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Abstract. Brown and Gordon asked whether the Poisson Dixmier–Moeglin equivalence holds for
any complex affine Poisson algebra, that is, whether the sets of Poisson rational ideals, Poisson
primitive ideals, and Poisson locally closed ideals coincide. In this article a complete answer is
given to this question using techniques from differential-algebraic geometry and model theory.
In particular, it is shown that while the sets of Poisson rational and Poisson primitive ideals do
coincide, in every Krull dimension at least four there are complex affine Poisson algebras with
Poisson rational ideals that are not Poisson locally closed. These counterexamples also give rise to
counterexamples to the classical (noncommutative) Dixmier–Moeglin equivalence in finite GK di-
mension. A weaker version of the Poisson Dixmier–Moeglin equivalence is proven for all complex
affine Poisson algebras, from which it follows that the full equivalence holds in Krull dimension
three or less. Finally, it is shown that everything, except possibly that rationality implies primitivity,
can be done over an arbitrary base field of characteristic zero.
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1. Introduction

It is usually difficult to fully classify all the irreducible representations of a given algebra
over a field. As a substitute, one often focuses on the annihilators of the simple (left)
modules, the so-called primitive ideals, which already provide a great deal of informa-
tion on the representation theory of the algebra. This idea was successfully developed by
Dixmier [7] and Moeglin [37] in the case of enveloping algebras of finite-dimensional
Lie algebras. In particular, their seminal work shows that primitive ideals can be charac-
terised both topologically and algebraically among the prime ideals, as follows. Let A be
a (possibly noncommutative) noetherian algebra over a field k. If P ∈ Spec(A), then the
quotient algebra A/P is prime noetherian, and so by Goldie’s Theorem (see for instance
[36, Theorem 2.3.6]) we can localize A/P at the set of all regular elements of A/P . The
resulting algebra, denoted by Frac(A/P ), is simple Artinian. It follows from the Artin–
Wedderburn Theorem that Frac(A/P ) is isomorphic to a matrix algebra over a division
ringD. As a consequence, the centre of Frac(A/P ) is isomorphic to the centre of the divi-
sion ringD, and so this is a field extension of the base field k. A prime ideal P ∈ Spec(A)
is rational provided the centre of the Goldie quotient ring Frac(A/P ) is algebraic over
the base field k. On the other hand, P is said to be locally closed if {P } is a locally closed
point of the prime spectrum Spec(A) of A endowed with the Zariski topology (which
still makes sense in the noncommutative world, see for instance [36, 4.6.14]). The results
of Dixmier and Moeglin show that if A is the enveloping algebra of a finite-dimensional
complex Lie algebra, then the notions of primitive, locally closed, and rational coincide.
This result was later extended by Irving and Small to arbitrary base fields of characteristic
zero [25].

The spectacular result of Dixmier and Moeglin has primarily led to research in three
directions. First, it has been shown that under mild hypotheses, we have the following
implications:

P locally closed ⇒ P primitive ⇒ P rational.

Next, examples of algebras where the converse implications are not true were found.
More precisely, Irving [24] gave an example of a rational ideal which is not primitive,
and Lorenz [32] constructed an example of a primitive ideal which is not locally closed.
Finally, the Dixmier–Moeglin equivalence (that is, the coincidence between the sets of
primitive ideals, locally closed ideals and rational ideals) was established for important
classes of algebras such as quantised coordinate rings [18, 19, 20, 27, 28, 13], twisted
coordinate rings [2] and Leavitt path algebras [1].
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In the spirit of deformation quantization, the aim of this article is to study an ana-
logue of the Dixmier–Moeglin equivalence for affine (i.e., finitely generated and integral)
complex Poisson algebras. Recall that a complex Poisson algebra is a commutative C-
algebra A equipped with a Lie bracket {−,−} (i.e. { , } is bilinear, skew symmetric
and satisfies Jacobi’s identity) such that {−, x} is a derivation for every x ∈ A, that is,
{yz, x} = y{z, x} + z{y, x} for all x, y, z ∈ A. We point out that the derivations {−, x}
are trivial on C. It is natural to consider the Dixmier–Moeglin equivalence in this setting
because most of the noncommutative algebras for which the equivalence has been estab-
lished recently are noncommutative deformations of classical commutative objects. For
instance, the quantised coordinate ring Oq(G) of a semisimple complex algebraic group
G is a noncommutative deformation of the coordinate ring O(G) of G. Moreover, the
noncommutative product in Oq(G) gives rise to a Poisson bracket on O(G) via the well
known semiclassical limit process (see for instance [4, Chapter III.5]). As usual in (alge-
braic) deformation theory, it is natural to ask how the properties from one world translate
into the other.

A Poisson ideal of a Poisson algebra (A, {−,−}) is any ideal I of A such that
{I, A} ⊆ I . A prime ideal which is also a Poisson ideal is called a Poisson prime ideal.
The set of Poisson prime ideals inA forms the Poisson prime spectrum, denoted PSpecA,
which is given the relative Zariski topology inherited from SpecA. In particular, a Poisson
prime ideal P is locally closed if there is a nonzero f ∈ A/P such that the localisation
(A/P )f has no proper nontrivial Poisson ideals.

For any ideal J of A, there is a largest Poisson ideal contained in J . This Poisson
ideal is called the Poisson core of J . Poisson cores of the maximal ideals of A are called
Poisson primitive ideals. The central role of the Poisson primitive ideals was pinpointed
by Brown and Gordon. Indeed, they proved for instance that the defining ideals of the
Zariski closures of the symplectic leaves of a complex affine Poisson variety V are pre-
cisely the Poisson primitive ideals of the coordinate ring of V [5, Lemma 3.5]. The fact
that the notion of Poisson primitive ideal is a Poisson analogue of the notion of primitive
ideal is supported for instance by the following result due to Dixmier–Conze–Duflo–
Rentschler–Mathieu and Borho-Gabriel-Rentschler-Mathieu, and expressed in (Poisson-
)ideal-theoretic terms by Goodearl: Let g be a solvable finite-dimensional complex Lie
algebra. Then there is a homeomorphism between the Poisson primitive ideals of the
symmetric algebra S(g) of g (endowed with the Kirillov–Kostant–Souriau bracket) and
the primitive ideals of the enveloping algebra U(g) of g [11, Theorem 8.11].

The Poisson center of A is the subalgebra

Zp(A) = {z ∈ A : {z,−} ≡ 0}.

For any Poisson prime ideal P of A, there is an induced Poisson bracket on A/P , which
extends uniquely to the quotient field Frac(A/P ). We say that P is Poisson rational if the
field Zp(Frac(A/P )) is algebraic over the base field k.

By analogy with the Dixmier–Moeglin equivalence for enveloping algebras, we say
that A satisfies the Poisson Dixmier–Moeglin equivalence provided the following sets of
Poisson prime ideals coincide:
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(1) the set of Poisson primitive ideals in A;
(2) the set of Poisson locally closed ideals;
(3) the set of Poisson rational ideals of A.
If A is an affine Poisson algebra, then (2) ⊆ (1) ⊆ (3) [40, 1.7(i), 1.10], so the main
difficulty is whether (3) ⊆ (2).

The Poisson Dixmier–Moeglin equivalence has been established for Poisson algebras
with suitable torus actions by Goodearl [10], so that many Poisson algebras arising as
semiclassical limits of quantum algebras satisfy the Poisson Dixmier–Moeglin equiva-
lence [12]. On the other hand, Brown and Gordon proved that the Poisson Dixmier–
Moeglin equivalence holds for any affine complex Poisson algebra with only finitely
many Poisson primitive ideals [5, Lemma 3.4]. Given these successes (and the then lack
of counterexamples), Brown and Gordon asked [5, Question 3.2] whether the Poisson
Dixmier–Moeglin equivalence holds for all affine complex Poisson algebras. In this ar-
ticle, we give a complete answer to this question. We show that (3) = (1) but (3) 6= (2).
More precisely, we prove that in a finitely generated integral complex Poisson algebra
any Poisson rational ideal is Poisson primitive (Theorem 3.2), but for all d ≥ 4 there exist
finitely generated integral complex Poisson algebras of Krull dimension d in which (0) is
Poisson rational but not Poisson locally closed (Corollary 5.3).

We also prove that the hypothesis d ≥ 4 is actually necessary to construct coun-
terexamples; our Theorem 7.3 says that the Poisson Dixmier–Moeglin equivalence holds
in Krull dimension ≤ 3. This is deduced from a weak version of the Poisson Dixmier–
Moeglin equivalence, where Poisson locally closed ideals are replaced by Poisson prime
ideals P such that the set C(P ) := {Q ∈ PSpecA : Q ⊃ P, ht(Q) = ht(P ) + 1} is fi-
nite. We prove that for any finitely generated integral complex Poisson algebra, a Poisson
prime ideal is Poisson primitive if and only if C(P ) is finite (Theorem 7.1).

Finally, in Section 8 we show that most of our results extend to arbitrary fields of
characteristic zero, and in Section 9 we observe that our results also provide new examples
of algebras which do not satisfy the Dixmier–Moeglin equivalence.

What is particularly novel about the approach taken in this paper is that the counterex-
ample comes from differential-algebraic geometry and the model theory of differential
fields. As is explained in Proposition 5.2 below, to a commutative C-algebra R equipped
with a C-linear derivation δ : R → R we can associate a Poisson bracket on R[t] many
of whose properties can be read off from (R, δ). In particular, (0) will be a rational but
not locally closed Poisson ideal of R[t] if and only if the kernel of δ on Frac(R) is C and
the intersection of all the nontrivial prime δ-ideals (i.e., prime ideals preserved by δ) is
zero. As we show in Section 4, the existence of such an (R, δ) can be deduced from the
model theory of Manin kernels on abelian varieties over function fields, a topic that was
at the heart of Hrushovski’s model-theoretic proof of the function field Mordell–Lang
conjecture [22]. We have written Section 4 to be self-contained, translating as much as
possible of the underlying model theory into statements of an algebro-geometric nature
so that familiarity with model theory is not required.

Differential algebra is also related to the positive results obtained in this paper. We
prove in Section 7 that whenever (A, δ1, . . . , δm) is a finitely generated integral complex
differential ring (with the derivations not necessarily commuting), if the intersection of
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the kernels of the derivations extended to the fraction field is C then there are only finitely
many height one prime ideals preserved by all the derivations (Theorem 6.1). This the-
orem, when m = 1, is a special case of an old unpublished result of Hrushovski gen-
eralising a theorem of Jouanolou. Our weak Dixmier–Moeglin equivalence is proved by
applying the above theorem to a Poisson algebraA with derivations given by δi = {−, xi}
where {x1, . . . , xm} is a set of generators of A over C.

Throughout the remainder of this paper all algebras are assumed to be commutative.
Moreover, by an affine k-algebra we will mean a finitely generated k-algebra that is an
integral domain.

2. The differential structure on a Poisson algebra

In this section we discuss the differential structure induced by a Poisson bracket. Suppose
(A, {−,−}) is an affine Poisson k-algebra for some field k, and {x1, . . . , xm} is a fixed set
of generators. Let δ1, . . . , δm be the operators on A defined by

δi(a) := {a, xi}

for all a ∈ A. Then each δi is a k-linear derivation on A. Note, however, that these
derivations need not commute. Nevertheless, we consider (A, δ1, . . . , δm) as a differential
ring, and can speak about differential ideals (i.e., ideals preserved by each of δ1, . . . , δm),
the subring of differential constants (i.e., elements a ∈ A such that δi(a) = 0 for i =
1, . . . , m), and so on. There is a strong connection between the Poisson and differential
structures on A. For example, one checks easily, using that {a,−} is also a derivation
on A, that

(i) an ideal of A is a Poisson ideal if and only if it is a differential ideal.

From this we get, more or less immediately, the following differential characterisations
of when a prime Poisson ideal P of A is locally closed and primitive:

(ii) P is locally closed if and only if the intersection of all the nonzero prime differential
ideals in A/P is not trivial.

(iii) P is primitive if and only if there is a maximal ideal in A/P that does not contain
any nontrivial differential ideals.

To characterise rationality we should extend to F = Frac(A), in the canonical way, both
the Poisson and differential structures on A. It is then not difficult to see that the Poisson
centre of (F, {−,−}) is precisely the subfield of differential constants in (F, δ1, . . . , δm).
In particular,

(iv) a prime Poisson ideal in A is rational if and only if the field of differential constants
of Frac(A/P ) is algebraic over k.

Remark 2.1. The above characterisations are already rather suggestive to those familiar
with the model theory of differentially closed fields; for example, locally closed corre-
sponds to the generic type of a differential variety being isolated, and rationality corre-
sponds to that generic type being weakly orthogonal to the constants. Note however that



2024 Jason Bell et al.

the context here is several derivations that may not commute. In order to realise the model-
theoretic intuition, therefore, something must be done. One possibility is to work with
the model theory of partial differential fields where the derivations need not commute.
Such a theory exists and is tame; for example, it is an instance of the formalism worked
out in [38]. On the other hand, in this case one can use a trick of Cassidy and Kolchin
(pointed out to us by Michael Singer) to pass to a commuting context after replacing the
derivations by certain F -linear combinations of them. Indeed, if pi,j ∈ C[t1, . . . , tm] is
such that {xj , xi} = pi,j (x1, . . . , xm) for all i, j = 1, . . . , m, then an easy computation
(using the Jacobi identity) yields [δi, δj ] =

∑m
k=1

∂pi,j
∂tk
(x1, . . . , xm)δk. Thus, the F -linear

span of the derivations {δ1, . . . , δm} has the additional structure of a Lie ring. It follows
by [44, Lemma 2.2] that this space of derivations has an F -basis consisting of commut-
ing derivations (see also [29, Chapter 9, §5, Proposition 6]), and one could work instead
with those derivations. But in fact we do not pursue either of these directions. Instead,
for the positive results of this paper we give algebraic proofs of whatever is needed about
rings with possibly noncommuting derivations and avoid any explicit use of model the-
ory whatsoever. For the negative results we associate to an ordinary differential ring a
Poisson algebra of one higher Krull dimension (see Proposition 5.2), and then use the
model theory of ordinary differentially closed fields to build counterexamples in Poisson
algebra.

The following well known prime decomposition theorem for Poisson ideals can be seen
as an illustration of how the differential structure on a Poisson algebra can be useful.

Lemma 2.2. Let k be a field of characteristic zero. If I is a Poisson ideal in an affine
Poisson k-algebra A, then the radical of I and all the minimal prime ideals over I are
Poisson.

Proof. Because of (i) it suffices to prove the lemma with “differential” in place of “Pois-
son”. This result can be found in Dixmier [8, Lemma 3.3.3]. ut

3. Rational implies primitive

In order to prove that Poisson rational implies Poisson primitive in affine complex Poisson
algebras, we will make use of the differential-algebraic fact expressed in the following
lemma. This is our primary method for producing new constants in differential rings, and
will be used again in Section 6.

Lemma 3.1. Let k be a field and A an integral k-algebra equipped with k-linear deriva-
tions δ1, . . . , δm. Suppose that there is a finite-dimensional k-vector subspace V of A and
a set S of ideals satisfying:

(i) δi(I ) ⊆ I for all i = 1, . . . , m and I ∈ S,
(ii)

⋂
S = (0), and

(iii) V ∩ I 6= (0) for all I ∈ S.

Then there exists f ∈ Frac(A) \ k with δi(f ) = 0 for all i = 1, . . . , m.
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Proof. We proceed by induction on d = dimV . The case of dimV = 1 is vacuous
as then assumptions (ii) and (iii) are inconsistent. Suppose that d > 1 and fix a basis
{v1, . . . , vd} of V . Let δ ∈ {δ1, . . . , δm} be such that not all of δ(v1/vd), . . . , δ(vd−1/vd)

are zero. If this were not possible, then each vj/vd would witness the truth of the lemma
and we would be done. Letting uj := v2

dδ(vj/vd) for j = 1, . . . , d − 1, we see that not
all u1, . . . , ud−1 are zero. It follows that

L :=
{
(c1, . . . , cd−1) ∈ k

d−1
:

d−1∑
j=1

cjuj = 0
}

is a proper subspace of kd−1, and hence

W := kvd +
{d−1∑
j=1

cjvj : (c1, . . . , cd−1) ∈ L
}

is a proper subspace of V .
We prove the lemma by applying the induction hypothesis to W with

T := {I ∈ S : I ∩ spank(u1, . . . , ud−1) = (0)}.

We only need to verify the assumptions. Assumption (i) holds a fortiori of T .
Toward assumption (ii), note that if

⋂
(S \ T ) = (0), then we are done by the induc-

tion hypothesis applied to spank(u1, . . . , ud−1) with S \ T . Hence we may assume that⋂
(S \ T ) 6= (0), and so

⋂
T = (0) as A is an integral domain.

It remains to check assumption (iii): we claim that for each I ∈ T , W ∩ I 6= (0).
Indeed, since I ∩ V 6= (0), we have in I a nonzero element of the form v :=

∑d
j=1 cjvj .

As I is preserved by δ, we deduce that

δ(v)vd − vδ(vd) = v
2
dδ

(
v

vd

)
=

d−1∑
j=1

cjuj

is also in I . But as I ∩ spank(u1, . . . , ud−1) = (0) by choice of T , we must have∑d−1
j=1 cjuj = 0. Hence (c1, . . . , cd−1) ∈ L and v ∈ W by definition. ut

We now prove that rational implies primitive. Note that the converse is well known
[40, 1.7(i), 1.10].

Theorem 3.2. Let A be a complex affine Poisson algebra and P a Poisson prime ideal
of A. If P is Poisson rational then it is Poisson primitive.

Proof. By replacing A by A/P if necessary, we may assume that P = (0). Let S denote
the set of nonzero Poisson prime ideals of A that do not properly contain such an ideal.
We claim that S is countable. To see this, let V be a finite-dimensional subspace of A that
contains 1 and contains a set of generators for A. We then let V n denote the span of all
products of elements of V of length at most n. By assumption, we have

A =
⋃
n≥0

V n,
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and in particular every nonzero ideal of A intersects V n nontrivially for n sufficiently
large.

We claim first that the sets

Sn := {Q ∈ S : Q ∩ V n 6= (0)}

have nontrivial intersection. Toward a contradiction, suppose
⋂

Sn = (0). Fixing gener-
ators {x1, . . . , xm} of A over C, let δi be the derivation given by {−, xi} for i = 1, . . . , m.
Since the ideals in Sn are Poisson, they are differential. The assumptions of Lemma 3.1
are thus satisfied, and we have f ∈ Frac(A)\C with δi(f ) = 0 for all i = 1, . . . , m. This
contradicts the Poisson rationality of (0) in A (see statement (iv) of Section 2). Hence
Ln :=

⋂
Q∈Sn Q is nonzero.

Next we claim that each Sn is finite. SinceA is a finitely generated integral domain and
Ln is a nonzero radical Poisson ideal, Lemma 2.2 implies that in the prime decomposition
Ln = P1 ∩ · · · ∩ Pm each Pi is a nonzero prime Poisson ideal. As each ideal in Sn is
prime and contains Ln, and hence also some Pi , it follows by choice of S that Sn ⊆
{P1, . . . , Pm}.

So S =
⋃
n≥0 Sn is countable. We let Q1,Q2, . . . be an enumeration of the elements

of S. For each i, there is some nonzero fi ∈ Qi . We let T denote the countable mul-
tiplicatively closed set generated by the fi . Then B := T −1A is a countably generated
complex algebra. It follows that B satisfies the Nullstellensatz [4, II.7.16], and since C is
algebraically closed, we deduce that B/I is C for every maximal ideal I of B. If I is a
maximal ideal of B and J := I ∩A then A/J embeds in B/I , hence A/J ∼= C and so J
is a maximal ideal of A. By construction, J does not contain any ideal in S, and so (0) is
the largest Poisson ideal contained in J . That is, (0) is Poisson primitive, as desired. ut

We note that this proof only requires the uncountability of C; it works over any uncount-
able base field k. If we follow this proof, we cannot in general ensure that B/I is isomor-
phic to k, but it is an algebraic extension of k since B still satisfies the Nullstellensatz.
Consequently, A/J embeds in an algebraic extension of k, and thus it too is an algebraic
extension of k and we obtain the desired result.

4. A differential-algebraic example

Our goal in this section is to prove the following theorem.

Theorem 4.1. There exists a complex affine algebra R equipped with a derivation δ such
that

(i) the field of constants of (Frac(R), δ) is C, and
(ii) the intersection of all nontrivial prime differential ideals of R is zero.

In fact, such an example can be found of any Krull dimension ≥ 3.

To the reader sufficiently familiar with the model theory of differentially closed fields,
this theorem should not be very surprising: the δ-ring R that we will produce will be the
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co-ordinate ring of aD-variety that is related to the Manin kernel of a simple nonisotrivial
abelian variety defined over a function field over C. We will attempt, however, to be as
self-contained and concrete in our construction as possible. We will at times be forced to
rely on results from model theory for which we will give references from the literature.
We begin with some preliminaries on differential-algebraic geometry.

4.1. Prolongations, D-varieties, and finitely generated δ-algebras

Let us fix a differential field (k, δ) of characteristic zero. Suppose that V ⊆ An is an
irreducible affine algebraic variety over k. Then by the prolongation of V is meant the
algebraic variety τV ⊆ A2n over k whose defining equations are

P(X1, . . . , Xn) = 0,

P δ(X1, . . . , Xn)+

n∑
i=1

∂P

∂Xi
(X1, . . . , Xn) · Yi = 0,

for each P ∈ I (V ) ⊂ k[X1, . . . , Xn]. Here P δ denotes the polynomial obtained by
applying δ to all the coefficients of P . The projection onto the first n coordinates gives
us a surjective morphism π : τV → V . Note that if a ∈ V (K) is any point of V in any
differential field extension (K, δ) of (k, δ), then ∇(a) := (a, δa) ∈ τV (K).

If δ is trivial on k then τV is nothing other than T V , the usual tangent bundle of V .
In fact, this is the case as long as V is defined over the constant field of (k, δ) because
in the defining equations for τV given above we could have restricted ourselves to poly-
nomials P coming from I (V ) ∩ F [X1, . . . , Xn] for any field of definition F over V . In
general, τV will be a torsor for the tangent bundle; for each a ∈ V the fibre τaV is an
affine translate of the tangent space TaV .

Taking prolongations is a functor which acts on morphisms f : V → W by acting on
their graphs. That is, τf : τV → τW is the morphism whose graph is the prolongation
of the graph of f , under the canonical identification of τ(V ×W) with τV × τW .

We have restricted our attention here to the affine case merely for concreteness. The
prolongation construction extends to abstract varieties by patching over an affine cover in
a natural and canonical way. Details can be found in [33, §1.9].

The following formalism was introduced by Buium [6] as an algebro-geometric ap-
proach to Kolchin’s differential algebraic varieties.

Definition 4.2. A D-variety over k is a pair (V , s) where V is an irreducible algebraic
variety over k and s : V → τV is a regular section to the prolongation defined over k.
A D-subvariety of (V , s) is then a D-variety (W, t) where W is a closed subvariety of V
and t = s|W .

An example of a D-variety is any algebraic variety V over the constant field of (k, δ)
and equipped with the zero section to its tangent bundle. Such D-varieties, and those
isomorphic to them, are called isotrivial. (By a morphism ofD-varieties (V , s) and (W, t)
we mean a morphism f : V → W such that t ◦f = τf ◦ s.) We will eventually construct
D-varieties, both over the constants and not, that are far from isotrivial.
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Suppose now that V ⊆ An is an affine variety over k and k[V ] is its co-ordinate
ring. Then the possible affine D-variety structures on V correspond bijectively to the
extensions of δ to a derivation on k[V ]. Indeed, given s : V → τV , write s(X) =
(X, s1(X), . . . , sn(X)) in variables X = (X1, . . . , Xn). There is a unique derivation on
the polynomial ring k[X] that extends δ and takes Xi to si(X). The fact that s maps V to
τV will imply that this induces a derivation on k[V ] = k[X]/I (V ). Conversely, suppose
we have an extension of δ to a derivation on k[V ], which we will also denote by δ. Then
we can write δ(Xi+I (V )) = si(X)+I (V ) for some polynomials s1, . . . , sn ∈ k[X]. The
fact that δ is a derivation on k[V ] extending that on k will imply that s = (id, s1, . . . , sn)
is a regular section to π : τV → V . It is not hard to verify that these correspondences
are inverses of each other. Moreover, the usual correspondence between subvarieties of V
defined over k and prime ideals of k[V ] restricts to a correspondence between the D-
subvarieties of (V , s) defined over k and the prime differential ideals of k[V ].

From now on, whenever we have an affine D-variety (V , s) over k we will denote
by δ the induced derivation on k[V ] described above. In fact, we will also use δ for its
unique extension to the fraction field k(V ).

4.2. The Kolchin topology and differentially closed fields

While the algebro-geometric preliminaries discussed in the previous section are essen-
tially sufficient for explaining the construction of the example whose existence Theo-
rem 4.1 asserts, the proof that this construction is possible, and that it does the job, will
use some model theory of differentially closed fields. We therefore say a few words on
this now, referring the reader to [34, Chapter 2] for a much more detailed introduction to
the subject.

Given any differential field of characteristic zero, (k, δ), for each n > 0, the derivation
induces on An(k) a noetherian topology that is finer than the Zariski topology, called the
Kolchin topology. Its closed sets are the zero sets of δ-polynomials, that is, expressions of
the form P(X, δX, δ2X, . . . , δ`X) where δiX = (δiX1, . . . , δ

iXn) and P is an ordinary
polynomial over k in (`+ 1)n variables.

Actually the Kolchin topology makes sense on V (k) for any (not necessarily affine)
algebraic variety V , by considering the Kolchin topology on an affine cover. One can
then develop δ-algebraic geometry in general, for example the notions of δ-regular and δ-
rational maps between Kolchin closed sets, in analogy with classical algebraic geometry.

The Kolchin closed sets we will mostly come across will be of the following form.
Suppose that (V , s) is a D-variety over k. Then set

(V , s)](k) := {a ∈ V (k) : s(a) = ∇(a)}.

Recall that ∇ : V (k) → τV (k) is the map given by a 7→ (a, δa). So to say that s(a) =
∇(a) is to say, writing s = (id, s1, . . . , sn) in an affine chart, that δai = si(a) for all
i = 1, . . . , n. As the si are polynomials, (V , s)] is Kolchin closed; in fact it is defined
by order 1 algebraic differential equations. While these Kolchin closed sets play a central
role, not every Kolchin closed set we will come across will be of this form.
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Just as the geometry of Zariski closed sets is only made manifest when the ambient
field is algebraically closed, the appropriate universal domain for the Kolchin topology is
a differentially closed field (K, δ) extending (k, δ). This means that any finite system of
δ-polynomial equations and inequations over K that has a solution in some differential
field extension of (K, δ), already has a solution in (K, δ). In particular,K is algebraically
closed, as is its field of constants. One use of differential-closedness is the following
property, which is an instance of the “geometric axiom” for differentially closed fields
(statement (ii) of Section 2 of [41]).

Fact 4.3. Suppose (V , s) is a D-variety over k. Let (K, δ) be a differentially closed field
extending (k, δ). Then (V , s)](K) is Zariski dense in V (K). In particular, an irreducible
subvariety W ⊆ V over k is a D-subvariety if and only if W ∩ (V , s)](K) is Zariski
dense in W(K).

4.3. A D-variety construction over function fields

We aim to prove Theorem 4.1 by constructing a D-variety over C whose co-ordinate
ring will have the desired differential-algebraic properties. But we begin with a well
known construction of a D-structure on the universal vectorial extension of an abelian
variety. This is part of the theory of the Manin kernel and was used by both Buium and
Hrushovski in their proofs of the function field Mordell–Lang conjecture. There are sev-
eral expositions of this material available; our presentation is informed by Marker [33]
and Bertrand–Pillay [3].

Fix a differential field (k, δ) whose field of constants is C but k 6= C. (The latter is
required because we will eventually need an abelian variety over k that is not isomorphic
to any defined over C.) In practice k is taken to be a function field over C. For example,
one can consider k = C(t) and δ = d/dt .

Let A be an abelian variety over k, and let Â be the universal vectorial extension of A.
So Â is a connected commutative algebraic group over k equipped with a surjective mor-
phism of algebraic groups p : Â→ A whose kernel is isomorphic to an algebraic vector
group, and moreover we have the universal property that p factors uniquely through every
such extension of A by a vector group. The existence of this universal object goes back to
Rosenlicht [43], but see also the more modern and general algebro-geometric treatment
in [35]. The dimension of Â is twice that of A.

The prolongation τ Â inherits the structure of a connected commutative algebraic
group in such a way that π : τ Â→ Â is a morphism of algebraic groups. This is part of
the functoriality of prolongations; see [33, §2] for details on this induced group structure.
The kernel of π is the vector group τ0Â which is isomorphic to the Lie algebra T0Â. In
fact, since τ Â is a commutative algebraic group, one can show that τ Â is isomorphic to
the direct product Â× τ0Â.

We can now put a D-variety structure on Â. Indeed it will be a D-group structure,
that is, the regular section s : Â→ τ Â will also be a group homomorphism. We obtain s
by the universal property that Â enjoys: the composition p ◦ π : τ Â → A is again an
extension of A by a vector group and so there is a unique morphism s : Â → τ Â of
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algebraic groups over k such that p = p ◦ π ◦ s. It follows that s is a section to π , and so
(Â, s) is a D-group over k.

But (Â, s) is not yet the D-variety we need to prove Theorem 4.1. Rather we will
need a certain canonical quotient of it.

Lemma 4.4. (Â, s) has a unique maximalD-subgroup (G, s) over k that is contained in
ker(p).

Proof. This is from the model theory of differentially closed fields. Given any D-group
(H, s) over k, work in a differentially closed field K extending k. From Fact 4.3 one can
deduce that a connected algebraic subgroup H ′ ≤ H over k is a D-subgroup if and only
ifH ′∩ (H, s)](K) is Zariski dense inH ′. So, in our case, lettingG be the Zariski closure
of ker(p) ∩ (Â, s)](K) establishes the lemma. ut

Let V be the connected algebraic group Â/G. Then V inherits the structure of aD-group
which we denote by s : V → τV . In fact, τV is canonically isomorphic to τ Â/τG
and s(a + G) = s(a) + τG. This D-group (V , s) over k is the one we are interested in.
Note that p : Â → A factors through an algebraic group morphism V → A, and so in
particular dimA ≤ dimV ≤ 2 dimA.

Remark 4.5. It is known that G = ker(p), and so V = A, if and only if A admits a D-
group structure if and only if A is isomorphic to an abelian variety over C (see [3, §3]).
So when A is an elliptic curve that is not defined over C, it follows that dimV = 2.

The following well known fact reflects important properties of the Manin kernel that can
be found, for example, in [33]. We give some details for the reader’s convenience, at
least illustrating what is involved, though at times simply quoting results appearing in the
literature.

Fact 4.6. Let (V , s) be the D-variety constructed above. Then:

(i) (V , s)](kalg) is Zariski dense in V (kalg).
(ii) Suppose in addition that A has no proper infinite algebraic subgroups (so is a simple

abelian variety) and is not isomorphic to any abelian variety defined over C. Then
the field of constants of (k(V ), δ) is C.

Remark 4.7. As (V , s) is not affine, we should explain what differential structure we are
putting on k(V ) in part (ii). Choose any affine open subset U ⊂ V ; then τU is affine open
in τV , and s restricts to a D-variety structure on U . We thus obtain, as explained in §4.1,
an extension of δ to k[U ], and hence to k(U) = k(V ). This construction does not depend
on the choice of affine open U (since V is irreducible).

Sketch of proof of Fact 4.6. (i) The group structure on τV is such that ∇ : V (kalg) →

τV (kalg) is a group homomorphism. Hence the difference s − ∇ : V (kalg) → τV (kalg)

is a group homomorphism. Its image lies in τ0V , which is isomorphic to the vector
group T0V . Hence all the torsion points of V (kalg)must be in the kernel of s−∇, which is
precisely (V , s)](kalg). So it suffices to show that the torsion of V (kalg) is Zariski dense
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in V (kalg). Now the torsion in A(kalg) is Zariski dense, as A(kalg) is an abelian vari-
ety over k. Moreover, since ker(p) is divisible (it is a vector group), every torsion point
of A(kalg) lifts to a torsion point of Â(kalg). One of the properties of the universal vecto-
rial extension is that no proper algebraic subgroup of Â can project onto A (this is [33,
4.4]). So the torsion of Â(kalg) must be Zariski dense in Â(kalg). But V = Â/G, and so
the torsion of V (kalg) is also Zariski dense in V (kalg), as desired.

(ii) This part uses quite a bit more model theory than we have introduced so far, and
as it is a known result, we content ourselves here with attempting only to give to the non-
model-theorist some idea why the existence of a new differential constant in (k(V ), δ) is
inconsistent with A not being defined over C.

Work over a sufficiently large differentially closed field K extending k(V ) and with
field of constantsC. ThenC∩k = C, so it suffices to show that a new differential constant
in (k(V ), δ) implies that A is defined over C.

We will use model-theoretic properties of the Manin kernel A] of A; here A] ≤ A(K)
denotes the Kolchin closure of the torsion subgroup of A. It is a Zariski dense Kolchin
closed subgroup of A(K). Note that, despite the notation, the Manin kernel is not itself
the “sharp” points of a D-variety. However, Proposition 3.9 of [3] tells us that V → A

restricts to a δ-rational isomorphism (V , s)](K)→ A].
Suppose toward a contradiction that there is f ∈ k(V ) \ k with δ(f ) = 0. So f ∈ C,

which means that as a rational function on V , f is C-valued on Zariski generic points
of V over k. It follows from Fact 4.3 that Kolchin generic points of (V , s)](K), that is,
points not contained in any proper Kolchin closed subset over k, are Zariski generic in V .
Hence f |(V ,s)](K) is a C-valued δ-rational function on (V , s)](K). Composing with the
isomorphism (V , s)](K)→ A], we obtain a nonconstant C-valued δ-rational function on
the Manin kernel, say g : A] → C. This gives us, at least, some nontrivial relationship
between A and C.

At this point one could invoke the fact that as A is a simple abelian variety not defined
over C, A] is locally modular strongly minimal, and hence orthogonal to C, which rules
out the existence of any such g : A] → C. An explanation of these claims and their
proofs can be found in [33, §5]. But this route uses the rather deep “Zilber dichotomy”
for differentially closed fields, which is not really required. Instead, one can use g to
more or less explicitly build an isomorphism between A and an abelian variety over C.
The existence of such an isomorphism follows from the study of finite rank definable
groups in differentially closed fields, carried out by Hrushovski and Sokolović in the
unpublished manuscript [23] and presented in various places. In brief: the simplicity of
A implies semiminimality of A] (see [33, 5.2 and 5.3]) and then g : A] → C gives
rise to a surjective δ-rational group homomorphism φ : A] → H(C) with finite kernel,
for some algebraic group H over C (see, for example, [9, Proposition 3.7] for a detailed
construction of φ). A final argument, which is explained in detail in [33, 5.12], produces
from φ the desired isomorphism between A and an abelian variety defined over C. ut

4.4. The proof of Theorem 4.1

We now exhibit a complex affine differential algebra with the required properties.
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Fix a positive transcendence degree function field k over C equipped with a deriva-
tion δ so that the constant field of (k, δ) is C. For example k may be the rational function
field C(t) and δ = d/dt . Applying the construction of the previous section to a simple
abelian variety over k that is not isomorphic to one defined over C we obtain a D-variety
(V , s) over k satisfying the two conclusions of Fact 4.6; namely, that (V , s)](kalg) is
Zariski dense in V and the constant field of the derivation induced on the rational func-
tion field of V is C. Replacing V with an affine open subset, we may moreover assume
that V is an affine D-variety.

Write k[V ] = k[b] for some b = (b1, . . . , bn).

Lemma 4.8. There exists a finite tuple a from k such that k = C(a) and δ restricts to a
derivation on C[a, b].

Proof. Let a1, . . . , a` ∈ k be such that k = C(a1, . . . , a`). For each i, let δai =
Pi(a1, . . . , a`)/Qi(a1, . . . , a`) where Pi and Qi are polynomials over C. In a similar
vein, each δbj is a polynomial in b over C(a1, . . . , a`), so let Rj (a1, . . . , a`) be the prod-
uct of the denominators of these coefficients. Then letQ(a1, . . . , a`) be the product of all
the Qi’s and the Rj ’s. Set a = (a1, . . . , a`, 1/Q(a1, . . . , a`)). A straightforward calcula-
tion using the Leibniz rule shows that this a works. ut

Let R := C[a, b]. This will witness the truth of Theorem 4.1. Part (i) of that theo-
rem is immediate from the construction: Frac(R) = k(V ), and so the constant field of
(Frac(R), δ) is C.

Toward part (ii), let X be the C-locus of (a, b) so that R = C[X]. The projection
(a, b) 7→ a induces a dominant morphism X → Y , where Y is the C-locus of a, such
that the generic fibre Xa is V . The derivation on R induces a D-variety structure on X,
say sX : X→ TX. (Note that as X is defined over the constants, the prolongation is just
the tangent bundle.) Since δ on k[V ] extends δ on R, sX restricts to s on V .

Let v ∈ (V , s)](kalg) and consider the C-locus Z ⊂ X of (a, v). The fact that s(v) =
∇(v) implies that sX(a, v) = ∇(a, v) ∈ T Z. This is a Zariski closed condition, and so
Z is a D-subvariety of X. Via the correspondence of §4.1, the ideal of Z is therefore a
prime δ-ideal of R. As v is a tuple from kalg

= C(a)alg, the generic fibre Za of Z→ Y is
zero-dimensional. In particular, Z 6= X, and so the ideal of Z is nontrivial.

But the set of such points v is Zariski dense in V = Xa , and so the union of the
associated D-subvarieties Z is Zariski dense in X. Hence the intersection of their ideals
must be zero. We have proven that the intersection of all nontrivial prime differential
ideals of R is zero. This gives part (ii).

Finally, there is the question of the Krull dimension of R, that is, dimX. As pointed
out in Remark 4.5, if we choose our abelian variety in the construction to be an elliptic
curve (defined over k and not defined over C) then dimV = 2, and so dimX = dimY+2.
But dimY , which is the transcendence degree of k, can be any positive dimension: for any
n there exist transcendence degree n function fields k over C equipped with a derivation
such that kδ = C. So we get examples of any Krull dimension ≥ 3. ut
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5. A counterexample in Poisson algebras

In this section, we use Theorem 4.1 to show that for each d ≥ 4, there is a Poisson algebra
of Krull dimension d that does not satisfy the Poisson Dixmier–Moeglin equivalence. To
do this, we need the following lemma, which gives us a way of getting a Poisson bracket
from a pair of commuting derivations.

Lemma 5.1. Suppose S is a ring equipped with two commuting derivations δ1, δ2, and
k is a subfield contained in the kernel of both. Then

{r, s} := δ1(r)δ2(s)− δ2(r)δ1(s)

defines a Poisson bracket over k on S.

Proof. Clearly, {r, r} = 0. The maps {r,−} and {−, r} : S → S are k-linear derivations
since they are S-linear combinations of the k-linear derivations δ1 and δ2. It only remains
to check the Jacobi identity. A direct (but tedious) computation shows that

{r, {s, t}} = δ1(r)δ2δ1(s)δ2(t)+ δ1(r)δ1(s)δ
2
2(t)

− δ1(r)δ
2
2(s)δ1(t)− δ1(r)δ2(s)δ2δ1(t)

− δ2(r)δ
2
1(s)δ2(t)− δ2(r)δ1(s)δ1δ2(t)

+ δ2(r)δ1δ2(s)δ1(t)+ δ2(r)δ2(s)δ
2
1(t).

Using this and the commutativity of the derivations δ1 and δ2, one can easily check that
{r, {s, t}} + {t, {r, s}} + {s, {t, r}} = 0, as desired. ut

Proposition 5.2. Let k be a field of characteristic zero, and R an integral k-algebra en-
dowed with a nontrivial k-linear derivation δ. Then there is a Poisson bracket { · , · } on
R[t] with the following properties:

(1) the Poisson centre of Frac(R[t]) is equal to the field of constants of (R, δ);
(2) if P is a prime differential ideal of R then PR[t] is a Poisson prime ideal of R[t].

Proof. Let S = R[t] and consider the two derivations on S given by δ1(p) := pδ and
δ2 := d/dt . Here by pδ we mean the polynomial obtained by applying δ to the coeffi-
cients. Note that δ1 is the unique extension of δ that sends t to zero, while δ2 is the unique
extension of the trivial derivation on R that sends t to 1. It is easily seen that k is con-
tained in the kernel of both. These derivations commute on S since δ2 is trivial on R and
on monomials of degree n > 0 we have

δ1(δ2(rt
n)) = δ1(nrt

n−1) = nδ1(r)t
n−1
= δ2(δ1(r)t

n) = δ2(δ1(rt
n)).

Lemma 5.1 then implies that

{p(t), q(t)} := pδ(t)q ′(t)− p′(t)qδ(t)

is a Poisson bracket on S.
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Let q(t) ∈ Frac(S) be in the Poisson centre. Then for a ∈ R we must have

0 = {q(t), a} = −δ(a)q ′(t).

Since δ is not identically zero on R, we see that q ′(t) = 0. This forces q(t) = α ∈

Frac(R). But then 0 = {α, t} = δ(α), and so α is in the constant field of Frac(R).
Conversely, if f ∈ Frac(R) with δ(f ) = 0 then {f, q(t)} = δ(f )q ′(t) = 0 for all
q(t) ∈ Frac(R[t]), and hence f is in the Poisson centre.

If P is a prime ideal of R then Q := PS is a prime ideal of S. If moreover δ(P ) ⊆ P
then {P, q(t)} ⊆ q ′(t)δ(P ) ⊆ Q for any q(t) ∈ S. Hence

{Q, q(t)} ⊆ {P, q(t)}S + P {S, q(t)} ⊆ Q.

It follows that {Q,S} ⊆ Q, and so Q is a Poisson prime ideal of S. ut

Corollary 5.3. Let d ≥ 4 be a natural number. There exists a complex affine Poisson
algebra of Krull dimension d such that (0) is Poisson rational but not Poisson locally
closed. In particular, the Poisson Dixmier–Moeglin equivalence fails.

Proof. By Theorem 4.1, there exists a complex affine algebra R of Krull dimension d−1
equipped with a derivation δ such that that field of constants of (Frac(R), δ) is C and the
intersection of the nontrivial prime differential ideals of R is zero. By Proposition 5.2 we
see that R[t] can be endowed with a Poisson bracket such that (0) is a Poisson rational
ideal and the nontrivial prime differential ideals P of R generate nontrivial Poisson prime
ideals PR[t] in R[t]. These Poisson prime ideals of R[t] must then also have trivial
intersection. We have thus shown that (0) is not Poisson locally closed in R[t]. ut

6. A finiteness theorem on height one differential prime ideals

In this section we will prove the following differential-algebraic theorem, which will be
used in the next section to establish a weak Poisson Dixmier–Moeglin equivalence.

Theorem 6.1. Let A be an affine C-algebra equipped with C-linear derivations
δ1, . . . , δm. If there are infinitely many height one prime differential ideals then there
exists f ∈ Frac(A) \ C with δi(f ) = 0 for all i = 1, . . . , m.

When m = 1 this theorem is a special case of unpublished work of Hrushovski [21,
Proposition 2.3]. It is possible that Hrushovski’s method (which goes via a generalisation
of a theorem of Jouanolou) extends to this setting of several (possibly noncommuting)
derivations. But we will give an algebraic argument that is on the face of it significantly
different. We first show that if the principal ideal fA is already a differential ideal then
δ(f )/f is highly constrained (Proposition 6.3). We then use this, together with Bézout-
type estimates (Proposition 6.8), to deal with the case when the given height one prime
differential ideals are principal (Proposition 6.10). Finally, using Mordell–Weil–Néron–
Severi, we are able to reduce to that case.

We will use the following fact from valued differential fields.
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Fact 6.2 ([39, Corollary 5.3]1). Suppose K/k is a function field of characteristic zero
and transcendence degree d, and v is a rank one discrete valuation onK that is trivial on
k and whose residue field is of transcendence degree d − 1 over k. Then for any k-linear
derivation δ onK there is a positive integerN such that v(δ(f )/f ) > −N for all nonzero
f ∈ K .

Proposition 6.3. Let k be a field of characteristic zero and let A be a finitely generated
integrally closed k-algebra equipped with a k-linear derivation δ. Then there is a finite-
dimensional k-vector subspace W of A such that whenever f ∈ A \ {0} has the property
that δ(f )/f ∈ A we must have δ(f )/f ∈ W .

Proof. We know that A is the ring of regular functions on some irreducible affine normal
variety X. Moreover, X embeds as a dense open subset of a projective normal variety Y .
Then Y \X is a finite union of closed irreducible subsets whose dimension is strictly less
than that ofX. We let Y1, . . . , Y` denote the closed irreducible subsets in Y \X that are of
codimension one in Y . Let f ∈ A \ {0} be such that g := δ(f )/f ∈ A. Then g is regular
on X, and so its poles are concentrated on Y1, . . . , Y`. But by Fact 6.2, if we let νi be the
valuation on k(X) induced by Yi , there is some natural number N independent of f such
that νi(g) ≥ −N for all i = 1, . . . , `. It follows that

g ∈ W :=
{
s ∈ k(Y ) \ {0} : div(s) ≥ −D

}
∪ {0},

where D is the effective divisor N [Y1] + · · · +N [Y`]. Since Y is a projective variety that
is normal in codimension one, W is a finite-dimensional k-vector subspace of Frac(A)
(see [17, Corollary A.3.2.7]). By assumption g = δ(f )/f ∈ A, and so we may replace
W by W ∩ A if necessary to obtain a finite-dimensional subspace of A. ut

6.1. Bézout-type estimates

The next step in our proof of Theorem 6.1 is Proposition 6.8 below, which has very little
to do with differential algebra at all—it is about linear operators on an affine complex
algebra. Its proof will use estimates that we derive in Lemma 6.6 on the number of so-
lutions to certain systems of polynomial equations over the complex numbers, given that
the system has only finitely many solutions.

We will use the following Bézout inequality from intersection theory. It is well known,
in fact, that in the statement below one can replace Nd+1 by Nd , but we are unaware of a
proper reference, and the weaker bound that we give is sufficient for our purposes.

Fact 6.4. Suppose X ⊆ Cd is the zero set of a system of polynomial equations of de-
gree at most N . Then the number of zero-dimensional irreducible components of X is at
most Nd+1.

Proof. We define the degree, deg(Y ), of an irreducible Zariski closed subset Y of Cd of
dimension r to be the supremum of the number of points in Y ∩ H1 ∩ · · · ∩ Hr , where
H1, . . . , Hr are r affine hyperplanes such that Y ∩ H1 ∩ · · · ∩ Hr is finite. In general,

1 We thank Matthias Aschenbrenner for pointing us to this reference.
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the degree of a Zariski closed subset Y of Cd is defined to be the sum of the degrees
of the irreducible components of Y . In particular, if f (x1, . . . , xd) ∈ C[x1, . . . , xd ] has
total degree D then the hypersurface V (f ) has degree D, and a point has degree one.
If Y and Z are Zariski closed subsets of Cd then deg(Y ∩ Z) ≤ deg(Y ) · deg(Z) (see
Heintz [16, Theorem 1]).

Now let f1, . . . , fs ∈ C[x1, . . . , xd ] be of degree at most N such that X =
V (f1 . . . , fs). By Kronecker’s Theorem2 there are g1, . . . , gd+1 ∈ C[x1, . . . , xd ] which
are C-linear combinations of the fi’s such that V (g1, . . . , gd+1) = V (f1, . . . , fs). In
particular, X = V (g1) ∩ · · · ∩ V (gd+1) has degree at most Nd+1, and so the number of
zero-dimensional components of X is at most Nd+1. ut

The following is an easy exercise on the Zariski topology of Cd .

Lemma 6.5. Suppose Y and Z are Zariski closed sets in Cd and suppose that Y \ Z is
finite. Then |Y \Z| is bounded by the number of zero-dimensional irreducible components
of Y .

Proof. We write Y = Y1 ∪ · · · ∪ Ym with Y1, . . . , Ym irreducible and Yi 6⊆ Yj for i 6= j .
Then

Y \ Z = (Y1 \ Z) ∪ · · · ∪ (Ym \ Z).

Since Yi∩Z is a Zariski closed subset of Yi , it is either equal to Yi or it has strictly smaller
dimension than Yi . In particular, if Yi is positive-dimensional, then Yi \Z must be empty,
since otherwise Y \ Z would be infinite. Thus |Y \ Z| ≤ |{i : Yi is a point}|, and so the
result follows. ut

This is the main counting lemma:

Lemma 6.6. Let n, d , and N be natural numbers and suppose thatX ⊆ Cn+d is the zero
set of a system of polynomials of the form

n∑
i=1

Pi(y1, . . . , yd)xi +Q(y1, . . . , yd),

where P1, . . . , Pn,Q ∈ C[y1, . . . , yd ] are polynomials of degree at most N . If X is finite
then |X| ≤ ((n+ 1)N)d+1.

Remark 6.7. We will be using this lemma in a context where N = 1 and d is fixed. So
the point is that the bound grows only polynomially in n.

Proof of Lemma 6.6. Let the defining equations of X be

n∑
i=1

Pi,j (y1, . . . , yd)xi +Qj (y1, . . . , yd)

2 We could not find a very good reference for Kronecker’s Theorem in this form, but it can be
seen as a special case of Ritt’s [42, Chapter VII, §17]. Michael Singer pointed this out to us in a
private communication in which he has also supplied a direct proof.
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for j = 1, . . . , m and let π : Cn+d → Cd be the map

(x1, . . . , xn, y1, . . . , yd) 7→ (y1, . . . , yd).

So X0 := π(X) is the set of points α = (α1, . . . , αd) ∈ Cd for which the system of
equations

n∑
i=1

Pi,j (α)xi +Qj (α) = 0 (1)

for j = 1, . . . , m has a solution. Now suppose X is finite. Then for α ∈ X0, π−1(α) ∩X

must be a single point as it is a finite set defined by affine linear equations. So |X| = |X0|,
and it suffices to count the size of X0. Moreover, X0 is precisely the set of α such that (1)
has a unique solution.

Note that if n > m then for every α, either (1) has no solution or it has infinitely
many solutions. So, assuming that X0 is nonempty, we may assume that n ≤ m. But
if n = m then off a proper Zariski closed set of α in Cd the system (1) has a unique
solution—contradicting that X0 is finite. So n < m.

Let A(y1, . . . , yd) denote the m× (n+ 1) matrix whose j -th row is

[P1,j (y1, . . . , yd), . . . , Pn,j (y1, . . . , yd), −Qj (y1, . . . , yd)],

and let B(y1, . . . , yd) denote them×nmatrix obtained by deleting the (n+1)-st column
of A. We see that α ∈ X0 if and only if the last column of A(α) is in the span of the
column space of B(α); equivalently, A(α) and B(α) must have the same rank, and this
rank is necessarily n.

Let Y be the set of all α such that every (n + 1) × (n + 1) minor of A(α) vanishes.
So α ∈ Y says that the rank of A(α) is ≤ n. Let Z be the set of all α such that every
n × n minor of B(α) vanishes. So α ∈ Z means rankB(α) < n. Hence X0 = Y \ Z.
Since each (n + 1) × (n + 1) minor of A(y1, . . . , yd) has degree at most (n + 1)N , we
see from Fact 6.4 that the number of zero-dimensional irreducible components of Y is at
most ((n+ 1)N)d+1. By Lemma 6.5, |X0| ≤ ((n+ 1)N)d+1. ut

We now give the main conclusion of this subsection. In order to obtain the desired esti-
mates, we will work with products of vector spaces and so we give some notation. Given a
field k and an associative k-algebra A, if V andW are k-vector subspaces of A, we define
VW to be the span of all products vw with v ∈ V and w ∈ W . Since A is associative, it
is easily checked that (VW)U = V (WU) for subspaces V ,W , and U of A. We may thus
write VWU unambiguously, and so if V is a vector space and n ≥ 1, we take V n to be
V · · ·V (n copies).

Proposition 6.8. Suppose A is an affine C-algebra, L1, . . . , Lm are C-linear operators
on A, and V and W are finite-dimensional C-linear subspaces of A. Let X be the set
of f ∈ V for which Lj (f )/f ∈ W for all j = 1, . . . , m. Then the image of X in the
projectivisation P(V ) is either uncountable or of size at most (dimV )2+m dimW .

Remark 6.9. One should think here of W as fixed and V as growing. So the proposition
gives a bound that grows only polynomially in dimV .
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Proof of Proposition 6.8. Let {r1, . . . , rn} be a basis for V and let {s1, . . . , sd} be a ba-
sis for W . We are interested in the set T of (x1, . . . , xn) ∈ Cn for which there exist
(y1,j , . . . , yd,j ) ∈ Cd , for j = 1, . . . , m, such that

Lj

( n∑
i=1

xiri

)
=

( n∑
i=1

xiri

)
(y1,j s1 + · · · + yd,j sd).

Since the Lj are linear, this becomes

n∑
i=1

xiLj (ri) =
( n∑
i=1

xiri

)
(y1,j s1 + · · · + yd,j sd). (2)

We point out that if (x1, . . . , xn) is in T then so is (λx1, . . . , λxn) for λ in C. As we
are only interested in solutions in P(Cn), we will let Tq denote the set of elements
(x1, . . . , xn) in T with xq = 1, and we will bound the size of each Tq .

Note that if (x1, . . . , xn) ∈ Tq for some q, then as A is an integral domain,
∑n
i=1 xiri

6= 0, and s1, . . . , sd is a basis for W , we see that for j = 1, . . . , m there is necessarily a
unique solution (y1,j , . . . , yd,j ) ∈ Cd such that (2) holds. So the cardinality of Tq is the
same as the set of solutions to (2) in Cn+md with xq = 1. It is this latter set that we count.

Let w1, . . . , w` be a basis for spanC(VW ∪
⋃m
j=1 Lj (V )). We thus have expressions

Lj (ri) =
∑
p αi,j,pwp and risk =

∑
p βi,k,pwp for j = 1, . . . , m, i = 1, . . . , n, k =

1, . . . , d . Combining these expressions with (2), we see that for j ∈ {1, . . . , m}, we have

n∑
i=1

xi

(∑
p

αi,j,pwp

)
=

∑
i,k

xiyk,j

(∑
p

βi,k,pwp

)
.

In particular, if we extract the coefficient of wp, we see that for j ∈ {1, . . . , m} and
p ∈ {1, . . . , `}, we have

∑n
i=1 αi,j,pxi =

∑
i,k xiyk,jβi,k,p. Imposing the condition that

xq = 1 we obtain the system of equations

αq,j,p +
∑
i 6=q

αi,j,pxi −
∑
k

yk,jβq,k,p −
∑
i 6=q

∑
k

xiyk,jβi,k,p = 0

for j = 1, . . . , m and p = 1, . . . , `. This system can be described as affine linear equa-
tions in {x1, . . . , xn} \ {xq} whose coefficients are polynomials in yk,j , 1 ≤ k ≤ d,
1 ≤ j ≤ m, of total degree at most one, and hence by Lemma 6.6 the number of solutions
is either infinite—in which case it is uncountable as it has a component of dimension
bigger than or equal to one and we are working over C—or at most nmd+1. Thus the size
of the union of Tq as q ranges from 1 to n is either uncountable or of size at most nmd+2,
as desired. ut

6.2. The case of principal ideals

Here we deal with the case of Theorem 6.1 when there are infinitely many principal prime
differential ideals.
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Proposition 6.10. Let A be an integrally closed affine C-algebra with C-linear deriva-
tions δ1, . . . , δm. Suppose that there exists an infinite set of elements r1, r2, . . . of A such
that δj (ri)/ri ∈ A for j = 1, . . . , m and i ≥ 1 and their images in (A \ {0})/C∗ generate
a free abelian semigroup. Then the field of constants of (Frac(A), δ1, . . . , δm) is strictly
bigger than C.

Proof. Denote the multiplicative semigroup ofA\{0} generated by r1, r2, . . . by T . As the
operator x 7→ δj (x)/x transforms multiplication into addition, we see that δj (r)/r ∈ A
for all r ∈ T and j ∈ {1, . . . , m}. By Proposition 6.3 there is thus a finite-dimensional
subspace W of A such that δj (r)/r ∈ W for all r ∈ T and j ∈ {1, . . . , m}.

Let q := (1 + Kdim(A))(2 + m dim(W)), where Kdim(A) is the Krull dimension
of A. We pick a finite-dimensional vector subspace U of A that contains r1, . . . , rq+1. We
claim that for N sufficiently large the image of

XN := {r ∈ UN(q+1)
: δj (r)/r ∈ W, j = 1, . . . , m}

in P(UN(q+1)) is uncountable. Indeed, if it were not, then by Proposition 6.8 its size would
be bounded by (dim(UN(q+1)))2+m dim(W). Basic results on Gelfand–Kirillov dimension
(see [30, Theorem 4.5(a)]) give dim(UN(q+1)) < (N(q + 1))1+Kdim(A) for all N suffi-
ciently large. Hence by choice of q we find that the size of the image of XN in P(UN(q+1))

is eventually at most (N(q + 1))q . On the other hand, for each 0 ≤ i1, . . . , iq+1 ≤ N we

have r i11 · · · r
iq+1
q+1 ∈ U

N(q+1)
∩ T , and by assumption these give rise to distinct elements

of XN whose images in P(UN(q+1)) are also distinct. So the size of the image of XN in
P(UN(q+1)) is at least (N + 1)q+1. Comparing the degrees of these polynomials in N
gives a contradiction for large N .

Thus, fixing N sufficiently large, and setting V := UN(q+1) and

X := {r ∈ V : r 6= 0, δj (r)/r ∈ A, j = 1, . . . , m},

we have shown that the image of X in P(V ) is uncountable. Let S denote the set of all
ideals of the form rA where r ∈ X . We claim that Lemma 3.1 applies to S, giving us the
sought-for differential constant f ∈ Frac(A) \ C, which would complete the proof of the
proposition. Indeed, condition (1), that each I ∈ S is differential, holds because I = rA
with δj (r)/r ∈ A for all j = 1, . . . , m. Condition (3), that each ideal in S has nontrivial
intersection with the finite-dimensional space V , holds by construction: each I ∈ S is
generated by an element of V . It remains only to prove condition (2), that

⋂
S = (0).

To see this, note that A is the ring of regular functions on some irreducible affine nor-
mal varietyX, andX embeds as a dense open subset of a projective normal variety Y . Let
Z1, . . . , Zs denote the irreducible components of Y \ X of codimension one. For every
f ∈ A, the negative part of div(f ) is supported on {Z1, . . . , Zs}. Suppose, toward a con-
tradiction, that there is a nonzero a ∈ rA for all r ∈ X . If {V1, . . . , Vt } is the support of the
positive part of div(a), then the positive part of div(r) is also supported on {V1, . . . , Vt }

for all r ∈ X . So for all r ∈ X , div(r) is supported on {Z1, . . . , Zs, V1, . . . , Vt }. But
there are only countably many divisors supported on this finite set. If two nonzero ele-
ments of C(Y ) have the same associated divisor then their ratio is regular on Y , and hence
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necessarily in C∗. It follows that the image of X in P(V ) is necessarily countable, a con-
tradiction. ut

6.3. The proof of Theorem 6.1

To prove Theorem 6.1, we need a lemma that shows we can reduce to the principal case.
This lemma appears to be something that should be in the literature, but we have not
encountered this result before.

Lemma 6.11. Let k be a finitely generated extension of Q, and let A be a finitely gen-
erated commutative k-algebra that is a domain. Then there is a nonzero s ∈ A such that
As := A[1/s] is a unique factorization domain.

Proof. We recall that a noetherian integral domain A is a UFD if and only if X :=
Spec(A) is normal and Cl(X) = 0 [15, II.6.2]. By replacing A by A[1/f ] for some
nonzero f ∈ A we may assume that A is integrally closed. Note that X = Spec(A) is
quasi-projective, and hence is an open subset of an irreducible projective scheme Y . We
may pass to the normalisation of Y if necessary (this does not affect X) and assume that
X is an open subset of a normal projective scheme Y . Note that Y is noetherian, integral,
and separated, and so Cl(Y ) surjects on Cl(X) [15, Proposition II.6.5]. From a version of
the Mordell–Weil–Néron–Severi theorem (see [31, Corollary 6.6.2] for details), we see
that Cl(Y ) is a finitely generated abelian group, and so Cl(X) must be too.

It follows that there exist height one prime ideals P1, . . . , Pr of A such that if P
is a height one prime ideal of A then there are integers a1, . . . , ar such that [V (P )] =∑r
i=1 ai[V (Pi)] in Cl(X), where for a height one prime Q, [V (Q)] denotes the image

of the irreducible subscheme of X that corresponds to Q in Cl(X). Let s be a nonzero
element of P1 ∩ · · · ∩ Pr . Then the equality [V (P )] =

∑r
i=1 ai[V (Pi)] implies that

P
∏
{i: ai<0} P

ai
i = f

∏
{i: ai>0} P

ai
i for some nonzero rational function f . Passing to the

localisation As we see that

Ps =
(
P

∏
{i: ai<0}

P
−ai
i

)
⊗A As =

(
f

∏
{i: ai>0}

P
ai
i

)
⊗A As = (fA)s,

where we regard fA as a fractional ideal. Since Ps ⊆ As , we see that f ∈ As , and so
Ps = fAs is principal for each height one prime ideal P of A. It follows that all height
one primes of As are principal, and hence As is a unique factorization domain. ut

We are finally ready to prove Theorem 6.1.

Proof of Theorem 6.1. We have an affine C-algebra A with C-derivations δ1, . . . , δm, and
with infinitely many height one prime differential ideals. Suppose, toward a contradiction,
that the field of contants of (Frac(A), δ1, . . . , δm) is C.

Note that the derivations extend uniquely by the quotient rule to any localisation
A[1/f ], and since any such f can only be contained in finitely many height one primes,
this localisation also has infinitely many height one prime differential ideals. Therefore,
localising appropriately, we may assume that A is integrally closed.
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Next we write A in the form A0 ⊗k C for some finitely generated subfield k of C,
and an affine k-subalgebra A0 of A such that the δj restrict to k-linear derivations on A0.
This can be accomplished as follows: Write A as a quotient of a polynomial ring A =
C[t1, . . . , td ]/I where I = 〈f1, . . . , fr 〉. So the xi := ti+I generateA as a C-algebra. For
each i, j we have δj (xi) = qi,j (x1, . . . , xd) for some polynomials qi,j ∈ C[t1, . . . , td ].
Let k denote the field generated by the coefficients of f1, . . . , fr and by the coefficients
of the qi,j , and set A0 := k[x1, . . . , xd ].

We may assume that Frac(A0)∩C = k. Indeed, let K := Frac(A0)∩C. Since K is a
subfield of the finitely generated field Frac(A0), we deduce by [45, Theorem 11] that K
is finitely generated. We can now replace k by K , and so A0 by K[x1, . . . , xd ].

Next we argue that A0 has infinitely many height one prime differential ideals. This
will use our assumption that the field of constants of Frac(A) is just C.

We claim that if P is a nonzero prime differential ideal of A then P ∩ A0 is also
nonzero. To see this, we pick 0 6= y =

∑e
i=1 ai ⊗ λi ∈ P with a1, . . . , ae ∈ A0 nonzero,

λ1, . . . , λe ∈ C nonzero, and e minimal. If e = 1 then we have y · λ−1
1 ∈ A0 ∩ P and

there is nothing to prove. Assume e > 1. We have δj (y) =
∑e
i=1 δj (ai) ⊗ λi ∈ P for

j = 1, . . . , m. This gives

e∑
i=1

(aiδj (ae)− aeδj (ai))⊗ λi = δj (ae)y − aeδj (y) ∈ P.

Since the i = e term above is zero, the minimality of e implies that δj (ae)y − aeδj (y)
must be zero. Hence δj (ya−1

e ) = 0 for all j = 1, . . . , m. By assumption, y = γ ae for
some γ ∈ C. So ae ∈ P ∩ A0, as desired.

Suppose P is a height one prime differential ideal in A. Then P ∩ A0 is a prime
differential ideal in A0. Since it is nonzero, it has height at least one. To see that P ∩ A0
has height one, suppose that there is some nonzero prime idealQ ofA0 withQ ( P ∩A0.
Then QA ∩ A0 = Q since A is a free A0-module. If we now look at the set I of ideals I
of A with QA ⊆ I ⊆ P such that I ∩ A0 = Q, then I is nonempty since QA is in I.
It follows that I has a maximal element, J . Then J is a nonzero prime ideal of A that is
strictly contained in P , contradicting the fact that P has height one. Hence P ∩ A0 has
height one.

Moreover, if P is a height one prime differential ideal in A then P is a minimal prime
containing (P ∩A0)A, so only finitely many other prime differential ideals in A can have
the same intersection with A0 as P . So the infinitely many height one prime differential
ideals in A give rise to infinitely many height one prime differential ideals in A0.

By Lemma 6.11 there is some nonzero s ∈ A0 such that B := A0[1/s] is a UFD. As
before, the infinitely many height one prime differential ideals of A0 give rise to infinitely
many height one prime differential ideals of the localisation B. But as B is a UFD, these
ideals are principal. We obtain an infinite set of pairwise coprime irreducible elements
r1, r2, . . . of B such that δj (ri)/ri ∈ B for j = 1, . . . , m and i ≥ 1. We now note
that B ⊆ A[1/s]. Furthermore, the images of the ri necessarily generate a free abelian
semigroup in (A[1/s] \ {0})/C∗, since if some nontrivial product of the ri were in C∗
then it would be in B ∩ C∗ ⊆ Frac(A0) ∩ C∗ = k∗, which is impossible since the ri are
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pairwise coprime elements of the UFD B. Proposition 6.10 now applies to A[1/s] (which
is integrally closed as A is), and gives an f ∈ Frac(A[1/s]) \ C such that δj (f ) = 0 for
j = 1, . . . , m. But as Frac(A[1/s]) = Frac(A), this contradicts our assumption on A. ut

7. A weak Poisson Dixmier–Moeglin equivalence

We now show that while the Poisson Dixmier–Moeglin equivalence need not hold in
general, a weaker variant does hold.

Theorem 7.1. Let A be a complex affine Poisson algebra. For a Poisson prime ideal P
of A, the following are equivalent:

(1) P is rational;
(2) P is primitive;
(3) the set of Poisson prime ideals Q ⊇ P with ht(Q) = ht(P )+ 1 is finite.

Proof. We have already shown the equivalence of (1) and (2). It remains to prove the
equivalence of (1) and (3). By replacing A by A/P if necessary, we may assume that
P = (0). Note that if (1) does not hold then we have a nonconstant f ∈ Frac(A) in the
Poisson centre. We show that (3) cannot hold: the level sets of f over C will give rise to
infinitely many height one Poisson primes. We write f = a/b with a, b ∈ A with b 6= 0.
Let B be the localisation Ab. Then it is sufficient to show that there are infinitely many
prime ideals in B of height one that are Poisson prime. For each λ ∈ C, we have a Poisson
ideal Iλ := (a/b − λ)B. Since f is nonconstant, for all but finitely many λ ∈ C, Iλ is a
proper principal ideal. By Krull’s principal ideal theorem, we have a finite set of height
one prime ideals above Iλ, each of which is a Poisson prime ideal by Lemma 2.2. We note
that if a prime ideal P contains Iα and Iβ for two distinct complex numbers α and β then
P contains α − β, which is a contradiction. It follows that B has an infinite set of height
one Poisson prime ideals, and so (3) does not hold.

Conversely, suppose that (1) holds. Let x1, . . . , xm be generators forA as a C-algebra,
and consider the derivations δi(y) = {y, xi}. The rationality of (0) means that the con-
stant field of (Frac(A), δ1, . . . , δm) is C (see statement (iv) of Section 2). It follows by
Theorem 6.1 that there are only finitely many height one prime differential ideals of A.
Hence there are only finitely many height one prime Poisson ideals of A, as desired. ut

As a corollary we will show that the Poisson–Dixmier Moeglin equivalence holds in di-
mension≤ 3. But first a lemma which says that the “Poisson points and curves” are never
Zariski dense.

Lemma 7.2. Let A be a complex affine Poisson algebra of Krull dimension d on which
the Poisson bracket is not trivial. Then the intersection of the set of Poisson prime ideals
of height ≥ d − 1 is not trivial.

Proof. We claim that every Poisson prime ideal of height at least d − 1 must contain
{a, b} for all a, b ∈ A. Let P be a Poisson prime of height ≥ d − 1 and suppose, towards
a contradiction, that {a, b} 6∈ P . Now, since A/P has Krull dimension at most one, the
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morphism Spec(A/P ) → A2
C that is dual to the ring homomorphism given by the com-

position C[a, b] ↪→ A→ A/P is not dominant. That is, there is 0 6= f ∈ C[x, y] such
that f (a, b) ∈ P . We now claim that there is some nonzero polynomial h(x) such that
h(a) ∈ P . To see this, observe that if f (x, y) is a polynomial in x then there is nothing
to prove; otherwise, it has nonconstant partial derivative with respect to y. Applying the
derivation {a,−} gives ∂f

∂y
(a, b){a, b} ∈ P . Since {a, b} 6∈ P , we see that ∂f

∂y
(a, b) ∈ P .

Iterating if necessary, we then see that there is a nonzero polynomial h(x) ∈ C[x] such
that h(a) ∈ P , as claimed. Now h(x) cannot be constant, since it is nonzero and h(a) ∈ P
and P is proper. Therefore h(x) splits into linear factors. Since P is a prime ideal, we see
that there is some λ ∈ C such that a − λ ∈ P . But now we apply the operator {−, b} to
deduce that {a, b} ∈ P , a contradiction. Thus every Poisson prime of height ≥ d−1 con-
tains {a, b} for all a, b ∈ A. Since the Poisson bracket is not trivial, the result follows. ut

Theorem 7.3. Let A be a complex affine Poisson algebra of Krull dimension ≤ 3. Then
the Poisson Dixmier–Moeglin equivalence holds for A.

Proof. In light of [40, 1.7(i), 1.10] and Theorem 3.2, it is sufficient to show that if P
is a Poisson rational prime ideal of A then P is Poisson locally closed. By replacing A
by A/P if necessary, we may assume that P = (0). By Theorem 7.1, there are finitely
many height one prime ideals of A that are Poisson prime ideals. By Lemma 7.2, the
intersection of prime ideals of height ≥ 2 of A that are Poisson prime ideals is nonzero.
It follows that the intersection of all nonzero Poisson prime ideals of A is nonzero, and
hence (0) is Poisson locally closed, as desired. ut

8. Arbitrary base fields of characteristic zero

So far we have restricted our attention to C-algebras. It is natural to ask whether our re-
sults, both positive and negative, extend to arbitrary base fields. In this section we will
show that everything except the fact that rationality implies primitivity, namely Theo-
rem 3.2, more or less automatically extends to arbitrary characteristic zero fields.

First a word about positive characteristic. Note that if A is a finitely generated com-
mutative Poisson algebra over a field of characteristic p > 0, then ap is in the Poisson
centre for every a ∈ A, and in particular it can be shown that for a prime Poisson ideal P
of A, the notions of Poisson primitive, Poisson rational, and Poisson locally closed are all
equivalent to the algebra A/P being a finite extension of the base field. Thus we restrict
our attention to base fields of characteristic zero.

Let us consider first the construction of Poisson algebras in which (0) is rational but
not locally closed. This was done in Sections 4 and 5. The only use of the complex num-
bers in Theorem 4.1 was that they form an algebraically closed field. Starting, there-
fore, with an arbitrary field k of characteristic zero, we obtain, over L = kalg, an affine
L-algebra R equipped with an L-linear derivation δ such that the field of constants of
Frac(R) is L and the intersection of all nontrivial prime differential ideals of R is zero.
Now, as in the proof of Theorem 6.1, we can write R = R0 ⊗F L where F is a finite ex-
tension of k and R0 is a differential affine F -subalgebra of R such that Frac(R0)∩L = F .
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So the constant field of Frac(R0) is L, and hence algebraic over k. Since the intersection
of a prime differential ideal in R with R0 is prime and differential in R0, we infer that
the intersection of all prime differential ideals of R0 is also trivial. We can view R0 as an
affine k-algebra, and that changes neither the fact about the constants of Frac(R0), nor the
fact about the intersection of the prime differential ideals of R0. Apply Proposition 5.2 to
the k-algebra R0 to see that R0[t] can be endowed with a Poisson bracket such that (0)
is not locally closed and the Poisson centre of Frac(R0[t]) is equal to the constant field
of R0 which is algebraic over k. That is, (0) is rational in R0[t]. We have thus proved the
following generalisation of Corollary 5.3:

Theorem 8.1. Let k be a field of characteristic zero and d ≥ 4 be a natural number.
Then there exists an affine Poisson k-algebra of Krull dimension d such that (0) is Poisson
rational but not Poisson locally closed.

Next we consider the positive statements, that is, Theorem 7.1. First of all, the proof given
there that if a Poisson prime ideal P is contained in only finitely many Poisson prime ide-
als of height ht(P )+ 1 then P is rational, works verbatim over an arbitrary field of char-
acteristic zero. The proof of the converse, on the other hand, uses both the uncountability
and algebraic closedness of C, because these are used in the proof of Proposition 6.10. To
deal with this, we require the following lemma, which shows that we can extend scalars
and assume that the base field is algebraically closed and uncountable. We note that given
a Poisson bracket {−,−} on a k-algebra A, there is a natural extension of {−,−} to a
Poisson bracket {−,−}F on B = A⊗k F where F is a field extension of k. This is done
by defining {a ⊗ α, b ⊗ β} = {a, b} ⊗ αβ for α, β ∈ F and then extending via linearity.
We call the Poisson bracket {−,−}F the natural extension of {−,−} to B.

Lemma 8.2. Let k be a field of characteristic zero and let A be an affine k-algebra
equipped with a Poisson bracket {−,−}. Suppose that kalg

∩ Frac(A) = k and (0) is
a Poisson rational ideal of A. Then for any algebraically closed field extension F of k,
the F -algebra B := A ⊗k F is again a domain with (0) a Poisson rational ideal with
respect to the natural extension of {−,−} to B.

Proof. Since kalg
∩ Frac(A) = k, the F -algebra B = A ⊗k F is again a domain. The

Poisson bracket on A extends to a Poisson bracket {−,−}F on B and we claim that
(0) is a Poisson rational ideal of B. Toward a contradiction, suppose that there exists
b/c ∈ Frac(B) \ F that is in the Poisson centre, with b, c ∈ B, and c nonzero.

We first show that we can witness this counterexample with a finite extension of k
rather than F . There is a finitely generated k-subalgebra R of F such that b, c ∈ A⊗k R.
Let a1, . . . , an ∈ A and r1, . . . , rn, s1, . . . , sn ∈ R, some of which are possibly zero,
be such that b =

∑n
i=1 ai ⊗ ri and c =

∑n
i=1 ai ⊗ si . Since b 6∈ Fc, there exist i, j ∈

{1, . . . , n} such that the 2×2 matrix
( ri rj
si sj

)
has nonzero determinant. We let1 ∈ R denote

this nonzero determinant. Since the Jacobson radical of R is zero, there is some maximal
ideal I of R such that1c 6∈ A⊗k I . Then we have a surjection A⊗k R→ A⊗k L where
L = R/I is a finite extension of k, and since kalg

∩ Frac(A) = k, A ⊗k L is a domain
with kalg

∩ Frac(A⊗k L) = L. By construction, u := (b+ J )(c+ J )−1 is in the Poisson
centre of Frac(A⊗k L), and is not in L since 1 6∈ I .
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Now let {s1, . . . , sm} ⊆ L be a basis for L over k, and hence a basis for A⊗k L as a
finite and freeA-module. Then since Frac(A⊗kL) = Frac(A)⊗kL, we have u =

∑
fisi

with fi ∈ Frac(A). As u /∈ L, there exists some fi0 that is not in k. Now for any x ∈ A
we have 0 = {u, x} =

∑
{fi, x}si , and since the si form a basis, we see that each {fi, x}

is 0. So all the fi are in the Poisson centre of Frac(A), and fi0 /∈ k, contradicting the fact
that Frac(A) has Poisson centre k. ut

Now suppose that A is an affine k-algebra equipped with a Poisson bracket. Then kalg
∩

Frac(A) is an algebraic extension K of k. In particular, we may replace k by K and
replace A by the K-subalgebra of Frac(A) generated by K and A if necessary, and the
resulting algebra will still have the property that (0) is Poisson rational. We may now take
an uncountable algebraically closed extension F of k and invoke Lemma 8.2 to show that
the F -algebra B := A⊗k F has the property that (0) is Poisson rational. By Theorem 7.1,
B has only finitely many height one prime ideals that are Poisson prime ideals. We point
out that it follows that A can only have finitely many height one prime Poisson ideals.
Indeed, let {P1, . . . , Ps} be the set of height one prime ideals of B that are Poisson. By
the “going-down” property for flat extensions,Qi := Pi∩Amust have height at most one
in A. So it suffices to show that every height one prime Poisson idealQ of A is contained
in some Pi ; it will then have to be one of the nonzero Qi that occurs on this list. If Q is a
height one prime Poisson ideal of A then the fact that B is a free A-module implies that
(A/Q)⊗k F embeds in B/QB. In particular, by Noether normalisation, B/QB contains
a polynomial ring over F in d = Kdim(B) − 1 variables, where Kdim(B) denotes the
Krull dimension of B, and hence has Krull dimension exactly Kdim(B) − 1. Since QB
is a Poisson ideal, there is a height one prime ideal Q′ in B that contains QB, which is
necessarily a Poisson prime ideal by Lemma 2.2. Thus every height one prime Poisson
ideal of A is contained in some height one prime Poisson ideal of B, as desired.

We have thus proved:

Theorem 8.3. Let k be a field of characteristic zero and A an affine Poisson k-algebra.
Then a Poisson prime ideal P of A is rational if and only if the set of Poisson prime ideals
Q ⊇ P with ht(Q) = ht(P )+ 1 is finite.

There only remains the issue of rationality implying primitivity (Theorem 3.2). Our proof
here again uses, in an essential way, the fact that C is uncountable. We note, however, that
the proof works in general for any uncountable field (see the remarks following the proof
of Theorem 3.2). We are therefore left with the following open question:

Question 8.4. Suppose k is a countable field of characteristic zero and A an affine Pois-
son k-algebra. Does rationality of a prime Poisson ideal P imply that P is primitive?

9. The classical Dixmier–Moeglin equivalence

The counterexamples produced in this paper also yield counterexamples to the classi-
cal (noncommutative) Dixmier–Moeglin equivalence discussed in the introduction. To
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explain this connection, we recall that given an associative ring R equipped with a deriva-
tion δ, one can form an associative skew polynomial ring R[x; δ], an overring of R that is
a free left R-module with basis {xn : n ≥ 0} and with the property that xr = rx + δ(r)
for all r ∈ R. Many ring-theoretic properties of R are inherited by R[x; δ]; for example,
if R is a domain then so is R[x; δ] (see [36, Theorem 1.2.9(i)]), and if R is left or right
noetherian then so is R[x; δ] (see [36, Theorem 1.2.9(iv)]). Although this skew polyno-
mial construction can be done for any associative ring R, we restrict our attention to R
commutative. The ideal structure of R[x; δ] is intimately connected to the structure of δ-
ideals in R; indeed, if I is a δ-ideal of R then IR[x; δ] is easily checked to be a two-sided
ideal of R[x; δ]. Using basic facts such as these, as well as some known results about
R[x; δ], we show in Theorem 9.1 below that if (R, δ) is as in Theorem 4.1 then the skew
polynomial ring R[x; δ] does not satisfy the Dixmier–Moeglin equivalence.

One interesting feature of the ring R[x; δ] is that it has finite Gelfand–Kirillov dimen-
sion whenever R is a finitely generated commutative algebra over a field k. We recall that
Gelfand–Kirillov dimension (GK-dimension, for short) is a noncommutative analogue of
Krull dimension, which is defined as follows. Given a field k and a finitely generated
k-algebra A, a k-vector subspace V ⊆ A is called a generating subspace if it is finite-
dimensional, contains 1, and generates A as a k-algebra. If this is the case we have

V ⊆ V 2
⊆ V 3

⊆ · · · ⊆

⋃
n≥1

V n = A

where V n denotes the subspace generated by all products v1 · · · vn with vi ∈ V . The
Gelfand–Kirillov dimension of A is then defined to be

GKdim(A) := lim sup
n→∞

log(dim(V n))
log n

.

This quantity is independent of the choice of generating subspace [30, Lemma 1.1]. In
practice, algebras often have a generating subspace V for which dim(V n) ∼ Cnd for
some positive constant C and some d ≥ 0; in this case d is the GK-dimension. For a
finitely generated commutative k-algebra, the Gelfand–Kirillov dimension and the Krull
dimension coincide [30, Theorem 4.5].

Noetherian noncommutative algebras failing the classical Dixmier–Moeglin equiva-
lence seem to be rare. There are very few examples of such algebras in the literature
apart from those of Irving and Lorenz mentioned in the introduction, and these are of
infinite GK-dimension. To the best of our knowledge, the following result gives the first
counterexamples in finite GK-dimension.

Theorem 9.1. With (R, δ) as in Theorem 4.1, the skew polynomial ring R[x; δ] is a
noetherian ring of finiteGK-dimension for which the Dixmier–Moeglin equivalence does
not hold. In particular, (0) is a primitive (and hence rational) prime ideal of R[x; δ] that
is not locally closed in the Zariski topology. Moreover, for any natural number n ≥ 4
there exists an example with GK-dimension n.
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Proof. What Theorem 4.1 gives us is a complex affine algebra R equipped with a deriva-
tion δ such that the field of constants of (Frac(R), δ) is C, and the intersection of all
nontrivial prime δ-ideals of R is zero. Given a nonzero prime δ-ideal P , the ring Q :=
PR[x; δ] is a two-sided ideal of R[x; δ]. The canonical morphism induces an isomor-
phism R[x; δ]/Q ∼= (R/P )[x; δ′], where δ′ is the derivation on R/P induced by δ. Since
R/P is an integral domain, so is (R/P )[x; δ′], and hence Q is a nonzero prime ideal of
R[x; δ]. Now, if a is in the intersection of all Q’s obtained in this manner, then as a can
be uniquely written as rnxn + · · · + r0 for some n ≥ 0 and r0, . . . , rn ∈ R, one sees
that all the ri must be contained in the intersection of all nontrivial prime δ-ideals of R,
which we know to be trivial. It follows that the intersection of all nontrivial prime ideals
of R[x; δ] is trivial, and hence (0) is not locally closed in Spec(R[x; δ]).

The fact that the field of constants of (Frac(R), δ) is C implies that in the commutative
algebra R[z] with Poisson bracket given by {r, s} = 0 for r, s ∈ R and {r, z} = δ(r), the
prime ideal (0) is Poisson rational, and hence Poisson primitive by Theorem 3.2. By a
result of Jordan [26, Theorem 4.2] it follows that (0) is δ-primitive in R, that is, there is
some maximal ideal of R that does not contain a nonzero δ-ideal of R. A result due to
Goodearl–Warfield [14, Corollary 3.2] now shows that (0) is primitive in R[x; δ].

Finally, if R is of Krull dimension m then the GK-dimension of R is also m [30,
Theorem 4.5]. Hence the GK-dimension of R[x; δ] is m + 1 (see [30, Proposition 3.5]).
So R[x; δ] is indeed a noetherian and finite-GK-dimensional counterexample to the Dix-
mier–Moeglin equivalence. Since Theorem 4.1 gives us such an R of Krull dimension m
for any m ≥ 3, we obtain an example with any integer GK-dimension greater than or
equal to 4, as claimed. ut

It would be interesting to obtain additional counterexamples. More precisely, noting that
the Poisson algebra R[t] of Corollary 5.3 is the semiclassical limit of R[x; δ] (in the
filtered/graded sense [11, 2.4]), it is natural to ask:

Question 9.2. Do the Poisson algebras of Corollary 5.3 admit other formal or algebraic
deformations which do not satisfy the classical Dixmier–Moeglin equivalence?
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