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Abstract. We prove that any two C3 critical circle maps with the same irrational rotation num-
ber of bounded type and the same odd criticality are conjugate to each other by a C1+α circle
diffeomorphism, for some universal α > 0.
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1. Introduction

In the theory of real one-dimensional dynamics there exist many levels of equivalence be-
tween two systems: combinatorial, topological, quasi-symmetric and smooth equivalence
are major examples.

In the circle case, a classical result of Poincaré [45, Chapter 1, Theorem 1.1] states
that circle homeomorphisms with the same irrational rotation number are combinatorially
equivalent: for each n ∈ N the first n elements of an orbit are ordered in the same way
for any homeomorphism with a given rotation number. This implies that circle homeo-
morphisms with irrational rotation number are semi-conjugate to the corresponding rigid
rotation. According to Denjoy’s theorem [7], any two C2 circle diffeomorphisms with the
same irrational rotation number are topologically conjugate to each other. By a fundamen-
tal result of Herman [24], improved by Yoccoz [59], any twoC2+ε circle diffeomorphisms
whose common rotation number ρ satisfies the Diophantine condition∣∣∣∣ρ − pq

∣∣∣∣ ≥ C

q2+δ , (1.1)

for some δ ∈ [0, 1) and C > 0, and for any positive coprime integers p and q, are con-
jugate to each other by a smooth circle diffeomorphism (see [29] for precise statements).
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Moreover, any two C∞ circle diffeomorphisms with the same Diophantine rotation num-
ber are C∞-conjugate to each other, and real-analytic diffeomorphisms with the same
Diophantine rotation number are conjugate to each other by a real-analytic diffeomor-
phism [45, Chapter I, Section 3].

These are examples of rigidity results: lower regularity of conjugacy implies higher
regularity under certain conditions.

Since rigidity is totally understood in the setting of circle diffeomorphisms, we con-
tinue in this article the study of rigidity problems for critical circle maps developed by de
Faria, de Melo, Yampolsky, Khanin and Teplinsky among others.

By a critical circle map we mean an orientation-preserving C3 circle homeomor-
phism f with exactly one non-flat critical point of odd type (for simplicity, and because
this is the generic case, we will assume in this article that the critical point is of cubic
type). As usual, a critical point c is called non-flat if in a neighbourhood of c the map f
can be written as f (t) = (φ(t))d + f (c), where φ is a C3 local diffeomorphism with
φ(c) = 0, and d ∈ N with d ≥ 3. The criticality (or order, or type, or exponent) of the
critical point c is d.

Classical examples of critical circle maps are obtained from the two-parameter family
f̃a,b : C→ C of entire maps in the complex plane

f̃a,b(z) = z+ a −
b

2π
sin(2πz) for a ∈ [0, 1) and b ≥ 0. (1.2)

Since each f̃a,b commutes with unitary horizontal translation, it is the lift of a holomor-
phic map fa,b : C\{0} → C\{0} of the punctured plane via the universal cover z 7→ e2πiz.
Since f̃a,b preserves the real axis, fa,b preserves the unit circle S1

= {z ∈ C : |z| = 1}
and therefore induces a two-parameter family of real-analytic circle maps. This classical
family was introduced by Arnold [3], and is called the Arnold family.

For b = 0 the family fa,b : S1
→ S1 is just the family of rigid rotations z 7→

e2πiaz, and for b ∈ (0, 1) the family is still contained in the space of real-analytic circle
diffeomorphisms.

For b = 1 each f̃a,b still restricts to an increasing real-analytic homeomorphism of the
real line that projects to an orientation-preserving real-analytic circle homeomorphism,
having one critical point of cubic type at 1, the projection of the integers. Denote by ρ(a)
the rotation number of the circle homeomorphism fa,1. It is well-known that a 7→ ρ(a) is
continuous, non-decreasing, maps [0, 1) onto itself and is such that the interval ρ−1(θ) ⊂

[0, 1) degenerates to a point whenever θ ∈ [0, 1) \ Q (see [24]). Furthermore, the set
{a ∈ [0, 1) : ρ(a) ∈ R \ Q} has zero Lebesgue measure (see [54]). For 0 ≤ p < q

coprime integers we know that ρ−1({p/q}) is always a non-degenerate closed interval.
In the interior of this interval we find critical circle maps with two periodic orbits (of
period q), one attracting and one repelling, which collapse to a single parabolic orbit on
the boundary of the interval (see [9]).

For b > 1 the maps fa,b : S1
→ S1 are not invertible any more (they have two

critical points of even degree). These examples show how critical circle maps arise as
bifurcations from circle diffeomorphisms to endomorphisms, and in particular, from zero
to positive topological entropy (compare with infinitely renormalizable unimodal maps
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[45, Chapter VI]). This is one of the main reasons why critical circle maps attracted the
attention of physicists and mathematicians interested in understanding the boundary of
chaos [8], [15], [26], [32], [33], [37], [38], [46], [49]–[52].

For more examples of critical circle maps see the introduction of [19] and the exposi-
tory notes [20, Section 5.2]. For the ergodic aspects see [27], [17], [12] and the references
therein. For applications to local connectivity and Lebesgue measure of Julia sets (asso-
ciated to generic quadratic polynomials with Siegel disks) see [47], [41], [55], [48].

Since our goal is to study smoothness of conjugacies, we will focus on critical circle
maps without periodic orbits, that is, the ones with irrational rotation number. In [60],
Yoccoz proved that the rotation number is the unique invariant of the topological classes.
More precisely, any C3 orientation-preserving circle homeomorphism with only non-flat
critical points (maybe more than one) and with irrational rotation number is topologically
conjugate to the corresponding rigid rotation. We remark that the condition of non-flatness
of the critical points cannot be removed: in [23] Hall was able to construct C∞ homeo-
morphisms of the circle with no periodic points and no dense orbits.

Recall that an irrational number is of bounded type if it satisfies the Diophantine
condition (1.1) for δ = 0, that is, ρ in [0, 1] is of bounded type if there exists C > 0 such
that ∣∣∣∣ρ − pq

∣∣∣∣ ≥ C

q2

for any integers p and q 6= 0. On the one hand, this is a respectable class: the set of
numbers of bounded type is dense in [0, 1], with Hausdorff dimension equal to one. On
the other hand, from the metrical viewpoint, this is a rather restricted class: while the
Diophantine numbers have full Lebesgue measure in [0, 1], the set of numbers of bounded
type has zero Lebesgue measure. More important for our purposes, bounded type numbers
are characterized by the property that their continued fraction expansion have bounded
partial quotients (see Section 3 for precise definitions).

Since a critical circle map cannot be smoothly conjugate to a rigid rotation, in order
to study smooth-rigidity problems we must restrict ourselves to the class of critical circle
maps. Numerical observations [15], [46], [52] suggested in the early eighties that smooth
critical circle maps with rotation number of bounded type are geometrically rigid. This
was posed as a conjecture in several works by Lanford [32], [33], Rand [49]–[51] (see
also [46]) and Shenker [52] (see also [15]) among others:

Rigidity Conjecture. Any two C3 critical circle maps with the same irrational rotation
number of bounded type and the same odd criticality are conjugate to each other by
a C1+α circle diffeomorphism for some α > 0.

The conjecture has been proved by de Faria and de Melo for real-analytic critical circle
maps [14] and nowadays (after the work of Yampolsky, Khanin and Teplinsky) it is under-
stood without any assumption on the irrational rotation number: inside each topological
class of real-analytic critical circle maps the degree of the critical point is the unique
invariant of the C1-conjugacy classes. In the following result we summarize many contri-
butions of the authors quoted above:
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Theorem A (de Faria–de Melo, Khmelev–Yampolsky, Khanin–Teplinsky). Let f and g
be real-analytic circle homeomorphisms with the same irrational rotation number and
with a unique critical point of the same odd type. Let h be the conjugacy between f and g
(given by Yoccoz’s result) that maps the critical point of f to the critical point of g (note
that this determines h). Then:

(1) h is a C1 diffeomorphism;
(2) h is C1+α at the critical point of f for a universal α > 0;
(3) for a full Lebesgue measure set of rotation numbers (that contains all bounded type

numbers), h is globally C1+α .

See Section 8 for the definition of the full measure set of rotation numbers considered in
conclusion (3) of Theorem A. Let us point out that, by a result of Avila [5], there exist two
real analytic critical circle maps with the same irrational rotation number and the same
criticality that are not C1+β conjugate for any β > 0. See Section 8 for further comments.

Item (1) of Theorem A was proved by Khanin and Teplinsky [28], building on ear-
lier work of de Faria, de Melo and Yampolsky [10], [11], [13], [14], [55]–[58]. Item (2)
was proved in [31], and item (3) is obtained by combining [13] with [58]. The proof
of Theorem A relies on methods coming from complex analysis and complex dynamics
(see [39], [40] and the references therein), and that is why rigidity is well understood for
real-analytic critical circle maps, but nothing has been known yet for smooth ones (even
in the C∞ setting). In this article we take the final step and solve positively the Rigidity
Conjecture:

Theorem B (Main result). Any two C3 critical circle maps with the same irrational ro-
tation number of bounded type and the same odd criticality are conjugate to each other
by a C1+α circle diffeomorphism, for some universal α > 0.

The novelties of this article in order to transfer rigidity from real-analytic dynamics to
(finitely) smooth ones are two: the first one is a bidimensional version of the glueing pro-
cedure (first introduced by Lanford [32], [33]) developed in Section 7, and the second
one is the notion of asymptotically holomorphic maps, to be defined in Section 6 (Def-
inition 6.3). Asymptotically holomorphic maps were already used in one-dimensional
dynamics by Lyubich in the early nineties [35], and more recently by Graczyk, Sands and
Świątek in [16], but as far as we know never for critical circle maps.

Remark 1.1. We report here recent progress in the rigidity theory of smooth critical
circle maps, since the preprint version [22] of this paper first appeared: in [21], written in
collaboration with Marco Martens, we were able to extend Theorem A to the C4 category.
More precisely, we proved that any two C4 critical circle maps with the same irrational
rotation number and the same odd criticality are conjugate to each other by a C1 circle
diffeomorphism, which is C1+α at the critical point, and, for some universal α > 0, this
conjugacy is a C1+α diffeomorphism for Lebesgue almost every rotation number (see
[21, Theorem A]). See Section 8 for further comments.

Let us discuss the main ideas of the proof of Theorem B. A C3 critical circle map f
with irrational rotation number generates a sequence {Rn(f ) = (ηn, ξn)}n∈N of com-
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muting pairs of interval maps, each being the renormalization of the previous one (see
Definition 3.4). To prove Theorem B we need to prove the exponential convergence of
the orbits generated by two critical circle maps with a given combinatorics of bounded
type (see Theorem 2.1).

Our main task (see Theorem D in Section 4) is to show the existence of a sequence
{fn = (̃ηn, ξ̃n)}n∈N that belongs to a universal Cω-compact set of real-analytic critical
commuting pairs, such that Rn(f ) is C0-exponentially close to fn at a universal rate, and
both have the same rotation number. In Section 4, using the exponential contraction of
the renormalization operator on the space of real-analytic critical commuting pairs (see
Theorem 2.3), we deduce the exponential contraction of the renormalization operator in
the space of C3 critical commuting pairs with bounded combinatorics (see Theorem C in
Section 2), and therefore the C1+α rigidity as stated in Theorem B.

To realize the main task we extend the initial commuting pair to a pair of C3 maps in
an open complex neighbourhood of each original interval (the so-called extended lift, see
Definition 6.5), which are asymptotically holomorphic (see Definition 6.3), each having
a unique cubic critical point at the origin.

Using the real bounds (see Theorem 3.1), the almost Schwarz inclusion (see Propo-
sition 6.7) and the asymptotic holomorphic property we prove that for all n ∈ N greater
than or equal to some n0, both ηn and ξn extend to a definite neighbourhood of their inter-
val domains in the complex plane, giving rise to maps with a unique cubic critical point
at the origin, and with exponentially small conformal distortion (see Theorem 6.1). The-
orem 6.1 also gives us some geometric control that will imply the desired compactness
(we will not study the dynamics of these extensions, just their geometric behaviour).

Using the Ahlfors–Bers theorem (see Proposition 5.5) we construct for each n ≥ n0
a C3 diffeomorphism 8n, exponentially close to the identity in definite domains around
the dynamical intervals, that conjugates (ηn, ξn) to a C3 critical commuting pair (̂ηn, ξ̂n)
exponentially close to (ηn, ξn), and such that η̂−1

n ◦ ξ̂n is a holomorphic diffeomorphism
between complex neighbourhoods of the endpoints of the union of the dynamical intervals
(see Subsection 7.1). Using this holomorphic diffeomorphism to glue the ends of a band
around the union of the dynamical intervals we obtain a Riemann surface conformally
equivalent to a round annulus ARn around the unit circle. This identification gives rise to
a holomorphic local diffeomorphism Pn mapping the band onto the annulus and such that,
via Pn, the pair (̂ηn, ξ̂n) induces a C3 map Gn from an annulus in ARn to ARn , having
exponentially small conformal distortion, which restricts to a critical circle map on S1

(see Proposition 7.7). The commuting condition of each pair (̂ηn, ξ̂n) is equivalent to the
continuity of the corresponding Gn, and that is why we project to the annulus ARn .

Using again the Ahlfors–Bers theorem we construct a holomorphic map Hn, on a
smaller but definite annulus around the unit circle, that is exponentially close to Gn and
restricts to a real-analytic critical circle map with the same combinatorics as the restriction
of Gn to S1 (see Proposition 7.8 for much more properties).

Finally, using the projection Pn, we lift each Hn to a real-analytic critical commuting
pair fn = (̃ηn, ξ̃n) exponentially close to (̂ηn, ξ̂n), having the same combinatorics and
with complex extensions C0-exponentially close to the ones of Rn(f ) produced in Theo-
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rem 6.1 (see Proposition 7.17). Compactness then follows from the geometric properties
obtained in Theorem 6.1 (see Lemma 7.18).

The organization of this article is the following: in Section 2 we reduce Theorem B to
Theorem C, which states the exponential convergence of the renormalization orbits of C3

critical circle maps with the same bounded combinatorics. In Section 3 we introduce the
renormalization operator in the space of critical commuting pairs, and review its basic
properties. In Section 4 we reduce Theorem C to Theorem D, which states the existence
of a Cω-compact piece of real-analytic critical commuting pairs such that for a given C3

critical circle map f , with any irrational rotation number, there exists a sequence {fn},
contained in that compact piece, such that Rn(f ) is C0-exponentially close to fn at a
universal rate, and both have the same rotation number. In Section 5 we state a corollary
of the Ahlfors–Bers theorem (Proposition 5.5) that will be fundamental in Section 7 (its
proof will be given in Appendix B). In Section 6 we construct the extended lift of a C3

critical circle map (see Definition 6.5), and then we state and prove Theorem 6.1 as de-
scribed above. In Section 7 we develop a bidimensional glueing procedure in order to
prove Theorem D. Finally, in Section 8, we review some further questions.

2. A first reduction of the main result

Just as in the case of unimodal maps, the main tool in order to obtain a smooth conjugacy
between critical circle maps is the use of renormalization group methods (see [4], [42]
and [43]). As was already clear in the early eighties [15], [46], it is convenient to construct
a renormalization operator R (see Definition 3.4) acting not on the space of critical circle
maps but on a suitable space of critical commuting pairs (see Definition 3.2).

Just as in the case of unimodal maps (see for instance [45, Chapter VI, Theorem 9.4]),
the principle that exponential convergence of the renormalization operator is equivalent
to smooth conjugacy also holds for critical circle maps. The following result is due to de
Faria and de Melo [13, First Main Theorem, p. 341]. For any 0 ≤ r < ∞ denote by dr
the Cr metric in the space of critical commuting pairs (see Definition 3.3):

Theorem 2.1 (de Faria–de Melo 1999). There exists a set A in [0, 1], having full
Lebesgue measure and containing all irrational numbers of bounded type, for which the
following holds. Let f and g be C3 critical circle maps with the same irrational rotation
number in the set A and with the same odd type at the critical point. If d0(Rn(f ),Rn(g))

converges to zero exponentially fast as n→∞, then f and g are C1+α-conjugate to each
other for some α > 0.

Roughly speaking, the full Lebesgue measure set A is composed of irrational numbers
in [0, 1] whose coefficients in the continued fraction expansion may be unbounded, but
their growth is less than quadratic (see Section 8 or [13, Appendix C] for the precise
definition). Let us point out that, in sharp contrast with the case of diffeomorphisms, A
does not contain all Diophantine numbers, and contains some Liouville numbers (again,
see Section 8). The remaining cases were more recently solved by Khanin and Teplinsky
[28, Theorem 2, p. 198]:
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Theorem 2.2 (Khanin–Teplinsky 2007). Let f and g be C3 critical circle maps with
the same irrational rotation number and the same odd type at the critical point. If
d2(Rn(f ),Rn(g)) converges to zero exponentially fast as n → ∞, then f and g are
C1-conjugate to each other.

To obtain the smooth conjugacy (item (1) of Theorem A), Khanin and Teplinsky com-
bined Theorem 2.2 with the following fundamental result:

Theorem 2.3 (de Faria–de Melo 2000, Yampolsky 2003). There exists a universal con-
stant λ in (0, 1)with the following property. If ζ1 and ζ2 are real-analytic critical commut-
ing pairs with the same irrational rotation number and the same odd type at the critical
point, then there exists a constant C > 0 such that

dr(Rn(ζ1),Rn(ζ2)) ≤ Cλ
n

for all n ∈ N and for any 0 ≤ r < ∞. Moreover, given a Cω-compact set K of real-
analytic critical commuting pairs, the constant C can be chosen the same for any ζ1
and ζ2 in K.

Theorem 2.3 was proved by de Faria and de Melo [14] for rotation numbers of bounded
type, and extended by Yampolsky [58] to cover all irrational rotation numbers.

With Theorem 2.1 at hand, our main result (Theorem B) reduces to the following one:

Theorem C. There exists λ ∈ (0, 1) such that if f and g are C3 critical circle maps with
the same irrational rotation number of bounded type and the same criticality, then there
exists C > 0 such that for all n ∈ N,

d0(Rn(f ),Rn(g)) ≤ Cλn,

where d0 is the C0 distance in the space of critical commuting pairs.

This article is devoted to proving Theorem C. Let us fix some notation that we will use
along this article. N, Z, Q, R and C denote respectively the set of natural, integer, ratio-
nal, real and complex numbers. The real part of a complex number z will be denoted by
<(z), and its imaginary part by =(z). B(z, r) denotes the Euclidean open ball of radius
r > 0 around a complex number z. H and Ĉ denote respectively the upper half-plane
and the Riemann sphere. D = B(0, 1) denotes the unit disk in the complex plane, and
S1
= ∂ D denotes its boundary, that is, the unit circle. Diff3

+(S
1) denotes the group (un-

der composition) of orientation-preserving C3 diffeomorphisms of the unit circle. Leb(A)
is the Lebesgue measure of a Borel set A in the plane, and diam(A) its Euclidean diam-
eter. Given a bounded interval I in the real line we denote its Euclidean length by |I |.
Moreover, for any α > 0, let

Nα(I ) = {z ∈ C : d(z, I ) < α|I |},

where d denotes the Euclidean distance in the complex plane.
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3. Renormalization of critical commuting pairs

In this section we define the space of C3 critical commuting pairs (Definition 3.2), and
we endow it with the C3 metric (Definition 3.3). This metric space, which is neither
compact nor locally compact, contains the phase space of the renormalization operator
(Definition 3.4). Each C3 critical circle map with irrational rotation number gives rise
to an infinite renormalization orbit in this phase space, and the asymptotic behaviour of
these orbits is the subject of this article.

As we said in the introduction, a critical circle map is an orientation-preserving C3

circle homeomorphism f with exactly one critical point c ∈ S1 of odd type. For sim-
plicity, and since this is the generic case, we will assume that the critical point is of
cubic type. Suppose that the rotation number ρ(f ) = θ in [0, 1) is irrational, and let
[a0, a1, . . . , an, . . . ] be its continued fraction expansion:

θ = lim
n→∞

1

a0 +
1

a1 +
1

. . .
1
an

.

We define recursively the return times of θ by

q0 = 1, q1 = a0, qn+1 = anqn + qn−1 for n ≥ 1.

Recall that the numbers qn are also obtained as the denominators of the truncated expan-
sion of order n of θ :

pn

qn
= [a0, a1, . . . , an−1] =

1

a0 +
1

a1 +
1

. . .
1

an−1

.

Let Rθ be the rigid rotation of angle 2πθ of the unit circle. The arithmetical properties
of the continued fraction expansion imply that the iterates {Rqnθ (c)}n∈N are the closest
returns of the orbit of c under the rotation Rθ :

d(c, R
qn
θ (c)) < d(c, R

j
θ (c)) for any j ∈ {1, . . . , qn − 1},

where d denote the standard distance in S1. The sequence {qn} of return times increases
at least exponentially fast as n → ∞, and the sequence {d(c, Rqnθ (c))} of return dis-
tances decreases to zero at least exponentially fast as n → ∞. Moreover the sequence
{R

qn
θ (c)}n∈N approaches the point c from alternating sides:

R
q1
θ (c) < R

q3
θ (c) < · · · < c < R

q2
θ (c) < R

q0
θ (c).

By Poincaré’s result quoted at the beginning of the introduction, this information re-
mains true at the combinatorial level for f : for any n ∈ N the interval [c, f qn(c)] con-
tains no other iterates f j (c) for j ∈ {1, . . . , qn − 1}, and if we denote by µ the unique
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invariant Borel probability of f , we can say that µ([c, f qn(c)]) < µ([c, f j (c)]) for any
j ∈ {1, . . . , qn − 1}.

We say that ρ(f ) is of bounded type if there exists a constant M ∈ N such that
an < M for any n ∈ N (it is not difficult to see that this definition is equivalent to
the one given in the introduction, see [30, Chapter II, Theorem 23]). As we said in the
introduction, the set of numbers of bounded type has zero Lebesgue measure in [0, 1].

3.1. Dynamical partitions

Denote by In the interval [c, f qn(c)] and define

Pn = {In, f (In), . . . , f qn+1−1(In)} ∪ {In+1, f (In+1), . . . , f
qn−1(In+1)}.

A crucial combinatorial fact is that Pn is a partition (modulo boundary points) of the
circle for every n ∈ N. We call it the n-th dynamical partition of f associated with the
point c. Note that the partition Pn is determined by the piece of orbit

{f j (c) : 0 ≤ j ≤ qn + qn+1 − 1}.

The transitions from Pn to Pn+1 can be described in the following easy way. The interval
In = [c, f

qn(c)] is subdivided by the points f jqn+1+qn(c) with 1 ≤ j ≤ an+1 into
an+1 + 1 subintervals. This subpartition is spread by the iterates of f to all the f j (In) =
f j ([c, f qn(c)]) with 0 ≤ j < qn+1. The other elements of the partition Pn, which are
the f j (In+1) with 0 ≤ j < qn, remain unchanged.

As we are working with critical circle maps, our partitions in this article are always
determined by the critical orbit. A major result for critical circle maps is the following:

Theorem 3.1 (Real bounds). There exists K > 1 such that given a C3 critical circle
map f with irrational rotation number, there exists n0 = n0(f ) such that for all n ≥ n0
and for every pair I, J of adjacent atoms of Pn we have

K−1
|I | ≤ |J | ≤ K|I |.

Moreover, if Df denotes the first derivative of f , then

1
K
≤
|Df qn−1(x)|

|Df qn−1(y)|
≤ K for all x, y ∈ f (In+1) and all n ≥ n0,

1
K
≤
|Df qn+1−1(x)|

|Df qn+1−1(y)|
≤ K for all x, y ∈ f (In) and all n ≥ n0.

Theorem 3.1 was proved by Świątek and Herman (see [25], [54], [18] and [13]). The
control on the distortion of the return maps follows from the Koebe distortion principle
(see [13, Section 3]). Note that for a rigid rotation we have |In| = an+1|In+1| + |In+2|. If
an+1 is large, then In is much larger than In+1. Thus, even for rigid rotations, real bounds
do not hold in general.
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3.2. Critical commuting pairs

The first return map of the union In ∪ In+1 of adjacent intervals is given respectively by
f qn+1 and f qn . This pair of interval maps

(f qn+1 |In , f
qn |In+1)

motivates the following definition:

Definition 3.2. A critical commuting pair ζ = (η, ξ) consists of two smooth orientation-
preserving interval homeomorphisms η : Iη → η(Iη) and ξ : Iξ → ξ(Iξ ) where:

(1) Iη = [0, ξ(0)] and Iξ = [η(0), 0];
(2) there exists a neighbourhood of the origin where both η and ξ have homeomorphic

extensions (with the same degree of smoothness) which commute, that is, η◦ξ = ξ◦η;
(3) (η ◦ ξ)(0) = (ξ ◦ η)(0) 6= 0;
(4) η′(0) = ξ ′(0) = 0;
(5) η′(x) 6= 0 for all x ∈ Iη \ {0} and ξ ′(x) 6= 0 for all x ∈ Iξ \ {0}.

η

ξ

Iξ Iη

Fig. 1. A commuting pair.

Any critical circle map f with irrational rotation number θ induces a sequence of critical
commuting pairs in a natural way. Let f̃ be the lift of f to the real line (for the canonical
covering t 7→ e2πit ) satisfying f̃ ′(0) = 0 and 0 < f̃ (0) < 1. For each n ≥ 1 let Ĩn be the
closed interval in the real line, adjacent to the origin, that projects to In. Let T : R→ R
be the translation x 7→ x + 1 and define η : Ĩn→ R and ξ : Ĩn+1 → R as

η = T −pn+1 ◦ f̃ qn+1 and ξ = T −pn ◦ f̃ qn .
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Then (η|Ĩn , ξ |Ĩn+1
) is a critical commuting pair that we denote by (f qn+1 |In , f

qn |In+1) to
simplify notation.

A converse of this construction was introduced by Lanford [32], [33] and it is known
as the glueing procedure: the map η−1

◦ ξ is a diffeomorphism from a small neighbour-
hood of η(0) onto a neighbourhood of ξ(0). Identifying η(0) and ξ(0) in this way we
obtain from the interval [η(0), ξ(0)] a smooth compact boundaryless one-dimensional
manifold M . The discontinuous piecewise smooth map

fζ (t) =

{
ξ(t) for t ∈ [η(0), 0),
η(t) for t ∈ [0, ξ(0)],

projects to a smooth homeomorphism on the quotient manifold M . By choosing a dif-
feomorphism ψ : M → S1 we obtain a critical circle map on S1, just by conjugating
with ψ . Although there is no canonical choice for the diffeomorphism ψ , any two dif-
ferent choices give rise to smoothly-conjugate critical circle maps in S1. Therefore any
critical commuting pair induces a whole smooth conjugacy class of critical circle maps.
In Section 7 we propose a bidimensional extension of this procedure, in order to prove
our main result (Theorem B).

IηIξ

η

ξ

Fig. 2. Scheme of a commuting pair.

3.3. The Cr metric

We endow the space of C3 critical commuting pairs with the C3 metric. Given two critical
commuting pairs ζ1 = (η1, ξ1) and ζ2 = (η2, ξ2) let A1 and A2 be the Möbius transfor-
mations such that for i = 1, 2,

Ai(ηi(0)) = −1, Ai(0) = 0, Ai(ξi(0)) = 1.

Definition 3.3. For any 0 ≤ r < ∞ define the Cr metric on the space of Cr critical
commuting pairs in the following way:

dr(ζ1, ζ2) = max
{∣∣∣∣ ξ1(0)
η1(0)

−
ξ2(0)
η2(0)

∣∣∣∣, ‖A1 ◦ ζ1 ◦ A
−1
1 − A2 ◦ ζ2 ◦ A

−1
2 ‖r

}
,

where ‖ · ‖r is the Cr norm for maps in [−1, 1] with one discontinuity at the origin, and
ζi is the piecewise map defined by ηi and ξi :

ζi : Iξi ∪ Iηi → Iξi ∪ Iηi such that ζi |Iξi
= ξi and ζi |Iηi = ηi .
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Note that dr is a pseudo-metric since it is invariant under conjugacy by homotheties: if α
is a positive real number, and Hα(t) = αt and ζ1 = Hα ◦ ζ2 ◦H

−1
α , then dr(ζ1, ζ2) = 0.

In order to have a metric we need to restrict to normalized critical commuting pairs: for a
commuting pair ζ = (η, ξ) denote by ζ̃ the pair (̃η|Ĩη , ξ̃ |Ĩξ ) where tilde means rescaling

by the linear factor λ = 1/|Iξ |. Note that |Ĩξ | = 1 and Ĩη has length equal to the ratio
between the lengths of Iη and Iξ . Equivalently η̃(0) = −1 and ξ̃ (0) = |Iη|/|Iξ | =
ξ(0)/|η(0)|.

When we are dealing with real-analytic critical commuting pairs, we consider the Cω-
topology defined in the usual way: we say that (ηn, ξn)→ (η, ξ) if there exist open sets
Uη ⊃ Iη and Uξ ⊃ Iξ in the complex plane and n0 ∈ N such that η and ηn for n ≥ n0
extend continuously to Uη, are holomorphic in Uη and satisfy ‖ηn − η‖C0(Uη)

→ 0,

and ξ and ξn for n ≥ n0 extend continuously to Uξ , are holomorphic in Uξ and satisfy
‖ξn−ξ‖C0(Uξ )

→ 0. We say that a set C of real-analytic critical commuting pairs is closed
if whenever {ζn} ⊂ C and ζn → ζ , we have ζ ∈ C. This defines a Hausdorff topology,
stronger than the Cr -topology for any 0 ≤ r ≤ ∞.

3.4. The renormalization operator

Let ζ = (η, ξ) be a C3 critical commuting pair according to Definition 3.2, and recall
that (η ◦ ξ)(0) = (ξ ◦ η)(0) 6= 0. Suppose that (ξ ◦ η)(0) ∈ Iη (just as in Figures 1 and 2
above), and define the height χ(ζ ) of the commuting pair ζ = (η, ξ) as r if

ηr+1(ξ(0)) ≤ 0 ≤ ηr(ξ(0)),

and χ(ζ ) = ∞ if no such r exists (note that in the latter case the map η|Iη has a
fixed point, so when we are dealing with commuting pairs induced by critical circle
maps with irrational rotation number, we have finite height). Note also that the height
of the pair (f qn+1 |In , f

qn |In+1) induced by a critical circle map f is exactly an+1 where
ρ(f ) = [a0, a1, a2, . . . ] (because the combinatorics of f are the same as for the rigid
rotation Rρ(f )).

For a pair ζ = (η, ξ) with (ξ ◦ η)(0) ∈ Iη and χ(ζ ) = r <∞ we see that

(η|[0,ηr (ξ(0))], η
r
◦ ξ |Iξ )

is again a commuting pair, and if ζ = (η, ξ) is induced by a critical circle map

ζ = (η, ξ) = (f qn+1 |In , f
qn |In+1),

we have
(η|[0,ηr (ξ(0))], η

r
◦ ξ |Iξ ) = (f

qn+1 |In+2 , f
qn+2 |In+1).

This motivates the following definition (the definition in the case (ξ ◦ η)(0) ∈ Iξ is
analogous):

Definition 3.4. Let ζ = (η, ξ) be a critical commuting pair with (ξ ◦ η)(0) ∈ Iη. We say
that ζ is renormalizable if χ(ζ ) = r < ∞. In this case we define the renormalization
of ζ as the critical commuting pair

R(ζ ) = (̃η| ˜[0,ηr (ξ(0))], η̃
r ◦ ξ |Ĩξ ).
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A critical commuting pair is a special case of a generalized interval exchange map of
two intervals, and the renormalization operator defined above is just the restriction of
the Zorich accelerated version of the Rauzy–Veech renormalization for interval exchange
maps (see for instance [61]). However, in this article we will keep the classical terminol-
ogy for critical commuting pairs.

f qn+2

f qn

f qn+1

Fig. 3. Two consecutive renormalizations of f , without rescaling (recall that f qn means
T−pn ◦ f̃ qn ). In this example an+1 = 4.

Definition 3.5. Let ζ be a critical commuting pair. If χ(Rj (ζ )) < ∞ for j ∈
{0, 1, . . . , n − 1} we say that ζ is n-times renormalizable, and if χ(Rj (ζ )) < ∞ for
all j ∈ N we say that ζ is infinitely renormalizable. In this case the irrational number θ
whose continued fraction expansion is equal to

[χ(ζ ), χ(R(ζ )), . . . , χ(Rn(ζ )), . . .]

is called the rotation number of the critical commuting pair ζ , and denoted by ρ(ζ ) = θ .

The rotation number of a critical commuting pair can also be defined with the help of the
glueing procedure described above, just as the rotation number of any representative of
the conjugacy class obtained after glueing and uniformizing.

An immediate but important remark is that when ζ is induced by a critical circle map
with irrational rotation number, the pair ζ is automatically infinitely renormalizable (and
both notions of rotation number coincide): any C3 critical circle map f with irrational
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rotation number gives rise to a well defined orbit {Rn(f )}n≥1 of infinitely renormaliz-
able C3 critical commuting pairs defined by

Rn(f ) = (f̃ qn |Ĩn−1
, f̃ qn−1 |Ĩn

) for all n ≥ 1.

For any positive number θ denote by bθc the integer part of θ , that is, bθc ∈ N and
bθc ≤ θ < bθc + 1. Recall that the Gauss map G : [0, 1] → [0, 1] is defined by

G(θ) = 1/θ − b1/θc for θ 6= 0 and G(0) = 0,

and note that ρ semi-conjugates the renormalization operator to the Gauss map:

ρ(Rn(ζ )) = Gn(ρ(f ))

for any ζ at least n-times renormalizable. In particular the renormalization operator acts
as a left shift on the continued fraction expansion of the rotation number: if ρ(ζ ) =
[a0, a1, . . . ] then ρ(Rn(ζ )) = [an, an+1, . . . ].

3.5. Lipschitz continuity along the orbits

ForK > 1 and r ∈ {0, 1, . . . ,∞, ω} denote by Pr(K) the space ofCr critical commuting
pairs ζ = (η, ξ) such that η(0) = −1 (they are normalized) and ξ(0) ∈ [K−1,K]. Recall
also that T denotes the translation t 7→ t + 1 on the real line. LetK0 > 1 be the universal
constant given by the real bounds. In the next section we will use the following:

Lemma 3.6. Given M > 0 and K > K0 there exists L > 1 with the following property.
Let f be a C3 critical circle map with irrational rotation number ρ(f ) = [a0, a1, . . . ]

satisfying an < M for all n ∈ N. There exists n0 = n0(f ) ∈ N such that for any n ≥ n0
and any renormalizable critical commuting pair ζ = (η, ξ) satisfying:

(1) ζ,R(ζ ) ∈ P3(K),
(2) b1/ρ(ζ )c = an,
(3) if (T −pn+1 ◦ f̃ qn+1)(0) < 0 < (T −pn ◦ f̃ qn)(0) then∣∣∣∣ ∣∣∣∣ (T −pn ◦ f̃ qn)(0)

(T −pn+1 ◦ f̃ qn+1)(0)

∣∣∣∣− ξ(0)∣∣∣∣ < 1
K2 ·

K + 1
K − 1

;

otherwise, if (T −pn ◦ f̃ qn)(0) < 0 < (T −pn+1 ◦ f̃ qn+1)(0), then∣∣∣∣ ∣∣∣∣ (T −pn+1 ◦ f̃ qn+1)(0)
(T −pn ◦ f̃ qn)(0)

∣∣∣∣− ξ(0)∣∣∣∣ < 1
K2 ·

K + 1
K − 1

;

(4) (η ◦ ξ)(0) and (T −pn+1−pn ◦ f̃ qn+1+qn)(0) have the same sign,

we have
d0(Rn+1(f ),R(ζ )) ≤ L · d0(Rn(f ), ζ ),

where d0 is the C0 distance in the space of critical commuting pairs.

We postpone the proof of Lemma 3.6 until Appendix A. We remark that to obtain Lip-
schitz estimates for the renormalization operator acting on unbounded combinatorics is a
much more difficult problem (see [21, Lemma 4.1]).
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4. Reduction of Theorem C

In this section we reduce Theorem C to the following:

Theorem D. There exist a Cω-compact set K of real-analytic critical commuting pairs
and a constant λ ∈ (0, 1) with the following property. Given a C3 critical circle map f
with any irrational rotation number there exist C > 0 and a sequence {fn}n∈N ⊂ K such
that

d0(Rn(f ), fn) ≤ Cλ
n for all n ∈ N,

and fn has the same rotation number as Rn(f ) for all n ∈ N.

Note that K is Cr -compact for any 0 ≤ r ≤ ∞ (see Section 3.3). Note also that Theo-
rem D is true for any combinatorics. The following argument was inspired by [44].

Proof that Theorem D implies Theorem C. Let K be the Cω-compact set of real-analytic
critical commuting pairs given by Theorem D. By the real bounds there exists a uniform
constant n0 ∈ N such that Rn(ζ ) ∈ Pω(K0) for all ζ ∈ K and all n ≥ n0. Therefore
there exists K > K0 such that Rn(ζ ) ∈ Pω(K) for all ζ ∈ K and all n ≥ 1. Let M >

maxn∈N an where ρ(f ) = ρ(g) = [a0, a1, . . . ], and let L > 1 be given by Lemma 3.6.
By Theorem D there exist constants λ1 ∈ (0, 1) and C1(f ), C1(g) > 0 and sequences

{fn}n∈N, {gn}n∈N ⊂ K such that for all n ∈ N we have ρ(fn) = ρ(gn) = [an, an+1, . . . ]

and
d0(Rn(f ), fn) ≤ C1(f )λ

n
1 and d0(Rn(g), gn) ≤ C1(g)λ

n
1 . (4.1)

Let n0(f ), n0(g) ∈ N be given by Lemma 3.6, and consider n0 = max{n0(f ), n0(g)}

and C1 = max{C1(f ), C1(g)}. Fix α ∈ (0, 1) such that α > logL/(logL− log λ1), and
for all n > (1/α)n0 let m = bαnc. By the choice of K > K0, and since fm, gm ∈ K for
all m ∈ N, we have Rj (fm) ∈ P3(K) for all j ∈ N. By the real bounds,∣∣∣∣ (T −pn+1−pn ◦ f̃ qn+1+qn)(0)

(T −pn+1 ◦ f̃ qn+1)(0)

∣∣∣∣ ∈ [1/K,K] for all n ≥ n0,

and by (4.1) we have items (3) and (4) of Lemma 3.6 for ζ = fn, on taking n0 large
enough. Applying Lemma 3.6 we obtain

d0(Rn(f ),Rn−m(fm)) ≤ L
n−m
· d0(Rm(f ), fm) ≤ C1L

n−mλm1 ,

and for the same reasons

d0(Rn(g),Rn−m(gm)) ≤ L
n−m
· d0(Rm(g), gm) ≤ C1L

n−mλm1 .

Let λ2 = L1−αλα1 ; note that λ2 ∈ (0, 1) by the choice of α. Consider also C2 =

2C1(1/λ1)L > 0. Since fm and gm are real-analytic and have the same combinatorics,
we know by Yampolsky’s result (Theorem 2.3) that there exist constants λ3 ∈ (0, 1) and
C3 > 0 (uniform in K) such that

d0(Rn−m(fm),Rn−m(gm)) ≤ C3λ
n−m
3 for all n ∈ N.

Finally, consider C = C2 + C3 > 0 and λ = max{λ2, λ
1−α
3 } ∈ (0, 1). By the triangle

inequality,
d0(Rn(f ),Rn(g)) ≤ Cλn for all n ∈ N. ut
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5. Approximation by holomorphic maps

5.1. The Beltrami equation

Until now we have been working on the real line; now we start to work on the complex
plane. We assume that the reader is familiar with the notion of quasiconformality (the
books of Ahlfors [1] and of Lehto and Virtanen [34] are classical references). Recall the
two basic differential operators of complex calculus:

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂z
=

1
2

(
∂

∂x
+ i

∂

∂y

)
.

Instead of ∂F
∂z

and ∂F
∂z

we will use the more compact notation ∂F and ∂F respectively.
To be more explicit, if F : � ⊂ C→ C is differentiable at w ∈ � then (DF(w))(z) =
∂F (w)z+ ∂F (w)z for any z ∈ C.

Recall that a continuous real function h : R→ R is absolutely continuous if it has a
derivative at Lebesgue almost every point, the derivative is integrable and h(b)− h(a) =∫ b
a
h′(t) dt . A continuous function F : � ⊂ C → C is absolutely continuous on lines

in � if its real and imaginary parts are absolutely continuous on Lebesgue almost every
horizontal line, and on Lebesgue almost every vertical line.

Definition 5.1. Let � ⊂ C be a domain and let K ≥ 1. An orientation-preserving hom-
eomorphism F : � → F(�) is K-quasiconformal (K-q.c. from now on) if F is abso-
lutely continuous on lines and

|∂F (z)| ≤
K − 1
K + 1

|∂F (z)| a.e. in �.

Given a K-q.c. homeomorphism F : �→ F(�) we define its Beltrami coefficient as the
measurable function µF : �→ D given by

µF (z) =
∂F (z)

∂F (z)
for a.e. z ∈ �.

Note that µF belongs to L∞(�) and satisfies ‖µF ‖∞ ≤ (K − 1)/(K + 1) < 1. Con-
versely, any measurable function from� to C with L∞ norm less than one is the Beltrami
coefficient of a quasiconformal homeomorphism:

Theorem 5.2 (Morrey 1938). Given any measurable function µ : � → D such that
|µ(z)| ≤ (K − 1)/(K + 1) < 1 almost everywhere in � for some K ≥ 1, there exists a
K-q.c. homeomorphism F : �→ F(�) which is a solution of the Beltrami equation

∂F (z) µ(z) = ∂F (z) a.e.

The solution is unique up to post-composition with conformal diffeomorphisms. In partic-
ular, if � is the entire Riemann sphere, there is a unique solution (called the normalized
solution) that fixes 0, 1 and∞.
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See [1, Chapter V, Section B] or [34, Chapter V] for the proof. Note that Theorem 5.2 not
only states the existence of a solution of the Beltrami equation, but also the fact that any
solution is a homeomorphism. Moreover we have:

Proposition 5.3. If µn→ 0 in the unit ball of L∞, the normalized quasiconformal hom-
eomorphisms f µn converge to the identity uniformly on compact sets of C. In general if
µn→ µ almost everywhere in C and ‖µn‖∞ ≤ k < 1 for all n ∈ N, then the normalized
quasiconformal homeomorphisms f µn converge to f µ uniformly on compact sets of C.

See [1, Chapter V, Section C].

5.2. Ahlfors–Bers theorem

The Beltrami equation induces therefore a one-to-one correspondence between the space
of quasiconformal homeomorphisms of Ĉ that fix 0, 1 and ∞, and the space of Borel
measurable complex-valued functions µ on Ĉ for which ‖µ‖∞ < 1. The following clas-
sical result expresses the analytic dependence of the solution of the Beltrami equation
with respect to µ:

Theorem 5.4 (Ahlfors–Bers 1960). Let 3 be an open subset of some complex Banach
space and consider a map 3 × C → D, denoted by (λ, z) 7→ µλ(z), satisfying the
following properties:

(1) for every λ the function C→ D given by z 7→ µλ(z) is measurable, and ‖µλ‖∞ ≤ k
for some fixed k < 1;

(2) for Lebesgue almost every z ∈ C, the function 3 → D given by λ 7→ µλ(z) is
holomorphic.

For each λ let Fλ be the unique quasiconformal homeomorphism of the Riemann sphere
that fixes 0, 1 and∞, and whose Beltrami coefficient is µλ (Fλ is given by Theorem 5.2).
Then λ 7→ Fλ(z) is holomorphic for all z ∈ C.

See [2] or [1, Chapter V, Section C] for the proof. In Section 7 we will make repeated use
of the following corollary of the Ahlfors–Bers theorem:

Proposition 5.5. For any bounded domain U in the complex plane there exists a number
C(U) > 0, with C(U) ≤ C(W) if U ⊆ W , such that the following holds. Let {Gn :
U → Gn(U)}n∈N be a sequence of quasiconformal homeomorphisms such that:

• the domains Gn(U) are uniformly bounded: there exists R > 0 such that Gn(U) ⊂
B(0, R) for all n ∈ N;
• µn→ 0 in the unit ball of L∞, where µn is the Beltrami coefficient of Gn in U .

Then for any domain V such that V ⊂ U there exist n0 ∈ N and a sequence {Hn :
V → Hn(V )}n≥n0 of biholomorphisms such that

‖Hn −Gn‖C0(V ) ≤ C(U)
R

d(∂V, ∂U)
‖µn‖∞ for all n ≥ n0,
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where d(∂V, ∂U) denotes the Euclidean distance between the boundaries of U and V
(which are disjoint compact sets in the complex plane, since V is compactly contained in
the bounded domain U).

We postpone the proof of Proposition 5.5 until Appendix B. In the next section we
will also use the following extension of Koebe’s classical one-quarter theorem [6, Theo-
rem 1.3]:

Proposition 5.6. Given ε > 0 there exists K > 1 for which the following holds. Let
f : D → f (D) ⊂ C be a K-quasiconformal homeomorphism such that f (0) = 0,
f ((−1, 1)) ⊂ R and f (D) ⊂ B(0, 1/ε). Suppose that f |(−1/2,1/2) is differentiable and
|f ′(t)| > ε for all t ∈ (−1/2, 1/2), where f ′ denotes the real one-dimensional derivative
of the restriction of f to the interval (−1/2, 1/2). Then

B(0, ε/16) ⊂ f (D).
Proof. Suppose, for contradiction, that there exist ε>0 and a sequence {fn : D→ fn(D)
⊂ C}n∈N of quasiconformal homeomorphisms with the following properties:

(1) each fn is Kn-q.c. with Kn→ 1 as n→∞→∞;
(2) fn(0) = 0 and fn((−1, 1)) ⊂ R for all n ∈ N;
(3) fn(D) ⊂ B(0, 1/ε) for all n ∈ N;
(4) fn|(−1/2,1/2) is differentiable and |f ′n(t)| > ε for all t ∈ (−1/2, 1/2) and n ∈ N;
(5) B(0, ε/16) is not contained in fn(D) for any n ∈ N.

By compactness, since Kn → 1 and fn(0) = 0 for all n ∈ N, we can assume by taking
a subsequence that there exists f : D → C holomorphic such that fn → f uniformly
on compact sets of D as n→∞ (see for instance [34, Chapter II, Section 5]). Of course
f (0) = 0 and f ((−1, 1)) ⊂ R. We claim that |Df (0)| > ε/2, where Df denotes the
complex derivative of the holomorphic map f . Indeed, note that item (3) implies that

(−ε/m, ε/m) ⊂ fn([−1/m, 1/m]) for all n,m ∈ N,

and then by uniform convergence we have

(−ε/m, ε/m) ⊂ f ([−1/m, 1/m]) for all m ∈ N.

Since f is holomorphic, this implies the claim. From the claim we see that f is univa-
lent in D, since the uniform limit of quasiconformal homeomorphisms is either constant
or a quasiconformal homeomorphism (again see [34, Chapter II, Section 5]). Finally,
by Koebe’s one-quarter theorem we have B(0, ε/8) ⊂ f (D), but this contradicts that
B(0, ε/16) is not contained in fn(D) for any n ∈ N. ut

6. Complex extensions of Rn(f )

For every C3 critical circle map, with any irrational rotation number, we will construct in
this section a suitable extension to an annulus around the unit circle in the complex plane
with the property that, after a finite number of renormalizations, this extension has good
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geometric bounds and exponentially small Beltrami coefficient. In the next section we will
perturb this extension in order to get a holomorphic map with the same combinatorics and
also good bounds.

Recall that given a bounded interval I of the real line we denote its Euclidean length
by |I |, and for any α > 0 we denote by Nα(I ) the R-symmetric topological disk

Nα(I ) = {z ∈ C : d(z, I ) < α|I |},

where d denotes the Euclidean distance in the complex plane. The goal of this section is
the following:

Theorem 6.1. There exist universal constants λ ∈ (0, 1) and α > 0 and β > 0 with the
following property. Let f be a C3 critical circle map with any irrational rotation number.
For all n ≥ 1 denote by (ηn, ξn) the components of the critical commuting pair Rn(f ).
Then there exist constants n0 ∈ N and C > 0 such that for each n ≥ n0 both ξn
and ηn extend (after normalization) to R-symmetric orientation-preserving C3 maps de-
fined in Nα([−1, 0]) and Nα([0, ξn(0)]) respectively, where we have the following seven
properties:

(1) ξn and ηn each have a unique critical point at the origin, which is of cubic type;
(2) the extensions ηn and ξn commute in B(0, λ), that is, both compositions ηn ◦ ξn and

ξn ◦ ηn are well defined in B(0, λ), and they coincide;
(3) Nβ(ξn([−1, 0])) ⊂ ξn(Nα([−1, 0]));
(4) Nβ([−1, (ηn ◦ ξn)(0)]) ⊂ ηn(Nα([0, ξn(0)]));
(5) ηn(Nα([0, ξn(0)])) ∪ ξn(Nα([−1, 0])) ⊂ B(0, λ−1);

(6) max
z∈Nα([−1,0])\{0}

|∂ξn(z)|

|∂ξn(z)|
≤ Cλn;

(7) max
z∈Nα([0,ξn(0)])\{0}

|∂ηn(z)|

|∂ηn(z)|
≤ Cλn.

In this section we prove Theorem 6.1 (see Subsection 6.3), and in Section 7 we prove
Theorem D.

6.1. Extended lifts of critical circle maps

In this subsection we lift a critical circle map to the real line, and then we extend this lift in
a suitable way to a neighbourhood of the real line in the complex plane (see Definition 6.5
below).

Let f and g be C3 critical circle maps with cubic critical points cf and cg , and critical
values vf and vg respectively. Recall that Diff3

+(S
1) denotes the group (under compo-

sition) of orientation-preserving C3 diffeomorphisms of the unit circle, endowed with
the C3 topology. Let A,B ⊂ Diff3

+(S
1) be defined by

A = {ψ ∈ Diff3
+(S

1) : ψ(cf ) = cg} and B = {φ ∈ Diff3
+(S

1) : φ(vg) = vf }.
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There is a canonical bijection between A and B:

ψ 7→ Rθ1 ◦ ψ ◦ Rθ2 ,

whereRθ1 is the rigid rotation that takes cg to vf , andRθ2 is the rigid rotation that takes vg
to cf . We will be interested, however, in another identification between A and B:

Lemma 6.2. There exists a bijection T : A→ B such that for any ψ ∈ A we have

S1 S1

S1 S1

-f

?
ψ

-g

6
T (ψ) f = T (ψ) ◦ g ◦ ψ.

The lemma is true precisely because the maps f and g have the same type at their respec-
tive critical points.

Proof of Lemma 6.2. Let ψ in Diff3
+(S

1) be such that ψ(cf ) = cg , and consider the
orientation-preserving circle homeomorphism

T (ψ) = f ◦ ψ−1
◦ g−1

that maps the critical value of g to the critical value of f . To see that T (ψ) is in Diff3
+(S

1)

note that if z 6= vg then T (ψ) is smooth at z, with non-vanishing derivative equal to

(DT (ψ))(z) = Dψ−1(g−1(z))

(
Df ((ψ−1

◦ g−1)(z))

Dg(g−1(z))

)
.

In the limit we have

lim
z→vg

Dψ−1(g−1(z))

(
Df ((ψ−1

◦ g−1)(z))

Dg(g−1(z))

)
= Dψ−1(cg)

(
(D3f )(cf )

(D3g)(cg)

)
,

a well-defined number in (0,∞). This proves that T (ψ) is in B for every ψ ∈ A. More-
over, T is invertible with inverse T −1

: B→ A given by T −1(φ) = g−1
◦ φ−1

◦ f . ut

Let A : S1
→ S1 be the map corresponding to the parameters a = 0 and b = 1 in the

Arnold family (1.2), defined in the introduction, and recall that the lift of A to the real
line, under the covering π : R→ S1

: π(t) = exp(2πit), fixing the origin is given by

Ã(t) = t −
1

2π
sin(2πt).

The critical point of A in the unit circle is at 1, and it is of cubic type (the critical
point is also a fixed point for A). Now let f be a C3 critical circle map with a unique
cubic critical point at 1, and let f̃ be the unique lift of f to the real line under the
covering π satisfying f̃ ′(0) = 0 and 0 < f̃ (0) < 1. By Lemma 6.2 we can consider
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two C3 orientation-preserving circle diffeomorphisms h1 and h2, with h1(1) = 1 and
h2(1) = f (1), such that h2 ◦ A ◦ h1 = f , that is, the following diagram commutes:

S1 S1

S1 S1

-f

?
h1

-A

6
h2

For each i ∈ {1, 2} let h̃i be the lift of hi to the real line under the covering π ,
determined by h̃i(0) ∈ [0, 1). In Proposition 6.4 below we will extend both h̃1 and h̃2 to
complex neighbourhoods of the real line in a suitable way. For that purpose we recall the
definition of asymptotically holomorphic maps:

Definition 6.3. Let I be a compact interval of the real line, let U be a neighbourhood
of I in R2 and let H : U → C be a C1 map (not necessarily a diffeomorphism). We say
that H is asymptotically holomorphic of order r ≥ 1 in I if for every x ∈ I ,

∂H(x, 0) = 0 and
∂H(x, y)

(d((x, y), I ))r−1 → 0

uniformly as (x, y) ∈ U \ I converges to I . We say that H is R-asymptotically holomor-
phic of order r if it is asymptotically holomorphic of order r in each compact interval of R.

The sum or product of R-asymptotically holomorphic maps is also R-asymptotically
holomorphic. The inverse of an asymptotically holomorphic diffeomorphism of order r
is asymptotically holomorphic of order r . Composition of asymptotically holomorphic
maps is asymptotically holomorphic.

In the following proposition we suppose r ≥ 1 even though we will apply it for r ≥ 3.
In the proof we follow the exposition of Graczyk, Sands and Świątek [16, Lemma 2.1,
p. 623].

Proposition 6.4. For i = 1, 2 there exists Hi : C→ C of class Cr such that:

(1) Hi is an extension of h̃i: Hi |R = h̃i;
(2) Hi commutes with the unitary horizontal translation: Hi ◦ T = T ◦Hi;
(3) Hi is R-asymptotically holomorphic of order r;
(4) Hi is R-symmetric: Hi(z̄) = Hi(z).

Moreover there exist R > 0 and four domains BR ,UR , VR andWR in C, symmetric about
the real line and such that:

• BR = {z ∈ C : −R < =(z) < R};
• H1 is an orientation-preserving diffeomorphism between BR and UR;
• Ã(UR) = VR;
• H2 is an orientation-preserving diffeomorphism between VR and WR;
• both infz∈BR |∂H1(z)| and infz∈VR |∂H2(z)| are positive numbers.
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Proof. For z = x + iy ∈ C, with y 6= 0, let Px,y be the degree r polynomial map that
coincides with h̃i at the r + 1 real numbers{

x +
j

r
y

}
j∈{0,1,...,r}

.

Recall that Px,y can be given by the following linear combination (the so-called La-
grange’s form of the interpolation polynomial):

Px,y(z) =

r∑
j=0

h̃i(x + (j/r)y)

r∏
l=0
l 6=j

z− (x + (l/r)y)

(x + (j/r)y)− (x + (l/r)y)

=

r∑
j=0

h̃i(x + (j/r)y)

r∏
l=0
l 6=j

z− x − (l/r)y

((j − l)/r)y
.

We define Hi(x + iy) = Px,y(x + iy), that is,

Hi(x + iy) = Px,y(x + iy) =

r∑
j=0

h̃i(x + (j/r)y)

r∏
l=0
l 6=j

ir − l

j − l
.

After computation we obtain

Hi(x + iy) = Px,y(x + iy) =
1
N

r∑
j=0

(−1)j
(
r
j

)
1+ i(j/r)

h̃i(x + (j/r)y)

where

N =

r∑
j=0

(−1)j
(
r
j

)
1+ i(j/r)

6= 0.

Note that Hi is as smooth as h̃i , and Hi(x) = h̃i(x) for any real number x (item (1)).
As h̃i is a lift, for any j ∈ {0, 1, . . . , r}we have h̃i(x+1+(j/r)y) = h̃i(x+(j/r)y)+1,
but then Px+1,y(x + 1+ (j/r)y) = Px,y(x + (j/r)y)+ 1 for any j ∈ {0, 1, . . . , r}, and
this implies Px+1,y ◦ T = T ◦ Px,y in the whole complex plane. This proves item (2).

To prove that Hi is R-asymptotically holomorphic of order r note that

∂Hi(x + iy) =
1

2N

r∑
j=0

(−1)j
(
r

j

)
h̃′i(x + (j/r)y),

and for any k ∈ {0, . . . , r},

∂k

∂yk
∂Hi(x + iy) =

1
2N
·

1
rk

r∑
j=0

(−1)j j k
(
r

j

)
h̃
(k+1)
i (x + (j/r)y).

By using the identity
∑r
j=0(−1)j j k

(
r
j

)
= 0 for any k ∈ {0, . . . , r − 1}, we obtain, for

any x ∈ R,

∂Hi(x) =
1

2N
h̃′i(x)

r∑
j=0

(−1)j
(
r

j

)
= 0,
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and for any k ∈ {0, . . . , r − 1},

∂k

∂yk
∂Hi(x) =

1
2N
·
h̃
(k+1)
i (x)

rk

r∑
j=0

(−1)j j k
(
r

j

)
= 0.

By Taylor’s theorem

lim
y→0

∂Hi(x + iy)

yr−1 = 0

uniformly on compact subsets of the real line, and hence Hi is R-asymptotically holo-
morphic of order r (item (3)). To obtain the symmetry as in item (4) we can take z 7→
Hi(z)+Hi(z̄)/2, preserving all the other properties.

Finally, note that the Jacobian of Hi at a point x in R is equal to |h̃′i(x)|
2
6= 0. This

gives us a complex neighbourhood of the real line where Hi is an orientation-preserving
diffeomorphism, and the positive constant R. Since we also have |∂Hi | = |̃h′i | on the
real line, and each h̃i is the lift of a circle diffeomorphism, we obtain the last item of
Proposition 6.4. ut

These are the extensions that we will consider:

Definition 6.5. The map F : BR → WR defined by F = H2 ◦ Ã ◦ H1 is called the
extended lift of the critical circle map f .

BR WR

UR VR

-F

?

H1

-Ã

6
H2

We have the following properties:

• F is Cr in the horizontal band BR;
• T ◦ F = F ◦ T in BR;
• F is R-symmetric (in particular F preserves the real line), and F restricted to the real

line is f̃ ;
• F is asymptotically holomorphic in R of order r;
• the critical points of F in BR are integers (the same as for Ã), and they are of cubic

type.

We remark that the extended lift of a real-analytic critical circle map will be C∞ in the
corresponding horizontal strip, but not necessarily holomorphic.

The preimage of the real axis under F consists of R itself together with two families
of Cr curves, {γ1(k)}k∈Z and {γ2(k)}k∈Z, arising as solutions of =(F (x + iy)) = 0. Note
that γ1(k) and γ2(k) meet in the critical point ck = k.

Let γ+i (k) = γi(k)∩H and γ−i (k) = γi(k)∩H
− for i = 1, 2. We also denote γ+i (0)

just by γ+i .
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Lemma 6.6. We can choose R small enough to have γ+1 contained in T = {arg(z) ∈
(π/6, π/2)} ∩ BR (that is, the open triangle with vertices 0, iR and (

√
3 + i)R), γ+2

contained in −T , γ−1 contained in −T , and γ−2 is contained in T .

Proof. The derivative of H1 at real points is conformal, so the angle between both γ1
and γ2 and the real line at zero is π/3. ut

6.2. Poincaré disks

Besides the notion of asymptotically holomorphic maps, the main tool in order to prove
Theorem 6.1 is the notion of Poincaré disk, introduced into the subject by Sullivan in his
seminal article [53].

Given an open interval I = (a, b) ⊂ R let CI = (C \ R) ∪ I = C \ (R \ I ).
For θ ∈ (0, π) let D be the open disk in the plane intersecting the real line along I
and for which the angle from R to ∂D at the point b (measured anticlockwise) is θ . Let
D+ = D ∩ {z : =(z) > 0} and let D− be the image of D+ under complex conjugation.

Define the Poincaré disk of angle θ based on I as Dθ (a, b) = D+ ∪ I ∪ D−, that
is, Dθ (a, b) is the set of points in the complex plane that view I at an angle ≥ θ (see
Figure 4). Note that for θ = π/2 the Poincaré disk Dθ (a, b) is the Euclidean disk whose
diameter is the interval (a, b).

Fig. 4. Poincaré disks.

Poincaré disks have a geometrical meaning: CI is an open, connected and simply
connected set which is not the whole plane. By the Riemann mapping theorem we can
endow CI with a complete and conformal Riemannian metric of constant curvature equal
to −1, just by pulling back the Poincaré metric of D by any conformal uniformization.
Note that I is always a hyperbolic geodesic by symmetry.

For θ ∈ (0, π) consider ε(θ) = log tan(π/2− θ/4), which is an orientation-reversing
real-analytic diffeomorphism between (0, π) and (0,∞). An elementary computation
shows that the set of points in CI whose hyperbolic distance to I is less than ε is precisely
Dθ (a, b).

In particular we can state the Schwarz lemma in the following way. Let I and J be two
intervals in the real line and let φ : CI → CJ be a holomorphic map such that φ(I) ⊂ J .
Then for any θ ∈ (0, π) we have φ(Dθ (I )) ⊂ Dθ (J ).

With this at hand (and a very clever inductive argument, see also [36]), Yampol-
sky was able to obtain complex bounds for critical circle maps in the Epstein class [55,
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Theorem 1.1]. The reason why we chose asymptotically holomorphic maps to extend
our (finitely smooth) one-dimensional dynamics (see Proposition 6.4 and Definition 6.5
above) is the following asymptotic Schwarz lemma, obtained by Graczyk, Sands and
Świątek [16, Proposition 2, p. 629] for asymptotically holomorphic maps (as explained at
the end of the introduction, we denote by diam(Dθ (a, b)) the Euclidean diameter of the
Poincaré disk Dθ (a, b)).

Proposition 6.7 (Almost Schwarz inclusion). Let h : I → R be a C3 diffeomorphism
from a compact interval I with non-empty interior into the real line. Let H be any C3

extension of h to a complex neighbourhood of I , which is asymptotically holomorphic of
order 3 on I . Then there exist M, δ > 0 such that if a, c ∈ I are different, θ ∈ (0, π) and
diam(Dθ (a, c)) < δ then

H(Dθ (a, c)) ⊆ Dθ̃ (h(a), h(c)),

where θ̃ = θ −M|c − a| diam(Dθ (a, c)). Moreover, θ̃ > 0.

Let us point out that a predecessor of this almost Schwarz inclusion, for real-analytic
maps, already appeared in the work of de Faria and de Melo [14, Lemma 3.3, p. 350].

6.3. Proof of Theorem 6.1

With Proposition 6.7 at hand, we are ready to start the proof of Theorem 6.1. We will
work with f̃ qn+1 |In , the proof for f̃ qn |In+1 being the same.

Proposition 6.8. Let f be a C3 critical circle map with irrational rotation number, and
let F be its extended lift (according to Definition 6.5). There exists n0 ∈ N such that for
any n ≥ n0 there exist Kn ≥ 1 and θn > 0 satisfying Kn → 1 and θn → 0 as n→ ∞,
and

lim
n→∞

∣∣∣∣diam(Dθn/Kn(f̃ (In)))

|f̃ (In)|
−

diam(Dθn(f̃
qn+1(In)))

|f̃ qn+1(In)|

∣∣∣∣ = 0

with the following property. Let θ ≥ θn, 1 ≤ j ≤ qn+1 and let J be an open interval such
that

In ⊆ J ⊆ (f̃
qn−1−qn+1(0), f̃ qn−qn+1(0)).

Then the inverse branch F−j+1 mapping f̃ j (J ) back to f̃ (J ) is well-defined over
Dθ (f̃

j (J )), and maps this neighbourhood diffeomorphically onto an open set contained
in Dθ/Kn(f̃ (J )).

To simplify notation we will prove Proposition 6.8 for the case J = In and j = qn+1.

Proof of Proposition 6.8. For each n ∈ N and j ∈ {1, . . . , qn+1 − 1} we know by com-
binatorics that f̃ is a C3 diffeomorphism from f̃ j (In) to f̃ j+1(In). Let Mj,n, δj,n > 0
be given by Proposition 6.7 applied to the corresponding inverse branch of the extended
lift F . Moreover, let Mn = maxj∈{1,...,qn+1−1}Mj,n and δn = minj∈{1,...,qn+1−1} δj,n. For
each n ∈ N let An and Bn be the affine maps given by

An(t) = (1/|f̃ qn+1(In)|)(t − f̃
qn+1(0)) and Bn(t) = (1/|f̃ (In)|)(t − f̃ (0)).
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By the real bounds, the C3 diffeomorphism Tn : [0, 1] → [0, 1] given by

Tn = Bn ◦ f̃
−qn+1+1

◦ A−1
n

has universally bounded distortion, and therefore

inf
t∈[0,1]
n≥n0

|T ′n(t)| > 0.

In particular M = supn≥n0
Mn is finite, and δ = infn≥n0 δn is positive. Let dn =

max1≤j≤qn+1 |f̃
j (In)|, and recall that by the real bounds the sequence {dn}n≥1 goes to

zero exponentially fast as n → ∞. In particular we can choose a sequence {αn}n≥1 ⊂

(0, π/2) also convergent to zero but such that

lim
n→∞

dn

(αn)3
= 0.

Let ψ : (0, π)→ [1,∞) be defined by

ψ(θ) = max
{

1,
1+ cos θ

sin θ

}
=

{
1+cos θ

sin θ for θ ∈ (0, π/2),
1 for θ ∈ [π/2, π).

Note that ψ is an orientation-reversing real-analytic diffeomorphism between (0, π/2)
and (1,∞). A straightforward computation shows that for any θ ∈ (0, π) and any real
numbers a < b we have diam(Dθ (a, b)) = ψ(θ)|b − a|. Consider

θn = αn + ψ(αn)δM

qn+1−1∑
j=0

|f̃ j+1(In)|
2 > αn > 0,

Kn =
θn

αn
= 1+

ψ(αn)

αn
δM

qn+1−1∑
j=0

|f̃ j+1(In)|
2 > 1.

By the choice of αn we have limn→∞(ψ(αn)/αn)dn = 0, and since∑qn+1−1
j=0 |f̃ j+1(In)|

2
≤ dn, we see that θn→ 0 and Kn→ 1 as n→∞. Moreover,

|ψ(θn/Kn)− ψ(θn)| ≤
(

max
θ∈[θn/Kn,θn]

|ψ ′(θ)|
)
|θn − θn/Kn| = |ψ

′(θn/Kn)| |θn − θn/Kn|

=
ψ(θn/Kn)

sin(θn/Kn)
|θn − θn/Kn| =

ψ(αn)

sinαn
|θn − αn|

= δM
(ψ(αn))

2

sinαn

qn+1−1∑
j=0

|f̃ j+1(In)|
2
≤ δM

(ψ(αn))
2

sinαn
dn,

and this goes to zero by the choice of αn. In particular

lim
n→∞

∣∣∣∣diam(Dθn/Kn(f̃ (In)))

|f̃ (In)|
−

diam(Dθn(f̃
qn+1(In)))

|f̃ qn+1(In)|

∣∣∣∣ = 0

as stated. We choose n0 ∈ N such that for all n ≥ n0 we have ψ(αn)dn < δ.
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Define inductively {θj }
qn+1
j=1 by θqn+1 = θn and for 1 ≤ j ≤ qn+1 − 1,

θj = θj+1 −M|f̃
j+1(In)| diam(Dθj+1(f̃

j+1(In))) = θj+1 −Mψ(θj+1)|f̃
j+1(In)|

2.

We want to show that θj > αn = θn/Kn for all 1 ≤ j ≤ qn+1. With this purpose, we
claim that for any 1 ≤ j ≤ qn+1 we have

θj ≥ αn + ψ(αn)δM

j−1∑
k=0

|f̃ k+1(In)|
2 > αn.

The claim follows by (reverse) induction on j (the case j = qn+1 holds by definition).
If the claim is true for j + 1 we have ψ(θj+1) < ψ(αm), which implies θj > θj+1 −

ψ(αn)δM|f̃
j+1(In)|

2, and hence the claim is true for j . It follows that

diam(Dθj (f̃
j (In))) = ψ(θj )|f̃

j (In)| < ψ(αn)dn < δ ≤ δj for all 1 ≤ j ≤ qn+1.

By Proposition 5.6 the inverse branch F−1 mapping f̃ j+1(In) back to f̃ j (In) is a
well-defined diffeomorphism from the Poincaré disk Dθj+1(f̃

j+1(In)) onto its image,
and by Proposition 6.7 we know that

F−1(Dθj+1(f̃
j+1(In))) ⊆ Dθj (f̃

j (In)).

The claim also gives

θ1 ≥ αn + ψ(αn)δM|f̃ (In)|
2 > αn = θn/Kn,

and this finishes the proof. ut

Corollary 6.9. There exist constants α,C1, C2 > 0 and λ ∈ (0, 1) with the following
property. Let f be a C3 critical circle map with irrational rotation number, and let F
be its extended lift. There exists n0 ∈ N such that for each n ≥ n0 there exists an R-
symmetric topological disk Yn with

Nα(f̃ (In)) ⊂ Yn

such that the composition F qn+1−1
: Yn → F qn+1−1(Yn) is a well-defined C3 diffeomor-

phism and we have:

(1) C1 <
diam(F qn+1−1(Yn))

|f̃ qn+1(In)|
< C2,

(2) sup
z∈Yn

|∂F qn+1−1(z)|

|∂F qn+1−1(z)|
≤ C2λ

n.

Proof. For each n ∈ N let:

• In be the closed interval whose endpoints are 0 and (T −pn ◦ f̃ qn)(0),
• Jn be the open interval containing the origin that projects to

(f qn+1(1), f qn−qn+3(1))

under the covering π(t) = e2πit , and
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• Kn be the open interval containing the origin that projects to

(f qn−1−qn+1(1), f qn−qn+1(1))

under the covering π .

Note that In ∪ In+1 ⊂ Jn ⊂ Jn ⊂ Kn (see Figure 5). By combinatorics, the map f̃ :
f̃ j (Kn)→ f̃ j+1(Kn) is a diffeomorphism for all j ∈ {1, . . . , qn+1−1}, and therefore all
restrictions f̃ : f̃ j (Jn)→ f̃ j+1(Jn) are diffeomorphisms for any j ∈ {1, . . . , qn+1 − 1}
(just as in the proof of Proposition 6.8).

Jn

In

Kn

Fig. 5. Relative positions of the relevant points in the proof of Corollary 6.9.

Recall that the extended lift F : BR → WR is given by the composition F =
H2 ◦ Ã ◦ H1 (see Definition 6.5). Let n0 ∈ N be given by Proposition 6.8, and for each
n ≥ n0 let Kn ≥ 1 and θn > 0 be also given by Proposition 6.8. Fix θ ∈ (0, π) such that
θ > θn for all n ≥ n0 and

|µHi (z)| <
1
2 (d(z, f̃

j (Jn)))
2

for any z ∈ Dθ/Kn(f̃
j (Jn)), any j ∈ {1, . . . , qn+1 − 1} and any i ∈ {1, 2} (as before,

µHi denotes the Beltrami coefficient of the quasiconformal homeomorphism Hi , and d
denotes the Euclidean distance in the complex plane). The existence of such a θ is guar-
anteed by Proposition 6.8, the fact that both Hi are R-asymptotically holomorphic of
order 3, and the last item in Proposition 6.4.

Let Yn ⊂ F−qn+1+1(Dθ (f̃
qn+1(Jn))) be the preimage of Dθ (f̃ qn+1(Jn)) under

F qn+1−1 given by Proposition 6.8, and note that:

• Yn is an R-symmetric topological disk;

• f̃ (In) ⊂ Yn;
• f̃ (In+1) ⊂ Yn;
• by Proposition 6.8, F j (Yn) ⊂ Dθ/Kn(f̃

j+1(Jn)) for all j ∈ {0, 1, . . . , qn+1 − 1}.

Moreover,

diam(F qn+1−1(Yn)) = diam(Dθ (f̃ qn+1(Jn))) = ψ(θ)|f̃
qn+1(Jn)|,

and by the real bounds, |f̃ qn+1(Jn)| and |f̃ qn+1(In)| are comparable (with universal con-
stants independent of n ≥ n0). Again the map ψ is the same as in the proof of Proposi-
tion 6.8. This gives us item (1), and now we prove (2). For each n ≥ n0 let kn ∈ [0, 1) be
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the conformal distortion of F qn+1−1 at Yn, that is,

kn = sup
z∈Yn

|∂F qn+1−1(z)|

|∂F qn+1−1(z)|
.

Moreover, for each j ∈ {1, . . . , qn+1 − 1} let Kn,j , Kn,j (1) and Kn,j (2) in [1,∞) be
respectively the quasiconformality of F at F j−1(Yn), of H1 also at F j−1(Yn), and of H2
at (Ã ◦H1)(F

j−1(Yn)). Since Ã is conformal, we have

kn ≤ log
(qn+1−1∏
j=1

Kn,j

)
=

qn+1−1∑
j=1

logKn,j

=

qn+1−1∑
j=1

(logKn,j (1)+ logKn,j (2))

≤

qn+1−1∑
j=1

M0(diam(F j−1(Yn)))
2 (for some M0 > 1)

≤

qn+1−1∑
j=1

M0
(
diam(Dθ/Kn(f̃

j (Jn)))
)2

=

qn+1−1∑
j=1

M0 (ψ(θ/Kn))
2
|f̃ j (Jn)|

2 < M1

qn+1−1∑
j=1

|f̃ j (Jn)|
2.

The last inequality follows from the fact that Kn → 1 as n → ∞. By combinatorics
the projection of the family {f̃ j (Jn)}

qn+1−1
j=1 to the unit circle has finite multiplicity of

intersection (independent of n ≥ n0), and therefore
qn+1−1∑
j=1

|f̃ j (Jn)|
2 < M2

(
max

j∈{1,...,qn+1−1}
|f̃ j (Jn)|

)
, (6.1)

where the constant M2 > 0 only depends on the multiplicity of intersection of the pro-
jection of the family {f̃ j (Jn)}

qn+1−1
j=1 to the unit circle. By the real bounds, the right-hand

side of (6.1) goes to zero exponentially fast at a universal rate (independent of f ), and
therefore we obtain constants λ ∈ (0, 1) and C > 0 such that

kn = sup
z∈Yn

|∂F qn+1−1(z)|

|∂F qn+1−1(z)|
≤ Cλn for all n ≥ n0.

To finish the proof of Corollary 6.9 we need to obtain definite domains around f̃ (In)
contained in Yn. As in the proof of Proposition 6.8, for each n ≥ n0 let An and Bn be the
affine maps given by

An(z) = (1/|f̃ qn+1(In)|)(z− f̃
qn+1(0)) and Bn(z) = (1/|f̃ (In)|)(z− f̃ (0)),

and also letZn = An(Dθ (f̃ qn+1(Jn))). By the real bounds there exists a universal constant
α0 > 0 such that

Nα0([0, 1]) ⊂ Zn for all n ≥ n0.
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The R-symmetric orientation-preserving C3 diffeomorphism Tn : Zn → Tn(Zn)

given by
Tn = Bn ◦ F

−qn+1+1
◦ A−1

n

induces a diffeomorphism in [0, 1] which, again by the real bounds, has universally
bounded distortion. In particular there exists ε > 0 such that |T ′n(t)| > ε for all t ∈ [0, 1]
and all n ≥ n0. By Proposition 5.6 there exists α > 0 (only depending on α0 and ε) such
that (for n0 large enough)

Nα([0, 1]) ⊂ Tn(Zn) for all n ≥ n0,

and therefore Nα(f̃ (In)) ⊂ Yn for all n ≥ n0. ut

Proposition 6.10. There exist constants α,C1, C2 > 0 and λ ∈ (0, 1) with the following
property. Let f be aC3 critical circle map with irrational rotation number, and let F be its
extended lift. There exists n0 ∈ N such that for each n ≥ n0 there exists an R-symmetric
topological disk Xn with

Nα(In) ⊂ Xn, where In = [0, (T −pn ◦ f̃ qn)(0)],

such that the composition F qn+1 is well-defined in Xn, has a unique critical point at the
origin, and:

(1) C1 <
diam(F qn+1(Xn))

|f̃ qn+1(In)|
< C2,

(2) sup
z∈Xn\{0}

|∂F qn+1(z)|

|∂F qn+1(z)|
≤ C2λ

n.

Proof. From the construction of the extended lift F in Subsection 6.1 (see also Lem-
ma 6.6) there exists a complex neighbourhood � of the origin such that the restriction
F : �→ F(�) is of the formQ◦ψ , whereQ(z) = z3

+f̃ (0), andψ : �→ Q−1(F (�))

is an R-symmetric orientation-preserving C3 diffeomorphism fixing the origin. In partic-
ular there exist ε, δ > 0 such that if t ∈ (−δ, δ) then |(ψ−1)′(t)| > ε, where (ψ−1)′

denotes the one-dimensional derivative of the restriction of ψ−1 to Q−1(F (�)) ∩ R. Let
K > 1 be given by Proposition 5.6 applied to ε > 0. Since ψ is asymptotically holomor-
phic of order 3 in �, we can choose � so small that ψ is K-quasiconformal. By taking
n0 ∈ N large enough we can assume that |ψ(In)| < δ and Yn ⊂ F(�) for all n ≥ n0,
where the topological disk Yn is the one given by Corollary 6.9. By Corollary 6.9 and el-
ementary properties of the cube root map (see for instance [55, Lemma 2.2]) there exists
a universal constant α0 > 0 such that for all n ≥ n0 we have

Nα0(ψ(In)) ⊂ Q
−1(Yn). (6.2)

Define Xn ⊂ � by Xn = F−1(Yn) = ψ
−1(Q−1(Yn)). Item (1) follows directly from

Corollary 6.9(1) since F qn+1(Xn) = F qn+1−1(Yn). By (6.2) and Proposition 5.6 there
exists a universal constant α > 0 such that

Nα(In) ⊂ Xn ⊂ � for all n ≥ n0.
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To obtain item (2) recall that by Corollary 6.9(2) we have

sup
z∈Yn

|∂F qn+1−1(z)|

|∂F qn+1−1(z)|
≤ Cλn.

Since Q is a polynomial, it is conformal at its regular points, and since ‖µψ‖∞ ≤
(K − 1)/(K + 1) < 1 in � we have

sup
z∈Xn\{0}

|∂F qn+1(z)|

|∂F qn+1(z)|
≤ Cλn. ut

Theorem 6.1 follows directly from Proposition 6.10 and its analogue for f̃ qn |In+1 .

7. Proof of Theorem D

As its title indicates, this section is entirely devoted to the proof of Theorem D, and recall
that Theorem D implies our main result (Theorem B) as we saw in Section 4.

First let us fix some notation and terminology. By a topological disk we mean an
open, connected and simply connected set properly contained in the complex plane. Let
π : C → C \ {0} be the holomorphic covering z 7→ exp(2πiz), and let T : C → C be
the horizontal translation z 7→ z+ 1 (which is a generator of the group of automorphisms
of the covering). For any R > 1 consider the band

BR = {z ∈ C : − logR < 2π=(z) < logR},

which is the universal cover of the round annulus

AR = {z ∈ C : 1/R < |z| < R}

via the holomorphic covering π . Since BR is T -invariant, the translation generates the
group of automorphisms of the covering. The restriction π : R → S1

= ∂D is also a
covering map, the automorphism T preserves the real line, and again generates the group
of automorphisms of the covering.

More generally, an annulus is an open and connected set A in the complex plane
whose fundamental group is isomorphic to Z. By the Uniformization Theorem such an
annulus is conformally equivalent either to the punctured disk D \ {0}, to the punctured
plane C \ {0}, or to some round annulus AR = {z ∈ C : 1/R < |z| < R}. In the last case
the value of R > 1 is unique, and there exists a holomorphic covering from D to A whose
group of deck transformations is infinite cyclic, and such that any generator is a Möbius
transformation that has exactly two fixed points on the boundary of the unit disk.

Since the deck transformations are Möbius transformations, they are isometries of
the Poincaré metric on D, and therefore there exists a unique Riemannian metric on A
such that the covering map provided by the Uniformization Theorem is a local isometry.
This metric is complete, and in particular any two points can be joined by a minimizing
geodesic. There exists a unique simple closed geodesic in A whose hyperbolic length is
equal to π2/logR. The length of this closed geodesic is therefore a conformal invariant.
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We denote by 2 the antiholomorphic involution z 7→ 1/z̄ of the punctured plane
C \ {0}, and we say that a map is S1-symmetric if it commutes with 2. An annulus is
S1-symmetric if it is invariant under 2 (for instance, the round annulus AR described
above is S1-symmetric). In this case, the unit circle is the core curve (the unique simple
closed geodesic) for the hyperbolic metric in A. In this section we will deal only with
S1-symmetric annuli. In particular any time that some annulus A0 is contained in some
other annulus A1, the annulus A0 separates the boundary components of A1 (more tech-
nically, the inclusion is essential in the sense that the fundamental group π1(A0) injects
into π1(A1)).

Besides Theorem 6.1, the main tool in order to prove Theorem D is Proposition 5.5.
The proof will be divided into three subsections. Along the proof, C will denote a positive
constant (independent of n ∈ N) and n0 will denote a positive (large enough) natural
number. First, let n0 ∈ N be given by Theorem 6.1. Moreover, set W1 = Nα([−1, 0]),
W2 = W2(n) = Nα([0, ξn(0)]), W0 = B(0, λ) and V = B(0, λ−1), where α > 0 and
λ ∈ (0, 1) are the universal constants given by Theorem 6.1. Recall that ηn(0) = −1 for
all n ≥ 1 after normalization.

7.1. A first perturbation and a bidimensional glueing procedure

From Theorem 6.1 we have:

Lemma 7.1. There exists an R-symmetric topological disk U with −1 ∈ U ⊂ W1 \W0
such that for all n ≥ n0 the composition

η−1
n ◦ ξn : U → (η−1

n ◦ ξn)(U)

is an R-symmetric orientation-preserving C3 diffeomorphism.

For each n ≥ n0 denote by An the diffeomorphism η−1
n ◦ ξn. Note that ‖µAn‖∞ ≤ Cλ

n

in U for all n ≥ n0, and that the domains {An(U)}n≥n0 are uniformly bounded since they
are contained in

⋃
j W

j

2 . Fix ε, δ > 0 such that the rectangle

V = (−1− ε,−1+ ε)× (−iδ, iδ)

is compactly contained in U , and apply Proposition 5.5 to the sequence

{An : U → An(U)}n≥n0

of R-symmetric orientation-preserving C3 diffeomorphisms to obtain a sequence

{Bn : V → Bn(V )}n≥n0

of R-symmetric biholomorphisms such that

‖An − Bn‖C0(V ) ≤ Cλ
n for all n ≥ n0.

By combining Theorem 6.1 with the commuting condition, we obtain the following
configuration, which somehow resembles the notion of holomorphic commuting pairs
introduced by de Faria in his PhD thesis [10] (see also [11, Section 2] and [14, Section 2]).
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Lemma 7.2. For each n ≥ n0 there exist R-symmetric topological disks Vi(n) for i ∈
{1, 2, 3} with the following properties:

• 0 ∈ V1(n) ⊂ W0;
• (ηn ◦ ξn)(0) = (ξn ◦ ηn)(0) = ξn(−1) ∈ V2(n) ⊂ W2;
• ξn(0) ∈ V3(n) ⊂ W2;
• when restricted to V1(n), both ηn and ξn are orientation-preserving three-fold C3

branched coverings onto V and V3(n) respectively, with a unique critical point at the
origin;
• both ξn|V and ηn|V3(n) are orientation-preserving C3 diffeomorphisms onto V2(n).

In particular η−1
n ◦ ξn is an orientation-preserving C3 diffeomorphism from V onto V3(n)

for all n ≥ n0.

For each n ≥ n0 let U1(n), U2(n) and U3(n) be R-symmetric topological disks such that:

• U1(n), U2(n) and U3(n) are pairwise disjoint;
• V ∩ Uj (n) = ∅ and Vi(n) ∩ Uj (n) = ∅ for i, j ∈ {1, 2, 3};
• U1(n) ⊂ W1 and U2(n) ∪ U3(n) ⊂ W2,

and such that

Un = int
[
V ∪

( 3⋃
i=1

Vi(n)
)
∪

( 3⋃
j=1

Uj (n)
)]

is an R-symmetric topological disk (see Figure 6). Note that

Iξn ∪ Iηn ⊂ Un ⊂ W1 ∪W2 for all n ≥ n0,

and Un\V ∪ V1(n) ∪ V2(n) ∪ V3(n) has three connected components, which are precisely
U1(n), U2(n) and U3(n). By Theorem 6.1 we can choose U1(n), U2(n) and U3(n) so as

V

ηn ξn
An(V )

ηn

ξn

An = η
−1
n ◦ ξn

Fig. 6. The domain Un.
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to also have
Nδ([−1, 0]) ∪Nδ([0, ξn(0)]) ⊂ Un for all n ≥ n0,

for some universal constant δ > 0 independent of n ≥ n0. Note also that each Un is
uniformly bounded since it is contained in Nα([−1,K]), where α > 0 is given by Theo-
rem 6.1, and K > 1 is the universal constant given by the real bounds.

For each n ≥ n0 let Tn be an R-symmetric topological disk such that:
• V , V1(n), V2(n) and Bn(V ) are contained in Tn;
• Tn \ (V ∪ Bn(V )) is connected and simply connected;
• the Hausdorff distance between Tn and Un is no more than

‖An − Bn‖C0(V ) ≤ Cλ
n.

Lemma 7.3. For each n ≥ n0 there exists an orientation-preserving R-symmetric C3

diffeomorphism 8n : Un→ Tn such that:

• 8n ≡ Id in the interior of V ∪ U1(n) ∪ V1(n), in particular 8n(0) = 0;
• Bn = 8n ◦ (η

−1
n ◦ ξn) ◦8

−1
n in V , that is, 8n ◦ An = Bn ◦8n in V ;

• ‖8n − Id‖C0(Un) ≤ Cλ
n;

• ‖µ8n‖∞ ≤ Cλ
n in Un.

Proof. For each n ≥ n0 we have ‖An − Bn‖C0(V ) ≤ Cλ
n, and therefore

‖Id− (Bn ◦ A−1
n )‖C0(V3(n))

≤ Cλn.

If we define 8n|V3(n) = Bn ◦ A
−1
n we also have ‖µ8n‖∞ = ‖µA−1

n
‖∞ in V3(n), which

is equal to ‖µAn‖∞ in V . In particular ‖µ8n‖∞ ≤ Cλ
n in V3(n), and then we define 8n

in the whole Un by interpolating Bn ◦ A−1
n in V3(n) with the identity in the interior of

V ∪ U1(n) ∪ V1(n). ut

Consider the seven topological disks:

X1(n) = int(V ∪ U1(n) ∪ V1(n)) ⊂ W1 ∩ Un,
X2(n) = int

(
V1(n) ∪ U2(n) ∪ V2(n) ∪ U3(n) ∪ V3(n)

)
⊂ W2 ∩ Un,

X̂1(n) = {z ∈ X1(n) : ξn(z) ∈ Un}, X̂2(n) = {z ∈ X2(n) : ηn(z) ∈ Un},
T̂n = 8n(X̂1(n)) ∪8n(X̂2(n)) ⊂ Tn,

Y1(n) = X1(n) ∩8n(X̂1(n)), Y2(n) = X2(n) ∩8n(X̂2(n)).

Note that V , V1(n) and Bn(V ) are contained in T̂n for all n ≥ n0. Moreover, we have the
following two corollaries of Theorem 6.1:

Lemma 7.4. There exists δ > 0 such that for all n ≥ n0 we have

Nδ([−1, 0]) ⊂ Y1(n) and Nδ([0, ξn(0)]) ⊂ Y2(n).

Lemma 7.5. Both

sup
n≥n0

sup
z∈Y1(n)

det(Dξn(z)) and sup
n≥n0

sup
z∈Y2(n)

det(Dηn(z))

are finite, where det(·) denotes the determinant of a square matrix.
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Let

ξ̂n : 8n(X̂1(n))→ (8n ◦ ξn)(X̂1(n)), ξ̂n = 8n ◦ ξn ◦8
−1
n ,

η̂n : 8n(X̂2(n))→ (8n ◦ ηn)(X̂2(n)) η̂n = 8n ◦ ηn ◦8
−1
n .

Since each 8n is an R-symmetric C3 diffeomorphism, the pair (̂ηn, ξ̂n) restricts to a
critical commuting pair with the same rotation number as (ηn, ξn), and the same criticality
(which we assume to be cubic, for simplicity). Note also that η̂n(0) = −1 for all n ≥ n0.
Moreover, from Lemma 7.5 and ‖8n − Id‖C0(Un) ≤ Cλ

n we have

‖ξn − ξ̂n‖C0(Y1(n))
≤ Cλn and ‖ηn − η̂n‖C0(Y2(n))

≤ Cλn for all n ≥ n0.

Therefore it is enough to shadow the sequence (̂ηn, ξ̂n) in the domains Y1(n) and Y2(n),
instead of (ηn, ξn) (the shadowing sequence will be constructed in Subsection 7.3 below).
The main advantage of working with the sequence (̂ηn, ξ̂n) is precisely that η̂−1

n ◦ ξ̂n is
univalent in V for all n ≥ n0 (since it coincides withBn). In particular we can choose each
topological disk Un and Tn defined above with the additional property that, identifying V
with Bn(V ) via the biholomorphism Bn, we obtain from Tn an abstract annular Riemann
surface Sn (with the complex structure induced by the quotient).

Denote by pn : Tn → Sn the canonical projection (note that pn is not a covering
map, just a surjective local diffeomorphism). The projection of the real line, pn(R ∩ Tn),
is real-analytic diffeomorphic to the unit circle S1. We call it the equator of Sn.

Since complex conjugation leaves Tn invariant and commutes with Bn, it induces
an antiholomorphic involution Fn : Sn → Sn acting as the identity on the equator
pn(R ∩ Tn). Note that Fn has a continuous extension to ∂Sn that switches the bound-
ary components.

Since Sn is obviously not biholomorphic to D\{0} or to C\{0}, we have mod(Sn)<∞
for all n ≥ n0, where mod(·) denotes the conformal modulus of an annular Riemann
surface. For each n ≥ n0 define a constant Rn in (1,∞) by

Rn = exp(mod(Sn)/2),

that is, Sn is conformally equivalent to ARn = {z ∈ C : R−1
n < |z| < Rn}. Any bi-

holomorphism between Sn and ARn must send the equator pn(R ∩ Tn) onto the unit
circle S1 (because the equator is invariant under the antiholomorphic involution Fn, and
the unit circle is invariant under the antiholomorphic involution z 7→ 1/z̄ in ARn ). Let
9n : Sn → ARn be the conformal uniformization determined by 9n(pn(0)) = 1, and let
Pn : Tn→ ARn be the holomorphic surjective local diffeomorphism

Pn = 9n ◦ pn

(see Figure 7). Note that Pn(0) = 1 and Pn(Tn ∩ R) = S1 for all n ≥ n0. Moreover
Pn(z)Pn(z) = 1 for all z ∈ Tn and all n ≥ n0. From now on we forget about the abstract
cylinder Sn.
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Tn

SnARn

Un

8n

9n

Pn pn

Fig. 7. Bidimensional glueing procedure.

Lemma 7.6. There exist constants δ > 0 and C > 1 such that for all n ≥ n0 and for all
z ∈ Nδ([−1, ξ̃n(0)]) we have z ∈ T̂n ⊂ Tn and

1/C < |P ′n(z)| < C.

Proof. By the real bounds there exists a universal constant C0 > 1 such that for each
n ≥ n0 there exists wn ∈ [−1, ξ̃n(0)] such that

1/C0 < |P
′
n(wn)| < C0.

We need to construct a definite complex domain around [−1, ξ̃n(0)] where Pn has univer-
sally bounded distortion. Again by the real bounds there exist δ > 0 and l ∈ N with the
following properties. For each n ≥ n0 there exist z1, . . . , zkn ∈ [−1, ξ̃n(0)] with kn < l

for all n ≥ n0 such that:

• [−1, ξ̃n(0)] ⊂
⋃kn
i=1 B(zi, δ);

• B(zi, 2δ) ⊂ T̂n ⊂ Tn for all i ∈ {1, . . . , kn};
• Pn|B(zi ,2δ) is univalent for all i ∈ {1, . . . , kn}.
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By convexity, for all n ≥ n0 and all i ∈ {1, . . . , kn} we have

sup
v,w∈B(zi ,δ)

|P ′n(v)|

|P ′n(w)|
≤ exp

(
sup

w∈B(zi ,δ)

|P ′′n (w)|

|P ′n(w)|

)
,

and by the Koebe distortion theorem (see for instance [6, Section I.1, Theorem 1.6]),

sup
w∈B(zi ,δ)

|P ′′n (w)|

|P ′n(w)|
≤

2
δ

for all n ≥ n0 and i ∈ {1, . . . , kn}. ut

Now we project each commuting pair (̃ηn, ξ̃n) from T̂n to the round annulus ARn .

Proposition 7.7 (Glueing procedure). The pair

ξ̂n : 8n(X̂1(n))→ Tn and η̂n : 8n(X̂2(n))→ Tn
projects under Pn to a well-defined orientation-preserving C3 map

Gn : Pn(T̂n) ⊂ ARn → ARn .

For each n ≥ n0, Pn(T̂n) is a 2-invariant annulus with positive and finite modulus. Each
Gn is S1-symmetric, in particular Gn preserves the unit circle.

When restricted to the unit circle,Gn produces a C3 critical circle map gn : S1
→ S1

with cubic critical point at Pn(0) = 1, and with rotation number ρ(gn) = ρ(Rn(f ))

∈ R \Q.

T̂n ⊂ Tn Tn

Pn(T̂n) ⊂ ARn ARn

-(̂ηn ,̂ξn)

?
Pn

?

Pn

-Gn

Moreover the unique critical point of Gn in Pn(T̂n) is the one on the unit circle (at the
point 1) and

|∂Gn(z)| ≤ Cλ
n
|∂Gn(z)| for all z ∈ Pn(T̂n) \ {1},

that is, ‖µGn‖∞ ≤ Cλ
n in Pn(T̂n).

Proof. This follows from:

• the construction of Un and Tn;
• the property Bn = 8n ◦ (η−1

n ◦ ξn) ◦8
−1
n in V ;

• the commuting condition in V1(n);
• the symmetry Pn(z)Pn(z) = 1 for all z ∈ Tn and all n ≥ n0;
• the fact that Pn : Tn → ARn is holomorphic, Pn(0) = 1 and Pn(Tn ∩ R) = S1 for all
n ≥ n0. ut

Note that each gn belongs to the smooth conjugacy class obtained with the glueing pro-
cedure (described in Section 3.2) applied to the C3 critical commuting pair (̂ηn, ξ̂n). In
the next subsection we will construct a sequence of real-analytic critical circle maps, with
the desired combinatorics, that extend to holomorphic maps exponentially close to Gn in
a definite annulus around the unit circle (see Proposition 7.8 below).
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7.2. Main perturbation

The goal of this subsection is to construct the following sequence of perturbations:

Proposition 7.8 (Main perturbation). There exist a constant r > 1 and a sequence

{Hn : Ar → C}n≥n0

of holomorphic maps defined in the annulus Ar such that for all n ≥ n0 the following
holds:

• Ar ⊂ Pn(T̂n) ⊂ Pn(Tn) = ARn ;
• ‖Hn −Gn‖C0(Ar )

≤ Cλn;
• Hn(Ar) ⊂ (Gn ◦ Pn)(T̂n) ⊂ Pn(Tn) = ARn ;
• Hn preserves the unit circle and, when restricted to the unit circle, produces a real-

analytic critical circle map hn : S1
→ S1 such that:

– the unique critical point of hn is at Pn(0) = 1, and is of cubic type;
– the critical value of hn coincides with the one of gn, that is, hn(1) = gn(1) ∈
Pn(V ∩ R);

– ρ(hn) = ρ(gn) = ρ(Rn(f )) ∈ R \Q;

• the unique critical point of Hn in Ar is the one on the unit circle.

The remainder of this subsection is devoted to proving Proposition 7.8. We will not per-
turb the maps Gn directly (basically because they are non-invertible). Instead, we will
decompose them (see Lemma 7.9 below), and then we will perturb their coefficients (see
the definition after the statement of Lemma 7.9). Those perturbations will be done, again,
with the help of Proposition 5.5.

Let A : C \ {0} → C \ {0} be the map corresponding to the parameters a = 0 and
b = 1 in the Arnold family (1.2), defined in the introduction. The lift of A to the complex
plane by the holomorphic covering z 7→ exp(2πiz) is the entire map Ã : C → C given
by

Ã(z) = z−
1

2π
sin(2πz).

Then A preserves the unit circle, and its restriction A : S1
→ S1 is a real-analytic critical

circle map. The critical point ofA on the unit circle is at 1, and is of cubic type (the critical
point is also a fixed point for A). The following is a bidimensional version of Lemma 6.2:

Lemma 7.9. For each n ≥ n0 there exist:

• Sn > 1;
• an S1-symmetric orientation-preserving C3 diffeomorphism ψn : Pn(T̂n)→ ASn ;
• an S1-symmetric biholomorphism φn : A(ASn)→ (Gn ◦ Pn)(T̂n) such that

Gn = φn ◦ A ◦ ψn in Pn(T̂n).
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The diffeomorphisms ψn and φn are called the coefficients of Gn in Pn(T̂n).

Pn(T̂n) (Gn ◦ Pn)(T̂n)

ASn A(ASn)

-Gn

?

ψn

-A

6
φn

Proof of Lemma 7.9. For each n ≥ n0 let Sn > 1 be such that A(ASn) is a 2-invariant
annulus with

mod(A(ASn)) = mod((Gn ◦ Pn)(T̂n)).

In particular there exists a biholomorphism φn : A(ASn)→ (Gn ◦Pn)(T̂n) that commutes
with 2. Each φn preserves the unit circle and we can choose it so that φn(1) = Gn(1),
that is, φn takes the critical value of A to the critical value of Gn.

Since both Gn and A are three-fold branched coverings around their critical points
and local diffeomorphisms away from them, the equation Gn = φn ◦ A ◦ ψn induces an
orientation-preserving C3 diffeomorphism ψn : Pn(T̂n) → ASn that commutes with 2
and has ψn(1) = 1, that is, ψn takes the critical point of Gn to the one of A. The fact
that ψn is smooth at 1 with non-vanishing derivative follows from the fact that the critical
points of Gn and A have the same degree (see Lemma 6.2). ut

Note that, at the beginning of the proof of Lemma 7.9, we have used the fact that the
image under the Arnold map A of a small round annulus around the unit circle is also
an annulus. This is true, even though A has a critical point on the unit circle (placed
at 1, and being also a fixed point of A). Even more is true: the conformal modulus of the
annulus A(As) depends continuously on s > 1 (and we have also used this fact in the
proof).

As we said, the idea of the proof of Proposition 7.8 is to perturb each diffeomor-
phism ψn by means of Proposition 5.5. In order to control the C0 size of those pertur-
bations we will need some geometric control, which we state in four lemmas, before
entering into the proof of Proposition 7.8. From Lemma 7.6 we have:

Lemma 7.10.
1 < inf

n≥n0
Rn and sup

n≥n0

Rn <∞.

Lemma 7.11. For all n ≥ n0 both Pn(T̂n) and (Gn◦Pn)(T̂n) are2-invariant annuli with
finite modulus. Moreover, there exists a universal constant K > 1 such that

1/K < mod(Pn(T̂n)) < K for all n ≥ n0.

Proof. By Lemma 7.10 we know that R = supn≥n0
Rn is finite, and since for all n ≥ n0

both Pn(T̂n) and (Gn ◦ Pn)(T̂n) are contained in the corresponding ARn , we see at once
that both have finite modulus, and also supn≥n0

mod(Pn(T̂n)) is finite. Just as in Lemma
7.10, the fact that infn≥n0 mod(Pn(T̂n)) is positive follows from Lemmas 7.4 and 7.6. ut
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Lemma 7.12. There exists a constant r0 > 1 such that Ar0 ⊂ Pn(T̂n) for all n ≥ n0.

Proof. By the invariance with respect to the antiholomorphic involution z 7→ 1/z̄, the
unit circle is the core curve (the unique closed geodesic for the hyperbolic metric) of each
annulus Pn(T̂n). Since infn≥n0 mod(Pn(T̂n)) > 0, the statement is well-known: see for
instance [39, Chapter 2, Theorem 2.5]. ut

Lemma 7.13. We have

s = inf
n≥n0

Sn > 1 and S = sup
n≥n0

Sn <∞.

Proof. Since µψn = µGn in Pn(T̂n), we have ‖µψn‖∞ ≤ Cλ
n in Pn(T̂n) for all n ≥ n0.

By the geometric definition of quasiconformal homeomorphisms (see for instance [34,
Chapter I, Section 7]) we have

1− Cλn

1+ Cλn
mod(Pn(T̂n)) ≤ 2 log(Sn) ≤

1+ Cλn

1− Cλn
mod(Pn(T̂n))

for all n ≥ n0, and we are done by Lemma 7.11. ut

With this geometric control at hand, we are ready to prove Proposition 7.8:

Proof of Proposition 7.8. Let r0 > 1 be given by Lemma 7.12 (recall that Ar0 ⊂ Pn(T̂n)
for all n ≥ n0), and fix r ∈ (1, (1+r0)/2). How small r−1 must be will be determined in
the course of the argument (see Lemma 7.14 below). For any r ∈ (1, (1+ r0)/2) consider
r = r0 − (r − 1) ∈ ((1+ r0)/2, r0).

The sequence
{ψn : Ar0 → ψn(Ar0)}n≥n0

of S1-symmetric C3 diffeomorphisms satisfies the hypothesis of Proposition 5.5 since:

• µψn = µGn in Pn(T̂n), and therefore ‖µψn‖∞ ≤ Cλ
n for all n ≥ n0;

• ψn(Ar0) ⊂ ASn ⊂ AS for all n ≥ n0 (see Lemma 7.13).

Apply Proposition 5.5 to the bounded domain Ar , compactly contained in Ar0 , to obtain
a sequence of S1-symmetric biholomorphisms

{ψ̂n : Ar → ψ̂n(Ar)}n≥n0

such that
‖ψ̂n − ψn‖C0(Ar )

≤ Cλn for all n ≥ n0.

Fix n0 large enough to have ψ̂n(Ar) ⊂ ASn , and note that we can suppose that each ψ̂n
fixes the point 1 (just as ψn) by considering

z 7→
1

ψ̂n(1)
ψ̂n(z).

Since |ψ̂n(z)| ≤ S for all z ∈ Ar and all n ≥ n0 (where S ∈ (1,∞) is given by
Lemma 7.13), and since |ψ̂n(1) − 1| ≤ Cλn for all n ≥ n0, we know that this new
map (which we will still denote by ψ̂n for simplicity) satisfies all the properties that we
want for ψ̂n, and also fixes the point z = 1.
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For each n ≥ n0 consider the holomorphic map Hn : Ar → C defined by Hn =
φn ◦ A ◦ ψ̂n. We have:

• Hn(Ar) ⊂ (Gn ◦ Pn)(T̂n) ⊂ ARn ;
• Hn is S1-symmetric and therefore it preserves the unit circle;
• when restricted to the unit circle, Hn produces a real-analytic critical circle map hn :
S1
→ S1;

• the unique critical point of Hn in Ar is on the unit circle, at Pn(0) = 1, and is of cubic
type;
• the critical value of Hn coincides with the one of Gn, that is, Hn(1) = Gn(1) ∈
Pn(V ∩ R).

We divide the rest of the proof of Proposition 7.8 into three lemmas. We need to prove
first that, for a suitable r > 1, Hn is C0-exponentially close to Gn in the annulus Ar
(Lemma 7.14 below), and then that we can choose eachHn with the desired combinatorics
for its restriction hn to the unit circle (Lemma 7.15). This last perturbation will change
the critical value of each Hn (it will not coincide with the one of Gn any more). We will
finish the proof of Proposition 7.8 with Lemma 7.16, which allows us to keep the critical
point of Hn at Pn(0) = 1, and to place the critical value of Hn at gn(1) for all n ≥ n0.
This will be important in the following subsection, the last one of this section.

Lemma 7.14. There exists r ∈ (1, (1+ r0)/2) such that in the annulus Ar we have

‖Hn −Gn‖C0(Ar )
≤ Cλn for all n ≥ n0.

Proof. The proof is divided into three claims:

Claim 1. There exists β > 1 such that Aβ ⊂ A(ASn) for all n ≥ n0.

Indeed, by Lemma 7.13 the round annulus A(1+s)/2 is compactly contained in ASn for all
n ≥ n0, and therefore the annulus A(A(1+s)/2) is contained in A(ASn) for all n ≥ n0.
Thus we just take β > 1 such that Aβ ⊂ A(A(1+s)/2), and Claim 1 is proved.

From now on we fix α ∈ (1, β).

Claim 2. There exists r ∈ (1, (1 + r0)/2) so close to 1 that (A ◦ ψ̂n)(Ar) ⊂ Aα and
(A ◦ ψn)(Ar) ⊂ Aα for all n ≥ n0.

Indeed, since Ar ⊂ Ar , ψ̂n is holomorphic, and ψ̂n(Ar) ⊂ ASn ⊂ AS for all n ≥ n0
(where S ∈ (1,∞) is given by Lemma 7.13), by the Cauchy derivative estimate we have
supn≥n0

{|ψ̂ ′n(z)| : z ∈ Ar} < ∞. Since each ψ̂n preserves the unit circle, and since
‖ψ̂n − ψn‖C0(Ar )

≤ Cλn for all n ≥ n0, Claim 2 is proved.

Another way to prove the second claim is by noting that since Aα ⊂ Aβ ⊂ Aβ ⊂

A(ASn) for all n ≥ n0, the hyperbolic metric on any annulus A(ASn) and the Euclidean
metric are comparable in Aα with universal parameters, that is, there exists a constant
K > 1 such that

1
K
|z− w| ≤ dA(ASn )(z, w) ≤ K|z− w|
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for all z,w ∈ Aα and all n ≥ n0, where dA(ASn ) denote the hyperbolic distance in the
annulusA(ASn) (this is well-known, see for instance [6, Section I.4, Theorem 4.3]). Since
each A ◦ ψ̂n : Ar → A(ASn) is holomorphic and preserves the unit circle, we know by
the Schwarz lemma that for all z ∈ Ar and all n ≥ n0,

dA(ASn )((A ◦ ψ̂n)(z), S
1) ≤ dAr (z, S

1),

where dAr denote the hyperbolic distance in the annulus Ar . Since all distances dA(ASn )
are comparable with the Euclidean distance in Aδ with universal parameters, for all
z ∈ Ar and all n ≥ n0 we have

d((A ◦ ψ̂n)(z), S
1) ≤ KdAr (z, S

1),

where d is just the Euclidean distance in the plane. Fix r ∈ (1, (1 + r0)/2) so close to 1
that z ∈ Ar implies dAr (z, S

1) < (α − 1)/(Kα) (and therefore (A ◦ ψ̂n)(z) ∈ Aα for all
n ≥ n0). Again since ‖ψ̂n − ψn‖C0(Ar )

≤ Cλn for all n ≥ n0, Claim 2 is proved.

Claim 3. There exists a positive numberM such that |φ′n(z)| < M for all z ∈ Aα and all
n ≥ n0.

Indeed, recall that φn(A(ASn)) = (Gn ◦ Pn)(T̂n) ⊂ ARn for all n ≥ n0. By Lemma 7.10
there exists a (finite) number 1 such that φn(A(ASn)) ⊂ B(0,1) for all n ≥ n0. Since
Aα ⊂ Aβ ⊂ Aβ ⊂ A(ASn) for all n ≥ n0, Claim 3 follows from the Cauchy derivative
estimate.

With the three claims at hand, Lemma 7.14 follows. ut

To control the combinatorics after perturbation we use the monotonicity of the rotation
number:

Lemma 7.15. Let f be a C3 critical circle map and let g be a real-analytic critical circle
map that extends holomorphically to the annulus

AR = {z ∈ C : 1/R < |z| < R} for some R > 1.

There exists a real-analytic critical circle map h, with ρ(h) = ρ(f ), also extending
holomorphically to AR , such that

‖h− g‖C0(AR)
≤ dC0(S1)(f, g).

In particular
dCr (S1)(h, g) ≤ dC0(S1)(f, g) for any 0 ≤ r ≤ ∞.

Proof. Let F and G be the respective lifts of f and g to the real line satisfying

ρ(f ) = lim
n→∞

F n(0)/n and ρ(g) = lim
n→∞

Gn(0)/n.

Consider the band BR = {z ∈ C : − logR < 2π=(z) < logR}, which is the universal
cover of the annulusAR via the holomorphic covering z 7→ e2πiz. Let δ = ‖F−G‖C0(R),
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and for any t in [−1, 1] let Gt : BR → C be defined as Gt = G+ tδ. Each Gt preserves
the real line, and its restriction is the lift of a real-analytic critical circle map. Moreover,
each Gt commutes with the unitary horizontal translation in BR .

Note that ‖Gt − G‖C0(BR)
= |t |δ ≤ ‖F − G‖C0(R) for any t ∈ [−1, 1]. Moreover,

for any x ∈ R the family {Gt (x)}t∈[−1,1] is monotone in t , and we have G−1(x) ≤

F(x) ≤ G1(x). In particular there exists t0 ∈ [−1, 1] such that

lim
n→∞

Gnt0(0)/n = ρ(F ),

and we define h as the projection of Gt0 to the annulus AR . ut

After the perturbation given by Lemma 7.15 we still have the critical point of hn placed at
1, but its critical value is no longer gn(1) (however, they are exponentially close). To finish
the proof of Proposition 7.8 we need to fix this, without changing the combinatorics of hn
in S1. Until now each Hn is S1-symmetric, in the sense that it commutes with z 7→ 1/z̄
in the annulus Ar . We will loose this property in the following perturbation, which turns
out to be the last one.

Lemma 7.16. For each n ≥ n0 consider the (unique) Möbius transformation Mn which
maps the unit disk D onto itself fixing the basepoint z = 1, and which maps Hn(1) to
Gn(1). Then there exists ρ ∈ (1, r) such that Aρ ⊂ Mn(Ar) for all n ≥ n0. Moreover for
each n ≥ n0 we have

‖Mn ◦Hn ◦M
−1
n −Gn‖C0(Aρ )

≤ Cλn.

Note that, when restricted to the unit circle, each Mn gives rise to an orientation-preserv-
ing real-analytic diffeomorphism which is, as Lemma 7.16 indicates, C∞-exponentially
close to the identity.

Proof of Lemma 7.16. Consider the biholomorphism ψ : H→ D given by ψ(z) = z−i
z+i

,
whose inverse ψ−1

: D → H is given by ψ−1(z) = i
( 1+z

1−z

)
. Note that ψ maps the

vertical geodesic {z ∈ H : <(z) = 0} onto the interval (−1, 1) in D. Since ψ and ψ−1

are Möbius transformations, both extend uniquely to corresponding biholomorphisms of
the entire Riemann sphere. The extension of ψ is a real-analytic diffeomorphism between
the compactification of the real line and the unit circle, which maps the point at infinity
to the point z = 1. For each n ≥ n0 consider the real number tn defined by

tn = ψ
−1(Gn(1))− ψ−1(Hn(1)) = 2i

Gn(1)−Hn(1)
(1−Gn(1))(1−Hn(1))

.

Each tn is finite since for all n ≥ n0 neither Gn(1) nor Hn(1) is equal to one. Moreover,
we claim that

inf
n≥n0
|Gn(1)− 1| > 0 and inf

n≥n0
|Hn(1)− 1| > 0.

Indeed, since |Hn(1) − Gn(1)| ≤ Cλn for all n ≥ n0, it is enough to prove that
infn≥n0 |Gn(1) − 1| > 0, and this follows from Lemma 7.6 since 1 = Pn(0) and
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Gn(1) = Pn(−1) for all n ≥ n0. In particular, again using |Hn(1) − Gn(1)| ≤ Cλn

for all n ≥ n0, we see that |tn| ≤ Cλn for all n ≥ n0. From the explicit formula

Mn(z) =
(2i − tn)z+ tn
(2i + tn)− tnz

=
z− tn

tn−2i

1− tn
tn+2i z

·
2i − tn
2i + tn

for all n ≥ n0,

we see that the pole of each Mn is at the point zn = 1 + i(2/tn), and since |tn| ≤ Cλn

for all n ≥ n0, we can take n0 large enough to have zn ∈ C \ B(0, 2R), where R =
supn≥n0

Rn <∞ is given by Lemma 7.10. A straightforward computation gives

(Mn − Id)(z) =
tn(z− 1)2

(2i + tn)− tnz
for all n ≥ n0,

and therefore
‖Mn − Id‖C0(AR)

≤ Cλn for all n ≥ n0.

In particular for any fixed ρ ∈ (1, r) we can choose n0 large enough to have Aρ ⊂
Mn(Ar) for all n ≥ n0. Moreover, given any z ∈ Aρ we have

(Mn ◦Hn ◦M
−1
n −Gn)(z) = (Mn − Id)((Hn ◦M−1

n )(z))+ (Hn −Gn)(z)

+ (Hn(M
−1
n (z))−Hn(z)).

In particular

‖Mn ◦Hn ◦M
−1
n −Gn‖C0(Aρ )

≤ ‖Mn − Id‖C0(Hn(Ar ))
+ ‖Hn −Gn‖C0(Aρ )

+ ‖Hn‖C1(Ar )
‖M−1

n − Id‖C0(Aρ )
.

Since Hn(Ar) ⊂ AR and Aρ ⊂ Ar ⊂ AR , the terms ‖Mn − Id‖C0(Hn(Ar ))
,

‖Hn−Gn‖C0(Aρ )
and ‖M−1

n −Id‖C0(Aρ )
are each less than or equal to Cλn for all n ≥ n0.

Finally, since each Hn is holomorphic and Ar ⊂ Ar and Hn(Ar) ⊂ (Gn ◦ Pn)(T̂n)
⊂ ARn ⊂ AR for all n ≥ n0, from the Cauchy derivative estimate we obtain

sup
n≥n0

‖Hn‖C1(Ar )
<∞,

and therefore ‖Mn ◦Hn ◦M
−1
n −Gn‖C0(Aρ )

≤ Cλn for all n ≥ n0. ut

With Lemma 7.16 at hand we are done, since (Mn ◦ Hn ◦M
−1
n )(1) = Gn(1). We have

finished the proof of Proposition 7.8. ut

7.3. The shadowing sequence

This is the final subsection of Section 7, which is devoted to proving Theorem D. Let us
recall what we have done: in Subsection 7.1 we constructed a suitable sequence {Gn}n≥n0

of S1-symmetric C3 extensions of C3 critical circle maps gn to some annulus Pn(T̂n).
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When lifted via the corresponding projection Pn (also constructed in Subsection 7.1),
each gn gives rise to a C3 critical commuting pair (̂ηn, ξ̂n) exponentially close to Rn(f )

and having the same combinatorics at each step (moreover, with complex extensions
C0-exponentially close to the ones of Rn(f ) produced in Theorem 6.1; see Proposi-
tion 7.7 above for more properties).

In Subsection 7.2 we perturbed each Gn in a definite annulus Ar , in order to obtain a
sequence of real-analytic critical circle maps, each of them having the same combinatorics
as the corresponding Rn(f ), that extend to holomorphic maps Hn exponentially close
toGn inAr (see Proposition 7.8 above for more properties). Both the critical point and the
critical value of each Hn coincide with the ones of the correspondingGn, more precisely,
the critical point of each Hn is Pn(0) = 1 ∈ Pn(V1(n)) ∩ S

1, and its critical value is
Hn(1) = Gn(1) ∈ Pn(V ) ∩ S1

= Pn(Bn(V )) ∩ S
1. Recall also that Hn(Ar) ⊂ Pn(Tn)

for all n ≥ n0.
In this subsection we lift each Hn : Ar → ARn via the holomorphic projection Pn :

Tn→ ARn in the canonical way: Let α > 0 be such that for all n ≥ n0 we have

Nα([−1, 0]) ∪Nα([0, ξ̂n(0)]) ⊂ T̂n,

and Pn(Nα([−1, 0]) ∪ Nα([0, ξ̂n(0)])) is an annulus contained in Ar and containing the
unit circle (the existence of such an α is guaranteed by Lemmas 7.4 and 7.6). Set Z1(n) =

Nα([−1, 0]) and Z2(n) = Nα([0, ξ̂n(0)]). For each n ≥ n0 let η̃n : Z2(n) → Tn be the
R-preserving holomorphic map defined by

Hn ◦ Pn = Pn ◦ η̃n in Z2(n), and η̃n(0) = −1.

In the same way let ξ̃n : Z1(n) → Tn be the R-preserving holomorphic map defined by
the two conditions:

Hn ◦ Pn = Pn ◦ ξ̃n in Z1(n), and ξ̃n(0) = ξ̂n(0).

Z1(n) ∪ Z2(n) ⊂ Tn Tn

Ar ⊂ ARn ARn

-(̃ηn, ξ̃n)

?

Pn

?

Pn

-Hn

In the next proposition we summarize the main properties of this lift, which are all
straightforward:

Proposition 7.17 (The shadowing sequence). For each n ≥ n0 the pair fn = (̃ηn, ξ̃n)

restricts to a real-analytic critical commuting pair with domains I (̃ξn) = [̃ηn(0), 0] =
[−1, 0] and I (̃ηn) = [0, ξ̃n(0)] = [0, ξ̂n(0)], and such that ρ(fn) = ρ(̂ηn, ξ̂n) =

ρ(Rn(f )) ∈ R \ Q. Moreover, ξ̃n and η̃n extend to holomorphic maps in Z1(n) and
Z2(n) respectively where:

• ξ̃n has a unique critical point in Z1(n), which is at the origin and of cubic type;
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• η̃n has a unique critical point in Z2(n), which is at the origin and of cubic type;
• ‖̃ξn − ξ̂n‖C0(Z1(n)∩8n(X̂1(n)))

≤ Cλn;
• ‖η̃n − η̂n‖C0(Z2(n)∩8n(X̂2(n)))

≤ Cλn.

With Proposition 7.17 at hand, Theorem D follows directly from the following conse-
quence of Montel’s theorem:

Lemma 7.18. Let α be a constant in (0, 1) and let V be an R-symmetric bounded topo-
logical disk such that [−1, α−1

] ⊂ V . LetW1 andW2 be topological disks whose closures
are contained in V and [−1, 0] ⊂ W1 and [0, α−1

] ⊂ W2. Denote by K the set of all nor-
malized real-analytic critical commuting pairs ζ = (η, ξ) such that:

• η(0) = −1 and ξ(0) ∈ [α, α−1
];

• α|η([0, ξ(0)])| ≤ |ξ([−1, 0])| ≤ α−1
|η([0, ξ(0)])|;

• both ξ and η extend to holomorphic maps (with a unique cubic critical point at the
origin) defined in W1 and W2 respectively, and satisfy:

(1) Nα(ξ([−1, 0])) ⊂ ξ(W1);
(2) Nα(η([0, ξ(0)])) ⊂ η(W2);
(3) ξ(W1) ∪ η(W2) ⊂ V .

Then K is Cω-compact.

8. Concluding remarks

As was already mentioned in the introduction (see Remark 1.1 after the statement of
Theorem B), since the preprint version [22] of this paper first appeared, we were able to
prove (in collaboration with Marco Martens) that any two C4 critical circle maps with the
same irrational rotation number and the same odd criticality are conjugate to each other
by a C1 circle diffeomorphism, which is C1+α at the critical point, and that, for some
universal α > 0, this conjugacy is a C1+α diffeomorphism for Lebesgue almost every
rotation number [21]. In other words, the precise statement of Theorem A holds in the C4

category (see [21, Theorem A]).
To the best of our knowledge, the possibility of generalizing these results to C3 dy-

namics with unbounded combinatorics remains open (nor do we know whether rigidity
holds for less regularity, for instance C2+α smoothness, even for bounded combinatorics).
Moreover, we do not know how to deal with critical points of non-integer criticality (not
even with fractional criticality).

The question of “how smooth the conjugacy is” is a delicate problem. On the one
hand, the presence of the critical point gives us more rigidity than in the case of diffeo-
morphisms: smooth conjugacy is obtained in the C4 category for any irrational rotation
number, with no Diophantine conditions (again, see [21] and the references therein). On
the other hand, there exist examples [5], [13] showing that this smooth diffeomorphism
may not be globally C1+α in general, even for real-analytic dynamics. It seems possible,
although difficult, to obtain some arithmetical condition on the rotation numbers that
would decide whether the conjugacy may or may not be “better than C1”.
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Let us be more precise. The set A ⊂ [0, 1] of de Faria and de Melo (see Theorem 2.1)
is the set of rotation numbers ρ = [a0, a1, . . . ] satisfying the following conditions:

lim sup
n→∞

1
n

n∑
j=1

log aj <∞,

lim
n→∞

1
n

log an = 0,

1
n

k+n∑
j=k+1

log aj ≤ ωρ

(
n

k

)
for all 0 < n ≤ k,

where ωρ(t) is a positive function (that depends on the rotation number) defined for t > 0
such that tωρ(t)→ 0 as t → 0 (for instance, we can take ωρ(t) = Cρ(1 − log t) where
Cρ > 0 depends on the number).

The set A obviously contains all rotation numbers of bounded type, and it has full
Lebesgue measure in [0, 1] (see [13, Appendix C] or [20, Appendix, p. 63]).

Is there a condition on the rotation number equivalent to C1+α rigidity? This is not
clear even in the real-analytic setting (see [5]). We remark that C1+α rigidity fails for
some Diophantine rotation numbers (see [13, Section 5]).

Another difficult problem is the following: what can be said, in terms of smooth rigid-
ity, for maps with more than one critical point? More precisely, let f and g be orientation-
preserving C3 circle homeomorphisms with the same irrational rotation number, and with
N ≥ 1 non-flat critical points of odd type. Denote by Sf = {c1, . . . , cN } the ordered crit-
ical set of f , by Sg = {c′1, . . . , c

′

N } the ordered critical set of g, and suppose that the
criticalities of ci and c′i are the same for all i ∈ {1, . . . , N} (the cubic case is the generic
one). Finally, denote by µf and µg the corresponding unique invariant measures of f
and g.

By Yoccoz’s result [60], f and g are topologically conjugate to each other. For ele-
mentary reasons, the condition µf ([ci, ci+1]) = µg([c

′

i, c
′

i+1]) for all i ∈ {1, . . . , N − 1}
is necessary (and sufficient) in order to have a topological conjugacy between f and g
that sends the critical points of f to the critical points of g.

Is this conjugacy a smooth diffeomorphism? If yes, what is its degree of smoothness?
To the best of our knowledge, these questions remain completely open.

Appendix A. Proof of Lemma 3.6

In this appendix we prove Lemma 3.6, stated at the end of Section 3 and used in Section 4.
For this purpose, we need the following fact:

Lemma A.1. Let f1, . . . , fn be C1 maps with C1 norm bounded by some constant B>0,
and let g1, . . . , gn be C0 maps. Then

‖fn ◦ · · · ◦ f1 − gn ◦ · · · ◦ g1‖C0 ≤

(n−1∑
j=0

Bj
)

max
i∈{1,...,n}

‖fi − gi‖C0

whenever the compositions make sense.
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Proof. The proof goes by induction on n (when n = 1 we have nothing to prove). Sup-
pose that

‖fn−1 ◦ · · · ◦ f1 − gn−1 ◦ · · · ◦ g1‖C0 ≤

(n−2∑
j=0

Bj
)

max
i∈{1,...,n−1}

‖fi − gi‖C0 .

Then for any t ,

|(fn ◦ · · · ◦ f1 − gn ◦ · · · ◦ g1)(t)| ≤ |fn((fn−1 ◦ · · · ◦ f1)(t))− fn((gn−1 ◦ · · · ◦ g1)(t))|

+ |fn((gn−1 ◦ · · · ◦ g1)(t))− gn((gn−1 ◦ · · · ◦ g1)(t))|

≤ B|(fn−1 ◦ · · · ◦ f1 − gn−1 ◦ · · · ◦ g1)(t)| + ‖fn − gn‖C0

≤ B
(n−2∑
j=0

Bj
)

max
i∈{1,...,n−1}

‖fi − gi‖C0 + ‖fn − gn‖C0

≤

(n−1∑
j=0

Bj
)

max
i∈{1,...,n}

‖fi − gi‖C0 . ut

For K > 1 and r ∈ {0, 1, . . . ,∞, ω} recall from Section 3 that we denote by Pr(K)
the space of Cr critical commuting pairs ζ = (η, ξ) such that η(0) = −1 (they are
normalized) and ξ(0) ∈ [K−1,K].

Lemma A.2. Given M ∈ N, B > 0 and K > 1 there exists L(M,B,K) > 1 with the
following property. Let ζ1 = (η1, ξ1) and ζ2 = (η2, ξ2) be renormalizable C3 critical
commuting pairs satisfying the following conditions:

(1) ζ1, R(ζ1), ζ2 and R(ζ2) belong to P3(K);
(2) the continued fraction expansion of both rotation numbers ρ(ζ1) and ρ(ζ2) have the

same first term, say a0, with a0 ≤ M . More precisely,

b1/ρ(ζ1)c = b1/ρ(ζ2)c = a0 ∈ {1, . . . ,M};

(3) max{‖η1‖C1 , ‖ξ1‖C1} < B;
(4) (η1 ◦ ξ1)(0) and (η2 ◦ ξ2)(0) have the same sign;

(5) |ξ1(0)− ξ2(0)| <
1
K2 ·

K + 1
K − 1

.

Then
d0(R(ζ1),R(ζ2)) ≤ L · d0(ζ1, ζ2),

where d0 is the C0 distance in the space of critical commuting pairs (see Section 3.3).

In the proof of Lemma A.2 we will use the following notation. For α > 0 denote by Tα
the (unique) Möbius transformation that fixes −1 and 0, and maps α to 1. Moreover, for
each i ∈ {1, 2} let

xi = ξi(0), yi = η
a0
i (xi) = η

a0
i (ξi(0)), zi = Txi (yi) = Tξi (0)(η

a0
i (ξi(0))).

Proof of Lemma A.2. Suppose that both (η1 ◦ ξ1)(0) and (η2 ◦ ξ2)(0) are positive, and
let V ⊂ R be the interval [0,max{(η1 ◦ ξ1)(0), (η2 ◦ ξ2)(0)}]. Note that (in the notation
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described before the proof) pα = α + α 1+α
1−α is the pole of Tα . If α > K/(K + 2) then

pα /∈ [1/K,K], and if α ∈ [1/K,K/(K + 2)] then pα − α ≥ 1
K
·
K+1
K−1 . By item (5) in

the hypothesis, and since ζ1 and ζ2 belong to P3(K) by (1), there exists L0(K) > 1 such
that

‖Tx1‖C1(V ) ≤ L0, ‖Tx1 − Tx2‖C0(V ) ≤ L0|x1 − x2| ≤ L0 · d0(ζ1, ζ2),

|y1 − y2| ≤ L0 |̃η
a0
1 (1)− η̃

a0
2 (1)|,

‖η̃1‖C1([0,1]) ≤ L0‖η1‖C1([0,x1])
≤ L0B,

where η̃i = Txi ◦ ηi ◦ T
−1
xi

for i ∈ {1, 2}. By Lemma A.1,

|y1 − y2| ≤ L
2
0

(a0−1∑
j=0

Bj
)
‖η̃1 − η̃2‖C0([0,1]).

Defining L1(M,B,K) = L
2
0
∑M−1
j=0 Bj we obtain

|y1 − y2| ≤ L1 · d0(ζ1, ζ2).

Therefore

|z1 − z2| ≤ |z1 − Tx1(y2)| + |Tx1(y2)− z2|

≤ L0|y1 − y2| + L0 · d0(ζ1, ζ2) ≤ (L0L1 + L0) · d0(ζ1, ζ2).

Defining L2(M,B,K) = L0L1 + L0 we obtain

|z1 − z2| ≤ L2 · d0(ζ1, ζ2). (A.1)

Moreover, there exists L3(M,B,K) ≥ L2 with the following properties:

• from (1), both Möbius transformations Tzi , and also their inverses, have C1 norm
bounded by L3 in W = [0,max{z1, z2}];
• both Möbius transformations Tzi are at C0 distance less than or equal to L3 · d0(ζ1, ζ2)

in W (this follows from (A.1) and (1));
• the same with their inverses, that is, both Möbius transformations T −1

zi
are at C0 dis-

tance less than or equal to L3 · d0(ζ1, ζ2) in [0, 1] (again from (A.1) and (1));
• the maps

Tx1 ◦ η
a0
1 ◦ ξ1 ◦ T

−1
x1

and Tx1 ◦ η1 ◦ T
−1
x1

have C1 norm bounded by L3 in [−1, 0] and [0, 1] respectively (follows from (1)–(3)).

Note that for i = {1, 2} we have

Tyi ◦ η
a0
i ◦ ξi ◦ T

−1
yi
= Tzi ◦ (Txi ◦ η

a0
i ◦ ξi ◦ T

−1
xi
) ◦ T −1

zi

in [−1, 0], and
Tyi ◦ ηi ◦ T

−1
yi
= Tzi ◦ (Txi ◦ ηi ◦ T

−1
xi
) ◦ T −1

zi
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in [0, 1]. By Lemma A.1 and the four properties listed above there exists L4 =

L4(M,B,K) ≥ L3 such that

‖Ty1 ◦ η
a0
1 ◦ ξ1 ◦ T

−1
y1
− Ty2 ◦ η

a0
2 ◦ ξ2 ◦ T

−1
y2
‖C0

≤ L4 max{‖Tz1 − Tz2‖C0 , d0(ζ1, ζ2), ‖T
−1
z1
− T −1

z2
‖C0} ≤ L3L4 · d0(ζ1, ζ2)

in [−1, 0], and

‖Ty1 ◦ η1 ◦ T
−1
y1
− Ty2 ◦ η2 ◦ T

−1
y2
‖C0

≤ L4 max{‖Tz1 − Tz2‖C0 , d0(ζ1, ζ2), ‖T
−1
z1
− T −1

z2
‖C0} ≤ L3L4 · d0(ζ1, ζ2)

in [0, 1]. Therefore we are done by taking L ≥ L3L4. ut

With Lemma A.2 at hand, we are ready to prove Lemma 3.6.

Proof of Lemma 3.6. Let f be a C3 critical circle map with irrational rotation number
ρ(f ) = [a0, a1, . . . ], and recall that we are assuming that an < M for all n ∈ N. Let
n0(f ) ∈ N be given by the real bounds, and note that Rn(f ) ∈ P3(K) for all n ≥ n0
(since K > K0 by hypothesis, and so P3(K) ⊃ P3(K0)). As a well-known corollary of
the real bounds (see for instance [13, Theorem 3.1]), there exists a constant B > 0 such
that the sequence {Rn(f )}n∈N is bounded by B in the C1 metric, and we are done by
taking L > 1 given by Lemma A.2. ut

Appendix B. Proof of Proposition 5.5

Assume that each µn is defined in the whole complex plane, just by extending it by zero
in the complement of the domain U , that is,

µn(z)∂Gn(z) = ∂Gn(z) for a.e. z ∈ U , and µn(z) = 0 for all z ∈ C \ U .

Fix n ∈ N. If µn ≡ 0 we takeHn = Gn|V , so assume that ‖µn‖∞ > 0 and fix some small
ε ∈ (0, 1 − ‖µn‖∞). Denote by 3 the open disk B(0, (1 − ε)/‖µn‖∞) in the complex
plane (note that D ⊂ 3). Consider the one-parameter family {µn(t)}t∈3 of Beltrami
coefficients defined by

µn(t) = tµn.

Note that for all t ∈ 3 we have ‖µn(t)‖∞ < 1− ε < 1. Denote by f µn(t) the solution of
the Beltrami equation with coefficient µn(t), given by Theorem 5.2, normalized to fix 0, 1
and∞. Note that f µn(0) is the identity and, by uniqueness, there exists a biholomorphism
Hn : f

µn(1)(U)→ Gn(U) such that

Gn = Hn ◦ f
µn(1) in U .

By the Ahlfors–Bers theorem (Theorem 5.4), for any z ∈ C the curve {f µn(t)(z) :
t ∈ [0, 1]} is smooth, that is, the derivative of f µn(t) with respect to the parameter t exists
at any z ∈ C. Following Ahlfors [1, Chapter V, Section C], we use the notation

ḟn(z, s) = lim
t→0

f µn(s+t)(z)− f µn(s)(z)

t
.



Rigidity of smooth critical circle maps 1779

The limit exists for every z ∈ C and every s ∈ [0, 1] (actually for every s ∈ 3), and the
convergence is uniform on compact subsets of C. Then

‖f µn(1) − Id‖C0(U) = sup
z∈U

|f µn(1)(z)− z| ≤ sup
z∈U

∫ 1

0
|ḟn(z, s)| ds.

Moreover, ḟn has the following integral representation (see [1, Chapter V, Section C,
Theorem 5] for the explicit computation):

ḟn(z, s) = −
1
π

∫∫
C
µn(w)S(f

µn(s)(w), f µn(s)(z))(∂f µn(s)(w))2 dx dy

for every z ∈ C and every s ∈ [0, 1], where w = x + iy and

S(w, z) =
1

w − z
−

z

w − 1
+
z− 1
w
=

z(z− 1)
w(w − 1)(w − z)

.

Since each µn is supported in U , we have

ḟn(z, s) = −
1
π

∫∫
U

µn(w)S(f
µn(s)(w), f µn(s)(z))(∂f µn(s)(w))2 dx dy.

From the formula

|∂f µn(s)(w)|2 =

(
1

1− |s|2|µn(w)|2

)
det(Df µn(s)(w))

we obtain

|ḟn(z, s)| ≤
1
π

∫∫
U

|µn(w)|

1− |s|2|µn(w)|2
det(Df µn(s)(w))|S(f µn(s)(w), f µn(s)(z))| dx dy

≤
1
π
·

‖µn‖∞

1− |s|2‖µn‖2∞

∫∫
U

det(Df µn(s)(w))|S(f µn(s)(w), f µn(s)(z))| dx dy

=
1
π
·

‖µn‖∞

1− |s|2‖µn‖2∞

∫∫
f µn(s)(U)

|S(w, f µn(s)(z))| dx dy.

Therefore the length of the curve {f µn(t)(z) : t ∈ [0, 1]} is at most

1
π

∫ 1

0

[
‖µn‖∞

1− |s|2‖µn‖2∞

∫∫
f µn(s)(U)

|S(w, f µn(s)(z))| dx dy

]
ds

≤
1
π
·
‖µn‖∞

1− ‖µn‖2∞

∫ 1

0

[∫∫
f µn(s)(U)

|S(w, f µn(s)(z))| dx dy

]
ds.

If we define

Mn(U) =
1
π

sup
z∈U

∫ 1

0

[∫∫
f µn(s)(U)

|S(w, f µn(s)(z))| dx dy

]
ds,
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we get

‖f µn(1) − Id‖C0(U) ≤
‖µn‖∞

1− ‖µn‖2∞
Mn(U).

We have two remarks:
First remark: Since µn → 0 in the unit ball of L∞, we know by Proposition 5.3

that for any s ∈ [0, 1] the normalized quasiconformal homeomorphisms f µn(s) converge
to the identity uniformly on compact subsets of C, in particular on U . Therefore the
sequence Mn(U) converges to

1
π

sup
z∈U

∫∫
U

|S(w, z)| dx dy <
1
π

sup
z∈U

∫∫
C
|S(w, z)| dx dy <∞.

For fixed z ∈ C, S(w, z) is in L1(C) since it has simple poles at 0, 1 and z, and is
O(|w|−3) near∞. The finiteness then follows from the compactness of U .

Second remark: x 7→ x/(1−x2) is an orientation-preserving real-analytic diffeomor-
phism between (−1, 1) and the real line, which is tangent to the identity at the origin. In
fact x/(1− x2) = x + o(x2) in (−1, 1).

With these two remarks we obtain n1 ∈ N such that for all n ≥ n1 we have

‖f µn(1) − Id‖C0(U) ≤ M(U)‖µn‖∞, where M(U) =
2
π

sup
z∈U

∫∫
U

|S(w, z)| dx dy.

Since V is compactly contained in the bounded domain U , the boundaries ∂V and ∂U
are disjoint compact sets. Let δ > 0 be their Euclidean distance, that is, δ = d(∂V, ∂U) =
min{|z − w| : z ∈ ∂V, w ∈ ∂U}. Again by Proposition 5.3, since µn → 0, there exists
n0 ≥ n1 in N such that for all n ≥ n0 we have V ⊂ f µn(1)(U) and

f µn(1)(U) ⊇ B(z, δ/2) for all z ∈ V .

If we consider the restriction of Hn to the domain V we have

‖Hn −Gn‖C0(V ) ≤ ‖H
′
n‖C0(V )‖f

µn(1) − Id‖C0(U) ≤ ‖H
′
n‖C0(V )M(U)‖µn‖∞.

By Cauchy’s derivative estimate we know that for all z ∈ V ,

|H ′n(z)| =

∣∣∣∣ 1
2πi

∫
∂B(z,δ/2)

Hn(w)

(w − z)2
dw

∣∣∣∣ ≤ 2‖Hn‖C0(f µn(1)(U))/δ = 2‖Gn‖C0(U)/δ

≤ 2R/δ for all n ≥ n0.

That is,

‖H ′n‖C0(V ) ≤
2R

d(∂V, ∂U)
for all n ≥ n0,

and we deduce that for all n ≥ n0,

‖Hn −Gn‖C0(V )

‖µn‖∞
≤

R

d(∂V, ∂U)
·

4
π

sup
z∈U

∫∫
U

|S(w, z)| dx dy.

Therefore it is enough to set C(U) = (4/π) supz∈U
∫∫
U
|S(w, z)| dx dy. ut
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