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Abstract. We consider the questions of efficient mixing and un-mixing by incompressible flows
that satisfy periodic, no-flow, or no-slip boundary conditions on a square. Under the uniform-in-
time constraint ‖∇u(·, t)‖p ≤ 1 we show that any function can be mixed to scale ε in time
O(|log ε|1+νp ), with νp = 0 for p < (3+

√
5)/2 and νp ≤ 1/3 for p ≥ (3+

√
5)/2. Known

lower bounds show that this rate is optimal for p ∈ (1, (3+
√

5)/2). We also show that any set
that is mixed to scale ε but not much more can be un-mixed to a rectangle of the same area (up to
a small error) in time O(|log ε|2−1/p). Both results hold with scale-independent finite times if the
constraint on the flow is changed to ‖u(·, t)‖Ẇ s,p ≤ 1 with some s < 1. The constants in all our
results are independent of the mixed functions and sets.
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1. Introduction and main results

Mixing of substances by flows and processes involving it are ubiquitous in nature. In the
absence of diffusion, or when diffusion acts at time scales much longer than the flow and
thus can be neglected in short and medium terms, the basic model for mixing of passive
scalars (i.e., with no feedback of the mixed substance on the mixing flow) is the transport
equation

ρt + u · ∇ρ = 0, (1.1)

with initial condition ρ(·, 0) = ρ0. Here ρ : Q × R+ → R is the mixed scalar (e.g.,
density of particles of a substance in a liquid), with Q ⊆ Rd the physical domain, and
ρ0 : Q → R, while u : Q × R+ → Rd is the mixing flow. Of particular interest
in real-world applications are incompressible flows (with ∇ · u = 0) and questions of
their mixing efficiency. A natural (and central) problem in this direction is how well a
given initial density ρ0 can be mixed by incompressible flows satisfying some physically
relevant quantitative constraints.
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For the sake of transparency, we will consider here the case of a square Q = (0, 1)2

⊆ R2, with either the no-flow boundary condition u · n = 0 on ∂Q × R+ (where n is
the unit outer normal to Q), or the no-slip boundary condition u = 0 on ∂Q × R+,
or the periodic boundary condition ρ(0, r, t) = ρ(1, r, t) and ρ(r, 0, t) = ρ(r, 1, t)
for all (r, t) ∈ (0, 1) × R+ (when Q becomes the torus T2). We will also assume that
ρ0 ∈ L

∞(Q) (so ‖ρ(·, t)‖∞ = ‖ρ0‖∞ for each t > 0) and ρ0 is mean-zero on Q (i.e.,´
Q
ρ0 dx dy = 0). Obviously, the latter is not essential since changing ρ0 by a constant

only changes ρ by the same constant.
To quantify the mixing efficiency of flows, one needs to define a suitable measure

of mixing (see, e.g., the review [20]). While in the case of diffusive mixing this may be
done in terms of global quantities, such as the decay of Lp norms of (a mean-zero) ρ in
time [6, 10, 18, 21], solutions of (1.1) have a constant-in-time distribution function, so we
need to look at small scale variations of ρ instead. In the present paper we will consider
the following natural definition, in which

ffl
A
f dx dy = |A|−1 ´

A
f dx dy is the average

of the function f over a set A.

Definition 1.1. Let f ∈ L∞(Q) be mean-zero on Q and let κ, ε ∈ (0, 1/2]. We say that
f is κ-mixed to scale ε if for each (x0, y0) ∈ Q,∣∣∣∣ 

Bε(x0,y0)∩Q
f (x, y) dx dy

∣∣∣∣ ≤ κ‖f ‖∞.
If now ρ0 ∈ L

∞(Q) is mean-zero, we say that an incompressible flow u : Q×R+→ R2

κ-mixes ρ0 to scale ε in time τ if ρ(·, τ ) is κ-mixed to scale ε, where ρ solves (1.1) with
ρ(·, 0) = ρ0.

Remark. Another natural definition of mixing that has been used recently is in terms of
the H−1 norm [1, 11–13, 17] of f . (Other H−s norms [14] or the Wasserstein distance
of f+ and f− [3,16,17,19] have also been used.) In this case there is no κ and the mixing
scale is given by ‖f ‖H−1‖f ‖−1

∞ . We discuss the relation of this definition to Definition 1.1
and our main results after Corollary 1.5 below.

The motivation for Definition 1.1 comes from a paper by Bressan [4], whose definition is a
special case of ours. He considered the case Q = T2 (i.e., periodic boundary conditions),
κ = 1/3, and ρ0 = χ(0,1/2)×(0,1)−χ(1/2,1)×(0,1), and conjectured that if an incompressible
flow u 1/3-mixes ρ0 to some scale ε ∈ (0, 1/2] in time τ , thenˆ τ

0
‖∇u(·, t)‖1 dt ≥ C|log ε|

(with some ε-independent C <∞). Equivalently (after an appropriate change of the time
variable, as in the proof of Theorems 1.2–1.4 below), one conjectures that there is C <∞
such that if an incompressible flow u satisfies

sup
t>0
‖∇u(·, t)‖1 ≤ 1 (1.2)

and 1/3-mixes ρ0 to some scale ε ∈ (0, 1/2] in time τ , then τ ≥ C|log ε|. One should
think of ‖∇u(·, t)‖1 as an instantaneous cost of the mixing at time t , and as we note in
Remark 2 after Corollary 1.5 below, the critical order of derivatives of u here is indeed 1.
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The above rearrangement cost conjecture of Bressan [4,5] remains an intriguing open
problem. However, its generalized version, with any κ > 0 and (1.2) replaced by

sup
t>0
‖∇u(·, t)‖p ≤ 1 (1.3)

for some p ≥ 1 (for p = 2 this is the bounded enstrophy case), was proved for any
p > 1 by Crippa and De Lellis [7]. Due to a relationship between mixing in the sense of
Definition 1.1 and in terms of the H−1 norm, discussed after Corollary 1.5, this can be
extended to the same result for mixing in the latter sense [11, 17].

Mixing for general functions. Our first goal here is to study the complementary ques-
tion of how efficient mixing by incompressible flows actually can be, that is, obtaining
upper bounds on best possible mixing times by flows satisfying (1.3). We do so by con-
structing very efficient mixing flows for general mean-zero functions ρ0 ∈ L

∞(Q) and
any κ > 0, with any of the three types of boundary conditions. Our main mixing results
have ρ0-independent bounds and are as follows.

Theorem 1.2. Consider incompressible flows u : Q × R+ → R2 satisfying (1.3) for
some p ∈ [1,∞] and the no-flow boundary condition on ∂Q×R+. For each p ∈ [1,∞],
there is Cp <∞ such that for any mean-zero ρ0 ∈ L

∞(Q) the following holds.

(1) If p ∈ [1, (3+
√

5)/2), then there is u as above that, for any κ, ε ∈ (0, 1/2], κ-mixes
ρ0 to scale ε in time Cp|log(κε)|.

(2) If p = (3+
√

5)/2 (= golden ratio + 1), then for any κ ∈ (0, 1/2] there is u as
above that κ-mixes ρ0 to any scale ε ∈ (0, 1/2] in time Cp|log(κε)|

∣∣log |log(κε)|
κ

∣∣1/p.

(3) If p ∈ ((3+
√

5)/2,∞] and νp :=
p2
−3p+1

3p2−p
(so νp ≤ 1/3, and ν∞ = 1/3),

then for any κ, ε ∈ (0, 1/2] there is u as above that κ-mixes ρ0 to scale ε in time
Cpκ

−νp |log(κε)|1+νp . The flow u can be made independent of ε if we only require
that it κ-mixes ρ0 to scale ε in time Cpκ−νp |log(κε)|1+νp log |log(κε)|.

Theorem 1.3. Theorem 1.2 continues to hold when the no-flow boundary condition is
replaced by the periodic boundary condition.

Theorem 1.4. Theorem 1.2 continues to hold when the no-flow boundary condition is
replaced by the no-slip boundary condition, with the following changes. For p <∞, the
term Cpκ

−1+1/p is added to each mixing time (so, in particular, u in (1) also depends
on κ). For p = ∞, the mixing times are changed to Cpκ−1

|log(κε)|2 for ε-dependent
flows and Cpκ−1

|log(κε)|2(log |log(κε)|)2 for ε-independent flows.

Remarks. 1. Of particular interest is the ε-dependence of the mixing times, for a fixed
κ > 0 [4, 5, 7]. Due to the above-mentioned result from [7], our O(|log ε|) upper bound
on the shortest mixing time is exact for p ∈ (1, (3+

√
5)/2). We do not know whether

our bound for p ≥ (3+
√

5)/2 is optimal for general ρ0, or whether the value p =
(3+
√

5)/2 is indeed critical here.
2. Since the flow in Theorems 1.2(1) and 1.3(1) is independent of both ε and κ , taking

κ = ε yields ε-mixing in time O(|log ε|) for each ε. In the special case of periodic
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boundary conditions, initial value ρ0 = χ(0,1/2)×(0,1) − χ(1/2,1)×(0,1), and (1.3) replaced
by supt>0 ‖u(·, t)‖ ˙BV ≤ 1, anO(|log ε|) upper bound was previously obtained in [5,13].

3. The jump in the power of |log(κε)| at p = ∞ in Theorem 1.4 is due to the no-slip
condition having an exponentially decreasing effect (at the rate 2−n/p) for p <∞ as our
flow acquires progressively smaller scales (of size 2−n, with n . |log(κε)|). This is then
controlled by other terms in the relevant estimates. For p = ∞ this effect stays large at
all scales and becomes the dominant term. The details are in the proofs of Theorems 5.4
and 5.3.

4. It is easy to see that if ρ0 is supported away from ∂Q, then the bounds from Theo-
rem 1.2 also hold in Theorem 1.4, albeit with Cp also depending on dist(supp ρ0, ∂Q).

Proofs. Theorem 1.2 is equivalent to Theorems 3.4, 4.5, and 4.6 combined; Theorem 1.3
is equivalent to Theorem 5.1; and Theorem 1.4 is equivalent to Theorems 5.2, 5.3, and 5.4
combined. The equivalences are obtained by noticing that if J (t) :=

´ t
0 ‖∇u(·, s)‖p ds,

then the solution ρ̃ of (1.1) with the flow ũ(·, J (t)) := ‖∇u(·, t)‖−1
p u(·, t) (and ρ̃(·, 0) =

ρ0) satisfies ρ̃(·, J (t)) = ρ(·, t). ut

Remark. The flows in this paper will all be piecewise constant (and hence discontin-
uous) in time (including the rescaled flow in the above proof). However, continuity or
smoothness in time is easily obtained by a change of the time variable on each in-
terval on which the flow is constant. For instance, if u(·, t) = u0(·) for t ∈ [t0, t1],
we may take ũ(·, t) := α(t)u0(·) for t ∈ [t0, t1] and some α ∈ C∞c ([t0, t1]) with´ t1
t0
α(t) dt = t1 − t0. Indeed, if ρ̃ solves (1.1) with ũ in place of u and ρ̃(·, 0) = ρ(·, 0),

then ρ̃(·, t) = ρ(·, t0 +
´ t
t0
α(s) ds) for all t ∈ [t0, t1].

A natural question is what happens if ‖∇u(·, t)‖p is replaced by ‖u(·, t)‖Ẇ s,p in (1.3). The
flows we construct throughout this paper have a “self-similar” nature—they are “turbu-
lent” at an exponentially decreasing sequence of scales as time progresses—which allows
us to answer this question rather easily. Let us consider the family of squares (cells)

Qnij :=

(
i

2n
,
i + 1

2n

)
×

(
j

2n
,
j + 1

2n

)

with n ≥ 0 and i, j ∈ {0, . . . , 2n − 1}. (Note that {Qnij }
2n−1
i,j=0 tile Q for each fixed n.)

Let us also consider only the ε-independent flows from Theorems 1.2–1.4, before the
rescaling from the above proof, that is, as in the proofs of the theorems mentioned there.
Those proofs show that for each such flow u and each n ≥ 0 the map u|(n,n+1] keeps all
the Qnij invariant (“self-similarity”) and for some C′p <∞ we have either

sup
t∈(n,n+1]

‖∇u(·, t)‖p ≤ C
′
p and sup

t∈(n,n+1]
‖u(·, t)‖∞ ≤ C

′
p2−n

in Theorems 1.2(1) and 1.3(1), or the same with extra factors κ−1n(log n)2 on the right-
hand sides in the other cases (these latter worst case bounds are achieved for p = ∞ in
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Theorem 1.4). The interpolation inequality ‖u‖Ẇ s,p/s ≤ Cs,p‖∇u‖
s
p‖u‖

1−s
∞ for s ∈ [0, 1]

(see, e.g., [15, p. 536]) now yields either

sup
t∈(n,n+1]

‖u(·, t)‖Ẇ s,p/s ≤ C
′
s,p2−(1−s)n

in Theorems 1.2(1) and 1.3(1), or the same with an extra factor κ−1n(log n)2 on the
right-hand side in the other cases. Then the rescaling in time from the above proof (but
corresponding to the Ẇ s,p/s norm) provides a flow that is uniformly bounded in time
in Ẇ s,p/s(Q) and κ-mixes ρ0 to scale 0 in finite time τ (in the sense that for each ε > 0
there is τε < τ such that ρ(·, t) is κ-mixed to scale ε for each t ∈ (τε, τ )). This yields the
following.

Corollary 1.5. Consider incompressible flows u : Q× (0, τ )→ R2 satisfying

sup
t∈(0,τ )

‖u(·, t)‖Ẇ s,p ≤ 1

for some p ∈ [1,∞] and s ∈ [0, 1), any one of the three boundary conditions above on
∂Q× R+, and also supt∈(0,τ−δ) ‖∇u(·, t)‖max{sp,1} <∞ for each δ > 0.

(1) If s < (3 +
√

5)/(2p) and the boundary condition is no-flow or periodic, then there
is τs,p < ∞ such that for any mean-zero ρ0 ∈ L

∞(Q) there is u as above with
τ := τs,p that, for any κ ∈ (0, 1/2], κ-mixes ρ0 to scale 0 in time τs,p.

(2) If either s ≥ (3 +
√

5)/(2p) or the boundary condition is no-slip, then for any κ ∈
(0, 1/2] there is τs,p,κ < ∞ such that for any mean-zero ρ0 ∈ L

∞(Q) there is u as
above with τ := τs,p,κ that κ-mixes ρ0 to scale 0 in time τs,p,κ .

Remarks. 1. One can use the above argument to also show algebraic-in-ε time of κ-mix-
ing of ρ0 for s > 1, but one needs to adjust our flows appropriately near the boundaries of
the Qnij to make them belong to Ẇ s,p(Q) in this case. We leave the details to the reader.

2. The above suggests that 1 is indeed the critical order of derivatives of u in (1.3).
3. It is not difficult to show that this result, and the fact that u|(n,n+1] before the above

rescaling keeps all theQnij invariant, show that ρ weak-∗ converges in L∞(Q) to 0 in (1)
and to a function with values in [−κ, κ] in (2) as t → τ .

As mentioned in the remark after Definition 1.1, another measure of the mixing scale of
a mean-zero f ∈ L∞(Q) is ‖f ‖H−1‖f ‖−1

∞ . One can easily check that f being κ-mixed
to scale ε implies that the mix-norm of f [14] is bounded above by C

√
ε + κ2 ‖f ‖∞

for some C <∞ [14, (8)–(10)]. Hence from the equivalence between the mix-norm and
the H−1/2 norm [14, Corollary 2.1] one immediately has ‖f ‖H−s ≤ C

√
ε + κ2 ‖f ‖∞

for all s ≥ 1/2.
On the other hand, Lemma A.1 shows that ‖f ‖H−1 ≤ cκ3/2ε2

‖f ‖∞ (with some
c > 0) implies that f is κ-mixed to scale ε. This, combined with the result from [7], im-
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mediately shows that there is cp > 0 such that if ρ0 = χ(0,1/2)×(0,1)−χ(1/2,1)×(0,1) and an
incompressible flow u satisfies (1.3) for some p ∈ (1,∞], then ‖ρ(·, τ )‖H−1 ≤ ε‖ρ0‖∞
implies τ ≥ cp|log ε| (this is also proved in [11, 17]). One may again ask whether this
O(|log ε|) bound is achievable.

Parts (1) of Theorems 1.2–1.4 (and ‖f ‖H−1 ≤ C
√
ε ‖f ‖∞ above when κ := ε)

show that there indeed is Cp < ∞ such that for any mean-zero ρ0 ∈ L∞(Q) there
is an incompressible flow u satisfying (1.3) which yields ‖ρ(·, τ )‖H−1 ≤ ε‖ρ0‖∞ for
some τ ≤ Cp|log ε|, albeit only for p ∈ [1, (3+

√
5)/2) in the case of no-flow and

periodic boundary conditions (which includes the uniformly bounded enstrophy case,
(1.3) with p = 2), and for p = 1 in the case of no-slip boundary conditions. (This
obviously also yields a corresponding extension of Corollary 1.5.) The difference is that
for these p we achieve “perfect” mixing, with

´
Qnij

ρ(x, y, t) dx dy = 0 for any t ≥ n
and i, j ∈ {0, . . . , 2n − 1}, so κ plays a less prominent role in the resulting bounds. We
are not able to do this in the other cases and, ironically, it turns out that the enemy to this
effort is the possibility of ρ(·, n) being very well mixed inside some Qnij (but not near
its boundary). Unfortunately, we cannot discard this possibility for general ρ0.

A few days before we finished writing the present paper, Alberti, Crippa, and Maz-
zucato [1] announced that in the case of periodic boundary conditions they are able to
construct solutions satisfying the above O(|log ε|) bound (i.e., ‖ρ(·, τ )‖H−1 ≤ ε‖ρ0‖∞
with τ ≤ Cp|log ε|) for any p ∈ [1,∞]. Their method has a more geometric flavor than
ours, but is also centered around flows with a “self-similar” structure, and they are able to
obtain a better control on ρ(·, n) inside the cells Qnij . At the same time, this result only
involves some special solutions and does not apply to general initial conditions. A pa-
per with the proofs of the announced results appeared when the present paper was in
press [2].

Un-mixing for general sets. Our second goal, closely related to the first, concerns the
question of efficient un-mixing by incompressible flows. Here it is natural to consider
(measurable) sets A ⊆ Q and ask how efficiently they can be transported by incompress-
ible flows close to their un-mixed states Ã := (0, |A|) × (0, 1), or equivalently (after
time-reversal), how efficiently the rectangle Ã can be transported close to a desired set A
of the same measure, instead of just being mixed. Hence, this is a more delicate question
than that of mixing, albeit restricted to initial data which are characteristic functions of
sets. We are not aware of previous work in this direction. The somewhat related but quite
different phenomenon of coarsening has been studied before (e.g., in [3, 16, 19]).

Obviously, the time of un-mixing, given the constraint (1.3), will depend on the
scale to which A is mixed. By this we mean the scale ε = 2−n such that most of the
squares Qnij are each mostly contained in A or in Q \ A. Since this scale is given, it
makes little sense to ask whether the flows we construct can be ε-independent. We will
therefore drop (1.3), require the un-mixing to happen in time 1, and try to minimize
supt∈(0,1) ‖∇u(·, t)‖p instead. This is an equivalent question, due to rescaling in time,
and will allow our flows to be p-independent.

Our main un-mixing result, illustrated in Figure 1, is now as follows (with the no-slip
boundary condition, so the other two hold as well).
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2−n

|A|

A

B

At most 22nκ cells {Qnij}2
n−1

i,j=0 have

22n|A ∩Qnij | ∈ (κ, 1− κ)

t = 0 t = 1

u

{

}

Fig. 1. An illustration of un-mixing from Theorem 1.6.

Theorem 1.6. There is C > 0 such that for any measurable A ⊆ Q, n ≥ 0, and
κ ∈ (0, 1/2], the following holds. If at most 22nκ of the squares {Qnij }

2n−1
i,j=0 satisfy

22n
|A ∩Qnij | ∈ (κ, 1 − κ), then there is an incompressible flow u : Q × (0, 1) → R2

with u = 0 on ∂Q× (0, 1) and

sup
t∈(0,1)

‖∇u(·, t)‖p ≤ Cκ
−1+1/pn2−1/p for each p ∈ [1,∞] (1.4)

such that if ρ solves (1.1) and ρ(·, 0) = χA, then the set B for which ρ(·, 1) = χB
satisfies

|B ∩ [(0, |A|)× (0, 1)]| ≥ |A| − 2κ.

Remarks. 1. By ρ solving (1.1) we mean that ρ(·, t) := χS(t) with S(t) := {X(x,y)(t) :
(x, y) ∈ A} and X(x,y) solving X′(x,y)(t) = u(X(x,y)(t), t) and X(x,y)(0) = (x, y).

2. When (1.4) is replaced by supt∈(0,1) ‖u(·, t)‖BV ≤ Cn, this also holds for κ = 0
and the no-flow boundary condition u · n = 0 on ∂Q× (0, 1) (see the end of the proof).

3. Scaling of u in time (which is different for different p) shows that if we re-
quire supt∈(0,τ ) ‖∇u(·, t)‖p ≤ 1, then the time τ of the above un-mixing satisfies τ ≤
Cκ−1+1/pn2−1/p. That is, if A is mixed to scale ε but not much more (in the sense of
Theorem 1.6), it can be unmixed in time O(|log ε|2−1/p).

4. Similarly to the case of mixing, the “self-similar” structure of the flows we construct
shows that Theorem 1.6 holds with (1.4) replaced by supt∈(0,1) ‖u(·, t)‖Ẇ s,p ≤ Cs,p,κ
when s ∈ [0, 1) (i.e., the bound is independent of the scale 2−n). Notice that for any
κ > 0, any measurable set A ⊆ Q satisfies the hypotheses of the theorem for all large
enough n.

Finally, here is an interesting corollary of our construction of un-mixing flows, related
to the last remark. It shows that for s < 1/p, a rectangle can be transformed into any
measurable set of the same measure in finite time by an incompressible flow which is
uniformly in time bounded in Ẇ s,p(Q) and satisfies the no-flow boundary condition (it
also has bounded variation, so that (1.1) is well-posed). Notice that there are no errors
and no κ here.
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Corollary 1.7. For any s < 1/p there is Cs,p <∞ such that for any measurable A ⊆ Q
there is an incompressible flow u : Q × (0, 1) → R2 with u · n = 0 on ∂Q × (0, 1),
satisfying supt∈(0,1−δ) ‖u(·, t)‖BV <∞ for any δ > 0 and

sup
t∈(0,1)

‖u(·, t)‖Ẇ s,p ≤ Cs,p, (1.5)

such that if ρ solves (1.1) and ρ(·, 0) = χ{0<x<|A|}, then limt→1 ‖ρ(·, t)− χA‖1 = 0.

Organization of the paper. Theorem 1.2(1) is proved in Sections 2 and 3, and its
parts (2) and (3) are proved in Section 4. Section 2 contains the simplest version of
our method of construction of mixing flows, which only works for p < 2. The cases
p ∈ [2, (3+

√
5)/2) and p ∈ [(3+

√
5)/2,∞], treated in Sections 3 and 4, are progres-

sively more complicated. However, in a remark at the beginning of Section 4 we provide,
for the convenience of the reader, a relatively simple extension of the argument from Sec-
tion 2 which treats all p ∈ [1,∞] (as well as other boundary conditions), although the
bounds obtained are worse than in Theorems 1.2–1.4.

The proofs of Theorems 1.3 and 1.4 appear in Section 5. The un-mixing results are
then proved in Section 6, which only uses results from Section 2 (it is also closely related
to the above-mentioned remark in Section 4). Some technical lemmas are left for the
Appendix.

2. Perfect mixing for no-flow boundary conditions and p < 2

In this section, we will start with the simplest case, p < 2 (plus the no-flow boundary
condition u ·n = 0 on ∂Q), and show that the lower bound Cp,κ |log ε| on the mixing time
obtained by Crippa and De Lellis [7] is in fact attainable for these p. In the next section
we will extend this result to all p < (3+

√
5)/2. We note that the flows we construct in

this and the next section will in fact yield
´
Qnij

ρ(x, y, t) dx dy = 0 for any t ≥ n and
i, j ∈ {0, . . . , 2n − 1}. This is what “perfect mixing” in the sections’ titles refers to.

We start with the construction of two stream functions ψ and η, which will serve as
the basic building blocks for the subsequent construction of our flow u.

Construction of the stream functions. Let Q̄c := [0, 1]2 \ {(0, 0), (0, 1), (1, 0), (1, 1)}
be the closed square without the corners and let ∂Qc := ∂Q∩Q̄c be its boundary without
the corners. For a stream function ψ ∈ C(Q), denote ∇ψ := (ψx, ψy) and ∇2ψ :=

(ψxx, ψxy, ψyx, ψyy). If the level set {ψ = s} is a simple closed curve, we define

Tψ (s) :=

ˆ
{ψ=s}

1
|∇ψ |

dσ.

Notice that then Tψ (s) equals the time a particle advected by the (incompressible) flow

u = ∇⊥ψ := (−ψy, ψx)

traverses the curve {ψ = s}. If the level set is a point, we let Tψ (s) := lims′→s Tψ (s
′),

provided the (one-sided) limit exists.
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Proposition 2.1. There exists a stream function ψ ∈ C(Q̄), with ∇ψ continuous on Q̄c

and differentiable on Q \ {(1/2, 1/2)}, such that:

(1) ψ > 0 on Q, ψ = 0 on ∂Q, ∇ψ ∈ L∞(Q), and ∂nψ = −4 on ∂Qc;
(2) ∇2ψ ∈ Lp(Q) for all p ∈ [1, 2);
(3) the level set {ψ = s} for each s ∈ [0, ‖ψ‖∞) is a simple closed curve and for

s = ‖ψ‖∞ it is the point (1/2, 1/2), and Tψ (s) = 1 for each s ∈ [0, ‖ψ‖∞].

We will obtain ψ by modifying the stream function ϕ from the following lemma, which
satisfies (1) and (2), but not (3). The proof of the lemma is elementary but a little tedious,
so we postpone it to the Appendix.

Lemma 2.2. The function

ϕ(x, y) :=
4
π

sin(πx) sin(πy)
sin(πx)+ sin(πy)

(2.1)

on Q̄ (defined to be 0 at the four corners) satisfies:

(1) ϕ > 0 on Q, ϕ = 0 on ∂Q, ∇ϕ ∈ L∞(Q) and ∂nϕ = −4 on ∂Qc;
(2) ∇2ϕ ∈ Lp(Q) for all p ∈ [1, 2);
(3) the level set {ϕ = s} for each s ∈ [0, 2/π) is a simple closed curve and for s = 2/π

it is the point (1/2, 1/2), and sups∈[0,2/π ] Tϕ(s) <∞ and Tϕ(0) = 1;
(4) Tϕ is differentiable on (0, 2/π) and sups∈(0,2/π) |log s|−1

|T ′ϕ(s)| sup{ϕ=s} |∇ϕ|
2<∞.

Proof of Proposition 2.1. With ϕ from Lemma 2.2, we let

ψ(x, y) :=

ˆ ϕ(x,y)

0
Tϕ(s) ds, (2.2)

so that ϕ and ψ share their level sets (although their values are different) and

∇ψ(x, y) = Tϕ(ϕ(x, y))∇ϕ(x, y). (2.3)

The properties of ∇ψ and (1) now follow from the definition of ϕ and Lemma 2.2(1, 3).
Since from (2.3) we have

|∇
2ψ | ≤ |∇2ϕ|Tϕ(ϕ(x, y))+ |∇ϕ|

2
|T ′ϕ(ϕ(x, y))|, (2.4)

(2) holds due to (for some C <∞)

1
C

ˆ
Q

(|∇ϕ|2|T ′ϕ(ϕ)|)
p dx dy ≤

ˆ
Q

|logϕ|2 dx dy (by p < 2 and Lemma 2.2(4))

=

ˆ 2/π

0
|log s|2

ˆ
{ϕ=s}

1
|∇ϕ|

dσ ds (by the co-area formula)

=

ˆ 2/π

0
|log s|2Tϕ(s) ds <∞ (by Lemma 2.2(3)).
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Finally, if F(s) :=
´ s

0 Tϕ(s
′) ds′ (and F−1 is its inverse function), then Lemma 2.2(3)

and
Tψ (s) =

ˆ
{ψ=s}

1
|∇ψ(s)|

ds =

ˆ
{ϕ=F−1(s)}

1
|∇ϕ| Tϕ(F−1(s))

dσ = 1

yield (3). ut

Let Q̄cc := Q̄c \ {(1/2, 0), (1/2, 1), (0, 1/2), (1, 1/2), (1/2, 1/2)} be Q̄ without the nine
corners and centers of Q and its sides, and let ∂Qcc := ∂Q ∩ Q̄cc. Besides ψ from
Proposition 2.1, we will need the following stream function η (which satisfies ∇η = ∇ψ
on ∂Qcc).

Proposition 2.3. There exists a stream function η ∈ C(Q̄), with ∇η continuous on Q̄cc

and differentiable on Q \ ({x = 1/2} ∪ {y = 1/2} ∪ {x + y = 1/2} ∪ {x + y = 3/2}),
such that:

(1) η = 0 on ∂Q ∪ {x = 1/2} ∪ {y = 1/2}, ∇η ∈ L∞(Q), and ∂nη = −4 on ∂Qcc;
(2) ∇2η ∈ Lp(Q) for all p ∈ [1, 2).

Proof. Decompose Q into two squares and four triangles, separated by the lines {x =
1/2}, {y = 1/2}, {x + y = 1/2}, {x + y = 3/2} (see Figure 2). On the two squares Q3
and Q4, we let η(x, y) = 1

2ψ(2(x − x0), 2(y − y0)), where ψ is from Proposition 2.1,
and (x0, y0) is the lower left corner of Q3 and Q4, respectively.

Q4

Q3
Q1

Q2

Q5

Q6

Fig. 2. The decomposition of Q from the construction of η.

On Q1 we let

η(x, y) = 4
(

1
x
+

1
y
+

√
2

1/2− x − y

)−1

. (2.5)

One can easily check that η = 0 on ∂Q1 and ∂nη = −4 on ∂Q1 (except at the corners).
Differentiation yields ∇η ∈ L∞(Q1) and d∇2η ∈ L∞(Q1), where the function d is the
distance from the closest corner of Q1. It follows that ∇2η ∈ Lp(Q1) for all p ∈ [1, 2).

Finally, in Q2 we define η by odd reflection across {x + y = 1/2} from Q1 (in
particular, ∇η is then continuous on ∂Q2), and in Q5 ∪ Q6 by even reflection across
{x + y = 1} from Q1 ∪Q2. The desired properties of η on Q then follow immediately
from the above properties of η on Q1 and the properties of ψ . Note also that η > 0 on
Q1 ∪Q3 ∪Q4 ∪Q6 (white in Figure 2) and η < 0 on Q2 ∪Q5 (shaded in Figure 2). ut

Construction of the mixing flows. We are now ready to prove our first mixing result.
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Theorem 2.4. For any mean-zero ρ0 ∈ L
∞(Q), there is an incompressible u : Q× R+

→ R2 with u · n = 0 on ∂Q × R+ such that for any κ, ε ∈ (0, 1/2], the flow u κ-mixes
ρ0 to scale ε in a time τκ,ε satisfyingˆ τκ,ε

0
‖∇u(·, t)‖p dt ≤ Cp|log(κε)| (2.6)

for each p ∈ [1, 2), with Cp <∞ depending only on p.

Proof. We will construct a flow as above with supt>0 ‖∇u(·, t)‖p ≤ C′p for each p ∈
[1, 2) (and C′p < ∞ depending only on p), such that

´
Qnij

ρ(x, y, n) dx dy = 0 at any
integer time n and any i, j ∈ {0, . . . , 2n − 1}. The theorem then immediately follows by
taking τκ,ε := d|log2(κε)|e + 2, with Cp such that Cp log r ≥ C′p(dlog2 re + 2) for all
r ≥ 4. This is because it is easily shown that for n := τκ,ε and any (x, y) ∈ Q, the squares
Qnij which are fully contained in Bε(x, y) ∩ Q have total area ≥ (1 − κ)|Bε(x) ∩ Q|.
Hence it remains to construct such a flow.

Obviously,
´
Qnij

ρ(x, y, n) dx dy = 0 for n = 0 and all i, j (that is, i, j = 0 when
n = 0) because ρ0 is mean-zero. We will now proceed inductively, assuming this property
holds for some (fixed from now on) n ≥ 0 and constructing the flow u on the time interval
[n, n+ 1] so that it also holds for n+ 1.

For any square Qnij , and for all t ∈ (n, tnij ] (with tnij ∈ [n, n + 1/2] to be deter-
mined), let u in Qnij be the “cellular” flow

u(x, y, t) = ∇⊥[(−1)i+j2−2nψ(2nx − i, 2ny − j)]. (2.7)

Proposition 2.1(3) and symmetry tells us that this flow rotates each Qnij by 180◦ by
time n + 1/2. So if Q′nij and Q′′nij are the left and right halves of Qnij , the hypothesis´
Qnij

ρ(x, y, n) dx dy = 0 and continuity of
´
Q′nij

ρ(x, y, t) dx dy in t show that for each

Qnij there exists tnij ∈ [n, n + 1/2] such that
´
Q′nij

ρ(x, y, tnij ) dx dy = 0. Of course,

then also
´
Q′′nij

ρ(x, y, tnij ) dx dy = 0.

For t ∈ (tnij , n+ 1/2], we let u in Qnij be the “time-wasting” flow (see Figure 3)

u(x, y, t) = ∇⊥[(−1)i+j2−2nη(2nx − i, 2ny − j)]. (2.8)

Proposition 2.3(1) shows that this flow does not cross ∂Q′nij and ∂Q′′nij , hence
ˆ
Q′nij

ρ(x, y, n+ 1/2) dx dy = 0 =
ˆ
Q′′nij

ρ(x, y, n+ 1/2) dx dy.

The flow for t ∈ (n + 1/2, n + 1] is constructed in the same fashion, but with the
role ofQnij played by bothQ′nij andQ′′nij . That is, we decomposeQ into 22n+1 identical

rectangles Q̃nij := (2−(n+1)i, 2−(n+1)(i+ 1))× (2−nj, 2−n(j + 1)), so that by the above´
Q̃nij

ρ(x, y, n+ 1/2) dx dy = 0 for each of them. In each Q̃nij we let

u(x, y, t) =

{
∇
⊥
[(−1)i+j2−(2n+1)ψ(2n+1x − i, 2ny − j)], t ∈ (n+ 1/2, t̃nij ],

∇
⊥
[(−1)i+j2−(2n+1)η(2n+1x − i, 2ny − j)], t ∈ (t̃nij , n+ 1],
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Fig. 3. The mixing flow in four adjacent squares, as the cellular flow (left) is switched to the time-
wasting flow (right) in one of them at tnij ∈ [n, n+ 1/2].

where t̃nij ∈ [n + 1/2, n + 1] is such that
´
Q̃′nij

ρ(x, y, t̃nij ) dx dy = 0, with Q̃′nij
the lower half of Q̃nij . It follows that

´
Q(n+1)ij

ρ(x, y, n + 1) dx dy = 0 for any i, j ∈
{0, . . . , 2n+1

− 1} and the induction step is completed.
Finally, u is obviously incompressible and satisfies the no-flow condition on ∂Q.

Moreover, for t ∈ (n, n + 1/2], u is continuous on all of Q except at the corners and
centers of the squares Qnij and the centers of their sides. This is because Propositions
2.1(1) and 2.3(1), and the factor (−1)i+j , show that each couple of neighboring squares
have the same velocity (of magnitude 4 · 2−n) on their common boundary (except at its
center). Since ‖∇u(·, t)‖pLp(Qnij ) is clearly either 2−2n

‖∇
2ψ‖

p

Lp(Q) or 2−2n
‖∇

2η‖
p

Lp(Q)

for each Qnij and each t ∈ (n, n + 1/2], it follows that ‖∇u(·, t)‖p is between ‖∇2ψ‖p
and ‖∇2η‖p for these t . A similar argument applies to t ∈ (n+1/2, n+1], with the speeds
being 21−n and 22−n on the horizontal and vertical boundaries of the Q̃nij , respectively.
Thus supt>0 ‖∇u(·, t)‖p ≤ C′p := 2 max{‖∇2ψ‖p, ‖∇

2η‖p}, and Propositions 2.1(2)
and 2.3(2) yield C′p <∞ for p < 2. ut

Remark. Related to the above construction is an example from [8] of a self-similar flow
which rotates squares with an exponentially decreasing sequence of sizes and has BV
norm bounded on time intervals not containing t = 0, for which the associated transport
equation exhibits non-uniqueness of solutions to the Cauchy problem.

3. Perfect mixing for no-flow boundary conditions and p < (3+
√

5)/2

For p ≥ 2 we can no longer directly use the stream functions ψ, η from the last section
since ∇2ψ,∇2η /∈ L2(Q). This is because |∇2ϕ(x, y)| (with ϕ from Lemma 2.2) is
inversely proportional to the distance from (x, y) to the nearest corner of Q, and |∇2η|

diverges in the same manner near each of the nine points in Figure 2. We will therefore
modify ϕ, η near their respective problematic points to circumvent this issue, and then
adjust ψ accordingly. Notice that this means that we also need to modify ϕ near the four
centers of the sides of Q, to match a cellular and a time-wasting flow in two neighboring
cells.
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Lemma 3.1. Let P be the set containing the four corners of Q and the four centers of
its sides, and let dP (x, y) := dist((x, y), P ) for (x, y) ∈ Q̄. Let f ∈ C∞(R+0 ) be a
non-decreasing function with f (s) = 5s for s ∈ [0, 1/10] and f (s) = 1 for s ≥ 1/5.
Let

ϕa(x, y) = ϕ(x, y)f (dP (x, y))
a, (3.1)

where ϕ is from (2.1). If a ∈ (0, 1], then ϕa satisfies:

(1) ϕa > 0 on Q, ϕa = 0 on ∂Q, ∇ϕa ∈ L∞(Q), and ∂nϕa = −4f (dP (x, y))a on ∂Qc;
(2) ∇2ϕa ∈ L

p(Q) for a ∈ (0, 1) and all p ∈ [1, 2/(1− a)), and ∇2ϕ1 ∈ L
∞(Q);

(3) the level set {ϕa = s} for each s ∈ [0, 2/π) is a simple closed curve and for s = 2/π
it is the point (1/2, 1/2), and for a ∈ (0, 1) we have sups∈[0,2/π ] Tϕa (s) <∞;

(4) Tϕa is differentiable on (0, 2/π) and sups∈(0,2/π) s
2a/(a+1)

|T ′ϕa (s)| sup{ϕa=s} |∇ϕa|
2

<∞.

Figure 4 shows a comparison of the level sets of ϕ and ϕa . Just as with Lemma 2.2, we
postpone the proof of Lemma 3.1 to the Appendix. Once we have ϕa , we can proceed as
in Proposition 2.1 and define a corresponding stream function ψa whose period Tψa (s)
is 1 for each level set {ψa = s}.

Fig. 4. Level sets of ϕ (left) and of ϕa with a = 0.9 (right).

Proposition 3.2. For any a ∈ (0, 1) and ϕa from (3.1), let

ψa(x, y) :=

ˆ ϕa(x,y)

0
Tϕa (s) ds. (3.2)

Then ψa ∈ C(Q̄), ∇ψa is continuous on Q̄c and differentiable on Q \ {(1/2, 1/2)}, and:

(1) ψa > 0 on Q, ψa = 0 on ∂Q, ∇ψa ∈ L∞(Q), and

∂nψa(x, y) = −4Tϕa (0)f (dP (x, y))
a for (x, y) ∈ ∂Qc;

(2) ∇2ψa ∈ L
p(Q) for all p ∈

[
1,min

{ 2
1−a ,

a+1
2a

})
;

(3) the level set {ψa = s} for each s ∈ [0, ‖ψ‖∞) is a simple closed curve and for
s = ‖ψa‖∞ it is the point (1/2, 1/2), and Tψa (s) = 1 for each s ∈ [0, ‖ψa‖∞].
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Proof. The properties of ∇ψa and (1) are immediate from Lemma 3.1(1, 3) and

∇ψa(x, y) = ∇ϕa(x, y) Tϕa (ϕa(x, y)). (3.3)

The proof of (3) is identical to that of Proposition 2.1(3). Finally, differentiating (3.3)
yields

|∇
2ψa| ≤ |∇

2ϕa| Tϕa (ϕa(x, y))︸ ︷︷ ︸
=:A(x,y)

+ |∇ϕa|
2
|T ′ϕa (ϕa(x, y))|︸ ︷︷ ︸
=:B(x,y)

. (3.4)

By Lemma 3.1(2, 3) we have A ∈ Lp(Q) for p < 2/(1− a). Lemma 3.1(1,3,4) and the
co-area formula show for any p < (a + 1)/(2a) and some C <∞ (depending on p, a),

1
C

ˆ
Q

Bp dx dy ≤

ˆ
Q

ϕ
−

2ap
a+1

a dx dy =

ˆ 2/π

0
s−

2ap
a+1

ˆ
{ϕa=s}

1
|∇ϕa|

dσ ds

=

ˆ 2/π

0
s−

2ap
a+1 Tϕa (s)ds <∞.

Hence B ∈ Lp(Q) for these p, and (2) also follows. ut

We next define a time-wasting flow ηa with ∇ηa = ∇ψa on ∂Qcc.

Proposition 3.3. For any a ∈ (0, 1), there exists a stream function ηa ∈ C(Q̄), with ∇ηa
continuous on Q̄cc and differentiable on Q \ ({x = 1/2} ∪ {y = 1/2} ∪ {x + y = 1/2} ∪
{x + y = 3/2}), such that:

(1) ηa = 0 on ∂Q ∪ {x = 1/2} ∪ {y = 1/2}, ∇ηa ∈ L∞(Q), and ∂nηa(x, y) =
−4Tϕa (0)f (dP (x, y))

a for (x, y) ∈ ∂Qcc;
(2) ∇2ηa ∈ L

p(Q) for all p ∈ [1, 2/(1− a)).

Proof. Let η be from Proposition 2.3, P̃ := P ∪ {(1/2, 1/2)} (with P from Lemma 3.1),
and

ηa(x, y) := Tϕa (0)η(x, y)f (dP̃ (x, y))
a

for (x, y) ∈ Q. Then all the claims follow from the same properties for η (with (2) proved
as Lemma 3.1(2)). ut

We can now repeat the proof of Theorem 2.4, this time using the stream functions
ψa, ηa instead of ψ, η. Proposition 3.2(2) suggests to pick a ∈ (0, 1) which maximizes
min

{ 2
1−a ,

a+1
2a

}
, that is, a :=

√
5 − 2. Then 2

1−a =
a+1
2a =

3+
√

5
2 , and we obtain the

following improvement of Theorem 2.4, with ∇u(·, t) ∈ Lp(Q) for all p < (3+
√

5)/2.

Theorem 3.4. Theorem 2.4 holds with p ∈ [1, 2) replaced by p ∈ [1, (3+
√

5)/2).

Remark. In fact, since we take a =
√

5−2 for all p ∈ [1, (3+
√

5)/2), the proof shows
that our flow u is independent of p ∈ [1, (3+

√
5)/2), in addition to being independent

of κ, ε ∈ (0, 1/2].
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4. Mixing for no-flow boundary conditions and p ≥ (3+
√

5)/2

For p ≥ (3+
√

5)/2, the construction from the previous section does not work because
of the behavior of ∇2ψa at ∂Q. Indeed, the term |∇2ϕa| on the right-hand side of (3.4)
blows up as dP (x, y)a−1 (with dP from Lemma 3.1) near the set P by (A.10), while
|T ′ϕa (s)| ∼ s−2a/(a+1) at s = 0 (i.e., near ∂Q) by Lemma 3.1(4). For both these to be
inLp, one needs (1−a)p < 2 and 2a

a+1p < 1, but such a exists only for p < (3+
√

5)/2.
A solution to this problem is to “give up” on a small neighborhood of ∂Q, and not

require the period of our stream functions to be 1 on the stream lines with s . δ, for some
δ > 0. (The affected region will have area ∼ δ. We can then choose δ ∼ κ|log(κε)|−1,
so a flow analogous to that from the proof of Theorem 2.4 will still κ-mix ρ0 to scale ε in
time ∼ |log(κε)|, although the bound on ‖∇u(·, t)‖p will now also depend on δ.)

Remark. The easiest way of doing so is by replacing in the proof of Theorem 2.4 the
stream functions ψ and η by ψδ(x, y) := ψ(x, y)f (ψ(x, y)/δ) and 0, with δ > 0 small
and f from Lemma 3.1. Then ∇⊥ψδ = 0 on ∂Q (which is why we do not need a time-
wasting flow), and properties of ϕ,ψ show that supδ>0 δ

1−1/p
‖∇

2ψδ‖p < ∞ for all
p ∈ [1,∞] (see the proof of Lemma 6.1). Notice that now we have Tψδ (s) = 1 for
s ≥ δ because ψδ = ψ on Dδ := {ψ > δ} (with |Q \ Dδ| ≤ Cδ). The times tnij ∈
[n, n + 1/2] (and similarly t̃nij ) are now chosen so that

´
Q′nij∩Dnij

ρ(x, y, tnij ) dx dy =´
Q′′nij∩Dnij

ρ(x, y, tnij ) dx dy, withDnij ⊆ Qnij being the image ofDδ under the transla-
tion + dilation taking Q to Qnij (so |Dnij | ≥ (1− Cδ)2−2n). This yields∣∣∣∣ˆ

Q′nij

ρ(x, y, n+ 1/2) dx dy −
1
2

ˆ
Qnij

ρ(x, y, n) dx dy

∣∣∣∣ ≤ Cδ2 2−2n
‖ρ0‖∞,

and eventually |
ffl
Qnij

ρ(x, y, n) dx dy| ≤ 4Cnδ‖ρ0‖∞ via induction on n (the details of
this argument are spelled out in the proof of Theorem 4.3). Choosing again n = τκ,ε ∼
|log(κε)| and then δ ∼ κ/n yields κ-mixing to scale ε in time τκ,ε by a flow u with
supt>0 ‖∇u(·, t)‖p ≤ Cp(|log(κε)|/κ)1−1/p. It follows that Theorem 2.4 holds (for all
p ∈ [1,∞] and any of our three boundary conditions) with the right-hand side of (2.6)
being Cpκ−1+1/p

|log(κε)|2−1/p. We will now show how to improve this estimate for
no-flow boundary conditions, and also make the power of |log(κε)| converge to 1 as
p ↓ (3+

√
5)/2, in two steps. In Section 5 we treat the other boundary conditions.

For the sake of simplicity, let us start with the case p = ∞.

Proposition 4.1. For any a ∈ (0, 1), δ ∈ (0, 1/10), there is a stream function ψa,δ ∈
C(Q̄), with ∇ψa,δ continuous on Q̄c and differentiable on Q \ {(1/2, 1/2)}, such that:

(1) ψa,δ > 0 on Q, ψa,δ = 0 on ∂Q, ∇ψa,δ ∈ L∞(Q), and ∂nψa,δ(x, y) =

−Na,δ(dP (x, y)) for (x, y) ∈ ∂Qc, for some function Na,δ : [0, 1/4] → [0,∞);
(2) supδ∈(0,1/10) δ

max{1−a,2a}/(a+1)
‖∇

2ψa,δ‖∞ <∞ for each a ∈ (0, 1);
(3) there exists sa,δ > 0 with |{ψa,δ < sa,δ}| ≤ δ such that the level set {ψa,δ = s} for

each s ∈ [sa,δ, ‖ψa,δ‖∞) is a simple closed curve and for s = ‖ψa,δ‖∞ it is the point
(1/2, 1/2), and Tψa,δ (s) = 1 for each s ∈ [sa,δ, ‖ψa,δ‖∞].
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Proof. For any a ∈ (0, 1) and δ ∈ (0, 1/10), let Da,δ := {(x, y) ∈ Q : ϕa(x, y) > δ}

with ϕa from Lemma 3.1. All constants below may depend on a but not on δsgiv, unless
specified.

The co-area formula and Lemma 3.1(3) give, for some C <∞,

|Q \Da,δ| =

ˆ δ

0

ˆ
{ϕa=s}

1
|∇ϕa|

dσ ds =

ˆ δ

0
Tϕa (s) ds ≤ Cδ, (4.1)

and by (A.9) we also see for some c > 0 that da,δ := cδ1/(a+1) satisfies

da,δ ≤ inf
(x,y)∈Da,δ/2

dP (x, y) (< 1). (4.2)

With f from Lemma 3.1, we now let

ϕa,δ(x, y) := ϕa(x, y)f (dP (x, y)/da,δ)
1−a, (4.3)

so that ϕa,δ = ϕa when dP (x, y) ≥ 1
5da,δ (and in particular, on Da,δ/2). Since

ϕa,δ(x, y) = 5da−1
a,δ ϕ(x, y)dP (x, y) = 5da−1

a,δ ϕ1(x, y)

when dP (x, y) ≤ 1
10da,δ , from (A.10) for a = 1 we obtain |∇2ϕa,δ(x, y)| ≤ Cda−1

a,δ

(for some C < ∞) when dP (x, y) ≤ 1
10da,δ . The same bound holds when dP (x, y) ∈( 1

10da,δ,
1
5da,δ

)
, due to (3.1), (A.9), and (A.10). From this and (A.10) for a, it follows that

for some C <∞ (that changes between inequalities) and all (x, y) ∈ Q,

|∇
2ϕa,δ(x, y)| ≤ Cmin{dP (x, y)a−1, da−1

a,δ } ≤ Cmin{dP (x, y)a−1, δ(a−1)/(a+1)
}.

(4.4)
Note also that ∂nϕa,δ(x, y) = −4f (dP (x, y))af (dP (x, y)/da,δ)1−a on ∂Qc. For later use
we also mention that (4.3), Lemma 3.1(1), and ϕ(x, y)d−1

a,δ ≤
1
5‖∇ϕ‖∞ for dP (x, y) <

1
5da,δ yield

sup
δ∈(0,1/10)

‖∇ϕa,δ‖∞ <∞. (4.5)

We now construct a new stream functionψa,δ by making the periods of all streamlines
of ϕa,δ contained in Da,δ (where ϕa,δ = ϕa) to be 1. We let

Ta,δ(s) :=

{
Tϕa (δ), s ∈ [0, δ/2],
Tϕa (s), s ∈ [δ, 2/π ],

and choose Ta,δ on (δ/2, δ) so that Ta,δ is differentiable on (0, 2/π),

sup
s≤δ

|Ta,δ(s)− Ta,δ(δ)| ≤ Ta,δ(δ)/2 and sup
s≤δ

|T ′a,δ(s)| ≤ |T
′
ϕa
(δ)|. (4.6)

(We could have instead chosen Ta,δ(s) = Tϕa (δ) for s ∈ [0, δ), at the expense of ∇ψa,δ
not being differentiable on the stream line {ϕa = δ}. This would not change our main
results.) We now define

ψa,δ(x, y) :=

ˆ ϕa,δ(x,y)

0
Ta,δ(s) ds.
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The properties of ∇ψa,δ and (1) immediately follow from the properties of ϕa and f , with
Na,δ(r) := 4f (r)af (r/da,δ)1−aTϕa (δ). Part (3) holds with sa,δ :=

´ δ
0 Ta,δ(s) ds and the

estimate |{ψa,δ < sa,δ}| ≤ Cδ (which is sufficient because then one only needs to replace
ψa,δ by ψa,δ/C), due to (4.1) and because ψa,δ − ψa is constant on Da,δ = {ψa,δ > sa,δ}

(since ϕa,δ = ϕa there).
To show (2), notice that on Da,δ/2 we have, by (A.10), Lemma 3.1(3, 4), (4.6),

and (4.2),

|∇
2ψa,δ| ≤ |∇

2ϕa|Ta,δ(ϕa(x, y))+ |∇ϕa|
2
|T ′a,δ(ϕa(x, y))|

≤ CdP (x, y)
a−1
+ Cϕa(x, y)

−2a/(a+1)
≤ Cδ−max{1−a,2a}/(a+1),

where C <∞ changes between inequalities. On Q \Da,δ/2 we have ψa,δ = Ta,δ(δ)ϕa,δ ,
so (4.4) and Lemma 3.1(3) yield |∇2ψa,δ| ≤ Cδ(a−1)/(a+1) there. These two estimates
prove (2). ut

We also define the time-wasting flow corresponding to ψa,δ .

Proposition 4.2. For any a ∈ (0, 1) and δ ∈ (0, 1/10), there is a stream function ηa,δ ∈
C(Q̄), with ∇ηa,δ continuous on Q̄cc and differentiable on Q \ ({x = 1/2} ∪ {y = 1/2}
∪ {x + y = 1/2} ∪ {x + y = 3/2}), such that:

(1) ηa,δ = 0 on ∂Q ∪ {x = 1/2} ∪ {y = 1/2}, ∇ηa,δ ∈ L∞(Q), and ∂nηa,δ(x, y) =
−Na,δ(dP (x, y)) for (x, y) ∈ ∂Qcc, with the function Na,δ from Proposition 4.1;

(2) supδ∈(0,1/10) δ
max{1−a,2a}/(a+1)

‖∇
2ηa,δ‖∞ <∞.

Proof. Let
ηa,δ(x, y) := ηa(x, y)f (dP (x, y)/da,δ)

1−aTϕa (δ),

where da,δ is from the previous proof. Then (1) follows from Proposition 3.3(1) and the
definition of Na,δ , and (2) is proved as Proposition 4.1(2). ut

Next, let us first obtain a weaker result for p = ∞, with a ∼ |log(κε)|3/2 bound. After-
wards, we will include an additional element to improve the bound to ∼ |log(κε)|4/3 =
|log(κε)|1+ν∞ .

Theorem 4.3. For any mean-zero ρ0 ∈ L
∞(Q) and any κ, ε ∈ (0, 1/2], there is an

incompressible flow u : Q× R+→ R2 with u · n = 0 on ∂Q× R+ which κ-mixes ρ0 to
scale ε in a time τκ,ε satisfying

ˆ τκ,ε

0
‖∇u(·, t)‖∞ dt ≤ Cκ

−1/2
|log(κε)|3/2, (4.7)

with a universal C <∞. The flow can be made independent of ε if the right-hand side of
(4.7) is replaced by Cκ−1/2

|log(κε)|3/2 log |log(κε)|.

Proof. Let a := 1/3 (which minimizes the power in Proposition 4.1(2), to 1/2), fix
some δ ∈ (0, 1/10) (to be chosen later), and let ψa,δ, ηa,δ be the corresponding stream
functions from Propositions 4.1 and 4.2. The construction of u is now almost identical
to the proof of Theorem 2.4, with ψ, η replaced by ψa,δ, ηa,δ . The one change is that
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Proposition 4.1(3) only guarantees for each n and any squareQnij (withQ′nij ,Q
′′

nij its left
and right halves) existence of tnij ∈ [n, n+1/2] such that

´
Q′nij∩Dnij

ρ(x, y, tnij ) dx dy =´
Q′′nij∩Dnij

ρ(x, y, tnij ) dx dy, with the set Dnij ⊆ Qnij such that |Dnij | ≥ (1 − δ)2−2n

(in fact,Dnij is the image of the setDa,δ = {ψa,δ > sa,δ} under the translation+ dilation
taking Q to Qnij ). We thus find that∣∣∣∣ˆ

Q′nij

ρ(x, y, n+ 1/2) dx dy −
1
2

ˆ
Qnij

ρ(x, y, n) dx dy

∣∣∣∣ ≤ δ

2
2−2n
‖ρ0‖∞.

A similar adjustment is made when finding the time t̃nij as in the proof of Theo-
rem 2.4. We thus find that for any of the four squares with side length 2−(n+1) which
form Qnij (call it Q̃) we have∣∣∣∣ 

Q̃

ρ(x, y, n+ 1) dx dy −
 
Qnij

ρ(x, y, n) dx dy

∣∣∣∣ ≤ 4δ‖ρ0‖∞. (4.8)

Since ρ0 is mean-zero, it follows by induction on n that∣∣∣∣ 
Qnij

ρ(x, y, n) dx dy

∣∣∣∣ ≤ 4nδ‖ρ0‖∞.

We now construct this flow on the time interval [0, n] with n := τκ,ε :=

d|log2(κε/2)|e + 2 (then it is easily shown that for any (x, y) ∈ Q, the squares Qnij

which are fully contained in Bε(x, y) ∩ Q have total area ≥ (1 − κ/2)|Bε(x) ∩ Q|)
and with δ := κ/(8n), which then obviously κ-mixes ρ0 to scale ε in time τκ,ε. As
in the proof of Theorem 2.4, but using Propositions 4.1(2) and 4.2(2), it follows that
supt∈(0,n] ‖∇u(·, t)‖∞ ≤ C

′δ−1/2 for some universal C′ <∞. This yields the first claim
because C′δ−1/2τκ,ε ≤ Cκ

−1/2
|log(κε)|3/2 for some universal C.

If we instead want the flow to be independent of ε, we use on each time interval
[n, n+ 1] the flows ψ1/3,δn , η1/3,δn , with some δn > 0 to be chosen. We then obtain∣∣∣∣ 

Qnij

ρ(x, y, n) dx dy

∣∣∣∣ ≤ 4‖ρ0‖∞

n−1∑
k=0

δk, (4.9)

and supt∈(n,n+1] ‖∇u(·, t)‖∞ ≤ C
′δ
−1/2
n . We again choose n := τκ,ε := d|log2(κε/2)|e

+ 2, and then δk such that
∑
∞

k=0 δk ≤ κ/8, so that the flow obtained again κ-
mixes ρ0 to any scale ε ∈ (0, 1/2] in time τκ,ε. We now make the specific
choice δk−2 := (κ/M)k−1(log k)−2 for k ≥ 2, with M := 8

∑
∞

k=2 k
−1(log k)−2.

Then the integral in (4.7) is bounded by C′
∑n−1
k=0 δ

−1/2
k , which is no more than

Cκ−1/2
|log(κε)|3/2 log |log(κε)| for some large enough universal C. ut

To achieve better mixing for p = ∞, we will next squeeze some mileage out of the sets
Qnij \Dnij from the previous proof, instead of simply “giving up” on them. To do so, we
first need to obtain an estimate on the periods of the stream lines {ψa,δ = s} for s ≤ δ.
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This will show that even though these periods need not equal 1, most of them are still
close to 1. The following property of ϕa,δ , which we again prove in the appendix, will
yield the estimate.

Lemma 4.4. For any a ∈ (0, 1) and δ ∈ (0, 1/10), the functions ϕa,δ from (4.3) satisfy:

(1) the level set {ϕa,δ = s} for each s ∈ [0, 2/π) is a simple closed curve;
(2) sup0<s≤δ<1/10(δ

(1−a)/(a+1) log(2δ/s))−1
|Tϕa,δ (s)−Tϕa (δ)| <∞ for each a ∈ (0, 1).

We can now prove the final version of our result for p = ∞.

Theorem 4.5. The conclusion of Theorem 4.3 holds with each κ−1/2
|log(κε)|3/2 re-

placed by κ−1/3
|log(κε)|4/3.

Proof. We proceed identically to the proof of Theorem 4.3, but with a slightly different
choice of the times tnij ∈ [n, n+ 1/2] (and also t̃nij ∈ [n+ 1/2, n+ 1]). Let us define

ψ̃a,δ(x, y) :=

ˆ ϕa,δ(x,y)

0
Tϕa,δ (s) ds,

so that Tψ̃a,δ ≡ 1 and ψ̃a,δ −ψa,δ is constant onDa,δ = {ϕa,δ > δ}. The latter means that

if we let u and ũ be given on Qnij × (n, tnij ] by (2.7) with ψa,δ and ψ̃a,δ in place of ψ ,
respectively, then u ≡ ũ on Da,δ . Notice that u is the same as in Theorem 4.3.

Let us now pick, in the proof of Theorem 4.3, the time tnij so that if the flow in Qnij

for t ∈ (n, tnij ] were ũ, then we would have the equality
´
Q′nij

ρ(x, y, tnij ) dx dy =´
Q′′nij

ρ(x, y, tnij ) dx dy. This is possible because ũ rotates Qnij by 180◦ in time 1/2.
Having this new tnij , we still use u to transport ρ for t ∈ (n, tnij ] because∇ũ = ∇2ψ̃a,δ /∈

L∞(Q). This will introduce an error in the above equality of integrals of ρ(·, tnij ) over
Q′nij and Q′′nij , which we estimate by using Lemma 4.4. After doing the same with t̃nij ∈
[n+ 1/2, n+ 1], we eventually still obtain an estimate like (4.8), but with a better bound
(see (4.14) below). This is because Lemma 4.4(2) shows that most stream lines of ψa,δ
lying in Q \Da,δ still have their periods Tψa,δ close to 1.

For the sake of simplicity, assume n = 0 (so Qnij = Q, u = ∇⊥ψa,δ , ũ = ∇⊥ψ̃a,δ ,
and tnij = t000 ∈ [0, 1/2]), since the general case is identical. We have u ≡ ũ on Da,δ ,
and in fact

ũ(x, y) =
Tϕa,δ (ϕa,δ(x, y))

Ta,δ(ϕa,δ(x, y))
u(x, y)

on Q. This and the definition of t000 above (which uses ũ instead of u) mean that if
X(0; x, y) = (x, y) and Xt (t; x, y) = U(X(t; x, y)) with

U(x, y) := t000(ũ(x, y)− u(x, y)) = t000
Tϕa,δ (ϕa,δ(x, y))− Ta,δ(ϕa,δ(x, y))

Ta,δ(ϕa,δ(x, y))
u(x, y),

(4.10)
then ρ solving (1.1) with u (not ũ) satisfiesˆ

Q′
ρ(X(1; x, y), t000) dx dy =

ˆ
Q′′
ρ(X(1; x, y), t000) dx dy,
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(whereQ′,Q′′ are the left and right halves ofQ). We have ∇ ·U ≡ 0 because U(x, y) =
∇
⊥h(ϕa,δ(x, y)) for some function h, so X(1; ·) is measure preserving and henceˆ

X(1;Q′)
ρ(x, y, t000) dx dy =

ˆ
X(1;Q′′)

ρ(x, y, t000) dx dy. (4.11)

We would like to replace X(1;Q′), X(1;Q′′) by Q′,Q′′ here. To control the resulting
error, we need to estimate the size of the symmetric difference of X(1;Q′) and Q′ (see
(4.13) below).

The definition of Ta,δ , Lemma 3.1(3), and (4.5) show that ‖u‖∞ ≤ C for some
δ-independent C < ∞. Since also Ta,δ(ϕa,δ(x, y))−1 is bounded for (x, y) near ∂Q,
uniformly in δ ∈ (0, 1/10) (because ∇ϕa ∈ L∞(Q)), we deduce from (4.10), the defini-
tion of Ta,δ , and Lemma 4.4(2) that

|X(1; x, y)−(x, y)| ≤ Cδ(1−a)/(a+1) log
2δ

ϕa,δ(x, y)
when 0 < ϕa,δ(x, y) ≤ δ < 1/10,

(4.12)
with C independent of δ and (x, y). (Of course, X(1; x, y)=(x, y) when ϕa,δ(x, y)>δ.)

We claim that this shows that if Dl := {2−lδ < ϕa,δ < 21−lδ} for l ≥ 1 (each Dl is
obviously invariant under the flows u, ũ, U ), then

|{(x, y) ∈ Dl : exactly one of (x, y) and X(1; x, y) belongs to Q′}| ≤ cδ2/(a+1)l/2l

(4.13)
for some (δ, l)-independent c <∞.

Assume this is true. Then X(1; ·) being measure preserving and (4.11) show∣∣∣∣ˆ
Q′
ρ(x, y, t000) dx dy −

1
2

ˆ
Q

ρ(x, y, 0) dx dy
∣∣∣∣ ≤ ‖ρ0‖∞cδ

2/(a+1)
∞∑
l=1

l

2l

=: c′δ2/(a+1)
‖ρ0‖∞.

Applying this for any n ≥ 0 and any squareQnij (and then an analogous estimate involv-
ing t̃nij ∈ (n+ 1/2, n+ 1]), as in the proof of Theorem 4.3, we see that if Q̃ is any of the
four squares with side length 2−(n+1) which form Qnij , then∣∣∣∣ 

Q̃

ρ(x, y, n+ 1) dx dy −
 
Qnij

ρ(x, y, n) dx dy

∣∣∣∣ ≤ 8c′δ2/(a+1)
‖ρ0‖∞. (4.14)

As a result, (4.9) now becomes (for mean-zero ρ0)∣∣∣∣ 
Qnij

ρ(x, y, n) dx dy

∣∣∣∣ ≤ 8c′‖ρ0‖∞

n−1∑
k=0

δ
2/(a+1)
k . (4.15)

We can now proceed as in the proof of Theorem 4.3, again with n := τκ,ε :=

d|log2(κε/2)|e + 2. When the flow is allowed to depend on ε, we pick δk := δ :=(
κ

16c′n

)(a+1)/2, which then yields

sup
t∈(0,n]

‖∇u(·, t)‖∞ ≤ C
′δ−max{1−a,2a}/(a+1)

≤ C′′
(
|log(κε)|

κ

)max{1−a,2a}/2
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for some a-dependent C′, C′′ < ∞. We minimize the power (to 1/3) by again choosing
a := 1/3, and the first claim of the theorem follows.

If we want the flow to be independent of ε, all is the same as in Theorem 4.3 but we
need

∑
∞

k=1 δ
2/(a+1)
k ≤ κ/(16c′) instead of

∑
∞

k=1 δk ≤ κ/8. We pick again a := 1/3, so
that δk−2 := ((κ/M)k

−1(log k)−2)2/3 satisfies this when M := 16c′
∑
∞

k=2 k
−1(log k)−2.

Then the integral in (4.7) is bounded by C′
∑n−1
k=0 δ

−1/2
k , which is due to our choice of n

no more than Cκ−1/3
|log(κε)|4/3 log |log(κε)| for some large enough universal C.

It remains to prove (4.13). The stream lines of U are the level sets {ϕa,δ = s}. Each
of them is a simple closed curve, so each “moves” in a single direction. Also, {ϕa,δ = s}
with s < 1/10 intersects {x0} × (0, 1/2) in exactly one point when x0 ∈ [1/4, 3/4]. For
0 < s < s′ < 1/10, let

Ms,s′(x0) := |{ϕa,δ(x, y) ∈ (s, s
′) : X(t; x, y) ∈ {x0} × (0, 1/2) for some t ∈ (0, 1)}|

be the measure of the set of those points between level sets {ϕa,δ = s} and {ϕa,δ = s′}

which cross the segment {x0} × (0, 1/2) during the time interval (0, 1) when advected
by the flow U (by the above, any point can cross at most once). Incompressibility of U
shows that Ms,s′ must be constant on [1/4, 3/4] for each 0 < s < s′ < 1/10. We now
pick s := 2−lδ and s′ := 21−lδ, and notice that the width of Dl near {1/4} × (0, 1/2) is
easily shown to be comparable to 2−lδ. Hence

M2−lδ,21−lδ(1/2) = M2−lδ,21−lδ(1/4) ≤ cδ
(1−a)/(a+1)lδ/2l = cδ2/(a+1)l/2l

by (4.12), with some (δ, l)-independent c < ∞. Since the same bound is obtained if
M2−lδ,21−lδ is defined with (1/2, 1) in place of (0, 1/2), (4.13) follows if we replace c
by 2c. ut

The case p ∈ [(3+
√

5)/2,∞) is almost identical to p = ∞, even simpler in a sense.
We now let

ϕa,δ,p(x, y) = ϕa(x, y) f (dP (x, y)/da,δ)
1−a−2/p(1− log f (dP (x, y)/da,δ))−1

and define ψa,δ,p via ϕa,δ,p as in the proof of Proposition 4.1. That proposition then holds
for ψa,δ,p, with a different bound in (2). Indeed, essentially the same proof yields

‖∇
2ψa,δ,p‖p ≤ Cδ

−max{1−a−2/p,2a−(a+1)/p}/(a+1) for p > (3+
√

5)/2,

where the right-hand side is minimized (to Cδ−(p
2
−3p+1)/(2p2

−p)) when a = (p − 1)/
(3p − 1) (we fix this a from now on). For p = (3+

√
5)/2 we get ‖∇2ψa,δ,p‖p ≤

C|log δ|1/p when a = (p − 1)/(3p − 1) =
√

5− 2.
Lemma 4.4 also holds for p ∈ [(3+

√
5)/2,∞) and a = (p− 1)/(3p− 1), with the

estimate in (2) being

sup
0<s≤δ<1/10

δ−p/(2p−1)
|Tϕa,δ,p (s)− Tϕa (δ)| <∞.
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Notice that there is no s-dependence in the first term when p < ∞, which means that in
the argument from the proof of Theorem 4.5 we do not need to split {ϕa,δ,p ≤ δ} into the
sets Dl anymore. That argument (which also uses the proof of Theorem 4.3) then yields∣∣∣∣ 

Qnij

ρ(x, y, n) dx dy

∣∣∣∣ ≤ 8c′‖ρ0‖∞

n−1∑
k=0

δ
(3p−1)/(2p−1)
k .

instead of (4.15) (notice that 1 + p
2p−1 =

3p−1
2p−1 replaces 1 + 1−a

a+1 =
2
a+1 ).

Then the end of the proof of Theorem 4.5 (before the proof of (4.13)) has δ2/(a+1)
k

and δ−1/2
k replaced by δ(3p−1)/(2p−1)

k and δ−(p
2
−3p+1)/(2p2

−p)
k , respectively (the latter

is |log δk|1/p when p = (3+
√

5)/2). We therefore pick δk :=
(

κ
16c′n

)(2p−1)/(3p−1)

(or δk−2 := ((κ/M)k−1(log k)−2)(2p−1)/(3p−1) in the ε-independent case, with M :=
16c′

∑
∞

k=2 k
−1(log k)−2), and obtain the following.

Theorem 4.6. For any mean-zero ρ0 ∈ L
∞(Q) and any κ, ε ∈ (0, 1/2], there is an

incompressible flow u : Q× R+→ R2 with u · n = 0 on ∂Q× R+ which κ-mixes ρ0 to
scale ε in a time τκ,ε satisfying
ˆ τκ,ε

0
‖∇u(·, t)‖p dt ≤

{
Cpκ

−νp |log(κε)|1+νp , p ∈ ((3+
√

5)/2,∞),

Cp|log(κε)|
∣∣log |log(κε)|

κ

∣∣1/p, p = (3+
√

5)/2,
(4.16)

with νp :=
p2
−3p−1

3p2−p
and Cp < ∞ depending only on p. The flow can be made indepen-

dent of ε, but the p ∈ ((3+
√

5)/2,∞) alternative of the right-hand side of (4.16) must
then be replaced by Cpκ−νp |log(κε)|1+νp log |log(κε)|.

5. Mixing for periodic and no-slip boundary conditions

In this section we will show that the results from Sections 2–4 extend to periodic boundary
conditions with only minor modifications to their proofs (in particular, “perfect” mixing
is preserved here), and with some more work and slightly worse bounds also to no-slip
boundary conditions. Let us start with the simpler case of periodic boundary conditions.

Theorem 5.1. Theorems 3.4, 4.5, and 4.6 hold when the no-flow boundary condition
u · n = 0 on ∂Q× R+ is replaced by the periodic boundary condition.

Proof. Notice that the flows from all three theorems already satisfy periodic boundary
conditions at all times t > 1. Hence the only change required will be for t ∈ (0, 1].

First consider the case from Theorem 3.4. What we need is that
´
Q1ij

ρ(x, y, 1) dx dy
= 0 for any i, j ∈ {0, 1}. We first let u(x, y, t) = (2, 0) for t ∈ (0, t0] and u(x, y, t) = 0
for t ∈ (t0, 1/4], where t0 ∈ [0, 1/4] is such that

´
(0,1/2)×(0,1) ρ(x, y, t0) dx dy = 0

(which exists because the left and right halves ofQ would be swapped in time 1/4). Now
let

m0 :=

ˆ
Q100

ρ(x, y, 1/4) dx dy = −
ˆ
Q101

ρ(x, y, 1/4) dx dy,
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m1 :=

ˆ
Q111

ρ(x, y, 1/4) dx dy = −
ˆ
Q110

ρ(x, y, 1/4) dx dy.

For t ∈ [1/4, 3/4) and a :=
√

5− 2 (the latter as in Theorem 3.4), define

u(x, y, t) =

{
∇
⊥
[(−1)i+j2−2ψa(2x − i, 2y − j)], t ∈ (1/4, tij ],

∇
⊥
[(−1)i+j2−2ηa(2x − i, 2y − j)], t ∈ (tij , 3/4],

where tij ∈ [1/4, 3/4] is such that the integrals of ρ(·, tij ) over the lower and upper
halves of Q1ij are equal (then they are both 1

2 (−1)i+jmi). Finally, for t ∈ (3/4, 1] we let
u(x, y, t) = (0, 1), so that indeed

´
Q1ij

ρ(x, y, 1) dx dy = 0 for any i, j ∈ {0, 1}, and we
are done.

The case from Theorem 4.5 is virtually identical, with ψa, ηa replaced by ψa,δ, ηa,δ
as in that theorem (i.e., a = 1/3 and either δ =

(
κ

16c′n

)(a+1)/2 when u can depend on ε or
δ = δ1 = ((κ/M)(log 2)−2)2/3 when it cannot), and with tij ∈ [1/4, 3/4] again chosen
so that if the flow u in Qij for t ∈ (1/4, tij ] were given as above but with ψ̃a,δ in place
of ψa , then the integrals of ρ(·, tij ) over the lower and upper halves of Q1ij would be
equal. This creates an error with the same bound as the error created in the proof of
Theorem 4.5 during the time interval [0, 1].

Finally, the same adjustment works in the case from Theorem 4.6. ut

The next theorem extends Theorem 3.4 to no-slip boundary conditions. Here the differ-
ence is that our flow will not be a “perfectly mixing” one because ρ(·, n) may not have
mean zero on the squares Qnij due to the no-slip condition. We will have to control the
resulting errors as we did in the theorems in Section 4. As a result, even though our “mix-
ing cost” for the no-slip boundary conditions has the same dependence on ε as (2.6) (i.e.,
O(|log ε|)), the dependence on κ is worse.

Theorem 5.2. For any mean-zero ρ0 ∈ L
∞(Q) and κ ∈ (0, 1/2], there is an incom-

pressible u : Q×R+→ R2 with u = 0 on ∂Q×R+ such that u κ-mixes ρ0 to any scale
ε ∈ (0, 1/2] in a time τκ,ε satisfying

ˆ τκ,ε

0
‖∇u(·, t)‖p dt ≤ Cp(|log(κε)| + κ−1+1/p) (5.1)

for each p ∈ [1, (3+
√

5)/2), with Cp <∞ depending only on p.

Remark. In particular, choosing κ := |log ε|−p/(p−1) for a given ε ∈ (0, 1/2] gives us
an ε-dependent flow that |log ε|−p/(p−1)-mixes ρ0 to scale ε in time τε such that (5.1)
holds with τε in place of τκ,ε and Cp|log ε| on the right-hand side.

Proof of Theorem 5.2. We will change the flow from no-flow to no-slip by multiplying
the stream functions by a factor vanishing at ∂Q, which will make them vanish at ∂Q to
the second degree.
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Let us therefore repeat the construction from the proof of Theorem 3.4 on each time
interval (n, n+ 1/2] (and then again on (n+ 1/2, n+ 1]), but with the following change.
Given ρ(·, n), let the stream function on each Qnij be

ψ̃(x, y, t) =

{
(−1)i+j2−2nψa(2nx − i, 2ny − j), t ∈ (n, tnij ],

(−1)i+j2−2nηa(2nx − i, 2ny − j), t ∈ (tnij , n+ 1/2],

with a =
√

5− 2 and tnij chosen so that we would have
ˆ
Q′nij

ρ(x, y, tnij ) dx dy =

ˆ
Q′′nij

ρ(x, y, tnij ) dx dy (5.2)

if the flow were ũ := ∇⊥ψ̃ on the time interval (n, tnij ] (here again Q′nij ,Q
′′

nij are the
left and right halves ofQnij ). This is essentially the same construction as in Theorem 3.4,
except that the two integrals need not equal 0 because we may have

´
Qnij

ρ(x, y, n) dx dy

6= 0.
We now pick βn ∈ (0, 1/2) (to be specified later) and define

ψ(x, y, t) := ψ̃(x, y, t)gn(x, y) := ψ̃(x, y, t)f
(
2nβ−1

n x(1− x)
)
f
(
2nβ−1

n y(1− y)
)
,

with f from Lemma 3.1, and use the flow u := ∇⊥ψ for t ∈ (n, n+ 1/2] instead (which
satisfies the no-slip boundary condition). Notice that the tnij remain defined in terms of ũ.

This means that we may not achieve (5.2) whenQnij touches ∂Q, but we can estimate
the resulting error by finding the area of the set of stream lines of ψa whose distance
from ∂Q is < βn. Indeed, if that area is γn, then u = ũ on a subset of Qnij which is
invariant under u over the time interval (n, tnij ] and has area 2−2n(1−γn). Thus, forQnij

touching ∂Q we will have∣∣∣∣ˆ
Q′nij

ρ(x, y, tnij ) dx dy −

ˆ
Q′′nij

ρ(x, y, tnij ) dx dy

∣∣∣∣ ≤ 21−2nγn‖ρ0‖∞

(the same argument appeared in Theorem 4.3), while for those not touching ∂Q we will
still have (5.2). The same statements then hold with tnij replaced by n + 1/2, since
Q′nij ,Q

′′

nij are still invariant under u on the time interval (tnij , n+ 1/2].
After a similar argument is applied for t ∈ (n+ 1/2, n+ 1] with the same βn, we find

that if Q̃ is any of the four squares of side length 2−(n+1) forming Qnij , then∣∣∣∣ 
Q̃

ρ(x, y, n+ 1) dx dy −
 
Qnij

ρ(x, y, n) dx dy

∣∣∣∣ ≤ 4γn‖ρ0‖∞

(and the difference is 0 if Qnij does not touch ∂Q). Since ρ0 is mean-zero, it follows that∣∣∣∣ 
Qnij

ρ(x, y, n) dx dy

∣∣∣∣ ≤ 4‖ρ0‖∞

n−1∑
k=0

γk ≤ C‖ρ0‖∞

n−1∑
k=0

βk. (5.3)
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Here C depends only on a and is such that 4γn ≤ Cβn. This last estimate is proved as
follows (with C below depending only on a but changing from line to line).

Let Bn = {(x, y) ∈ Q : d∂Q(x, y) < βn} and sn := supBn ψa . Then
γn = |{ψa < sn}| by definition, so we need to show |{ψa < sn}| ≤ Cβn.
We have sn ≤ Cβn due to ‖∇ψa‖∞ < ∞, and the definition of ψa gives
ψa(x, y) ≥ C−1 min{d∂Q(x, y), dP (x, y)1+a}, with d∂Q the distance from ∂Q and dP
from Lemma 3.1. This finally yields (with a changing C)

|{ψa < sn}| ≤ |{d∂Q(x, y) < Csn}| + |{dP (x, y) < Cs
1/(1+a)
n }| ≤ C(sn + s

2/(1+a)
n )

≤ Cβn.

Next we estimate ‖∇u(·, t)‖p for t ∈ (n, n + 1/2] (a similar estimate holds for t ∈
(n + 1/2, n + 1]). Recall that u(x, y) = ũ(x, y) when d∂Q(x, y) ≥ 2−nβn. On the rest
of Q we have

|∇u| ≤ |∇ũ|gn + 2|∇ψ̃ | |∇gn| + |ψ̃ | |∇2gn| ≤ |∇ũ| + Cβ
−1
n ,

(with an a-dependent C), where in the last inequality we have used

|ψ̃(x, y)| ≤ 2−n(‖∇ψa‖∞ + ‖∇ηa‖∞)d∂Q(x, y) ≤ C2−2nβn

when d∂Q(x, y) < 2−nβn. Since |{d∂Q < 2−nβn}| ≤ 22−nβn and we have
supt>0 ‖∇ũ(·, t)‖p ≤ C′p as in the proof of Theorem 3.4, we now obtain for p ∈
[1, (3+

√
5)/2) (and a new C′p),

sup
t∈(n,n+1]

‖∇u(·, t)‖p ≤ C
′
p(1+ 2−n/pβ(1−p)/pn ). (5.4)

Given κ, ε ∈ (0, 1/2], let again n := τκ,ε := d|log2(κε/2)|e + 2. As in the proof
of Theorem 4.3, the constructed flow u will κ-mix ρ0 to scale ε in time τκ,ε, provided∑n−1
k=0 βk ≤ κ/(2C) (with C from (5.3)). We pick βk−2 := (κ/M)k−1(log k)−2 with

M := 2C
∑
∞

k=0 k
−1(log k)−2, which then yields (with C′′p <∞ depending only on p)

ˆ τκ,ε

0
‖∇u(·, t)‖p dt ≤ C

′
p

n−1∑
k=0

(1+ 2−k/pβ(1−p)/pk ) ≤ C′pn+ C
′′
pκ

(1−p)/p

for p ∈ [1, (3+
√

5)/2). The result follows because the βk are independent of ε, hence
so is u. ut

The following two results extend Theorems 4.5 and 4.6 to no-slip boundary conditions.

Theorem 5.3. For any mean-zero ρ0 ∈ L
∞(Q) and any κ, ε ∈ (0, 1/2], there is an

incompressible flow u : Q × R+ → R2 with u = 0 on ∂Q × R+ which κ-mixes ρ0 to
scale ε in a time τκ,ε satisfyingˆ τκ,ε

0
‖∇u(·, t)‖∞ dt ≤ Cκ

−1
|log(κε)|2 (5.5)

with a universal C < ∞. The flow can be made independent of ε if the right-hand side
of (5.5) is replaced by Cκ−1

|log(κε)|2(log |log(κε)|)2.
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Proof. This is almost the same as the proof of Theorem 5.2, except that ψ̃ is constructed
not using ψa and ηa but the corresponding stream functions from the proofs of The-
orems 4.3 and 4.5. This results in the following two changes relative to the proof of
Theorem 5.2.

The first change is that (5.3) will also include the error from (4.15), hence the estimate
becomes (with a := 1/3, so 2/(a + 1) = 3/2)∣∣∣∣ 

Qnij

ρ(x, y, n) dx dy

∣∣∣∣ ≤ C‖ρ0‖∞

n−1∑
k=0

(βk + δ
3/2
k ). (5.6)

The second change results from the flow in Theorem 4.5 satisfying ‖∇u(·, t)‖∞ ≤
Cδ
−1/2
n for t ∈ (n, n+ 1], so (5.4) becomes

sup
t∈(n,n+1]

‖∇u(·, t)‖∞ ≤ C
′(β−1

n + δ
−1/2
n ).

The rest of the proof follows that of Theorem 5.2, again with n := τκ,ε :=

d|log2(κε/2)|e + 2. When our flow is allowed to depend on ε, we let βk := κ
4Cn and

δk :=
(
κ

4Cn

)2/3. Thus u κ-mixes ρ0 to scale ε in time τκ,ε, and we have

ˆ τκ,ε

0
‖∇u(·, t)‖∞ dt ≤ C

′

n−1∑
k=0

(β−1
k + δ

−1/2
k ) = C′n

[(
κ

4Cn

)−1

+

(
κ

4Cn

)−1/3]
≤

8C′Cn2

κ
,

which is bounded by Cκ−1
|log(κε)|2 (with a new C). If we instead want the

flow to be independent of ε, we pick βk−2 := (κ/M)k−1(log k)−2 and δk−2 :=

((κ/M)k−1(log k)−2)2/3 with M := 4C
∑
∞

k=2 k
−1(log k)−2. The above estimate then

gains a factor of (log |log(κε)|)2. ut

Remark. This result is the same as the one in the remark at the beginning of Section 4
for p = ∞. The method is different, though, which will make a difference for p < ∞
below.

Theorem 5.4. Theorem 4.6 holds when the no-flow boundary condition u · n = 0 on
∂Q × R+ is replaced by the no-slip boundary condition u = 0 on ∂Q × R+, and
Cpκ

−1+1/p is added to the right-hand side of (4.16) in both the ε-dependent and ε-inde-
pendent cases.

Proof. We proceed in the same way as in Theorem 5.3, but estimates for p = ∞ from
Theorem 4.5 are replaced by the corresponding estimates for p ∈ [(3+

√
5)/2,∞) from

Theorem 4.6. This ultimately yields a flow u for which∣∣∣∣ 
Qnij

ρ(x, y, n) dx dy

∣∣∣∣ ≤ C‖ρ0‖∞

n−1∑
k=0

(βk + δ
(3p−1)/(2p−1)
k )
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for all n, and with n := τκ,ε := d|log2(κε/2)|e + 2 we also have
ˆ τκ,ε

0
‖∇u(·, t)‖p dt ≤ C

′
p

n−1∑
k=0

(2−k/pβ(1−p)/pk + δ
−(p2

−3p+1)/(2p2
−p)

k )

(with |log δk|1/p in place of δ−(p
2
−3p+1)/(2p2

−p)
k when p = (3+

√
5)/2).

We now take βk from the proof of Theorem 5.2 (with 4C in place of 2C) and δk from
the proof of Theorem 4.6 (with 4C in place of 16c′). We thus find that u κ-mixes ρ0 to
scale ε in time τκ,ε, and also

ˆ τκ,ε

0
‖∇u(·, t)‖p dt ≤ C

′′
pκ

(1−p)/p
+ C′p

(
κ

4C

)−νp
n1+νp (5.7)

for p > (3+
√

5)/2 (with the last term being C′p((κ/M))
−νpn1+νp (log n)2νp in the ε-

independent case; notice that νp ≤ 1/3). For p = (3+
√

5)/2 the last term in (5.7) is
C′pn|log(κ/n)|1/p in both the ε-dependent and ε-independent cases. This yields the result.

ut

6. Un-mixing

Proof of Theorem 1.6. We will prove an equivalent statement, with ρ(·, n) = χB and

sup
t∈(0,n]

‖∇u(·, t)‖p ≤ Cκ
−1+1/pn1−1/p for each p ∈ [1,∞] (6.1)

(the equivalence is obtained by changing this flow to nu(·, t/n)). Let θij := 22n
|A∩Qnij |.

We claim that it is sufficient to find incompressible ũ : Q × (0, n] → R2 with ũ = 0 on
∂Q × R+ and satisfying (6.1) such that the solution to (1.1) with ρ̃(·, 0) = χ{0<x<|A|}
satisfies ‖ρ̃(·, n) − χS‖1 ≤ κ for some S ⊆ Q with 22n

|S ∩ Qnij | = θij for any i, j ∈
{0, . . . , 2n− 1}. Indeed, then

´
Qnij
|χS −χA| dx dy ≤ 21−2nκ whenever θij /∈ (κ, 1− κ).

Combining this with the hypothesis that at most 22nκ of the θij belong to (κ, 1 − κ), we
obtain ‖χS − χA‖1 ≤ 3κ . It therefore suffices to let u(x, y, t) := −ũ(x, y, n − t). We
now observe that ρ̃(·, n − t) also solves (1.1), so incompressibility of u and |A| = |B|
yield

2
∣∣B ∩ [(|A|, 1)× (0, 1)]

∣∣ = ‖ρ̃(·, 0)− ρ(·, n)‖1 = ‖ρ̃(·, n)− χA‖1 ≤ 4κ.

This proves the result. Hence it suffices to prove the lemma below (with the ˜ dropped).
ut

Lemma 6.1. There is C > 0 such that for any n ≥ 1, κ ∈ (0, 1/2], and θij ∈ [0, 1]
(with i, j ∈ {0, . . . , 2n − 1}), there is S ⊆ Q with 22n

|S ∩ Qnij | = θij for any i, j ∈
{0, . . . , 2n − 1}, and there is an incompressible flow u : Q× (0, n] → R2 with u = 0 on
∂Q × (0, n] and satisfying (6.1) such that the solution to (1.1) with ρ(·, 0) = χ{0<x<|S|}
satisfies ‖ρ(·, n)− χS‖1 ≤ κ .

Remark. Remark 2 after Theorem 1.6 applies here, too.
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Proof of Lemma 6.1. This is related to the previous constructions, particularly to that in
the remark at the beginning of Section 4. The basic stream function here will be

ψδ(x, y) := ψ(x, y)gδ(x, y) := ψ(x, y)f
(
δ−1x(1− x)

)
f
(
δ−1y(1− y)

)
(6.2)

with ψ from Proposition 2.1, f from Lemma 3.1, and δ ∈ (0, 1]. Notice that if δ > 0,
then ∇⊥ψδ = 0 on ∂Q since ψ = 0 on ∂Q and f (0) = 0. Then (2.3), Lemma 2.2(1,3,4),
(A.2), (A.5), and the definition of f show that for some δ-independent C <∞,

|∇
2ψδ| ≤ |∇2ψ |gδ + 2|∇ψ | |∇gδ| + ψ |∇2gδ| ≤

{
Cdc(x, y)

−1 d∂Q(x, y) ≥ δ,

Cδ−1 d∂Q(x, y) < δ,

where we have also used ψ(x, y) ≤ ‖∇ψ‖∞d∂Q(x, y) (and dc, d∂Q are the distances
from the nearest corner and from ∂Q, respectively). This yields, for any p ∈ [1,∞] and
δ ∈ (0, 1],

‖∇
2ψδ‖p ≤ Cδ

−1+1/p (6.3)

with a new p-independent C.
Let us define

θ0 := 2−2n
2n−1
−1∑

i=0

2n−1∑
j=0

θij ≤ 1/2 and θ1 := 2−2n
2n−1∑
i=2n−1

2n−1∑
j=0

θij ≤ 1/2.

Notice that if S is as in the statement of the lemma, then θ0 = |S ∩ [(0, 1/2) × (0, 1)]|
and θ1 = |S ∩ [(1/2, 1)× (0, 1)]|.

For t ∈ (0, 1/4] let u(x, y, t) = 0 when x ∈ (0, θ0], and

u(x, y, t) := ∇⊥
[

2(1− θ0)ψ
δ

(
x − θ0

1− θ0
, y

)]
(6.4)

when x ∈ (θ0, 1). This flow, as well as ρ(·, 0), are illustrated in Figure 5(a). Proposition
2.1(3) and symmetry show that if ψδ were replaced by ψ here, then ρ(·, 1/4) would equal
χ{0<x<θ0} + χ{1−θ1<x<1}, as illustrated in Figure 5(b). This is because the flow ∇⊥[2ψ]

{ {

θ0 θ1

(a) t = 0

{

θ0

{

θ1

(b) t = 1/4 (c) t = 1/2

{2θ0 {

2θ1

(d) t = 1

{

a {

b

{c {d{θ

Fig. 5. What ρ(·, t) would be at different times if ψδ were replaced by ψ in the construction of the
flow u.
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rotates Q by 180◦ in time 1/4. However, the factor gδ in (6.2) limits us to only

‖ρ(·, 1/4)− χ{0<x<θ0} − χ{1−θ1<x<1}‖1 ≤ Cδ (6.5)

for a new C < ∞. This is due to the area of the set of stream lines of ψ whose distance
from ∂Q is < δ (which are the ones affected by gδ) being bounded by Cδ (because of
∇ϕ ∈ L∞ and (A.5)). Notice also that θ0 ≤ 1/2 and (6.3) show (with a new C)

sup
t∈(0,1/4]

‖∇u(·, t)‖p ≤ Cδ
−1+1/p. (6.6)

For t ∈ (1/4, 1/2] let

u(x, y, t) := ∇⊥
[
(−1)b2xc+1

2
ψδ({2x}, y)

]
,

with b2xc, {2x} the integer and fractional parts of 2x, respectively. This flow is illustrated
in Figure 5(b). Again (6.6) holds for t ≤ 1/2, and again, if ψδ were replaced by ψ here
and in (6.4), then ρ(·, 1/2) would equal

χ(0,1/2)×(0,2θ0) + χ(1/2,1)×(0,2θ1),

as shown in Figure 5(c). This is because the flow∇⊥ψ rotatesQ clockwise (and∇⊥[−ψ]
rotatesQ counter-clockwise) by 90◦ in time 1/4, due to Proposition 2.1(3) and symmetry.
However, as above, the extra factor gδ means we only obtain (with a new C)

‖ρ(·, 1/2)− χ(0,1/2)×(0,2θ0) − χ(1/2,1)×(0,2θ1)‖1 ≤ Cδ.

For t ∈ (1/2, 1] we run the same argument as for t ∈ (0, 1/2], but separately on the
rectangles (0, 1/2) × (0, 1) and (1/2, 1) × (0, 1) instead of Q, and rotated by 90◦ (so
the first argument of the stream functions is either 2x or 2x − 1, instead of the second
being y). The end result is

‖ρ(·, 1)− χ(0,a)×(0,1/2) − χ(1/2,1/2+b)×(0,1/2) − χ(0,c)×(1/2,1) − χ(1/2,1/2+d)×(1/2,1)‖1
≤ Cδ,

with a new C and

a := 21−2n
2n−1
−1∑

i,j=0

θij , b := 21−2n
2n−1∑
i=2n−1

2n−1
−1∑

j=0

θij , c := 21−2n
2n−1
−1∑

i=0

2n−1∑
j=2n−1

θij ,

d := 21−2n
2n−1∑

i,j=2n−1

θij

(so a + c = 2θ0 and b + d = 2θ1). That is, ρ(·, 1) is Cδ-close in L1(Q) to the function
from Figure 5(d), which is the sum of the characteristic functions of four rectangles, each
being the intersection of one of the squares Q100,Q101,Q110,Q111 with a half-plane
with normal vector (1, 0), and each having area equal to 2−2n times the sum of those θij
for which Qnij lies inside that square.
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It is clear that a scaled version of this construction can be repeated for t ∈ (1, 2],
separately on each square Q100,Q101,Q110,Q111, with (6.6) still valid for these t (be-
cause scaling of the stream functions is by a factor of 2 in space and 1/4 in value)
and at the expense of an additional L1 norm error 1

4Cδ on each square. Continuing
up to time t = n and scale 2−n, we obtain ‖ρ(·, n) −

∑2n−1
i,j=0 χRij ‖1 ≤ Cnδ, where

Rij = (2−ni, 2−n(i + θij ))× (2−nj, 2−n(j + 1)) ⊆ Qnij for any i, j ∈ {0, . . . , 2n − 1}.
So S :=

⋃2n−1
i,j=0 Rij and it now suffices to pick δ := κ/(Cn).

The claim of the remark follows by replacing ψδ by ψ in the proof. ut

Proof of Corollary 1.7. Let θnij := 22n
|A ∩Qnij | and consider the setting from the last

sentence of the previous proof (i.e., κ = 0 andψ in place ofψδ) for any n and with the θij
being the θnij . Then the constructed flows for n = n1 and n = n2 obviously coincide for
t ∈ (0,min{n1, n2}]. Thus there is a unique incompressible flow u : Q×R+→ R2 satis-
fying the no-flow boundary condition which coincides with all these flows (for different n)
on their time intervals of definition. One easily sees that supt>0 ‖u(·, t)‖BV < ∞, so in
particular (1.1) is well-posed.

Due to the nature of the scaling of the stream functions in the previous proof by a
factor of 2k in space and 2−2k in value for t ∈ (k, k + 1] (relative to t ∈ (0, 1]), we have

sup
t∈(k,k+1]

‖u(·, t)‖Ẇ s,p ≤ Cs,p2(s−1)k

for any s < 1/p and k = 0, 1 . . . (we need s < 1/p to make u(·, t) ∈ W s,p, since it
is discontinuous along finitely many lines). Indeed, this follows from Lemma A.2 in the
appendix (rather than from interpolation, as in the introduction, because the flows here do
not belong to W 1,p(Q)). Scaling u|(k,k+1] in time by a factor of (1− 2s−1)−12(1−s)k and
multiplying it by the same factor creates an incompressible flow ũ onQ× (0, 1) such that

sup
t∈(0,1)

‖ũ(·, t)‖Ẇ s,p ≤ Cs,p

(new Cs,p equals old Cs,p times (1 − 2s−1)−1) and the solution to (1.1) with ũ in place
of u and with ρ(·, 0) = χ{0<x<|A|} satisfies

ffl
Qnij

ρ(x, y, 1 − 2(s−1)n) dx dy = θnij for
all n, i, j . Because A is measurable (so a.e. (x, y) ∈ Q is its Lebesgue point), we obtain
limt→1 ‖ρ(·, t)− χA‖1 = 0. ut

Appendix: Properties of stream functions ϕ, ϕa, ϕa,δ and two inequalities

Proof of Lemma 2.2. The first two claims of (1) are obvious, and the other two follow
from

ϕx(x, y) = 4 cos(πx)
(

1+
sin(πx)
sin(πy)

)−2

(A.1)

and a similar expression for ϕy .
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To show (2), we start by taking another x-derivative of (A.1):

ϕxx(x, y) = −4π sin(πx)
(

1+
sin(πx)
sin(πy)

)−2

− 8π cos2(πx)

(
1+

sin(πx)
sin(πy)

)−2

(sin(πx)+ sin(πy))−1.

Hence

|ϕxx(x, y)| ≤ 4π +
8π

sin(πx)+ sin(πy)
≤ 4π +

8π
√

2 dc(x, y)
≤

40
dc(x, y)

,

with dc the distance to the closest of the four corners ofQ. Obviously, ϕyy obeys the same
bound due to symmetry. As for the cross term, taking the y derivative of (A.1) gives

ϕxy(x, y)

= 8π cos(πx) cos(πy)
(

1+
sin(πx)
sin(πy)

)−1(
1+

sin(πy)
sin(πx)

)−1

(sin(πx)+ sin(πy))−1,

hence |ϕxy(x, y)| ≤ 20dc(x, y)−1. These estimates now show (2) because they yield

|∇
2ϕ(x, y)| ≤

70
dc(x, y)

. (A.2)

To show (3), first note that ∂nϕ = −4 on ∂Qc implies Tϕ(0) = 1. Consider the
triangle QT := {0 < y < x < 1/2}, and for s ∈ (0, 2/π) let 0(s) := {(x, y) ∈ QT :

ϕ(x, y) = s} (note that 0 ≤ ϕ ≤ 2/π on Q). By symmetry we have

Tϕ(s) = 8
ˆ
0(s)

1
|∇ϕ|

dσ,

so with |0(s)| the length of the curve 0(s),

Tϕ(s) ≤ 8|0(s)| max
0(s)
|∇ϕ|−1. (A.3)

Since ϕy ≥ ϕx > 0 on QT , the function of x whose graph is 0(s) has slope between
−1 and 0 on its domain (b(s), 1/2), with b(s) := 1

π
arcsin πs

2 . Thus

|0(s)| ≤
√

2
(

1
2
−

1
π

arcsin
πs

2

)
(≤ 1) (A.4)

for all s, and lims→2/π |0(s)| = 0. Moreover, on 0(s) we have sin(πx) ≥ sin(πy), so

|∇ϕ|−1
≤ (ϕy)

−1
≤

1
4 cos(πy)

(
1+

sin(πy)
sin(πx)

)2

≤
1

cos(πb(s))

=
1√

1− (πs/2)2
(A.5)



1942 Yao Yao, Andrej Zlatoš

there. Combining (A.4) and (A.5) with (A.3) now gives

Tϕ(s) ≤ 8
√

2
1
2 −

1
π

arcsin πs
2√

1−
(
πs
2

)2 .

The fraction is bounded in s ∈ [0, 2/π) away from 2/π , and one can easily check that it
converges to 1/π as s → 2/π . This proves (3).

It remains to prove (4). Let us first use the divergence theorem to find

Tϕ(s) =

ˆ
{ϕ=s}

−n ·
∇ϕ

|∇ϕ|2
dσ =

ˆ
{ϕ>s}

−∇ ·
∇ϕ

|∇ϕ|2
dx dy,

with n the outer unit normal vector to {ϕ > s}. This yields

T ′ϕ(s) =

ˆ
{ϕ=s}

1
|∇ϕ|
∇ ·
∇ϕ

|∇ϕ|2
dσ =

ˆ
{ϕ=s}

(
1ϕ

|∇ϕ|3
− 2
∇ϕ · (∇2ϕ∇ϕ)

|∇ϕ|5

)
dσ (A.6)

for s ∈ (0, 2/π), so Tϕ is differentiable on (0, 2/π). We also obtain

|T ′ϕ(s)| max
{ϕ=s}
|∇ϕ|2 ≤ 4

ˆ
{ϕ=s}

|∇
2ϕ|

|∇ϕ|3
dσ

(
max
{ϕ=s}
|∇ϕ|2

)
. (A.7)

Recall that ‖∇ϕ‖∞ <∞ by (1), and |∇ϕ|−1 is easily seen to be uniformly bounded away
from (1/2, 1/2) (where s ≈ 2/π ). Since (A.2) shows that |∇2ϕ| is uniformly bounded
away from the corners ofQ (where s ≈ 0), we only need to bound the RHS of (A.7) near
s = 0, 2/π .

For s close to 2/π we have |∇2ϕ| ≤ 200 by (A.2), hence

|T ′ϕ(s)| max
{ϕ=s}
|∇ϕ|2 ≤ 800

ˆ
{ϕ=s}

1
|∇ϕ|

dσ
max{ϕ=s} |∇ϕ|2

min{ϕ=s} |∇ϕ|2
= 800Tϕ(s)

max{ϕ=s} |∇ϕ|2

min{ϕ=s} |∇ϕ|2
.

(A.8)

The RHS is bounded near 2/π because Tϕ is bounded and the fraction is bounded
near 2/π . Indeed, by symmetry it suffices to show the latter with 0(s) in place of {ϕ = s}.
We have

|∇ϕ| ≥ cos(πb(s)) = sin(π(1/2− b(s)))

on 0(s) by (A.5). We also have |∇ϕ| ≤
√

2ϕy ≤ 4
√

2 cos(πy) on 0(s), as well as
y ≥ b(s) − (1/2 − b(s)) = 2b(s) − 1/2. The latter is because the curve starts at the
point (b(s), b(s)) and its slope (as a function of x) is between 0 and −1 on the interval
(b(s), 1/2). It follows that

|∇ϕ| ≤ 4
√

2 sin(2π(1/2− b(s)))

on 0(s). As 1/2−b(s) ≈ 0 for s near 2/π , the last fraction in (A.8) is bounded near 2/π .
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It remains to bound (A.7) for s near 0. Since |∇ϕ|, |∇ϕ|−1 are both bounded near ∂Q
and the slope of 0(s) is between 0 and −1, we obtain, for some C <∞,

1
C
|T ′ϕ(s)| max

{ϕ=s}
|∇ϕ|2 ≤

ˆ
0(s)

|∇
2ϕ| dσ ≤

ˆ
0(s)

70
dc(x, y)

dσ ≤

ˆ 1/2

b(s)

70
√

2
x

dx

≤ 100|log b(s)|.

But |log b(s)| =
∣∣log

( 1
π

arcsin πs
2

)∣∣ ≤ ∣∣log s
2

∣∣ ≤ 2|log s| for s near 0, so (4) is proved. ut

Proof of Lemma 3.1. Note that ϕa = ϕ on Q \ {dP < 1/5} ⊇ B3/10(1/2, 1/2) =: D. All
constants below may depend on a ∈ (0, 1].

The first, second, and fourth claims in (1) follow immediately from Lemma 2.2(1).
We also obtain, for a > 0,

|∇ϕa(x, y)| ≤ |∇ϕ(x, y)|f (dP (x, y))
a
+ ϕ(x, y)f (dP (x, y))

a−1
‖f ′‖∞|∇dP (x, y)|

≤ |∇ϕ(x, y)| ‖f ′‖a∞dP (x, y)
a
+ ϕ(x, y)‖f ′‖a∞dP (x, y)

a−1
≤ CdP (x, y)

a

(A.9)

for some C < ∞, where in the last inequality we have used ϕ(x, y) ≤ 2πdP (x, y). So
(1) is proved.

(2) is proved similarly: direct differentiation, together with ϕ(x, y) ≤ 2πdP (x, y),
(A.2), and |∇2dP (x, y)| ≤ dP (x, y)

−1 on {dP < 1/5} yield, for some C <∞,

|∇
2ϕa(x, y)| ≤ CdP (x, y)

a−1. (A.10)

It remains to show (3) and (4). Since ϕa = ϕ onD (andD fully contains the level sets
{ϕa = s} for all s near 2/π ), all the claims hold when restricted to all s near 2/π , due to
the same properties of ϕ. We therefore only need to consider s away from 2/π .

The claim in (3) about the level sets of ϕa follows from the same statement for ϕ,
and from positivity of the derivatives of ϕ and dP in the direction (1/2, 1/2) − p in-
side each connected component of {dP < 1/5}, where p is the unique point from P

belonging to that component. Also, since s−2a/(a+1) is integrable near 0 for a ∈ (0, 1)
and ∇ϕa ∈ L∞(Q) for a > 0, boundedness of Tϕa for a ∈ (0, 1) as well as (4) for
a ∈ (0, 1] will follow if we show sups∈(0,s0] s

2a/(a+1)
|T ′ϕa (s)| < ∞ for a ∈ (0, 1] with

s0 := sup(x,y)∈Q\D ϕ(x, y) < 2/π .
For any s ∈ (0, s0], let ba(s) be the unique value such that (ba(s), ba(s)) ∈ ∂QT

(with QT from the proof of Lemma 2.2) and ϕa(ba(s), ba(s)) = s. A direct computation
yields c′s1/(a+1)

≤ ba(s) ≤ C′s1/(a+1) for some c′, C′ ∈ (0,∞). Due to (A.6) and
symmetry we have

|T ′ϕa (s)| ≤ 32
ˆ
{ϕa=s}∩QT

|∇
2ϕa|

|∇ϕa|3
dσ

= 32
ˆ 1/2

ba(s)

|∇
2ϕa(x, ya,s(x))|

|∇ϕa(x, ya,s(x))|2|(ϕa)y(x, ya,s(x))|
dx

≤ 32
ˆ 1/2

ba(s)

|∇
2ϕa(x, ya,s(x))|

|(ϕa)y(x, ya,s(x))|3
dx, (A.11)
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where ya,s(x) is such that ϕa(x, ya,s(x)) = s and (x, ya,s(x)) ∈ QT . Its uniqueness
is guaranteed by (ϕa)y > 0 on QT , which holds because ϕ, ∂yϕ, and f (dP (x, y)) are
positive on QT , and ∂y[f (dP (x, y))] ≥ 0 there. In fact, on QT ∩ {ϕ < s0} we have, for
some C <∞,

(ϕa)y(x, y) ≥ ∂yϕ(x, y)f (dP (x, y))
a
≥ CdP (x, y)

a .

Combining this and (A.10) with (A.11) yields, for s ∈ (0, s0] (with a new C <∞),

1
C
|T ′ϕa (s)| ≤

ˆ 1/2

ba(s)

dP (x, ya,s(x))
−1−2a dx

≤

ˆ 1/4

ba(s)

x−1−2a dx +

ˆ 1/2−ba(s)

1/4
(x − 1/2)−1−2a dx +

ˆ 1/2

1/2−ba(s)
ya,s(x)

−1−2a dx.

The first two integrals are each bounded by 1
2a (c

′)−2as−2a/(a+1) (recall that ba(s) ≥
c′s1/(a+1)), as we need. For x ∈ [1/2 − ba(s), 1/2] and s ∈ (0, s0] we have (with C :=
‖∇ϕ‖∞‖f

′
‖
a
∞)

s = ϕa(x, ya,s(x)) ≤ Cya,s(x)dP (x, ya,s(x))
a
≤ C(C′)aya,s(x)(s

a/(a+1)
+ ya,s(x)

a)

because 1/2−x ≤ ba(s) ≤ C′s1/(a+1). This gives max{ya,s(x)sa/(a+1), ya,s(x)
a+1
} ≥ cs

(with some c ∈ (0, 1]), which implies ya,s(x) ≥ cs1/(a+1). This and ba(s) ≤ C′s1/(a+1)

show that the third integral is bounded by C′c−1−2as−2a/(a+1) for s ∈ (0, s0]. Hence we
indeed get sups∈(0,s0] s

2a/(a+1)
|T ′ϕa (s)| <∞ for a ∈ (0, 1], and we are done. ut

Proof of Lemma 4.4. Since ϕa,δ = ϕa on Da,δ ∪ ∂Q, we only need to consider s ∈ (0, δ)
in (1). Fix a ∈ (0, 1), δ ∈ (0, 1/10), and s ∈ (0, δ). We have ϕa,δ(x, y) = ϕa(x, y)

when dP (x, y) ≥ 1
5da,δ , so their level sets coincide outside Ba,δ := {(x, y) ∈ Q :

dP (x, y) <
1
5da,δ}. (Recall that da,δ = cδ1/(a+1) for some δ-independent c > 0.) (1) now

follows as the same claim for ϕa in the proof of Lemma 3.1(3).
From Lemma 3.1(4) and |∇ϕ|−1 being bounded except near the point (1/2, 1/2) (and

hence (sup{ϕa=s} |∇ϕa|
2)−1 being bounded except near s = 2/π ) it follows that

sup
0<s≤δ<1/10

δ−(1−a)/(a+1)
|Tϕa (s)− Tϕa (δ)| <∞.

It is therefore sufficient to show (2) with Tϕa (s) in place of Tϕa (δ). The parts of the
integrals defining Tϕa (s) and Tϕa,δ (s) coincide outside Ba,δ , so

Tϕa,δ (s)− Tϕa (s) =

ˆ
{ϕa,δ=s}∩Ba,δ

1
|∇ϕa,δ|

dσ −

ˆ
{ϕa=s}∩Ba,δ

1
|∇ϕa|

dσ.

It therefore suffices to show

sup
0<s≤δ<1/10

(
δ(1−a)/(a+1) log

2δ
s

)−1

×max
{ˆ
{ϕa=s}∩Ba,δ

1
|∇ϕa|

dσ,

ˆ
{ϕa,δ=s}∩Ba,δ

1
|∇ϕa,δ|

dσ

}
<∞. (A.12)



Mixing and un-mixing by incompressible flows 1945

On Ba,δ we have dP ≤ 1/10 (because da,δ < 1/2, which is due to ϕa(1/4, 1/4) =√
2/π > δ), so

ϕa(x, y) = 5aϕ(x, y)dP (x, y)a and ϕa,δ(x, y) = 5aϕ(x, y)dP (x, y)af
(
dP (x, y)

da,δ

)1−a

there. Also,Ba,δ has eight connected components, but the following analysis is essentially
the same in each of them. We will therefore only consider the one near the origin (or rather
one half of it, due to symmetry). So let B ′ := Bda,δ/5(0, 0) ∩ {0 < y < x}.

On B ′ we have ϕx, ϕy, (dP )x, (dP )y > 0, which together with f ′ ≥ 0 shows that
(with the usual ∼ notation, where constants depend on a but not on δ, s)

|∇ϕa| ∼ (ϕa)x + (ϕa)y and |∇ϕa,δ| ∼ (ϕa,δ)x + (ϕa,δ)y (A.13)

and also that the curves {ϕa = s} ∩ B ′ and {ϕa,δ = s} ∩ B ′ are graphs of decreasing
functions of x. Those graphs start at some points (ba(s), ba(s)) and (ba,δ(s), ba,δ(s)) (the
former being from the proof of Lemma 3.1). Since ϕ(x, y) ∼ y and dP (x, y) ∼ x on B ′,
and f (r) ∼ r on (0, 1), we obtain (using also da,δ = cδ1/(a+1))

ba(s) ∼ s
1/(a+1) and ba,δ(s) ∼ δ

(1−a)/(2a+2)s1/2. (A.14)

Since on B ′ we also have 0 ≤ ϕx ≤ ϕy ∼ 1 and 0 ≤ (dP )y ≤ (dP )x ∼ 1, it follows that

|∇ϕa(x, y)| ∼ x
a and |∇ϕa,δ(x, y)| ∼ δ

−(1−a)/(a+1)x

on B ′. From this and (A.14) we deduce that the first integral in (A.12), with Ba,δ replaced
by B ′, is bounded above by a constant times

ˆ da,δ

ba(s)

x−a(1+ |h′(x)|) dx ≤
ˆ da,δ

ba(s)

x−a dx + ba(s)
−aba(s) . δ(1−a)/(a+1),

with h the decreasing function whose graph is {ϕa = s} ∩B ′. By the same argument (and
also using 1

1+a −
1−a

2a+2 = 1/2), the second integral is bounded above by a constant times

ˆ da,δ

ba,δ(s)

δ(1−a)/(a+1)x−1 dx + δ(1−a)/(a+1)ba,δ(s)
−1ba,δ(s) . δ(1−a)/(a+1)(1+ log(δ/s)).

The same bounds are obtained for the integrals from (A.12) over the remaining parts
of Ba,δ (the four connected components in the corners of Q are divided into two parts
each, the other four connected components into four parts each). This proves (A.12), and
thus (2). ut

Lemma A.1. There is c > 0 such that for any s ∈ [0, 1] and κ, ε ∈ (0, 1/2], a function
f ∈ L∞(Q) is κ-mixed to scale ε whenever ‖f ‖H−s ≤ cκ1+s/2ε1+s

‖f ‖∞.



1946 Yao Yao, Andrej Zlatoš

Proof. Let us consider the same test function g : R2
→ [0, 1] as in [11, Lemma 2.3],

smooth and satisfying g = 1 on B(0, ε), g = 0 on R2
\B(0, (1+κ/20)ε), and ‖∇g‖∞ ≤

40/(κε). Elementary computations yield ‖g‖2 ≤ C1ε and ‖g‖Ḣ 1 ≤ C1κ
−1/2 for some

C1 < ∞. Interpolation then gives ‖g‖Ḣ s ≤ C1κ
−s/2ε1−s for s ∈ [0, 1]. We thus have,

for any x ∈ Q such that d(x, ∂Q) ≥ 2ε (so that g(· − x) is supported on Q),∣∣∣∣ˆ
Q

f (y)g(y − x) dy

∣∣∣∣ ≤ ‖f ‖H−s‖g‖Ḣ s ≤ C1cκε
2
‖f ‖∞,

which gives∣∣∣∣ 
Bε(x)

f (y) dy

∣∣∣∣ ≤ 1
πε2

(∣∣∣∣ˆ
Q

f (y)g(y − x) dy

∣∣∣∣+ 3πκε2

20
‖f ‖∞

)
≤

(
C1c

π
+

3
20

)
κ‖f ‖∞. (A.15)

For x ∈ Q such that d(x, ∂Q) < 2ε we instead use the test function g(· − x)h(·),
where h(y) = 1 when d(y, ∂Q) ≥ κε/20, h = 0 on R2

\Q and ‖∇h‖∞ ≤ 40/(κε). An
argument as above yields ‖g(· − x)h(·)‖Ḣ s ≤ C2κ

−s/2ε1−s for some C2 < ∞ and all
s ∈ [0, 1]. Similarly to (A.15) we also obtain∣∣∣∣ 

Bε(x)∩Q

f (y) dy

∣∣∣∣ ≤ (4C2c

π
+

12
20

)
κ‖f ‖∞ (A.16)

because |Bε(x) ∩Q| ≥ π
4 ε

2. Choosing c := π
10 max{C1, C2}

−1 finishes the proof. ut

Lemma A.2. Let p ∈ [1,∞), s ∈ (0, 1/p), and n ≥ 0. Assume that a family of functions
{fij }

2n−1
i,j=0 on Q satisfies ‖fij‖W s,p ≤ 1 and ‖fij‖∞ ≤ 1 for any i, j ∈ {0, . . . , 2n − 1}.

Let f : Q→ R be defined on each Qnij by

f (x) = 2−nfij (2nx − (i, j)).

Then ‖f ‖W s,p ≤ Cs,p2−(1−s)n for some Cs,p > 0 which depends only on s, p.

Proof. Since s ∈ (0, 1) and Q ⊆ R2, the fractional Sobolev norm can equivalently be
defined by (see, e.g., [9])

‖f ‖W s,p =

(ˆ
Q

|f |p dx +

ˆ
Q2

|f (x)− f (y)|p

|x − y|2+sp
dx dy︸ ︷︷ ︸

=:I [f ]

)1/p

.

Obviously ‖f ‖p ≤ 2−n, so it is sufficient to show I [f ] ≤ Cs,p2−(1−s)np. This would
follow from ˆ

Qnij×Q

|f (x)− f (y)|p

|x − y|2+sp
dx dy ≤ Cs,p2−2n−(1−s)np (A.17)

for any i, j ∈ {0, . . . , 2n − 1}, which we shall now prove.
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Since I [fij ] ≤ 1 for any i, j by hypothesis, we have
ˆ
Q2
nij

|f (x)− f (y)|p

|x − y|2+sp
dx dy = 2−2n−(1−s)npI [fij ] ≤ 2−2n−(1−s)np. (A.18)

Also, for some Cs,p <∞ and any x ∈ Qnij we have, using ‖f ‖L∞(Q) ≤ 2−n,

ˆ
Q\Qnij

|f (x)− f (y)|p

|x − y|2+sp
dy ≤

ˆ √2

d(x,∂Qnij )

(2‖f ‖∞)p

r2+sp 2πr dr

≤ Cs,p2−npd(x, ∂Qnij )
−sp.

Integrating this over x ∈ Qnij and using sp < 1 gives (with a new Cs,p)
ˆ
Qnij×(Q\Qnij )

|f (x)− f (y)|p

|x − y|2+sp
dx dy ≤ Cs,p2−np

ˆ
Qnij

d(x, ∂Qnij )
−sp dx

≤ Cs,p2−2n−(1−s)np.

Adding this to (A.18) yields (A.17). ut
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