr(X,Q/Z) with i ≥ 4, as these groups have to be 0 when X has a Chow-theoretic
decomposition of the diagonal (see [12]). We refer to [22] for such examples and to [33]
for the cycle-theoretic interpretation of this group in degree 4.

3) Furthermore, we proved in [28] that the non-existence of a decomposition of the
diagonal is a criterion for (stable) irrationality which is actually stronger than those given
by the non-triviality of unramified cohomology: For example, we show in loc. cit. that
very general smooth quartic double solids do not admit a Chow-theoretic or even a co-
homological decomposition of the diagonal, while their unramified cohomology vanishes
in all positive degrees. We prove similar results for very general nodal quartic double
solids with k ≤ 7 nodes, and in the case of very general double solids with exactly
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seven nodes, we prove in [28] that the non-existence of a cohomological decomposition
of the diagonal is equivalent to the non-existence of a universal codimension 2 cycle
Z ∈ CH2(J (X) × X), where J (X) is the intermediate Jacobian of X. (J (X) is also
known to be isomorphic to the group CH2(X)hom of codimension 2 cycles homologous
to 0 on X.) Thus, in this case, the study of the decomposition of the diagonal led to the
discovery of new stable birational invariants which are non-trivial for some unirational
varieties.

The purpose of this paper is to investigate the existence of a decomposition of the
diagonal for cubic hypersurfaces. Motivations for this study are the following problems:

1) It is well-known that 3-dimensional smooth cubics are irrational (see [10]), but they
are not known not to be stably rational.

2) In dimension 4, some cubics are known to be rational and it is a famous open prob-
lem to prove that there exist irrational cubic fourfolds. Some precise conjectures concern-
ing the rationality of cubic fourfolds have been formulated and compared (see [15], [18],
[2], [1]). All these conjectures develop the idea that if a cubic fourfold is rational, it is
related in some way (Hodge-theoretic, categorical) to a K3 surface. An interesting com-
putation has recently been made by Galkin and Shinder [13], who prove that a rational
cubic fourfold has to satisfy the property that its variety of lines is birational to Hilb2(S)

for some K3 surface S, unless a certain explicitly constructed non-zero element in the
Grothendieck ring of complex varieties is annihilated by the class of A1, that is, provides
a counterexample to the cancellation conjecture for the Grothendieck ring. (Note that such
counterexamples are now known to exist by the work of Borisov [9].)

A priori, the existence of a cohomological decomposition is much weaker than the
existence of a Chow-theoretic one. Our first result, which is unconditional for cubic four-
folds and for odd-dimensional cubics, is the following:

Theorem 1.1. Let X be a smooth cubic hypersurface. Assume H ∗(X,Z)/H ∗(X,Z)alg
has no 2-torsion (this holds for example if dimX is odd or dimX ≤ 4, or X is very
general of any dimension). Then X admits a Chow-theoretic decomposition of the diago-
nal (equivalently, CH0(X) is universally trivial) if and only if it admits a cohomological
decomposition of the diagonal.

Here H ∗(X,Z)alg ⊂ H ∗(X,Z) is the subgroup of classes of algebraic cycles. For any
odd degree and odd dimension smooth hypersurface in projective space, the quotient
groupH ∗(X,Z)/H ∗(X,Z)alg has no 2-torsion. For cubic hypersurfaces, the first example
where we do not know if the assumption is satisfied is 6-dimensional cubics and degree 6
integral cohomology classes on them.

The proof of Theorem 1.1 uses the fact that Hilb2(X) is birationally a projective
bundle over X, a property which is also crucially used in the recent paper [13].

One consequence of this result, established in Section 5, concerns the following no-
tion:

Definition 1.2. (i) If Y ⊂ X is a closed algebraic subset of a variety defined over a
fieldK , we say that CH0(Y )→CH0(X) is universally surjective if CH0(YL)→CH0(XL)

is surjective for any field L containing K .
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(ii) The essential CH0-dimension of a variety X is the minimal integer k such that
there exists a closed algebraic subset Y ⊂ X of dimension k such that CH0(Y ) →

CH0(X) is universally surjective.

Theorem 1.3. The essential CH0-dimension of a very general n-dimensional cubic hy-
persurface over C is either n or 0.

More precisely, Theorem 5.2 proves the result above for a smooth cubic hyper-
surface of dimension n with no 2-torsion in H n(X,Z)/H n(X,Z)alg and such that
EndHSH

n(X,Q)prim = Q. In dimension 4, we get further precise consequences, for ex-
ample we prove that a cubic fourfold which is special in the sense of Hassett [15], with
discriminant not divisible by 4, has universally trivial CH0 group.

The rest of the paper focuses on the cohomological decomposition of the diagonal.
We first investigate the existence of a cohomological decomposition of the diagonal for
varieties whose non-algebraic cohomology is supported in middle degree, like complete
intersections. We prove the following result:

Theorem 1.4. Let X be a smooth projective variety such that H ∗(X,Z) has no torsion.
Assume that H 2i(X,Z) is generated over Z by algebraic cycles for 2i 6= n = dimX.
Then X admits a cohomological decomposition of the diagonal if and only if there exist
varieties Zi of dimension n− 2, correspondences 0i ∈ CHn−1(Zi ×X), and integers ni
with the property that for α, β ∈ H n(X,Z),∑

i

ni〈0
∗

i α, 0
∗

i β〉Zi = 〈α, β〉X. (3)

Note that the condition (3) presents obvious similarities to the one considered in [23] by
Shen, who studied the case of cubic fourfolds. It is however weaker in several respects:
the integers ni do not need to be positive, and the correspondences 0i do not need to
factor through the variety of lines. Finally, the condition formulated by Shen is only con-
jecturally a necessary condition for rationality, while our condition is actually a necessary
condition for the triviality of the universal CH0 group, hence a fortiori for (stable) ratio-
nality.

Remark 1.5. Concerning the second assumption in Theorem 1.4, it is satisfied by uni-
ruled threefolds by [31], but it is not clear that it is satisfied by Fano complete intersections
in any dimension. The group H 2i(X,Z), 2i 6= n, is equal to Z by Lefschetz hyperplane
restriction theorem, but Kollár [17] exhibits examples of hypersurfaces where this group
is not generated by an algebraic class for 2i > n. It is not known if such Fano examples
can be constructed.

The case of rationally connected threefolds X is also particularly interesting. In this case,
we complete the results of [29] by proving the following result. Let J (X) be the interme-
diate Jacobian of X. It is isomorphic as a group to CH2(X)hom via the Abel–Jacobi map.
It is canonically a principally polarized abelian variety, the polarization being determined
by the intersection pairing on H 3(X,Z)/torsion ∼= H 1(J (X),Z). Let θ ∈ H 2(J (X),Z)
be the class of the Theta divisor of J (X).
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Theorem 1.6 (see also Theorem 4.1). LetX be a rationally connected threefold. ThenX
admits a cohomological decomposition of the diagonal if and only if the following three
conditions are satisfied:

(i) H 3(X,Z) has no torsion.
(ii) There exists a universal codimension 2 cycle in X × J (X).

(iii) The minimal class θg−1/(g − 1)! on J (X), dim J (X) = g, is algebraic, that is, the
class of a 1-cycle in J (X).

The main new result in this theorem is the fact that condition (iii) above is implied by
the existence of a cohomological decomposition of the diagonal. In particular, it is a
necessary condition for stable rationality. This can be seen as a variant of the Clemens–
Griffiths criterion which can be stated as saying that a necessary criterion for rationality
of a threefold is that the minimal class θg−1/(g− 1)! on J (X) be the class of an effective
curve in J (X).

Note that examples of unirational threefolds not satisfying (i) were constructed by
Artin and Mumford [3], and examples of unirational threefolds not satisfying (ii) were
constructed in [28]. It is not known if examples not satisfying (iii) exist. More generally,
it is not known if there exists any principally polarized abelian variety (A,2) such that
the minimal class θg−1/(g − 1)! is not algebraic on A, where g = dimA. Notice that
for many Fano threefolds, the intermediate Jacobian J (X) is a Prym variety, so the class
2θg−1(g − 1)! is known to be algebraic. In the case of cubic threefolds, the algebraicity
of θ4/4! is a classical completely open problem. Combining the theorems above, we get
in this case:

Theorem 1.7. Let X be a smooth cubic threefold. Then X has universally trivial CH0
group if and only if the class θ4/4! on J (X) is algebraic. This happens (at least) on a
countable union of closed subvarieties of codimension ≤ 3 of the moduli space of X.

The paper is organized as follows: Theorem 1.1 is proved in Section 2; Theorem 1.4 is
proved in Section 3; and Theorem 1.6 is proved in Section 4. In Section 5, we come back
to the case of cubic hypersurfaces, where we prove Theorem 5.2 and establish further
results, particularly in dimension 4.

2. Chow-theoretic and cohomological decomposition of the diagonal

In this section we prove Theorem 1.1. In the case of cubic hypersurfaces of dimension
≤ 4, a shorter proof will be given, which uses the following result of independent interest:

Proposition 2.1. Let X be a smooth projective variety. If X admits a decomposition of
the diagonal modulo algebraic equivalence, that is,

1X −X × x = Z in CH(X ×X)/alg, (4)

with Z supported on D × X for some proper closed algebraic subset D ( X, then X
admits a Chow-theoretic decomposition of the diagonal.
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Proof. We use the fact proved in [26], [27] that cycles algebraically equivalent to 0 are
nilpotent for the composition of self-correspondences. We write (4) as

1X −X × x − Z = 0 in CH(X ×X)/alg (5)

and apply the nilpotence result mentioned above. This provides

(1X −X × x − Z)
◦N
= 0 in CH(X ×X) (6)

for some large N . As 1X −X × x is a projector and Z ◦ (X × x) = 0, this gives

1X −X × x −W ◦ Z = 0 in CH(X ×X), (7)

for some cycle W on X × X. As W ◦ Z is supported on D × X, for some D ( X, this
concludes the proof. ut

Corollary 2.2. Let S be a surface of general type with CH0(S) = Z and Tors(H ∗(S,Z))
= 0 (for example the Barlow surface [5]). Then S has universally trivial CH0 group.

Proof. (See [4] for a different proof.) As pg(S) = q(S) = 0 by Mumford’s theorem [21],
the cohomology H ∗(S,Z) is generated by classes of algebraic cycles. As H ∗(S,Z) has
no torsion, the cohomology of S × S admits a Künneth decomposition with integral co-
efficients, so that we can write the class of the diagonal of S as

[1S] =
∑
i

[αi] ⊗ [βi] in H 4(S × S,Z), (8)

where αi , βi are algebraic cycles on S with dimαi + dimβi = 2. Clearly, [αi] ⊗ [βi] =
[αi × βi] is supported over D × S with D ( S when dimαi < 2, so that (8) provides in
fact a cohomological decomposition of 1S :

[1S] = [S × s] + [Z] in H 4(S × S,Z), (9)

where Z is a cycle supported over D × S, for some D ( S. Next, as CH0(S × S) = Z,
codimension 2 cycles on S×S which are cohomologous to 0 are algebraically equivalent
to 0 by [7]. Thus the cycle 0 := 1S −S× s−Z is algebraically equivalent to 0 on S×S.
The surface S thus admits a decomposition of the diagonal modulo algebraic equivalence,
and we then apply Proposition 2.1. ut

For a smooth projective varietyX, we denote byX[2] the second punctual Hilbert scheme
of X. It is smooth, obtained as the quotient of the blow-up X̃ ×X of X × X along the
diagonal by its natural involution. Let µ : X × X 99K X[2] be the natural rational map
and r : X̃ ×X→ X[2] be the quotient morphism. We start with the following result:

Lemma 2.3. Let X be a smooth projective variety of dimension n. Then there exists a
codimension n cycle Z in X[2] such that µ∗Z = 1X in CHn(X ×X).
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Proof. Let E1 be the exceptional divisor over the diagonal of the blow-up map τ :
X̃ ×X → X × X. The key point is that there is a (non-effective) divisor δ on X[2]

such that r∗δ = E1. It follows that

r∗δn = En1 in CHn(X̃ ×X).

Now we use the fact that

τ∗((−1)n−1En1) = 1X in CHn(X ×X),

which gives µ∗((−1)n−1δn) = τ∗(r
∗((−1)n−1δn)) = 1X in CHn(X ×X). ut

Corollary 2.4. Any symmetric codimension n cycle on X × X is rationally equivalent
to µ∗0 for a codimension n cycle 0 on X[2].

Proof. Indeed, we can write Z = Z1 + Z2 where Z1 is a combination of irreducible
subvarieties of X × X invariant under the involution i of X × X, and Z2 is of the form
Z′2 + i(Z

′

2), where the diagonal does not appear in Z′2. Write Z1 = n11X + Z
′

1, with
Z′1 =

∑
j njZ

′

1,j , the Z′j being invariant under i but different from 1X. Then Z′1,j is the

inverse image of a subvariety Z′′1,j ofX(2). Let Z̃′′1,j be the proper transform of Z′′1,j under

the Hilbert–Chow map X[2]→ X(2). Then clearly µ∗(Z̃′′1,j ) = Z
′

1,j in CHn(X ×X), so

µ∗
(∑
j

nj Z̃
′′

1,j

)
= Z′1 in CHn(X ×X).

Next, let Z′2 be the image of Z′2 in X[2] by µ. Then clearly

µ∗(Z′2) = Z
′

2 + i(Z
′

2) = Z2 in CHn(X ×X).

Thus
Z = n11X + Z

′

1 + Z2 = n11X + µ
∗

(∑
j

nj Z̃
′′

1,j

)
+ µ∗(Z′2).

Finally, we use Lemma 2.3 to conclude. ut

We next have:

Lemma 2.5. Suppose X admits a cohomological decomposition of the diagonal

[1X − x ×X] = [Z] in H 2n(X ×X,Z), (10)

where Z is a cycle supported on D ×X for some proper closed algebraic subset D of X.
Then X admits a cohomological decomposition of the diagonal

[1X − x ×X −X × x] = [W ] in H 2n(X ×X,Z), (11)

where W is a cycle supported on D ×X for some D ( X, and W is a symmetric cycle.
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Proof. Let us denote by t0 the image of a cycle 0 under the involution i of X × X.
Formula (10) gives as well

[1X −X × x] = [
tZ] in H 2n(X ×X,Z),

and

[(1X −X × x) ◦ (1X − x ×X)] = [
tZ ◦ Z] in H 2n(X ×X,Z). (12)

To conclude, we observe that the cycle tZ ◦ Z is not only supported on D × X and
invariant under the involution, but it even satisfies the stronger property of being rationally
equivalent to a symmetric cycle in X × X. This last fact is indeed clear if there is no
excess formula in the intersection product defining tZ ◦ Z; next it is easy to check that,
by choosing representatives for Z supported in D × X but in general position otherwise,
the intersection of p∗12Z and p∗23(

tZ) in X × X × X is a proper intersection. Finally, the
left-hand side in (12) is equal to [1X −X × x − x ×X] (we assume here n > 0), which
concludes the proof. ut

The following proposition is a key point in our proof of Theorem 1.1.

Proposition 2.6. Let X be a smooth odd degree complete intersection in pro-
jective space. If X admits a cohomological decomposition of the diagonal, and
H 2∗(X,Z)/H 2∗(X,Z)alg has no 2-torsion, then there exists a cycle 0 ∈ CHn(X[2]) with
the following properties:

(i) µ∗0 = 1X − x ×X −X × x −W in CHn(X ×X) with W supported over D ×X,
for some proper closed algebraic subset D ( X.

(ii) [0] = 0 in H 2n(X[2],Z).

The proof of this proposition will use a few lemmas concerning the cohomology of X[2]

when X is the projective space or a smooth complete intersection in projective space. We
give here an elementary and purely algebraic proof. These results can be obtained as well
as an application of [8] or [20] (cf. [25]), but those papers are written in a topologist’s
language and it is not obvious how to translate them into the concrete statements be-
low. With a better understanding of those papers, our arguments would presumably prove
Proposition 2.6 for a smooth projective variety X such that H ∗(X,Z) is torsion free and
H 2∗(X,Z)/H 2∗(X,Z)alg has no 2-torsion.

Let X be a smooth projective variety and let

jE,X : E1,X ↪→ X[2], iE,X : E1,X → X̃ ×X, τE,X : E1,X → X

be respectively the inclusion of the exceptional divisor over the diagonal in X[2], its in-
clusion in X̃ ×X, and its natural morphism to X. Let δ ∈ PicX[2] be the natural divisor
such that 2δ = E. Then δE := δ|E1,X is the line bundle OE1,X (−1) of the projective
bundle τE,X : E1,X ∼= P(TX)→ X.
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Lemma 2.7. Assume that X = Pn and let h = c1(OPn(1)). For any cohomology class
a ∈ H ∗(E1,Pn ,Z), one has (jE,Pn)∗a ∈ 2H ∗+2((Pn)[2],Z) if and only if

a =
∑
i,m≥0

αi,mδ
i
E · τ

∗

E,Pnh
m
· (τ ∗E,Pnh− δE)

m mod 2H ∗(E1,Pn ,Z), (13)

where the αi,m are integers.

Proof. To see that the condition is sufficient (and also to get a nice interpretation of the
condition), we observe that for any smooth subvariety 6 ⊂ Pn of codimension m, we
have the inclusion 6[2] ⊂ (Pn)[2] and the class b := [δ · 6[2]] ∈ H 4m+2((Pn)[2],Z)
satisfies 2b = [E1,Pn ·6[2]], so that

2b = (jE,Pn)∗([6[2]]|E1,Pn ) in H 4m+2((Pn)[2],Z).

Next we observe that 6[2] ∩ E1,Pn is equal to P(T6) ⊂ P(TPn). Take now for 6 a
Pn−m ⊂ Pn. Then the class of P(T6) ⊂ P(TPn) is τ ∗

E,Pnh
m
· (τ ∗

E,Pnh − δE)
m. We have

thus proved that (jE,Pn)∗(τ ∗E,Pnh
m
· (τ ∗

E,Pnh− δE)
m) is divisible by 2 in H ∗((Pn)[2],Z),

and hence so is the class

(jE,Pn)∗(δ
i
E · τ

∗

E,Pnh
m
· (τ ∗E,Pnh− δE)

m) = δi · (jE,Pn)∗(τ
∗

E,Pnh
m
· (τ ∗E,Pnh− δE)

m)

for any i ≥ 0.
In the other direction, it is better to see (Pn)[2] as a P2-bundle over the Grassmannian

G(2, n + 1), namely, if π1 : P → G(2, n + 1) is the universal P1-bundle, it is clear
that (Pn)[2] is isomorphic to the second symmetric product π2 : P2 → G(2, n+ 1) of P
over G(2, n+ 1). Furthermore, E1,Pn ⊂ (Pn)[2] identifies with the Veronese embedding
P ⊂ P2. Write P = P(E) with polarization H = τ ∗

E,Pnh; then P2 = P(S2E) with
polarization H2, and clearly

j∗E,PnH2 = 2H in H 2(P,Z) (14)

since jE,Pn : P → P2 is the Veronese embedding. The cohomology of P decomposes as

H ∗(P,Z) = π∗1H
∗(G(2, n+ 1),Z)⊕H · π∗1H

∗−2(G(2, n+ 1),Z).

We claim that modulo 2, the set of classes a as in (13) is exactlyπ∗1H
∗(G(2, n+1),Z/2Z).

Let l = c1(E) and c = c2(E) be the two generators of H ∗(G(2, n + 1),Z). It is easy to
check that δ = H2 − π

∗

2 l in H 2(P2,Z). Restricting this equality to P , by (14) we get

δE = π
∗

1 l mod 2H 2(P,Z). (15)

Finally, we have π∗1 c = H · (π
∗

1 l −H) in H ∗(P,Z), hence by (15) we get

π∗1 c = τ
∗

E,Pnh · (τ
∗

E,Pnh− δE) mod 2H ∗(P,Z), (16)

which together with (15) proves the claim. Having this, the fact that condition (13) is
sufficient tells us that

(jE,Pn)∗ ◦ π
∗

1 (H
∗(G(2, n+ 1),Z)) ⊂ 2H ∗(P2,Z),
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and in order to prove that it is necessary, we need to prove that the set of classes z ∈
H ∗(P,Z) such that (jE,Pn)∗z ∈ 2H ∗(P2,Z) is equal to π∗1 (H

∗(G(2, n + 1),Z)) mod-
ulo 2H ∗(P,Z). Equivalently, we have to prove that if z ∈ H ∗(G(2, n + 1),Z) sat-
isfies (jE,Pn)∗(H · π∗1 z) ∈ 2H ∗(P2,Z), then z ∈ 2H ∗(G(2, n + 1),Z). But for any
α ∈ H ∗(G(2, n+ 1),Z), we have

〈α, z〉G(2,n+1) = 〈π
∗

1α,H · π
∗

1 z〉P = 〈π
∗

2α, (jE,Pn)∗(H · π
∗

1 z)〉P2 ,

which implies that 〈α, z〉G(2,n+1) is even since (jE,Pn)∗(H · π∗1 z) is divisible by 2. Hence
z is divisible by 2 by Poincaré duality on G(2, n+ 1). ut

Lemma 2.8. Let X ⊂ PN be a smooth odd degree complete intersection of dimension n.

(i) For any integerm ≥ 0, the class (jE,X)∗(τ ∗E,Xh
m
·(τ ∗E,Xh−δE)

m) ∈ H 4m+2(X[2],Z)
is equal to 2δ · [6[2]l ], where 6m ⊂ X is the smooth proper intersection of X with a
linear space of codimension m in PN .

(ii) For any integral cohomology class a ∈ H 2n−2(E1,X,Z), one has (jE,X)∗a ∈
2H 2n(X[2],Z) if and only if

a =
∑

i,m≥0, i+2m=n−1

αi,mδ
i
E · τ

∗

E,Xh
m
· (δE − τ

∗

E,Xh)
m mod 2H ∗(E1,X,Z), (17)

where the αi,m are integers.

Proof. (i) This has already been proved in the case of PN and follows from the fact
that τ ∗E,Xh

m
· (τ ∗E,Xh − δE)

m
∈ H 4m(E1,X,Z) is the class of P(T6m) = E1,6m in

P(TX) = E1,X.

(ii) In the case where X
jX
↪→ PN has odd dimension, observe that the map jX∗ :

H ∗(X,Z/2) → H ∗+2k(PN ,Z/2), k := N − n, is injective since X has odd degree.
It follows as well that if we denote by ̃X : P(TX) → P(TPN ) the natural map, then
̃X∗ : H

∗(P(TX),Z/2)→ H ∗+4k(P(TPN ),Z/2) is also injective. Now, let

a ∈ H 2n−2(E1,X,Z) = H 2n−2(P(TX),Z)

be such that (jE,X)∗a ∈ 2H 2n(X[2],Z). Then ̃X∗a ∈ H ∗(E1,PN ,Z) satisfies
(jE,PN )∗(̃X∗a) ∈ 2H ∗((PN )[2],Z). Thus we conclude by Lemma 2.7 that the class
̃X∗a mod 2 belongs to the subgroup of H ∗(E1,PN ,Z/2) generated by the δiE · τ

∗

E,Pnh
m
·

(δE − τ
∗

E,Pnh)
m with i, m ≥ 0. It easily follows that a mod 2 belongs to the subgroup of

H ∗(E1,X,Z/2) generated by the δiE · τ
∗

E,Xh
m
· (δE − τ

∗

E,Xh)
m with i, l ≥ 0, since the

class of E1,X in E1,PN is equal modulo 2 to τ ∗
E,Pnh

N−n
· (δE − τ

∗

E,Pnh)
N−n.

If X has even dimension, then the maps jX∗ : H n(X,Z/2)→ H n+2k(PN ,Z/2) and
̃X∗ : H

2n−2(P(TX),Z/2) → H 2n−2+4k(P(TPn),Z/2) are no longer injective, but their
kernels are equal respectively to H n(X,Z/2)prim and δn/2−1

E · τ ∗E,XH
n(X,Z/2)prim. The

proof above shows that if a ∈ H 2n−2(E1,X,Z) satisfies (jE,X)∗a ∈ 2H 2n(X[2],Z), then
a ∈ δ

n/2−1
E · τ ∗E,XH

n(X,Z/2)prim modulo the subgroup of H ∗(E1,X,Z/2) generated by
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the δiE · τ
∗

E,Xh
m
· (δE − τ

∗

E,Xh)
m with i, m ≥ 0. By (i), it thus suffices to prove that a

class a ∈ δn/2−1
E · τ ∗E,XH

n(X,Z/2)prim satisfying (jE,X)∗a = 0 in H 2n(X[2],Z/2) must

be 0. This is proved as follows: By a monodromy argument, either any class a ∈ δn/2−1
E ·

τ ∗E,XH
n(X,Z/2)prim satisfies this property, or no non-zero class satisfies it. Assume that

the first possibility occurs. Then we get a contradiction as follows: Let

a = δ
n/2−1
E · τ ∗E,Xα, b = δ

n/2−1
E · τ ∗E,Xβ ∈ H

2n−2(E1,X,Z),

with α, β ∈ H n(X,Z)prim. Then

〈j1,X∗a, j1,X∗b〉X[2] = −2〈α, β〉X. (18)

If both (j1,X)∗α and (j1,X)∗β are divisible by 2 in H 2n(X[2],Z), then 〈(j1,X)∗a,
(j1,X)∗b〉X[2] is divisible by 4, hence 〈α, β〉X is divisible by 2 by (18). Thus, under our
assumption, the intersection pairing modulo 2 would be identically 0 onH n(X,Z/2)prim.
As X has odd degree, the intersection pairing is non-degenerate on H n(X,Z/2)prim, and
we get a contradiction. ut

Proof of Proposition 2.6. Let X be an odd degree complete intersection in PN which
admits a cohomological decomposition of the diagonal. We know by Lemma 2.5 that
there is a symmetric cycleW supported onD×X,D ( X, such that [1X−x×X−X×x]
= [W ] inH 2n(X×X). Corollary 2.4 provides a cycle 00 ∈ CHn(X[2]) such that µ∗00 =

1X − x ×X −X × x −W in CHn(X ×X), which is property (i). It remains to see that
we can modify 00 keeping property (i) and imposing condition (ii), namely

[00] = 0 in H 2n(X[2],Z).

We know that µ∗[00] = 0 in H 2n(X × X,Z), which implies that r∗[00] vanishes in
H 2n(X̃ ×X \ E1,Z). Thus there is a cohomology class β ∈ H 2n−2(E1,Z) such that

iE∗β = r
∗
[00] in H 2n(X̃ ×X,Z),

where we come back to the notation iE : E1 → X̃ ×X, jE : E1 → X[2] for the natural
inclusions of the exceptional divisor over the diagonal of X. This implies that jE∗β is
divisible by 2 in H 2n(X[2],Z). Indeed, we have

jE∗β = r∗(iE∗β) = r∗(r
∗([00])) = 2[00] in H 2n(X[2],Z). (19)

According to Lemma 2.8(ii), one then has

β =
∑

i≥0, i+2m=n−1

αiδ
i
E(h− δE)

mhm + 2γ in H 2n−2(E1,Z), (20)

which by Lemma 2.8(i) gives

jE∗β = 2
( ∑
i≥0, i+2m=n−1

αiδ
i+1
[6[2]m ]

)
inH 2n(X[2],Z)mod jE∗(2H ∗(E1,Z)) (21)

for some integers αi . By (19), we thus have

2
( ∑
i≥0, i+2m=n−1

αiδ
i+1
[6[2]m ] + jE∗(γ )

)
= 2[00] in H 2n(X[2],Z) (22)
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for some integral homology class γ ∈ H 2n−2(E,Z). It is proved in [25, Theorem 2.2] that
the cohomology of X[2] has no 2-torsion when X is an odd degree complete intersection
in projective space, so (22) gives∑

i≥0, i+2m=n−1

αiδ
i+1
[6[2]m ] + jE∗(γ ) = [00] in H 2n(X[2],Z). (23)

We now observe that β is algebraic in H 2n−2(E1,Z), which easily follows from the fact
that iE∗β is algebraic in H 2n(X̃ ×X,Z) by recalling that X̃ ×X,Z is simply the blow-
up of X × X along its diagonal. We thus conclude from (20) that 2γ is algebraic, and
by our assumption that H 2∗(X,Z)/H 2∗(X,Z)alg has no 2-torsion, γ is algebraic, that is,
γ = [0′] for some 0′ ∈ CHn−1(E1). Thus we have∑

i≥0, i+2m=n−1

αiδ
i+1
[6[2]m ] + jE∗[0

′
] = [00] in H 2n(X[2],Z). (24)

We have µ∗δn = ±[1X] and, for any z ∈ CHn−1(E1), µ∗(jE∗z) = N1X for some
N ∈ Z. As µ∗[00] = 0, we can thus assume, up to modifying 0′ but without changing
µ∗00, that in formula (24), αn−1 = 0 and 0′ satisfies τE∗0′ = 0, hence µ∗(jE∗(0′)) = 0
in CHn(X×X). Next, form > 0, µ∗δi+1

[6
[2]
m ] is supported overD×X for some proper

closed algebraic subset D ⊂ X. It follows that the cycle

0 := 00 −
∑

i≥0, i+2m=n−1

αiδ
i+1
[6[2]m ] − jE∗(0

′)

is cohomologous to 0 on X[2], and satisfies µ∗0 = µ∗00 + Z
′ where Z′ ∈ CHn(X ×X)

is supported over D ×X. ut

We now consider the case whereX is a smooth cubic hypersurface in Pn+1. We then have
the following description of X[2], which is also used in [13]. We denote below by F(X)
the variety of lines of X. Let

P = {([l], x) : x ∈ l, l ⊂ X}

be the universal P1-bundle, with first projection p : P → F(X), and let P2 → F(X)

be the P2-bundle defined as the symmetric product of P over F(X). There is a natural
embedding P2 ⊂ X

[2] which maps each fiber of P → F(X), which is the second sym-
metric product of a line in X, isomorphically onto the set of subschemes of length 2 of X
contained in this line. Let pX : PX → X be the projective bundle with fiber over x ∈ X
the set of lines in Pn+1 passing through x. Note that P is naturally contained in PX, as
one sees by considering the second projection q : P → X.

Proposition 2.9. (i) The rational map 8 : X[2] 99K PX which to an unordered pair of
points x, y ∈ X not contained in a common line of X associates the pair ([lx,y], z),
where lx,y is the line in Pn+1 generated by x and y, and z ∈ X is the residual point
of the intersection lx,y ∩X, is desingularized by the blow-up of P2 in X[2].
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(ii) The induced morphism 8̃ : X̃[2] → PX identifies X̃[2] with the blow-up P̃X of P
in PX.

(iii) The exceptional divisors of the two maps X̃[2] → X[2] and P̃X → PX are identified
by the isomorphism 8̃′ : X̃[2] ∼= P̃X of (ii).

Proof. (i) There is a morphism from X[2] to the Grassmannian G(1, n + 1) of lines
in Pn+1, which to x + y associates the line 〈x, y〉. Let π : Q → X[2] be the pull-back
of the natural P1-bundle on G(1, n + 1). Let α : Q → Pn+1 be the natural map. Then
α−1(X) is a reducible divisor in Q, which is generically of degree 3 over X[2], with one
component D1 which is finite of degree 2 over X[2], parametrizing the pairs (x, x + y),
and a second component D which is of degree 1 over X[2] and parametrizes generically
the pairs (z, x + y). The divisor D is isomorphic to X[2] away from P2. Over P2, the
restricted P1-bundle QP2 is contained in α−1(X) but not in D1, so it is contained in D.

We claim that D is smooth and identifies with the blow-up of X[2] along P2. In-
deed, this simply follows from the fact that the divisor D is the zero-set of a section s of
OQ(3)(−D1) on Q. The line bundle OQ(3)(−D1) on Q has degree 1 along the fibers of
Q→ X[2], soR0π∗OQ(3)(−D1) is a rank 2 vector bundle E onX[2] such thatQ = P(E).
The section s provides a section s′ of E and one easily checks that P2 ⊂ X

[2] is scheme-
theoretically defined as the zero-locus of s′. This implies that D is the blow-up of X[2]

along P2 and the smoothness of P2 implies the smoothness of D. The claim is thus proved.
On the other hand, the rational map 8 clearly pulls back to a morphism on D, so (i) is
proved.

(ii)&(iii) If the length 2 subscheme Z = x + y (or Z = (2x, v) with v tangent
to X at x) does not belong to P2, then the line lx,y (or lx,v) is not contained in X, the
morphism 8 is well defined at Z and its image is a pair ([l], u) where l is a line passing
through u and is not contained in X. At such a point ([l], u) of PX, 8−1 is well-defined,
and associates to each ([l′], u′) in a neighborhood of ([l], u) in PX the residual scheme
of u′ in l′ ∩X. This proves (iii).

It remains to understand what happens along the exceptional divisor QP2 of D. Now
we have QP2 = {(u, x + y, [l]) : l ⊂ X, x + y ∈ l(2), u ∈ l}. By definition, 8̃ maps
such a triple to the pair (u, [l]), which by definition belongs to PX. Furthermore, the
fiber of 8̃ over (u, [l]) when l ⊂ X, that is, when (u, [l]) ∈ P , identifies with the plane
l(2) ∼= P2. Thus 8̃−1(P ) is equal to the smooth irreducible hypersurface QP2 in the
smooth variety D, and this implies that 8̃ factors through a morphism f : D → P̃X
which has to be an isomorphism, since it cannot contract any curve; indeed, otherwise
the contracted curve would be a curve in a fiber P2 as described above, so the whole
corresponding P2 would be contracted by f , hence also all deformations of this P2 in
D = X̃[2]. But then the divisor QP2 would be contracted by f , while its image has to be
the exceptional divisor of P̃X → PX. ut

We now first give the proof of Theorem 1.1 in the case of cubics of dimension ≤ 4,
because the argument is shorter in this case.

Proof of Theorem 1.1 for n ≤ 4. LetX be a smooth cubic hypersurface of dimension≤ 4
and assume X admits a cohomological decomposition of the diagonal. The assumptions
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of Proposition 2.6 are satisfied by X, since the integral cohomology of a smooth cubic
hypersurface has no torsion and the integral Hodge conjecture is proved in [32] for cubic
fourfolds. With the notation introduced previously, there exists by Proposition 2.6 a cycle
0 ∈ CHn(X[2]) such that

µ∗0 = 1X − x ×X −X × x −W in CHn(X ×X), (25)

with W supported over D ×X for some D ( X, and [0] = 0 in H 2n(X[2],Z).
By Proposition 2.9, the blow-up σ : X̃[2] → X[2] of X[2] along P2 identifies via 8̃

with a blow-up of the projective bundle PX over X. Furthermore, the exceptional divisor
of 8̃ : X̃[2] → PX is also the exceptional divisor of σ : X̃[2] → X[2], hence maps via σ
to P2 ⊂ X

[2]. It follows that the pull-back σ ∗(0) of the cycle 0 to X̃[2] can be written as

σ ∗(0) = 01 + 02, (26)

where 01 and 02 are cohomologous to 0, 01 is a cycle cohomologous to 0 on the excep-
tional divisor of 8̃ : X̃[2] → PX, and 02 is the pull-back of a cycle 0′2 cohomologous
to 0 on PX. As the exceptional divisor of 8̃ equals the exceptional divisor of σ , it follows
from (26), by applying σ∗, that

0 = iP2∗(0
′

1)+8
∗(0′2) in CH(X[2]), (27)

where 0′1 is a cycle cohomologous to 0 on P2. Here iP2 denotes the inclusion map of P2

in X[2]. It is known that for a smooth cubic hypersurface of dimension ≤ 4, cycles ho-
mologous to 0 are algebraically equivalent to 0. For codimension 2 cycles, this is proved
by Bloch and Srinivas [7] and is true more generally for any rationally connected vari-
ety; for 1-cycles on cubic fourfolds, this is proved in [24], and this is true more generally
for 1-cycles on Fano complete intersections of index ≥ 2. The result then also holds for
cycles on a projective bundle over a cubic of dimension ≤ 4. Thus 0′2 is algebraically
equivalent to 0 and thus we conclude that

0 = iP2∗(0
′

1) in CH(X[2])/alg (28)

for some n-cycle 0′1 homologous to 0 on P2. We now apply the following result:

Lemma 2.10. Let X be an n-dimensional smooth cubic hypersurface and Z be an

n-cycle homologous to 0 on P2
iP2
↪→ X[2]. Then µ∗(iP2∗Z) ∈ CHn(X × X) is supported

on D ×X for some proper closed algebraic subset D of X.

Proof. Recall that P2 is the union of the symmetric products L(2) over all lines L ⊂ X.
As before, denote by

q : P → X, p : P → F

the natural maps, and by q2 the natural map P ×F P → X×X induced by q. We will also
denote by π : P ×F P → F the map induced by p. Via π , P ×F P is a P1

× P1-bundle
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over F . Let H := c1(OX(1)) ∈ CH1(X) and let h = q∗H ∈ CH1(P ) be its pull-back
to P . For a cycle Z supported on P2, we have

µ∗(iP2∗Z) = q2∗(r
′∗Z) in CH(X ×X)

where r ′ is the quotient map P ×F P → P2. Let T := r ′∗Z ∈ CH(P ×F P). This is a
cycle homologous to 0 on P ×F P , and thus it can be written as

T = h1h2π
∗α + h1π

∗β + h2π
∗γ + π∗ζ in CH(P ×F P), (29)

for some cycles α, β, γ, ζ homologous to 0 on F , with hi = pr∗i h for i = 1, 2, pri :
P ×F P → P being the i-th projection.

We now push forward these cycles to X ×X via q2 and observe that the three cycles

q2∗(π
∗ζ ), q2∗(h1h2π

∗α), q2∗(h1π
∗β)

are cycles supported on D × X for some D ( X. Indeed, for the two last ones,
this is due to the projection formula (and the equality h1 = q∗2 (H1), where H1 :=

pr∗1 H ∈ CH1(X × X)), and for the first one, this is because q2∗(π
∗ζ ) is supported on

q(p−1(Supp ζ )) × X. Now ζ is a (n − 2)-cycle, so q(p−1(Supp ζ )) is a proper closed
algebraic subset of X. It remains to examine the cycle q2∗(h2π

∗γ ). We observe now that
the diagonal1P ⊂ P ×F P ⊂ P ×P is a divisor d in P ×F P whose class is of the form
d = h1+ h2+ π

∗λ for some divisor class λ ∈ CH1(F ). Furthermore, we obviously have
q2(1P ) ⊂ 1X. Thus we can write

h2π
∗γ = (d − h1 − π

∗λ)π∗γ in CH(P ×F P).

Hence

q2∗(h2π
∗γ ) = q2∗(dπ

∗γ )− q2∗(h1π
∗γ )− q2∗(π

∗(λγ )) in CH(X ×X).

As already explained, the cycles q2∗(h1π
∗γ ) and q2∗(π

∗(λγ )) are supported overD×X
for some D ( X. Finally, the last cycle q2∗(dπ

∗γ ) has to be 0 in CH(X × X). Indeed,
this is an n-cycle of X × X which is supported on the diagonal, hence proportional to it,
and also cohomologous to 0. ut

Combining (25), (28) and Lemma 2.10, we conclude that

1X = x ×X +X × x −W
′ in CH(X ×X)/alg, (30)

whereW ′ is supported onD′×X for someD′ ( X. In conclusion,X admits a decomposi-
tion of the diagonal modulo algebraic equivalence, and we can now apply Proposition 2.1
to conclude that X admits a Chow-theoretic decomposition of the diagonal. ut

We now turn to the general case.

Proof of Theorem 1.1 for general n. Let X be a smooth cubic hypersurface such that the
group H 2∗(X,Z)/H 2∗(X,Z)alg has no 2-torsion. Then Propositions 2.6 and 2.9 apply.
Next, if we examine the proof in the case of dimension ≤ 4, we see that the only place
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where we used the fact that dimX ≤ 4 is in the analysis of the term 8∗(0′2), where
0′2 is cohomologous to 0 on PX. We directly used the fact that this term is algebraically
equivalent to 0, which we do not know in higher dimension. The following provides an
alternative argument which works also in higher dimension:

Lemma 2.11. Let X be a smooth cubic hypersurface of dimension n ≥ 2. Let Z be
an n-cycle cohomologous to 0 on PX. Then 3µ∗(8∗(Z)) ∈ CHn(X × X) is rationally
equivalent to a cycle supported on D ×X for some D ( X.

Proof. Recall that pX : PX → X is the Pn-bundle over X with fiber over x ∈ X the
set of lines in Pn+1 through x. Let us denote by l ∈ CH1(PX) the class of OPX (1) (we
choose for OPX (1) the pull-back of the Plücker line bundle on the Grassmannian of lines
G(1,Pn+1)). The cycle Z can be written as

Z = p∗XZ0 + lp
∗

XZ1 + · · · + l
np∗XZn, (31)

whereZi are cycles of codimension n−i onX. Note that the cyclesZi are all homologous
to 0. As dimX ≥ 2, we have CH0(X)hom = 0, and thus Z0 = 0 in CH0(X). Hence (31)
shows that Z = l · Z′ for some Z′ ∈ CH(PX). Let 9 := 8 ◦ µ : X × X 99K PX and let

9̃ :
˜̃
X ×X→ PX be the desingularization of9 obtained by blowing up first the diagonal

of X, and then the inverse image of P2 ⊂ X
[2] (see Proposition 2.9). Let τ̃ :

˜̃
X ×X →

X × X be the composition of the two blow-ups. There are two exceptional divisors of τ̃ ,
namely E1 and EP2 . We thus have (using the fact that 9̃ factors through X[2])

9̃∗(l) = ατ̃ ∗(H1 +H2)+ βE1 + γEP2 ,

where the coefficients α, β, γ can be explicitly computed but this is not useful here.
It follows that

9∗(Z) = 9∗(l · Z′) = τ̃∗(9̃
∗(l · Z′)) = τ̃∗(9̃

∗(l) · 9̃∗(Z′))

= τ̃∗((ατ̃
∗(H1 +H2)+ βE1 + γEP2) · 9̃

∗(Z′)) in CH(X ×X). (32)

Now, we develop the last expression and observe again that since τ̃∗(βE1 · 9̃∗(Z′)) is
supported on the diagonal of X, it must be proportional to 1X, hence in fact identically 0
as it is cohomologous to 0. Next, the cycle τ̃∗(γEP2 · 9̃

∗(Z′)) comes from an n-cycle Z′′

homologous to 0 on P ×F P , i.e.

τ̃∗(γEP2 · 9̃
∗(Z′)) = q2∗(Z

′′), (33)

where q2 : P ×F P → X × X is introduced above. We can then apply Lemma 2.10 to
conclude that the cycle τ̃∗(γEP2 · 9̃

∗(Z′)) is supported onD×X for someD ( X. Thus
we conclude from (32), the projection formula, and the analysis above that

9∗(Z) = H1 ·W1 +H2 ·W2 +W in CH(X ×X), (34)

where W is supported on D × X for some D ( X, and W1, W2 are cycles homologous
to 0 on X × X. It thus suffices to show that cycles 0 on X × X of the form H1 · W1
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and H2 ·W2 with Wi homologous to 0 on X × X have the property that 30 is rationally
equivalent to a cycle supported onD×X for some proper closed algebraic subsetD ofX.
For H1 ·W1 this is obvious, and the coefficient 3 is not needed. For H2 ·W2, we observe
that if i2 : X ×X→ X × Pn+1 denotes the natural inclusion, we have

3H2 ·W2 = i
∗

2 ◦ i2∗(W2) in CH(X ×X).

Now the cycle i2∗(W2) ∈ CHn+1(X×Pn+1) is homologous to 0. Using its decomposition

i2∗(W2) =
∑
i

pr∗1 γi · pr∗2 L
n−i,

with γi ∈ CHi(X)hom and L = c1(OPn+1(1)) ∈ CH1(Pn+1), we thus conclude that
γ0 = 0, hence that i2∗(W2) =

∑
i>0 pr∗1 γi ·pr∗2 L

n−i in CHn(X×Pn+1). Hence i2∗(W2) is
rationally equivalent to a cycle supported on D × Pn+1 for some proper closed algebraic
subset D of X, and thus 3H2 · W2 = i∗2 ◦ i2∗(W2) is rationally equivalent to a cycle
supported on D ×X for some proper closed algebraic subset D of X. ut

The rest of the proof goes as before, using again Lemma 2.10, and this allows us to con-
clude that ifX admits a cohomological decomposition of the diagonal, then 3(1X−X×x)
is rationally equivalent to a cycle supported on D × X for some D ( X. On the other
hand, as X admits a unirational parametrization of degree 2 (see [10]), we also know that
2(1X−X×x) is rationally equivalent to a cycle supported onD′×X for someD′ ( X.
It follows that X admits a Chow-theoretic decomposition of the diagonal. ut

3. Criteria for the cohomological decomposition of the diagonal

This section is devoted to the existence of cohomological decomposition of the diagonal.
Our main result here is the following criterion for such a decomposition to exist:

Theorem 3.1 (cf. Theorem 1.4). Let X be smooth projective of dimension n. If X ad-
mits a cohomological decomposition of the diagonal, then the following condition (∗) is
satisfied:

(∗) There exist smooth projective varieties Zi of dimension n− 2, correspondences 0i ∈
CHn−1(Zi ×X), and integers ni , such that for any α, β ∈ H n(X,Z),

〈α, β〉X =
∑
i

ni〈0
∗

i α, 0
∗

i β〉Zi . (35)

Conversely, assume condition (∗) and furthermore:

(i) H 2i(X,Z) is algebraic for 2i 6= n and H 2i+1(X,Z) = 0 for 2i + 1 6= n.
(ii) H ∗(X,Z) has no torsion.

Then X admits a cohomological decomposition of the diagonal.
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Here 0∗i : H
n(X,Z)→ H n−2(Zi,Z) is as usual defined by

0∗i (α) := prZi ∗(pr∗X α ^ [0i]),

where prZi and prX are the projections from Zi × X to its factors. Let us comment on
assumptions (i) and (ii). If X is a complete intersection of dimension n, the integral co-
homology of X has no torsion and the groups H 2i(X,Z) are cyclic generated by hi for
i < n/2, where h = c1(OX(1)). For i > n/2, they are also cyclic but the generator is
now (1/d)hi , where d = degX, and it is not true in general that they are generated by
a cycle class, except when X is Fano and n = 4 (resp. n = 3), in which case H 6(X,Z)
(resp. H 4(X,Z)) is generated by the class of a line in X, and some sporadic cases. Note
that in any case the class hi is algebraic for any i, and in some cases this can be used
as a substitute assumption in Theorem 3.1, like smooth cubic hypersurfaces (see Corol-
lary 3.2). Another interesting class of varieties which satisfy these two properties, needed
in order to apply Theorem 3.1 below, is the class of rationally connected threefolds with
trivial Artin–Mumford invariant, for which it is proved in [31] thatH 4(X,Z) is algebraic.
In this case, one gets Theorem 4.1 which improves [29, Corollary 4.5 and Theorem 4.9].

Proof of Theorem 3.1. Let us first prove that assuming (i) and (ii), condition (∗) implies
that X admits a cohomological decomposition of the diagonal. So let Zi and 0i be as
above and satisfy (35). As dimZi = n− 2, and codim0i = n− 1, the 0i’s are (n− 1)-
cycles in Zi×X. We denote by (0i, 0i) ∈ CH2n−2(Zi×Zi×X×X) the correspondence
p∗130i · p

∗

240i between Zi × Zi and X × X, where the prs are the projectors from Zi ×

Zi × X × X to the product of two of its factors. Observe that (0i, 0i)∗1Zi is supported
on Di × Di , where Di ( X is defined as the image of Supp0i in X under the second
projection. Let

0 :=
∑
i

ni(0i, 0i)∗1Zi ∈ CHn(X ×X).

Equation (35) can be written as

〈α, β〉X =

∫
X×X

pr∗1 α ^ pr∗2 β ^ [0] (36)

for any degree n classes α, β on X. It follows that the class

[1X] − [0] ∈ H
2n(X ×X,Z) ∼= End0(H

∗(X,Z)) (37)

annihilates H n(X,Z). In (37), End0 denotes the group of degree preserving endomor-
phisms. The isomorphism H 2n(X × X,Z) ∼= End0 (H

∗(X,Z)) is a consequence, by
Künneth decomposition and Poincaré duality, of the fact that H ∗(X,Z) has no torsion.

It follows that (again by Künneth decomposition)

[1X] − [0] ∈
⊕
i 6=n

H i(X,Z)⊗H 2n−i(X,Z) ⊂ H 2n(X ×X,Z). (38)
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On the other hand, condition (i) tells us that H ∗6=n(X,Z) consists of classes of algebraic
cycles, so that (38) becomes

[1X] − [0] =
∑
i

pr∗1[Wi]^ pr∗2[W
′

i ] (39)

for some cycles Wi, W
′

i of X with dimWi + dimW ′i = n. The right-hand side of (39) is
of the form

[X × x] +
∑

i, dimW ′i>0

[pr∗1 Wi · pr∗2 W
′

i ]

and clearly
∑
i, dimW ′i>0 pr∗1 Wi · pr∗2 W

′

i is supported on D′ × X for some proper closed
algebraic subset D′ ( X. Hence

[1X] − [X × x] = [0] +
∑

i, dimW ′i>0

[pr∗1 Wi · pr∗2 W
′

i ] = [Z],

where the cycle Z = 0 +
∑
i, dimW ′i>0 pr∗1 Wi · pr∗2 W

′

i is supported on (
⋃
Di ∪D

′)×X.
We now prove conversely that condition (∗) follows from the existence of a cohomo-

logical decomposition of the diagonal of X. Let D ⊂ X be a divisor and Z ⊂ D × X be
an n-cycle such that

[Z] = [1X] − [X × x] in H 2n(X ×X,Z).

We first claim that we can assume that D is a global normal crossing divisor. In order to
achieve this, let τ : X′→ X be a blow-up ofX such that a global normal crossing divisor
D′ ⊂ X′ dominatesD. EnlargingD if necessary, we can assume that Z lifts to an n-cycle
Z′ ∈ CHn(D′′ × X′), where D′′ =

⊔
i Di is the normalization of D′. (Indeed, it suffices

to choose D in such a way that for each irreducible component Zi of the support of Z,
D has at least one component which is generically smooth along Zi .) It follows easily
that the cycle class

[1X′ ] − [X
′
× x] ∈ H 2n(X′ ×X′)

is the class of a cycle Z1 supported on (D′ ∪E)×X′, where E is the exceptional divisor
of τ . The divisor D′1 = D

′
∪ E can also be assumed to have global normal crossings and

thus the cycle Z1 lifts to an n-cycle Z′1 ∈ CHn(D′′1 × X
′), where D′′1 =

⊔
i D1,i is the

normalization ofD′1. On the other hand, as 〈α, β〉X = 〈τ ∗α, τ ∗β〉X′ for α, β ∈ H n(X,Z),
it suffices to prove (∗) for X′. This proves our claim.

From now on, we thus assume X = X′ and D is a global normal crossing divisor
in X with normalization

⊔
i Di , so that Z lifts to a cycle Z̃ in (

⊔
i Di)×X. Let us denote

by 0i ∈ CHn(Di × X) the restriction of Z̃ to the connected component Di × X. Let
ki : Di → X be the inclusion map. We have∑

i

(ki, IdX)∗[0i] = [Z] = [1X] − [X × x] in H 2n(X ×X). (40)
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We can of course assume n > 0, so that [Z]∗α = α for any α ∈ H n(X,Z). Then (40)
gives, for any α, β ∈ H n(X,Z), the equality

〈α, β〉X = 〈[Z]
∗α, [Z]∗β〉X =

〈∑
i

((ki, IdX)∗[0i])∗α,
∑
i

((ki, IdX)∗[0i])∗β
〉
X
. (41)

We now develop the last expression, which gives, for all α, β ∈ H n(X,Z),
〈α, β〉X =

∑
i,j

〈((ki, IdX)∗[0i])∗α, ((kj , IdX)∗[0j ])∗β〉X. (42)

Note now that
((ki, IdX)∗[0i])∗α = ki∗([0i]∗α) in H n(X,Z)

and similarly for (kj , IdX)∗[0j ])∗β. Hence (42) becomes

〈α, β〉X =
∑
i,j

〈ki∗([0i]
∗α), kj∗([0j ]

∗β)〉X, (43)

where [0i]∗α ∈ H n−2(Di,Z) and [0j ]∗β ∈ H n−2(Dj ,Z). Let δi = k∗i (Di) ∈ CH1(Di)

and let [δi] ∈ H 2(Di,Z) be its cohomology class. As ki is an embedding, we have
k∗i ◦ ki∗ = [δi]^: H

n−2(Di,Z)→ H n(Di,Z), and thus

〈ki∗([0i]
∗α), ki∗([0i]

∗β)〉X = 〈[δi]^ [0i]
∗α, [0i]

∗β〉Di . (44)

Write δi =
∑
l nilZil where nil ∈ Z and Zil is a smooth (n− 2)-dimensional subvariety

of Di . Then letting 0il ∈ CHn−1(Zil × X) be the pull-back of 0i to Zil × X, we can
write (44) as

〈ki∗([0i]
∗α), ki∗([0i]

∗β)〉X =
∑
l

nil〈[0il]
∗α, [0il]

∗β〉Zil . (45)

The right-hand side of this equation is exactly of the form allowed in (35) and it remains
to analyze in (43) the terms

〈ki∗([0i]
∗α), kj∗([0j ]

∗β)〉X + 〈kj∗([0j ]
∗α), ki∗([0i]

∗β)〉X

for i 6= j . Denote by Wij the intersection Di ∩ Dj . It admits two correspondences
0ij , 0ji ∈ CHn−1(Wij ×X), namely the restriction to Wij ×X of 0i ∈ CHn−1(Di ×X)

and of 0j ∈ CHn−1(Dj ×X) respectively. With this notation,

〈ki∗([0i]
∗α), kj∗([0j ]

∗β)〉X = 〈[0ij ]
∗α, [0ji]

∗β〉Wij ,

〈kj∗([0j ]
∗α), ki∗([0i]

∗β)〉X = 〈[0ji]
∗α, [0ij ]

∗β〉Wij ,
(46)

which provides

〈ki∗([0i]
∗α), kj∗([0j ]

∗β)〉X + 〈kj∗([0j ]
∗α), ki∗([0i]

∗β)〉X

= 〈[0ij ]
∗α, [0ji]

∗β〉Wij + 〈[0ji]
∗α, [0ij ]

∗β〉Wij

= 〈([0ij ] + [0ji])
∗α, ([0ij ] + [0ji])

∗β〉Wij

− 〈[0ij ]
∗α, [0ij ]

∗β〉Wij − 〈[0ji]
∗α, [0ji]

∗β〉Wij . (47)

Each of the terms appearing in the final expression of (47) is of the form allowed in (35),
which concludes the proof. ut
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Corollary 3.2. Let X be a smooth cubic hypersurface. Then X admits a coho-
mological decomposition of the diagonal (or equivalently a Chow-theoretic one if
H ∗(X,Z)/H ∗(X,Z)alg has no torsion) if and only if X satisfies condition (∗).

Proof. The necessity of (∗) is proved above and the proof does not use assumptions (i)
and (ii) of Theorem 3.1, so it works in our case. The converse is not in fact a direct
corollary of the theorem, since the proof uses these assumptions and we do not know
that cubic hypersurfaces satisfy (i), but we can make a small variant of the proof, using
the following observation: As a smooth cubic hypersurface of dimension ≥ 2 admits a
unirational parametrization of degree 2, twice its diagonal admits a decomposition

21X = 2(X × x)+ Z in CH(X ×X),

with Z supported on D × X for some D ( X. So X admits a cohomological (or Chow-
theoretic) decomposition of the diagonal if there is such a decomposition for 31X. But
we know that hi is algebraic for any i, and thus each class 3 pr∗1 αi ^ pr∗2 αn−i for 2i 6= n,
0 is the class of a cycle supported on D × X for some D ( X, where αi is a generator
of H 2i(X,Z). The proof of the existence of a decomposition of 3[1X] assuming condi-
tion (∗) then works as in the proof of Theorem 3.1. ut

Let us conclude this section with the following variant of (part of) Theorem 3.1.

Theorem 3.3. Let X be a smooth projective variety of dimension n, and let N be an
integer. Assume there is a decomposition

N [1X] = N [X × x] + [Z] in H 2n(X ×X,Z),

where Z is supported on D × X for some D ( X. Then there exist smooth projective
varieties Zi of dimension n− 2, correspondences 0i ∈ CHn−1(Zi ×X), and integers ni ,
such that for any α, β ∈ H n(X,Z),

N2
〈α, β〉X =

∑
i

ni〈0
∗

i α, 0
∗

i β〉Zi . (48)

Proof. We look at the proof that condition (∗) follows from the existence of a cohomo-
logical decomposition of the diagonal and we repeat it replacing everywhere 〈α, β〉X by
N2
〈α, β〉X. The main point is that with the same notation as in the proof of the theorem,

letting Z =
∑
i(ki, IdX)∗0i , we have by assumption

[Z]∗α = Nα

for α ∈ H n(X,Z) (with n > 0), and thus

N2
〈α, β〉X = 〈[Z]

∗α, [Z]∗β〉X. ut

4. Rationally connected threefolds

In the case of rationally connected threefolds, we have the following result, which was
partially proved in [29]:
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Theorem 4.1 (cf. Theorem 1.6). LetX be a rationally connected 3-fold and let J (X) be
its intermediate Jacobian, with principal polarization θ ∈ H 2(J (X),Z). Then X admits
a cohomological decomposition of the diagonal if and only if:

(a) H 3(X,Z) has no torsion.
(b) There exists a universal codimension 2 cycle 0 on J (X)×X.
(c) The integral Hodge class θg−1/(g − 1)! ∈ H 2g−2(J (X),Z), where g := dim J (X),

is algebraic on J (X), that is, is the class of a 1-cycle Z ∈ CH1(J (X)).

Proof. Indeed, it is proved in [29, Corollary 4.5] that for a rationally connected 3-fold,
conditions (a) and (b) are necessary for the existence of a cohomological decomposition
of the diagonal, and in [29, Theorem 4.9] that (a)–(c) are sufficient for the existence of
a cohomological decomposition of the diagonal. So it suffices to show that (c) is also
necessary.

Assume X admits a cohomological decomposition of the diagonal, and let Zi, 0i and
ni be as in Theorem 3.1. Then the Abel–Jacobi map 8X of X induces (after choosing a
reference point in Zi) a morphism

γi = 8X ◦ 0i∗ : Zi → CH2(X)hom → J (X)

with image Z′i := γi∗Zi ∈ CH1(J (X)). We claim that (35) is equivalent to the equality∑
i

ni[Z
′

i] = θ
g−1/(g − 1)!. (49)

Indeed, as
∧2

H 1(J (X),Z) ∼= H 2(J (X),Z) = H 2g−2(J (X),Z)∗, (49) is equivalent to
the fact that for α, β ∈ H 1(J (X),Z),

∑
i

ni〈γ
∗

i α, γ
∗

i β〉Zi =

〈
θg−1

(g − 1)!
α, β

〉
J (X)

. (50)

Now, the right-hand side is equal, by definition of the polarization θ , to 〈α′, β ′〉X, where
we use the canonical isomorphism H 1(J (X),Z) ∼= H 3(X,Z) to identify α, β with
classes α′, β ′ of degree 3 on X. Finally, using again this canonical isomorphism, we
have

γ ∗i α = 0
∗

i α
′, γ ∗i β = 0

∗

i β
′

so that the left-hand side in (50) is equal to
∑
i ni〈0

∗

i α
′, 0∗i β

′
〉Zi . Hence (50) is equivalent

to the fact that for any α′, β ′ ∈ H 3(X,Z),∑
i

ni〈0
∗

i α
′, 0∗i β

′
〉Zi = 〈α

′, β ′〉X,

which is equality (35). ut

The following variant is proved as above, using Theorem 3.3 instead of Theorem 3.1. It
answers a question posed to us by A. Beauville.
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Theorem 4.2. Let X be a rationally connected threefold with no torsion in H 3(X,Z).
Assume that, for some integer N , N1X admits a decomposition

[N1X] = N [X × x] + [Z] (51)

with Z supported on D ×X for some D ( X. Then:

(i) There exists a codimension 2 cycle 0 ∈ CH2(J (X)×X) such that for any t ∈ J (X),

8X(0t ) = Nt in J (X).

(ii) The integral cohomology class N2θg−1/(g − 1)! ∈ H 2g−2(J (X),Z) is algebraic
on J (X), where g = dim J (X).

Proof. (i) Let D̃
j
↪→ X be a desingularization with a cycle Z̃ ∈ CH(D̃ × X) such that

(j, IdX)∗(Z̃) = N1X −NX × x. It follows that for any α ∈ H 3(X,Z),

Nα = j∗(Z̃
∗α),

and similarly, looking at the induced morphisms of complex tori,

N IdJ (X) = j∗ ◦ Z̃∗ : J (X)→ J (X),

where Z̃∗ gives a morphism

ψ : J (X)→ J 1(D̃) ∼= Pic0(D̃).

Now we use the existence of a universal divisor D on Pic0(D̃)× D̃. Let

Z := (IdJ (X), j)∗(ψ, IdD̃)
∗(D) ∈ CH2(J (X)×X).

Then for any t ∈ J (X),

8X(Zt ) = j∗(8D̃(Dψ(t))) in J (X).

The right-hand side is equal to j∗(ψ(t)) = j∗(Z̃∗(t)) = Nt , proving (i).
(ii) We use Theorem 3.3. We thus have curvesCi , correspondences0i ∈ CH2(Ci×X),

and integers ni such that for any α, β ∈ H 3(X,Z),

N2
〈α, β〉X =

∑
i

ni〈0
∗

i α, 0
∗

i β〉Ci .

As in the proof of Theorem 4.1, this equality exactly says that the 1-cycles Di := γi∗ ∈
CH1(J (X)), where γi = 8X ◦ 0i∗ : Ci → J (X), satisfy

∑
i

ni[Di] = N
2 θg−1

(g − 1)!
in H 2g−2(J (X),Z). ut
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Remark 4.3. If X is a unirational threefold admitting a degree N unirational parametr-
ization φ : P3 99K X, then N1X admits a decomposition as in (51), simply because,
denoting by Y a blow-up of P3 on which φ is desingularized to a true morphism φ̃, one
has

(φ̃, φ̃)∗(1Y ) = N1X

and Y admits a decomposition of the diagonal. In this case, Theorem 4.2(ii) has an imme-
diate proof which provides the following stronger statement:

There is an effective cycle of class Nθg−1/(g − 1)! in H 2g−2(J (X),Z), where
g = dim J (X).

To see this, recall from [10] that (J (Y ), θY ) is a direct sum of Jacobians of smooth curves.
Thus there exists a (possibly reducible) curve C⊂J (Y ) with class θg

′
−1

Y /(g′−1)!, where
g′ := dim J (Y ). Let ψ : J (Y )→ J (X) be the morphism induced by φ̃ : Y → X.

We claim thatψ∗(C) ⊂ J (X) has classNθg−1/(g−1)! in J (X). Indeed, by definition
of the Theta divisor of J (X), this is equivalent to saying that for any α, β ∈ H 3(X,Z),
denoting by α′, β ′ the corresponding degree 1 cohomology classes on J (X) via the iso-
morphism H 3(X,Z) ∼= H 1(J (X),Z),

N〈α, β〉X =

∫
ψ∗(C)

α′ ∧ β ′. (52)

However, ∫
ψ∗(C)

α′ ∧ β ′ =

∫
C

ψ∗α′ ∧ ψ∗α′,

where ψ∗α′ identifies with φ∗α ∈ H 3(Y,Z) via the natural isomorphismH 1(J (Y ),Z) ∼=
H 3(Y,Z), and similarly for β. Finally, by definition of the Theta divisor of J (Y ) we get∫

C

ψ∗α′ ∧ ψ∗α′ = 〈φ̃∗α, φ̃∗β〉Y = N〈α, β〉X,

which proves (52).

In the case of a smooth cubic threefold, we get the following consequence of Theorem 4.1:

Corollary 4.4 (cf. Theorem 1.7). A smooth cubic threefold admits a Chow-theoretic de-
composition of the diagonal (that is, its CH0 group is universally trivial) if and only if the
class θ4/4! is algebraic on J (X).

Proof. Indeed, this condition is necessary by Theorem 4.1. Its sufficiency is proved as
follows: The cubic 3-fold has no torsion in H 3(X,Z). It is not known if it admits a
universal codimension 2 cycle, but it is known by work of Markushevich–Tikhomirov
[19] that it admits a parametrization of the intermediate Jacobian with rationally con-
nected fibers, that is, there exists a smooth projective variety B and a codimension 2
cycle Z ∈ CH2(B ×X) such that the induced morphism

8Z : B → J (X), t 7→ 8X(Zt ),
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is surjective with rationally connected general fiber. In [29, Theorem 4.1], it is proved that
if such a parametrization exists for a given rationally connected 3-fold X, and if further-
more the minimal class θg−1/(g − 1)! is algebraic on J (X), then there exists a universal
codimension 2 cycle on J (X) × X. In the case of the cubic threefold, we conclude that
if the minimal class θ4/4! is algebraic, then there exists a universal codimension 2 cycle
on J (X) × X. Thus Theorem 4.1 implies that X admits a cohomological decomposition
of the diagonal. By Theorem 1.1, X then admits a Chow-theoretic decomposition of the
diagonal. ut

We conclude with the following result:

Theorem 4.5. There exists a non-empty countable union of proper subvarieties of codi-
mension ≤ 3 in the moduli space of smooth cubic threefolds parametrizing threefolds X
with universally trivial CH0 group.

Proof. We first claim that if (J (X), θ) is isogenous via an odd degree isogeny to
(J (C),mθC) for some (possibly reducible) curve C, then J (X) has a 1-cycle whose
class is an odd multiple of the minimal class θ4/4!. Indeed, we have the odd degree
isogeny µ : J (C)→ J (X) with µ∗θX = mθC . As degµ is odd, m is odd. Furthermore,
µ∗(θ

4
C/4!) = m(θ

4/4!) and θ4
C/4! is algebraic on J (C). As 2(θ4/4!) is an algebraic class

because (J (X), θ) is a Prym variety (see [10]), we conclude that θ4/4! is algebraic, which
proves the claim.

An explicit example is as follows: Consider a smooth cubic threefold defined by a ho-
mogeneous polynomial P(X0, . . . , X4), where P is invariant under the automorphism g

of order 3 acting on coordinates by

g∗X0 = X0, g∗X1 = jX1, g∗X2 = j
2X2, g∗X3 = X3, g∗X4 = X4,

where j = exp(2ιπ/3). The invariant partH 3(X,Q)inv ofH 3(X,Q) under the action of g
has rank 6. This can be seen by looking at the action of g∗ on H 2,1(X), the latter space
being computed via Griffiths residues (see [34, 6.1]): One gets a residue isomorphism

H 0(X,OX(1)) ∼= H 2,1(X), A 7→ ResX
A�

P 2 , (53)

where � is the canonical generator of H 0(P4,KP4(5)). As g∗� = �, (53) induces an
isomorphism

H 0(X,OX(1))inv ∼= H
2,1(X)inv,

so that dimH 2,1(X)inv
= 3.

Let π = Id+ g∗ + (g2)∗ ∈ End(H 3(X,Z)). Then π/3 is the orthogonal projector of
H 3(X,Q) ontoH 3(X,Q)inv with respect to the intersection pairing onH 3(X,Q). Hence
over Q we have an orthogonal decomposition

H 3(X,Q) = H 3(X,Q)inv
⊕H 3(X,Q)],

where H 3(X,Q)] = Im(Id − π/3). Over Z, we conclude that H 3(X,Z) contains a sub-
lattice H 3(X,Z)inv

⊕H 3(X,Z)], where

H 3(X,Z)] = H 3(X,Q)] ∩H 3(X,Z) = (H 3(X,Z)inv)⊥.
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The index of this sublattice is a power of 3, since for a ∈ H 3(X,Z), we can write

3a =
(
a + g∗a + (g2)∗a

)
+
(
3a − (a + g∗a + (g2)∗a)

)
with

a + g∗a + (g2)∗a ∈ H 3(X,Z)inv, 3a − (a + g∗a + (g2)∗a) ∈ H 3(X,Z)].

It follows that we can construct two finite index sublattices

H1 ⊂ H
3(X,Z)inv, H2 ⊂ H

3(X,Z)]

such that the restriction of the intersection form 〈 , 〉X to H1 and H2 is m times a unimod-
ular intersection pairing, wherem is a power of 3. These sublattices determine principally
polarized abelian varieties A and B of respective dimensions 3 and 2, together with an
isogeny

A⊕ B → J (X)

such that the pull-back of θX is m(θA, θB). The ppav’s A and B are Jacobians of curves
CA, CB , and (A⊕ B, (θA, θB)) is the Jacobian of the curve CA ∪x CB .

We conclude with the following:

Lemma 4.6. Each choice of sublattices H1, H2 as above provides us with a subvariety
of codimension ≤ 3 in the moduli space of X along which the class θ4/4! is algebraic.

Proof. Let C = CA ∪x CB be a curve as above, with x general, and let

C → V, c ∈ V, Cc ∼= C

be a universal family of deformations of C. Similarly, denote by U the base of a universal
family of deformations of X. Denote by Ã5,X the base of a universal family of deforma-
tions of the ppav J (X), and Ã5,C the base of a universal family of deformations of the

ppav J (C). We have an isogeny α : J (C)
isog
∼= J (X) and the (local) period maps

PC : V → Ã5,C, PX : U → Ã5,X.

The isogeny α provides a local (for the Euclidean topology) isomorphism

α : Ã5,C ∼= Ã5,X.

As dim Ã5,X = 15, any component of the subvariety G ⊂ V × U defined by

G = {(t, u) ∈M5 × U : α(PC(t)) = PX(u)}

has codimension ≤ 15 in V × U , hence has dimension ≥ 7 since dimU = 10 and
dimV = dimM5 = 12. The image U ′ ⊂ U of the second projection p2 : G → U

consists of cubics whose intermediate Jacobian is isogenous (via the given isogeny type)
to a Jacobian of curve. As dimU = 10, one has codimU ′ ≤ 3, unless p2 is not generically
finite on its image. In this case, the image ofG under the first projection is contained in the



On the universal CH0 group of cubic hypersurfaces 1645

locus of reducible curves, as this is the only locus where the period map PC has positive-
dimensional fibers. So we have to exclude this last possibility. Assume it happens. Note
that the intermediate Jacobian of a generic cubic threefold X with Z/3Z-action as above
has only two simple factors, one of dimension 2, the other of dimension 3. Hence the
fiber of the period map PC over any isomorphism class of an abelian 5-fold isogenous to
J (X) has dimension at most 2. As dimG ≥ 7, it follows that p2(G) ⊂ U has dimension
≥ 5, hence codimension ≤ 5, and is contained in the locus of U parametrizing cubic
threefolds with reducible intermediate Jacobian. This can be excluded by an infinitesimal
computation at any point x ∈ U . In fact, it suffices to prove that the infinitesimal variation
of Hodge structure at x,

TU,x → Hom(H 2,1(X),H 1,2(X)),

maps TU,x surjectively onto the 6-dimensional space Hom(H 2,1(X)inv, H 1,2(X)]), where
H 1,2(X)] is defined as the orthogonal complement of H 2,1(X)inv. Indeed, the space

Hom(H 2,1(X)inv, H 1,2(X)])

identifies with the normal bundle of the locus of reducible ppav’s in Ã5,X. Using Griffiths’
theory (see [34, 6.1-2]), we can easily perform this computation in the Jacobian ring of
the Fermat equation P =

∑
i X

3
i . ut

It is a standard fact that there are countably many choices of pairs (H1, H2) of lattices as
above. Indeed, starting from the unimodular intersection pairing on H1, we can write H1
as the sum of two Lagrangian sublattices,

H1 = 3⊕3
′,

and then for each integer m, we can consider H ′1(m,3,3
′) := m3 ⊕ 3′; we also have

to make a similar construction for H2.
This way we get countably many corresponding codimension ≤ 3 subvarieties, and it

is likely that they are Zariski dense in the moduli space of cubic threefolds, but we have
not tried to prove this. ut

5. More results on cubic hypersurfaces

Let X be a smooth cubic hypersurface of dimension n ≥ 3. The Hodge structure on
H n(X,Q)prim is a polarized non-trivial Hodge structure (that is, when n = 2k + 1, it is
non-zero, and when n = 2k, it is not purely of type (k, k)). Let EndHS(H

n(X,Q)prim) be
the space of endomorphisms of this Hodge structure.

Lemma 5.1. For the very general cubic hypersurface of dimension n,

EndHS(H
n(X,Q)prim) = Q Id.
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Proof. This follows from the fact that the Mumford–Tate group of the Hodge structures
under consideration is the symplectic group if n is odd and the orthogonal group if n
is even. This fact in turn follows from the fact that the Mumford–Tate group contains a
finite index subgroup of the monodromy group (see [30]) and that by [6], the monodromy
group of a smooth hypersurface is Zariski dense in the symplectic or orthogonal group
of H n(X,Q)prim except for even-dimensional quadrics and cubic surfaces, for which it
is finite. This immediately implies the lemma because by definition of the Mumford–
Tate group G := MT(H n(X,Q)prim), any endomorphism φ of the Hodge structure on
H n(X,Q)prim has to commute with G, that is, φ ◦ g = g ◦ φ for g ∈ G. ut

The next result says that for cubic hypersurfaces satisfying the conclusion of Lemma 5.1,
the CH0 group cannot be universally supported on a proper closed algebraic subset of X,
unless it is trivial. Let Y ⊂ X be a proper closed algebraic subset. We introduced in
Definition 1.2 the notion of CH0(Y )→ CH0(X) being universally surjective. When Y is
a point, this is equivalent to X having universally trivial CH0 group.

Theorem 5.2. Let X be a smooth cubic hypersurface such that H n(X,Z)/H n(X,Z)alg
has no 2-torsion for n = dimX, and EndHS(H

n(X,Q)prim) = Q Id. Assume there is
a proper closed algebraic subset Y ⊂ X such that CH0(Y ) → CH0(X) is universally
surjective. Then CH0(X) is universally trivial.

The assumptions of the Theorem are satisfied by a very general cubic hypersurface, which
proves Theorem 1.3 stated in the introduction.

Proof of Theorem 5.2. Let L = C(X). Then we have the diagonal point δL, and the fact
that it comes from a 0-cycle supported on YL implies, by taking the Zariski closure in
X × X and using the localization exact sequence, that there is a decomposition of the
diagonal of X which takes the form

1X = Z1 + Z2 in CHn(X ×X),

where Z1 is supported onD×X for some proper closed algebraic subsetD ⊂ X, and Z2
is supported on X × Y . This decomposition gives in particular a cohomological decom-
position:

[1X] = [Z1] + [Z2] in H 2n(X ×X,Z), (54)
where Z1 and Z2 are as above. We now use Lemma 5.3 below which says that a decom-
position as in (54) implies that X admits a cohomological decomposition of the diagonal
because we have assumed EndHS(H

n(X,Q)prim) = Q Id and we use Theorem 1.1 which
says that X then admits a Chow-theoretic decomposition of the diagonal because we
have assumed that H n(X,Z)/H n(X,Z)alg has no 2-torsion; hence we have proved that
CH0(X) is in fact universally trivial. ut

Lemma 5.3. LetX be a smooth cubic hypersurface. Assume that there is a decomposition

[1X] = [Z1] + [Z2] in H 2n(X ×X,Z), (55)
whereZ1 is supported onD×X, andZ2 is supported onX×Y for some proper closed al-
gebraic subsets D,Y ⊂ X. If furthermore EndHS(H

n(X,Q)prim) = Q Id, then X admits
a cohomological decomposition of the diagonal.
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Proof. Indeed, recall that cubic hypersurfaces admit a unirational parametrization of de-
gree 2. So 2[1X] can be decomposed as 2[X× x]+ [Z], where Z is supported onD×X
for a proper closed algebraic subset D ⊂ X. Hence it suffices to show that for some odd
integer m, we have a decomposition

m[1X] = m[X × x] + [Z] in H 2n(X ×X,Z),

where Z ∈ CHn(X) is supported on D × X for some closed algebraic subset D ( X.
Consider the decomposition (55); each class appearing in this decomposition acts on
H n(X,Z)prim via a morphism of Hodge structures, the diagonal acting as identity. As
EndHS(H

n(X,Z)prim) = Z Id, we have

[Z1]
∗
= m1 Id, [Z2]

∗
= m2 Id,

where m1, m2 are two integers such that m1 + m2 = 1. We may assume that m1 is
odd, applying transposition to our cycles if necessary. It follows that m2 is even, and the
cycle class [Z2] −m2[1X] acts trivially on H n(X,Q)prim. Over Q, using the orthogonal
decomposition

H ∗(X,Q) = H n(X,Q)prim ⊕H
∗(Pn+1,Q)|X,

we conclude that for some rational numbers αi ,

[Z2] −m2[1X] =
∑
i

αih
i
1 ⊗ h

n−i
2 in H 2n(X ×X,Q), (56)

where h ∈ H 2(X,Z) is c1(OX(1)) and the right-hand side makes sense inH 2n(X×X,Q)
via Künneth decomposition. We now observe that because H ∗(X,Z) has no torsion and
the pairings 〈hi, hn−i〉 are equal to 3, the denominators in the coefficients αi of (56) are
equal to 3 (or 1), so that

3[Z2] − 3m2[1X] =
∑
i

βi pr∗1 h
i ^ pr∗2 h

n−i in H 2n(X ×X,Z), (57)

where now the βi are integers. Combining (57) with (55), we get

3[1X] = 3[Z1] + 3m2[1X] +
∑
i

βi pr∗1 h
i ^ pr∗2 h

n−i in H 2n(X ×X,Z), (58)

where Z1 is supported on D ×X for some closed algebraic D ( X. Hence

(3− 3m2)[1X] − 3β0[X × x]

= 3[Z1] +
∑
i>0

βi pr∗1 h
i ^ pr∗2 h

n−i in H 2n(X ×X,Z), (59)

and clearly
∑
i>0 βi pr∗1 h

i ^ pr∗2 h
n−i is the class of a cycle supported on D′ × X for

some closed algebraic D′ ( X. As m2 is even, 3− 3m2 is odd, and thus (59) finishes the
proof. ut
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In the case of cubic fourfolds, we can replace in Theorem 5.2 the assumption that
EndHS(H

n(X,Q)prim) = Q Id by an assumption which concerns the simple Hodge struc-
ture

H 4(X,Q)tr := H 4(X,Q)⊥alg,

namely EndHS(H
4(X,Q)tr) = Q Id. This is a weaker and more natural assumption, be-

cause when the Hodge structure on H 4(X,Q)prim is not simple, or equivalently when
H 4(X,Q)prim contains non-zero Hodge classes, the algebra EndHS(H

4(X,Q)prim) con-
tains projectors associated to sub-Hodge structures, and this happens along codimension 1
loci parametrizing special cubic fourfolds. On the contrary, the non-existence of non-
trivial endomorphisms of the Hodge structure onH 4(X,Q)tr is satisfied in codimension 1,
and in particular at the very general point of a Noether–Lefschetz locus by the following
lemma:

Lemma 5.4. In the moduli space of smooth cubic fourfolds, the set of points parametriz-
ing cubics X such that EndHS(H

4(X,Q)tr) 6= Q Id is of codimension ≥ 2.

Proof. Equivalently, we have to show that this set does not contain the very general
point of a Noether–Lefschetz locus Dσ defined by a class σ , or the very general point
of the moduli space. For contradiction, let X be a very general point of Dσ , and let
h ∈ EndHS(H

4(X,Q)tr) be a morphism of Hodge structures (which then has to remain a
morphism of Hodge structures acting on H 4(Xt ,Q)tr for any small deformation Xt of X
parametrized by a point t ∈ Dσ ) but is not a homothety. Let λ ∈ C be the algebraic num-
ber such that h∗ηX = ληX, where ηX is a generator of the rank 1 vector space H 3,1(X).
As the Hodge structure on H 4(X,Q)tr is simple and h is not a homothety, λ is not a ra-
tional number. It follows that the eigenspaceHλ of h associated with the eigenvalue λ has
complex dimension ≤ 1

2 dimH 4(X,Q)tr. On the other hand, the period map restricted to
Dσ has by assumption its image contained in P(Hλ). As the period map is injective, we
conclude that

dimDσ ≤ 1
2 (dimH 4(X,Q)tr − 2),

which is absurd since the right-hand side is equal to 19/2 while the left-hand side is equal
to 19. This contradicts our assumption that h is not a homothety. The same argument
works if X is a general point of the moduli space. ut

Our next result is the following:

Theorem 5.5. Let X be a smooth cubic fourfold such that EndHS(H
4(X,Q)tr) = Q Id.

Assume there is a proper closed algebraic subset Y ⊂ X such that CH0(Y )→ CH0(X)

is universally surjective. Then CH0(X) is universally trivial.

Proof. The proof is very similar to the previous proof. The assumption is that

[1X] = [Z1] + [Z2] in H 8(X ×X,Z),

with Z1 supported on D1 × X and Z2 supported on X × D2 for some closed proper
algebraic subsets D1, D2 ( X. We consider the action of [Zi]∗ on H 4(X,Z)tr. Since
EndHS(H

4(X,Q)tr) = Q Id, each of them must act as a multiple of the identity and the
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sum [Z1]
∗
+ [Z2]

∗ equals IdH 4(X,Z)tr . So one of them, say [Z1]
∗, must act as an odd

multiple of the identity and the other as an even multiple of the identity. Let [Z2]
∗
=

2m Id on H 4(X,Z)tr. Then (2m[1X] − [Z2])
∗ acts as 0 on H 4(X,Z)tr. Note also that

(2m[1X] − [Z2])
∗ maps Hdg4(X,Z) = H ∗(X,Z)⊥tr to itself, and this implies that

2m[1X] − [Z2] ∈ Hdg4(X,Z)⊗ Hdg4(X,Z)⊕
∑
i 6=2

H 2i(X,Z)⊗H 8−2i(X,Z)

⊂ H 8(X ×X,Z).

All classes in Hdg4(X,Z) are algebraic by the Hodge conjecture for integral Hodge
classes on cubic fourfolds proved in [32], and all classes in H ∗6=4(X,Z) are algebraic.
Hence we conclude that

2m[1X] − [Z2] =
∑
i

pr∗1[Wi]^ pr∗2[W
′

i ]

for some integral cycles Wi, W
′

i on X satisfying dimWi + dimW ′i = 4. The rest of the
proof works as before, allowing us to conclude that X admits a cohomological decompo-
sition of the diagonal, hence also a Chow-theoretic one by Theorem 1.1. ut

We finally prove Theorem 5.6 below. Let X be a cubic fourfold. Assume X is special
in the sense of Hassett, that is, H 4(X,Z) contains two independent Hodge classes (one
being the class h2, the other being denoted σ ). Let P ⊂ H 4(X,Z) be the sublattice
generated by these two Hodge classes. The restriction of the intersection form 〈 , 〉X to P
has a discriminantD(σ). This number, which is always even, has been very much studied
in conjunction with rationality properties of cubic fourfolds (see [15], [16], [18], [1]).
Hassett’s work has suggested that if a cubic fourfold is rational, then it is special and the
discriminant D(σ) satisfies severe restrictions.

Theorem 5.6. If 4 does not divide D(σ), then the CH0 group of X is universally trivial
(that is, X admits a Chow-theoretic decomposition of the diagonal).

Proof. The assumption on X being satisfied along a countable union of Noether–Lef-
schetz type divisors Dσ in the moduli space of cubic fourfolds (see [15]), it suffices to
show that the conclusion holds for X very general in each Dσ . Indeed, inside each di-
visor Dσ , the existence of a cohomological (or Chow-theoretic) decomposition of the
diagonal is satisfied along a countable union of closed algebraic subsets (see [28, proof
of Theorem 1.1]). So if it is satisfied at the very general point of Dσ , it is satisfied every-
where along Dσ . Next, by Lemma 5.4, for a very general point X in a Noether–Lefschetz
divisor, we have EndHS(H

4(X,Q)tr) = Q Id. Theorem 5.5 thus tells us that if there is
a surface 6 ⊂ X such that CH0(6) → CH0(X) is universally surjective, then CH0(X)

is universally trivial. The existence of a special Hodge class σ provides us with an alge-
braic cycle Z on X of class σ , by the Hodge conjecture for integral Hodge classes proved
in [32]. Adding to σ a high multiple of h2, we can even assume that Z is the class of
a smooth surface 6 in general position. Indeed, as we are working with codimension 2
cycles, their classes are generated by c2 of vector bundles on X. For any vector bundle E
of rank r , a twist of E is very ample and its c2 is represented by a rank locus associated
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to a morphism φ : Or−1
→ E, and this rank locus is smooth in codimension 5. Let now

6 be as above. Recall the rational map

8′ : X2 99K X, 8′(x, x′) = x′′, x + x′ + x′′ = 〈x, x′〉 ∩X.

We now have

Lemma 5.7. Assume the restriction of 8′ to 62 is dominant of degree 2N not divisible
by 4. Then the map CH0(6)→ CH0(X) is universally surjective.

Proof. Indeed, the rational map 8′
|6×6 is symmetric, that is, factors through a rational

map ψ : 6(2) 99K X, and our assumption implies that ψ has odd degree N . It follows
that ψ : CH0(6

(2)
L ) → CH0(XL) is surjective for any field L containing C because its

cokernel is annihilated by N , with N odd, and also by 2, since X is a cubic of dimension
≥ 2, hence admits a unirational parametrization of degree 2. On the other hand, if z ∈
CH0(6

(2)
L ) is of degree k, then z provides a 0-cycle z′ on 6L of degree 2k, and obviously

ψ∗(z) = kh
4
− j∗(z

′) in CH0(XL),

where j : 6 → X is the inclusion map. It follows that j∗ : CH0(6L) → CH0(XL)

is surjective as well, since h4
∈ CH0(XL) belongs to its image. Indeed, it belongs to

the image of CH0(XC) = Zx0 → CH0(XL) for any x0 ∈ X(C), which one can take
in 6(C). ut

The next lemma relates the degree of 8′
|6×6 to the discriminant D(σ).

Lemma 5.8. Let 6 ⊂ X be a smooth surface in general position. Then the degree of the
rational map 8′

|6×6 : 6 ×6 99K X is congruent to D(σ) modulo 4, where σ = [6].

Proof. Let x ∈ X be a general point of X and let

πx : X 99K P4

be the linear projection from x. To say that (z, z′) ∈ 62 satisfies 8′(z, z′) = x is equiv-
alent to saying that z, z′ and x are collinear, or that πx(z) = πx(z′). As 6 is in general
position, the restriction of πx to 6 maps 6 to a surface 6′ which is smooth apart from
finitely many double points corresponding to pairs {z, z′} as above. It follows that the
degree of 8′

|6×6 is equal to twice the number N of these double points (this argument
appears in [16, 7.2]). We now compare the geometry of the two immersions

6 ⊂ X, πx,6 := πx|6 : 6→ P4.

The two corresponding normal bundle exact sequences give

0→ T6 → TX|6 → N6/X → 0, 0→ T6 → π∗x,6TP4 → N6/P4 → 0, (60)

which by the Whitney formula provides

c2(T6) = c2(TX|6)− c2(N6/X)+K6 · c1(N6/X),

c2(T6) = c2(π
∗
x,6TP4)− c2(N6/P4)+K6 · c1(N6/P4).

(61)
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We now use the equalities

c2(TX|6) = 6h2
|6, c2(π

∗
x,6TP4) = 10h2

|6,

c1(N6/X) = K6 + 3h|6, c1(N6/P4) = K6 + 5h|6

together with

c2(N6/X) = σ
2, σ = [6] ∈ H 4(X,Z),

c2(N6/P4) = (h
2
|6)

2
− 2N = (σ · h2)2 − 2N.

Thus (61) becomes

c2(T6) = 6h2
· σ − σ 2

+K6 · (K6 + 3h),

c2(T6) = 10h2
· σ − (σ · h2)2 + 2N +K6 · (K6 + 5h).

(62)

We now add these two equalities and consider the result modulo 4, which gives

2c2(T6) = −σ
2
− (σ · h2)2 + 2N + 2K2

6 mod 4. (63)

As 2c2(T6)− 2K2
6 is divisible by 4 by Noether’s formula, we conclude that

σ 2
+ (σ · h2)2 = 2N mod 4. (64)

As D(σ) = 3σ 2
− (σ · h2)2 is equal to −σ 2

− (σ · h2)2 modulo 4, we have proved that
2N = −D(σ) = D(σ) mod 4. ut

Combining Lemmas 5.8 and 5.7, we conclude that the map CH0(6) → CH0(X) is uni-
versally surjective, hence that CH0(X) is universally trivial. ut

Remark 5.9. If one looks at the proof of the integral Hodge conjecture for cubic four-
folds given in [32], one easily sees that it gives more, namely: the group of Hodge classes
of degree 4 on a cubic fourfold is generated by classes of rational surfaces. Thus the sur-
face 6 above can be chosen rational. However, Lemma 5.8 does not allow us to conclude
that if D(σ) is not divisible by 4, then X admits a unirational parametrization of odd de-
gree. Indeed, the rational surface produced by the construction of [32] will be presumably
singular, and not in general position.
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