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Abstract. Friedland’s Lower Matching Conjecture asserts that if G is a d-regular bipartite graph
on v(G) = 2n vertices, and mk(G) denotes the number of matchings of size k, then

mk(G) ≥

(
n

k

)2(d − p
d

)n(d−p)
(dp)np,

where p = k/n. When p = 1, this conjecture reduces to a theorem of Schrijver which says that a
d-regular bipartite graph on v(G) = 2n vertices has at least(

(d − 1)d−1

dd−2

)n
perfect matchings. L. Gurvits proved an asymptotic version of the Lower Matching Conjecture,
namely

lnmk(G)
v(G)

≥
1
2

(
p ln

(
d

p

)
+ (d − p) ln

(
1−

p

d

)
− 2(1− p) ln(1− p)

)
+ ov(G)(1).

In this paper, we prove the Lower Matching Conjecture. In fact, we establish a slightly stronger
statement which gives an extra cp

√
n factor compared to the conjecture if p is separated away from

0 and 1, and is tight up to a constant factor if p is separated away from 1. We will also give a
new proof of Gurvits’s and Schrijver’s theorems, and we extend these theorems to (a, b)-biregular
bipartite graphs.

Keywords. Matchings, matching polynomial, Benjamini–Schramm convergence, infinite regular
tree, infinite biregular tree, 2-lift

1. Introduction

Throughout this paper we use standard terminology, but the second paragraph of Section 2
might help the reader in the case of some concepts undefined in this introduction.

One of the best known theorem concerning the number of perfect matchings of a
d-regular graph is due to A. Schrijver and M. Voorhoeve.
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Theorem 1.1 (A. Schrijver [25] for general d, M. Voorhoeve [27] for d = 3). Let G be
a d-regular bipartite graph on 2n vertices and let pm(G) denote the number of perfect
matchings of G. Then

pm(G) ≥
(
(d − 1)d−1

dd−2

)n
.

There are two different proofs of Theorem 1.1: the original one due to A. Schrijver [25],
and another proof using stable polynomials due to L. Gurvits [13]; for a beautiful account
of the latter see [18]. In this paper we will give a third proof which is essentially different
from the previous ones.

S. Friedland, E. Krop and K. Markström [9] conjectured a possible generalization of
this theorem which extends Schrijver’s theorem to any size of matchings. This conjecture
became known as Friedland’s Lower Matching Conjecture:

Conjecture 1.2 (Friedland’s Lower Matching Conjecture [9]). Let G be a d-regular bi-
partite graph on v(G) = 2n vertices, and let mk(G) denote the number of matchings of
size k. Then

mk(G) ≥

(
n

k

)2(
d − p

d

)n(d−p)
(dp)np, where p = k/n.

They also proposed an asymptotic version of this conjecture which was later proved by
L. Gurvits [14].

Theorem 1.3 (L. Gurvits [14]). Let G be a d-regular bipartite graph on v(G) = 2n
vertices, and let mk(G) denote the number of matchings of size k. Then

lnmk(G)
v(G)

≥
1
2

(
p ln

(
d

p

)
+ (d − p) ln

(
1−

p

d

)
− 2(1− p) ln(1− p)

)
+ ov(G)(1),

where p = k/n.

When p = 1 this result almost reduces to Schrijver’s theorem, but Gurvits used this
special case to establish the general case. More precisely, Gurvits used the following
result of Schrijver: Let A = (aij ) be a doubly stochastic matrix, and Ã = (ãij ), where
ãij = aij (1− aij ). Then the permanent of Ã satisfies the inequality

Per(Ã) ≥
∏
i,j

(1− aij ).

Note that Gurvits [14] proved an effective version of Theorem 1.3, but for our purposes
any ov(G)(1) term would suffice, as we will make it “vanish”. More details on Gurvits’s
results can be found in Remark 3.3.

It is worth introducing some notation for the function appearing in Theorem 1.3, and
with some foresight we introduce another function with parameters a, b which will be
important for us when we study (a, b)-biregular graphs.
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Definition 1.4. Let 0 ≤ q ≤ 1 and

H(q) = −(q ln q + (1− q) ln(1− q))

with the usual convention that H(0) = H(1) = 0. Furthermore, for a positive integer d
and 0 ≤ p ≤ 1 let

Gd(p) =
1
2

(
p ln

(
d

p

)
+ (d − p) ln

(
1−

p

d

)
− 2(1− p) ln(1− p)

)
,

and for positive integers a and b let

Ga,b(p) =
a

a + b
H

(
a + b

2a
p

)
+

b

a + b
H

(
a + b

2b
p

)
+

1
2
p ln(ab)−

ab

a + b
H

(
a + b

2ab
p

)
,

where 0 ≤ p ≤ min
( 2a
a+b

, 2b
a+b

)
.

Note that one can rewrite Ga,b(p) as follows:

Ga,b(p) =
1
2

(
p ln

(
2ab

(a + b)p

)
+

(
2ab
a + b

− p

)
ln
(

1−
a + b

2ab
p

)
−

(
2a
a + b

− p

)
ln
(

1−
a + b

2a
p

)
−

(
2b
a + b

− p

)
ln
(

1−
a + b

2b
p

))
.

From this form it is clear that for a = b = d , we have Gd(p) = Ga,b(p). Later it will
turn out that Gd(p) is the so-called entropy function of the infinite d-regular tree Td , and
Ga,b(p) is the entropy function of the infinite (a, b)-biregular tree Ta,b.

To show the connection between Conjecture 1.2 and Theorem 1.3, let us introduce
one more parameter. Let p = k/n, and let pµ be the probability that a random variable
with Binomial(n, p) distribution takes its mean value µ = k. In other words,

pµ =

(
n

k

)
pk(1− p)n−k.

With this new notation the function appearing in Conjecture 1.2 is(
n

k

)2(
d − p

d

)n(d−p)
(dp)np = p2

µ exp(2nGd(p)).

Hence Conjecture 1.2 claims that

mk(G) ≥ p
2
µ exp(2nGd(p)).

It turns out that a slightly stronger statement is true.
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Theorem 1.5. Let G be a d-regular bipartite graph on v(G) = 2n vertices, and let
mk(G) denote the number of matchings of size k. Furthermore, let p = k/n, and pµ be
the probability that a random variable with Binomial(n, p) distribution takes its mean
value µ = k. Then

mk(G) ≥ pµ exp(2nGd(p)).

In particular, Conjecture 1.2 holds true. Furthermore, for every 0 ≤ k < n there exists a
d-regular bipartite graph G on 2n vertices such that

mk(G) ≤

√
1− p/d

1− p
· pµ exp(2nGd(p)).

Note that pµ ≈ 1/
√

2πp(1− p)n, which means that if p is separated away from 0 and 1,
then we can obtain an extra cp

√
n factor compared to Conjecture 1.2. Also note that

always pµ ≥ 1
n+1 ≥

1
2n . This inequality might be easier to handle in some cases.

We will show that Theorem 1.3 implies Conjecture 1.2. The idea of the proof of
Theorem 1.5 is to convert Gurvits’s theorem to a statement on analytical functions arising
from statistical mechanics. Then tools from analysis and probability theory together with
a simple observation will enable us to replace the term ov(G)(1) in Gurvits’s theorem with
an effective one which is slightly better than the corresponding term in Gurvits’s original
theorem (see Remark 3.3).

We offer one more theorem for d-regular bipartite graphs.

Theorem 1.6. Let G be a d-regular bipartite graph on v(G) = 2n vertices, and let
mk(G) denote the number of matchings of size k. Let 0 ≤ p ≤ 1. Then

n∑
k=0

mk(G)

(
p

d

(
1−

p

d

))k
(1− p)2(n−k) ≥

(
1−

p

d

)nd
.

When p = 1, Theorem 1.6 immediately yields Theorem 1.1. Indeed, when p = 1 only
the term mn(G)

( 1
d

(
1 − 1

d

))n does not vanish on the left hand side, because of the term
(1− p)2(n−k), and we get

mn(G)

(
1
d

(
1−

1
d

))n
≥

(
1−

1
d

)nd
,

which is equivalent to

mn(G) ≥

(
(d − 1)d−1

dd−2

)n
.

As already mentioned, Theorem 1.3 implies Theorem 1.5, but the main goal of this
paper is to give a new proof of Gurvits’s and Schrijver’s theorems with a novel method.
This method will be used to prove Theorem 1.6 too. This new proof shows that the ex-
tremal graph is in some sense the d-regular infinite tree. Indeed, we will show that the
function on the right hand side of Theorem 1.3 is nothing other than the so-called entropy
function of the d-regular infinite tree; the entropy functions of finite and infinite graphs
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will be introduced in Section 2. This means that for a deeper understanding of these the-
orems, one needs to step out from the universe of finite graphs. We will do it by using
the recently developed theory of Benjamini–Schramm convergence of bounded degree
graphs. This new technique also enables us to extend these theorems to (a, b)-biregular
bipartite graphs.

Theorem 1.7. Let G = (A,B,E) be an (a, b)-biregular bipartite graph on v(G) ver-
tices such that every vertex inA has degree a, and every vertex in B has degree b. Assume
that a ≥ b, i.e., |A| ≤ |B|. Let mk(G) denote the number of matchings of size k, and
p = 2k/v(G). Furthermore, let q = a+b

2b p, and let pµ be the probability that a random
variable with Binomial(|A|, q) distribution takes its mean value µ = k. Then

mk(G) ≥ pµ exp(v(G) ·Ga,b(p)).

Note that if k = |A|, then pµ = 1, and pµ ≥ 1
|A|+1 ≥

1
v(G)

for any p.
One can view Theorem 1.7 and the other results as extremal graph-theoretic problems

where one seeks for the extremal value of a certain graph parameter p(G) in a given fam-
ily G of graphs. In extremal graph theory it is a classical idea to try to find some graph
transformation ϕ such that p(G) ≤ p(ϕ(G)) (or p(G) ≥ p(ϕ(G))), and ϕ(G) ∈ G for
every G ∈ G. Then we apply this transformation as long as we can, and when we stop
then we know that the extremal graph must be in a special subfamily of G, where the
optimization problem can be solved easily. See for instance the proof of Turán’s theorem
using Zykov’s symmetrization [28]. In our case, the transformation ϕ will simply be any
2-lift of the graph (see Definition 4.1). The new ingredient in our proof is that the se-
quence of graphs obtained by repeatedly applying the 2-lifts will not stabilize, but instead
converge to the infinite biregular tree. In fact, most of our work is related to the graph
convergence part, and not the graph transformation part.

Organization. In the next section we introduce all the necessary tools including the den-
sity function p(G, t), the entropy function λG(p), and Benjamini–Schramm convergence,
and we compute the entropy function of the infinite biregular tree. In this section we also
give various results on the number of matchings of random (bi)regular graphs, which
shows the tightness of our results. In particular, we prove the second half of Theorem 1.5
here. In Section 3 we show that Gurvits’s theorem is equivalent to a certain (effective)
statement on the entropy function. In Section 4 we give a new proof of Schrijver’s and
Gurvits’s theorem together with the main part of the proof of Theorem 1.7. In Section 5 we
deduce Theorem 1.5 from the new version of Gurvits’s theorem, we prove Theorem 1.6,
and we also finish the proof of Theorem 1.7.

How to read this paper. This paper is occasionally a bit technical, especially in Sec-
tion 2. In order to make it easier to read we now roughly summarize its content and give
a road map for a first reading. Assuming that the reader is mainly interested in the proof
of Theorem 1.5, we first give an idea how the proof works.

Assume that p(G) is some graph parameter related to matchings and it is normalized
in such a way that we can compare graphs of different sizes, in particular it makes sense
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to compare two d-regular graphs. For instance

p(G) =
ln pm(G)
v(G)

is such a graph parameter. We will prove that for a bipartite d-regular graph G we have

p(G) ≥ p(Td),

where p(Td) a priori does not make sense, but can be defined as a limit limi→∞ p(Hi),
where Hi is a sequence of graphs “locally converging” to Td . The plan is the following:
We define a sequence of graphs Gi such that G = G0 and

p(G) = p(G0) ≥ p(G1) ≥ p(G2) ≥ · · ·

and
lim
i→∞

p(Gi) = p(Td).

This clearly gives
p(G) ≥ p(Td).

A technical difficulty arises from the fact that it is not really convenient to work with
the parameter

q(G) =
lnmk(G)
v(G)

.

Instead we use the entropy function λG(p) which is strongly related to q(G), but is more
amenable to analysis. So λG(p)will play the role of p(G). Of course, we need some tools
to transfer our knowledge from λG(p) to q(G), but it is again just a technical problem.

So by keeping in mind our simple plan and the technical difficulty, we suggest the
following road map for the first reading: (1) first read the alternative definition of λG(p)
(Remark 2.2), which is easy to understand, then take a quick look at its properties (Propo-
sition 2.1) without reading the proof, (2) read the definition of Benjamini–Schramm con-
vergence (Definition 2.5) and Example 2.7, (3) jump to Section 4, but read it only till the
proof of Theorems 1.1 and 1.3, (4) finally, read Section 5. We believe that reading just
this core of the paper will give a good impression of its content and the novel method
applied.

Let us mention that if the reader is familiar with Gurvits’s result (Theorem 1.3) and
only wants to know how one can derive Theorem 1.5 from it, then after step (1) in the
above plan one can jump immediately to Section 3 and then to Section 5.

2. Preliminaries and basic notions

This section is mostly reproduced from [2]. We could have simply cited that paper, but
for the convenience of the reader, we also include some proofs.

Throughout, G denotes a finite graph with vertex set V (G) and edge set E(G). The
number of vertices is denoted by v(G). The degree of a vertex is the number of its neigh-
bors. A graph is called d-regular if every vertex has degree exactly d. A cycle C is a
sequence v1, . . . , vk of vertices such that vi 6= vj if i 6= j and (vi, vi+1) ∈ E(G) for
i = 1, . . . , k, where vk+1 = v1. The length of the cycle is k in this case. A k-matching is
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a set {e1, . . . , ek} of edges such that for any i and j , the vertex sets of ei and ej are disjoint,
in other words, e1, . . . , ek cover 2k vertices between themselves. A perfect matching is
a matching which covers all vertices. A graph is called bipartite if the vertices can be
colored with two colors such that each edge connects two vertices of different colors.
The standard notation for a bipartite graph is G = (A,B,E), where A and B denote the
vertex sets corresponding to the two color classes.

Let G = (V ,E) be a finite graph on v(G) vertices, and let mk(G) denote the number
of k-matchings (m0(G) = 1). Let t be a non-negative real number; in statistical mechanics
it is called the activity. Let

M(G, t) =

bv(G)/2c∑
k=0

mk(G)t
k, µ(G, x) =

bv(G)/2c∑
k=0

(−1)kmk(G)xv(G)−2k.

We call M(G, t) the matching generating function,1 and µ(G, x) the matching polyno-
mial [16, 10, 11]. Clearly, they encode the same information. Let

p(G, t) =
2t · d

dt
M(G, t)

v(G) ·M(G, t)
, F (G, t) =

lnM(G, t)
v(G)

−
1
2
p(G, t) ln(t).

We will call p(G, t) the density function. Note that it has a natural interpretation: Assume
that we choose a random matching M with probability proportional to t |M|; then the
expected number of vertices covered by a random matching is p(G, t) · v(G). Let

p∗(G) =
2ν(G)
v(G)

,

where ν(G) denotes the number of edges in the largest matching. If G contains a perfect
matching, then clearly p∗ = 1. The function p = p(G, t) is a strictly increasing function
which maps [0,∞) to [0, p∗), where p∗ = p∗(G). Therefore, its inverse function t =
t (G, p)maps [0, p∗) to [0,∞). (IfG is clear from the context, then we simply write t (p)
instead of t (G, p).) Let

λG(p) = F(G, t (p))

if p < p∗, and λG(p) = 0 if p > p∗. Note that we have not defined λG(p∗) yet. We
define it as a limit:

λG(p
∗) = lim

p↗p∗
λG(p).

We will show that this limit exists Proposition 2.1(c). We will call λG(p) the entropy
function of the graph G.

The intuitive meaning of λG(p) is the following. Assume that we want to count the
number of matchings covering a p fraction of the vertices. Assume that it makes sense:
p = 2k/v(G), and so we wish to count mk(G). Then

λG(p) ≈
lnmk(G)
v(G)

.

A more precise formulation of this statement is given below.

1 In statistical mechanics, it is called the partition function of the monomer-dimer model.
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Proposition 2.1 ([2]). Let G be a finite graph.

(a) Let rG be the union of r disjoint copies of G. Then

λG(p) = λrG(p).

(b) If p < p∗, then
d

dp
λG(p) = −

1
2

ln t (p).

(c) The limit

λG(p
∗) = lim

p↗p∗
λG(p)

exists.
(d) Let k ≤ ν(G) and p = 2k/v(G). Then∣∣∣∣λG(p)− lnmk(G)

v(G)

∣∣∣∣ ≤ ln v(G)
v(G)

.

(e) Let k = ν(G). Then for p∗ = 2k/v(G) we have

λG(p
∗) =

lnmk(G)
v(G)

.

In particular, if G contains a perfect matching then

λG(1) =
ln pm(G)
v(G)

.

(f) If for some function f (p) we have

λG(p) ≥ f (p)+ ov(G)(1)

for all graphs G, then

λG(p) ≥ f (p).

(g) If for some graphs G1 and G2 we have

lnM(G1, t)

v(G1)
≥

lnM(G2, t)

v(G2)
for every t ≥ 0,

then

λG1(p) ≥ λG2(p) for every 0 ≤ p ≤ 1.
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Remark 2.2. Parts (a) and (d) of Proposition 2.1 together suggest an alternative defini-
tion for the entropy function λG(p) for p < p∗: Let (kr) be a sequence of integers such
that

lim
r→∞

2kr
rv(G)

= p.

Then

λG(p) = lim
r→∞

lnmkr (rG)
rv(G)

.

In general when we have an infinite graph L, say Zd , then it is a natural idea to consider
a graph sequence Gi converging to L and to take a sequence (ki) such that

lim
i→∞

2ki
v(Gi)

= p,

and then to consider

λL(p) = lim
i→∞

lnmki (Gi)
v(Gi)

.

In this sense, this alternative definition is nothing other than to consider the “G-lattice”
of infinitely many disjoint copies of G and approximate it with Gi = iG, the union of i
copies of G.

This alternative definition is much more natural, especially from the statistical physics
point of view. On the other hand, it is hard to work with.

We will need some preparation to prove Proposition 2.1. First, we will need the following
fundamental theorem about the matching polynomial.

Theorem 2.3 (Heilmann and Lieb [16]). The zeros of the matching polynomial µ(G, x)
are real, and if the largest degreeD ofG is greater than 1, then all zeros lie in the interval
[−2
√
D − 1, 2

√
D − 1].

We will also use the following theorem of Darroch.

Lemma 2.4 (Darroch’s rule [6]). Let P(x) =
∑n
k=0 akx

k be a polynomial with only
positive coefficients and real zeros. If

k −
1

n− k + 2
<
P ′(1)
P (1)

< k +
1

k + 2
,

then k is the unique number for which ak = max(a1, . . . , an). If, on the other hand,

k +
1

k + 2
<
P ′(1)
P (1)

< k + 1−
1

n− k + 1
,

then either ak or ak+1 is the maximal element of a1, . . . , an.
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Proof of Proposition 2.1. (a) Note that

M(rG, t) = M(G, t)r ,

implying that p(rG, t) = p(G, t) and λrG(p) = λG(p).
(b) Since

λG(p) =
lnM(G, t)
v(G)

−
1
2
p ln t,

we have

dλG(p)

dp
=

(
1

v(G)
·

d
dt
M(G, t)

M(G, t)
·
dt

dp
−

1
2

(
ln t + p ·

1
t
·
dt

dp

))
= −

1
2

ln t,

since
1

v(G)
·

d
dt
M(G, t)

M(G, t)
=
p

2t
by definition.

(c) From d
dp
λG(p) = −

1
2 ln t (p) we see that for p > p(G, 1), the function λG(p) is

decreasing. (We can also see that λG(p) is a concave-down function.) Hence

lim
p↗p∗

λG(p) = inf
p>p(G,1)

λG(p).

(d) First, assume that k < ν(G). For k = ν(G), we will slightly modify our argument.
Let t = t (G, p) be the value for which p = p(G, t). The polynomial

P(G, x) = M(G, tx) =

n∑
j=0

mj (G)t
jxj ,

considered as a polynomial in variable x, has only real zeros by Theorem 2.3. Note that

k =
pv(G)

2
=
P ′(G, 1)
P (G, 1)

.

Darroch’s rule says that in this case mk(G)tk is the unique maximal element of the coef-
ficient sequence of P(G, x). In particular

M(G, t)

v(G)
≤ mk(G)t

k
≤ M(G, t).

Hence
λG(p)−

ln v(G)
v(G)

≤
lnmk(G)
v(G)

≤ λG(p).

Hence for k < ν(G), we are done.
If k = ν(G), then let p be arbitrary such that

k − 1/2 < pv(G)/2 < k.

Again by Darroch’s rule,

λG(p)−
ln v(G)
v(G)

≤
lnmk(G)
v(G)

≤ λG(p).
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Since this is true for all p sufficiently close to p∗ = 2ν(G)/v(G), and λG(p∗) =
limp↗p∗ λG(p), we have ∣∣∣∣λG(p∗)− lnmk(G)

v(G)

∣∣∣∣ ≤ ln v(G)
v(G)

in this case too.
(e) By (a) we have λrG(p) = λG(p). Note also that if k = ν(G), then mrk(rG) =

mk(G)
r . Applying the bound from (d) to the graph rG, we obtain∣∣∣∣λG(p∗)− lnmk(G)

v(G)

∣∣∣∣ ≤ ln v(rG)
v(rG)

.

Since ln v(rG)/v(rG)→ 0 as r →∞, we get

λG(p
∗) =

lnmk(G)
v(G)

.

(f) This is again a trivial consequence of λrG(p) = λG(p).
(g) From the assumption it follows that for the relative sizes of the largest matchings,

we have ν(G1)/v(G1) ≥ ν(G2)/v(G2), and if there is equality, then

lnmν(G1)(G1)

v(G1)
≥

lnmν(G2)(G2)

v(G2)
.

Thus the statement is trivial if p ≥ 2ν(G2)/v(G2). So we can assume that 0 ≤ p <

2ν(G2)/v(G2). Let us consider the minimum of the function λG1(p)−λG2(p) on the in-
terval [0, 2ν(G2)/v(G2)]. This minimum is either attained at some endpoints or inside the
interval at a point where the derivative is 0. Note that λG1(0) = λG1(0) = 0. According
to (b), the derivative of λG1(p)− λG2(p) is

−
1
2 ln t (G1, p)+

1
2 ln t (G2, p).

If it is 0 at p0 then t (G1, p0) = t (G2, p0), but then with the notation t = t (G1, p0) =

t (G2, p0) we have

λG1(p0) =
lnM(G1, t)

v(G1)
−

1
2
p0 ln(t) ≥

lnM(G2, t)

v(G2)
−

1
2
p0 ln(t) = λG2(p0).

So at every possible minimum of λG1(p)− λG2(p), the function is non-negative. So it is
non-negative everywhere. ut

2.1. Benjamini–Schramm convergence and the entropy function

In this part we extend the definition of the function λG(p) to infinite lattices L, more
precisely to certain random rooted graphs.
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Definition 2.5. Let L be a probability distribution on (infinite) rooted graphs; we will
call L a random rooted graph. For a finite rooted graph α and a positive integer r , let
P(L, α, r) be the probability that the r-ball centered at a random root vertex chosen from
the distribution L is isomorphic to α.

For a finite graph G, a finite rooted graph α and a positive integer r , let P(G, α, r)
be the probability that the r-ball centered at a uniform random vertex of G is isomorphic
to α.

We say that a sequence (Gi) of bounded degree graphs is Benjamini–Schramm con-
vergent if for all finite rooted graphs α and r > 0, the probabilities P(Gi, α, r) converge.
Furthermore, we say that (Gi) Benjamini–Schramm converges to L if P(Gi, α, r) →
P(L, α, r) for all positive integers r and finite rooted graphs α.

Note that Benjamini–Schramm convergence is also called local convergence. This refers
to the fact that the finite graphs Gi look locally more and more like the infinite graph L.

Example 2.6. Consider a sequence of boxes in Zd all of whose sides converge to infinity.
This is a Benjamini–Schramm convergent graph sequence since for every fixed r , we can
pick a vertex which is at least r away from the boundary with probability converging
to 1. For all these vertices we will see the same neighborhood. This also shows that we
can impose an arbitrary boundary condition, for instance the periodic boundary condition
means that we consider the sequence of toroidal boxes. Boxes and toroidal boxes will be
Benjamini–Schramm convergent even together, and they converge to a distribution which
is a rooted Zd with probability 1.

Example 2.7. Recall that a k-cycle of a graph H is a sequence of vertices v1, . . . , vk
such that vi 6= vj if i 6= j , and (vi, vi+1) ∈ E(H) for 1 ≤ i ≤ k, where vk+1 = v1. For
a graph H , let g(H) be the length of the shortest cycle in H ; this is called the girth of the
graph.

Let (Gi) be a sequence of d-regular graphs such that g(Gi) → ∞. Then (Gi)
Benjamini–Schramm converges to the rooted d-regular infinite tree Td . Note that if in
a finite graph G the shortest cycle has length at least 2k + 1 then the k-neighborhood of
any vertex looks like the k-neighborhood of any vertex of an infinite d-regular tree.

Let (Gi) be a sequence of (a, b)-biregular graphs such that g(Gi)→ ∞. Then (Gi)
Benjamini–Schramm converges to the following distribution: with probability a

a+b
it is

the infinite (a, b)-biregular tree Ta,b with root vertex of degree b, and with probability
b
a+b

it is the infinite (a, b)-biregular tree Ta,b with root vertex of degree a. With slight
abuse of notation we will denote this random rooted tree by Ta,b as well.

Remark 2.8. Not every random rooted graph can be obtained as a limit of Benjamini–
Schramm convergent finite graphs. A necessary condition is that the random rooted graph
be unimodular, which is a certain reversibility property of the graph. On the other hand,
it is not known whether every unimodular random graph can be obtained as a limit of
Benjamini–Schramm convergent finite graphs. This is the famous Aldous–Lyons prob-
lem. The interested reader can consult the book [21].
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The following theorem was known in many cases for the thermodynamic limit in statisti-
cal mechanics. We also note that a modification of the algorithm “CountMATCHINGS”
in [3] yields an alternative proof of parts (a) and (b) of this theorem.

Theorem 2.9 ([2]). Let (Gi) be a Benjamini–Schramm convergent graph sequence of
bounded degree graphs. Then the sequences of functions

(a) p(Gi, t),
(b) (lnM(Gi, t))/v(Gi)

converge to strictly increasing continuous functions on the interval [0,∞). Let p0 be a
real number between 0 and 1 such that p∗(Gi) ≥ p0 for all n. Then

(c) t (Gi, p),
(d) λGi (p)

are convergent for all 0 ≤ p < p0.

Remark 2.10. H. Nguyen and K. Onak [22], and independently G. Elek and G. Lippner
[8], proved that for a Benjamini–Schramm convergent graph sequence (Gi), the following
limit exists:

lim
n→∞

p∗(Gi).

(Recall that p∗(Gi) = 2ν(Gi)/v(Gi).)

To prove Theorem 2.9, we need some preparation. We essentially repeat the argument
from [1].

The following theorem deals with the behavior of the matching polynomial in
Benjamini–Schramm convergent graph sequences. The matching measure was introduced
in [1]:

Definition 2.11. The matching measure of a finite graph is defined as

ρG =
1

v(G)

∑
zi :µ(G,zi )=0

δ(zi),

where δ(s) is the Dirac-delta measure at s, and we take every zi into account together
with its multiplicity.

In other words, the matching measure is the probability measure of uniform distribution
on the zeros of µ(G, x).

Theorem 2.12 ([1, 2]). Let (Gi) be a Benjamini–Schramm convergent bounded de-
gree graph sequence. Let ρGi be the matching measure of the graph Gi . Then the se-
quence (ρGi ) is weakly convergent, i.e., there exists some measure ρL such that for every
bounded continuous function f , we have

lim
i→∞

∫
f (z) dρGi (z) =

∫
f (z) dρL(z).
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Remark 2.13. This theorem was first proved in [1]. The proof given there relied on a
general result on graph polynomials given in [5]. To make this paper as self-contained as
possible we sketch here a slightly different proof outlined in a remark in [1].

Proof of Theorem 2.12. For a graphG let S(G) denote the multiset of zeros of the match-
ing polynomial µ(G, x), and

pk(G) =
∑

λ∈S(G)

λk.

Then pk(G)/v(G) can be rewritten in terms of the measure ρG as follows:

pk(G)

v(G)
=

∫
zk dρG(z).

It is known that pk(G) counts the number of closed tree-like walks of length k in the
graph G (see [10, Chapter 6]). Without going into the details of the description of tree-
like walks, we only use the fact that these are a special type of walks that we can count
by knowing all k-balls centered at the vertices of the graph G. Let TW(α) denote the
number of closed tree-like walks starting at the root of α, and let Nk be the set of
k-neighborhoods α. The size of Nk is bounded by a function of k and the largest degree
of the graph G. Furthermore, let Nk(G, α) denote the number of vertices of G whose
k-neighborhood is isomorphic to α. Then

pk(G) =
∑
α∈Nk

Nk(G, α) · TW(α).

Therefore
pk(G)

v(G)
=

∑
α∈Nk

P(G, α, k) · TW(α).

Hence, if (Gi) is Benjamini–Schramm convergent then for every fixed k, the sequence

pk(Gi)

v(Gi)
=

∫
zk dρGi (z)

is convergent. Clearly, this implies that for every polynomial q(z), the sequence∫
q(z) dρGi (z)

is convergent.
Assume thatD is a general upper bound for all degrees of all graphsGi . Then all zeros

of µ(Gi, x) lie in the interval [−2
√
D − 1, 2

√
D − 1]. Since every continuous function

on a bounded interval can be uniformly approximated by polynomials, we conclude that
the sequence (ρGi ) is weakly convergent. ut

Proof of Theorem 2.9. First we prove parts (a) and (b). For a graph G let S(G) denote
the set of zeros of the matching polynomial µ(G, x). Then

M(G, t) =
∏

λ∈S(G)
λ>0

(1+ λ2t) =
∏

λ∈S(G)

(1+ λ2t)1/2.
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Then
lnM(G, t) =

∑
λ∈S(G)

1
2 ln(1+ λ2t).

By differentiating both sides with respect to t we get

d
dt
M(G, t)

M(G, t)
=

∑
λ∈S(G)

1
2

λ2

1+ λ2t
.

Hence

p(G, t) =
2t · d

dt
M(G, t)

v(G) ·M(G, t)
=

1
v(G)

∑
λ∈S(G)

λ2t

1+ λ2t
=

∫
tz2

1+ tz2 dρG(z).

Similarly,

lnM(G, t)
v(G)

=
1

v(G)

∑
λ∈S(G)

1
2 ln(1+ λ2t) =

∫
1
2 ln(1+ tz2) dρG(z).

Since (Gi) is a Benjamini–Schramm convergent bounded degree graph sequence, the
sequence (ρGi ) weakly converges to some ρL by Theorem 2.12. Since both functions

tz2

1+ tz2 and 1
2 ln(1+ tz2)

are continuous, we immediately see that

lim
n→∞

p(Gi, t) =

∫
tz2

1+ tz2 dρL(z)

and

lim
n→∞

lnM(Gi, t)
v(Gi)

=

∫
1
2 ln(1+ tz2) dρL(z).

Note that both tz2

1+tz2 and 1
2 ln(1 + tz2) are strictly increasing continuous functions of t .

Thus their integrals are also strictly increasing continuous functions.
To prove part (c), let us introduce the function

p(L, t) =

∫
tz2

1+ tz2 dρL(z).

We have seen that p(L, t) is a strictly increasing continuous function, and
limi→∞ p(Gi, t) = p(L, t). Since p∗(Gi) ≥ p0 for all Gi , we have limt→∞ p(Gi, t) ≥

p0 for all i. This means that limt→∞ p(L, t) ≥ p0. Hence we can consider the inverse
function of p(L, t) which maps [0, p0) into [0,∞); let us call it t (L, p).

We will show that
lim
i→∞

t (Gi, p) = t (L, p)
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pointwise for p < p0. Assume this is not the case. This means that for some p1, there
exists an ε and an infinite sequence ni for which

|t (L, p1)− t (Gni , p1)| ≥ ε.

We distinguish two cases:

(i) there exists an infinite sequence (ni) for which t (Gni , p1) ≥ t (L, p1)+ ε,
(ii) there exists an infinite sequence (ni) for which t (Gni , p1) ≤ t (L, p1)− ε.

In the first case, let t1 = t (L, p1), t2 = t1 + ε and p2 = p(L, t2). Clearly, p2 > p1. Note
that

t (Gni , p1) ≥ t (L, p1)+ ε = t2

and p(Gni , t) are increasing functions, thus

p(Gni , t2) ≤ p(Gni , t (Gni , p1)) = p1 = p2 − (p2 − p1) = p(L, t2)− (p2 − p1).

This contradicts the fact that limni→∞ p(Gni , t2) = p(L, t2).
In the second case, let t1 = t (L, p1), t2 = t1−ε and p2 = p(L, t2). Clearly, p2 < p1.

Since t (Gni , p1) ≤ t (L, p1)− ε = t2 and p(Gni , t) are increasing functions, we have

p(Gni , t2) ≥ p(Gni , t (Gni , p1)) = p1 = p2 + (p1 − p2) = p(L, t2)+ (p1 − p2).

This again contradicts the fact that limn→∞ p(Gni , t2) = p(L, t2). Consequently, we
have limi→∞ t (Gi, p) = t (L, p).

Finally, we show that λGi (p) converges for all p. Let t = t (L, p), and

λL(p) = lim
i→∞

lnM(Gi, t)
v(Gi)

−
1
2p ln t.

Note that
λGi (p) =

lnM(Gi, ti)
v(Gi)

−
1
2p ln ti,

where ti = t (Gi, p). We have seen that limi→∞ ti = t . Hence it is enough to prove that
the functions (lnM(Gi, u))/v(Gi) are equicontinuous. Fix some positive u0 and let

R(u0, u) = max
z∈[−2

√
D−1,2

√
D−1]

∣∣ 1
2 ln(1+ u0z

2)− 1
2 ln(1+ uz2)

∣∣.
Clearly, if |u− u0| ≤ δ for some sufficiently small δ, then R(u0, u) ≤ ε, and∣∣∣∣ lnM(Gi, u)v(Gi)

−
lnM(Gi, u0)

v(Gi)

∣∣∣∣ = ∣∣∣∣∫ 1
2 ln(1+u0z

2) dρGi (z)−

∫
1
2 ln(1+uz2) dρGi (z)

∣∣∣∣
≤

∫ ∣∣ 1
2 ln(1+ u0z

2)− 1
2 ln(1+ uz2)

∣∣ dρGi (z) ≤ ∫ R(u, u0) dρGi (z) ≤ ε.

This completes the proof of the convergence of λGi (p). ut

Now it is easy to define these functions for those random rooted graphs which can be
obtained as a Benjamini–Schramm limit of finite graphs.
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Definition 2.14. Let L be a random rooted graph which can be obtained as the
Benjamini–Schramm limit of finite graphs (Gi) of bounded degree. Assume that p∗(Gi)
≥ p0 for all n. Let

p(L, t) = lim
n→∞

p(Gi, t), F (L, t) = lim
n→∞

lnM(Gi, t)
v(Gi)

for all t ≥ 0, and

t (L, p) = lim
n→∞

t (Gi, p), λL(p) = lim
n→∞

λGi (p)

for all p < p0. Finally, let

λL(p0) = lim
p↗p0

λL(p).

Note that the functions p(L, t), F (L, t), t (L, p) and λL(p) are well-defined in the
sense that if the sequences (Gi) and (Hi) both Benjamini–Schramm converge to L and
p∗(Gi), p

∗(Hi) ≥ p0 for all i, then they define the same functions on [0,∞) or [0, p0].
Indeed, we can consider the two sequences together and apply Theorem 2.9 to find that
the limits do not depend on the choice of the sequence. From the proof of Theorem 2.9,
we also see that p(L, t) and F(L, t) can be expressed as integrals against a certain mea-
sure ρL.

2.2. Entropy and density function of the infinite d-regular tree Td

In this section we give the entropy and density functions of the d-regular and (a, b)-
biregular trees.

Theorem 2.15. Let Td be the infinite d-regular tree. Then

p(Td , t) =
2d2t + d − d

√
1+ 4(d − 1)t

2d2t + 2
,(a) ∫

1
2 ln(1+ tz2) dρTd (z) =

1
2 ln Sd(t),(b)

where

Sd(t) =
1
η2
t

(
d − 1
d − ηt

)d−2

, ηt =

√
1+ 4(d − 1)t − 1

2(d − 1)t
,

(c) t (Td , p) =
p(d − p)

d2(1− p)2
,

(d) λTd (p) = Gd(p) =
1
2

(
p ln

(
d

p

)
+ (d − p) ln

(
1−

p

d

)
− 2(1− p) ln(1− p)

)
.
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Theorem 2.16. Let Ta,b be the infinite (a, b)-biregular tree. Then for 0 ≤ p ≤

min
( 2a
a+b

, 2b
a+b

)
we have

p(Ta,b, t) =
2abt + 2ab

a+b
−

2ab
a+b

√
1+ (2a + 2b − 4)t + (a − b)2t2

2abt + 2
,(a)

t (Ta,b, p) =
a + b

2ab
p
(
1− a+b

2ab p
)(

1− a+b
2a p

)(
1− a+b

2b p
) ,(b)

λTa,b (p) = Ga,b(p) =
a

a + b
H

(
a + b

2a
p

)
+

b

a + b
H

(
a + b

2b
p

)
+

1
2
p ln(ab)−

ab

a + b
H

(
a + b

2ab
p

)
,

where H(q) = −(q ln q + (1− q) ln(1− q)).

There are two essentially different proofs for Theorems 2.15 and 2.16. We detail the first
proof, and in the next subsection we sketch a second one.

The first proof of Theorems 2.15 and 2.16 roughly follows the arguments of Section 4
of [1]. For an (infinite) tree, the spectral measure and the matching measure coincide. This
can be proved via [1, Lemma 4.2], or an even simpler proof is that for trees, the number
of closed walks and the number of closed tree-like walks are the same, so the moment
sequences of the spectral measure and the matching measure coincide, and since they
are supported on a bounded interval, they must be the same measure. For the d-regular
tree Td , this is the Kesten–McKay measure given by the density function

fd(x) =
d
√

4(d − 1)− x2

2π(d2 − x2)
χ
[−2
√
d−1,2

√
d−1].

For the (a, b)-biregular infinite tree, the matching or spectral measure ρTa,b is given by

dρTa,b =
|a − b|

a + b
δ0 +

ab
√
−(x2 − ab + (s − 1)2)(x2 − ab + (s + 1)2)

π(a + b)(ab − x2)|x|

× χ
{|
√
a−1−

√
b−1|≤|x|≤

√
a−1+

√
b−1} dx,

where s =
√
(a − 1)(b − 1). As a next step one might try to compute the integral of the

functions
tz2

1+ tz2 and 1
2 ln(1+ tz2)

to obtain p(Ta,b, t) and F(Ta,b, t). We will slightly modify this argument to simplify it.
Our modification shows that we do not need to compute these integrals—we can work
directly with the moment sequences which are simply the numbers of closed walks in
the corresponding trees. More precisely, in Ta,b we have to weight the number of closed
walks starting and ending at a root vertex of degree a with weight b/(a + b), and the
number of closed walks starting and ending at a root vertex of degree b with weight
a/(a + b).
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First of all, we need the following lemma on the number of closed walks in Ta,b. We
are sure that it is well-known, but since we have not been able to find any reference, we
give its proof.

Lemma 2.17. Let W a
j and W b

j be the number of closed walks of length j starting at and
returning to a root vertex of Ta,b of degree a and of degree b, respectively. Then for the
generating function we have

Ga(z) :=

∞∑
j=0

W a
j z

j
=

1
1− az2Fb(z)

,

where

Fb(z) =
1+ (b − a)z2

−

√
1− (2a + 2b − 4)z2 + (b − a)2z4

2(a − 1)z2 .

Similarly,

Gb(z) :=

∞∑
j=0

W b
j z

j
=

1
1− bz2Fa(z)

,

where

Fa(z) =
1+ (a − b)z2

−

√
1− (2a + 2b − 4)z2 + (b − a)2z4

2(b − 1)z2 .

Proof. Consider the rooted tree Taa,b, where the only difference compared to Ta,b is that
the root vertex has degree a− 1 and not a. Similarly, let Tba,b be the rooted tree where the
only difference compared to Ta,b is that the root vertex has degree b − 1 and not b. Let
W
a

j be the number of closed walks of length j starting at and returning to the root vertex
of Taa,b. Furthermore, let U

a

j be the number of closed walks of length j starting at and
returning to the root vertex of Taa,b such that the walk only visits the root at the beginning
and at the end, and the walk has length at least 2, so it is not the empty walk. We can
similarly define W

b

j and U
b

j . Let

Fa(z) =

∞∑
j=0

W
a

j z
j , Fb(z) =

∞∑
j=0

W
b

j z
j ,

and

Ra(z) =

∞∑
j=1

U
a

j z
j , Rb(z) =

∞∑
j=1

U
b

j z
j .

First of all,

Fa(z) = 1+ Ra(z)+ Ra(z)2 + Ra(z)3 + · · · =
1

1− Ra(z)
,

since every closed walk can be uniquely decomposed into walks which visit the root only
at the beginning and at the end. Similarly,

Fb(z) =
1

1− Rb(z)
.
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Finally,

Ra(z) = (a − 1)z2Fb(z) and similarly Rb(z) = (b − 1)z2Fa(z),

since every closed walk which visits the root only at the beginning and at the end can be
decomposed in the following way: we erase the first and last steps (we can choose these
in a−1 different ways in Taa,b), and we get a closed walk in Tba,b. Solving these equations
we get

Fa(z) =
1+ (b − a)z2

−

√
1− (2a + 2b − 4)z2 + (b − a)2z4

2(b − 1)z2 ,

Fb(z) =
1+ (a − b)z2

−

√
1− (2a + 2b − 4)z2 + (b − a)2z4

2(a − 1)z2 ,

Ra(z) =
1
2

(
1+ (a − b)z2

−

√
1− (2a + 2b − 4)z2 + (b − a)2z4

)
,

Rb(z) =
1
2

(
1+ (b − a)z2

−

√
1− (2a + 2b − 4)z2 + (b − a)2z4

)
.

(Note that at some point, we have to solve a quadratic equation, and we can choose only
the minus sign, because of the evaluation of the generating function at z = 0.)

Now let us go back to the original problem. Let Uaj be the number of closed walks of
length j starting at and returning to the root vertex of Ta,b of degree a such that the walk
only visits the root at the beginning and at the end, and the walk has length at least 2, so
it is not the empty walk. We define Ubj similarly. Let

Ga(z) =

∞∑
j=0

W a
j z

j , Gb(z) =

∞∑
j=0

W b
j z

j ,

and

Ha(z) =

∞∑
j=1

Uaj z
j , Hb(z) =

∞∑
j=1

Ubj z
j .

As before,

Ga(z) =
1

1−Ha(z)
, Gb(z) =

1
1−Hb(z)

.

Finally,
Ha(z) = az

2Fb(z) and similarly Rb(z) = bz
2Fa(z),

since every closed walk which visits the root only at the beginning and at the end can be
decomposed in the following way: we erase the first and last steps (we can choose these
in a different ways in Ta,b), and we get a closed walk in Tba,b. Hence

Ga(z) =
1

1− az2Fb(z)
, Gb(z) =

1
1− bz2Fa(z)

. ut
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Proof of Theorems 2.15 and 2.16. Since Theorem 2.15 is a special case of Theorem 2.16,
we concentrate on the proof of the latter. We only need to work with part (a), since then
(b) follows immediately, and (c) follows from (b) by using

d

dp
λTa,b (p) = −

1
2 ln t (Ta,b, p).

These are routine computations, left to the reader.
To prove (a), first assume that |t | < 1/(4(max(a, b)− 1)). Note that for such t , all

subsequent series are converging. We have

p(Ta,b, t) =
∫

tu2

1+ tu2 dρTa,b (u) =

∫ ∞∑
j=1

(−1)j+1tju2j dρTa,b (u)

=

∞∑
j=1

(−1)j+1tj
∫
u2j dρTa,b (u).

Note that ∫
u2j dρTa,b (u) =

b

a + b
W a

2j +
a

a + b
W b

2j .

Hence

p(Ta,b,−z2) = 1−
(

b

a + b
Ga(z)+

a

a + b
Gb(z)

)
.

After some calculation we get

p(Ta,b, t) =
2abt + 2ab

a+b
−

2ab
a+b

√
1+ (2a + 2b − 4)t + (a − b)2t2

2abt + 2

for |t | < 1/(4(max(a, b)− 1)). On the other hand, both functions appearing in the previ-
ous equation are holomorphic in {t | |=(t)| ≤ <(t)}, so they must coincide everywhere in
this region. ut

2.3. Random graphs

The goal of this subsection is twofold. On the one hand, we show that Theorems 1.5 and
1.7 are quite precise, for instance if p is separated away from 1 then Theorem 1.5 is the
best possible up to a constant factor. On the other hand, we would also like to show a
connection between random (bi)regular random graphs and the entropy function of an
infinite (bi)regular tree.

An alternative way to obtain Theorems 2.15 and 2.16 is the following. We can use
Theorem 2.9 to obtain the required functions by choosing an appropriate Benjamini–
Schramm convergent graph sequence. It turns out that it is sufficient to consider random
d-regular or (a, b)-biregular bipartite graphs. Indeed, one can compute the expected num-
ber of k-matchings of a random d-regular or (a, b)-biregular bipartite graph quite easily.
Such a computation was carried out in [4, 9, 26, 12] for d-regular bipartite graphs and it
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easily generalizes to (a, b)-biregular bipartite graphs. We also note that a random (a, b)-
biregular bipartite graph contains a very small number of short cycles. This is a classical
result for random regular graphs, but it is also known for biregular bipartite graphs [7].

First of all, let us specify which biregular random graph model we use. Let the
vertex set of the random graph be V ∪ W , where V = {v1, . . . , van} and W =

{w1, . . . , wbn}. Consider two random partitions of the set {1, . . . , abn}: the first one is
P1 = {A1, . . . , Aan} where each set has size b, and the second is P2 = {B1, . . . , Bbn}

where each set has size a. Then for every k ∈ {1, . . . , abn} connect vi and wj if
k ∈ Ai ∩Bj . This is the configuration model. Note that this model allows multiple edges,
but this is not a problem for us. In the special case when a = b = d we can choose V and
W to be of size n. The following theorem was proved in [9].

Theorem 2.18 ([9]). LetG be chosen from the set of labelled d-regular bipartite graphs
on v(G) = 2n vertices according to the configuration model. Then

Emk(G) =
(
n

k

)2

d2k 1(
dn
k

) .
The corollary of this theorem is the second part of Theorem 1.5.

Corollary 2.19. Let p = k/n. There exists a d-regular bipartite graph G on 2n vertices
such that

mk(G) ≤

√
1− p/d

1− p
· pµ · exp(2nGd(p)).

Proof. We will show that

E =

(
n

k

)2

d2k 1(
dn
k

) ≤
√

1− p/d
1− p

· pµ · exp(2nGd(p)).

Note that

E =

(
n

k

)2

d2k 1(
dn
k

) = (
n
k

)(
dn
k

)d2k
(
n

k

)
=

(
n
k

)(
dn
k

)d2k
·

pµ

pk(1− p)n−k
.

For the first term we use Stirling’s formula. Let 2m be defined by the following form of
Stirling’s formula:

m! =
√

2πm(m/e)me2m .

It is known (see [24]) that
1

12m+ 1
≤ 2m ≤

1
12m

.

Then

E =
1

√
2πk(n− k)/n

e2n−2k−2n−k

√
2π
k(dn− k)

dn
e−2dn+2k+2dn−k ·pµ · exp(2nGd(p))

=

√
1−p/d

1−p
e2n−2n−k−2dn+2dn−k ·pµ · exp(2nGd(p)).



New proof of Schrijver’s and Gurvits’s theorems 1833

Thus we only need to show that

2n −2n−k −2dn +2dn−k ≤ 0.

This is indeed true:

2n −2n−k −2dn +2dn−k ≤
1

12n
−

1
12(n− k)+ 1

−
1

12dn+ 1
+

1
12(dn− k)

=
−(12k − 1)

12n(12(n− k)+ 1)
+

12k + 1
(12dn+ 1)(12(dn− k)+ 1)

≤ 0

if d ≥ 2. ut

The following lemma is a straightforward extension of the previous results to (a, b)-
biregular bipartite graphs.

Lemma 2.20. Let G be chosen from the set of labelled (a, b)-biregular bipartite graphs
on v(G) = (a + b)n vertices according to the configuration model. Then

(a) Emk(G) = exp
(
v(G)(Ga,b(p)+ ov(G)(1))

)
, where p = 2k/v(G).

(b) ([7]) Let c2j (G) be the number of 2j -cycles in the graph G. Then

Ec2j (G) =
((a − 1)(b − 1))j

2j
(1+ ov(G)(1)).

Proof. (a) Note that the number of all partition pairs (P1, P2) is

N =
(abn)!

a!bn
·
(abn)!

b!an
.

The number of possible k-matchings is

Uk =

(
abn

k

)(
an

k

)(
bn

k

)
k!2.

If we fix one k-matching then we need to repartition the remaining abn− k elements into
sets of sizes a and a − 1, and b and b − 1. This can be done in

Vk =
(abn− k)!

(a − 1)!ka!bn−k
·

(abn− k)!

(b − 1)!kb!an−k

ways. Hence

Emk(G) =
1
N
UkVk =

(
an

k

)(
bn

k

)
(ab)k

1(
abn
k

) .
Then by the usual approximation of binomial coefficients we get

Emk(G) = exp
(
v(G)(Ga,b(p)+ ov(G)(1))

)
,

where p = 2k/v(G).
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(b) We can choose the possible cycles in

Tj =

(
abn

2j

)(
an

j

)(
bn

j

)
(2j − 1)!j !2

different ways. (We can choose the “edges” and vertices in
(
abn
2j

)(
an
j

)(
bn
j

)
ways, then we

choose an ordering on the edges, and on each vertex set, and we connect the vertices and
“edges” along the orderings. Finally, we divide by 2j since we counted each cycle in 2j
ways.) Next we need to repartition the remaining abn − 2j elements into sets of sizes a
and a − 2, and b and b − 2. This can be done in

Sj =
(abn− 2j)!

(a − 2)!ja!bn−j
·
(abn− 2j)!

(b − 2)!jb!an−j

ways. Hence

Ec2j (G) =
1
N
TjSj =

((a − 1)(b − 1))j

2j
(1+ ov(G)(1)). ut

Part (b) of Lemma 2.20 shows that the expected number of cycles of length 2j is bounded
independently of the size of the graph. Note that the (a, b)-biregular graph sequence (Gi)
Benjamini–Schramm converges to Ta,b if for all fixed j we have c2j (Gi) = o(v(Gi)).
Note that by Markov’s inequality,

P
(
mk(G) > 3Emk(G)

)
≤

1
3

and P
(
c2j (G) > 3gEc2j (G)

)
≤

1
3g

for j = 1, . . . , g. Hence for any large enough n and fixed g, with probability at least 1/3
we can choose a graph Gi on (a + b)n vertices such that Gi has a bounded number of
cycles of length at most 2g and mk(Gi) ≤ 3 exp(v(G)(Ga,b(p)+ ov(G)(1))). This shows
that we can choose a sequence (Gi) of graphs converging to Ta,b such that

lnmk(Gi)
v(Gi)

+ ov(Gi )(1) = λGi (p) ≤ Ga,b(p)+ ov(Gi )(1).

This implies that
λTa,b(p) ≤ Ga,b(p).

Note that we have only proved this inequality for rational p, but then it follows for all p
by continuity.

Unfortunately, with this idea we have not been able to establish the inequality λTa,b (p)
≥ Ga,b(p). The problem is the following. In principle, it can occur that a typical ran-
dom graph has a much smaller (exponentially smaller) number of k-matchings than the
expected value, and a large contribution to the expected value comes from graphs hav-
ing a large number of short cycles and matchings. Note that Theorem 1.7 implies that
this cannot occur, but we cannot use this result as it would result in a cycle in the
proof of this theorem. Instead we propose a conjecture which would imply the inequality
λTa,b (p) ≥ Ga,b(p).
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Conjecture 2.21. There exists a constant C independent of n and k such that

Emk(G)2 ≤ C(Emk(G))2.

Note that this conjecture is known to be true for perfect matchings in regular random
graphs [4]. To show that this conjecture implies λTa,b (p) ≥ Ga,b(p), we need the follow-
ing proposition.

Proposition 2.22. Let X be a non-negative random variable such that for some positive
constant C we have

P(X > CEX) ≤
1

16C
and EX2

≤ C(EX)2.

Then

P
( 1

4EX ≤ X ≤ CEX
)
≥

1
2C
.

Proof. Let A = {ω | X(ω) < 1
4EX}, B = {ω |

1
4EX ≤ X(ω) ≤ CEX}, and D =

{ω | X(ω) > CEX}. Then ∫
A

X dP ≤ 1
4EX.

Furthermore,

P(D) · EX2
≥ P(D) ·

∫
D

X2 dP =

∫
D

1 dP ·
∫
D

X2 dP ≥

(∫
D

X dP

)2

.

Hence
1

16C
C(EX)2 ≥ P(D) · EX2

≥

(∫
D

X dP

)2

.

In other words,
∫
D
X dP ≤ 1

4EX. This implies that∫
B

X dP ≥ 1
2EX.

Since ∫
B

X dP ≤ P(B)CEX,

the claim of the proposition follows immediately. ut

Fix a positive number g, and call a graph typical if

c2j (G) < 16CgEc2j (G)

for j = 1, . . . , g. Note that a typical graph has a bounded number of short cycles, and
by Markov’s inequality, the probability that a graph is typical is at least 1 − 1/(16C).
First case: there is a typical graph G such that mk(G) > CEmk(G), then we are done,
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because λG(p) ≥ Ga,b(p)+ o(1). Second case: there is no typical graph with mk(G) >
CEmk(G); then the proposition implies that

P
( 1

4Emk(G) ≤ mk(G) ≤ CEmk(G)
)
≥

1
2C
.

Since the probability that a graph is typical is at least 1− 1/(16C), we see that there are
typical graphs for which

mk(G) ≥
1
4Emk(G),

implying again that λG(p) ≥ Ga,b(p)+o(1). Hence we can choose a sequence of typical
graphs to show that λTa,b(p) ≥ Ga,b(p).

In spite of the fact that this proof did not lead to another proof of Theorem 2.16, we
feel that it was instructive to carry out these computations as they showed that Theo-
rems 1.5 and 1.7 are tight. This was known for perfect matchings of d-regular random
graphs [4, 26], and for matchings of arbitrary size [9]. Our computation for biregular
bipartite graphs is the natural counterpart of these results.

3. New version of Gurvits’s theorem

In this section we prove the following theorem.

Theorem 3.1. The following two statements are equivalent:

(i) For any d-regular bipartite graph G on 2n vertices, we have

lnmk(G)
v(G)

≥ Gd(p)+ ov(G)(1),

where p = k/n and mk(G) denotes the number of matchings of size k.
(ii) For any d-regular bipartite graph G, we have

λG(p) ≥ Gd(p).

Proof. First we show that (i) implies (ii). Since both functions λG(p) and Gd(p) are
continuous, it is enough to prove the claim for rational numbers p. Let p = a/b. Consider
br copies of G, and consider the matchings of size k = ar . Then

λG(p) = λbrG(p) ≥
lnmk(brG)
v(brG)

−
ln v(brG)
v(brG)

≥ Gd(p)+ ov(brG)(1)−
ln v(brG)
v(brG)

.

The (first) equality follows from Proposition 2.1(a), the first inequality follows from
Proposition 2.1(d), and the second inequality is the assumption of (i). As r tends to infin-
ity, the last two terms disappear, and we get

λG(p) ≥ Gd(p).
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Next we show that (ii) implies (i). We have

lnmk(G)
v(G)

≥ λG(p)−
ln v(G)
v(G)

≥ Gd(p)−
ln v(G)
v(G)

.

The first inequality follows from Proposition 2.1(d), and the second is the assumption
of (ii). Since −(ln v(G))/v(G) = ov(G)(1), we are done. ut

Theorem 1.3 implies

Corollary 3.2.

lnmk(G)
v(G)

≥ Gd(p)−
ln v(G)
v(G)

.

Proof. See the second part of the proof of Theorem 3.1. ut

Remark 3.3. L. Gurvits actually proved much stronger results than Theorem 1.3. He
showed that for all pairs (P,Q) of n × n matrices, where P is non-negative and Q is
doubly stochastic, we have

ln(Per(P )) ≥
∑

1≤i,j≤n

(1−Q(i, j)) ln(1−Q(i, j))−
∑

1≤i,j≤n

Q(i, j) ln
(
Q(i, j)

P (i, j)

)
.

From this he deduced the following inequality: for any doubly stochastic matrix A we
have

Per(A) ≥
∏

1≤i,j≤n

(1− A(i, j))1−A(i,j).

Next he showed that this inequality implies that for a d-regular bipartite graphG we have

mk(G) ≥
(1− p/d)(1−p/d)nd(1− 1/n)(1−1/n)2n2(1−p)

(p/d)npn−2n(1−p)((n(1− p))!)2
,

where p = k/n as before. For fixed p ∈ (0, 1) this gives

mk(G) ≥

(
1+O

(
1
n

))
e1−p

2πn(1− p)
exp(2nGd(p)).

Let us mention that M. Lelarge [19] was able to give new proofs of Gurvits’s results
and extend both Gurvits’s results and the results of this paper by combining the methods
of this paper with some new ideas.
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4. New proof of Gurvits’s and Schrijver’s theorems

In this section we give a new proof of Gurvits’s and Schrijver’s theorems. We will show
that for any d-regular bipartite graph G,

λG(p) ≥ Gd(p).

According to Theorem 3.1, this is equivalent to Gurvits’s theorem. For p = 1 we recover
Schrijver’s theorem via Proposition 2.1(e). Note that the function on the right hand side
is nothing other than λTd (p) according to Theorem 2.15.

Definition 4.1. Let G be a graph. Then H is a 2-lift of G if V (H) = V (G) × {0, 1},
and for every (u, v) ∈ E(G), exactly one of the following two pairs are edges of H :
((u, 0), (v, 0)) and ((u, 1), (v, 1)) are in E(H) or ((u, 0), (v, 1)) and ((u, 1), (v, 0)) are
in E(H). If (u, v) /∈ E(G), then none of ((u, 0), (v, 0)), ((u, 1), (v, 1)), ((u, 0), (v, 1))
or ((u, 1), (v, 0)) are edges in H .

Note that if G is bipartite then any 2-lift of G is bipartite too.

Lemma 4.2. Let G be a bipartite graph, and H be a 2-lift of G. Then for any k,

mk(G ∪G) ≥ mk(H).

In particular, for any t ≥ 0,
M(G, t)2 ≥ M(H, t).

Proof. Since M(G ∪ G, t) = M(G, t)2, the inequality mk(H) ≤ mk(G ∪ G) would
indeed imply the second part of the lemma. Note thatG∪G can be considered as a trivial
2-lift ofG. LetM be a matching of a 2-lift ofG. Consider the projection ofM toG. Then
it will consist of disjoint unions of cycles of even lengths (here we use the fact that G is
bipartite!), paths and “double-edges” (when two edges project to the same edge). Let R
be the set of these configurations. Then

mk(H) =
∑
R∈R
|φ−1
H (R)| and mk(G ∪G) =

∑
R∈R
|φ−1
G∪G(R)|,

where φH and φG∪G are the projections from H and G ∪G to G. Note that

|φ−1
G∪G(R)| = 2k(R),

where k(R) is the number of connected components of R different from a double-edge.
On the other hand,

|φ−1
H (R)| ≤ 2k(R),

since in each component if we know the inverse image of one edge then we immediately
know the inverse images of all other edges. The only reason why there is not equality in
general is that not necessarily every cycle can be obtained as a projection of a matching of
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a 2-lift: for instance, if one considers an 8-cycle as a 2-lift of a 4-cycle, then no matching
will project to the whole 4-cycle. Hence

|φ−1
H (R)| ≤ |φ−1

G∪G(R)|,

and consequently
mk(H) ≤ mk(G ∪G). ut

By Proposition 2.1(g) we get the following corollary.

Corollary 4.3. If G is a bipartite graph, andH is a 2-lift ofG, then λG(p) ≥ λH (p) for
every 0 ≤ p ≤ 1.

Lemma 4.4 (Linial [20]). For any graphG, there exists a graph sequence (Gi)∞i=0 such
that G0 = G, Gi is a 2-lift of Gi−1 for i ≥ 1, and g(Gi)→∞, where g(H) is the girth
of the graph H , i.e., the length of the shortest cycle.

Proof. We will show that there exists a sequence (Gi) of 2-lifts such that for any k, there
exists an N(k) such that for j > N(k), the graph Gj has no cycle of length at most k.
Clearly, if H has no cycle of length at most k − 1, then neither does any 2-lift of it. So it
is enough to prove that if H has no cycle of length at most k − 1, then there exists an H ′

obtained from H by a sequence of 2-lifts without a cycle of length at most k. We show
that if g(H) = k, then there exists a lift of H with fewer k-cycles than in H . Let X be the
random variable counting the number of k-cycles in a random 2-lift of H . Every k-cycle
of H lifts to two k-cycles or a 2k-cycle with probability 1/2 each, so EX is exactly the
number of k-cycles of H . But H ∪ H has twice as many k-cycles as H , so there must
be a lift with strictly fewer k-cycles than H has. Choose this 2-lift and iterate this step to
obtain an H ′ with girth at least k + 1. ut

Corollary 4.5. (a) For any d-regular graph G, there exists a graph sequence (Gi)∞i=0
such that G0 = G, Gi is a 2-lift of Gi−1 for i ≥ 1, and (Gi) is Benjamini–Schramm
convergent to the d-regular infinite tree Td .

(b) For any (a, b)-biregular bipartite graph G, there exists a graph sequence (Gi)∞i=0
such that G0 = G, Gi is a 2-lift of Gi−1 for i ≥ 1, and (Gi) is Benjamini–Schramm
convergent to the (a, b)-biregular infinite tree Ta,b.

Proof of Theorems 1.1 and 1.3. Let 0 ≤ p < 1. Choose a graph sequence (Gi)∞i=0
such that G0 = G, Gi is a 2-lift of Gi−1 for i ≥ 1, and (Gi) is Benjamini–Schramm
convergent to the d-regular infinite tree Td . Then by Corollary 4.3,

λG0(p) ≥ λG1(p) ≥ λG2(p) ≥ · · · and lim
i→∞

λGi (p) = λTd (p)

since Gi converges to Td (see Theorem 2.9). Hence λG(p) ≥ λTd (p) for 0 ≤ p < 1.
Finally, for p = 1 we have

λG(1) = lim
p→1

λG(p) ≥ lim
p→1

λTd (p) = λTd (1).
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Note that by Proposition 2.1(e), the inequality λG(1) ≥ λTd (1) is equivalent to

ln pm(G)
v(G)

≥
1
2

ln
(
(d − 1)d−1

dd−2

)
,

which completes the proof of Theorem 1.1. ut

One can prove the following theorem the very same way.

Theorem 4.6. For any (a, b)-biregular bipartite graph G we have

λG(p) ≥ Ga,b(p) for every 0 ≤ p ≤ min
(

a

a + b
,

b

a + b

)
.

With the same technique one can prove the following theorem.

Theorem 4.7. Let G be a d-regular bipartite graph, and t ≥ 0. Then∫
1
2 ln(1+ tz2) dρG(z) ≥

∫
1
2 ln(1+ tz2) dρTd (z).

Proof. Note that
lnM(G, t)
v(G)

=

∫
1
2 ln(1+ tz2) dρG(z).

Choose a graph sequence (Gi)∞i=0 such thatG0 = G,Gi is a 2-lift ofGi−1 for i ≥ 1, and
(Gi) is Benjamini–Schramm convergent to the d-regular infinite tree Td . By Lemma 4.2,

lnM(G0, t)

v(G0)
≥

lnM(G1, t)

v(G1)
≥

lnM(G2, t)

v(G2)
≥ · · · ,

and by the weak convergence of the measures ρGi (see Theorem 2.12),

lim
i→∞

lnM(Gi, t)
v(Gi)

= lim
i→∞

∫
1
2 ln(1+ tz2) dρGi (z) =

∫
1
2 ln(1+ tz2) dρTd (z).

Hence ∫
1
2 ln(1+ tz2) dρG(z) ≥

∫
1
2 ln(1+ tz2) dρTd (z). ut

Next we prove Theorem 1.6 which is a direct consequence of the previous theorem.

Proof of Theorem 1.6. We can assume that 0 ≤ p < 1; for p = 1 the claim follows by
continuity. We have seen that, for t ≥ 0,

lnM(G, t)
v(G)

=

∫
1
2 ln(1+ tz2) dρG ≥

∫
1
2 ln(1+ tz2) dρTd .

Note that by Theorem 2.15 we have∫
1
2 ln(1+ tz2) dρTd =

1
2 ln Sd(t),
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where

Sd(t) =
1
η2
t

(
d − 1
d − ηt

)d−2

, ηt =

√
1+ 4(d − 1)t − 1

2(d − 1)t
.

Hence
M(G, t) ≥ Sd(t)

n

for all t ≥ 0. Now let

t = t (Td , p) =
p(d − p)

d2(1− p)2
.

Then

ηt =
1− p

1− p/d
, Sd(t) =

(1− p/d)d

(1− p)2
.

Hence

M

(
G,

p(d − p)

d2(1− p)2

)
≥

1
(1− p)2n

(
1−

p

d

)n
.

After multiplying by (1− p)2n, we get the claim of the theorem. ut

We end this section with another corollary of Theorem 4.7. The so-called matching en-
ergy, introduced by I. Gutman and S. Wagner [15], is defined as follows:

ME(G) =
∑

zi :µ(G,zi )=0

|zi |,

where all zeros are counted with their multiplicity. With our notation this reads

ME(G) = v(G)
∫
|z| dρG(z).

The following theorem shows that if we normalize the matching energy by dividing by
the number of vertices, then among d-regular bipartite graphs its “minimum” is attained
at the infinite d-regular tree Td .

Corollary 4.8. Let G be a d-regular bipartite graph. Then∫
|z| dρG(z) ≥

∫
|z| dρTd (z).

Proof. For any z we have

|z| =
1
π

∫
∞

0

1
t2

ln(1+ t2z2) dt.

Hence ∫
|z| dρG =

∫ (
1
π

∫
∞

0

1
t2

ln(1+ t2z2) dt

)
dρG(z)

=
1
π

∫
∞

0

1
t2

(∫
ln(1+ t2z2) dρG(z)

)
dt

≥
1
π

∫
∞

0

1
t2

(∫
ln(1+ t2z2) dρTd (z)

)
dt =

∫
|z| dρTd .

Since we have integrated a non-negative function, the interchange of the integrals was
allowed. ut
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Remark 4.9. Note that∫
|z| dρTd (z) =

d

π

(
2
√
d − 1− (d − 2) arctan

(
2

d − 2

√
d − 1

))
.

5. Proof of the Lower Matching Conjecture

In this section we prove Theorem 1.5. Here the main tool is that the matching polynomial
has only real zeros—this gives sufficient information about its coefficients so that together
with our results on the entropy function we can finish the proof of Theorem 1.5. The
argument in this section is more or less standard; a survey of related methods and results
can be found in [23].

Proof of Theorem 1.5. We can assume that 0 ≤ p < 1, since for p = 1, the statement
reduces to Schrijver’s theorem. Choose t such that p(G, t) = p = k/n. Then

mk(G) =
mk(G)t

k

M(G, t)
exp(v(G)λG(p)).

Let

aj =
mj (G)t

j

M(G, t)
.

Then the probability distribution (a0, a1, . . . , an) has mean µ = k. By the Heilmann–
Lieb theorem,

∑
ajx

j has only real zeros. Then it is known that it is the distribution of
the number of successes in independent trials. Indeed, let

M(G, t) =

n∏
i=1

(1+ γi t),

where γi = λ2
i with our previous notation, and

pj =
γj t

1+ γj t
.

If Ij is the indicator variable that takes the value 1 with probability pj , and 0 with proba-
bility 1− pj , then

P(I1 + · · · + In = j) = aj .

The advantage of this observation is that there is a powerful inequality for such distribu-
tions, namely Hoeffding’s inequality.

Theorem 5.1 (Hoeffding’s inequality [17]). Let S be a random variable with probability
distribution of the number of successes in n independent trials. Assume that ES = np.
Let b and c integers satisfying b ≤ np ≤ c. Then

P(b ≤ X ≤ c) ≥
c∑

j=b

(
n

j

)
pj (1− p)n−j .
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In the particular case when np = k, we get

ak ≥

(
n

k

)
pk(1− p)n−k = pµ

with our previous notation.
Putting everything together we obtain

mk(G) =
mk(G)t

k

M(G, t)
exp(v(G)λG(p)) ≥ pµ exp(2nGd(p)).

In the last step we have used the fact that λG(p) ≥ Gd(p) by Theorem 3.1. ut

Proof of Theorem 1.7. The proof is completely analogous to the previous one. We have
to use the inequality λG(p) ≥ Ga,b(p) (see Theorem 4.6). ut
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