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Abstract. A bipartite graph G is semi-algebraic in Rd if its vertices are represented by point sets
P,Q ⊂ Rd and its edges are defined as pairs of points (p, q) ∈ P × Q that satisfy a Boolean
combination of a fixed number of polynomial equations and inequalities in 2d coordinates. We
show that for fixed k, the maximum number of edges in a Kk,k-free semi-algebraic bipartite graph
G = (P,Q,E) in R2 with |P | = m and |Q| = n is at most O((mn)2/3 + m + n), and this
bound is tight. In dimensions d ≥ 3, we show that all such semi-algebraic graphs have at most
C((mn)d/(d+1)+ε

+m+ n) edges, where ε is an arbitrarily small constant and C = C(d, k, t, ε).
This result is a far-reaching generalization of the classical Szemerédi–Trotter incidence theorem.
The proof combines tools from several fields: VC-dimension and shatter functions, polynomial
partitioning, and Hilbert polynomials.

We also present various applications of our theorem, for example, a general point-variety in-
cidence bound in Rd , an improved bound for a d-dimensional variant of the Erdős unit distances
problem, and more.

Keywords. Semi-algebraic graph, extremal graph theory, VC-dimension, polynomial partitioning,
incidences

1. Introduction

The problem of Zarankiewicz [46] is a central problem in extremal graph theory. It asks
for the maximum number of edges in a bipartite graph which has m vertices in its first
class, n vertices in the second class, and neither part contains the complete bipartite
graph Kk,k with k vertices. In 1954, Kővári, Sós, and Turán [26] proved a general up-
per bound of the form ck(mn

1−1/k
+ n) edges, where ck only depends on k. Well-known

constructions of Reiman and Brown show that this bound is tight for k = 2, 3 (see [35]).
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However, the Zarankiewicz problem for k ≥ 4 remains one of the most challenging un-
solved problems in extremal graph theory. A recent result of Bohman and Keevash [8]
on random graph processes gives the best known lower bound for k ≥ 5 and m = n of
the form �(n2−2/(k+1)(log k)1/(k

2
−1)). In this paper, we consider Zarankiewicz’s prob-

lem for semi-algebraic1 bipartite graphs, that is, bipartite graphs where one vertex set is
a collection of points in Rd1 , the second vertex set is a collection of points in Rd2 , and
edges are defined as pairs of points that satisfy a Boolean combination of polynomial
equations and inequalities in d1 + d2 coordinates. This framework captures many of the
well-studied incidence problems in combinatorial geometry (see, e.g., [38]).

Let G = (P,Q,E) be a semi-algebraic bipartite graph in (Rd1 ,Rd2) with |P | = m
and |Q| = n. Then there are polynomials f1, . . . , ft ∈ R[x1, . . . , xd1+d2 ] and a Boolean
function 8(X1, . . . , Xt ) such that for (p, q) ∈ P ×Q ⊂ Rd1 × Rd2 ,

(p, q) ∈ E ⇔ 8
(
f1(p, q) ≥ 0, . . . , ft (p, q) ≥ 0

)
= 1.

We say that the edge set E has description complexity at most t if E can be de-
scribed by at most t polynomial equations and inequalities, and each of them has degree
at most t . If G = (P,Q,E) is Kk,k-free, then by the Kővári–Sós–Turán theorem we
know that |E(G)| = O(mn1−1/k

+ n). However, our main result gives a much better
bound if G is semi-algebraic of bounded description complexity. In particular, we show
that Zarankiewicz’s problem for semi-algebraic bipartite graphs primarily depends on the
dimension.

Theorem 1.1. LetG = (P,Q,E) be a semi-algebraic bipartite graph in (Rd1 ,Rd2) such
that E has description complexity at most t , |P | = m, and |Q| = n. If G is Kk,k-free,
then

|E(G)| ≤ c1((mn)
2/3
+m+ n) for d1 = d2 = 2, (1)

|E(G)| ≤ c2((mn)
d/(d+1)+ε

+m+ n) for d1 = d2 = d, (2)

and more generally,

|E(G)| ≤ c3
(
m

d2(d1−1)
d1d2−1 +εn

d1(d2−1)
d1d2−1 +m+ n

)
for all d1, d2. (3)

Here, ε is an arbitrarily small constant and c1 = c1(t, k), c2 = c2(d, t, k, ε) and c3 =

c3(d1, d2, t, k, ε).

To prove the theorem, we combine ideas from the study of VC-dimension with ideas
from incidence theory. In the latter, we rely on the concept of polynomial partitioning (as
introduced by Guth and Katz [21]) and combine it with a technique that relies on Hilbert
polynomials. Recently, similar polynomial partitioning techniques were also studied by
Matoušek and Patáková [32] and Basu and Sombra [6]. However, each of the three papers
presents different proofs and very different results.

The planar case of Theorem 1.1 (i.e., (1)) is a generalization of the famous Szemerédi–
Trotter point-line theorem [42]. Indeed, in the case of d1 = d2 = 2, by taking P to be the

1 A real semi-algebraic set in Rd1+d2 is the locus of all points that satisfy a given finite Boolean
combination of polynomial equations and inequalities in the d1 + d2 coordinates.
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point set,Q to be the dual of the lines, and the relationship to be the incidence relationship,
we see that G is K2,2-free as two distinct lines intersect in at most one point. As we will
see below, there are many further applications of Theorem 1.1.

Previous work and lower bounds. Several authors have studied this extremal problem
in a more restricted setting: on bounding the number of incidences between anm-element
point set P and a setH of n hyperplanes in Rd where no k points of P lie on k hyperplanes
ofH . Since each hyperplane h ⊂ Rd dualizes2 to a point in Rd , this problem is equivalent
to determining the maximum number of edges in a Kk,k-free semi-algebraic bipartite
graph G = (P,Q,E) in (Rd ,Rd), where (p, q) ∈ E if and only if 〈p, q〉 = 1. In
this special case, the work of Chazelle [10], Brass and Knauer [9], and Apfelbaum and
Sharir [4] implies that |E(G)| ≤ c′((mn)d/(d+1)

+ m + n), where c′ depends only on k
and d.

On the other hand, Brass and Knauer [9] gave a construction of an m-element point
set P and a setH of n hyperplanes in R3, with no k points from P lying on k hyperplanes
of H , with at least �((mn)7/10) incidences. For any d ≥ 4 and ε > 0, Sheffer [39] pre-
sented a construction of an m-element point set P and a set H of n = 2(m(3−3ε)/(d+1))

hyperplanes in Rd , with no two points from P lying on (d− 1)/ε hyperplanes ofH , with
�((mn)1−2/(d+4)−ε) incidences. These are the best known lower bounds for Theorem 1.1
that we are aware of. Notice that the gap between these bounds and the upper bound of (2)
becomes rather small for large values of d.

Applications. After proving Theorem 1.1, we provide a variety of applications. First, we
show how a minor change in our proof leads to the following general incidence bound.

Theorem 1.2. Let P be a set ofm points and let V be a set of n constant-degree algebraic
varieties, both in Rd , such that the incidence graph of P × V does not contain a copy
of Ks,t (here we think of s, t , and d as being fixed constants, and m and n are large).
Then for every ε > 0, the number of incidences in P × V is

I (P,V) = O
(
m

(d−1)s
ds−1 +εn

d(s−1)
ds−1 +m+ n

)
.

Theorem 1.2 subsumes many known incidences results (up to the extra ε in the exponent),
and extends them to Rd (see Section 6). When s = 2, the theorem is tight up to subpoly-
nomial factors (see [39]). We also derive an improved bound for a d-dimensional variant
of the Erdős unit distances problem, a bound for incidences between points and tubes,
and more.

Organization. In Section 2, we give an upper bound on the maximum number of edges
in a Kk,k-free bipartite graph with bounded VC-dimension. In Section 3, we establish
the bound (1) from Theorem 1.1. Then in Section 4, we prove the bounds (2) and (3)
from Theorem 1.1. The parts of this proof that concern Hilbert polynomials are deferred
to Section 5. In Section 6, we discuss applications of Theorem 1.1. Finally, Section 7
concerns the tightness of our results.

2 Given a hyperplane h = {(x1, . . . , xd ) : a1x1 + · · · + adxd = 1} in Rd , the dual of h is the
point h∗ = (a1, . . . , ad ).
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2. VC-dimension and shatter functions

Given a bipartite graph G = (P,Q,E) where E ⊂ P × Q, for any vertex q ∈ Q,
let NG(q) denote the neighborhood of q in G, that is, the set of vertices in P that are
connected to q. Then let F = {NG(q) ⊂ P : q ∈ Q} be a set system with ground set P .
The dual of (P,F) is the set system obtained by interchanging the roles of P and F , that
is, the set system (F ,F∗), where F is the ground set and F∗ = {{A ∈ F : p ∈ A} :
p ∈ P }. Obviously, (F∗)∗ = F .

The Vapnik–Chervonenkis dimension (for short, VC-dimension) of (P,F) is the
largest integer d0 for which there exists a d0-element set S ⊂ P such that for every
subset B ⊂ S, one can find a member A ∈ F with A ∩ S = B. The primal shatter
function of (P,F) is defined as

πF (z) = max
P ′⊂P, |P ′|=z

|{A ∩ P ′ : A ∈ F}|.

In other words, πF (z) is a function whose value at z is the maximum possible number
of distinct intersections of the sets of F with a z-element subset of P . The primal shatter
function of F∗ is often called the dual shatter function of F .

The VC-dimension of F is closely related to its shatter functions. A result of Sauer
and Shelah states that if F is a set system with VC-dimension d0, then

πF (z) ≤
d0∑
i=0

(
z

i

)
. (4)

On the other hand, suppose that the primal shatter function of F satisfies πF (z) ≤ czd

for all z. Then, if the VC-dimension of F is d0, we have 2d0 ≤ cdd0 , which implies
d0 ≤ 4d log(cd).

Most of this section is dedicated to proving the following result.

Theorem 2.1. Let G = (P,Q,E) be a bipartite graph with |P | = m and |Q| = n such
that the set system F1 = {NG(q) : q ∈ Q} satisfies πF1(z) ≤ cz

d for all z. Then, if G is
Kk,k-free, we have

|E(G)| ≤ c1(mn
1−1/d

+ n),

where c1 = c1(c, d, k).

Let f1, . . . , f` be d-variate real polynomials with respective zero-sets V1, . . . , V`, that is,
Vi = {x ∈ Rd : fi(x) = 0}. A vector σ ∈ {−1, 0,+1}` is a sign pattern of f1, . . . , f`
if there exists an x ∈ Rd such that the sign of fj (x) is σj for all j = 1, . . . , `. The
Milnor–Thom theorem (see [5, 33, 43]) bounds the number of cells in the arrangement of
the zero-sets V1, . . . , V`, and consequently the number of possible sign patterns.

Theorem 2.2 (Milnor–Thom). Let f1, . . . , f` be d-variate real polynomials of degree
at most t , with ` ≥ d ≥ 2. The number of cells in the arrangement of their zero-sets
V1, . . . , V` ⊂ Rd , and consequently the number of sign patterns of f1, . . . , f`, is at most

(50t`/d)d .
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We have the following consequence of Theorems 2.1 and 2.2.

Corollary 2.3. Let G = (P,Q,E) be a bipartite semi-algebraic graph in (Rd1 ,Rd2)

with |P | = m and |Q| = n such that E has complexity at most t . If G is Kk,k-free, then

|E(G)| ≤ c′(mn1−1/d2 + n),

where c′ = c′(d1, d2, t, k).

Proof. Let F1 = {NG(q) : q ∈ Q} and F2 = {NG(p) : p ∈ P }. By Theorem 2.1, it
suffices to show that πF1(z) ≤ cz

d2 for all z and a constant c = c(d1, d2, t, k).
Since E is semi-algebraic, there are polynomials f1, . . . , ft and a Boolean formula8

such that for (p, q) ∈ P ×Q,

(p, q) ∈ E ⇔ 8
(
f1(p, q) ≥ 0, . . . , ft (p, q) ≥ 0

)
= 1.

Notice that the dual of F2 is isomorphic to the set system F1. Since any set of z points
p1, . . . , pz ∈ P corresponds to z semi-algebraic sets Z1, . . . , Zz ⊂ Rd2 such that Zi =
{x ∈ Rd2 : 8(f1(pi, x) ≥ 0, . . . , ft (pi, x) ≥ 0) = 1} and NG(pi) = Q ∩ Zi , by the
Milnor–Thom theorem we have

πF1(z) = πF∗2 (z) ≤ (50t2z/d2)
d2 .

This completes the proof of Corollary 2.3. ut

The rest of this section is devoted to proving Theorem 2.1, which requires the following
lemmas. Let (P,F) be a set system on a ground set P . The distance between two sets
A1, A2 ∈ F is |A14A2|, where A14A2 = (A1 ∪A2) \ (A1 ∩A2) is the symmetric dif-
ference of A1 and A2. The unit distance graph UD(F) is the graph with vertex set F , and
whose edges are pairs of sets (A1, A2) that have distance one. We will use the following
result of Haussler.

Lemma 2.4 ([22]). If F is a set system of VC-dimension d0 on a ground set P , then the
unit distance graph UD(F) has at most d0|F | edges.

We say that the set system F is (k, δ)-separated if for any k sets A1, . . . , Ak ∈ F we
have

|(A1 ∪ · · · ∪ Ak) \ (A1 ∩ · · · ∩ Ak)| ≥ δ.

The key tool used to prove Theorem 2.1 is the following packing lemma, which
was proved by Chazelle for set systems that are (2, δ)-separated. The proof of
Lemma 2.5 can be regarded as a modification of Chazelle’s argument (see [30]), but
we give a self-contained presentation. We note that a weaker result, namely |F | ≤
O((m/δ)d logd(m/δ)), can be obtained with a simpler proof using epsilon-nets (see [30]
or [29]).

Lemma 2.5 (Packing lemma). Let F be a set system on a ground set P such that
|P | = m and πF (z) ≤ czd for all z. If F is (k, δ)-separated, then |F | ≤ c′(m/δ)d ,
where c′ = c′(c, d, k).
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Proof. We assume, for contradiction, that |F | > c′(m/δ)d (where the constant c′ depends
on c, d, k and is set below).

Since the primal shatter function of F satisfies πF (z) ≤ czd for all z, we know that the
VC-dimension of F is at most 4d log(cd) =: d0. If δ ≤ 4k(k − 1)d0, then the statement
is trivial for sufficiently large c′ (by the assumption |F | ≤ cmd ). Hence, we can assume
δ > 4k(k − 1)d0.

Let S ⊂ P be a random s-element subset, where s = d4k(k − 1)d0m/δe. We set
T = {A ∩ S : A ∈ F}, and for each B ∈ T we define its weight w(B) as the number of
sets A ∈ F with A ∩ S = B. Notice that∑

B∈T
w(B) = |F |.

We let E be the edge set of the unit distance graph UD(T ), and define the weight of
an edge e = (B1, B2) in E as min(w(B1), w(B2)). Finally, we set

W =
∑
e∈E

w(e).

We will estimate the expectation of W in two ways.
By Lemma 2.4, we know that the unit distance graph UD(T ) has a vertex B ∈ T of

degree at most 2d0. Since the weight of all edges emanating out of B is at most w(B), by
removing vertex B ∈ T , the total edge weight drops by at most 2d0w(B). By repeating
this argument until there are no vertices left, we have

W ≤ 2d0
∑
B∈T

w(B) = 2d0|F |.

Now we bound E[W ] from below. Suppose we first choose a random (s− 1)-element
subset S′ ⊂ P , and then choose a single element p ∈ P \ S′. Then the set S = S′ ∪ {p} is
a random s-element set. Let E1 ⊂ E be the edges in the unit distance graph UD(T ) that
differ by p, and let

W1 =
∑
e∈E1

w(e).

By symmetry, we have E[W ] = s ·E[W1]. Hence, we shall bound E[W1] from below. To
do so, we will estimate E[W1|S

′
] from below, which is the expected value of W1 when

S′ ⊂ P is a fixed (s − 1)-element subset and we choose p at random from P \ S′.
Divide F into equivalence classes F1, . . . ,Fr , where A1, A2 ∈ F are in the same

class if and only if A1 ∩ S
′
= A2 ∩ S

′. By the assumption πF (z) ≤ czd for all z, we have

r ≤ πF (s − 1) ≤ c0(m/δ)
d ,

where c0 = c0(c, k, d). Let Fi be one of the equivalence classes such that |Fi | = b. If an
element p ∈ P \ S′ is chosen such that b1 sets from Fi contain p and b2 = b − b1 sets
(from Fi) do not contain p, then Fi gives rise to an edge in E1 of weight min(b1, b2).
Since min(b1, b2) ≥ b1b2/b, we will estimate E[b1b2] from below when picking p at
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random. Notice that b1b2 is the number of ordered pairs of sets in Fi that differ by p.
Hence,

E[b1b2] ≥
∑

(A1,A2)∈Fi×Fi
P[p ∈ A1 4 A2] =

∑
(A1,A2)∈Fi×Fi

|A1 4 A2|

m− s + 1
. (5)

Now, given any k sets A1, . . . , Ak ∈ Fi , we have⋃
2≤j≤k

A1 4 Aj = (A1 ∪ · · · ∪ Ak) \ (A1 ∩ · · · ∩ Ak).

Since Fi is (k, δ)-separated, we have∑
2≤j≤k

|A1 4 Aj | ≥ |(A1 ∪ · · · ∪ Ak) \ (A1 ∩ · · · ∩ Ak)| ≥ δ.

Therefore, any k sets in Fi contain a pair (A1, Aj ) such that |A1 4 Aj | ≥ δ/(k − 1).
We define the auxiliary graph Gi = (Fi, Ei) whose vertices are the members in Fi , and
two sets A1, A2 ∈ Fi are adjacent if and only if |A1 4 A2| ≥ δ/(k − 1). Since Gi does
not contain an independent set of size k, by Turán’s theorem (see, e.g., [35]) we have
|Ei | ≥ b(b − k)/(2k). Therefore,∑

(A1,A2)∈Fi×Fi
|A1 4 A2| ≥ 2

b(b − k)

2k
δ

k − 1
=

δ

k(k − 1)
b(b − k). (6)

By combining (5) and (6), we obtain

E[b1b2] ≥
δ

k(k − 1)m
b(b − k).

As min(b1, b2) ≥ b1b2/b, the expected contribution of Fi toW1 is at least δ
k(k−1)m (b−k).

Summing over all classes, we have

E[W1] ≥
δ

k(k − 1)m

r∑
i=1

(|Fi | − k) =
δ

k(k − 1)m
(|F | − kr)

≥
δ

k(k − 1)m
(|F | − kc0(m/δ)

d).

Recall that |F | > c′(m/δ)d . By taking c′ to be sufficiently large with respect to k and c0,
and since 2d0|F | ≥ E[W ] = s · E[W1], we have

2d0|F | ≥
sδ

k(k − 1)m
(|F | − kc0(m/δ)

d) ≥ 4d0|F | − k4d0c0(m/δ)
d ,

which implies |F | ≤ c′(m/δ)d , where c′ = (c, d, k). ut

Proof of Theorem 2.1. Let F1 = {NG(q) : q ∈ Q} and F2 = {NG(p) : p ∈ P }. Notice
the dual of F2 is isomorphic to the set system F1. Given a set of k points {q1, . . . , qk}

⊂ Q, we say that a set B ∈ F2 crosses {q1, . . . , qk} if {q1, . . . , qk} ∩ B 6= ∅ and
{q1, . . . , qk} 6⊂ B. We make the following observation.



1792 Jacob Fox et al.

Observation 2.6. There exist k points q1, . . . , qk ∈ Q such that at most 2c′m/n1/d sets
from F2 cross {q1, . . . , qk}, where c′ is defined in Lemma 2.5.

Proof. For the sake of contradiction, suppose that every set of k points has at least
2c′m/n1/d sets from F2 crossing it. Then the dual set system F∗2 is (k, δ)-separated,
where δ = 2c′m/n1/d , and has the property that πF∗2 (z) = πF1(z) ≤ cz

d for all z. By
Lemma 2.5, we have

n = |F∗2 | ≤ c
′(m/δ)d .

Hence, δ ≤ (c′)1/dm/n1/d , which is a contradiction. ut

Let q1, . . . , qk be the set of k points such that at most 2c′m/n1/d sets in F2 cross it.
Since G is Kk,k-free, there are at most k − 1 points p1, . . . , pk−1 ∈ P with the property
that the neighborhood NG(pi) contains {q1, . . . , qk}, for 1 ≤ i ≤ k − 1. Therefore, the
neighborhood of q1 contains at most 2c′m/n1/d

+(k−1) points. We remove q1 and repeat
this argument until there are fewer than k vertices remaining in Q, and see that

|E(G)| ≤ (k − 1)m+
n∑
i=k

(
2c′

m

i1/d
+ (k − 1)

)
≤ c1(mn

1−1/d
+ n)

for sufficiently large c1 = c1(c, d, k). ut

3. The case where d1 = d2 = 2

In this section, we shall prove Theorem 1.1 in the case d1 = d2 = 2, i.e., we shall
establish part (1) of Theorem 1.1. Our argument will use the method of “cuttings,” which
we shall now recall. Let 6 = {V1, . . . , Vn} be a collection of curves of degree at most t
in R2, that is, Vi = {x ∈ R2

: fi(x) = 0} for some bivariate polynomial fi of degree at
most t . We will assume that t is fixed, and n is some number tending to infinity. A cell in
the arrangement A(6) =

⋃
i Vi is a relatively open connected set defined as follows. Let

≈ be an equivalence relation on R2, where x ≈ y if {i : x ∈ Vi} = {i : y ∈ Vi}. Then
the cells of the arrangement 6 are the connected components of the equivalence classes.
The classical Milnor–Thom theorem says that the arrangement A(6) subdivides R2 into
at most O(n2) cells (semi-algebraic sets), but these cells can have very large description
complexity. A result of Chazelle et al. [11] shows that these cells can be further subdivided
into O(n2) smaller cells that have constant descriptive complexity. By combining this
technique with the standard theory of random sampling [1, 2, 13], one can obtain the
following lemma which will be used in the next section. We say that the surface Vi =
{x ∈ R2

: fi(x) = 0} crosses the cell � ⊂ R2 if Vi ∩ � 6= ∅ and Vi does not fully
contain �.

Lemma 3.1 (Cutting lemma, [11]). For fixed t > 0, let 6 be a family of n algebraic
surfaces in R2 of degree at most t . Then for any r > 0, there exists a decomposition
of R2 into at most O(r2) relatively open connected sets (cells) such that each cell is
crossed by at most n/r curves from 6.
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We are now ready to prove the following theorem, which will establish (1).

Theorem 3.2. Let G = (P,Q,E) be a semi-algebraic bipartite graph in R2 such that
E has description complexity at most t , |P | = m, and |Q| = n. If G is Kk,k-free, then

|E(G)| ≤ c(m2/3n2/3
+m+ n),

where c = c(k, t).

Proof. If n > m2, then by Corollary 2.3 we have |E(G)| ≤ (c/2)n for sufficiently
large c = c(k, t), and we are done. Hence, we can assume n ≤ m2. Since E is semi-
algebraic of description complexity at most t , there are polynomials f1, . . . , ft and a
Boolean formula 8 such that for (p, q) ∈ P ×Q,

(p, q) ∈ E ⇔ 8
(
f1(p, q) ≥ 0, . . . , ft (p, q) ≥ 0

)
= 1.

For each point q ∈ Q, let Vi,q = {x ∈ R2
: fi(x, q) = 0}, 1 ≤ i ≤ t . Set 6 = {Vi,q :

1 ≤ i ≤ t, q ∈ Q}. Note that |6| = tn.
For r = m2/3/n1/3, we apply Lemma 3.1, the cutting lemma, to 6, which parti-

tions R2 into at most c2r
2 cells �i , where c2 = c2(t), such that each cell is crossed by

at most |6|/r surfaces from 6. By the Pigeonhole Principle, there is a cell � ⊂ R2 that
contains at least

m

c2r2 =
n2/3

c2m1/3

points from P . Let P ′ ⊂ P be a set of exactly dn2/3/(c2m
1/3)e points in P ∩ �. If

|P ′| < k, we have
n2/3

c2m1/3 ≤ |P
′
| < k,

which implies m > n2/(c3
2k

3). By the dual of Corollary 2.3, we have |E(G)| ≤ (c/2)m
for sufficiently large c = c(k, t), and we are done. Hence, we can assume |P ′| ≥ k. Let
Q′ ⊂ Q be the set of points in Q that gives rise to a surface in 6 that crosses �. By the
cutting lemma,

|Q′| ≤
tn

r
= t

n4/3

m2/3 ≤ t (c2)
2
|P ′|2.

By Corollary 2.3, we have

|E(P ′,Q′)| ≤ c′(|P ′| |Q′|1/2 + |Q′|) ≤ c3|P
′
|
2,

where c′ is defined in Corollary 2.3, and c3 = c3(k, t). Hence, there is a point p ∈ P ′

such that p has at most c3|P
′
| neighbors in Q′. Since G is Kk,k-free, there are at most

k − 1 points in Q \Q′ that are neighbors to p. Hence,

|NG(p)| ≤ c3|P
′
| + (k − 1) ≤

c3

c2

n2/3

m1/3 + (k − 1).
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We remove p and repeat this argument until there are no vertices remaining in P and see
that

|E(G)| ≤ (c/2)(n+m)+
m∑

i=n1/2

(
c3

c2

n2/3

i1/3
+ (k − 1)

)
≤ c(m2/3n2/3

+m+ n)

for sufficiently large c = c(k, t). ut

4. The case of general d1 and d2

The goal of this section is to prove Theorem 1.1 for all dimensions d1, d2 (i.e., parts (2)
and (3) of the theorem).

4.1. Preliminaries

We begin by introducing some tools, along with some useful notation. Our proof will use
some basic tools from algebraic geometry. A nice introduction to these concepts can be
found in [14].

Real varieties. If V ⊂ Rd is a real algebraic variety, we define the dimension dimV of V
as in [7, Section 2.8]. Define V ∗ ⊂ Cd to be the complexification of V—the smallest
complex variety containing V . That is, if ι : Rd → Cd is the usual embedding of Rd
to Cd , then V ∗ is the Zariski closure (over C) of ι(V ). We define degV = degV ∗, where
the latter is the usual definition of the degree of a complex variety (i.e., the cardinality of
V ∗ ∩H , where H ⊂ Cd is a generic flat of codimension dimV ∗).

Given a real variety V ⊂ Rd , we denote by I (V ) the ideal of polynomials f ∈
R[x1, . . . , xd ] that vanish on V . We say that a real variety V is irreducible if it is irre-
ducible over R (see e.g. [7, Section 2.8]). In particular, if V is irreducible, then I (V ) is a
prime ideal. Moreover, for every polynomial g ∈ R[x1, . . . , xd ] such that g /∈ I (V ), the
ideal (I (V ), g) strictly contains I (V ), and thus dim(V ∩ Z(g)) < dimV .

Polynomial partitioning. Consider a set P of m points in Rd . Given a polynomial f ∈
R[x1, . . . , xd ], we define the zero-set of f to be Z(f ) = {p ∈ Rd : f (p) = 0}. For
1 < r ≤ m, we say that f ∈ R[x1, . . . , xd ] is an r-partitioning polynomial for P if no
connected component of Rd \Z(f ) contains more thanm/r points of P . Notice that there
is no restriction on the number of points of P that lie in Z(f ).

The following result is due to Guth and Katz [21]. A detailed proof can also be found
in [24].

Theorem 4.1 (Polynomial partitioning [21]). Let P be a set of m points in Rd . Then for
every 1 < r ≤ m, there exists an r-partitioning polynomial f ∈ R[x1, . . . , xd ] of degree
at most Cpart · r

1/d , where Cpart depends only on d .

We require the following generalization of Theorem 4.1, which we prove in Section 5.

Theorem 4.2. Let P be a set of n points in Rd and let V ⊂ Rn be an irreducible variety
of degree D and dimension d ′. Then there exists an r-partitioning polynomial g for P
such that g /∈ I (V ) and deg g ≤ Cpart · r

1/d ′ , where Cpart depends only on d and D.
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4.2. Proof of Theorem 1.1

We now establish Theorem 1.1 by proving the following more general statement. Theo-
rem 1.1 is immediately implied by Theorem 4.3, by taking V to be Rd1 .

Theorem 4.3. Let G = (P,Q,E) be a bipartite semi-algebraic graph in (Rd1 ,Rd2)

such that E has complexity at most t , |P | = m, and |Q| = n. Moreover, let P ⊂ V ,
where V ⊂ Rd1 is an irreducible variety of dimension e and degree D. If G is Kk,k-free,
then for any ε > 0,

|E(G)| ≤ α1,em
d2(d1−1)
d1d2−1 +εn

d1(d2−1)
d1d2−1 + α2(m+ n), (7)

where α1,e, α2 are constants that depend on ε, d1, d2, e, t , k, and D.

Proof. As in Section 3, we think of the vertices of P as points in Rd1 , and we think of the
vertices of Q as semi-algebraic sets in Rd1 . That is, every q ∈ Q is the (semi-algebraic)
set of all points p ∈ Rd1 that satisfy

8
(
f1(p, q) ≥ 0, . . . , ft (p, q) ≥ 0

)
= 1.

Abusing notation, we will also refer to the set of incidences in P × Q as I (P,Q),
There is a bijection between the edges of G and the incidences of I (P,Q). Thus, it
suffices to prove

I (P,Q) ≤ α1,em
d2(d1−1)
d1d2−1 +εn

d1(d2−1)
d1d2−1 + α2(m+ n). (8)

We prove the theorem by a two-step induction process. First, we induct on e. We can
be quite wasteful with each such induction step, since we perform at most d1 such steps.
Within every such step, we perform a second induction on |P |+|Q| = m+n. We must be
more careful with the steps of the second induction, since we perform many such steps.

By Corollary 2.3, there exists a constant C2.3 (depending on d1, d2, t, k) such that
|E(G)| ≤ C2.3(mn

1−1/d2 + n). When m ≤ n1/d2 (and when α2 is sufficiently large) we
have |E(G)| ≤ α2n. Therefore, in the remainder of the proof we assume that n < md2 ,
which implies

n = n
d1−1
d1d2−1 n

d1(d2−1)
d1d2−1 ≤ m

d2(d1−1)
d1d2−1 n

d1(d2−1)
d1d2−1 . (9)

Since the conditions in Corollary 2.3 are symmetric with respect to d1 and d2, we can
replace d2 with d1 in the bound of the lemma. Thus, the same argument implies that
m < nd1 , and hence

m ≤ m
d2(d1−1)
d1d2−1 n

d1(d2−1)
d1d2−1 . (10)

We now consider the base case for the induction. Ifm+n is sufficiently small, then (8)
is immediately implied by choosing sufficiently large values for α1,e and α2. Similarly,
when e = 0, we again obtain (8) when α1,e and α2 are sufficiently large.

Partitioning. Next, we consider the induction step. That is, we assume that (8) holds
when |P | + |Q| < m + n or dimV < e. By Theorem 4.2, there exists an r-partitioning
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polynomial f with respect to V of degree at most Cpart · r
1/e, where r is a large constant

that will be set later on. The dependencies between the various constants in the proof are

21/ε, d1, d2, e, t, k,D � Cpart, Ccells , C2.3, Cinter � CHöld � r � γ1, α2 � α1.

Denote the cells of the partition as �1, . . . , �s . Since we are working over the reals,
there exists a polynomial g whose degree depends only on d1, d2, and D such that
Z(g) = V . Thus, by [40, Theorem A.2], there exists a constant Ccells such that s ≤
Ccells · r , where Ccells depends on d1, d2, e, and D. We partition I (P,Q) into the follow-
ing three subsets:

• I1 consists of the incidences (p, q) ∈ I (P,Q) where p is contained in the variety
V ∩ Z(f ).
• I2 consists of the incidences (p, q) ∈ I (P,Q) where p is contained in a cell � of the

partitioning, and the semi-algebraic set q fully contains �.
• I3 = I (P,Q) \ {I1 ∪ I2}. This is the set of incidences (p, q) ∈ I (P,Q) such that p is

contained in a cell �, and q does not fully contain � (i.e., q properly intersects �).

Notice that we indeed have

I (P,Q) = I1 + I2 + I3. (11)

Bounding I1. The points of P ⊂ Rd1 that participate in incidences of I1 are all contained
in the variety V ′ = V ∩ Z(f ). Set m0 = |P ∩ V

′
|. Since V is an irreducible variety and

f /∈ I (V ), V ′ is a variety of dimension e′ ≤ e − 1. The intersection V ′ = V ∩ Z(f ) can
be written as a union of γ1 irreducible (over R) components, each of dimension at most e′

and degree at most γ2, where γ1 and γ2 depend only on D,Cpart, d , and r (see e.g. [19]).
We can now apply the induction hypothesis to each component to obtain

I1 ≤ γ1α1,e−1m

d2(d1−2)
(d1−1)d2−1+ε

0 n
(d1−1)(d2−1)
(d1−1)d2−1 + α2(m0 + n).

Notice that

m
d2(d1−2)
(d1−1)d2−1 n

(d1−1)(d2−1)
(d1−1)d2−1 = m

d2(d1−2)
(d1−1)d2−1−

d2(d1−1)
d1d2−1 +

d2(d1−1)
d1d2−1 n

(d1−1)(d2−1)
(d1−1)d2−1 −

d1(d2−1)
d1d2−1 +

d1(d2−1)
d1d2−1

= m
−

(d2−1)d2
((d1−1)d2−1)(d1d2−1)+

d2(d1−1)
d1d2−1 n

d2−1
((d1−1)d2−1)(d1d2−1)+

d1(d2−1)
d1d2−1

= m
−

(d2−1)d2
((d1−1)d2−1)(d1d2−1) n

d2−1
((d1−1)d2−1)(d1d2−1)m

d2(d1−1)
d1d2−1 n

d1(d2−1)
d1d2−1

≤ m
d2(d1−1)
d1d2−1 n

d1(d2−1)
d1d2−1 , (12)

where the last inequality follows from the fact that m−d2n ≤ 1. By applying (9) to the
α2n term and by choosing α1,e to be sufficiently large with respect to α1,e−1, γ1, and α2,
we obtain

I1 ≤
α1,e

2
m

d2(d1−1)
d1d2−1 +εn

d1(d2−1)
d1d2−1 + α2m0. (13)

Bounding I2. Letm′ = m−m0. This is the number of points of P that are not contained
in Z(f ). A cell of �1, . . . , �s that contains at most k − 1 points of P can yield at most
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(k − 1)n incidences. Since G is Kk,k-free, a cell that contains at least k points of P can
be fully contained in at most k − 1 of the semi-algebraic sets of Q. Since s ≤ Ccells · r ,
we obtain

I2 < Ccells · r
(
(k − 1)n+ (k − 1)m′

)
.

By choosing α2 to be sufficiently large, we have

I2 ≤ α2(m
′
+ n). (14)

Bounding I3. We say that a semi-algebraic set q ∈ Q properly intersects a cell � if q
meets� but does not contain�. For each q ∈ Q, we now bound the number of cells that q
properly intersects. Such a set q is defined by at most t equations, each of degree at most t .
For q to properly intersect a cell �, at least one of these equations must define a variety
that intersects � (this condition is necessary but not sufficient). Consider an equation E
such that Z(E) does not fully contain Vi (since otherwise it would not properly intersect
any cell). Since Vi is irreducible, the dimension of Z(E) ∩ Vi is at most e − 1. Thus,
by [40, Theorem A.2], there exists a constant Cinter (depending on t, d1) such that Z(E)
intersects at most Cinter r

(e−1)/e cells of the partition. This in turn implies that every semi-
algebraic set q ∈ Q properly intersects at most tCinter r

(e−1)/e cells of the partition.
For 1 ≤ i ≤ s, we denote by Qi the set of elements of Q that properly intersect the

cell �i , and by Pi the set of points of P that are contained in �i . We set mi = |Pi | and
ni = |Qi |. By the partitioning property, we have mi ≤ m/r for every 1 ≤ i ≤ s. By the
previous paragraph, we have

s∑
i=1

ni ≤ ntCinter r
(e−1)/e.

By applying Hölder’s inequality, we have

s∑
i=1

n

d1(d2−1)
d1d2−1
i ≤

( s∑
i=1

ni

) d1(d2−1)
d1d2−1

( s∑
i=1

1
) d1−1
d1d2−1

≤ (ntCinter r
(e−1)/e)

d1(d2−1)
d1d2−1 (Ccells r)

d1−1
d1d2−1

≤ CHöld n
d1(d1−1)
d1d2−1 r

1− d1(d2−1)
e(d1d2−1) ≤ CHöld n

d1(d1−1)
d1d2−1 r

1− d2−1
d1d2−1 ,

where CHöld depends on t , Cinter, Ccells, d1, d2.
By the induction hypothesis, we have

s∑
i=1

I (Pi,Qi) ≤

s∑
i=1

(
α1,em

(d1−1)d2
d1d2−1 +ε

i n

d1(d2−1)
d1d2−1
i + α2(mi + ni)

)
(15)

≤ α1,em
(d1−1)d2
d1d2−1 +ε

(
r
(d1−1)d2
d1d2−1 +ε

)−1
s∑
i=1

n

d1(d2−1)
d1d2−1
i +

s∑
i=1

α2(mi + ni) (16)

= α1,eCHöld r
−εm

(d1−1)d2
d1d2−1 +εn

d1(d2−1)
d1d2−1 + α2(m+ ntCinter r

(e−1)/e). (17)
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According to (9) and (10), when α1,e is sufficiently large with respect to r , t , Cinter, α2,
we have

s∑
i=1

I (Pi,Qi) ≤ 3α1,eCHöld r
−εm

(d1−1)d1
d1d2−1 +εn

d1(d2−1)
d1d2−1 .

Finally, by choosing r to be sufficiently large with respect to ε, CHöld , we have

I3 =

s∑
i=1

I (Pi,Qi) ≤
α1,e

2
m

(d1−1)d2
d1d2−1 +εn

d1(d2−1)
d1d2−1 . (18)

Summing up. By combining (11), (13), (14), and (18), we obtain

I (P,Q) ≤ α1,em
d2(d1−1)
d1d2−1 +εn

d1(d2−1)
d1d2−1 + α2(m+ n),

which completes the induction step and the proof of the theorem. ut

5. Hilbert polynomials and Theorem 4.2

In this section, we will prove Theorem 4.2. Our proof relies on Hilbert polynomials.
Before presenting the proof, we begin with some algebraic preliminaries.

5.1. Hilbert polynomials

Let R[x1, . . . , xd ]≤m be the set of polynomials of degree at most m in R[x1, . . . , xd ].
Similarly, if I ⊂ R[x1, . . . , xd ] is an ideal, let I≤m = I ∩ R[x1, . . . , xd ]≤m be the set
of polynomials in I of degree at most m. It can be easily verified that there are

(
d+m
m

)
monomials in x1, . . . , xd of degreem. Thus, we can consider R[x1, . . . , xd ]≤m as a vector
space of dimension

(
d+m
m

)
, and I≤m as a vector subspace of R[x1, . . . , xd ]≤m. We consider

a polynomial f ∈ R[x1, . . . , xd ]≤m as equivalent to any of its constant multiples cf
(where c ∈ R\{0}), since their zero-sets are identical. Therefore, R[x1, . . . , xd ]≤m can be
identified with the projective space RP(

d+m
m ), and I≤m can be identified with a projective

variety in RP(
d+m
m ).

The quotient R[x1, . . . , xd ]≤m/I≤m is also a vector space (see, e.g., [14, Section 9.3]).
The Hilbert function of an ideal I ⊂ R[x1, . . . , xd ] is defined as

hI (m) = dim(R[x1, . . . , xd ]≤m/I≤m).

A nice introduction to Hilbert functions can be found in [14, Chapter 9].
For every ideal I ⊂ R[x0, . . . , xd ], there exists an integermI and a polynomialHI (m)

such that for every m > mI we have hI (m) = HI (m). The polynomial HI is called the
Hilbert polynomial of I , and mI is called the regularity of I . We set t = degHI , and say
that the dimension of I is t . Notice that if I 6= {0}, then t < d. Let aI be the coefficient
of the leading monomial of HI .
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If V ⊂ Rd is an irreducible variety, then dim I (V ) = dimV , where dimV is defined
in Section 4.1. Furthermore, the leading coefficient aI > 0 is bounded below by a constant
cd,degV that depends only on d and degV .

In [20, Theorem B], it is shown that the regularitymI of I is bounded by a quantity m̃
that depends only on d and degV .3

In particular, there is an integer m′ depending only on d and degV such that for
m > m′, we have

hI (V )(m) >
cd,degV

2
mdimV . (19)

5.2. Proof of Theorem 4.2

We first recall the discrete version of the ham-sandwich theorem (see, e.g., [28]). A hy-
perplane h in Rd bisects a finite point set S ⊂ Rd if each of the two open halfspaces
bounded by h contains at most |S|/2 points of S. The bisecting hyperplane may contain
any number of points of S.

Theorem 5.1 (Discrete ham-sandwich theorem). Any d finite point sets S1, . . . , Sd⊂Rd
can be simultaneously bisected by a hyperplane.

A polynomial g : Rd → R bisects a finite point set S ⊂ Rd if each of the two sets
{x ∈ Rd : g(x) < 0} and {x ∈ Rd : g(x) > 0} contains at most |S|/2 points of S.

We combine Theorem 5.1 with Hilbert polynomials to obtain a variant of the polyno-
mial ham-sandwich theorem (for the original theorem, see for example [21]).

Lemma 5.2. Let V ⊂ Rd be an irreducible variety of dimension d ′ and degreeD, and let
S1, . . . , Sk be finite sets of points that are contained in V . Then there exist a constant m0
that depends only on D and d , and a polynomial g, such that g /∈ I (V ), g bisects each of
the sets S1, . . . , Sk , and

deg g =

{
OD,d(1) if k < m0,

OD,d(k
1/d ′) if k ≥ m0.

Proof. Our proof is a variant of the proof of the polynomial ham-sandwich theorem (as
presented, e.g., in [21, 24]). Let I = I (V ). As noted in Section 5.1, there exists a con-
stant m̃I depending only on d and D such that (19) holds for every m > m̃i . Thus, the
vector space R[x1, . . . , xd ]≤m/I≤m has dimension Em = �d,D(m

d ′). We choose m so
that Em ≥ k. That is,

k = Od,D(m
d ′), or m = �d,D(k

1/d ′).

If the resulting m is smaller than m̃, we replace it with h(m̃) = OD,d(1).

3 It is important to note that Giusti’s result in [20] applies in any field of characteristic 0. In
particular, the field does not need to be algebraically closed. Giusti deals with homogeneous ideals,
while we work with affine ideals. However, Giusti’s bound also applies in the affine case. Giusti
bounds the quantity mI in terms of the dimension d and the maximum degree of the collection of
polynomials needed to generate I . This quantity is in turn bounded by the degree of V .
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Let p1, . . . , pEm be a basis for the vector space R[x1, . . . , xd ]≤m/I≤m. For each i =
1, . . . , Em, choose a representative p̃i ∈ R[x1, . . . , xd ]≤m which lies in the equivalence
class pi . We will choose p̃i to be of smallest possible degree (note that the choice of p̃i
need not be unique). Consider the polynomial mapping φ : Rd → RPEm defined by

φ(x) = (p̃1(x), . . . , p̃Em(x)).

For every 1 ≤ i ≤ k, let S′i = φ(Si) ⊂ RPEm . Note that φ is injective on V = Z(I),
and thus |S′i | = Si . By Theorem 5.1, there exists a hyperplane h ⊂ RPEm that bisects
each of the sets S′1, . . . , S

′

k . The hyperplane h can be defined as Z(a1y1 + · · · + aEmyEm)

for some a1, . . . , aEm ∈ R. In other words, for each i = 1, . . . , k, we have

|{y ∈ S′i : a1y1 + · · · + aEmyEm > 0}| ≤ |S′i |/2,
|{y ∈ S′i : a1y1 + · · · + aEmyEm < 0}| ≤ |S′i |/2.

If x ∈ Rd , then a1p̃1(x)+ · · · + aEm p̃Em(x) = (a1p̃1 + · · · + aEm p̃Em)(x). Thus, if we
let g = a1p̃1+ · · · + aEm p̃Em , then g is a polynomial of degree at most m, g /∈ I , and for
each i = 1, . . . , Em,

|{y ∈ Si : g(y) > 0}| ≤ |Si |/2, |{y ∈ Si : g(y) < 0}| ≤ |Si |/2,

i.e., g bisects each of the sets S1, . . . , SEm . ut

The standard polynomial partitioning theorem is proved by using the polynomial ham-
sandwich theorem. Our variant of the polynomial partitioning theorem is proved by using
our variant of the polynomial ham-sandwich theorem (i.e., Lemma 5.2). We now recall
the statement of Theorem 4.2, and then prove it.

Theorem 4.2. Let P be a set of n points in Rd and let V ⊂ Rd be an irreducible variety
of dimension d ′ and degree D. Then there exists an r-partitioning polynomial g for P
such that g /∈ I (V ) and deg g = O(r1/d ′). The implicit constant depends only on D
and d.

Proof. In this section, all logarithms will be to base 2. Letm0 be the constant specified in
Lemma 5.2. Let cD denote the constant in the bound of Lemma 5.2 for the case k < m0
and let c1 be the constant hidden in the �-notation of the case k ≥ m0. Finally, let
c2 = c1/(1− 1/21/d ′).

Let I = I (V ). We show that there exists a sequence of polynomials g0, g1, g2, . . .

with the following properties:

• gi /∈ I .
• For 0 ≤ i < logm0, deg gi ≤ i · cD . For i ≥ logm0, deg gi ≤ cD logm0 + c22i/d

′

.
• Every connected component of Rd \ Z(gi) contains at most m/2i points of P .

If we can find such a sequence of polynomials, we can complete the proof of the theorem
by setting t = dlog re and taking g = gt .

We prove the existence of g0, g1, g2, . . . by induction. For the base case, let g0 = 1.
For 1 ≤ i < logm0, by the induction hypothesis there exists a polynomial gi−1 of degree
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at most (i− 1)cD such that every connected component of Rd \Z(gi−1) contains at most
m/2i−1 points of P . Since |P | = m, the number of these connected components that
contain more thanm/2i points of P is smaller than 2i . Let S1, . . . , Sn ⊂ P be the subsets
of P that are contained in each of these connected components (that is, |Si | > m/2i for
each i, and n < 2i). By Lemma 5.2, there is a polynomial hi−1 /∈ I of degree smaller
than c0 that simultaneously bisects every Si . We can set gi = gi−1 · hi−1, since every
connected component of Rd \ Z(gi−1 · hi−1) contains at most m/2i points of P and
gi−1 · hi−1 is a polynomial of degree smaller than icD . Moreover, since I is a prime ideal
that does not contain gi−1 and hi−1, it does not contain gi−1 · hi−1 either.

Next, we consider the case logm0 ≤ i, and analyze it similarly. That is, by the in-
duction hypothesis there exists a polynomial gi−1 /∈ I of degree smaller than logm0cD +

c22(i−1)/d ′ such that every connected component of Rd \Z(gi−1) contains at mostm/2i−1

points of P . Since |P | = m, the number of these connected components that contain more
than m/2i points of P is smaller than 2i . Let S1, . . . , Sn ⊂ P be the subsets of P that
are contained in each of these connected components (that is, |Si | > m/2i for each i, and
n < 2i+1). By Lemma 5.2, there is a polynomial hi−1 /∈ I of degree smaller than c12i/d

′

that simultaneously bisects every Si . We can set gi = gi−1 · hi−1, since every connected
component of Rd \Z(gi−1 ·hi−1) contains at mostm/2i points of P . Moreover, gi−1 ·hi−1
is a polynomial of degree smaller than

cD logm0 + c22(i−1)/d ′
+ c12i/d

′

= cD logm0 + 2i/d
′

(
c2

21/d ′ + c1

)
= cD logm0 + c22i/d

′

.

This completes the induction step, and thus also the proof of the theorem. ut

6. Applications

6.1. Incidences with algebraic varieties in Rd

The following theorem is a variant of a well known incidence bound in the plane.

Theorem 6.1 (Pach and Sharir [36, 37]). Let P be a set of m points and let 0 be a set of
n constant-degree algebraic curves, both in R2, such that the incidence graph of P × 0
does not contain a copy of Ks,t . Then

I (P, 0) = O
(
ms/(2s−1)n(2s−2)/(2s−1)

+m+ n
)
,

where the implicit constant depends on s, t , and the maximum degree of the curves.

While this bound is not tight for many cases, such as incidences with circles or with
parabolas, it is the best known general incidence bound in R2. Building on the results
in [12], Zahl introduced the following three-dimensional variant of this bound:.
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Theorem 6.2 (Zahl [45]). Let P be a set of m points and let V be a set of n smooth
constant-degree algebraic varieties, both in R3, such that the incidence graph of P × V
does not contain a copy of Ks,t . Then

I (P,V) = O(m2s/(3s−1)n(3s−3)/(3s−1)
+m+ n),

where the implicit constant depends on s, t , and the maximum degree of the varieties.

Very recently, Basu and Sombra [6] obtained a similar bound in R4.

Theorem 6.3 (Basu and Sombra [6]). Let P be a set of points and let V be a set of
constant-degree algebraic varieties, both in R4, such that the incidence graph of P × V
does not contain a copy of Ks,t . Then

I (P,V) = O(|P |3s/(4s−1)
|V|(4s−4)/(4s−1)

+ |P | + |V|),

where the implicit constant depends on s, t , and the maximum degree of the varieties.

When we look at the bounds of Theorems 6.1, 6.2, and 6.3, a pattern emerges. An easy
variant of our technique in Sections 4 and 5 yields the bound coming from this pattern
(up to an extra ε in the exponent).

Theorem 1.2. Let P be a set ofm points and let V be a set of n constant-degree algebraic
varieties, both in Rd , such that the incidence graph of P × V does not contain a copy
of Ks,t (here we think of s, t , and d as being fixed constants, and m and n are large).
Then for every ε > 0, we have

I (P,V) = O
(
m

(d−1)s
ds−1 +εn

d(s−1)
ds−1 +m+ n

)
.

Theorem 1.2 improves upon a weaker bound that was obtained by Elekes and Szabó [16].
In addition to generalizing Theorems 6.1–6.3, Theorem 1.2 generalizes various other inci-
dence bounds to Rd (again, up to an extra ε in the exponent). For example, Edelsbrunner,
Guibas, and Sharir [15] considered point-plane incidences in R3, where no three points
are collinear. Theorem 1.2 generalizes this result to Rd , where no d points are contained
in a common (d−2)-flat. A further generalization is to other types of hypersurfaces, such
as spheres.

As shown in [39], when s = 2 Theorem 1.2 is tight up to subpolynomial factors.
Specifically, [39] presents lower bounds for the cases of hyperplanes, hyperspheres, and
paraboloids with no K2,t in the incidence graph.

Proof sketch of Theorem 1.2. The proof is very similar to the proof of Theorem 4.3, so
here we only explain how to change the original proof. As with Theorem 4.3, Theorem 1.2
comes from the following generalization.

Theorem 6.4. Let P be a set of points and let V be a set of constant-degree algebraic
varieties, both in Rd , with |P | = m, |V| = n, such that the incidence graph of P×V does
not contain a copy of Ks,t . Suppose that P is fully contained in an irreducible variety V
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of dimension e and degree D. Suppose furthermore that no surface S ∈ V contains V .
Then for every ε > 0, we have

I (P,V) ≤ α1,em
(e−1)s
es−1 +εn

e(s−1)
es−1 + α2,e(m+ n), (20)

where α1,e and α2,e are constants that depend on ε, d , e, s, t , and D.

The proof of Theorem 6.4 parallels that of Theorem 4.3. As in the proof of Theorem 4.3,
we will induct both on e (the dimension of the variety V ) and on the quantity m+ n. As
before, we can be very wasteful when we induct on e, but we must be more efficient when
we induct on m+ n.

As before, we find an r-partitioning polynomial f . The main difference in the proofs
is that we replace Corollary 2.3 with the Kővári–Sós–Turán theorem (see, e.g., [31, Sec-
tion 4.5]). This allows us to still have (9), but not (10). To overcome this difficulty, we
first change the way that the incidences are partitioned into three subsets I1, I2, I3:

• I1 consists of the incidences (p, S) ∈ P × V such that p ∈ Z(f ) and S properly
intersects every irreducible component of V ∩ Z(f ) that contains p.
• I2 consists of the incidences (p, S) ∈ P × V such that p is contained in an irreducible

component of V ∩ Z(f ) that is fully contained in S.
• I3 = I (P,Q) \ {I1 ∪ I2}. This is the set of incidences (p, S) ∈ P × V such that p is

not contained in V ∩ Z(f ).

Let V ′ = V ∩ Z(f ) and let m0 = |P ∩ V
′
|. To bound I1, we argue as in the proof of

Theorem 4.3. This is an incidence problem on the variety V ′ = V ∩ Z(f ), which has
dimension at most e − 1. Arguing as in Theorem 4.3, we obtain the bound

I1 ≤ Cα1,e−1m
(e−2)s
(e−1)s−1+ε

0 n
(e−1)(s−1)
(e−1)s−1 + α2,e−1(m0 + n),

where the constant C depends on D, d , e, s, t and the degree of f . A computation analo-
gous to (12) shows that this is at most

α1,e

3
m

(e−1)s
es−1 +εn

e(s−1)
es−1 +

α2,e

2
m0, (21)

provided α1,e and α2,e are chosen sufficiently large.
Let m′ = m − m0. The proof bounding I3 proceeds exactly as the proof in Theo-

rem 4.3, and we obtain the bound

I3 ≤
α1,e

3
m

(e−1)s
es−1 +εn

e(s−1)
es−1 + α2,em

′, (22)

which is the analogue of (15). Note that (22) should also include the term α2,en, but (9)
allows us to combine this with the first term in (22).

It remains to bound I2. As in the discussion in Theorem 4.3 for bounding the quan-
tity I1, note that V ′ can be written as a union of γ1 irreducible (over R) components, each
of dimension at most e− 1, where γ1 depends only on D, e, d and the degree of f . Since
the incidence graph of P × V does not contain a copy of Ks,t , each of the irreducible
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components of V ′ either contains at most s points, or is contained in at most t surfaces
from V . The contribution from the first quantity is at most sγ1n, and the contribution from
the second quantity is at most tm0. Combining these bounds with (9), we have

I2 ≤
α1,e

3
m

(e−1)s
es−1 +εn

e(s−1)
es−1 +

α2,e

2
m0, (23)

provided we select α2,e ≥ 2t . Combining (21)–(23) gives us (20), which establishes
Theorem 6.4 and in turn Theorem 1.2. ut

6.2. Unit distances in Rd

For a finite set P ⊂ Rd , we define the number of unit distances that are spanned by P as
the number of pairs p, q ∈ P 2 such that |p−q| = 1 (where |p−q| denotes the Euclidean
distance between p and q). Let fd(n) denote the maximum number of unit distances that
can be spanned by a set of n points in Rd . The unit distances problem, first posed by Erdős
[17, 18], asks for the asymptotic behavior of f2(n) and f3(n). Currently, the best known
bounds are f2(n) = O(n4/3) [41], f2(n) = n1+�(1/ log log n) [17], f3(n) = O(n3/2)

[23, 45], and f3(n) = �(n
4/3 log log n) [18]. For any d ≥ 4, we have the trivial bound

fd(n) = 2(n
2) (see, e.g., [27]). For example, in R4, let P1 be a set of n/2 points arranged

on the circle x2
1 + x

2
2 = 1/2, and let P2 be a set of n/2 points arranged on the circle

x3
3 + x

2
4 = 1/2. Then, if P = P1 ∪ P2, the set P has at least n2/4 unit distances.

The problem in d ≥ 4 becomes non-trivial once we consider only point sets with some
restriction on them. Oberlin and Oberlin [34] obtain an improved upper bound under a
natural restriction, as follows.

Theorem 6.5 ([34]). Let d ≥ 2 and consider an n-point set P ⊂ Rd such that no
d-element subset of P is contained in a (d − 2)-flat. Then the number of unit distances
that are spanned by P is O(|P |(2d−1)/d).

We now improve Theorem 6.5 by applying Theorem 1.1. First, we show that the configu-
ration described above is essentially the only one that yields 2(n2) unit distances in R4.
Call two circles (C1, C2) a pair of orthogonal circles of radius 1/

√
2 if (after a translation

and rotation) they are the two circles x2
1 + x

2
2 = 1/2, x2

3 + x
2
4 = 1/2.

Theorem 6.6 (Unit distances in R4). Let P be a set of n points in R4 such that for any
pair of orthogonal circles of radius 1/

√
2, one of the circles contains fewer than k points

( for some constant k). Then, for any ε > 0, the number of unit distances spanned by P
is O(n8/5+ε).

Proof. Consider the bipartite graph whose vertex set consists of two copies of P , and
where an edge (p, q) exists if and only if |p − q| = 1. This is a semi-algebraic bipartite
graph in (R4,R4). If we can also show that this graph contains no copy of Kk,k , then by
Theorem 1.1 the number of edges (i.e., the number of unit distances) is as stated in the
theorem.

Without loss of generality, we may assume that k > 2. We assume, for contradiction,
that there exist two collections of points p1, . . . , pk ⊂ P and q1, . . . , qk ⊂ P such that
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|pi − qj | = 1 for all indices 1 ≤ i, j ≤ k. That is, if Si denotes the unit sphere centered
at pi , then q1, . . . , qk ∈

⋂k
i=1 Si , which implies |

⋂k
i=1 Si | > 2. The intersection of

at least three unit hyperspheres cannot be a two-dimensional sphere. Moreover, if such
an intersection is zero-dimensional, then it consists of at most two points. Therefore,⋂k
i=1 Si must be a circle. Similarly, if S′i denotes the unit sphere centered at qi , then⋂k
i=1 S

′

i must be a circle that contains p1, . . . , pk . Elementary geometry then shows that
these two circles must be a pair of orthogonal circles of radius 1/

√
2, which contradicts

the assumption concerning such circles, and thus completes the proof. ut

Notice that Theorem 6.6 implies a better bound than Theorem 6.5, while also relying on a
weaker assumption. We now present a general bound for any d , where we have a similar
assumption to the one in Theorem 6.6, though with an improved bound.

Theorem 6.7 (Unit distances in Rd ). Let P be a set of n points in Rd such that every
(d−3)-dimensional sphere contains fewer than k points ( for some constant k). Then, for
any ε > 0, the number of unit distances spanned by P is O(n2d/(d+1)+ε).

Proof. As before, we consider the semi-algebraic bipartite graph whose vertex set con-
sists of two copies of P , and where an edge (p, q) exists if and only if |p − q| = 1.
This time, this graph is in (Rd ,Rd). If we can show that this graph contains no copy
of Kk,k , then Theorem 1.1 would imply that the number of edges (i.e., the number of unit
distances) is as stated in the theorem.

Without loss of generality, we may assume that k > 2. We assume, for contradic-
tion, that there exist two collections of points p1, p2, p3 ⊂ P and q1, . . . , qk ⊂ P

such that |pi − qj | = 1 for all indices 1 ≤ i ≤ 3 and 1 ≤ j ≤ k. That is, if Si de-
notes the unit hypersphere centered at pi , then q1, . . . , qk ∈

⋂3
i=1 Si . The intersection

S1 ∩ S2 is fully contained in the perpendicular bisector π12 of p1 and p2, and the inter-
section S1 ∩ S3 is fully contained in the perpendicular bisector π13 of p1 and p3. Since
π12 6= π13, the intersection of these two hyperplanes is a (d − 2)-dimensional flat, and
thus q1, . . . , qk ⊂ π12 ∩ π13 ∩ S1. This intersection is a (d − 3)-dimensional sphere,
contradicting the assumption of the theorem. ut

6.3. Incidences between points and tubes

As an immediate corollary to Theorem 1.1, we establish the following bound on the num-
ber of incidences between points and tubes in Rd (where a tube is the set of all points of
distance at most δ from a given line). Notice that the set of tubes in Rd can be parameter-
ized using 2d − 2 parameters.

Corollary 6.8. For δ > 0, let P and6 be a set ofm points and n tubes in Rd respectively,
such that each tube has a radius of δ. If the incidence graph contains no copy of Kk,k ,
then for any ε > 0 we have

I (P,6) = O
(
m

(2d−2)(d−1)
d(2d−2)−1 +εn

d(2d−3)
d(2d−2)−1 +m+ n

)
.

In the planar case, we get O(m2/3n2/3
+m+ n) incidences between points and strips.
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6.4. Incidences with k-dimensional families of varieties

For each integerD ≥ 0, let R[x1, . . . , xd ]≤D be the vector space of polynomials of degree
at most D. As in Section 5.1, R[x1, . . . , xd ]≤D can be identified with RP(

d+D
D ) (here, as

in Section 5.1, we identify a polynomial f with all polynomials of the form cf with
c ∈ R\{0}). If M ⊂ RP(

d+D
D ), we say that the polynomial f is an element of M if the

equivalence class of f (where as above f is identified with cf , c ∈ R\{0}) is an element
of M.

Recently, Wang, Yang, and Zhang [44] derived the following result (our formulation
is somewhat different from the one in [44]).

Theorem 6.9. Let M ⊂ RP(
D+2

2 ) be an algebraic variety of dimension k. Let P be a set
of m points in the plane, and let 0 ⊂M be a set of n plane curves of degree at most D,
each of which is the zero-set of a polynomial that lies in M. Suppose that no two curves
of 0 share a common component. Then

I (P, 0) = O(mk/(2k−1)n(2k−2)/(2k−1)
+m+ n).

The implicit constant depends on k and M.

For example, assume that 0 is a set of curves of degree at most D. By Bézout’s theorem
(see, e.g., [14]), two such curves can intersect in at most D2 points, so we can apply
Theorem 6.1 with k = D2

+ 1. However, since a bivariate polynomial of degree D has at
most

(
D+2

2

)
= (D + 2)(D + 1)/2 monomials, we obtain an improved bound by applying

Theorem 6.9 with M = RP(
D+2

2 ) and k = (D + 2)(D + 1)/2.
Using the techniques developed in this paper, we can extend this result to higher

dimensions (though we have an ε loss in the exponents).

Theorem 6.10. Fix integers d and D. Let M ⊂ RP(
D+d
d ) be an algebraic variety of

dimension k. Let P be a set of m points in Rd , and let V be a set of n algebraic varieties
in Rk , each of which is the zero-set of some polynomial of degree at most D that lies
in M. Suppose that the incidence graph contains no copy of Ks,s for some constant s.
Then

I (P,V) = O
(
m

k(d−1)
(dk−1)+εn

d(k−1)
(dk−1) +m+ n

)
, (24)

where the implicit constant depends on M, D, d , and s.

Proof. We need to rephrase this problem in a form that can be addressed by Theorem 4.3.
The idea is that we will find a variety V ⊂ R(

D+d
d ) of dimension k, a collection Q ⊂ V

of n points lying on V , and a collection Z of m bounded-degree algebraic varieties in
R(

D+d
d ) such that the incidence graph of Q× Z has no Ks,s , and I (Q,Z) = I (P,V).
To each variety S ∈ V , we can associate an affine polynomial fS ∈ M. Without

loss of generality, we can assume that none of these polynomials lies on the hyperplane
{x0 = 0} (we can always apply a linear change of coordinates to guarantee that this is the
case). Let S̃ ⊂ R[x1, . . . , xd ] be the dehomogenization of S with respect to the coordinate
chart {x0 6= 0} ⊂ R(

D+d
d ).
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For each p ∈ Rd , let Vp be the dehomogenization of the (homogeneous) variety {f ∈

R[x1, . . . , xd ]≤D = R(
D+d
d ) : f (p) = 0} with respect to the coordinate chart {x0 6= 0}

⊂ R(
D+d
d ). Then fS ∈ Vp if and only if p ∈ S. Furthermore, if Q = {fS : S ∈ V} and

Z = {Vp : p ∈ P }, then Q ⊂ M̃, and the incidence graph of Q × Z is the same as
the incidence graph of V × P . In particular, this implies that the former incidence graph
contains no Ks,s , and I (Q,Z) = I (P,V).

We may now apply Theorem 4.3 to conclude that

I (P,V) = O
(
m

k(d−1)
(dk−1) n

d(k−1)
(dk−1)+

ε
k +m+ n

)
. (25)

Now, if n > mk then Theorem 6.10 follows immediately from Corollary 2.3. If n ≤ mk ,
then (25) implies (24). In either case, Theorem 6.10 is proved. ut

7. Discussion

The main open question that arises from this work seems to be whether Theorem 1.1 is
tight. The only lower bounds that we are aware of arise from incidence problems with
algebraic objects (mainly point-hyperplane incidence problems). These lead to a tight
bound only for the case where d1 = d2 = 2. In any other case, it would be rather inter-
esting to find configurations of semi-algebraic objects that yield an asymptotically larger
number of incidences. It is also possible that more sophisticated configurations of alge-
braic objects (possibly even hyperplanes) suffice to obtain tight bounds for other values
of d1 and d2. However, for some incidence problems (such as point-circle incidences
in R2, which corresponds to d1 = 2 and d2 = 3) better bounds are known than the ones
implied by Theorem 1.1. This might hint that Theorem 1.1 is not tight for various values
of d1 and d2.

On the other hand, Theorem 2.1 is tight for m = n, as implied by the constructions
from Kollár, Rónyai, and Szabó [25] and Alon, Rónyai, and Szabó [3]. These works prove,
for each fixed d , the existence of bipartite graphs with both parts of size n, �(n2−1/d)

edges, and no copy of Kd,t for t = (d − 1)! + 1. It is not hard to verify that such graphs
satisfy πF (z) ≤ czd for all z. Indeed, for each d-set, there are at most t − 1 vertices
whose neighborhood is a superset of that d-set, and each vertex withD neighbors in a set
of size z gives rise to

(
D
d

)
subsets of size d. This implies that ifG isKd,t -free, then πF (z)

is at most (t − 1)
(
z
d

)
+
(
z
d−1

)
+ · · · +

(
z
0

)
≤ czd for an appropriate choice of c = c(d, t).

A more precise bound, showing that the worst case is given by considering the projections
being sets of size at most d , with an additional (t−2)

(
z
d

)
/(d+1) projections of size d+1,

gives an upper bound of πF (z) ≤ d+t−1
d+1

(
z
d

)
+
(
z
d−1

)
+
(
z
d−2

)
+ · · · +

(
z
0

)
.
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[41] Spencer, J., Szemerédi, E., Trotter, W.: Unit distances in the Euclidean plane. In: Graph The-
ory and Combinatorics, B. Bollobás (ed.), Academic Press, 293–308 (1984) Zbl 0561.52008
MR 0777185
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