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Abstract. We resolve a question of Bank and Laine concerning the zeros of solutions of w′′+Aw
= 0 where A is an entire function of finite order.

Keywords. Entire function, linear differential equation, complex oscillation, quasiconformal sur-
gery, Bank–Laine function

1. Introduction and result

The asymptotic distribution of zeros of solutions of linear differential equations with
polynomial coefficients is described quite precisely by asymptotic integration methods
(see [11] and [12, Chapter 8]). While certain differential equations with transcendental
coefficients such as the Mathieu equation were considered early on, the first general re-
sults concerning the frequency of the zeros of the solutions of

w′′ + Aw = 0 (1.1)

with a transcendental entire function A appear to be due to Bank and Laine [2, 3].
For an entire function f , denote by ρ(f ) the order and by λ(f ) the exponent of

convergence of the zeros of f . If A is a polynomial of degree n, then ρ(w) = 1+n/2 for
every non-trivial solution w of (1.1), while ρ(w) = ∞ for every non-trivial solution w if
A is transcendental.

Let w1 and w2 be linearly independent solutions of (1.1). Bank and Laine proved that
if A is transcendental and ρ(A) < 1/2, then

max{λ(w1), λ(w2)} = ∞.

It was shown independently by Rossi [20] and Shen [21] that this actually holds for
ρ(A) ≤ 1/2. Bank and Laine also showed that in the case of non-integer ρ(A) we al-
ways have

max{λ(w1), λ(w2)} ≥ ρ(A), (1.2)
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and they gave examples of functions A of integer order for which there are solutions w1
and w2 both without zeros.

A problem left open by their work—which later became known as the Bank–Laine
conjecture—is whether max{λ(w1), λ(w2)} = ∞ whenever ρ(A) is not an integer. This
question has attracted considerable interest; see [14] for a survey, as well as, e.g., [9], [10]
and [13, Chapter 5].

We answer this question by showing that the estimate (1.2) is best possible for a dense
set of orders in the interval (1,∞).

Theorem. Let p and q be odd integers. Then there exists an entire function A of order

ρ(A) = 1+
log2(p/q)

4π2

for which the equation (1.1) has two linearly independent solutions w1 and w2 such that
λ(w1) = ρ(A), while w2 has no zeros.

By an extension of the method it should be possible to achieve any prescribed order
ρ(A) > 1; see Remark 2 at the end.

If w1 and w2 are linearly independent solutions of equation (1.1), then the Wronskian
W(w1, w2) = w1w

′

2 −w
′

1w2 is a non-zero constant. The solutions are called normalized
if W(w1, w2) = 1.

It is well-known that the ratio F = w2/w1 satisfies the Schwarz differential equation
(see, for example [12])

S[F ] :=
F ′′′

F ′
−

3
2

(
F ′′

F ′

)2

= 2A.

These meromorphic functions F are completely characterized by a topological property:
they are locally univalent. More precisely, consider the equivalence relation on meromor-
phic functions F1 ∼ F2 if F1 = L◦F2, whereL is a fractional linear transformation. Then
the map F 7→ S[F ] is a bijection between the equivalence classes of locally univalent
meromorphic functions and all entire functions.

Normalized solutions w1, w2 are recovered from F by the formulas

w2
1 =

1
F ′
, w2

2 =
F 2

F ′
.

So zeros of F are zeros of w2, and poles of F are zeros of w1.
A meromorphic function F is locally univalent if and only if E = F/F ′ is an entire

function with the property that E(z) = 0 implies E′(z) ∈ {−1, 1}. Such entire functions
E are called Bank–Laine functions. If w1 and w2 is a normalized system of solutions
of (1.1) and F = w2/w1, then

E =
F

F ′
= w1w2.

The converse is also true: every Bank–Laine function is the product of two linearly inde-
pendent solutions of (1.1).
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It turns out that the Schwarzian derivative has the following factorization:

2S[F ] = B[F/F ′],

where

B[E] := −2
E′′

E
+

(
E′

E

)2

−
1
E2 . (1.3)

Thus every Bank–Laine function E is a product of two linearly independent solutions
of (1.1) with 4A = B[E], a fact discovered by Bank and Laine [2, 3].

A considerable part of the previous research related to the Bank–Laine conjecture has
concentrated on the study of Bank–Laine functions. There are a number of papers where
Bank–Laine functions of finite order with various other properties are constructed [1,
5, 7, 15, 16, 17, 19]. In all examples constructed so far for which the order could be
determined, it was an integer—except for those corresponding to a polynomial coefficient
of odd degree, in which case the order is half an integer. In our construction we have
ρ(E) = ρ(A); see Remark 1. Thus our theorem also yields the first examples of Bank–
Laine functions for which the order is finite but not an integer or half-integer.

In the proof of our theorem we use the fact that the functions F have a topological
characterization. Starting with two elementary locally univalent functions, we paste them
together by a quasiconformal surgery. The resulting function is locally univalent, and the
asymptotics of log |F/F ′| can be explicitly computed. A different kind of quasiconformal
surgery was used in [5, 14].

2. Proof of the theorem

For every integer m ≥ 0 we consider the polynomial

Pm(z) =

2m∑
k=0

(−1)k
zk

k!
.

Then the entire function
gm(z) = Pm(e

z) exp ez

satisfies

g′m(z) = (P
′
m(e

z)+ Pm(e
z))ez exp ez =

1
(2m)!

exp(ez + (2m+ 1)z)

and thus it has the following properties:

(a) g′m(z) 6= 0 for all z ∈ C,
(b) gm is increasing on R, and satisfies gm(x)→ 1 as x →−∞ as well as gm(x)→+∞

as x →+∞.
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From now on, we fix two distinct non-negative integers m and n, and will sometimes
omit them from notation. Notice that gm and gn are locally univalent entire functions. We
are going to restrict gm to the upper half-planeH+ and gn to the lower half-planeH−, and
then paste them together, using a quasiconformal surgery, producing an entire function F .
Then our Bank–Laine function will be E = F/F ′ and thus A = B[E]/4 as in (1.3).

It follows from (b) that there exists an increasing diffeomorphism φ : R → R such
that gm(x) = (gn ◦ φ)(x) for x ∈ R. Let

k =
2m+ 1
2n+ 1

.

We show that the asymptotic behavior of the diffeomorphism φ is the following:

φ(x) = x +O(e−x/2), φ′(x)→ 1, x →+∞, (2.1)

φ(x) = kx + c +O(e−δ|x|), φ′(x)→ k, x →−∞, (2.2)

with

c =
1

2n+ 1
log

(2n+ 1)!
(2m+ 1)!

and δ =
1
2

min{1, k}.

In order to prove (2.1), we note that

log gm(x) = ex +O(x) = ex(1+O(xe−x)), x →+∞.

The equation gm(x) = gn(φ(x)) easily implies that 2
3x ≤ φ(x) ≤ 2x for large x. Thus

we also have

log gn(φ(x)) = eφ(x)
(
1+O(φ(x)e−φ(x))

)
= eφ(x)

(
1+O(xe−2x/3)

)
, x →+∞.

Combining the last two equations we obtain

eφ(x)−x = 1+O(xe−2x/3), x →+∞,

from which the first statement in (2.1) easily follows. For the second statement in (2.1)
we use

φ′ =
g′m

gm

gn ◦ φ

g′n ◦ φ
, (2.3)

so that

φ′(x) =
(2n)!
(2m)!

e(2m+1)x−(2n+1)φ(x)Pn(e
φ(x))

Pm(ex)

∼ e(2m+1)x−(2n+1)φ(x)+2nφ(x)−2mx
= ex−φ(x) = 1+ o(1), x →+∞.

In order to prove (2.2) we note that

Pm(w) = e
−w
+

w2m+1

(2m+ 1)!
+O(w2m+2), w→ 0,
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and thus

Pm(w)e
w
= 1+

w2m+1

(2m+ 1)!
+O(w2m+2), w→ 0.

Hence

gm(x) = 1+
e(2m+1)x

(2m+ 1)!
+O(e(2m+2)x)

= 1+
e(2m+1)x

(2m+ 1)!
(1+O(ex)), x →−∞.

The equation gm(x) = gn(φ(x)) now yields

(2m+ 1)!
(2n+ 1)!

e(2n+1)φ(x)−(2m+1)x
= 1+O(ex)+O(eφ(x)), x →−∞,

and hence

φ(x) =
2m+ 1
2n+ 1

x +
1

2n+ 1
log

(2n+ 1)!
(2m+ 1)!

+O(ex)+O(eφ(x)), x →−∞,

which gives the first statement in (2.2). For the second statement in (2.2) we use (2.3) to
obtain

φ′(x) ∼
(2n)!
(2m)!

e(2m+1)x−(2n+1)φ(x)
=
(2n)!
(2m)!

e(2m+1)x−(2n+1)(kx+c+o(1))

=
(2n)!
(2m)!

e−(2n+1)c+o(1)
= k + o(1).

Let D = C \ R≤0, and p : D → C, p(z) = zµ, the principal branch of the power.
Here µ is a complex number to be determined so that p maps D onto the complement G
of a logarithmic spiral 0, with

p(x + i0) = p(kx − i0), x < 0. (2.4)

It will be convenient to consider also the map z→ µz obtained from p by a logarithmic
change of variable: if w = p(z) then logw = µ log z (see Figure 1).

This shows (taking x = 0 in Figure 1) that with a− = log k−iπ and a+ = iπ we have
Re(µa−) = Re(µa+); that is, Re(µ(log k− iπ)) = Re(µiπ). Moreover, Im(iπ/µ) = π .
A simple computation now yields

µ =
2π

4π2 + log2 k
(2π − i log k).

The inverse map h = p−1 is a conformal homeomorphism h : G→ D. Let 0′ = p(R≥0).
The two logarithmic spirals 0 and 0′ divide the plane into two parts, G+ and G−, which
are images under p of the upper and lower half-planes, respectively.
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z 7→ µz

z 7→ zµ

exp exp

iπ

−iπ

iπ

−iπ

a+=x+iπ

a−=x+ log k−iπ
µa−

µa+

−ex

−kex s = r1/Reµ

=
√
kex

sµ = eµa±

r

0

0′

Fig. 1. Sketch of the map p and the logarithmic change of variable, for k = 1/5 and µ ≈ 0.9384+
0.2403i. (The actual spirals 0 and 0′ wind much slower than drawn.)

The function V defined by

V (z) =

{
(gm ◦ h)(z), z ∈ G+,

(gn ◦ h)(z), z ∈ G−,

is analytic in G+ ∪ G− and has a jump discontinuity on 0 and 0′. In view of (2.1),
(2.2) and (2.4), this discontinuity can be removed by a small change in the independent
variable. In order to do so, we consider the strip 5 = {z : |Im z| < 1} and define a
quasiconformal homeomorphism τ : C→ C, commuting with the complex conjugation,
which is the identity outside of 5 and satisfies

τ(x) = φ(x), x > 0, and τ(kx) = φ(x), x < 0. (2.5)

Our homeomorphism can be given by an explicit formula: for y = Im z ∈ (−1, 1) we set

τ(x + iy) =

{
φ(x)+ |y|(x − φ(x))+ iy, x ≥ 0,
φ(x/k)+ |y|(x − φ(x/k))+ iy, x < 0.
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The Jacobian matrix Dτ of τ is given for x > 0 and 0 < |y| < 1 by

Dτ (x + iy) =

(
φ′(x)+ |y|(1− φ′(x)) ±(x − φ(x))

0 1

)
,

and we see using (2.1) that

Dτ (x + iy)→

(
1 0
0 1

)
, 0 < |y| < 1, x →∞.

Similarly, using (2.2) we find that

Dτ (x + iy)→

(
1 ∓c

0 1

)
, 0 < |y| < 1, x →−∞.

We conclude that τ is quasiconformal in the plane.
Now we modify V to obtain a continuous function and define U : C→ C by

U(z) =

{
(gm ◦ h)(z), z ∈ G+ ∪ 0 ∪ 0′ ∪ {0},
(gn ◦ τ ◦ h)(z), z ∈ G−.

(2.6)

It follows from (2.4) and (2.5) that U is continuous and quasiregular in the plane. The
existence theorem for solutions of the Beltrami equation [18, §V.1] shows that there exists
a quasiconformal homeomorphism ψ : C→ C with the same Beltrami coefficient as U .
The function F = U ◦ ψ−1 is then entire.

We note that U is regular in C\X, whereX = p(5−), and5− is the lower half of5.
Let 1 = {z : |z| > 1}. It is easy to see that X ∩1 has finite logarithmic area; that is,∫

X∩1

dx dy

x2 + y2 =

∫
5−∩1

|p′(z)|2

|p(z)|2
dx dy = |µ|2

∫
5−∩1

dx dy

x2 + y2 <∞.

Thus the Beltrami coefficient of U (and hence of ψ) satisfies the hypotheses of the Teich-
müller–Wittich–Belinskii theorem [18, §V.6]. This theorem shows that ψ is conformal
at∞ and may thus be normalized to satisfy

ψ(z) ∼ z, z→∞. (2.7)

Now we want to differentiate the asymptotic relation (2.7). We writeψ(z) = z+ψ0(z)

so that ψ ′(z) = 1 + ψ ′0(z). Then |ψ0(z)| ≤ α(z) for some function α satisfying α(z) =
o(z) as z→∞. We may assume that α(z)→∞ as z→∞. We use the Cauchy formula

ψ ′0(z) =
1

2πi

∫
Cz

ψ0(ζ )

(ζ − z)2
dζ

with a circle Cz centered at z. Choosing the radius β(z) of this circle to satisfy

α(z) = o(β(z)), β(z) = o(z), z→∞,



1906 Walter Bergweiler, Alexandre Eremenko

and setting Y = {z : dist(z,X) ≤ β(z)} we obtain

ψ ′0(z)→ 0, z→∞, z ∈ C \ Y. (2.8)

We also have
meas{θ ∈ [0, 2π ] : reiθ ∈ Y } → 0, r →∞.

Let Y ′ = ψ(Y ). Using (2.7) we also see that

meas{θ ∈ [0, 2π ] : reiθ ∈ Y ′} → 0, r →∞. (2.9)

We set E = F/F ′. As F ′(z) 6= 0 for all z ∈ C by construction, E is entire. As all
zeros of F are simple, all residues of F ′/F are equal to 1, so E′(z) = 1 at every zero z
of E, which implies the Bank–Laine property.

First we prove that E is of finite order. In order to do this, we use the standard ter-
minology of Nevanlinna theory (see [8] or [13]). The counting function of the sequence
of zeros of gm and gn is of order 1, so the counting function of the zeros of U in (2.6)
is of finite order. Then (2.7) shows that the counting function of zeros of F , and hence
the counting function of the zeros of E, is also of finite order; that is, logN(r, 1/E) =
O(log r). Similarly, log logm(r, F ) = O(log r), so by the lemma on the logarithmic
derivative [8, Chapter 3, Theorem 1.3] we have logm(r, 1/E) = logm(r, F ′/F ) =
O(log r). Thus log T (r, E) = O(log r), so that E is of finite order.

Now we estimate more precisely the growth of the Nevanlinna proximity function
m(r, 1/E) = m(r, F ′/F ). The “small arcs lemma” of Edrei and Fuchs [8, Chapter 1,
Theorem 7.3] permits us to discard the exceptional set Y ′ = ψ(Y ). Outside of this set we
have ψ ′(z)→ 1 in view of (2.8), therefore∫

{θ∈[0,2π ] : reiθ∈C\Y ′}

∣∣log |ψ ′(reiθ )|
∣∣ dθ = o(1), r →∞. (2.10)

Furthermore, as h(z) = z1/µ, we have∫ 2π

0

∣∣log |h′(reiθ )|
∣∣ dθ = O(log r), r →∞. (2.11)

Now in ψ−1(D+ \ Y ) we have

F ′

F
=

(
g′m

gm
◦ h ◦ ψ−1

)
(h′ ◦ ψ−1)(ψ−1)′. (2.12)

By (2.10) and (2.11), the contribution of h′ and (ψ−1)′ to m(r, F ′/F ) is O(log r). Using
the explicit form of g′m/gm we obtain, outside small neighborhoods of the zeros of gm
whose contribution can be neglected again by the small arcs lemma of Edrei and Fuchs,

log+
∣∣∣∣g′m(z)gm(z)

∣∣∣∣ ∼ Re+ z, z→∞. (2.13)

Now the image of the circle {z : |z| = r} under h(z) = z1/µ is the part of the logarithmic
spiral which connects two points on the negative real axis and intersects the positive real
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axis at r1/Reµ (see Figure 1). By (2.7), the image of this circle under h ◦ ψ−1 is an arc
close to this part of the logarithmic spiral. It now follows from (2.10)–(2.13) that the part
of m(r, F ′/F ) which comes from ψ−1(G+ \ Y ) has order

ρ =
1

Reµ
= 1+

log2 k

4π2 .

The other part which comes from ψ−1(G− \ Y ) is similar, and the contribution of Y ′ is
negligible in view of (2.9). So m(r, 1/E) = m(r, F ′/F ) has order ρ.

Now (1.3) says that

4A = −2
E′′

E
+

(
E′

E

)2

−
1
E2 . (2.14)

It follows from the lemma on the logarithmic derivative that

m(r,A) = 2m
(
r,

1
E

)
+O(log r).

Thus A also has order ρ.

3. Remarks

Remark 1. To prove that ρ(A) = ρ it was sufficient to determine the growth of
m(r, 1/E). To show that ρ(E) = ρ we also have to estimate the counting function of the
zeros of E. In order to do so we note that N(r, 1/gm) = O(r) and N(r, 1/gn) = O(r).
Hence N(r, 1/U) = O(rρ) and thus (2.7) implies that

N(r, 1/E) = N(r, F ) = O(rρ).

Altogether we see that ρ(E) = ρ = ρ(A), as stated in the introduction.
It follows from (2.14) that ρ(A) ≤ ρ(E). Together with any of the inequalities [14,

Theorem 12.3.1]

ρ(A)+ ρ(E) ≥ 2,
1

ρ(A)
+

1
ρ(E)

≤ 2 and ρ(A)ρ(E) ≥ 1

this shows that ρ(E) ≥ 1 for every Bank–Laine function E. As our method yields ex-
amples with ρ(E) = ρ(A), it does not seem suitable to give examples with ρ(A) < 1.
Examples with ρ(A) ∈ (1/2, 1) and

max{λ(w1), λ(w2)} = ∞

for linearly independent solutions w1 and w2 of (1.1) are given in [4] which was written
after this paper was completed.

We also note that it can be deduced from (1.3) that if ρ(A) < 1, then λ(E) = ρ(E)
(see [14, p. 442]).
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Remark 2. We started our construction with two periodic locally univalent functions
gm and gn and obtained a set of orders ρ which is dense in [1,+∞). By using almost
periodic building blocks instead of gm and gn, one can probably achieve any prescribed
order greater than 1 (cf. [8, Chapter 7, Section 6]). In this case gm and gn will not be
explicitly known, but their asymptotic behavior can be obtained.

Remark 3. The idea of introducing spiraling to increase the order of a function—and
to do this via a quasiconformal deformation—was used in early 1950s for the solution
of the inverse problem of Nevanlinna theory for functions of prescribed order (see, for
example, [8]).

Remark 4. The Bank–Laine functions we have constructed actually satisfy E(z) = 1
whenever E′(z) = 0. Equivalently, one of the two solutions of (1.1) whose product is E
has no zeros while the other one has a finite exponent of convergence.
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