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Abstract. In previous work we have conjectured wall-crossing formulas for genus zero quasimap
invariants of GIT quotients and proved them via localization in many cases. We extend these formu-
las to higher genus when the target is semipositive, and prove them for semipositive toric varieties,
in particular for toric local Calabi–Yau targets. The proof also applies to local Calabi–Yau’s associ-
ated to some nonabelian quotients.
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1. Introduction

1.1. Overview

When a complex affine algebraic varietyW is acted upon by a reductive group G, a choice
of a character θ of G determines a linearization of the action, and hence a GIT quotient
W//G = W//θ G.

Under reasonable conditions on the triple (W,G, θ), certain stability conditions, de-
pending on a parameter ε ∈ Q>0 ∪ {0+,∞} produce (relatively) proper Deligne–Mum-
ford moduli stacks of ε-stable quasimaps from pointed curves of genus g to W//G, car-
rying virtual fundamental classes. They come equipped with evaluation maps and with
tautological cotangent ψ-classes at the markings, and therefore determine (for projective
W//G) descendant ε-quasimap invariants

〈δ1ψ
a1
1 , . . . , δkψ

ak
k 〉

ε
g,k,β . (1.1.1)

As usual, if the target is only quasi-projective, but has a torus action with good properties,
(1.1.1) are well-defined as equivariant invariants. When (g, k) 6= (0, 0) and ε ∈ (1,∞],
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(1.1.1) are the Gromov–Witten invariants of W//G. For (g, k) = (0, 0), the same holds
when ε ∈ (2,∞].

As ε varies, we expect the invariants to be related via wall-crossing formulas. For
the genus zero sector, with an arbitrary number of primary insertions and one descendant
insertion, such formulas are obtained in [CK2], where we also show that they may be
interpreted as a vast generalization of Givental’s toric mirror theorems. The genus zero
wall-crossing formulas are conjectured to hold for generalW//G and are proved in [CK2]
for many GIT targets by localization methods. The present paper begins the exploration
of wall-crossing at higher genus.

1.2. Conjectures

Let
t = t(ψ) = t0 + t1ψ + t2ψ2

+ t3ψ
3
+ · · · ,

where tj ∈ H ∗(W//G,Q) are general even cohomology classes. Let the Novikov ring3=
Q[[q]] be the q-adic completion of the semigroup ring on the semigroup Eff(W,G, θ) of
θ -effective classes (see §2.2 for the definition). The genus g descendant potential ofW//G
is defined by

F εg (t) :=
∑

β∈Eff(W,G,θ)

∑
m≥0

qβ

m!
〈t(ψ1), . . . , t(ψm)〉εg,m,β .

As usual, the unstable terms in the sum corresponding to (g,m, β) for which the moduli
spaces do not exist are omitted.

The wall-crossing formula relates the Gromov–Witten potential F∞g to the poten-
tial F εg for semipositive triples (W,G, θ) (for these triples, the corresponding quotients
W//G have nef anti-canonical class). To state it, recall first from [CK2] that in genus zero
quasimap theory there is a J -function J ε(q, t, z) for each stability parameter ε ≥ 0+. It
depends on the Novikov variables, a general even cohomology element t ∈H ∗(W//G,Q),
and a formal variable z. For ε > 1, it is the usual Givental (big) J -function of Gromov–
Witten theory. The small J ε-function is defined as the restriction at t = 0:

J εsm(q, z) := J
ε(q, 0, z).

In the semipositive case, J ε takes values in H ∗(W//G,3)[[1/z]] and we will need the
first two terms in the 1/z-expansion of small J ε,

J εsm(q, z) = J
ε
0 (q)1+ J

ε
1 (q)

1
z
+O

(
1
z2

)
,

where 1 is the unit in cohomology. For the asymptotic stability ε = 0+we use the special
notation Ism = J 0+

sm , and call this the small I -function of W//G. The series I0(q) ∈ 3

is invertible, of the form 1 + O(q), while the series I1(q) is in H≤2(W//G,3), with
vanishing constant term in q. For ε > 0, the coefficients J ε0 and J ε1 are polynomial
q-truncations of I0 and I1.
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Conjecture 1.2.1. If W//G is a GIT quotient corresponding to a semipositive triple
(W,G, θ), then for every ε ≥ 0+ we have

(J ε0 )
2g−2F εg (t(ψ)) = F

∞
g

(
t(ψ)+ J ε1

J ε0

)
. (1.2.1)

Further, for all ε1 6= ε2,

(J
ε1
0 )

2g−2F ε1
g (J

ε1
0 t(ψ)− J ε1

1 ) = (J
ε2
0 )

2g−2F ε2
g (J

ε2
0 t(ψ)− J ε2

1 ). (1.2.2)

Since the transformation t(ψ) 7→ (t(ψ) + J ε1 )/J
ε
0 is invertible, the (a priori stronger)

wall-crossing formula (1.2.2) follows from (1.2.1).
Let {γ1, . . . , γs} be a homogeneous basis of H 2∗(W//G,Q) and write tj =

∑
i tjiγi ,

so that the F εg are formal series in the tji variables. To have the uniform statement in the
conjecture for all stability parameters, some modifications to the potentials are needed in
low genus, as follows:
• When g = 0 we must discard from both sides of (1.2.1) and (1.2.2) the parts of degree
≤ 1 in the tji’s. There is, however, a natural way to include all terms of tji-degree 1
in the genus zero potentials, so that (1.2.1) becomes an equality up to constants (see
Remark 3.1.3).
• When g = 1 a correction term is needed, to account for the failure of the dilaton

equation on M1,1. Namely, we redefine

F ε1 (t) :=
1
24
χtop(W//G) log J ε0 +

∑
(β,m) 6=(0,0)

qβ

m!
〈t(ψ1), . . . , t(ψm)〉ε1,m,β , (1.2.3)

where χtop denotes the topological Euler characteristic.
By matching Taylor coefficients in the tij ’s in Conjecture 1.2.1 we get an equivalent for-
mulation:

Conjecture 1.2.2. Let W//G be a GIT quotient corresponding to a semipositive
(W,G, θ). Fix (g, n) 6= (1, 0) with 2g − 2 + n ≥ 0, and a stability parameter ε ≥ 0+.
Then for arbitrary integers a1, . . . , an ≥ 0 and arbitrary even cohomology classes
δ1, . . . , δn ∈ H

∗(W//G,Q),

(J ε0 (q))
2g−2+n

∑
β

qβ〈δ1ψ
a1
1 , . . . , δnψ

an
n 〉

ε
g,n,β

=

∑
β

qβ
∞∑
m=0

1
m!

〈
δ1ψ

a1
1 , . . . , δnψ

an
n ,

J ε1 (q)

J ε0 (q)
, . . . ,

J ε1 (q)

J ε0 (q)

〉∞
g,n+m,β

. (1.2.4)

If (g, n) = (1, 0) and ε is arbitrary, then

1
24
χtop(W//G) log J ε0 +

∑
β 6=0

〈 〉
ε
1,0,β =

∑
(β,m) 6=(0,0)

qβ

m!

〈
J ε1 (q)

J ε0 (q)
, . . . ,

J ε1 (q)

J ε0 (q)

〉∞
1,m,β

. (1.2.5)

Note that the string and divisor equations in Gromov–Witten theory allow one to rewrite
the right-hand sides of (1.2.4) and (1.2.5) in terms of invariants with the same insertions
as in the left-hand sides.
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1.3. Results

The first evidence we give for the conjectures is that they hold in genus zero for a large
class of targets.

Theorem 1.3.1. Let (W,G, θ) be semipositive. Assume that W admits an action by a
torus T, commuting with the action of G and such that the fixed points of the induced
T-action on W//G are isolated. Then the g = 0 cases of Conjectures 1.2.1 and 1.2.2
hold. Moreover, if E is a convex G-representation such that for all θ -effective β we have
β(det(TW )) − β(W × det(E)) ≥ 0, then the conjectures also hold at g = 0 for the
E-twisted ε-quasimap theories of W//G.

The inclusion of E-twisting means that Theorem 1.3.1 covers the compact Calabi–Yau
targets which are realised as zero loci of sections of homogeneous vector bundles on toric
manifolds, on flag manifolds of classical types, or on products of such. The proof of this
result given in §3 below can be summarized as follows: by first extending Dubrovin’s
genus zero reconstruction [D] to all ε-theories, we reduce to the case of big J -functions,
which was already established in [CK2].

The second evidence is the main result of the paper.

Theorem 1.3.2. Let X be a nonsingular quasi-projective toric variety of dimension n,
obtained as the GIT quotient of a semipositive triple (Cn+r , (C∗)r , θ). Then Conjectures
1.2.1 and 1.2.2 hold for X.

The GIT presentation of a toric variety considered in Theorem 1.3.2 is the standard
one, coming from its fan, as in [Cox]. (However, as explained in §5.9.2 later, the re-
sult holds for any other semipositive GIT presentation (Cn+r ′ , (C∗)r ′ , θ ′) of X; note that
the quasimap theories are different for different GIT presentations.)

It is easy to see that semipositive toric varieties have I0(q) = 1. When X is projective
and Fano, we find in addition (for the standard GIT presentation) that I1(q) = 0. The
following corollary is then an immediate consequence Theorem 1.3.2.

Corollary 1.3.3. If X is a nonsingular projective Fano toric variety, then its quasimap
invariants are independent on ε:

F εg (t(ψ)) = F
∞
g (t(ψ)) for all ε ≥ 0+.

More interesting is the case of toric Calabi–Yau targets, for which Theorem 1.3.2 is highly
relevant to the physicists’ mirror symmetry (see e.g. [HK+]) at genus g ≥ 1. ForX a toric
Calabi–Yau 3-fold, consider the equality (1.2.1) for ε = 0+ and specialize at t(ψ) = 0.
If we use the string and divisor equations, the Gromov–Witten side becomes precisely
the A-model genus g potential after applying the mirror map. The Mirror Conjecture
then implies that F 0+

g |t(ψ)=0 is equal to the B-model genus g potential, expanded near a
“large complex structure” point for the mirror of X.

The proof of Theorem 1.3.2 is given in Sections 4 and 5. In fact, we formulate and
prove a stronger cycle-level comparison for the virtual classes under change of stability
parameter from∞ to some ε ≥ 0+. The first statement of this kind was established by
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Marian, Oprea, and Pandharipande in [MOP] when the target W//G is a Grassmannian.
Our proof for toric targets is inspired by theirs, and in particular crucially uses a genus-
reduction lemma from [MOP], but also requires several completely new ideas.

As we remark at the end of §5, the proof we give works for other interesting noncom-
pact Calabi–Yau GIT targets. In particular we obtain the following result.

Theorem 1.3.4. Let X be the total space of the canonical bundle over a Grassmannian,
viewed as a GIT quotient in the canonical way. Then Conjectures 1.2.1 and 1.2.2 hold
for X. More generally, the same is true for the total space of the canonical bundle over
any type A partial flag manifold.

2. Quasimap CohFT

To fix notation, in this section we recall briefly (after [CKM]) the Cohomological Field
Theory defined by the moduli spaces of ε-stable quasimaps.

2.1. Quotients

Consider a triple (W,G, θ) with W an affine complex algebraic variety, G a reductive
complex algebraic group acting onW , and θ ∈ χ(G) a character of G. The G-equivariant
line bundle Lθ = W × Cθ , exhibits θ as a linearization of the action on the trivial line
bundle. Hence (W,G, θ) determines a GIT quotient W//G. It has a projective morphism
to the affine quotient W/aff G = Spec(A(W)G). The line bundle Lθ descends to a relative
polarization on W//G, denoted by O(θ), which may be taken (without loss of generality)
to be relatively very ample over W/aff G.

We assume that the semistable and stable loci for the θ -linearization coincide, W ss
=

W s, and that G acts freely on the stable locus. Further, we also assume that W has at
worst lci singularities and that W s is smooth. Hence W//G = [W s/G] is a nonsingular
open substack in the quotient stack [W/G].

2.2. ε-stable quasimaps

Let C be a connected, at worst nodal, projective algebraic curve. A map f : C → [W/G]
has a (homology) class

β ∈ (Pic([W/G]))∨ = HomZ(Pic([W/G]),Z) = HomZ(PicG(W),Z)

given by β(L) = deg f ∗L. The map f is a quasimap to W//G if it sends the generic
point of each irreducible component of C to W//G. We may view the quasimap as a
rational map from C to W//G. The (finitely many) points of C which are sent by f to the
complement of W//G in [W/G] are called the base-points of the quasimap.

A class β ∈ (Pic([W/G]))∨ is said to be θ -effective if it is represented by a quasimap
to W//G. For the purposes of this definition, the domain curve is allowed to have
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finitely many connected components. The θ -effective classes form a semigroup, denoted
Eff(W,G, θ). By the boundedness results in [CKM], for each d > 0 the set

{β ∈ Eff(W,G, θ) | β(Lθ ) ≤ d}

is finite (see Remark 3.2.10 in loc.cit.).
For each positive ε ∈ Q there is a stability condition on quasimaps; in addition,

there is an asymptotic stability condition, denoted ε = 0+, in which ε is allowed to be
arbitrarily small (but still positive) (see [CKM], and also [CK2, §2.4]).

From now on we assume that (g, k) 6= (0, 0). For ε ≥ 0+, let Qεg,k(W//G, β) denote
the moduli space of ε-stable quasimaps of class β from k-pointed genus g nodal curves
to W//G. It is shown in [CKM] that when the triple (W,G, θ) satisfies the assumptions
of §2.1 above, these moduli spaces are Deligne–Mumford stacks, proper over the affine
quotient W/aff G, and carrying canonical perfect obstruction theories. The lci condition
on W is necessary for the perfectness of the obstruction theory when ε ≤ 1. The space
Qεg,k(W//G, β) is potentially nonempty only when

2g − 2+ k + εβ(Lθ ) > 0.

The virtual dimension is

vdim(Qεg,k(W//G, β)) = β(det(TW ))+ (1− g)(dim(W//G)− 3)+ k,

where TW ∈ K◦G(W) is the (virtual) G-equivariant tangent bundle.
For each fixed class β the set Q>0 is divided into stability chambers by finitely many

walls 1, 1/2, . . . , 1/β(Lθ ) such that the moduli spaces remain constant in each chamber.
When ε ∈ (1,∞) one recovers the Kontsevich moduli spaces of stable maps toW//G; we
write ε = ∞ for these stability conditions. The asymptotic stability condition ε = 0+
corresponds to being in the first chamber (0, 1/β(Lθ )] for all β.

For a long list of examples to which quasimap theory applies, see [CK2, §2.8].

2.3. ε-quasimap invariants, ε-CohFT

Let Q[Eff(W,G, θ)] be the semigroup ring. We write qβ for the element corresponding
to β ∈ Eff(W,G, θ). The Novikov ring associated to the triple (W,G, θ) is the m-adic
completion

3 := ̂Q[Eff(W,G, θ)]

with respect to the maximal ideal m generated by {qβ | β 6= 0}. Throughout the paper
H ∗(W//G,Q) and H ∗(W//G,3) will denote the even cohomology with the indicated
coefficients.

In this subsection we assume that W//G is projective; the extension to quasiprojective
targets is discussed in the next subsection. We have the intersection pairing

〈γ, δ〉 :=

∫
W//G

γ δ

on cohomology. We extend it 3-linearly to H ∗(W//G,3).
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Once and for all, fix homogeneous bases {γ1, . . . , γs} and {γ 1, . . . , γ s} of
H ∗(W//G,Q), dual with respect to the pairing 〈 , 〉. The cohomology class of the di-
agonal 1 ⊂ W//G×W//G is then

∑s
i=1 γi ⊗ γ

i .

2.3.1. Brackets and double brackets. Let ψi be the first Chern class of the canonical
line bundle on Qεg,k(W//G, β) with fiber the cotangent line to the domain curve at the
ith marking. For any stability parameter 0+ ≤ ε ≤ ∞, the descendant invariants of
ε-quasimap theory are defined by

〈δ1ψ
a1
1 , . . . , δkψ

ak
k 〉

ε
g,k,β =

∫
[Qεg,k(W//G,β)]vir

k∏
i=1

ev∗i (δi)ψ
ai
i , (2.3.1)

where δi ∈ H ∗(W//G,Q), evi : Qεg,k(W//G, β) → W//G are the evaluation maps at the
markings, and g, k, a1, . . . , ak ≥ 0 are integers such that 2g − 2+ k + εβ(Lθ ) > 0.

Remark 2.3.1. In Gromov–Witten theory, the name “invariants” for the brackets (2.3.1)
reflects the fact that they are symplectic invariants of the target W//G and in particular do
not change under deformations of the target W//G. The quasimap brackets depend on the
pair of stacks ([W/G], [W s/G]) (see [CKM, Proposition 4.6.1]). Nevertheless, we will
use the same terminology in quasimap theory as well.

When dealing with generating series of invariants, it is convenient to use a double bracket
notation

〈〈δ1ψ
a1
1 , . . . , δkψ

ak
k 〉〉

ε
g,k = 〈〈δ1ψ

a1
1 , . . . , δkψ

ak
k 〉〉

ε
g,k(t(ψ))

:=

∑
m,β

qβ

m!
〈δ1ψ

a1
1 , . . . , δkψ

ak
k , t(ψk+1), . . . , t(ψk+m)〉εg,k+m,β . (2.3.2)

Here, as in the Introduction, t(ψ) = t0 + t1ψ + t2ψ2
+ t3ψ

3
+ · · · with tj =

∑
i tjiγi ∈

H ∗(W//G,Q). The double brackets are formal functions on the large phase space with
coordinates tji . We will often need to specialize them to t1 = t2 = · · · = 0 and will write

〈〈δ1ψ
a1
1 , . . . , δkψ

ak
k 〉〉

ε
g,k(t) = 〈〈δ1ψ

a1
1 , . . . , δkψ

ak
k 〉〉

ε
g,k|t=t

for the specializations, with t := t0 =
∑
i t0iγi .

A priori the unstable terms are omitted from the sum (2.3.2), though in many cases
certain conventions will be made to include them as well. When we do that, the appropri-
ate conventions will be spelled out explicitly. In this notation, the genus g potential (when
g ≥ 1) is the empty bracket

F εg (t(ψ)) = 〈〈 〉〉
ε
g,0(t(ψ)),

and then (2.3.2) with δj = γij is the derivative ∂
∂ta1i1

. . . ∂
∂tak ik

F εg (t(ψ)).
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2.3.2. ε-quasimap classes. Let

f : Qεg,k(W//G, β)→ Mg,k

be the composition of the forgetful morphism Qεg,k(W//G, β)→Mg,k with the stabiliza-
tion morphism Mg,k → Mg,k . If 2g − 2+ k > 0, define 3-linear maps

�εg,k : H
∗(W//G,3)⊗k → H ∗(Mg,k,3),

�εg,k(⊗
k
j=1 δj ) =

∑
β

qβ�εg,k,β(⊗
k
j=1 δj ),

(2.3.3)

by setting

�εg,k,β(⊗
k
j=1 δj ) = f∗

(
[Qεg,k(W//G, β)]

vir
∩

k∏
j=1

ev∗j (δj )
)
. (2.3.4)

The maps (2.3.3) are clearly equivariant for the actions of the symmetric group Sk on the
source and target.

2.3.3. ε-CohFT. The boundary of Qεg,k(W//G, β) is the complement of the open stratum
of quasimaps with irreducible and nonsingular domain curve. It has a recursive struc-
ture, with strata indexed by modular graphs, and the virtual classes behave in a functorial
way with respect to this structure. These facts are well-known for the moduli spaces of
stable maps, and one sees immediately that their standard proofs, as given in [B], are
ε-independent. The general statement we will use appears as [Ge, Theorem 13], with the
spaces Mg,k(W//G, β) replaced by general Qεg,k(W//G, β).

In particular, we obtain virtual divisors covering the boundary as follows. Let [k] :=
{1, . . . , k}. Let

B(g, k) := {((g1, S1), (g2, S2)) | g = g1 + g2, [k] = S1 q S2}

be the set of ordered partitions of (g, k). For each σ ∈ B(g, k) set

D̃εσ :=
∐

β=β1+β2

Qεg1,S1∪•
(W//G, β1)×W//G Qεg2,S2∪?

(W//G, β2),

where the fiber product is over the evaluation maps at the additional markings. Alterna-
tively, D̃εσ is defined by the fiber product diagram

D̃εσ

��

//
∐
β1+β2=β

Qεg1,S1∪•
(W//G, β1)× Qεg2,S2∪?

(W//G, β2)

ev•× ev?
��

W//G 1 // W//G×W//G

There is a proper gluing map

D̃εσ
hσ
−→ Qεg,k(W//G, β),
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and the boundary divisorDεσ is the stack-theoretic image of hσ . The virtual classes of D̃εσ
and of Dεσ are defined by

[D̃εσ ]
vir
:= 1!

∑
β1+β2=β

[Qεg1,S1∪•
(W//G, β1)]

vir
⊗ [Qεg2,S2∪?

(W//G, β2)]
vir, (2.3.5)

[Dεσ ]
vir
:= (hσ )∗[D̃

ε
σ ]

vir. (2.3.6)

Similarly, there is a proper gluing map

h0 : W//G×W//G×W//G Qεg−1,[k]+•+?(W//G, β)→ Qεg,k(W//G, β)

(fiber product over the diagonal map 1 and the pair (ev•, ev?)), whose image gives a
boundary divisor Dε0 with virtual class

[Dε0]
vir
= (h0)∗1

!
[Qεg−1,[k]+•+?(W//G, β)]

vir. (2.3.7)

This leads to the usual splitting properties for the brackets (2.3.1) and the classes (2.3.4).
For example, if [k] = S1 q S2, g1 + g2 = g, with |Si | = ki , is a stable ordered partition,
then

ρ∗�εg,k(⊗
k
j=1 δj ) =

∑
i

�εg1,k1+1((⊗j∈S1 δj )⊗ γi)�
ε
g2,k2+1((⊗j∈S2 δj )⊗ γ

i), (2.3.8)

where
ρ : Mg1,S1∪• ×Mg2,S2∪?→ Mg,k

is the gluing map on stable curves. Analogously,

φ∗�εg,k(⊗
k
j=1 δj ) =

∑
i

�εg−1,k+2((⊗
k
j=1 δj )⊗ γi ⊗ γ

i), (2.3.9)

where (g − 1, k + 2) is stable and φ : Mg−1,k+2 → Mg,k is again the gluing map. In
other words, we have the following

Proposition 2.3.2. For each ε ≥ 0+ the maps (2.3.3) give the structure of a Cohomo-
logical Field Theory (CohFT) over 3 on H ∗(W//G,3) with the metric 〈 , 〉.

The primary invariants (2.3.1) in the stable range 2g − 2+ k > 0 are given by the degree
zero part of the CohFT,∑

β

qβ〈δ1, . . . , δk〉
ε
g,k,β =

∫
Mg,k

�εg,k(⊗
k
j=1 δj ).

The genus zero potential F ε0 (t) satisfies the WDVV equation and determines the ε-quasi-
map Frobenius manifold. The ε-quantum product is given by

γi ◦ε γj =

s∑
l=1

γl〈〈γi, γj , γ
l
〉〉
ε
0,3(t).

The unit for this product is discussed in Remarks 2.3.5 and 3.1.4 below.
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If we include ψ-classes on Mg,k in the integrals, the CohFT gives the “ancestor”
invariants

〈δ1ψ̄
a1
1 , . . . , δkψ̄

ak
k 〉

ε
g,k,β :=

∫
[Qεg,k(W//G,β)]vir

k∏
j=1

ev∗j (δj )ψ̄
aj
j , (2.3.10)

with ψ̄j := f ∗ψj,k and ψj,k the ψ class at the j th marking on Mg,k .

2.3.4. Genus zero TRR. For m ≥ 0 and 2g − 2+ k > 0, consider the forgetful map

f : Qεg,k+m(W//G, β)→ Mg,k.

Fix j ∈ [k]. We have the following basic comparison of the classes ψj and f ∗ψj,k .

Lemma 2.3.3. Let Aj ⊂ B(g, k + m) be the subset consisting of ordered partitions
σ = ((0, g), (S1, S2)) with j ∈ S1 and [k] \ {j} ⊂ S2. Then

(ψj − f
∗ψj,k) ∩ [Qεg,k(W//G, β)]

vir
=

∑
σ∈Aj

[Dεσ ]
vir. (2.3.11)

Proof. The argument in Gromov–Witten theory is not ε-dependent, so will work in gen-
eral. ut

In Gromov–Witten theory, Lemma 2.3.3 is used to express descendant invariants in terms
of ancestors. This can be done for quasimap invariants too, but we will not deal with this
in this paper. Instead, we note that another consequence of the lemma, the genus zero
Topological Recursion Relation (TRR), holds for all stability parameters.

Corollary 2.3.4 (Genus zero TRR). For all ε ≥ 0+, all a1, a2, a3 ≥ 0 and all δ1, δ2, δ3
∈ H ∗(W//G,Q) we have

〈〈δ1ψ
a1
1 , δ2ψ

a2
2 , δ3ψ

a3
3 〉〉

ε
0,3 =

s∑
i=1

〈〈δ1ψ
a1−1
1 , γi〉〉

ε
0,2〈〈γ

i, δ2ψ
a2
2 , δ3ψ

a3
3 〉〉

ε
0,3. (2.3.12)

Proof. Apply Lemma 2.3.3 for g = 0 and k = 3, and use the fact that ψ1 vanishes on
M0,3 = Spec(C). ut

Remark 2.3.5. Gromov–Witten invariants satisfy additional structures encoded in the
string, dilaton, and divisor equations. The reason behind these structures is that moduli of
stable maps (ε = ∞) admit forgetful lci morphisms

Q∞g,k+1(W//G, β)→ Q∞g,k(W//G, β)

for which the virtual classes behave functorially. These morphisms may fail to exist for
stability parameters ε ≤ 1. Even when they do exist, the virtual classes are often incom-
patible with the pull-back. In particular, for a general target W//G, the unit cohomology
class 1 will be the unit for the CohFT only in the Gromov–Witten range of the stability
parameter ε. The appropriate versions of string and dilaton equations for all ε in the case
of semipositive triples (W,G, θ) are discussed later.
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2.4. Equivariant theory and noncompact targets

Suppose thatW admits an additional action by an algebraic torus T ∼= (C∗)n, which com-
mutes with action of G. There are induced actions on [W/G], on W//G, and on W/aff G.
The projective morphism W//G → W/aff G is T-equivariant. Further, there are also in-
duced T-actions on the moduli spaces Qεg,k(W//G, β) (and on the graph spaces recalled
in §3 below).

We will always assume that the locus of T-fixed points in the affine quotient W/aff G
is proper. This assumption is automatic if W//G is projective, and holds for the natural
torus actions on all interesting examples of noncompact targets, such as quasiprojective
toric varieties, total spaces of bundles over projective quotients, and Nakajima quiver
varieties. It follows that the T-fixed loci in W//G and in all the moduli spaces of stable
quasimaps are also proper. In this situation we get a T-equivariant version of the CohFT
(see e.g. [CKM, §6.3]), and all results in §2.3 (which may be viewed as corresponding to
the zero-dimensional torus T = {1}) are valid in this setting.

Precisely, let
Q[λ1, . . . , λn] = H

∗

T(SpecC,Q)
and

K := Q(λ1, . . . , λn) = H
∗

T,loc(SpecC,Q)
be the equivariant cohomology, respectively the localized equivariant cohomology of a
point. The cohomology ring ofW//G is replaced by the localized equivariant cohomology

H ∗T,loc(W//G,Q) = H
∗

T(W//G,Q)⊗Q[λ1,...,λn] K,

while the Novikov ring is now 3 = K[[q]].
The pairing is defined by the localization formula

〈δ, γ 〉 =

∫
W//GT

i∗(δγ )

e(N)
,

where i : W//GT ↪→ W//G is the inclusion of the fixed point locus and e(N) is the
T-equivariant Euler class of the normal bundle. Similarly, the T-equivariant ε-quasimap
invariants are defined by the virtual localization formula

〈δ1ψ
a1
1 , . . . , δkψ

ak
k 〉

ε
g,k,β :=

∫
[(Qεg,k(W//G,β))T]vir

i∗(
∏
j ev∗j (δj )ψ

aj
j )

e(Nvir)
, (2.4.1)

with i : (Qεg,k(W//G, β))
T ↪→ Qεg,k(W//G, β). Both the pairing and the invariants take

values in the field K (or in 3, if we take the insertions from H ∗T,loc(W//G,3)).
If W//G is projective and we take all insertions in the nonlocalized equivariant coho-

mologyH ∗T(W//G,Q), then the T-equivariant invariants may be defined without localiza-
tion and take values in the ring Q[λ1, . . . , λn]. Upon specializing λ1 = · · · = λn = 0 we
recover the nonequivariant theory from the previous subsection.

Remark 2.4.1. The properness of the moduli spaces over the affine quotient implies im-
mediately that the evaluation maps are proper, so the push-forward (evi)∗ is well-defined



2062 Ionuţ Ciocan-Fontanine, Bumsig Kim

for all targets. The invariant (2.4.1) may then be defined as the pairing〈
δ1, (ev1)∗

(
[Qεg,k(W//G, β)]

vir
∩

k∏
j=2

ev∗j (δj )
k∏

j=1

ψ
aj
j

)〉
. (2.4.2)

2.5. Twisted theories

A G-representation E is called convex (respectively, concave) if the equivariant vector
bundleW ×E onW is generated by G-equivariant global sections (respectively, it has no
nonzero G-equivariant global sections). Vector bundles E := W s

×GE onW//G induced
by representations will be called homogeneous. We fix a 1-dimensional torus U ∼= C∗,
acting trivially on W and by multiplication on E.

Each choice of a representation E and of an invertible multiplicative U-equivariant
characteristic class c determines an (E, c)-twisted ε-quasimap CohFT (see [CKM, §6.2]).
(We restrict here to bundles arising from representations for simplicity, but general G-
equivariant bundles on W may be considered.) These generalize to arbitrary stability pa-
rameter ε the twisted Gromov–Witten CohFT’s studied by Coates and Givental [CG].

It is shown in [CKM], and explained again in [CK2, §7.2.1], that when W is smooth
and the representation E is convex, and if the class c is the (equivariant) Euler class,
the resulting genus zero twisted ε-quasimap theory recovers (most of1) the ε-quasimap
theory of the zero locus Z//G ⊂ W//G of a regular section of E (after specializing the
invariants at λ = 0, where λ is the equivariant parameter for U). For example, all Calabi–
Yau complete intersections in toric varieties are covered by this construction, but there
are many more cases with indecomposable bundle E when the group G is nonabelian.

When twisting by the inverse Euler class of a concave representation E, the result-
ing theory coincides with the (untwisted) U-equivariant theory of the total space of the
bundle E over W//G, viewed as the GIT quotient (W × E)//G, in all genera (see [CK2,
Example 2.8.5 and §7.2.2]). If the baseW//G is projective, one can specialize the (β 6= 0)
invariants at λ = 0. The typical examples we have in mind here occur as follows: take a
projective Fano triple (W,G, θ), with W a vector space, and take E = det(W)∨. These
are local Calabi–Yau targets, i.e., the total space of the canonical bundle of a Fano GIT
quotient.

Unless specified otherwise, whenever we talk about twisting by E in this paper, it
should be understood as twisting by the Euler class.

3. Genus zero theory of semipositive targets

Recall from [CK2] that a triple (W,G, θ) is called semipositive if

β(det(TW )) ≥ 0

for every θ -effective class β ∈ Eff(W,G, θ).

1 In the present context,“most of” means that the primary insertions are pulled back from the
ambient W//G, and that the curve classes β are those corresponding to (W,G, θ).
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The ε-wall-crossing for genus zero invariants with descendant insertions at one point
and any number of primary insertions is treated in detail in [CK2] . In this section we first
recall what those results say for semipositive targets, then we discuss the extension to the
full genus zero descendant theories in that case.

From now on, we will assume that W has an action by a torus T satisfying the as-
sumptions in §2.4 and will consider the T-equivariant ε-quasimap theories (the torus is
allowed to be trivial ifW//G is projective). We write simplyH ∗(W//G) for the appropriate
T-equivariant (localized) cohomology group.

In addition, some of the results in this section are stated for both untwisted and twisted
theories of W//G. All arguments we give are identical whether the twisting is present or
not. Hence we do not provide separate proofs, nor do we include the twisting in the
notation for brackets, double brackets etc.

3.1. Summary of results from [CK2]

3.1.1. Graph spaces, J ε-functions, and Sε-operators. Let 0+ ≤ ε be a stability parame-
ter. For each k ≥ 0, we have the graph spaceQGε0,k,β(W//G) (see [CKM, §7.2] and [CK2,
§2.6]). It is the moduli space of genus zero, k-pointed, ε-stable quasimaps whose domain
curve contains an irreducible component which is a parametrized P1. The C∗-action on
the parametrized component lifts to an action on QGε0,k,β(W//G). The fixed loci for this
action are described e.g. in [CK2, §4] and their geometry has played an important role in
the study of genus zero ε-wall-crossings in quasimap theory undertaken in [CK2] (they
will appear later, in the proof of Theorem 1.3.2).

The (big) J ε-function is defined as a formal sum over all k ≥ 0 and β ∈ Eff(W,G, θ)
of localization residues over certain distinguished components of the C∗-fixed loci in
graph spaces, pushed forward to W//G by evaluation maps (see [CK2, Definition 5.1.1]).
It takes the form (for arbitrary targets)

J ε(q, t, z) = 1+
t

z
+

s∑
i=1

γi
∑

β 6=0, β(Lθ )≤1/ε

qβJ εi,β(z)+

s∑
i=1

γi

〈〈
γ i

z(z− ψ)

〉〉ε
0,1
(t), (3.1.1)

with z the generator of the C∗-equivariant cohomology of SpecC and t =
∑
i t0iγi ∈

H ∗(W//G). The first three summands account for the missing unstable terms in the double
bracket.

For ε = ∞ the double sum disappears and we obtain Givental’s big J -function in
Gromov–Witten theory, with asymptotic expansion 1 + t/z + O(1/z2). For ε = 0+ we
use the notation I (q, t, z) := J 0+(q, t, z). For intermediate values ε ∈ (0, 1], the double
sum is a finite q-truncation of the infinite double sum in the I -function.

Define the small J ε-function by restriction to t = 0,

J εsm(q, z) := J
ε(q, 0, z). (3.1.2)

In particular, we have the small I -function

Ism(q, z) := I (q, 0, z) = 1+

s∑
i=1

γi
∑
β 6=0

qβIi,β(z). (3.1.3)
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The double bracket vanishes at t = 0, since the spaces Q0+
0,1(W//G, β) are empty for

all β. The terms
∑
i γiIi,β(z) are obtained from residues on the unpointed graph spaces

QG0+
0,0,β(W//G). These residues have been explicitly calculated in (almost) all interesting

examples, giving closed formulas for the small I -function.
Also define, for any γ ∈ H ∗(W//G),

Sεt (γ ) :=

s∑
i=1

γi

〈〈
γ i

z− ψ
, γ

〉〉ε
0,2
(t). (3.1.4)

The convention 〈
γ i

z− ψ
, γ

〉ε
0,2,0
= 〈γ i, γ 〉

is made for the unstable term (corresponding to m = 0 and β = 0) in 〈〈. . .〉〉ε0,2. Directly
from definitions, for every i = 1, . . . , s,

z
∂

∂t0i
J ε(t) = Sεt (γi). (3.1.5)

It is shown in [CK2] that (3.1.4) defines a family (with parameter t) of symplectic trans-
formations on the symplectic space H = H ∗(W//G,3){{z, z−1

}} appearing in Givental’s
formalism of Gromov–Witten theory [G5].

The most general ε-wall-crossing formula in genus zero applies to the operators Sεt
(see [CK2, Conjecture 6.1.1 and Theorem 7.3.1]). We state here a special case, as formu-
lated in [CK2, Theorem 1.2.2].

Theorem 3.1.1. Assume that the T-action on W//G has isolated fixed points. Then for
every ε ≥ 0+ we have

Sεt (1) = S
∞

τ ε(t)(1), (3.1.6)

where the (invertible) transformation τ ε(t) is the following series of primary ε-quasimap
invariants:

τ ε(t) =

s∑
i=1

γi〈〈γ
i,1〉〉(t)− 1

= t +

s∑
i=1

γi
∑
β 6=0

∑
m≥0

qβ

m!
〈γ i,1, t, . . . , t〉ε0,2+m,β . (3.1.7)

Moreover, the same is true for E-twisted theories, where E is a convex G-representation.

No positivity assumptions are made in Theorem 3.1.1 on (W,G, θ), or on (W,E,G, θ)
in the twisted case. Of course, the statement is conjectured to hold irrespective of the
existence of a torus action with isolated fixed points. As already explained, the part of
the theorem involving twisted theories covers such targets, since it concerns the genus
zero ε-quasimap theory of the zero locus of a regular section of the bundle E and this
zero-locus is generally not T-invariant.
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3.1.2. The semipositive case. When (W,G, θ) is semipositive, no positive powers of z
appear in J ε. Define J ε0 (q) and J ε1 (q) from the asymptotic expansion

J ε(q, t, z) = J ε0 (q)1+ (t + J
ε
1 (q))

1
z
+O

(
1
z2

)
. (3.1.8)

In particular, we have q-series I0(q) and I1(q) with

Ism(q, z) = I0(q)1+ I1(q)
1
z
+O

(
1
z2

)
.

They satisfy I0(q) = 1+O(q) ∈ 3 and I1 ∈ mH≤2(W//G,3). For ε > 0, the coefficients
J ε0 (q) and J ε1 (q) are polynomial truncations of the series I0 and I1,

J ε0 (q) = I0(q) (mod aε), J ε1 (q) = I1(q) (mod aε), (3.1.9)

where aε is the ideal in the Novikov ring generated by {qβ | β(Lθ ) > 1/ε}.
The proposition below collects the results for semipositive targets from [CK2].

Proposition 3.1.2. Let (W,G, θ) be semipositive and let ε ≥ 0+ be arbitrary. Then:

(i) The J -function and the S-operator are related by

Sεt (1) =
J ε(q, t, z)

J ε0 (q)
.

(ii) The transformation (3.1.7) satisfies

τε(t) =
t + J ε1 (q)

J ε0 (q)
.

In particular,
s∑
i=1

γi
∑
β 6=0

qβ〈γ i,1〉ε0,2,β =
J ε1 (q)

J ε0 (q)
. (3.1.10)

(iii) If the T-action on W//G has isolated fixed points, then

J∞
(
q,
t + J ε1 (q)

J ε0 (q)
, z

)
=
J ε(q, t, z)

J ε0 (q)
.

The same is true for E-twisted theories on W//G, where E is a convex G-represen-
tation such that β(det(TW ))− β(W × det(E)) ≥ 0 for all θ -effective β.

(iv) Under the same assumption as in (iii), for n ≥ 2, a ≥ 0, and i1, . . . , in ∈ {1, . . . , s},

(J ε0 (q))
n−2

∑
β≥0

qβ〈γi1ψ
a
1 , γi2 , . . . , γin〉

ε
0,n,β

=

∑
β≥0

qβ
∑
m≥0

1
m!

〈
γi1ψ

a
1 , γi2 , . . . , γin ,

J ε1 (q)

J ε0 (q)
, . . . ,

J ε1 (q)

J ε0 (q)

〉∞
0,n+m,β

. (3.1.11)
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Proof. For parts (i) and (ii), see [CK2, Corollary 5.5.3]. Part (iii) follows from (i), (ii),
and Theorem 3.1.1. Part (iv) is obtained by matching Taylor coefficients in (iii) (see
[CK2, Corollary 1.5.2]). ut

Remark 3.1.3. Equation (3.1.11) proves Theorem 1.3.1 in the case when only one of the
insertions is descendant and the other are primaries. In view of (iii), we may extend it to
n = 1 by interpreting the left-hand side as the coefficient of γ i1/za+2 in J εsm. With this
interpretation we may therefore also extend the genus zero potential F ε0 to include the
missing terms in qβ tji for β(Lθ ) ≤ 1/ε. The genus zero case of (1.2.1) (and Theorem
1.3.1) will then be viewed as a matching of potentials up to an additive constant.

Remark 3.1.4. Part (i) contains the statement〈〈
γ

z− ψ
, δ, J ε0 (q)1

〉〉ε
0,3
(t) =

1
z

〈〈
γ

z− ψ
, δ

〉〉ε
0,2
(t), (3.1.12)

which says that J ε0 (q)1 satisfies the string equation for one-point descendants in ε-quasi-
map theory of a semipositive target. In particular, the same class is the unit for the
ε-quantum multiplication (cf. [CK2, Corollary 5.5.4]).

Remark 3.1.5. As explained in [CK2, Remark 6.2.2], parts (iii) and (iv) of Proposition
3.1.2 generalize the genus zero toric mirror theorems of [G2].

3.2. Two descendant insertions

Denote by [1] the cohomology class of the diagonal

[1] =

s∑
i=1

γi ⊗ γ
i
∈ H ∗(W//G)⊗H ∗(W//G).

Let z,w be formal variables and define

V εt (z, w) :=

s∑
i,j=1

γi ⊗ γj

〈〈
γ i

z− ψ
,

γ j

w − ψ

〉〉ε
0,2
(t). (3.2.1)

The convention
s∑

i,j=1

γi ⊗ γj

〈
γ i

z− ψ
,

γ j

w − ψ

〉ε
0,2,0
=
[1]

z+ w

is made for the unstable term in the double bracket. We have

V εt (z, w)−
[1]

z+ w
∈ H ∗(W//G)⊗H ∗(W//G)[[q, {t0j }, 1/z, 1/w]].

Theorem 3.2.1. For arbitrary GIT targets W//G,

V εt =
Sεt (z)⊗ S

ε
t (w)([1])

z+ w
. (3.2.2)
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Remark 3.2.2. Combining Theorem 3.2.1 with Proposition 3.1.2(iii) and (3.1.5) proves
Theorem 1.3.1 in the case when two of the insertions are descendant and the other inser-
tions are primary. A very special case (twisted (0+)-theory of Pn, with two descendant
and no primary insertions) has also been proved by different methods in [Z].

In Gromov–Witten theory (ε = ∞), the statement in Theorem 3.2.1 is well-known and
its proof follows immediately from the WDVV and string equations (see [G3, item (4)
on p. 117]. In quasimap theory the string equation is a priori missing, so this proof will not
work. Instead, we provide a localization argument which is a variant “with two equivariant
parameters” of the proofs of [CK2, Proposition 5.3.1 and Theorem 5.4.1].

Before going into details, we note first that the usual argument shows that (3.2.2) and
the string equation for invariants with two descendant insertions are equivalent, in the
presence of WDVV and the string equation for invariants with at most one descendant
insertion. Hence, using (3.1.12) and Theorem 3.2.1 we deduce again that, in the semipos-
itive case, J ε01 satisfies the string equation for two-point descendants:

Corollary 3.2.3. For arbitrary semipositive (W,G, θ) ,〈〈
J ε01,

γ

z− ψ
,

δ

w − ψ

〉〉ε
0,3
(t) =

z+ w

zw

〈〈
γ

z− ψ
,

δ

w − ψ

〉〉ε
0,2
(t) (3.2.3)

where the unstable term in the right-hand side double bracket is defined to be 〈γ,δ〉
z+w

.

3.2.1. The Ã2-graph space. We will require a version of graph spaces for which the
domain curve has two parametrized components. To construct it, consider the crepant
resolution of the A2-singularity

π : Ã2 → Y0 = C2/Z3.

Ã2 is a smooth quasiprojective surface and the exceptional set of π is a nodal curve
D = E1 ∪ E2. The two components are rational (−2)-curves meeting in a point.

Since Ã2 is identified with the Z3-Hilbert scheme of C2, it has a natural action by a
two-dimensional torus S ∼= (C∗)2, induced from the standard S-action on C2. There are
exactly three S-fixed points in Ã2: the node on D, and one additional fixed point on each
component of D. We denote the fixed points p0, pn, p∞, with p0 ∈ E1, pn = E1 ∩ E2,
and p∞ ∈ E2. There are two compact 1-dimensional S-orbit closures, namely E1 and E2,
and two noncompact ones, D0 passing through p0, and D∞ passing through p∞.

Let H ∗S (pt) = Q[s1, s2], so that s1, s2 are the equivariant parameters. We denote by z,
respectively w, the S-weights on E1, respectively on E2 at the node pn. We have z =
2s1− s2 and w = 2s2− s1. The weights at the other fixed points are−z on E1 and 2z+w
on D0 at p0, and −w on E2 and 2w + z on D∞ at p∞. Note that the sum at each fixed
point is z + w = s1 + s2, reflecting the fact that Ã2 has a holomorphic symplectic form
induced by the standard form on C2.

Any nonconstant map from a projective curve to Ã2 must factor through D. Fix
β ∈ HomZ(PicG(W),Z) and consider the moduli stack

M0,k([W/G] × Ã2, (β, 1, 1))
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parametrizing maps from k-pointed, genus zero curves to [W/G] × Ã2, of class (β, 1, 1).
A geometric point in this stack is a tuple

((C, x1, . . . , xk), f, ϕ),

with (C, x1, . . . , xk) a prestable curve of genus zero, f : C → [W/G] a map of class β,
and ϕ : C → Ã2 a regular map such that ϕ∗[C] = [D]. In particular, the domain curve
must have two distinguished irreducible components C1 and C2 such that ϕ maps Ci
isomorphically onto Ei and contracts all other components of C.

Next, for each 0+ ≤ ε ≤ ∞we introduce ε-stability in almost the same way as for the
usual graph spaces (see [CKM, Definition 7.2.1] and [CK2, §2.6]). The only difference
is that the ampleness part of the stability condition does not involve either of the two
distinguished components in the domain. Precisely, we require that

ωC′
(∑

zi +
∑

yj

)
⊗ f ∗L⊗εθ

is ample on C′, where C′ is the closure of C \ (C1 ∪ C2), zi are the markings on C′, and
yj are the nodes C′ ∩ (C1 ∪ C2).

Imposing the ε-stability condition determines an open substack

Qε0,k(X, β; Ã2) (3.2.4)

of M0,k([W/G] × Ã2, (β, 1, 1)), which we will call the Ã2-graph space. The S-action
on Ã2 induces an S-action on Qε0,k(W//G, β; Ã2). Recall that we also have a T-action
on W ; it lifts as well to an action on the Ã2-graph space. These two actions commute, so
we have a T× S-action.

Proposition 3.2.4. The moduli space Qε0,k(W//G, β; Ã2) has the following properties:

(1) It is defined for all ε ≥ 0+, k ≥ 0, and β ∈ Eff(W,G, θ).
(2) It is a separated Deligne–Mumford stack of finite type.
(3) It has a natural proper map to the affine quotient W/aff G. In particular, it is proper

when W//G is projective.
(4) It carries a natural T× S-equivariant perfect obstruction theory.

Proof. Part (1) is obvious. Parts (2)–(4) follow in a straightforward manner using the
arguments in [CKM].

For the properness in (3) we use in addition the fact that (f, ϕ) : C → [W/G] × Ã2
factors through [W/G] ×D.

In (4), the relative obstruction theory over the smooth stack M0,k of prestable curves
is the direct sum of the relative obstruction theories for quasimaps to [W/G] and for maps
to Ã2. The T-equivariance comes from the first summand, while the S-equivariance comes
from the second summand. The absolute obstruction theory is obtained as usual from the
relative one via a distinguished triangle in the derived category. ut



Higher genus quasimap wall-crossing 2069

3.2.2. Proof of Theorem 3.2.1. The Ã2-graph space comes with evaluation maps

ẽvi : Qε0,k(W//G, β; Ã2)→ W//G× Ã2.

We write δv for the T×S-equivariant cohomology class δ⊗v ∈ H ∗(W//G)⊗H ∗S (Ã2), and
simply δ for δ ⊗ 1. (Recall that H ∗(W//G) denotes T-equivariant cohomology, localized
if needed, but we suppressed T from the notation.) Define (ε, Ã2)-double brackets by

〈〈δ1v1, . . . , δrvr 〉〉
(ε,Ã2)
0,r (t) =

∑
β,k≥0

qβ

k!

∫
[Qε0,r+k(W//G,β;Ã2)]vir

r∏
l=1

ẽv∗l (δlvl)
r+k∏

m=r+1

ẽv∗m(t).

The integral in the above formula is understood as T × S-equivariant push-forward to
a point. By properness in the Ã2 direction, the integrals are well-defined without local-
ization for the S-action, so the double bracket has no poles at the equivariant parameters
for S, i.e., it takes values in

3[[{t0j }]][[s1, s2]] = 3[[{t0j }]][[z,w]].

We also use the notation D0,D∞ ∈ H
∗

S (Ã2,Q) for the S-equivariant divisor classes
of the two noncompact 1-dimensional S-orbits in Ã2 from the previous subsection. Their
restrictions at the fixed points on Ã2 are

D0|p0 = −z, D0|pn = D0|p∞ = 0, D∞|p0 = D∞|pn = 0, D∞|p∞ = −w.

Now consider the generating series

Rε :=

s∑
i,j=1

γi ⊗ γj 〈〈γ
iD0, γ

jD∞〉〉
(ε,Ã2)
0,2 (t).

By definition, it is an element ofH ∗(W//G)⊗H ∗(W//G)[[q, {t0j }, z, w]]. The coefficient
of each monomial qβ tα1

01 . . . t
αs
0s is polynomial in z and w. One calculates

Rε = (z+ w)[1] + higher order terms in q, t. (3.2.5)

This is easily seen since

Qε0,2(W//G, 0; Ã2) ∼= W//G×M0,2(Ã2, (1, 1)),

therefore the term we want to evaluate is [1] times the equivariant 2-point Gromov–
Witten invariant 〈D0,D∞〉

Ã2
0,2,(1,1) of Ã2. By a simple localization computation this

Gromov–Witten invariant equals z+ w.
In fact, we can evaluate the full series Rε by virtual localization for the S-action only.

The description of the S-fixed loci on the Ã2-graph spaces Qε0,2+k(W//G, β; Ã2), together
with the fixed and moving parts of the obstruction theory is similar to the description in
the case of “usual” graph spaces, for which details can be found in [CK2, §4].
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Let ((C, x1, . . . , xk+2), f, ϕ) be S-fixed. Then the map f must contract the distin-
guished components C1 and C2 to the same point in W//G. The rest of the curve is con-
tracted by ϕ to the fixed points in Ã2. It follows that ϕ−1({p0, pn, p∞}) has exactly three
connected components, denoted C0, Cn, and C∞.

Due to the insertions of D0 and D∞, the only components of the S-fixed locus
that contribute to the localization computation are those for which ϕ(x1) = p0 and
ϕ(x2) = p∞. Each such component, denoted F β0,βn,β∞

k0,kn,k∞
, corresponds to a pair of ordered

splittings k = k0 + kn + k∞ and β = β0 + βn + β∞, with ki ≥ 0 and βi ∈ Eff(W,G, θ).
It is isomorphic to

Qε0,1+k0∪•
(W//G, β0)×W//G Qε0,kn∪{•,?}(W//G, βn)×W//G Qε0,1+k∞∪?(W//G, β∞), (3.2.6)

where the first fiber product is with respect to the evaluation maps ev•, and the second
is with respect to ev?. The unstable cases (ki, βi) = (0, 0) are included in the above
description by the conventions

Qε0,1∪•(W//G, 0) = Qε0,{•,?}(W//G, 0) = Qε0,1∪?(W//G, 0) := W//G,

ev• = ev? := idW//G.

The domain curves for the factors in (3.2.6) correspond to the three connected components
C0, Cn, and C∞.

The virtual class [F β0,βn,β∞
k0,kn,k∞

]
vir, determined by the fixed part of the (absolute) obstruc-

tion theory, is equal to the refined Gysin pull-back of the virtual classes on the factors in
(3.2.6) by the appropriate diagonal map.

The Euler class of the virtual normal bundle is determined by the moving parts of
H •(C, ϕ∗TÃ2

), and of the deformations and automorphisms of the domain curve. It is
easily obtained from the normalization sequence for

C = C0 ∪ C1 ∪ Cn ∪ C2 ∪ C∞

by a standard calculation. After all cancellations, its inverse has the form

1
e(Nvir)

=
(z+ w)2

zw cont(0) cont(n) cont(∞)
, (3.2.7)

where

cont(0) =

{
1, (k0, β0) = (0, 0),
−z− ψ•, otherwise,

cont(n) =

{
z+ w, (kn, βn) = (0, 0),
(z− ψ•)(w − ψ?), otherwise,

cont(∞) =

{
1, (k∞, β∞) = (0, 0),
−w − ψ?, otherwise.

For example, the two factors of z + w in the numerator come from the moving parts of
H 1(C1, ϕ

∗TÃ2
) and H 1(C2, ϕ

∗TÃ2
).
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Applying the virtual localization formula gives the factorization

〈〈γ iD0, γ
jD∞〉〉

(ε,Ã2)
0,2 (t) = (z+w)2

×

s∑
l,m=1

〈〈
γ i,

γl

−z−ψ•

〉〉ε
0,2
(t)

〈〈
γ l

z−ψ•
,

γm

w−ψ?

〉〉ε
0,2
(t)

〈〈
γm

−w−ψ?
, γ j

〉〉ε
0,2
(t). (3.2.8)

The double brackets on the right-hand side include the unstable terms, as defined in (3.1.4)
and (3.2.1).

Recall now from [CK2, Proposition 5.3.1] that the unitary property of the Sε-operator
states that its inverse is the operator defined by

(Sεt )
?(−z)(γ ) =

∑
i

γi

〈〈
γ i,

γ

−z− ψ

〉〉ε
0,2
(t).

We then get from (3.2.8)

Rε = (z+ w)2
(
(Sεt )

?(−z)⊗ (Sεt )
?(−w)

)
(V εt (z, w)). (3.2.9)

One checks immediately that on the right-hand side the terms of total degree zero in z and
w cancel out, so that the only term without a pole is (z+w)2 [1]

z+w
= (z+w)[1]. On the

other hand, Rε has no poles, since it is a power series in z,w. We conclude that

Rε = (z+ w)[1]. (3.2.10)

Now (3.2.10), (3.2.9), and the unitary property imply (3.2.2). Theorem 3.2.1 is proven.

3.3. TRR and the proof of Theorem 1.3.1

The following proposition, together with Proposition 3.1.2(iii), obviously implies Theo-
rem 1.3.1.

Proposition 3.3.1. Let (W,G, θ) be an arbitrary semipositive triple and let n ≥ 2. If

(J ε0 (q))
n−2
〈〈δ1ψ

a1
1 , . . . , δnψ

an
n 〉〉

ε
0,n(t) = 〈〈δ1ψ

a1
1 , . . . , δnψ

an
n 〉〉
∞

0,n

(
t + J ε1 (q)

J ε0 (q)

)
holds when all except possibly one of the ai’s are zero, then it holds in general.

Proof. It suffices to assume that the cohomology classes δi are elements in our chosen
basis of H ∗(W//G).

We use induction on n. The base case n = 2 follows from Theorem 3.2.1, as we
already pointed out in Remark 3.2.2.

Let n ≥ 3. Let j1, . . . , jn ∈ {1, . . . , s}. By taking derivatives in the TRR relation of
Corollary 2.3.4 we get

〈〈γj1ψ
a1
1 , γj2ψ

a2
2 , . . . , γjnψ

an
n 〉〉

ε
0,n

=

s∑
i=1

∑
S,T

〈〈γj1ψ
a1−1
1 , (γψa)S, γi〉〉

ε
0,2+|S|〈〈γ

i, γj2ψ
a2
2 , γj3ψ

a3
3 , (γψ

a)T 〉〉ε0,3+|T |. (3.3.1)



2072 Ionuţ Ciocan-Fontanine, Bumsig Kim

The inner sum is over all partitions SqT = {4, . . . , n}, while the notation (γψa)S stands
for the insertions γjlψ

al at the appropriate markings, with l running in S, and likewise
for (γψa)T . The double brackets are evaluated at t(ψ). By linearity, we may take the
coefficients ti in t(ψ) = t0 + t1ψ + t2ψ2

+ · · · to lie in H ∗(W//G,3).
The relation (3.3.1) holds for all stability parameters. We specialize it at t(ψ) = t0 = t

for parameter ε, while for parameter∞ we multiply it by J ε0 (q)
2−n and then specialize

at t(ψ) = (t + J ε1 (q))/J
ε
0 (q). By the induction assumption the two right-hand sides of

the resulting relations are equal, hence the same is true for the two left-hand sides. This
proves the proposition, hence Theorem 1.3.1 as well. ut

3.4. The string and dilaton equations

We close this section with a discussion of the versions of string and dilaton equations that
hold for a general stability parameter ε.

3.4.1. String. For the string equation, we have a completely general result in genus zero:
the class J ε0 (q)1 satisfies the string equation for the full genus zero descendant ε-stable
quasimap theory.

Proposition 3.4.1. Let (W,G, θ) be a semipositive triple. Then for every ε ≥ 0+ and
n ≥ 2,∑
β

qβ〈δ1ψ
a1
1 , . . . , δnψ

an
n , J

ε
0 (q)1〉

ε
0,n+1,β

=

∑
β

qβ
n∑
j=1

〈δ1ψ
a1
1 , . . . , δj−1ψ

aj−1
j−1 , δjψ

aj−1
j , δj+1ψ

aj+1
j+1 , . . . , δnψ

an
n 〉

ε
0,n,β . (3.4.1)

Proof. Equation (3.4.1) is obtained by setting t = 0 in

〈〈δ1ψ
a1
1 , . . . , δnψ

an
n , J

ε
0 (q)1〉〉

ε
0,n+1(t)

= 〈〈δ1ψ
a1
1 , . . . , δj−1ψ

aj−1
j−1 , δjψ

aj−1
j , δj+1ψ

aj+1
j+1 , . . . , δnψ

an
n 〉〉

ε
0,n(t). (3.4.2)

The case n = 2 of (3.4.2) is given by Corollary 3.2.3. The case n ≥ 3 then follows by
induction, using the TRR equation (3.3.1). ut

Remark 3.4.2. It is very easy to see that Conjecture 1.2.2 together with the string equa-
tion in Gromov–Witten theory implies (3.4.1) for any genus g. In fact, we conjecture that
the ε-CohFT of a semipositive target is a cohomological field theory with unit 1ε := J ε01
over the Novikov ring. This means explicitly the following: for all g, k with 2g−2+k ≥ 1
and arbitrary cohomology classes δ1, . . . , δk ∈ H

2∗(W//G,3), we conjecture that the
maps (2.3.3) satisfy

�εg,k+1((⊗
k
j=1 δj )⊗ 1ε) = p

∗�εg,k(⊗
k
j=1 δj ),
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where p : Mg,k+1 → Mg,k is the forgetful map. We note that it should be possible
to prove Conjecture 1.2.1 in the case of semisimple theories (such as the fully equivari-
ant theories that appear in Theorems 1.3.2 and 1.3.4) by combining genus zero results
as proved in the present paper with the Givental/Teleman formula [G4, Te] for higher-
genus potentials. However, such an approach would require establishing first the above
conjecture about the unit of the ε-CohFT.

3.4.2. Dilaton

Lemma 3.4.3. Assume Conjecture 1.2.2 holds for the semipositive triple (W,G, θ) and
the stability parameter ε ≥ 0+. Then (J ε01)ψ − J

ε
1 satisfies the dilaton equation for

ε-stable quasimap theory:∑
β

qβ〈δ1ψ
a1
1 , . . . , δnψ

an
n , (J

ε
0 (q)1)ψ − J

ε
1 (q)〉

ε
g,n+1,β

= (2g − 2+ n)
∑
β

qβ〈δ1ψ
a1
1 , . . . , δnψ

an
n 〉

ε
g,n,β , (3.4.3)

with the sums over all θ -effective β with 2g − 2+ n+ εβ(Lθ ) > 0.

Proof. This is an elementary calculation using the dilaton equation in Gromov–Witten
theory, which is left to the reader. ut

Corollary 3.4.4. Under the assumptions of Theorem 1.3.1, the dilaton equation (3.4.3)
holds in genus zero.

Remark 3.4.5. For g = 0 and n = 2, by using Corollary 2.3.4 (at t(ψ) = 0) and (3.1.10),
it is easy to see that the ε-dilaton equation∑

β

qβ〈δ1ψ
a1
1 , δ2ψ

a2
2 , (J

ε
0 (q)1)ψ − J

ε
1 (q)〉

ε
0,3,β = 0

holds without any additional assumptions on the semipositive triple (W,G, θ).

4. Virtual classes and ε-wall-crossing

4.1. Overview

The semipositive GIT targets in Theorems 1.3.2 and 1.3.4 share the common feature that
their I -functions satisfy I0(q) = 1, and hence J ε0 (q) = 1 for all ε. For semipositive toric
varieties this can be checked using the explicit formula for the small I -function, as given
in [G2] (see Lemma 5.9.1 below), while for local Calabi–Yau targets (as in Theorem
1.3.4) it is an easy general fact (see [CK2, Remark 5.5.6]). Therefore, the statement to be
proved reduces to the identification of potentials after a shift by J ε1 (q),

F εg (t(ψ)) = F
∞
g (t(ψ)+ J

ε
1 (q)), (4.1.1)
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or, in the version of Conjecture 1.2.2, to∑
β

qβ〈δ1ψ
a1
1 , . . . , δkψ

ak
k 〉

ε
g,k,β

=

∑
β

qβ
∞∑
m=0

1
m!
〈δ1ψ

a1
1 , . . . , δkψ

ak
k , J

ε
1 (q), . . . , J

ε
1 (q)〉

∞

g,k+m,β , (4.1.2)

for arbitrary (fixed) (g, k, ε), arbitrary integers a1, . . . ak ≥ 0, and arbitrary cohomology
classes δ1, . . . , δk ∈ H

∗(W//G). The sums on both sides are over all β with 2g− 2+ k+
εβ(Lθ ) > 0.

In this section we upgrade the numerical equality (4.1.2) to a stronger statement at the
level of virtual classes.

4.2. Shifted virtual classes

We will use the notations

X := W//G, X0 := W/aff G, X := [W/G]

from now on for the three quotients associated to (W,G, θ).
Fix (g, k, ε). We write A := [k +m] \ [k] for m = 0, 1, 2, . . . and denote by

evA = (evk+1, . . . , evk+m) : Mg,k∪A(X, β)→ XA

the evaluation map.
For each θ -effective class β, let [J ε1 ]β ∈ H

≤2(X,Q) denote the coefficient of the
qβ -term of J ε1 (q). Recall that J ε1 has no constant term with respect to q, so this coefficient
vanishes for β = 0. It also vanishes if β(Lθ ) > 1/ε by (3.1.9).

Define a generating series of ε-shifted virtual classes∑
β

qβ
∞∑
|A|=0

1
|A|!

∑
β0+

∑
a∈A βa=β

[Mg,k∪A(X, β0)]
vir
∩ ev∗A(⊗a∈A [J

ε
1 ]βa ). (4.2.1)

As we remarked above, [J ε1 ]βa can be nonzero only when βa 6= 0. Hence, for each β,
only finitely many terms contribute to the coefficient of qβ .

Our goal is to compare (4.2.1) with the corresponding generating series∑
β

qβ [Qεg,k(X, β)]
vir.

We will do so after push-forward via natural maps to a common target.
Let ι : X→ PN be the (T-equivariant) embedding over the affine quotient induced by

the relative polarization O(θ) (to unburden notation we write simply PN for the relative
projective space PNX0

). It induces, for each stability parameter ε′, a morphism

ιε′ : Qε
′

g,k(X, β)→ Qε
′

g,k(P
N , d(β)), (4.2.2)

where the degree d(β) is equal to β(Lθ ) (see [CK2, §3.1]).
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In addition, for ε′ > ε′′, there are “contraction of rational tails” morphisms

cε
′′

ε′ : Q
ε′

g,k(P
N , d(β))→ Qε

′′

g,k(P
N , d(β)),

described in [MOP], [T] (and also recalled in [CK2, §3.2.2]). When ε′ = ∞ we write
cε
′′

= cε
′′

∞, and when ε′′ = 0+ we write cε′ = c
0+
ε′

.
Let now (g, k, ε, β) be fixed, with 2g − 2 + k + εβ(Lθ ) > 0. For each A and each

decomposition β = β0 +
∑
a∈A βa there is a morphism

b{βa} : Q
ε
g,k∪A(P

N , d(β0))→ Q0+
g,k(P

N , d(β))

(see [CK2, §3.2.3]). Informally, the map b{βa} replaces each marking a ∈ A with a base-
point of length d(βa). If in addition βa(Lθ ) ≤ 1/ε for all a ∈ A, then b{βa} factors as

Qεg,k∪A(P
N , d(β0))

bε
{βa }
−−→ Qεg,k(P

N , d(β))
cε
−→ Q0+

g,k(P
N , d(β)).

We have the (T-equivariant) composition∐
A,β0,βa

bε
{βa}
◦ cε ◦ ι∞ :

∐
A,β0,βa

Mg,k∪A(X, β0)→ Qεg,k(P
N , d(β)). (4.2.3)

Theorem 4.2.1. Let X be a semipositive nonsingular quasiprojective toric variety of di-
mension n, viewed as a GIT quotient Cn+r//θ (C∗)r in the standard way, as in Theorem
1.3.2. Let T ∼= (C∗)n+r be the natural “big” torus acting on X. Then

(ιε)∗[Qεg,k(X, β)]
vir

=

∑
A,β0,βa

1
|A|!

(bε
{βa}
◦ cε ◦ ι∞)∗

(
[Mg,k∪A(X, β0)]

vir
∩ ev∗A(⊗a∈A [J

ε
1 ]βa )

)
. (4.2.4)

More generally,

(ιε)∗

(
[Qεg,k(X, β)]

vir
∩

k∏
i=1

ev∗i δi
)

=

∑
A,β0,βa

1
|A|!

(bε
{βa}
◦ cε ◦ ι∞)∗

(
[Mg,k∪A(X, β0)]

vir
∩ ev∗A(⊗a∈A [J

ε
1 ]βa )

k∏
i=1

ev∗i δi
)

(4.2.5)

for all δ1, . . . , δk ∈ H
∗

T,loc(X,Q).

Corollary 4.2.2. If X is a nonsingular projective Fano toric variety, then

(ιε)∗

(
[Qεg,k(X, β)]

vir
∩

k∏
i=1

ev∗i δi
)
= (cε ◦ ι∞)∗

(
[Mg,k(X, β)]

vir
∩

k∏
i=1

ev∗i δi
)
.



2076 Ionuţ Ciocan-Fontanine, Bumsig Kim

Since the ψ-classes on both sides are pulled back from Qεg,k(P
N , d(β)), Theorem 4.2.1

immediately implies (4.1.2), and hence Theorem 1.3.2. In fact, Theorem 4.2.1 gives
the stronger identification of the T-equivariant ε-quasimap CohFT with the ε-shifted
T-equivariant Gromov–Witten CohFT.

Theorem 4.2.1 holds in fact for any semipositive GIT presentation (Cn+r , (C∗)r , θ) of
a toric variety (see §5.9.2). It is instructive to check it directly for the simplest nontrivial
example.

Example 4.2.3. Consider the GIT triple (C,C∗, θ) with

θ = 1 ∈ Z ∼= χ(C∗).

The quotient X is a single point. A quasimap from a curve C to the quotient stack
[C/C∗] is specified by a line bundle L of degree d on C and a nonzero global section
u ∈ H 0(C,L), up to a constant nonzero multiple, i.e., by a divisor of degree d on C. In
particular d ≥ 0 is the class of the quasimap. The base-points are the zeroes of the sec-
tion u. Hence the cone Eff(C,C∗, θ) is canonically identified with N, and the Novikov
ring is the power series ring Q[[q]].

The Gromov–Witten moduli spaces are empty for d 6= 0 and are equal to the moduli
spaces Mg,k of stable curves for d = 0. The virtual class is just the fundamental class.

Let us now consider the stability condition ε = 0+. For d ≥ 0 we have

Q0+
g,k(X, d)

∼= Mg,k|d/Sd .

Here the notation for the mixed moduli spacesMg,k|d is taken from [MOP, §4.1]. They are
a special case of Hassett’s moduli spaces of weighted stable curves [H], and parametrize
nodal genus g curves with two sets of markings, {x1, . . . , xk} and {x̂1, . . . , x̂d}, such that
the markings in the first set are distinct, away from the nodes of C and from the mark-
ings x̂j , while the markings in the second set are away from the nodes, but x̂j and x̂k are
allowed to coincide. The quotient is by the symmetric group Sd , which acts by permuting
the second kind of markings. Again, the virtual class is the fundamental class.

Similarly, we have the identification

QG0+
0,0,d(X)

∼= (P1)d/Sd ∼= Pd

for the unpointed graph space. From this, the small I -function is easily computed to be

Ism(q) = e
q/z,

hence I1(q) = q.
From the above discussion, the only splitting d = d0 +

∑
a da that contributes to the

right-hand side of (4.2.4) has d0 = 0 and da = 1 for all a ∈ A, so that A = [d]. The sum
reduces to the single term

1
d!
(b{1,...,1} ◦ c)∗([Mg,k+d ]).
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There is a canonical birational map

h : Mg,k+d → Mg,k|d ,

constructed in [H], and one checks easily that

b{1,...,1} ◦ c : Mg,k+d = Mg,k∪A(X, 0)→ Q0+
g,k(X, d) = Mg,k|d/Sd

coincides with the Hassett contraction h followed by the projection to the quotient by Sd .
The equality (4.2.4) now follows.

The above argument generalizes immediately to all stability parameters ε, and to all
GIT presentations (Cr , (C∗)r , θ) with r ≥ 2 and θ = (1, . . . , 1) ∈ Zr ∼= χ((C∗)r) of
the point target X. For example, the small I -function is Ism = e

(q1+···+qr )/z. Note that the
number of Novikov parameters changes with the GIT presentation.

4.3. The geometric shifting

There is a better, more geometric way to describe the shifted virtual classes. Namely, for
fixed (g, k, ε, β), define the “mixed” moduli stack M

ε

g,k(X, β) as

M
ε

g,k(X, β) :=

∞∐
|A|=0

∐
β0+

∑
a∈A βa=β

Mg,k∪A(X, β0)×XA
∏
a∈A

Qε0,1∪a(X, βa), (4.3.1)

where the fiber products are taken over the evaluation maps at the markings indexed
by A. As before, we take the second disjoint union over splittings β0 +

∑
a∈A βa = β

with βa 6= 0 for all a ∈ A, so that only finitely many nonempty fiber products appear in
the right-hand side.

We have the cartesian square

M
ε

g,k(X, β)
π1 //

π2

��

∐
A,β0,βa

Mg,k∪A(X, β0)×
∏
a∈A Qε0,1∪a(X, βa)

evMA × evQ
ε

A
��∐

AX
A 1 //

∐
AX

A
×XA

where 1 is the diagonal map. It endows M
ε

g,k(X, β) with a natural virtual class given by

[M
ε

g,k(X, β)]
vir
= 1!

∑
A,β0,βa

[Mg,k∪A(X, β0)]
vir
⊗ (⊗a[Qε0,1∪a(X, βa)]

vir)

|A|!
. (4.3.2)

The division by |A|! is included to make the markings in A unordered.
Fix A and a splitting β = β0 +

∑
a∈A βa . Let

p = pA,β0,βa : Mg,k∪A(X, β0)×XA
∏
a∈A

Qε0,1+a(X, βa)→ Mg,k∪A(X, β0)

be the projection.
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Lemma 4.3.1. We have

p∗1
!([Mg,k∪A(X, β0)]

vir
⊗ (⊗a∈A [Qε0,1∪a(X, βa)]

vir))

= [Mg,k∪A(X, β0)]
vir
∩ (evMA )

∗(⊗a∈A[J
ε
1 ]βa ).

Hence ∑
β

qβp∗[M
ε

g,k(X, β)]
vir

equals the generating series of ε-shifted virtual classes (4.2.1).

Proof. Consider the fiber product diagram with cartesian squares

MA ×XA
∏
a∈A Qεa

π1 //

p

��

MA ×
∏
a∈A Qεa

id×evQ
ε

A
��

MA

(id,evMA ) //

evMA
��

MA ×X
A

evMA ×id
��

XA
1 // XA ×XA

where we have used the shorthand notation MA = Mg,k∪A(X, β0) and Qεa =
Qε0,1+a(X, βa). The middle horizontal arrow is the embedding as the graph of the evalu-

ation map evMA , so it is a regular embedding. By standard properties of the refined Gysin
maps we have

p∗1
!([MA]

vir
⊗ (⊗a∈A [Qεa]

vir)) = 1!(id× evQ
ε

A )∗
(
[MA]

vir
⊗ (⊗a∈A [Qεa]

vir)
)

= (id, evMA )
!
(
[MA]

vir
⊗ (evQ

ε

A )∗(⊗a∈A [Qεa]
vir)
)

= [MA]
vir
∩ (evMA )

∗(⊗a∈A (eva)∗[Qεa]
vir).

It remains to recall from (3.1.10) in Proposition 3.1.2(ii) that

J ε1 (q) =
∑
β 6=0

qβ(ev1)∗[Qε0,2(X, β)]
vir

to conclude the proof. ut

Let

s : M
ε

g,k(X, β)→ Qεg,k(P
N , d(β))

denote the composition of the projection p with the morphism (4.2.3). From Lemma 4.3.1
we deduce that Theorem 4.2.1 is equivalent to
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Theorem 4.3.2. Let X be a toric GIT target as in Theorem 4.2.1. Then

(ιε)∗

(
[Qεg,k(X, β)]

vir
∩

k∏
i=1

ev∗i δi
)
= s∗

(
[M

ε

g,k(X, β)]
vir
∩

k∏
i=1

ev∗i δi
)

for all (g, k, β, ε) with 2g − 2+ k + εβ(Lθ ) > 0.

There is a parallel construction for graph spaces. Define the mixed graph space
MGε0,k(X, β) to be

∞∐
|A|=0

∐
β0+

∑
a∈A βa=β

MG0,k∪A(X, β0)×XA
∏
a∈A

Qε0,1∪a(X, βa),

with virtual class

[MGε0,k(X, β)]
vir
= 1!

∑
A,β0,βa

[MG0,k∪A(X, β0)]
vir
⊗ (⊗a [Qε0,1∪a(X, βa)]

vir)

|A|!
.

HereMG0,k∪A(X, β0) denotes the usual graph space in Gromov–Witten theory. The ana-
log of Lemma 4.3.1 holds for these graph spaces, with the same proof.

We also have morphisms∐
A,β0,βa

bε
{βa}
◦ cε ◦ ι∞ :

∐
A,β0,βa

MG0,k∪A(X, β0)→ QGε0,k(P
N , d(β)),

s =
∐

A,β0,βa

bε
{βa}
◦ cε ◦ ι∞ ◦ p : MG

ε
0,k(X, β)→ QGε0,k(P

N , d(β)),

and
ιε : QG

ε
0,k,β(X)→ QGε0,k(P

N , d(β)).

5. Proof of Theorem 4.2.1

5.1. Overview

The idea of the proof, inspired by the work of Marian, Oprea, and Pandharipande [MOP],
who treated the case of Grassmannian targets, is to apply T-localization to both the shifted
stable map virtual class and to the quasimap virtual class and then match the push-forward
of the localization residues lying over the same T-fixed locus in the space of quasimaps
to PN . A genus independence lemma from [MOP] is used to reduce the general case to
genus zero. The genus zero toric case requires new ideas, even in the case of Fano targets
when no shifting of virtual classes occurs. We handle it by using C∗-localization on graph
spaces and a localized version of Givental’s uniqueness lemma.

As the complete argument is somewhat involved, to keep notation lighter and make
the main ideas clear, we present full details in the case ε = 0+. The extension to general
ε is a routine matter, as we indicate in §5.9.1. The proof is split over several subsections.
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5.2. Toric targets

Quasimaps to toric targets in their standard GIT presentation were first introduced in
[CK1] and we very briefly recall the description given there to fix some notation. Note
that the toric varieties were assumed to be projective in [CK1] to ensure properness of the
moduli spaces, but the description is exactly the same in our more general situation.

Let X be a smooth quasiprojective toric variety of dimension n, given by a nonsin-
gular fan 6 in NR, with N an n-dimensional lattice. Let 6(1) denote the set of rays
(1-dimensional cones) of 6 and set r := |6(1)|−n. Assume that the rays span NR ∼= Rn
and that r ≥ 1. Denote by C6(1) the vector space spanned by the 1-dimensional cones
and by G the r-dimensional complex torus (C∗)r . The fan data determines an action of G
on C6(1) and a “chamber” in χ(G) with the property that for any character in this cham-
ber we have X ∼= C6(1)//θ G. We fix such a character θ with O(θ) relatively very ample
over the affine quotient.

The coordinates on C6(1) give “homogeneous coordinates” (zρ)ρ∈6(1) on X.
The “big” torus T = (C∗)6(1) acts on C6(1) by scaling of coordinates, and this action

descends to the quotient stack X = [C6(1)/G]. The induced action on X has isolated
T-fixed points, naturally corresponding to the maximal cones σ ∈ 6(n). In terms of
homogeneous coordinates the fixed point pσ is described by

zρ = 1 if ρ 6⊂ σ, zρ = 0 if ρ ⊂ σ.

The 1-dimensional T-orbits in X are isolated and correspond to cones of dimension n−1
in the fan. We will say that such an orbit is closed if the corresponding cone is the inter-
section of two maximal cones σ1 and σ2. Such an orbit is a P1 joining the two T-fixed
points pσ1 and pσ2 .

Let ξρ be the character of the (C∗)r -action on the corresponding coordinate axis
in C6(1). The associated T×G-equivariant line bundle

Lρ := C6(1) × Cξρ

descends to the T-equivariant line bundle Lρ on X. For each maximal cone σ in the fan,
the set {ξρ | ρ 6⊂ σ } is a basis of the character group χ(G) ∼= Pic([C6(1)/G]).

A quasimap to the quotient stack [C6(1)/G] may be described by the data

((C, x1, . . . , xk), {Lρ}ρ∈6(1), {uρ}ρ∈6(1)) (5.2.1)

where (C, x1, . . . , xk) is a prestable genus g pointed curve, Lρ, ρ ∈ 6(1), are line
bundles on C, and uρ ∈ H 0(C,Lρ) are global sections, subject to the nondegeneracy
condition

(uρ(x))ρ∈6(1) ∈ (C6(1))s

for all but finitely many points x ∈ C. For any maximal cone σ ∈ 6(n), the line
bundles Lρ , ρ 6⊂ σ , uniquely determine all the other. The sections uρ are determined
up to the action of G. If β is the class of the quasimap, we set

dρ := deg(Lρ) = β(ξρ) ∈ Z.
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The set {dρ | ρ ∈ 6(1)} determines the class β. Since

det(T[C6(1)/G]) = ⊗ρ∈6(1) Lρ,

semipositivity of the triple (C6(1),G, θ) translates into the condition∑
ρ∈6(1)

dρ ≥ 0

for all quasimaps to [C6(1)/G].

Remark 5.2.1. For the standard GIT presentation we described above, the unstable locus
for the linearization θ has codimension at least 2 and Pic(X) = Pic([C6(1)/G]) via re-
striction. The basis {ξρ | ρ 6⊂ σ } restricts to the Z-basis

{Lρ = OX(Dρ) | ρ 6⊂ σ }

of Pic(X), withDρ the toric divisor in X given by the equation zρ = 0. Further, semipos-
itivity of the triple (C6(1),G, θ) is equivalent to the semipositivity of the anti-canonical
class of the toric variety X, as −KX =

∑
ρ∈6(1)Dρ and Eff(C6(1),G, θ) coincides with

the semigroup of integral points in the Mori cone of effective curves in X.

The notation Qg,k(X, β) will be used from now on for the moduli space of (0+)-stable
quasimaps to X. A C-point in Qg,k(X, β) is specified by the data (5.2.1) such that the
base-points

{x ∈ C | (uρ(x))ρ∈6(1) ∈ (C6(1))us}

are away from nodes and markings, and satisfying the (0+)-stability

deg
(
ωC

(∑
i

xi

)
⊗ Lεθ

)
> 0, ∀ε ∈ Q>0.

The line bundle Lθ is obtained by writing θ in the basis {ξρ | ρ 6⊂ σ } (for some maximal
cone σ ) and taking the corresponding tensor product of the Lρ’s.

In the next two subsections we describe the T-fixed loci in the moduli spaces
Mg,k(X, β) and Qg,k(X, β) and their contributions to virtual localization formulas, fol-
lowing [K], [GP], and [MOP].

5.3. T-fixed loci

5.3.1. T-fixed loci for stable maps. Connected components of the T-fixed loci in
Mg,k(X, β) are labeled by decorated graphs 0 = (V ,E). If (C, x, f ) is T-fixed, the
corresponding graph 0 is obtained as follows.

Vertices in v ∈ V correspond to the connected components Cv of f−1(XT).
Edges e ∈ E correspond to irreducible components Ce of the domain curve C which

are not contracted by f . These components Ce are rational curves, and the restriction fe
of f to each of them is a multiple cover of a 1-dimensional closed T-orbit in X of some
degree δe, ramified only over the two torus fixed points in the orbit.
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We decorate each vertex v ∈ V with the triple (σv, gv, kv), where σv = f (Cv),
gv is the arithmetic genus ofCv (we set gv = 0 if the corresponding connected component
of f−1(XT) is a single point), and kv is the set of markings carried by Cv . A vertex v is
nondegenerate if

2gv − 2+ val(v) > 0,

where val(v) is the sum of (the cardinality of) kv and the number of edges incident to v.
Each edge e ∈ E is decorated with the pair (Orbe, δe) consisting of the image Orbe ∈

{closed 1-dim T-orbits in X} of Ce under f and the covering number δe ∈ N≥1, so that
δe[Orbe] = f∗[Ce].

Note that the resulting graph is connected, without self-edges, and that we have the
compatibility conditions

1− χ(0)+
∑
v

gv = g,
∐
v

kv = {1, . . . , k}

and ∑
e∈E

δe[Orbe] = β.

Up to a finite quotient by automorphisms, the component F0 attached to the decorated
graph 0 is isomorphic to ∏

v∈V

Mgv,val(v),

with the factors corresponding to degenerate vertices treated as points.
Conversely, given a decorated graph satisfying the compatibility conditions above,

one obtains a T-fixed stable map by taking for each vertex v a stable curve Cv in the
corresponding moduli space, for each edge e the covering map fe : Ce → P1 ∼= Orbe of
degree δe, ramified over 0 and∞, and gluing along the graph incidences.

5.3.2. T-fixed loci for stable quasimaps. There is a similar description for the T-fixed
locus of Qg,k(X, β). The difference is that this time the graphs 0′ will have no tail edges,
but instead carry an additional decoration of base-points. Here a tail edge is an edge for
which one of its adjacent vertices has valency 1. The extra decoration is an assignment to
each v ∈ V of a tuple of nonnegative integers

(dρ,v ∈ N, ρ ∈ 6(1), ρ 6⊂ σv).

The component F0′ attached to the graph 0′ is isomorphic to∏
v∈V

Mgv,val(v)|
∑
ρ 6⊂σv

dρ,v

up to a finite quotient. The (Hassett) mixed moduli spaces Mg,m|d are described in Ex-
ample 4.2.3. The automorphism group for each vertex contains the product

∏
ρ 6⊂σv

Sdρ,v
of symmetric groups which acts by permuting the second kind of markings.
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A vertex of 0′ is nondegenerate if it satisfies the stability condition

2gv − 2+ val(v)+ ε
∑
ρ 6⊂σv

dρ,v > 0 for every ε ∈ Q>0.

For degenerate vertices, the corresponding factors in F0′ are again treated as points.
The quasimap elements in F0′ are constructed as follows. First, we view dρ,v also as

an index set with dρ,v elements such that dρ,v are mutually disjoint. For an element in∏
v∈V Mgv,val(v)|

∑
ρ 6⊂σv

dρ,v , let Cv be the corresponding mv-pointed genus gv curve Cv
with markings xi and additional base-point markings x̂i , i ∈

⋃
ρ dρ,v . For ρ 6⊂ σv , set

Lρ = OCv

( ∑
i∈dρ,v

x̂i

)
with the canonical section uρ , whose divisor of zeroes is

∑
i∈dρ,v

x̂i . The remaining Lρ’s
are determined in terms of Lρ, ρ 6⊂ σv , and we set uρ = 0 for ρ ⊂ σv . We obtain a stable
toric quasimap by gluing the resulting quasimaps (Cv, xi ∈ mv,Lρ, uρ), v ∈ V , along
graph incidences with the 2-pointed genus 0 map data (Ce ∼= P1, 0,∞; fe) corresponding
to the edges e.

Note that for each vertex the quasimap (Cv, xi ∈ mv,Lρ, uρ) carries the class βv
determined by

βv(Lρ)) = dρ,v, ρ 6⊂ σv.

Hence the compatibility condition that must be satisfied by the additional decoration is∑
v∈V

βv +
∑
e∈E

δe[Orbe] = β.

5.4. Virtual normal bundles

5.4.1. Stable maps. For graphs 0 as in §5.3.1, let Nvir
0 denote the virtual normal bundle

to the corresponding T-fixed component F0 ⊂ Mg,k(X, β). The multiplicative inverse
of its T-equivariant Euler class, lifted to

∏
v∈V Mgv,val(v), is obtained by a standard com-

putation. In the form given in [MOP], it is written as a product of contributions from
vertices, edges, and flags (v, e) consisting of a vertex and an incident edge,

1

e(Nvir
0 )
=

∏
v

MapCont(v)
∏
e

MapCont(e)
∏
(v,e)

MapCont(v, e). (5.4.1)

The above grouping is made so that the edge and flag contributions (as well as the
contributions of degenerate vertices) are pure weights, i.e., they are pulled back from
H ∗T,loc(SpecC), while each nondegenerate vertex contribution is in H ∗T,loc(Mgv,val(v)).
Furthermore, for such a vertex

MapCont(v) =
e(E∨ ⊗ TσvX)

e(TσvX)
1∏

e(w(e)/δe − ψe)
(5.4.2)
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where E is the Hodge bundle, e denotes the (equivariant) Euler class, and TσvX is the
T-representation on the tangent space to X at the fixed point indexed by σv . The product
in the denominator is over all edges incident to v, w(e) denotes the weight of the T-
representation on the tangent space TσvOrbe, and ψe is the Chern class of the cotangent
line bundle on Mgv,val(v) at the marking corresponding to e.

5.4.2. Stable quasimaps. Let F0′ ⊂ Qg,k(X, β) be a component of the T-fixed locus,
corresponding to a graph 0′ as in §5.3.2. Our goal in this subsection is to pro-
vide an expression simlar to (5.4.1)–(5.4.2) for the multiplicative inverse 1/e(Nvir

0′
)

of the T-equivariant Euler class of the absolute virtual normal bundle, lifted to∏
v∈V Mgv,val(v)|

∑
ρ 6⊂σv

dρ,v .
For the computation we will make use of the detailed description of the obstruction

theory for quasimaps from [CK1, §5]. At a point (C, x1, . . . , xk, {Lρ}, {uρ}) of F0′ , the
obstruction theory relative to Mg,k (governing deformations of the pairs (Lρ, uρ) of line
bundles with sections) is the virtual T-representation

H •(C,Q) := H 0(C,Q)−H 1(C,Q),

where Q is defined by the Euler sequence on C,

0→ O⊕(|6(1)|−dimX)
C →

⊕
ρ

Lρ → Q→ 0. (5.4.3)

The absolute obstruction theory has an additional piece, consisting of the deformations
and the automorphisms of the pointed domain curve (C, x1, . . . , xk).

By definition, Nvir
0′

is the moving part of the absolute obstruction theory. Accordingly,
the inverse of its Euler class is the product of two contributions. One factor is obtained
from the moving part of the deformation space of (C, x1, . . . , xk) (automorphisms of the
pointed domain contribute only to the T-fixed part of the obstruction theory). It has the
same expression as in the case of stable maps:

∏
(v,e)

1
w(e)/δe − ψe

. (5.4.4)

It remains to calculate the other factor, which is the inverse of the T-equivariant Euler
class of the moving part ofH •(C,Q). For this, note first that on each noncontracted com-
ponent Ce of C, the Euler sequence (5.4.3) is pulled back via the map fe from the Euler
sequence presenting the tangent bundle ofX, while on the contracted components Cv , the
monomorphism in the sequence is the composition

⊕
ρ 6⊂σv

OCv

⊕ρ 6⊂σ

∑
i∈dρ,v

x̂i
−−−−−−−−−→

⊕
ρ 6⊂σv

Lρ
(id,0)
−−−→

⊕
ρ

Lρ .
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Using the normalization sequence for the domain curve C, the contribution we seek is the
product of three factors, namely the moving parts of

∏
v∈V

e(H 1(Cv,Q))

e(H 0(Cv,Q))
, (5.4.5)

∏
e∈E

e(H 1(P1, f ∗e TX))

e(H 0(P1, f ∗e TX))
, (5.4.6)∏

flags (v,e)

e(TσvX). (5.4.7)

The moving part in (5.4.6) and the factor (5.4.7) contribute only pure weights, equal to
the analogous contributions in the stable map case.

Finally, we analyze H •(Cv,Q). Each Lρ has a unique expression

Lρ = ⊗ρ′ 6⊂σv L
⊗av,ρ,ρ′

ρ′
,

where av,ρ,ρ′ are integers. Then we have Lρ = OCv (x̂ρ), where x̂ρ is the divisor∑
ρ′ 6⊂σv

av,ρ,ρ′(
∑
i∈dρ′,v

x̂i) on Cv . It follows that

Q|Cv =
(⊕
ρ⊂σv

OCv (x̂ρ)
)
⊕

(⊕
ρ 6⊂σv

OCv (x̂ρ)|x̂ρ
)
.

The second term has trivial linearization and its H 0 gives the fixed part of H •(Cv,Q).
As for the first term, for each ρ ⊂ σv let Orbσv,ρ denote the 1-dimensional T-orbit cor-
responding to the (n − 1)-dimensional cone spanned by σv \ {ρ} (this orbit need not be
closed), so that

TσvX =
⊕
ρ⊂σv

TσvOrbσv,ρ

as T-representations. The linearization of Lρ = OCv (x̂ρ) is given by the weight of the
representation TσvOrbσv,ρ . Write x̂ρ = x̂+ρ − x̂−ρ with x̂+ρ and x̂−ρ effective divisors. From
the equality

[OCv (x̂ρ)] = [OCv (x̂
+
ρ )|x̂+ρ ] − [OCv (x̂

+
ρ )|x̂−ρ ] + [OCv ]

in the K-group of Cv , we obtain the contribution of the moving part of (5.4.5) to the
inverse Euler class in the form

e(E∨ ⊗ TσvX)
e(TσvX)

∏
ρ⊂σv

e
(
H 0(Cv,OCv (x̂+ρ )|x̂−ρ )⊗ TσvOrbσv,ρ

)∏
ρ⊂σv

e
(
H 0(Cv,OCv (x̂

+
ρ )|x̂+ρ )⊗ TσvOrbσv,ρ

) . (5.4.8)

Combining all these, we obtain the desired factorization

1

e(Nvir
0′
)
=

∏
v

QmapCont(v)
∏
e

QmapCont(e)
∏
(v,e)

QmapCont(v, e). (5.4.9)
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The contributions from edges and flags are pure weights and match the corresponding
factors in (5.4.1):

QmapCont(e) = MapCont(e), QmapCont(v, e) = MapCont(v, e). (5.4.10)

The same is true about the contributions from degenerate vertices.
By (5.4.4) and (5.4.8), the contribution from a nondegenerate vertex is

QmapCont(v) =
e(E∨ ⊗ TσvX)

e(TσvX)
1∏

e (w(e)/δe − ψe)
Qv, (5.4.11)

with

Qv =

∏
ρ⊂σv

e
(
H 0(Cv,OCv (x̂+ρ )|x̂−ρ )⊗ TσvOrbσv,ρ

)∏
ρ⊂σv

e
(
[H 0(Cv,OCv (x̂

+
ρ )|x̂+ρ )] ⊗ TσvOrbσv,ρ

) . (5.4.12)

We conclude this subsection by noting that the identification of the fixed part in
H •(Cv,Q) with H 0(Cv,⊕ρ 6⊂σvOCv (

∑
i∈dρ,v

x̂i)|
∑
i∈dρ,v

x̂i ) shows that the virtual funda-
mental class of F0′ induced by the fixed part of the absolute obstruction theory is the
fundamental class itself.

5.5. Localization

Fix (g, k, β) with 2g−2+k ≥ 0. Let Qg,k(PN , d(β)) be the moduli space of (0+)-stable
quasimaps of degree d(β) to PNX0

. Denote

b ◦ c ◦ ι∞ :=
∐

A,β0,βa

b0+
{βa}
◦ c0+

◦ ι∞.

We next describe the induced maps (b ◦ c ◦ ι∞)T and ιT0+ on the T-fixed loci.
Let pσ ∈ XT

⊂ (PN )T be a T-fixed point, corresponding to a maximal cone σ .
The locus Fpσ of T-fixed points in Qg,k(PN , d(β)) which are supported at pσ (i.e.,

those for which the regular map freg : C → PN induced by the quasimap is a constant
map to pσ ) is parametrized by the quotient of the mixed moduli space Mg,k|d(β) by the
action of the symmetric group Sd(β) permuting the second kind of markings.

Consider first (for all A and all splittings β = β0 +
∑
a∈A βa) the components

F0 ⊂ Mg,k∪A(X, β0)

of the fixed point loci which are mapped into Fpσ by b◦c◦ ι∞. They correspond to graphs
0 = (V ,E) of the following type:

• the vertex set V = {v0} ∪ V
′ contains a distinguished vertex v0 with σv0 = σ ;

• the distinguished vertex has genus gv0 = g, all other vertices have genus gv = 0, and
0 has no cycles;
• the markings in [k] are all assigned to the distinguished vertex v0, while there is no

restriction on the assignment of the markings in A.
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Let E0 ⊂ E denote the subset of edges in 0 incident to the distinguished vertex v0.
Each such edge is the root of a tree Te such that the graph 0 is the join of all the Te’s at v0.
Let A(v0), respectively A(e), denote the subsets of markings from A at v0, respectively at
the vertices of Te. Each Te parametrizes T-fixed genus zero stable maps to X with mark-
ings A(e)∪ •, which send the marking • to pσ . A stable map in F0 is obtained by gluing
these to a stable curve in Mg,k∪A(v0)∪E0 . We denote by βe the homology class carried by
a stable map parametrized by the tree Te with root e ∈ E0, so that β0 =

∑
e∈E0

βe.
The map (b ◦ c ◦ ι∞)T restricted to F0 contracts each tree Te to a base-point of length

d(βe) +
∑
a∈A(e) d(βa), and replaces each marking a ∈ A(v0) by a base-point of length

d(βa). It follows that, up to finite quotients, (b ◦ c ◦ ι∞)T on F0 equals the composition

g0 ◦ p : Mg,k∪A(v0)∪E0 ×

∏
v 6=v0

M0,val(v)→ Mg,k|d(β), (5.5.1)

where
p : Mg,k∪A(v0)∪E0 ×

∏
v 6=v0

M0,val(v)→ Mg,k∪A(v0)∪E0

is the projection and

g0 : Mg,k∪A(v0)∪E0 → Mg,k|A(v0)∪E0 → Mg,k|d(β),

with the first arrow the Hassett contraction map, and the second arrow a composition of
diagonal maps increasing the multiplicity of markings e ∈ E0 by d(βe)+

∑
a∈A(e) d(βa)

and of markings a ∈ A(v0) by d(βa).
Next we look at components F0′ ⊂ Qg,k(X, β) mapped to Fpσ by ιT0+. Since rational

tails are not allowed, the graphs 0′ have a single vertex v0 and no edges. The vertex is
decorated by σv0 = σ , gv0 = g, all markings in [k], and a set {dρ,v0 | ρ 6⊂ σ } of integers.
The locus F0′ is isomorphic to the quotient

(Mg,k|
∑
ρ 6⊂σ dρ,v0

)
/ ∏
ρ 6⊂σ

Sdρ,v0
,

where the product
∏
ρ 6⊂σ Sdρ,v0

of symmetric groups acts by permuting the second kind
of markings in the obvious way.

In terms of the basis {ξρ | ρ 6⊂ σ }, the linearization θ is expressed as

θ =
∑
ρ 6⊂σ

nρ,σ ξρ

with positive integers nρ,σ .
The restriction of ιT0+ to F0′ descends to the corresponding quotients by symmetric

groups from the composition of diagonal maps

Mg,k|
∑
ρ 6⊂σ dρ,v0

→ Mg,k|d(β) (5.5.2)

which increase the multiplicity of each point in dρ,v0 by the factor nρ,σ .
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For general graphs 0 and 0′ for which the genus and/or the markings in [k] are dis-
tributed among several vertices, the map (b◦c◦ ι∞)T is a product of maps of type (5.5.1),
and ιT0+ is a product of maps of type (5.5.2).

We apply the virtual localization formula to the (0+)-shifted stable map virtual class:∑
A, β0+βa=β

1
|A|!
[Mg,k∪A(X, β0)]

vir
∩ ev∗A(⊗a [I1]βa )

=

∑
A, β0+βa=β

1
|A|!

i∗
∑
0

[F0] ∩ i
∗ ev∗A(⊗a [I1]βa )

e(Nvir
0 )

. (5.5.3)

Similarly,

[Qg,k(X, β)]vir
= i∗

∑
0′

[F0′ ]

e(Nvir
0′
)
. (5.5.4)

In both formulas, i denotes the inclusion of the T-fixed loci. In the stable map formula
(5.5.3), the restrictions i∗ ev∗a[I1]βa contribute pure weight factors cont(a) to the vertices.

First, we write the vertex contribution as

MapCont(v) =
e(E∨ ⊗ TσvX)

e(TσvX)
1∏

e not collapsed(w(e)/δe − ψe)
Mv, (5.5.5)

where the factorMv is the product of 1/(w(e)/δe−ψe) over the collapsed edges incident
to v and of the contributions from the A-markings at v. Next, as in [MOP], for each
nondegenerate vertex v the factorMv absorbs the contributions in (5.4.1) coming from all
edges and vertices (including their A-markings) of all trees Te which are collapsed to v
by the map (b ◦ c ◦ ι∞)T. The final form of the vertex contribution is then given by (5.5.5)
with Mv of the form

Mv =

∏
e collapsed to v

cont(Te)
w(e)/δe − ψe

∏
a∈A(v)

cont(a). (5.5.6)

We now compare (5.5.5) with the quasimap vertex contribution

QmapCont(v) =
e(E∨ ⊗ TσvX)

e(TσvX)
1∏

e(w(e)/δe − ψe)
Qv

from (5.4.11). The first two factors in each formula are pulled back via (b ◦ c ◦ ι∞)T

and ιT0+ respectively. From the projection formula and the matching of the pure weight
contributions from noncollapsed edges and flags in (5.4.10), we conclude that equation
(4.2.4) in Theorem 4.2.1 follows from the following lemma.

Lemma 5.5.1. For each T-fixed locus Fpσ ⊂ Qg,k(PN , d(β))T as described in this sub-
section, the equality∑

A, β0+βa=β

1
|A|!

∑
F0 7→Fpσ

(b ◦ c ◦ ι∞)
T
∗Mv0 =

∑
F0′ 7→Fpσ

(ιT0+)∗Qv0 (5.5.7)

holds in H ∗T,loc(Mg,k|d(β)/Sd(β)).
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Equation (4.2.5) of Theorem 4.2.1 also follows from Lemma 5.5.1, since the additional
cohomological insertions only change the vertex contributions (5.5.5) and (5.4.11) by
matching pure weight factors.

We will prove the lemma in two steps. First we use [MOP, §7.6] to reduce to a state-
ment in genus zero. The genus zero case is then handled by proving a localized version
of Givental’s uniqueness lemma and an inductive argument.

5.6. MOP lemma and reduction to genus zero

The mixed moduli spaces Mg,k|d carry cotangent line classes ψi , i = 1, . . . , k, and ψ̂j ,
j = 1, . . . , d . In addition, there are diagonal classes DJ ∈ H 2(|J |−1)(Mg,k|d ,Q) for
J ⊂ {1, . . . , d} with |J | 6= ∅, corresponding to the locus where the markings {x̂j }j∈J
coincide.

By the cotangent calculus in [MOP], each side of (5.5.7) can be written as a polyno-
mial expression in ψ̂j and DJ (with coefficients in the field K = Q({λρ | ρ ∈ 6(1)}),
depending on σ and β, but independent of the genus g and the number k of the usual
markings. For the left-hand side, this follows from §4.3 of [MOP] and the description
(5.5.1) of b ◦ c ◦ ι∞, while for the right-hand side we use the formula (5.4.12) for Qv and
[MOP, §4.6], together with (5.5.2).

Furthermore, these two polynomials are symmetric in the variables ψ̂j and may be
written in canonical form as in [MOP, §4.4]. This means that each monomial is rewritten
in the form

ψ̂
s1
J1
. . . ψ̂

sl
Jl
DJ1 . . . DJl

with Ji mutually disjoint and

ψ̂Ji = ψ̂j |DJi
, ∀j ∈ Ji .

The canonical forms are also symmetric in the ψ̂j ’s. Denote by P∞β,σ the canonical form

of the left-hand side of (5.5.7), and by P 0+
β,σ the canonical form of the right-hand side

of (5.5.7). We will show that P εβv,σv as an abstract polynomial does not depend on ε ∈
{0+,∞}.

Fix k ≥ 3, d ≥ 0, and 1 ≤ ` ≤ k − 2. Let P = (P1, . . . ,P`) be a set partition of
{1, . . . , d} with |Pi | ≥ 1. Let τ := (t1, . . . , t`) be an ordered partition of k − 2 − ` (the
integers ti are nonnegative, but may be zero). Following [MOP, Lemma 6], we associate
to the above data a chain-type topological stratum S(τ,P) on M0,k|d . When ` ≥ 2, the
generic element in the stratum has ` irreducible components, R1, . . . , R`, attached tail to
head in a chain of rational curves, with the markings distributed as follows:

• R1 carries t1 + 2 markings and the base-point markings in P1.
• Ri carries ti + 1 markings and the base-point markings in Pi , for i = 2, . . . , `− 1.
• R` carries t` + 2 markings and the base-point markings in P`.

The usual markings x1, . . . , xk are distributed in order from left to right. When ` = 1, the
stratum is simply the entire space M0,k|d .
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Lemma 5.6.1 ([MOP, §7.6]). Fix an integer d > 0. Consider formal variables ψ̂j for
j = 1, . . . , d and DJ for nonempty J ⊂ {1, . . . , d}. Let 1 be a polynomial in ψ̂j , DJ ,
in canonical form. For every k ≥ 3, we may view 1 as a class in H ∗T,loc(M0,k|d). Then
1 = 0 as an abstract polynomial if and only if∫

S(τ,P)
µ(ψ1, . . . , ψk)1 = 0

for every topological stratum S(τ,P) as above and every monomial µ in ψi . Further, if
1 is symmetric in the ψ̂j ’s, then only vanishing of the integral on M0,k|d/Sd is required
to conclude that 1 vanishes as an abstract polynomial.

Proof. This is essentially Lemma 6 in [MOP]. Their statement is formulated to require
the vanishing of the integrals over all possible topological strata in M0,k|d , but the proof
they give shows that it suffices to consider only strata of the form S(τ,P). (Moreover,
one may also restrict to a very special kind of monomials µ(ψ1, . . . , ψk), but we will not
need this fact.) ut

By applying Lemma 5.6.1 to 1 = P∞β,σ − P
0+
β,σ , the proof of Lemma 5.5.1 is reduced to

proving the following lemma.

Lemma 5.6.2. For every k ≥ 3, every chain-type topological stratum S(τ,P) ⊂
M0,k|d(β), and every polynomial

µ(ψ) = µ(ψ1, . . . , ψk)

with coefficients in the field K = H ∗T,loc(SpecC), the genus zero intersection number

P εβ,σ (k, τ,P, µ) :=
∫
S(τ,P)

P εβ,σ (ψ̂j ,DJ )µ(ψ) (5.6.1)

does not depend on ε.

5.7. Uniqueness lemma

Up to this point, the argument for proving Theorem 4.2.1 has been entirely parallel to the
one given in [MOP] for the analogous statement in the case of Grassmannian targets. In
their situation no shifting of virtual classes is needed, and the ε-independence of (5.6.1) is
an immediate consequence of the fact that in genus zero the moduli spaces of stable maps
and stable quasimaps to the Grassmannian are smooth and irreducible, of the expected
dimension.

The latter property fails for our toric targets. Even for the Fano cases, which do not
require the shifting of virtual classes, a new idea is needed to complete the proof. To this
end we will use graph spaces and localization with respect to their additional C∗-action
to obtain a localized version of Givental’s uniqueness lemma.
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For k, d ≥ 0 denote by P1
[k|d] the moduli space parametrizing stable genus 0 curves

with a rigid P1 component, k usual markings, and d ordered base-point markings. By
matching the stability conditions we get

P1
[k|d]/Sd = QG0,k,d(P0),

the quasimap graph space with target P0
= C//C∗ (and stability parameter ε = 0+).

The T-fixed locus of QG0,k,d(β)(PN ) whose elements are supported only on pσ ∈
XT
⊂ (PN )T may be viewed as QG0,k,d(β)(pσ = C//C∗), and is therefore isomorphic to

P1
[k|d(β)]/Sd(β). We will denote it by P1

[k|d(β)]σ .
LetMG0,k,β(X) denote the usual stable map graph spaces. Consider the (0+)-shifted

virtual class

[MGshifted
0,k,β (X)]

vir
:=

∑
A, β0+βa=β

1
|A|!
[MG0,k∪A,β0(X)]

vir
∩ ev∗A(⊗a [I1]βa )

and take its T-localization residue supported only at pσ under the contraction map
b ◦ c ◦ ι∞ on graph spaces. It is given by

Resσ ([MGshifted
0,k,β (X)]

vir)

= (b ◦ c ◦ ι∞)
T
∗

( ∑
A,β0+βa=β

1
|A|!

∑
0

[G0]

e(Nvir
G0
)
∩ (ev∗A(⊗a [I1]βa ))|G0

)
, (5.7.1)

with the inner sum taken over all T-fixed components G0 in G0,k∪A,β0(X) which are
mapped to P1

[k|d(β)]σ by b ◦ c ◦ ι∞.
The residue (5.7.1) is an element of the localized T×C∗-equivariant homology group

H
C∗×T,T-loc
∗ (P1

[k|d(β)]), where only the T-parameters are inverted.
The T-fixed lociG0 correspond to decorated graphs 0 = (V ,E) with a distinguished

vertex v0, labeled by σ and carrying all markings in [k], as in §5.5. Up to a finite quotient
by automorphisms, the component G0 is isomorphic to the product

P1
[val(v0)] ×

∏
v 6=v0

M0,val(v).

Here P1
[val(v0)] is the Fulton–MacPherson moduli space of stable genus zero marked

curves with a rigid component.
Consider the action by C∗ on a componentG0 . The fixed points are obtained by taking

two stable maps to X which are supported at pσ under b ◦ c ◦ ι∞, each with one extra
marking, and attaching them to the rigid P1 at 0 and ∞ using the respective additional
markings.

It follows that the components of the C∗-fixed loci in G0 are isomorphic to products
F01 × F02 , where

• each F0i is a T-fixed component inM0,Bi∪Ai∪•(X, β
i
0) supported at pσ under b◦c◦ι∞,

• B1 q B2 = {1, . . . , k}, A1 q A2 = A and β1
0 + β

2
0 = β0,
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• the graphs 01 and 02 satisfy 01 ? 02 = 0, where the operation ? means joining at
the two distinguished nondegenerate vertices and deleting the two additional markings
from the decoration of the resulting graph.

For fixed B1 q B2 = {1, . . . , k} and β1 + β2 = β we collect together all components
F01 × F02 with the given splitting of the markings in [k] and with

β1
0 +

∑
a∈A1

βa = β1, β2
0 +

∑
a∈A2

βa = β2.

The map b ◦ c ◦ ι∞ on the (C∗ × T)-fixed locus∐
B1qB2=[k]
β1+β2=β

F01 × F02

in the disjoint union of graph spaces is the composition of the product of contraction maps
on moduli of unparametrized stable maps with the inclusion

M0,B1∪•|d(β1)/Sd(β1) ×M0,B2∪•|d(β2)/Sd(β2) ↪→ P1
[k|d(β)]σ . (5.7.2)

In the stable cases B1, B2 6= ∅, the inclusion is obtained by attaching two stable
quasimaps to pσ ∈ PN at 0 and∞ on the rigid P1. If for example B1 = ∅, the inclusion
is obtained by taking a degree d(β1) quasimap from the rigid P1 to pσ which has at 0
a base-point of multiplicity d(β1), and gluing to it at ∞ a stable quasimap to pσ from
M0,k∪•|d(β2).

Applying C∗-localization and summing over all (A, β0, βa) gives a factorization ex-
pression

Resσ ([MGshifted
0,k,β (X)]

vir)

=

∑
B1qB2=[k]
β1+β2=β

1
[TpσX]

(
P∞σ,β1
[M0,B1∪•|d(β1)]

z(z− ψ•)

)
?

(
P∞σ,β2
[M0,B2∪•|d(β2)]

−z(−z− ψ•)

)
, (5.7.3)

where ? means the operation

? : H∗(M0,B1∪•|d(β1))⊗H∗(M0,B2∪•|d(β2))→ H∗(P1
[k|d(β)])

induced by the inclusion (5.7.2).
The notation in (5.7.3) requires more explanation. We write P∞σ,βi [M0,Bi∪•|d(βi )] to

indicate that P∞σ,βi , which is independent of the number k of usual markings, is evaluated
in H ∗T,loc(M0,Bi∪•|d(βi )) by taking the cap product with the fundamental class.

The product of denominators z(z − ψ•)(−z)(−z − ψ•) is the (well-known) C∗-
equivariant Euler class of the normal bundle to

M0,B1∪•|d(β
1
0 )
×M0,B2∪•|d(β

2
0 )

in P1
[k|d(β)], with ψ• the cotangent line classes at the additional markings of

M0,Bi∪•|d(βi ), and z the equivariant parameter.
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Formula (5.7.3) is correct as written for the stable cases B1, B2 6= ∅, but for the un-
stable cases the notation is abused and should be understood as the following convention:

P∞σ,β1
[M0,•|d(β1)]

z(z− ψ0)
:= i∗σ [J (q, I1(q), z)]β1 ,

P∞σ,β2
[M0,•|d(β2)]

−z(−z− ψ∞)
:= i∗σ [J (q, I1(q),−z)]β2 ,

(5.7.4)

where iσ : {pσ } → X is the inclusion and [J (q, I1(q), z)]β is the coefficient of qβ in the
mirror map-transformed small J -function of X. Precisely,

J (q, I1, z) = 1+
I1(q)

z
+

∑
(β ′,m) 6=(0,1)

qβ
′

m!
(ev•)∗

[M0,m∪•(X, β
′)]vir
∩
∏m
j=1 ev∗j (I1(q))

z(z− ψ•)
.

(5.7.5)
Note that by this definition i∗σ [J (q, I1(q), z)]β is an element of

H ∗T,loc(SpecC)[[1/z]] = Q({λρ})[[1/z]].

However, its appearance as a localization contribution in the factorization (5.7.3) for k=0
shows that the 1/z-series can be summed to a rational function in H ∗C∗×T,loc(SpecC)
= Q({λρ}, z).

The same argument for the quasimap graph space QG0,k,β(X) produces the factor-
ization

Resσ ([QG0,k,β(X)]
vir) = (ι0+)∗

∑
0′:Supp(0′)=pσ

[G0′ ]

e(Nvir
G0′
)

=

∑
B1qB2=[k]
β1+β2=β

1
[TpσX]

(
P 0+
σ,β1
[M0,B1∪•|d(β1)]

z(z− ψ•)

)
?

(
P 0+
σ,β2
[M0,B2∪•|d(β2)]

−z(−z− ψ•)

)
. (5.7.6)

Again a convention is used in the unstable cases:

P 0+
σ,β1
[M0,•|d(β1)]

z(z− ψ•)
:= i∗σ Iβ1(z),

P 0+
σ,β2
[M0,•|d(β2)]

−z(−z− ψ•)
:= i∗σ Iβ2(−z),

(5.7.7)

with Iβ(z) the degree β part of the small I -function of the toric variety X. It is given
explicitly (see [G2] or [CK1, §7]) by the formula

i∗σ Iβ(z) =
∏

ρ∈6(1)

∏0
j=−∞(i

∗
σ c

T
1 (Lρ)+ jz)∏dρ

j=−∞(i
∗
σ c

T
1 (Lρ)+ jz)

.

We may view i∗σ Iβ either as an element of Q({λρ}, z) or, by expanding the geometric
series, as an element in Q({λρ})[[1/z]].
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Given a monomial µB(ψ) =
∏
i∈B ψ

αi
i and ε ∈ {0+,∞}, we define〈

1
z(z− ψ•)

, µB(ψ)

〉ε,pσ
0,B∪•,β

:=

∫
M0,B∪•|d(β)

P εσ,β1

z(z− ψ•)
µB(ψ). (5.7.8)

For the unstable cases B = ∅, we use the same convention as before:〈
1

z(z− ψ•)

〉∞,pσ
0,•,β

:= i∗σ [J (q, I1(q), z)]β ,

〈
1

z(z− ψ•)

〉0+,pσ

0,•,β
:= i∗σ Iβ(z).

In all cases, it is an element in the field

H ∗C∗×T,loc(SpecC) = Q({λρ}, z).

The notation with superscript σ is chosen to reflect the fact that (5.7.8) for ε = 0+ is the
localization contribution from T-fixed loci supported only over pσ to the degree β part in
the generating series of descendant invariants〈〈

1
z(z− ψ•)

, µB(ψ)

〉〉0+

0,B∪•
(t)|t=0, (5.7.9)

and the same is true when ε = ∞ for the series〈〈
1

z(z− ψ•)
, µB(ψ)

〉〉∞
0,B∪•

(t + I1(q))|t=0. (5.7.10)

Note that the two series are equal by Theorem 1.3.1, but for B 6= ∅ this does not directly
imply the sharper equality of the local contributions (5.7.8) at each pσ .

However, for B = ∅ the series (5.7.9) is the small I -function of X,

IXsm(q, z) = 1+

∑
β 6=0

qβ
∏

ρ∈6(1)

∏0
j=−∞(c

T
1 (Lρ)+ jz)∏dρ

j=−∞(c
T
1 (Lρ)+ jz)

,

while the series (5.7.10) is the mirror-map transform J (q, I1, z) of the small J -function
ofX (see (5.7.5)). Their equality (which is of course the celebrated Givental’s toric mirror
theorem [G2]) does give the required local equality

i∗σ [J (q, I1(q), z)]β = i
∗
σ Iβ (5.7.11)

for all fixed points pσ ∈ XT and all θ -effective β.
The following lemma proves in particular (5.6.1) of Lemma 5.6.2 for the largest strata

S(τ,P) = M0,B∪•|d(β). It is a variant of Givental’s uniqueness lemma ([G2, Proposi-
tion 4.5] or [Kim, Lemma 3]).

Lemma 5.7.1 (Localized uniqueness lemma). For every B ( possibly empty), every
monomial µB in ψ-classes, and every θ -effective class β, the localized intersection num-
ber (5.7.8) is independent of ε ∈ {0+,∞}.
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Proof. We prove the lemma by induction on β and k = |B|. We first observe that:
(a) For B = ∅, the lemma reduces to (5.7.11), hence it is true by Givental’s theorem.
(b) For any B and β = 0, the lemma is true. Indeed, the terms with |B| = 1 vanish

on both sides, while for |B| ≥ 2 the moduli spaces coincide with M0,B∪• × X and are
therefore ε-independent.

Suppose that the lemma holds true for β ′ < β and for k′ < k. Let k ≥ 1 and β ≥ 0.
Let y be a formal variable with relation y2

= 0. For a polynomial C∗-equivariant
cohomology class µ(ψ) = ψα1

1 . . . ψ
αk
k on P1

[k|d(β)], let

D
µ,∞
k,β,σ :=

∫
Resσ ([MGshifted

0,k,β (X)]
vir)
µ(ψ)ec1(U)y, (5.7.12)

where U = U(Lθ ) is the universal (T × C∗)-equivariant line bundle described in [CK2,
§3.3] and c1 is the equivariant first Chern class. Similarly, set

D
µ,0+
k,β,σ :=

∫
Resσ ([QG0,k,β (X)]vir)

µ(ψ)ec1(U)y . (5.7.13)

Since they are defined without localization with respect to the C∗-action, the quantities
D
µ,ε
m,β,σ have no pole in z, i.e.,

D
µ,ε
m,β,σ ∈ H

∗

T,loc[y]/(y
2)[[z]].

By the factorized expressions we obtain

D
µ,ε
k,β,σ =

∑
B1qB2=[k]
β1+β2=β

e(w(O(θ)pσ )−d(β2)z)y

[TpσX]

×

〈
1

z(z− ψ•)
, µB1

〉pσ ,ε
0,B1∪•,β1

〈
1

z(z− ψ•)
, µB2

〉pσ ,ε
0,B2∪•,β2

,

where w(O(θ)pσ ) is the weight of the T-representation on the fiber of O(θ) at pσ .
Consider the difference

1(D
µ,ε
k,β,σ ) := D

µ,∞
k,β,p −D

µ,0+
k,β,p.

By the induction hypothesis we get

1(D
µ,ε
k,β,σ ) =

ew(O(θ)pσ )y

[TpσX]

(
1

(〈
1

z(z− ψ•)
, µ

〉ε,pσ
0,k∪•,β

)
+ e−d(β)zy1

(〈
1

−z(−z− ψ•)
, µ

〉ε,pσ
0,k∪•,β

))
,

where

1

(〈
1

±z(±z− ψ•)
, µ

〉ε,pσ
0,k∪•,β

)
:=

〈
1

±z(±z− ψ•)
, µ

〉∞,pσ
0,k∪•,β

−

〈
1

±z(±z− ψ•)
, µ

〉0+,pσ

0,k∪•,β
.
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Since the ψ-classes are nilpotent in H ∗C∗×T,loc(M0,k+1|d(β)), we conclude that〈 1
z(z−ψ•)

, µ
〉ε,pσ
0,k+1,β for ε ∈ {0+,∞} are polynomials in 1/z, divisible by (1/z)2. Hence

we may write

1

(〈
1

z(z− ψ•)
, µ

〉ε,pσ
0,k+1,β

)
= z−2a

(
C1

1
z
+ C2

)
with a ≥ 1.

On the other hand, we have observed that Dµ,εk,β,p and therefore

1(D
µ,ε
k,β,σ ) =

ew(O(θ)pσ )y

[TpσX]
z−2a

(
C1

1
z
+ C2 + (1− d(β)zy)

(
−C1

1
z
+ C2

))
has no pole in z. This immediately implies C2 = C1 = 0 and concludes the proof. ut

5.8. Conclusion of the proof of Theorem 4.2.1

In this section we prove Lemma 5.6.2 for all strata S(τ,P). As already explained, this
implies that Lemma 5.5.1 is true, and finishes the proof of Theorem 4.2.1. The argument
will use induction and is based on a splitting property enjoyed by P εβ,σ (k, τ,P, µ), which
we discuss next.

Given a stratum S(τ,P) ⊂ M0,k|d(β) as in §5.6, we say that P is compatible with β
if there exists a splitting β = β1 + · · · + β` with nonzero θ -effective βi and such that
|Pi | = d(βi).

For such a compatible stratum and a fixed 1 ≤ m ≤ `− 1, we split the stratum at the
mth node. Precisely, set

τ ′ = (t1, . . . , tm), τ ′′ = (tm+1, . . . t`);

P ′ = (P1, . . . ,Pm), P ′′ = (Pm+1, . . . ,P`);
k′ + 1 = t1 + · · · + tm +m+ 2, k′′ + 1 = tm+1 + · · · + t` + `−m+ 2;

d ′ = |P1| + · · · + |Pm|, d ′′ = |Pm+1| + · · · + |P`|.

By the compatibility assumption, the (finite) subset

R(P, β) := {(β ′, β ′′) | β ′ + β ′′ = β, d(β ′) = d ′, d(β ′′) = d ′′}

of Eff(C6(1),G, θ)× Eff(C6(1),G, θ) is nonempty. We have a cartesian diagram

S(τ ′,P ′)× S(τ ′′,P ′′) //

��

M0,k′+1|d(β ′) ×M0,1+k′′|d(β ′′)

��

S(τ,P) // M0,k|d(β)

where the horizontal maps are the inclusions and the vertical maps are obtained by gluing
the last marking on the first factor to the first marking on the second factor.
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Finally, given a monomial µ(ψ) = ψ
α1
1 . . . ψ

αk
k we write µ = µ′µ′′ with µ′(ψ) =

ψ
α1
1 . . . ψ

αk′

k′
and µ′′(ψ) = ψ

αk′+1
k′+1 . . . ψ

αk
k .

Lemma 5.8.1 (Splitting lemma). Let k ≥ 3, β 6= 0, ε ∈ {0+,∞}, and let S(τ,P) ⊂
M0,k|d(β) be a chain-type stratum.

(i) If P is not compatible with β then for every monomial µ(ψ) the intersection number

P εβ,σ (k, τ,P, µ) :=
∫
S(τ,P)

P εβ,σ (ψ̂j ,DJ )µ(ψ)

vanishes.
(ii) If P is compatible with β then

P εβ,σ (k, τ,P, µ)

=

∑
(β ′,β ′′)∈R(P,β)

P εβ ′,σ (k
′
+ 1, τ ′,P ′, µ′)P εβ ′′,σ (k

′′
+ 1, τ ′′,P ′′, µ′′). (5.8.1)

Proof. By an easy induction it suffices to assume ` = 2. We discuss the stable map case
ε = ∞; the quasimap case is similar (and easier).

Let P = (P ′,P ′′), τ = (t ′, t ′′), so that k′ = t ′+2 and k′′ = t ′′+2. The corresponding
stratum S(τ,P) is the image of the finite gluing morphism

j : M0,k′+1|d ′ ×M0,1+k′′|d ′′ → M0,k|d(β).

Let F(k, β, σ ) denote the set of graphs parametrizing T-fixed loci in the union∐
A, β0+

∑
a βa=β

M0,k∪A(X, β0) supported at pσ under the contraction (b ◦ c ◦ i∞)T, as
described in §5.5. For a graph 0 ∈ F(k, β, σ ) let E0 be the set of edges incident to the
distinguished vertex v0. Each e ∈ E0 has attached to it the class βe of the map from
the corresponding rational tail Te. As explained in (5.5.1), the contraction map on F0 is
essentially

g0 : Mg,k∪A(v0)∪E0 → Mg,k|A(v0)∪E0 → Mg,k|d(β),

where the second map increases the multiplicity of each e ∈ E0 by d(βe)+
∑
a∈A(e) d(βa)

and of each a ∈ A(v0) by d(βa). If the image of g0 intersects the stratum, then there are
set partitions E0 = E

′

0 q E
′′

0 and A(v0) = A
′(v0)q A

′′(v0) such that

d ′ = d
(∑
e∈E′0

(
βe +

∑
a∈A(e)

βa

)
+

∑
a∈A′(v0)

βa

)
,

d ′′ = d
(∑
e∈E′′0

(
βe +

∑
a∈A(e)

βa

)
+

∑
a∈A′′(v0)

βa

)
.

Part (i) of the lemma follows immediately from this, since the nonvanishing of the inter-
section number requires that the image of g0 meets S(τ,P) for at least one graph 0.

Now let β be compatible with P and let (β ′, β ′′) ∈ R(P, β). Applying the ? operation
described in §5.7 to 0′ ∈ F(k′ + 1, β ′, σ ) and 0′′ ∈ F(1+ k′′, β ′′, σ ) we obtain a graph
0 = 0′ ? 0′′ ∈ F(k, β, σ ), encoding the gluing map

h : M0,k′+1∪E′0∪A
′(v0)
×M0,1+k′′∪E′′0∪A

′′(v0)
→ M0,k∪E0∪A(v0).
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Here k = k′ + k′′, E0 = E
′

0 q E
′′

0 , and A(v0) = A
′(v0) q A

′′(v0). Further, we think of
[k′ + 1] as the set {1, . . . , k′} ∪ {•} and of [1+ k′′] as {•} ∪ {k′ + 1, . . . k′ + k′′}, with the
gluing done at the special markings •.

The diagram

M0,k′+1∪E′0∪A
′(v0)
×M0,1+k′′∪E′′0∪A

′′(v0)
h //

g0′×g0′′

��

M0,k∪E0∪A(v0)

g0

��

M0,k′+1|d(β ′) ×M0,1+k′′|d(β ′′)
j

// M0,k|d(β)

is cartesian, hence

j∗(g0)∗ = (g0′ × g0′′)∗h
∗. (5.8.2)

By (5.5.6), the restriction of P∞β,σ to S(τ,P) is computed to be

∑
0∈F(k,β,σ )

j∗(g0)∗
∏
e∈E0

cont(Te)
w(e)/δe − ψe

∏
a∈A(v0)

cont(a).

Since ψe pulls back under h to ψe ⊗ 1 for e ∈ E′0 and to 1⊗ ψe for e ∈ E′′0 , part (ii) of
the lemma follows from (5.8.2) by summing over graphs. ut

We are now in a position to prove Lemma 5.6.2 and therefore complete the proof of
Theorem 4.2.1.

Consider first the case when the class β 6= 0 is primitive, i.e., if β = β ′ + β ′′ with
β ′, β ′′ ∈ Eff(C6(1),G, θ), then either β ′ = 0, or β ′′ = 0. In this case, for every k and µ,
we have P εβ,σ (k, τ,P, µ) = 0 whenever ` ≥ 2, by Lemma 5.8.1(a), while for ` = 1, the
statement is given by the Uniqueness Lemma (Lemma 5.7.1).

Let now β > 0 be arbitrary. Assume that if 0 6= β ′ ∈ Eff(C6(1),G, θ) is such that
β − β ′ is also nonzero and θ -effective, then P ε

β ′,σ
(k, τ,P, µ) is independent of ε for

every k, every stratum S(τ,P) ⊂ M0,k|d(β ′), and every monomial µ(ψ) (or, equivalently
by Lemma 5.6.1, that when written in canonical form, P 0+

β ′,σ
= P∞

β ′,σ
as abstract poly-

nomials). Given a stratum S(τ,P) ⊂ M0,k|d(β), if ` = 1, we are done by Lemma 5.7.1.
Otherwise, we split it at the first node and apply Lemma 5.8.1(b) to conclude by induction.

5.9. Remarks on the proof and generalizations

5.9.1. Other stability parameters for toric targets. Even though we have restricted to the
asymptotic stability condition ε = 0+, essentially the same argument works for general ε.
The required equality (5.7.11) between J εsm(q, z) and the mirror transform J (q, J ε1 , z) is
provided by Proposition 3.1.2(ii). (In the case of the [MOP] proof for Grassmannian
targets, the extension to general ε is done in Toda’s paper [T].)
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5.9.2. Other GIT presentations of a toric variety. For any GIT triple of the form (Cn+r ,
G, θ) with G ∼= (C∗)r , satisfying our usual assumptions that all semistable points are
stable and G acts freely on the stable locus, the quotient X = Cn+r//θ G is a nonsingular
quasiprojective toric variety of dimension n (see e.g. [Dol, §12]). Now set

6(1) := [n+ r] = {1, . . . , n+ r},

and write C6(1) for Cn+r . For a subset σ ⊂ [n+ r] of cardinality n, let

p̃σ := (zρ) ∈ C6(1), zρ =

{
1 if ρ /∈ σ,
0 if ρ ∈ σ.

Write
6(n) := {σ ⊂ [n+ r] | |σ | = n and p̃σ is θ -stable}

and let pσ ∈ X denote the image of p̃σ under the quotient map. With the torus T =
(C∗)6(1) acting on C6(1) as before, we have a bijection 6(n)→ XT, σ 7→ pσ .

If n ≥ 1, the (isolated) 1-dimensional T-orbits in X at pσ are in bijection with the
subsets τ of σ of cardinality n − 1 and are given by the vanishing of the corresponding
homogeneous coordinates zρ , ρ ∈ τ . Such a T-orbit is a P1 if it contains another fixed
point pσ ′ , i.e., if τ = σ ∩ σ ′ for some σ ′ ∈ 6(n).

With this expanded interpretation of the notation, the proof of Theorem 4.2.1 is valid
for all such general semipositive GIT presentations.

The small I -function associated to the triple (Cn+r ,G, θ) is given by the same for-
mula

Ism(q, z) = 1+

∑
β 6=0

qβ
n+r∏
ρ=1

∏0
j=−∞(c

T
1 (Lρ)+ jz)∏dρ

j=−∞(c
T
1 (Lρ)+ jz)

, (5.9.1)

as it can be easily seen that the computation from [CK1, §7.2] works for all GIT presen-
tations. Recall that the class β runs over Eff(Cn+r ,G, θ) and dρ = β(ξρ) ∈ Z.

Note that it is possible now that the unstable locus contains components of codimen-
sion 1 (of the form {zρ = 0} for some ρ ∈ 6(1)), and then r = rk(χ(G)) > rk(Pic(X)).
Consequently, Eff(Cn+r ,G, θ)may contain strictly the Mori cone ofX if the GIT presen-
tation is nonstandard. In this case, the I -function (5.9.1) will depend on additional “ghost”
Novikov parameters, and in particular will differ from the “usual” small I -function com-
ing from the standard GIT presentation.

Semipositivity of the triple (Cn+r ,G, θ) still implies semipositivity of the anti-can-
onical class of X, but the converse is not necessarily true. For example, P2 has a well-
known GIT presentation C4//θ (C∗)2 (obtained by variation of GIT from the standard
presentation of the Hirzebruch surface F1) for which (C4, (C∗)2, θ) is not semipositive.
We conclude the discussion by noting the following elementary fact.

Lemma 5.9.1. If the triple (Cn+r ,G, θ) is semipositive, then the corresponding small
I -function (5.9.1) has I0 = 1.
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Proof. Let β 6= 0. By semipositivity,
∑
ρ dρ ≥ 0. The power of 1/z appearing in the

qβ -term is equal to ∑
ρ

dρ + #{ρ | dρ < 0} ≥
∑
ρ

dρ ≥ 0.

If we had only equalities in the above chain, then dρ = 0 for all ρ, which is impossible
since β 6= 0. Hence the power of 1/z is strictly positive. ut

5.9.3. Other targets. It is clear that Theorem 4.2.1 will be true, with the same proof, for
all GIT targetsX = W//G corresponding to a semipositive triple (W,G, θ) and satisfying
the following properties:

(1) The small I -function of X has I0 = 1.
(2) The T-action onX has only isolated fixed points and isolated 1-dimensional T-orbits.

(The isolated fixed points assumption ensures that Proposition 3.1.2(ii) will again
provide the needed matching (5.7.11) of small J -functions.)

(3) The push-forward under cε ◦ ιε of the T-vertex contributions on the qusimap moduli
spaces Qεg,k(X, β) (i.e., the right-hand side of (5.5.7)) can be written as a polynomial

P ε(ψ̂,DJ ) in ψ̂j and DJ (with coefficients in H ∗T,loc(SpecC)) which is independent
of g and k.

For the “local Grassmannians” (i.e., the total space of the canonical bundle over
Grass(r, n)) the first two properties are immediate and the third is essentially shown in
[MOP], [T]. One can also easily check the third property when considering more general
type A flag manifolds in place of Grassmannians. In particular, we have a proof of The-
orem 1.3.4 as well. Note that explicit closed formulas for the small I -functions of these
targets are easily obtained from the results in [BCK1], [BCK2], [CKS]. For example, the
T-equivariant small I for the local Grass(r, n) is

Ism = 1+

∑
d>0

qd
(nd−1∏
k=0

(
−n

r∑
i=1

Hi + λ0 − kz
)

×

∑
d1+···+dr=d

(−1)(r−1)d∏
1≤i<j≤r(Hi −Hj + (di − dj )z)∏

1≤i<j≤r(Hi −Hj )
∏r
i=1

∏di
l=1

∏n
j=1(Hi + λj + lz)

)
, (5.9.2)

where H1, . . . , Hr are the Chern roots of S∨, the dual of the tautological subbundle (of
rank r) 0 → S → O⊕n, and λ0, λ1, . . . , λn are the equivariant parameters for the torus
T ∼= C∗ × (C∗)n. Here the first factor is the torus acting by scaling on the fibers of the
canonical bundle, while the factor (C∗)n is the standard torus acting on the Grassmannian.
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2102 Ionuţ Ciocan-Fontanine, Bumsig Kim

[Kim] Kim, B.: Quantum hyperplane section theorem for homogeneous spaces. Acta Math. 183,
71–99 (1999) Zbl 1023.14028 MR 1719555

[K] Kontsevich, M.: Enumeration of rational curves via torus actions. In: The Moduli Space
of Curves, R. Dijkgraaf et al. (eds.), Progr. Math. 129, Birkhäuser, 335–368 (1995)
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