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Abstract. Family Floer theory is used to construct a functor from the Fukaya category of a sym-
plectic manifold admitting a Lagrangian torus fibration to a (twisted) category of perfect complexes
on the mirror rigid analytic space. This functor is shown to be faithful by a degeneration argument
involving moduli spaces of annuli.
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1. Introduction

Applications of Fukaya categories to symplectic topology require an algebraic model for
these categories; this involves finding a collection of Lagrangians which generate the
category in the sense that the Fukaya category fully faithfully embeds in the category
of modules over the corresponding A, algebra. For closed symplectic manifolds, the
known strategies for understanding such categories of modules rely on realising them,
in an instance of homological mirror symmetry, as modules over the endomorphism al-
gebra of (complexes of) coherent sheaves on an algebraic variety, or a non-commutative
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deformation thereof. Such descriptions are possible in a limited class of examples, which
include Calabi—Yau hypersurfaces in projective space [20, 21] and toric varieties [11, 5].
It is reasonable to expect that these methods will lead to descriptions of Fukaya categories
of complete intersections in toric varieties [4].

The goal of the family Floer program is to both give a more compelling proof of these
equivalences, and extend the class of examples for which they can be proved. Keeping
with tradition, we shall call the symplectic side the A-side, and the algebro-geometric
side the B-side. The current strategies rely on matching computations on the two sides,
without having a good reason for the agreement. Moreover, these computations work
for a very special class of symplectic structures; in the typical case of the K3 surface,
homological mirror symmetry is only understood for the restriction of the Fubini—Study
form to the quartic hypersurface, whereas the rank of the second cohomology group is 22.

There are essentially only two previous results on family Floer cohomology. In [10,
Section 6] Fukaya outlined a strategy for assigning to Lagrangians (complexes of) co-
herent sheaves on the mirror, under some convergence assumptions which should yield
a complex analytic mirror. Passing to the rigid analytic setting in which he derived con-
vergence by a clever use of Gromov compactness for tame almost complex structures,
Fukaya [9] gave a very general result constructing the local charts of the B-side, which
were shown by Tu [25] to admit compatible identifications over the overlaps.

In the author’s ICM address [1], the strategies behind these two results were com-
bined, and a (rigid analytic) coherent sheaf was assigned to Lagrangians on the A-side,
assuming the existence of a Lagrangian torus fibration. This paper extends this result
by (1) constructing a map of morphism spaces from the A-side to the B-side, (2) con-
structing a map of morphism spaces from the B-side to the A-side, (3) showing that the
composition of these two maps is the identity on the A-side, leading to the main result,
and (4) constructing an A functor. The bulk of Section 2 contains a construction of the
mirror following [1], and corrects a minor oversight in the local-to-global construction of
the earlier paper (see Remark 2.6). The formal results are then stated in Theorem 2.10,
and a summary of the proof appears thereafter in Section 2.6.

Remark 1.1. In order to focus on the new ideas, we restrict the setting that we consider
by assuming that (1) the ambient symplectic manifold admits a Lagrangian torus fibration
all of whose fibres are smooth and bound no holomorphic discs, and (2) one can choose an
almost complex structure for each Lagrangian so that it bounds no holomorphic discs. The
requirement that the Lagrangians bound no holomorphic disc is really only technical, and
meant to avoid discussing foundations of multivalued perturbations in Lagrangian Floer
theory [12] (and multiplying the length of the paper by a potentially large factor). The
reader may consult the introduction to [1] for a discussion of the more serious difficulties
one would encounter in the presence of singular fibres.

Since the construction of the homotopy from the composition of the two maps we con-
struct to the identity uses a moduli space of annuli, faithfulness can be seen as the ana-
logue of the generation criterion [2]. Heuristically, the strategy for the proof is the fol-
lowing: Let X be a symplectic manifold equipped with a Lagrangian torus fibration over
a base O (we denote the fibre over ¢ € Q by F,), and L a Lagrangian in X. Consider
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moduli spaces of holomorphic discs with three marked points, on which we impose La-
grangian boundary conditions given by L and a fibre. We shall consider two flavours for
this moduli space (see the leftmost diagram in Figure 1): in the first case, one marked point
is distinguished as an input mapping to L, and the remaining two are outputs mapping to
intersection points x and y of L with a fibre, while in the second case, the intersections
of L with a fibre correspond to inputs, while the marked point on L is an output.

In the classical versions of Floer theory, one would consider the subcategory of the
Fukaya category of X whose objects are fibres, and the Yoneda module over this subcat-
egory associated to L. By allowing the addition of an arbitrary number of marked points,
the first of these moduli spaces defines the map from the Floer cohomology L to the en-
domorphism algebra of this Yoneda module, and the second moduli space defines a map
which one could hope to show is a right inverse by gluing the two triangles to an annulus,
and degenerating this annulus to two discs meeting at an interior point; one of the discs
has Lagrangian boundary conditions on an arbitrary fibre and the other has Lagrangian
boundary conditions on L and carries the two boundary marked points. Since the moduli
space of discs with boundary on an arbitrary fibre gives us a copy of the ambient space X,
the first type of disc imposes no constraint, so we are simply considering the moduli space
of discs with boundary on L (and two marked points). This moduli space represents the
identity on Floer cohomology.

Trying to implement this strategy in this setting runs into a convergence problem:
since the fibres are disjoint, they are Floer-theoretically orthogonal, so the Yoneda module
defined by L is a direct product of the corresponding modules for all fibres. The map back
to Floer theory is not well-defined because it is the sum of infinitely many terms. The
correct framework for this argument is in fact family Floer cohomology, and the main
difficulty that arises is due to the need to make compatible families of perturbations in
defining the Floer cohomology of L with every fibre; in the classical case, one can choose
such perturbations independently for all pairs of objects.

2. Lagrangian torus fibrations and their rigid analytic dual

2.1. Flux and integral affine structure

Let (X, w) be a closed symplectic manifold of dimension 2n, and 7: X — Q a La-
grangian torus fibration, whose fibre at a point g € Q is denoted F,. We briefly recall the
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construction of an integral affine structure on Q induced by the symplectic structure on X
(see [13] for an extended discussion geared toward mirror symmetry).

Since 7 is a fibre bundle, the cohomology groups of the fibres form a local system over
the base, e.g. for any continuous path {g;};c[0,1] in Q, we have a canonical isomorphism

H\(F,,Z) — H'(F,,Z) (2.1

which depends only on the homotopy class of the path. The fact that the fibres are La-
grangian yields in addition an element of H! (Fy,, R) associated to every homotopy class
of paths; this is the flux which is defined as the integral of the symplectic structure on
cylinders in X lying over paths in Q (see [16]). As a result, we obtain an integral affine
map

H'(F,,R) — H'(F,,R) (2.2)

which takes the origin to the flux and whose derivative agrees with the classical isomor-
phism of (2.1) by passing to real coefficients.

Since points which are sufficiently close are connected by a canonical homotopy class
of paths, we obtain a map from a neighbourhood of every point ¢ € Q to a neighbourhood
of the origin in H'(F,, R) which assigns to every point the flux of the corresponding short
path. The Arnol’d-Liouville theorem implies that this is a diffeomorphism near the origin,
and in particular we have a natural isomorphism

7,0 = H'(F;,R). (2.3)

In particular, whenever p lies in a sufficiently small neighbourhood of ¢, we write p — ¢
for the corresponding element of T, Q.

We say that a subset P C Q is an integral affine polygon if its image under the flux
map is a polygonal neighbourhood of the origin defined by inequalities of the form

(U, v;) > A 2.4

with v; an integral vector, and A; real. The key reason that this notion is well-behaved is
that the differential of the isomorphism in (2.2) preserves the integral structure on first
cohomology with real coefficients defined by the integral cohomology lattice.

2.2. Flux and the energy of holomorphic strips

Let J denote the space of w-tame almost complex structures on X. Given a point g € Q
and a closed Lagrangian L C X, pick a Hamiltonian diffeomorphism ¢ so that ¢L is
transverse to Fy.

In order to define the moduli spaces of holomorphic strips with boundary on L and F,,
pick a family J = {J; € J}/e[0.1]- We obtain a holomorphic curve equation on the strip
B =R x [0, 1] with Lagrangian boundary conditions:

u: B— X, osu = J;0su, 2.5)
u(s,0) e F,, u(s,1)e¢L. 2.6)
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Given a pair (x,y) € ¢L N F,, denote by M, (x, y) the moduli space of Floer tra-
jectories connecting x to y; this is the quotient by translation in the R factor of B of the
space of solutions to (2.5) and (2.6) which in addition satisfy the asymptotic conditions

lim u(s,t) =x and lim u(s,t) =y. 2.7
§—>—00 §—00
We denote by Hq (x, y) the Gromov—Floer compactification of this moduli space.

Floer theory uses the moduli spaces Mq (x, y) to define the Floer complex between
L and F;; the goal of family Floer cohomology is to study these complexes for varying
q € Q. To this end, we denote by

Xp— P (2.8)
the restriction of the fibration & to a neighbourhood P of g. Assume that such a neigh-
bourhood is contractible, and fix a Lagrangian section

T: P —> Xp, 2.9

which determines a basepoint TP N F), on each fibre of 7 over P. By the Arnol’d-
Liouville theorem, the projection of the cotangent bundle to P factors through X p,

T*P - Xp — P, (2.10)

and the choice of the section t determines a canonical such factorisation which maps the
0-section of T* P to the image of 7. For this reason, we call the choice of 7 a 0-section
over P.

We now assume that ¢ L is transverse to all fibres F), over points p € P, which can
of course be achieved by shrinking P since ¢L and F, were assumed to be transverse.
Since P is contractible, the transversality assumption implies that the intersection of ¢ L
with X p is a union of components each of which is a (Lagrangian) section over P. For
each component x of L N X p, choose a function

gx: P—->R 2.11)

the graph of whose differential defines a lift of x to 7* P under (2.10). Let us write x(p)
for the intersection of a component x of ¢ L N X p with the fibre F, whenever p € P. The
function g, determines a path {tdgy};e[0,1] from the basepoint on F), to x(p).

Our goal is to compare areas of the moduli spaces Mp (x(p), y(p)) for varying
p € P.To this end, we note that these moduli spaces decompose as unions of components
labelled by classes B € m2(X, ¢ L U F),). The transversality assumption (and contractibil-
ity of P) implies that we have canonical identifications between these relative homotopy
groups. In particular, we say that u € ﬂq (x(q),y(g)) and v € Mp(x(p), y(p)) are
homotopic if the classes they represent agree under this identification.

One of the basic invariants of homotopy classes of holomorphic curves is the energy

E(u):/u*(a)). (2.12)
B

Another such invariant is the class of the boundary

[0u] € H((F)y, Z), (2.13)
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which is defined by concatenating the restriction of u to the boundary component mapping
to F), with the paths from these intersection points to the O-section that are determined by
the functions g, and g,. Whenever u and v are homotopic maps with boundary conditions
on F, and F), the classes of their boundary are identified by the analogue of (2.1) on
homology.

We now state the following basic result, which is a direct consequence of Stokes’s
theorem, and which expresses the difference of the energy of homotopic maps:

Lemma 2.1. Ifu and v are homotopic, then
EW) — &) = (p—q.[0ul) + &y(q) — &y(p) + &x(P) — 8x(q). (2.143

While the proof is omitted (see [1, Lemma 3.2] for a related result), we shall comment on
the basic intuition, assuming for simplicity that [d0u] vanishes (note that given u# and g,
the function gy, may be chosen to achieve this). As illustrated in Figure 2, the expression
gx(g) — g« (p) measures the area of the region bounded by the O-section and x, together
with the fibres F; and F),, while g,(q) — g,(p) measures the area of the corresponding
region with one boundary on the section y. The difference between these expressions
gives the area of the region bounded by the fibres F, and F), together with the sections x
and y, which is the difference in areas between homotopic strips in ﬂq (x(q), y(g)) and

M,p(x(p), y(p)).

E) ‘ . . E(v)
Fig. 2
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2.2.1. Fukaya’s trick. While Lemma 2.1 provides the key estimate comparing areas of
strips with boundaries on nearby fibres, it suffers from the following major deficiency:
the moduli spaces ﬂq (x(q), y(g)) and M,, (x(p), y(p)) may a priori be completely dif-
ferent so that the Floer theories of L with the fibres F, and F, may be unrelated. By
using Gromov compactness, one can in fact see that the situation is not as dire as we just
described: assuming all moduli spaces are regular, the components of Mq (x(q), y(q))
and /\_/lp (x(p), y(p)) of bounded energy will be in bijective correspondence whenever
q and p are sufficiently close. Unfortunately, the minimal distance between g and p
which is required to achieve this bijection may shrink to O if we drop the bound on
energy.

Fukaya [9] introduced an elementary trick to resolve this difficulty using the fact that
the space of tame almost complex structures on a symplectic manifold is open in the
space of all almost complex structures. We discuss a minor variant which is adapted to
our situation (see [1] for more detail).

Recall that {J;} is a family of tame almost complex structures used to define
ﬂq (x(q), ¥(q)). Let ¥, be a diffeomorphism of X mapping F;, to F, which is sup-
ported over a contractible subset of Q. Assume that v, preserves the submanifold ¢L,
and that the pushforward (). J; is a tame almost complex structure for ¢ € [0, 1]. The
first condition is easy to achieve using the fact that ¢ L is transverse to all fibres over
F,, and the second by shrinking P if necessary, since the space of tame almost complex
structures is open in the space of all almost complex structures.

Lemma 2.2. If /Vp(x(p), v(p)) is defined with respect to (Yp)+J;, then composition
with p, defines a homeomorphism

My (x(q), y(q)) Y, M, (x(p), y(p)). (2.15D)

Lemma 2.2 provides the key idea for our approach to family Floer cohomology. In par-
ticular, in addition to the usual choices of auxiliary structure that enter in the construction
of Floer-theoretic structures (see e.g. [19]), we must keep track of various diffeomor-
phisms, and in fact families of diffeomorphisms, which map fibres to each other, and
which preserve the tameness of certain families of almost complex structures among other
requirements. This is the main reason for the technical complexity which the reader will
encounter in Section 5.

We shall return to the construction of the family Floer complex in Section 2.4, after
discussing the mirror side.

2.3. The rigid-analytic T -dual

In this section, we construct the space Y which will be mirror to X by an analogue of
SYZ duality in the non-archimedean setting. Such an approach was first suggested by
Kontsevich and Soibelman [15], and is discussed in more detail in [1].
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The space Y will be a rigid analytic space over a Novikov field; recall that we can
associate to any field k the universal Novikov field

o
A:{Za,»T*f )ai ek % R, lim A =oo}. (2.16)
=0

This is a non-archimedean field, whose non-zero elements, denoted A*, are equipped with
a valuation that assigns to a non-zero series the exponent of its leading order term:

o0
val: A* > R, aoT™ + ) a;T" > ho, (2.17)
i=1
where ap # 0, and A9 < A; for i > 0. The elements of vanishing valuation are called the
unitary elements,

o0
Up = [ao +3 o ‘ a #0, a; €k, A > 0, lim A; = oo}, (2.18)

‘ i—00
i=1

and form the analogue of the unit circle in C.
As a set, the analytic space Y is simply the union

]_[ H'(F,, Up) (2.19)
q€Q

where each fibre H 1(Fq, Up) should be thought of as the dual torus to Fy, by anal-
ogy with Hl(Fq, sh = Hl(Fq, R)/H'(F,, Z). In order to exhibit the analytic structure
on Y, we shall construct ¥ by gluing simpler pieces called affinoid domains [23] which
are associated to integral affine polygons in Q. To this end, it is necessary to introduce
some combinatorics to keep track of a cover consisting of such polygons.

2.3.1. Covers of Q and Y. Let X be a partially ordered set labelling the vertices of
a simplicial triangulation of Q, i.e. there is a bijective correspondence between totally
ordered subsets of ¥ and simplices of Q, which assigns to a subset of X the unique
simplex spanned by its vertices. Note in particular that all maximal totally ordered subsets
of ¥ have n + 1 elements, since these correspond to top-dimensional simplices in Q,
which is a manifold of dimension n. We write o7 for the cell associated to a (totally
ordered) subset 1 of X.

For each element i € X, assume that we are given an integral affine polygon P; with
basepoint ¢; = o; such that

P; C P; wheneveri < j, (2.20)
0= U Pi/m,’ (2.21)
i
where the equivalence relation ~ is generated by the inclusion P; C P; fori < j. As

before, we denote the image of every point p € P; in H'(F;, R) under the flux map by
p — gi, where F; = F,.
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Lemma 2.3. If Q is an integral affine manifold, there is a partially ordered set ¥ index-
ing the vertices of a simplicial triangulation and a cover by integral affine polygons, so
that (2.20) and (2.21) hold, and such that oy is contained in the interior of Pmax| for
each totally ordered subset I C X.

Proof. Pick a triangulation A of Q by affine (not necessarily integral) simplices. For
example, given an auxiliary Riemannian metric on Q we may choose, for a sufficiently
small €, a generic finite set in Q which is e-dense. There is a corresponding Delaunay
triangulation [7], which is dual to the Voronoi diagram of nearest-neighbours to the points
in the given finite set. Having chosen € sufficiently small, we can construct the Delaunay
triangulation to have flat simplices with respect to the affine structure (i.e. define vertices
to be affine segments connecting vertices, faces to be affine simplices spanned by triples,
etc.).

For the remainder of the proof, we shall use letters i, j, ... to denote vertices of the
triangulation A. Recall that the barycentric subdivision BA has vertices given by the
barycenters of the simplices of A. We write BA | for these barycenters, and

BAIIC"'CIk C Alk (222)

for a higher-dimensional simplex. The partially ordered set ¥ will correspond to the ver-
tices of the double barycentric subdivision so that its elements are given by sequences
Iy C --- C Iy of nested simplices of A (note the conflict in notation with the statement,
where [ refers to a subset of X).

To construct the integral affine cover, choose for each set 7 labelling a simplex A of
A an integral affine polygon P; with non-empty interior P;. To state the desired proper-
ties, we introduce the notation

Pyc.cp, =P 0---N Py (2.23)

for a sequence I C --- C Iy which corresponds to an element of X.
We require the following properties to hold:

Ay is contained in the union of the open sets p yforJ C I, (2.24)
Py is contained in the union of the interiors of the

barycentric simplices that contain the barycenter BAy, (2.25)
BApc..cp, N ﬁl.c---clk # () for each nested sequence Iy C -+ C I. (2.26)

These conditions can be readily achieved by induction on the dimension of the simplex
(see Figure 21 for an implementation of the same idea in a different context): first pick
integral affine polygonal neighbourhoods P; of all vertices which are contained in the
union of the interiors of simplices of the barycentric subdivision which are adjacent to A;.
In the inductive step, let A, C Aj be a convex subset of the interior containing the
barycenter such that A; is covered by the interior of A’ together with the union of the
previously chosen polygons P; for J C I and

Ay O BALcocrcr O Prcocr, #9 (2.27)
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for every nested sequence with largest subset /. This second property can be achieved
because Pgllcmc I, intersects BAj, c...cy, non-trivially by induction, which is contained
in the boundary of BA,c...ci,ci, which is itself a subset of Aj.

We then choose P; to be an integral affine polygonal neighbourhood of A’ suffi-
ciently small for (2.25) to hold. Condition (2.24) holds automatically, while (2.26) follows
from the assumption that A’, contains the barycenter of A; for the sequence of length one,
and in general from (2.27).

Note that (2.25) implies that

PiNPy=9 (2.28)

unless I C J or J C I. This implies that the cover {P;} satisfies (2.21), while (2.20)
follows by construction.

It remains to construct the triangulation labelled by ¥ so that any simplex is con-
tained in the corresponding polytope. We shall construct the triangulation to have affine
simplices (not necessarily integral) which are the (local) convex hull of their vertices. It
thus suffices to pick points

oL C--Cly € PIIC'“CIk N BoA[]C-uClk- (229)

By construction, it automatically follows that whenever J; C --- C J; is a subsequence
of IT C --- C Iy we have

ojnc-cl € P]]CWC[](? (2.30)
hence the edge connecting these two vertices is contained in Py, c...cj,, and more gener-
ally for any simplex. If we define the partial order on the elements of X to be given by
reverse inclusion, the result follows.

Having finished the proof, we return to the notation where i, j, ... correspond to
elements of X. O

Remark 2.4. The proof gives a stronger statement: there is an integral affine polyhedral
cover of Q which has dimension n, i.e. there are no non-empty n + 2-fold intersections.

Given a totally ordered subset / in X, let

PlzﬂPiZPmaxIa 4l = qmax I, Fi = Fax1- (2.31)

iel

Let Y; denote the inverse image of P; under the valuation map from H 1(F 1, A®) to
H(F;, R) = T,, Q. Since A" splits as R x Uj, the affine isomorphism in (2.2) yields a
natural identification

Y = ]_[ H'(F,, Up) (2.32)
PEP]

of sets. Moreover, we obtain an isomorphism
H'(Fj, A*) - H'(F;, A") (2.33)

defining an inclusion of ¥; into ¥; wheneveri < j.
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Definition 2.5. The rigid-analytic T-dual of X is the quotient
y=]]vi/~ (2.34)

iex
where the equivalence relation identifies points in Y; with their images in ¥; under the
isomorphism (2.33).

Remark 2.6. Equation (2.21) was missing from the corresponding discussion in [1].
Note that, in general, the fact that the sets P; cover Q implies that the natural map from
the right hand side in (2.21) to the left hand side is a surjection, which in fact admits a
splitting (by mapping ¢ € Q to the corresponding point in P; for j maximal among those
containing ¢). Passing to the rigid analytic side, we would obtain a space which contains
the rigid-analytic T-dual as a retract.

Each Y; is an affinoid domain, equipped with the ring of regular functions consisting of
Laurent series on Hi (F;, Z) which converge in Y;:

0 ={ S fazh faeA|Voen, Jim_(val(fa) + (v, A)):oo}. (2.35)
AcH, (Fi,2) 14]—>00

By construction, the inclusion ¥; — Y; induces a (ring) map O; — O;. The space Y is
therefore a rigid analytic space in the sense of Tate [23]. Given a totally ordered subset
I ={ip <iy <--- < iy}, define the O;,-module

0 =0, ®o - ®0;, Oip- (2.36)

i
2.3.2. The twisting cocycle. Let X denote the inverse image of P in X. Fix Lagrangian
sections 7;: P; — X; Moreover, choose functions f;;: P;; — R such that fibrewise
addition of df;; agrees with the transition map between the restrictions of 7; and 7; to F;;.
We obtain a function

fij + fik = fik: Pije — R (2.37)
whose differential at g lies in Hj (Fy, Z) and define
aijr = Tfij(Qk)+fjk(Qk)*ﬁk(qk)zglfﬁ.i+fjk_ﬁk) c ;kjk 2.38)

where O;"j « 1s the multiplicative group of non-vanishing functions.

If vijrisa Cech representative of a class v € HZ(Q; Z»), define
Otivjk = (—1)vijk(xijk. (2-39)

Denote the corresponding cohomology class by a¥ € H2(Y, O*). Given a pair (I, J) of
ordered subsets of ¥ such that min J = max [, it is convenient to introduce the notation

v v
aJ,I = ®min I,max I,max J * (2'40)
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2.3.3. Twisted sheaves

Definition 2.7. An («¥)~'-twisted pre-sheaf of perfect Oy-modules consists of (i) a finite
rank graded free O;-module J(i) for each i € ¥ and (ii) a degree 2 — |/| map

Fr: 0y ®0;, Fo) — Flg) (2.41)

for each ordered subset /. These data are required to satisfy the equation

Z (~DIHalg ) a — Za;’i[ﬁ? =0Jza=0. (2.42)

i#min I,max iel

Remark 2.8. The sign conventions used are those of [19]. At the cohomological level,
the justification for the terminology is given in [1, Section 2.4], though the reader should
be aware that the cocycle is on the wrong side of [1, (2.33)]): from an algebraic point of
view, the natural definition consists of maps G; satisfying

> D@ )T G a =Y G 0Gma =0, (243)

i#min I,max iel

where i1 are respectively the elements of / immediately preceding and succeeding i.
These two notions are equivalent by setting §; = F7 - [[;; aé’min Dt

If J;; is a quasi-isomorphism, we call such an object an (a®)~!-twisted sheaf of perfect
Oy-modules. Henceforth, we shall call such objects sheaves, specifying o’ only when
necessary for clarity.

The sheaves form a differential graded category, with morphisms given by

Hom(F, J") = @Hom@mml(?(min D), F(max I))[1 — |1]], (2.44)
1

where the direct sum is taken over totally ordered subsets I, and F(max /) is an Op;y 7-
module via restriction. It is convenient to denote each summand on the right hand side
by

Hom; (¥, F) = Homg_, ,(F(min I), F'(max I))[1 — |I]]. (2.45)

If we decompose every element T of this direct sum as T = )_; Ty, the differential acts
on an element a € Hom; (¥, F) according to the formula

W T (a) = Z(O‘}j?,z.ff’rlf o T=(a) + (—1)""_|+(1_'T')°‘}).2,1.5 T)= o S",is (a))

iel

+ ) (= D=1+ TI Ty () (2.46)

i#min I,max [
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For a summand 77, we may rewrite the above as

,u,lTI(a) = Z 053’13"‘, o T[(a)
J
min J=max [/

+ Z (—1)|If§|+(1_|T’|)otyJT1 0T (a) + Z (_1)|1_,-‘|—1+|a|+|T1\Tl(a)’

, 100}
min /=max J min / < j<max /

(2.47)

where the sums on the right hand side are over all totally ordered subsets J and 7 U {j}.
The composition of morphisms in this category is given on a € Hom; (&, F) by

w?(S, T)(a) = Z(_U“S'—l)"f'a;,,ﬁ S;z o T=(a). (2.48)

iel

2.4. The local mirror functor

‘We now shift our attention back to the symplectic manifold X, whose Fukaya category we
plan to relate to the category of twisted sheaves on Y. We shall assume that 72 (Q) = O,
which excludes the presence of holomorphic spheres in X, or holomorphic discs with
boundary on any fibre F,. Moreover, we shall only consider Lagrangians which are fau-
tologically unobstructed in the sense that

there exists J; € J such that L bounds no Jz -holomorphic discs. (2.49)

Returning to the setting of Section 2.2, we now impose the condition that the family {.J;}
of almost complex structures used to define the moduli space M, (x, y) satisfies

i =¢(J) =deoJrod, . (2.50)

For generic choices of families {J;}, classical Floer-theoretic methods imply, under these
assumptions, that M (x, y) is a manifold with boundary given by the union

[I My x MGz, y). (2.51)

ZEGLNFy

In particular, we can define (ungraded) Floer complexes CF*(L, F,) over a Novikov field
in characteristic 2. Since there is much interest in working with Z-graded complexes in
characteristic 0, we discuss the necessary auxiliary conditions which L must satisfy.

2.4.1. Gradings and Pin™ structures. For any J € J, there is a natural isomorphism of
complex vector bundles TX = 7*(T Q) ®r C. In particular, there is a natural homotopy
class of quadratic complex volume forms on T X obtained by complexifying a density
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on Q; let n be a quadratic complex volume form in this class. We then require that L
be graded with respect to 7, i.e. the map L — RP' = R/zxZ induced by 7 is null-
homotopic, and that a lift of this null-homotopy to the universal cover of RP! be fixed.
For a fibre L = F,, the map F, — RP! is constant, and we fix the lift to R with value 7.
This ensures that the Floer complexes are Z-graded, as explained in [19, Section (12b)],
since we can associate to each intersection point x € ¢L N F, a well-defined Maslov
index deg x € Z. The key reason for introducing the Maslov index is that the dimension
of moduli spaces of strips can be expressed in terms of it; more precisely, in the setting of
Section 2.2, we have

dimg M(x, y) = degx —degy — 1. (2.52)

In order to work over a field of arbitrary characteristic, consider a class w €
H2(Q, Z,) which is the second Stiefel-Whitney class of a vector bundle E. We require
that

the restriction of 7 *w to L agree with wy(L). (2.53)

Remark 2.9. The most important cases of interest are the trivial case and w = w,(Q).
As in [12], one can drop the condition that w be a Stiefel-Whitney class: the restriction
of w to the 3-skeleton may be represented as the second Stiefel-Whitney class of a vector
bundle. Since an orientation is a discrete datum, the uniqueness up to homotopy of a re-
traction from a 2-dimensional complex to the 3-skeleton suffices to establish consistency
of orientations, and no higher coherence is required, even in the parametrised setting.

Assumption (2.53) implies that 7* E|L @ T L admits a Pin™ structure which we fix; this is
the choice of a relative Pin™ structure on L. Given a Hamiltonian isotopy ¢, we obtain a
corresponding relative Pin™ structure on ¢ L. For the fibres, we choose a Pin™ structure on
Tq* 0 ® E,, which induces a relative Pin™ structure on F, using the isomorphism between
Tq* Qand TF,.

Given an intersection point x € ¢L N Fy, pick a path y, of linear Lagrangian sub-
spaces of T, X starting at T, ¢ L and ending at T, F;, in the homotopy class prescribed by
the graded lift of these Lagrangian subspaces (see [19, Section (11j)]). We obtain a vector
bundle over the interval with fibre y, (1) @ 7*E. The choice of relative Pin™ structures
on L and F; yields Pin™ structures on the restrictions of this bundle to 0 and 1. Let vy
denote the free abelian group generated by the two choices of extensions of this Pin™
structure to the interval, with the relation that their sum vanishes. Let o, denote the de-
terminant line of the Cauchy—Riemann operator on complex linear maps from the upper
half-plane to 7X with Lagrangian boundary conditions y, (¢) (extended by ¢L and F,
outside the interval), and |o,| its orientation line. We define

Oy = |0x| ® vx. (2.54)

2.5. Local mirror construction

Giveni € X, werecall in this section the construction of an O;-module F (L) associated to
the Lagrangian L. Assume that the cover P; is sufficiently fine that there exist Hamiltonian
diffeomorphisms ¢; such that ¢; L is transverse to all fibres over P, and that, forall p € P,
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there exists a diffeomorphism v/, mapping F; to F), preserving the submanifold ¢ L, and
such that ()4 J; is tame.

Given a pair of intersection points x;, y; € F; N¢; L and an element u € M, (y;, x;),
denote the orientation line of the linearised Cauchy—Riemann operator at u by

8. = |det D,| = |coker D,|" ® |ker D,|, (2.55)

where the absolute value symbol stands for the line of orientations, and |V |V is the dual
line. Index theory determines a canonical isomorphism (see [19, Remark 11.6])

8y ® 8y = 5y, (2.56)

Assuming that degy; = degx; + 1, the moduli space M (y;, x;) consists only of rigid
curves, and ker D, is 1-dimensional, which implies that it is generated by translation in
the s-direction. Fixing the orientation of this kernel corresponding to the positive direction
yields a map
Out Ox; — Sy (2.57)
we denote by ) the product of 9, by (—1)deet),
The family Floer module and the differential are given by

FL.i= P 0i®b.. (2.58)
Xi€¢;i LNF;

Fi: F(L, i) — F(L, 1], (2.59)

Filsy =P Y. 18 eu,. (2.60)
Vi ueMyg; (vi,xi)

Fukaya’s fundamental observation [9] is that Gromov compactness implies that this
map is well defined, i.e. the expression Y., c vq(y, 1) TEW 710u) gives a function in O
(see [1, Proposition 3.3]). Indeed, the condition of lying in O; is equivalent to T-adic
convergence at every point z € Yp. Assuming that z lies over a point p € P;, we first
use Lemma 2.2 to identify Mq (vi, xi) with Mp(yi(p), xi(p)), and then Lemma 2.1 to
see that the result of evaluating z at such a point recovers the Floer differential for the
Lagrangian Floer theory of ¢ L with F), (equipped with a U, local system). It is now
a standard fact that the Floer differential converges as a consequence of Gromov com-
pactness which asserts that there are only finitely many rigid holomorphic curves with
bounded energy.

2.6. Statement of the main theorem, and outline of the paper

The main result of this paper is the following:

Theorem 2.10. Let X — Q be a Lagrangian torus fibration with my(X) = 0, and
L and L' Lagrangians satisfying condition (2.49). Given a sufficiently fine cover of Q,
we can associate to L and L' (twisted) sheaves F(L) and F(L) of perfect complexes
(with respect to the induced cover of Y), as well as maps

CF*(L, L) & Hom(F(L), (L") > CF (L, L) 2.61)

whose composition is homotopic to the identity up to sign. Given a finite collection of
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Lagrangians, the map C extends to a faithful A functor from the corresponding Fukaya
category to the category of twisted sheaves of perfect complexes.

We now indicate how the proof can be pieced together from the paper:

e Section 5.1 introduces the precise notion of a sufficiently fine cover.

e The construction of the twisted sheaf F(L) is done in Section 8.5, with Lemma 8.5
asserting that the necessary equations hold.

e The chain map C is constructed in Section 8.4, with Lemma 8.6 showing that it is a
chain map.

e The corresponding results for P are proved in Section 8.5, in particular Lemma 8.7.

e The proof that the composition is homotopic to the identity is given in Proposition 8.8.

e In the Appendix, we construct the A, functor. In fact, we give a slightly simpler de-
scription of this map in the Appendix than in the main part of the paper. The additional
complexity of the paper’s main construction comes from the need to see the holomor-
phic curves defining such a map arise as components of the boundary of a moduli space
of annuli.

We now explain how the results of Section 8 rely on the previous sections:

e The construction of J entails the construction of maps F; for |I| > 2 yielding a
(twisted) sheaf (of perfect complexes) on Y. This will require the study of higher con-
tinuation maps in Floer theory and their convergence.

e The construction of € and P is conceptually not too different from that of higher contin-
uation maps, but the combinatorics required to keep track of the various moduli spaces
and to appropriately formulate convergence is significantly more complicated.

In order to do this, we introduce certain abstract moduli spaces in Section 3 and the cor-
responding spaces of maps in Section 4. The convergence problems are discussed in Sec-
tion 5, which is at the heart of the paper. The key idea it to choose a very fine triangulation
of the base of the fibration, make controlled choices at the vertices of this triangulation,
and associate to higher-dimensional cells families of equations which interpolate between
these.

The remaining sections begin the transition from moduli spaces to the algebraic struc-
tures constructed in Section 8:

e In Section 6 we show that the composite CF*(L, L") — Hom(F(L), F(L")) —
CF*(L, L) may be interpreted as a moduli space of degenerate annuli parametrised
by Q.

e In Section 7 we build a cobordism between the moduli space of degenerate annuli and
a moduli space which defines the identity on Floer cohomology. The main delicate
point is that it is not possible to perform the gluing construction continuously in such a
way that the annuli over every point in the base are obtained by gluing the degenerate
annuli corresponding to that point. This is responsible for the notion of an annulus
gluing function introduced in Definition 7.1.
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3. Families of Riemann surfaces

3.1. Adams’s moduli space

Let M» 4 denote the moduli space of discs with two boundary punctures and d interior
marked points (z1, ..., zq). Since the complement of two points on the boundary of a
disc is biholomorphic to a strip, and the biholomorphism is unique up to translation, we
obtain a subset

M My g 3.1)

consisting of configurations for which the marked points lie on R x {1/2} after identifi-
cation with the strip, and whose ordering along the real line is opposite to the ordering
of the labels. We obtain coordinates for ./\/lgg/lz}’ord by taking the differences in the first
coordinates of the marked points, which identifies this space with (0, o0)?~!. In partic-
ular, the fibre of the universal curve over M 4 at a point in ./\/lgéz}’ord
(r1, ..., rq—1) is biholomorphic to a strip with marked points satisfying
Zit+1 — zi = (=2r;, 0). (3.2
The universal curve over M{th/iz}’ord naturally extends to a universal curve Hd with
marked point over the product

with coordinates

Aq =10, 00197, (3.3)

with the property that setting a coordinate equal to co increases the number of components
by one, while setting it equal to 0 does not change the number of components but reduces
the number of marked points by one. We shall presently give an explicit description of this
universal curve, but it is useful to note that it can be constructed more abstractly: consider

——{1/2 .= . o
the closure M;é bord of ./\/1{21 5/12}’0“‘ in M> 4 and note that there is a natural projection
—{1/2}ord  —
Moo o A, (3.4)

which is obtained by forgetting all components which are not discs. The universal curve
over Ay is then obtained by taking the union of disc components of the universal curve

—{1/2},0rd —{1/2},0rd . — .
over M{zfl hor . For example, M{zé o can be obtained from A3 by replacing the stra-

tum with coordinates (0, 0) with an interval. The fibre of {3 over this point is a strip with
a single interior marked point (see Figure 3), whereas the fibre of the universal curve over
a point in M{zféz}’ord which projects to this vertex is a nodal curve which is the union of
this strip with a sphere with three marked points in addition to the node. The cross ratio
between the four points is a real number because the condition of lying in M%z}"’“‘ is

a real colinearity condition, and the corresponding real number parametrises the fibre of
—{1/2},ord .

M{Zé b over the points (0, 0).

Remark 3.1. We can alternatively construct Ay as a subset of the configuration space
of points on a disc, in which points are allowed to collide (unlike in the moduli space
where they bubble). In this case, U is simply the restriction of the universal curve over
the configuration space.
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31 —"0 3=—"1—-"0 32 1——~"0
30 30 3270
30 30 jC I ——)

Fig. 3. The moduli space A3, with strata labelled by the fibre of the universal curve.

We shall now give an explicit description of this fibre over a point 7 € Ag. First, we
associate to each pair (r, r’) of non-negative real numbers the finite strip

B, =[-r, r'l x [0, 1]. (3.5)
Whenever r or r’ are infinite, we let the corresponding half of the interval be open:
Booy = (=00, '] x [0,1] and By = [—r, 00) x [0, 1]. (3.6)

Finally, we set Boo,oo = B, B4 = By o0, and B_ = B 0.
Given r € Ay, consider the union of strips

BOOdel nl Brd—l;rd—z ... BVZJ"I nl Brlsoo- 3.7

The fibre I; is the quotient of the above union by the following equivalence relation: if
r; is finite, we identify

{ri} x [0, 1] ~ {—=ri} x [0, 1] (3.8)

where the first interval lies in By, , and the second in By, ,,_,. This fibre has marked
points which are the images of the points (0, 1/2) in each strip B,, ;, ,, as shown in
Figure 4.

=4 0 3 =m0 |
[ ) [ ] [ ] [ ) [ ]
0 r4 —r3 0 ) —r] 0

Fig. 4. Decomposition of Uf; into finite strips.

Remark 3.2. In [6], Adams constructed a family of paths in the d-simplex from the
initial to the terminal vertex which are parametrised by the d — 1-cube. Identifying the
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interval [0, 1] with [0, co], we obtain the moduli spaces Ay as we defined them. We shall
not explicitly need the connection between our construction and Adams’s.

The fact that the moduli space of discs with d — 1 marked points is denoted I{ is justified
by the eventual Floer-theoretic application as explained in the next remark:

Remark 3.3. Assuming some familiarity with Floer theory, we give an informal descrip-
tion of how these moduli spaces shall be used. The informal ideas discussed here will be
implemented in detail later in the text, hence can be safely skipped by those seeking only
precise definitions.

Assume that L and F are Lagrangian submanifolds, and that {J; }fzo are choices of
almost complex structures with respect to which one can define the Floer complexes
{CF*(L, F; J,-)}?zo. A choice of path connecting J; to Ji allows one to write a con-
tinuation equation on the strip R x [0, 1], which defines a chain map CF*(L, F; J;) —
CF*(L, F; Jp).

We shall only be interested in such continuation maps fori < j; in particular, there are
finitely many ways (in fact, exactly 24~ 1) of composing these continuation maps to obtain
amap CF*(L, F; Jop) — CF*(L, F; Jg). Each such composition corresponds to a path,
along the 1-skeleton of the simplex A4, with initial point O and terminal point d, with the
property that any intermediate vertices appear in increasing order along the path. This is
naturally a description of the vertices of Ay as follows: the composition of continuation
maps associated to the sequence (Jo, J;;, ..., Ji;, Jq) corresponds to the vertex of 7ld
with coordinates labelled (i1, .. ., ix) equal to co, and all others equal to 0.

Recall that the continuation map CF*(L, F; J;) — CF*(L, F; J) is associated to a
path Jix(s) of almost complex structures, parametrised by s € (—o00, 00), which agrees
with J; for s > 0 and with J; for s < 0. In order to see a general point in Ay arise
from Floer-theoretic considerations, we heuristically think of such a path as obtained by
smoothing a discontinuous path of almost complex structures which agree with J; for
s > 0and J; for s < 0. In later sections, we shall choose smooth paths, but for this
informal discussion, it is simpler to take discontinuous paths, which have the advantage
of being canonical, even though the continuation map is strictly speaking not defined for
them.

With the above in mind, we can interpret a point in A, as giving rise to a continuation
map CF*(L, F; J;) — CF*(L, F; J). Identify [0, 1)?~! with [0, c0)?~!, and associate
to a point (rq,...,rqg—1) € [0, 00)4~1 the path of almost complex structures J(s) given
by the piecewise conditions

J)=Jr if2(ri1+---+r_1) <s <2(ri+---+rp). 3.9)

Whenever all coordinates r; vanish, we obtain the continuation map CF*(L, F; Jy) —
CF*(L, F; J;), whereas, in the limit where all ry are infinite, we recover the composition
of the continuation maps

CF*(L, F; Jo) > CF*(L, F; J}) —> --- — CF*(L, F; Jg), (3.10)

by considering the Gromov—Floer limit of continuation equations. More generally, re-
quiring that a given coordinate r; vanish corresponds to omitting it from the continuation
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map, i.e. considering the family of continuation equations corresponding to paths in the
subsimplex Ag_; C Ay obtained by omitting the k™ vertex. In the rx — oo limit, we
obtain paths which pass through the k™ vertex; in Floer-theoretic terms, this corresponds
to factoring through CF*(L, F; Ji).

3.2. Stratification of the Adams moduli space

Before giving the explicit description of the boundary strata of Ay and the corresponding
fibre of the universal curve, it is useful to introduce a more general choice of labels:

Definition 3.4. Let K be a totally ordered set. The compactified Adams moduli space of
paths Ak is the product

ﬁK = [0, OO]K\{minK,maxK}_ (3.11)

We also denote by Ax C Ag the open subset corresponding to the inclusion [0, 00) C
[0,00].Ifd = |K| — 1, let Uk denote the copy of the space Uy over ZK, and 27; denote
the fibre over 7 € Ag. The fibre over each point in A is a strip, and the elements of K \
{min K, max K} label the intervals between the marked points (as subsets of R x {1/2}),
while min K labels the positive end, and max K the negative end. The fibre over points in
the complement of Ak are disjoint unions of strips.

To keep the notation consistent, one can identify the space Ay with that corresponding
to K = {0, ..., d} (to reduce the complexity of the notation, we often write K =01 ---d
for such a set).

The space A is naturally stratified, and the partially ordered set of strata, with order-
ing given by inclusion, consists of pairs of subsets / and J of K such that

{minK,max K} C I C J. 3.12)

The partial ordering is such that the pair I C J precedes /" C J' whenever I C I' C
J' C J. We write Aj for the stratum corresponding to an element of this poset, and
note the identification

ﬁ{min K,max K}CK Eﬁl@ (3.13)

The geometric description of strata of Ag is recovered as follows (see Figure 5): the
pair I C J labels the stratum of Ag = [0, oo]K\min K;max K} for wwhich the coordinates
in I \ {min K, max K} equal oo, and the coordinates in K \ J vanish.

Remark 3.5. Continuing the discussion of Remark 3.3, recall that the vanishing of a co-
ordinate ri corresponds to omitting a given choice of almost complex structure J; from
the construction of families of continuation equations, whereas requiring that it equal co
corresponds to continuation maps which factor through the Floer complex for J. In par-
ticular, the stratum labelled by the pair I C J corresponds to continuation equations
constructed from the almost complex structures J; with k € J, with the additional con-
straint that all maps factor through the Floer complexes for J; withi € I.
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S
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0

o 0
02c02 012c012

Fig. 5. The moduli space g5 over Ag12.

There is an alternative description of the boundary strata which is often more useful.
Introduce the notation

K7 ={jek|j>i} and K- ={jeK|j<i} (3.14)

Lemma 3.6. The boundary stratum corresponding to I C J admits a natural product
decomposition

AICJZA>X.AJ AJz x---xAJ m>><A (3.15)
Tia i Mig_y
where I = {min K, ig, i{,...,i4, max K}. O

Giveni € K \ {max K, min K}, and by using (3.13), the above result for facets yields a
natural identification

Afmin K max K)cK\(i} = AK\(i}» (3.16)

Afmin K i.max K)cK = AK; X ﬁKl_s, (3.17)

corresponding to the locus where the i coordinate vanishes or equals co. The union of
the images of these inclusions over all i € K \ {max K, min K} covers the boundary
of ﬁ K-

The identification in (3.16) induces a natural inclusion

UK\{i} — Uk, (3.18)
which on the top stratum can be described in terms of the marked points (z1, ..., 2g—1)
giving rise to (21, ..., Zi—1, Zi—1, Zis - - - » Zd—1). On the other hand, (3.17) induces a map

Ug> x Ag=UAp> xUy= — Uk. (3.19)

If we restrict attention to the boundary strata of top dimension, this corresponds to the
fact that the fibre of U x over a point in A Kz X Ay = consists of a union of two curves,
and that the marked points which occur to the left of the interval labelled i lie on one of
these curves, with the other points lying on the other.
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Remark 3.7. The case |K| = 1 is a degenerate case of the above discussion. Whenever
it appears, we shall fix the convention that A is a point.

Denote by
Uy cg >uy (3.20)

the two subsets of /g which are represented by points of the form (7, 0) (respectively
(z, 1)) in a constituent finite strip of a fibre U/;.

3.2.1. Gluing strips. Consider the projection map
frcy: Ag Z [0, co)NmnKmaK} 10, 00l N = Ay, (3.21)

and note that composition with the inclusion A;c; — Ag is obtained by setting all
coordinates labelled by 7 \ {min K, max K} equal to infinity, and all coordinates in K \ J
equal to 0.
Expressing the boundary stratum A as a product of Adams moduli spaces yields
a projection A;; — Ay whenever I C I’ C J' C J, so that the following diagram
commutes:
Ak —— Aicy

N

‘Zl 'cl’
In order to define the gluing map, let us fix the maps
Broo = By and Beo, — By (3.23)

which split the inclusion B, ,» — B, and B, ,» — By, and are given outside these
regions by the projections

[/, 00) x [0, 1] = {r'} x [0, 1], (3.24)
(—o0, —r] x [0,1] = {—r} x [0, 1]. (3.25)

Returning to the description of the fibre U in (3.7), we see that (3.23) induces a
surjective (continuous) map . .
Upe i — U (3.26)

which is a diffeomorphism outside the infinite ends of ijlc , 7y that are labelled by ele-
ments of K \ J. Letting 7 vary over a neighbourhood vA;c; of A;cy in Ag, we obtain
a gluing map

Grey: fics Ukl ArcnvAics — Uk IVArcy. (3.27)

Let F: U — Z be a map from U to a topological space Z. Such a map is constant
along the positive (respectively negative) end if there is a map f: [0, 1] — Z such that
the restriction of F to each fibre U/ agrees with f near s = oo on the last component in
(3.7) (respectively near —oo on the first component).
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Definition 3.8. The map F is obtained by gluing if its restriction to neighbourhoods of
all boundary strata yields a commutative diagram

_ G _
[l Uk Arcy) —>Ug VA cy
lfld lF (3.28)
UklAicy —r .z

Since the gluing map G is surjective, F is determined, on a neighbourhood of a bound-
ary stratum, by its restriction to the stratum and the gluing map. In addition, continuity
implies that its restriction to the boundary is constant along each glued end.

To achieve transversality of moduli spaces of maps, it is convenient to introduce a
notion which is less rigid than the above gluing construction. To this end, we introduce
the thick part of the fibre:

Definition 3.9. If R < r; for all i € I, the R-thick part of U (relative to I C K) is the
union:

(1) fori e I of the strips

Bor C B and Bro C By (3.29)

FiysTi
where i_ < i < iy are successive elements of K
(2) for j ¢ I of the strips

By, C B and By 0 C By r;_ (3.30)

TjgTj

where j_ < j < jy are successive elements of K.

RO r - —R0 R
3 ° 2 ° 1 ° 0
—r 0O RN

Fig. 6. The R-thick part of /(43 relative to I = 013.

Let Ficy: Ug|vAicy — Z be afunction obtained by gluing, and assume Z is a Fréchet
manifold whose tangent space is equipped with a fixed collection of seminorms. We shall
say that a section of Fj_ ;T Z is consistent if the following properties hold: (i) there is
a constant R such that the support is contained in the interior of the R-thick part and
(ii) the seminorms of the sections at a point 7 € v.A;c are bounded by a constant mul-
tiple Of Y\ (min k,max k1 € '+ A consistent perturbation of Fic; is the image under
exponentiation of a consistent section.
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Definition 3.10. A map F': Uk — Z is obtained by perturbed gluing if its restriction to
vAjcy for all pairs I C J agrees with a consistent perturbation of a function obtained by
gluing.

In addition, we fix maps
€mink : Ax X By — Ug and emaxk: Ak x B — Uk (3.31)

whose restrictions to 7 € Ak give positive (resp. negative) strip-like ends on the fibre
U7, which agree up to translation with the natural ones coming from the last (respectively
first) factor in (3.7), and which are compatible with the gluing maps near every boundary
stratum.

3.3. Adams spaces with a distinguished marker

Equip K x {—, +} with the total ordering obtained by extending the ordering on K via
(+,i) < (—, j)foralli, j € K. Write every subset of K x {—, +} asaunion K_ x {—}U
K4 x {+}. The constructions of the previous section, applied to this ordered set, yield a
family of Riemann surfaces

Uk k., — Ak k., (3.32)

and an open subset Ag_ g, C ﬁKﬂK . over which the fibres of 271(7, K, are connected.

There are inclusions of the boundaries of each fibre H{IQ ks C ﬂKﬂ k, fori =0, 1. The

additional data of the decomposition distinguishes the finite strip Br_ .. x ).r¢s mxx,) 10

each fibre of Ug_ x +» and hence the corresponding component. We let w denote the
image of (0, 1) under this embedding; we represent elements of 7{1(7, k. by drawing this
marked point, and dropping the interior marked point which is the image of (0, 1/2) under
the above embedding, as in Figure 7.

kL . k2 k2 e k! o i

Fig. 7. Afibreof Ug g, with Ky = (k% <kl <K%} and K_ = (k0 <kl }.
To state the compatibility of the distinguished marker with the boundary decomposi-
tion of Ag_ k., note that such a stratum is labelled by pairs /. and J such that
mnKy el CJL CKy and maxK_el_CJ_CK_. (3.33)

Whenever I are singletons (i.e. respectively consist only of min K and max K_), the
corresponding boundary stratum is naturally identified with the moduli space A;_ ;. .
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Lemma 3.11. The codimension 1 boundary strata of ATK_, K, are

[ Axoix.. (3.34)
ieK_\max K_

o Ax ko (3.35)
ieK{\min K

I ﬁK?,-X‘ZKf_i,KJr’ (3.36)
ieK_\max K_
L Ak ke, <Ak (3.37)
ieKi\min K¢

The restriction of Ux_ g . tothese strata is naturally isomorphic to the union of pullbacks
of the universal curves on each factor. O

Using the above description of the boundary strata, inductively choose families of positive
(respectively negative) strip-like ends

€4 ZKﬂKJr X By — U[(ﬂ[(+ (3.38)

whose restrictions to the boundary strata are compatible with the inductive choices and
those made in Section 3.1.

Assume now that max Ky < min K_, with respect to the ordering on K. Let zj,
denote the boundary marked point w. For each 7 € Ag_ g, fix the following positive
strip-like ends near zj,:

€in: By — B C Uz, (5,0) > /—1—esVIT, (3.39)

where the complex coordinates on B are given by its embedding in C. By construction,
these strip-like ends are compatible with gluing. Since U {Ki k, is naturally ordered via
its identification with a union of real lines, the points preceding or succeeding zj, define
subsets of the boundary:
T a{l} } s~ Z7{1} ) 3.40
KﬂKJr—{ZG K71K+|Z<Zm}a KﬂK+—{z€ KﬂK+|Zm<Z}- (3.40)
Assume instead that max K_ < min K with respect to the ordering on K, and repeat

the same procedure to obtain a marked point z,, on each fibre of Ukﬂ K, - Pick negative
strip-like ends

€ou: B — B CU; (3.41)

whenever 7 € Ag_ g, , which are compatible with gluing. The points preceding or suc-

. . ——Zou —{1 —Zou
ceeding zoy yield subsets I/ ;?jK . cu {Ki kK, DU ;?jK+.

Given I C K, introduce the notation

Kr =KZ and K7 =K: (3.42)

max [ min /
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where the sets KiZ and Kf are as in (3.14). Given a nested pair I C K, define the
following subsets of K x {+, —}:

KP= (K7 x{-)}, K7 x{+}) and KM= (K; x (-} K7 x{+}). (343)

Lemma 3.12. The minimal element of K }“ is (min K, +), and the maximal element is
(max K, —). The minimal element of K}’“ is (max I, 4), and the maximal element is
(min I, —). O

3.4. Strips with one input marked point

Let K be a nested sequence of totally ordered sets whose maximal element is K and
minimal element is K.

Definition 3.13. The Adams moduli space with one input A Z.in 1S the product

Ag o = 10,00\ (3.44)

The cells of A .in are given by pairs of subsets K € I cJ c K. Write A; for

1 CJ in
the corresponding stratum. Define the open subset Ag., C A Z-in corresponding to the

inclusion [0, oo) C [0, oc]. It is the unign of the strata for which {K} = I. .
We shall build a universal curve on A in DY pulling back the universal curve on A Km

as follows: Let min K C K denote the set of minimal elements of subsets of K which he
in K and max K the set of maximal elements. Assign to a sequence J C K the subset
of K }?0 given by

uinf =max J x {—1 min J x {+}. (3.45)

There is a natural map

Pin * Aggy = A, g C AK}?O (3.46)
inducing the map of posets I clm uini - Minf . In coordinates, we simply set
the coordinate of wi,(7) labelled by (j, +) to equal > while the coordinate

labelled by (j, —) is given by >

max J=j Tj>

min /= 7j» With both sums taken over J € K.

Definition 3.14. The universal curve over A Z.in 18 the projection map

Ugin = M;;(HK}?O) — Ag - (3.47)
We give some examples of these universal curves for K = 012.

Example 3.15. If K = {2 C 12 C 012}, then uinK = {(0,+) < (1, +) < 2,4) <
(2, —)}. In particular, Az Rin and A un K are both 2-dimensional. In order to describe the
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image of the vertices, note that they canonically correspond to subsets of K contain-
ing the maximal element (because [ = J if and only if the corresponding stratum is
0-dimensional). Using this convention to simplify the notation, we can write the map i,
on vertices as:

012 = {(0, +), (2, )}, (3.48)

2. C 012+ {(0,4), (2,4), (2, -}, (3.49)

12 C 012 — {(0, +), (1, +), (2, -}, (3.50)
2C12C 012 {(0,4), (1, H)(2, +), (2, 9)}. (3.51)

It is therefore easy to see that s, is an isomorphism. The fibres of I/ #-in are shown in
Figure 8.

2710 2710 210

2270 20 020

2 0 22770 22700

Fig. 8. The moduli space A Rrin® with vertices labelled by fibres of u Z-in (12 =2C 12 C012).

It is easy to find a map pi, which cannot be injective because the dimension of the source
is larger than that of the target:

Example 3.16. If K = {0 C 02 C 012}, then uinK = {(0, +) < (0, =) < (2, =)}, 50
A Z:in is 2-dimensional while A win R has dimension 1.

There are more interesting examples of maps uin, which are neither injective nor surjec-
tive, despite the source and target having the same dimension:

Example 3.17. If K = {1 C 01 C 012}, then uiwK = {(0,+) < (1, +) < (1,-) <
2,-)},s0 A 7-in @and A ik both again have dimension 2. On vertices, we have

012 = {(0, +), (2, -)}, (3.52)
1C012— {(0,+),d,+), A, -), 2, )}, (3.53)
01 Cc 012~ {(0,+), (1, -), (2, )}, (3.54)

1 C01 CO12+— {(0,+), (1, +), (1, =), (2, =)} (3.55)
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27170 210 I S —— ]

22770 2270 21 1—=—0

2270 2270 A S —— ]

Fig. 9. The moduli space A #-in> With vertices labelled by fibres of Zjl?in (I? =1c 01 C012).

Since the second and the last vertex above have the same image in A wink? this map cannot
be injective. In fact, we can easily compute that it is given, in coordinates, by

(r1, ro1) = (ri,r1 +ro1), (3.56)

so the map is in fact injective on A, , but not on the closure.

3.4.1. Maps induced by minimal and maximal elements. Before proceeding with a more
convenient combinatorial description of the boundary strata of A g ., we introduce maps

associated to minimal and maximal elements: let J be a sequence of nested subsets with
maximal element J that is ordered, and minimal element /. Since the minimal (respec-
tively maximal) element of J € J Iz lies between the minimal (resp. maximal) elements
of I and J, we have maps

min:Aj—>ﬁjlg and max:ﬁjeﬁjlz. 3.57)

Given i € J; \ {min/, minJ}, the i-coordinate of min(¥) (resp. max(7)) is the sum
of the coordinates r: for elements J' € J \ {/, I} whose minimum equals i (if there
are no such elements, the corresponding coordinate vanishes). In the same way, given
iel IZ \ {max I, max J}, the i-coordinate of max(#) is the sum of the coordinates r: for
elements J' € J \ {/, I} whose maximum equals i. On the associated partially ordered
sets, the maps are simply given by

f1 C fz > min fl C min f2 and j] - f2 > max fl C max J;. (3.58)
Some examples of sequences J of length 4, i.e. such that the corresponding moduli

spaces A 7 have dimension 2, are given in Table 1. We describe two of the cases in more
detail:
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Table 1. Properties of the map min x max on A 7 in some examples.

-

J dim A = A Injective  Surjective
01 C 012 C 0123 C 01234 2 0 Yes Yes
34 C 234 C 1234 C 01234 0 2 Yes Yes
34 C 134 C 1234 C 01234 0 1 No Yes
3 C 134 C 1234 C 01234 0 2 No No
2C12C 123 C 01234 1 1 No No
2 C 124 C 1234 C 01234 1 1 No No

Example 3.18. Consider the sequence J = {2 c 12 c 123 C 01234}. The moduli
space A j is 2-dimensional, with coordinates given by 1> and r»3, and both A Iz and A =
are 1-dimensional, with coordinates ry and r3. In these coordinates, the map (max, min)
is (r123, r12 + r123). This map is injective on A 5, but not on the closure.

Example 3.19. Consider the sequence J = {2 C 124 C 1234 C 01234}. The moduli
space A has coordinates given by ri24 and r234, while the targets of min and max
have coordlnates r1 and r3. In these coordinates, the map (max, min) factors through the

inclusion of the diagonal in the square A > X A Iz

With the above examples in mind, we characterise the sequences J of maximal length for
which the map (max, min) is injective:

Lemma 3.20. Assume that J consists of |J| — |I| + 1 elements. Then
dimAj; > dim(A,= x A=), (3.59)

with equality if and only if one of the following three conditions holds: (i) max I = max J
and min is injective on J (i) min I = min J and max is injective on J or (iii) I = J\{i}
fori # min J, max J. Moreover, if equality holds, the map (min, max) is an isomorphism.

Proof. By assumption, successive subsets of J appearing in J differ by exactly one ele-
ment, hence

=1 +2 > |J7] + 17, (3.60)

with I contributing two elements to the union of J IS and J;, and each subsequent element
of J: at most one. Note that this inequality is strict if and only if each subset of J appearing
in J is obtained by adding an element which is either larger than the maximum of the
preceding subset or smaller than the minimum.

This inequality allows us to compare the dimensions of the sources and targets in
(3.57). We begin by noting that the conventions fixed in Remark 3.7 imply that the di-
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mensions of the moduli spaces we are considering are

dimAj = [J| - 1] -1, (3.61)
dimﬁjlz = max(|J7| —2,0), (3.62)
dimﬁjls = max(|J7| —2,0). (3.63)
We now rewrite (3.60) as
dimA; > [JZ|+ 17| =3, (3.64)

from which we conclude that equality of dimensions can only hold if one of J IZ or J IS is
a singleton. We now consider the three cases in reverse order:

Case (iii): If both J IZ or J 15 are singletons, then the dimensions of the corresponding
moduli spaces are both 0, so equality of dimensions requires that A 7 be O-dimensional,
hence a point, which corresponds to I = J \ {i}. Surjectivity is obvious.

Case (ii): If J ,5 is a singleton, but J ,Z is not, then (3.64) becomes
dimA; > dimA =, (3.65)
1

with equality holding whenever the inequality in (3.60) is strict. This corresponds to max
being injective, so that surjectivity follows.

Case (i): Entirely analogous to the previous case. O

3.4.2. Stratification of the boundary of ﬁ,g’in. Given a sequence J of nested subsets
of an ordered set K, with maximal element J and minimal element Jy, and an element
Iel , we first introduce the notation J ,Z and J ,5 as before for the nested collection of
sets preceding and succeeding /. By the construction of the previous section, we have
maps

min: Aj> — Aj= and  max: Aj= — A=, (3.66)

We now have the necessary notation to describe the restriction of the universal curve to
the boundary strata of Ag . : denoting by Iy the minimal element of /, the boundary

stratum of A Z.in 1abelled by K € I CJis

(3.67)

where zic]ﬁ is the cube on jIOZ \ I.When [ = {I} is a singleton, the pair {I} C flz

labels the top-dimensional stratum of A 7z Figure 10 illustrates the fibres of the universal
curve over this stratum; we shall presently explain how to describe the components of this
restricted universal curve as pullbacks, after introducing the relevant maps.
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max K o max [ min / o min K

Fig. 10. A fibre of the universal curve over A 3 Rin restricted to A 7<iin X A >. The curve in the
middle is Z/I <.in , while the curves on the left and the right are the pullbacks of ‘the universal curves

over A min 72 and A +> respectively.

max J;~

On the first factor of the right hand side in (3.67), consider the product map

(min,max) —
_ S
= ‘Amm I Cmin Jli

x A CA<XAK, (3.68)

max [ Cmax J ~ 10

using the fact that K € J to derive the inclusion. On the other hand, the second factor in
(3.67) maps by ui, to

A CA,-= SEZW. (3.69)
J0

T< Lo 7<
max J,0 ,min J[0 IOJO‘IOJ()

The product of the right hand sides in (3.68) and (3.69) is a stratum of ﬁK}? , and
0

these map fit in a commutative diagram:

IR

;in Afcf;in A

(3.70)

<—m

x A X.A m 9‘/LLK> Xﬂlln XA < %.AKm

min / Cmin J I 10

E max iCmax .713

We now specialise the above discussion to the codimension 1 strata of Az %.in- These
come in two types, both labelled by an element / € K \ {K}. The first corresponds to
I = {K} and J=K \ {7}, and in this case diagram (3.70) reduces to

|

= Akyckviyin — A

Kiin
L j 3.71)
_ Ao

.A in
K]0

J;in

The second case corresponds to z ={I C K} and J=K , and in this case, we find
that the projection A {ICK)CR:in — A K}?o factors through the map

Az > A x A

K; min 12,2 (3.72)

maxKIZ’

which is derived from (3. 68) by using the fact that {/, K} C K IZ labels the top-
dimensional stratum of A

Using (3.34)—(3.37) We obtaln an explicit description of the fibres over boundary
strata of A ¢.in (see Figure 10 for an example):
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Lemma 3.21. The boundary of A %:in 18 covered by the following codimension 1 strata:

U A U Az x Az s (3.73)
1eR\(K) 1eK\(K)

The restriction of U %in 10 the first type of stratum is naturally isomorphic to u R\{I}:in’
and the restriction to the second is given by

(max* Hmax Rz LI min*Umin Iglz) X ‘Zl?,f;in A ‘ZIEIZ X HI?F;in‘ (3.74)
Proof. The first type of stratum in (3.73) corresponds to the case when the coordinate
labelled by I vanishes, and the other to the case when this coordinate is co. In (3.74), the
projection from K }?O to K can be used to identify max K ,2 x {—} as a subset of K }?0 with

max K IZ, and similarly for min K IZ. O

3.5. Strips with one output marked point

The construction of moduli spaces with outputs is entirely analogous to that of moduli
spaces with inputs, with the partially ordered set K }?0 replacing K ,0('3 in the construction,
and with a few other minor changes.

0—/I1——0 0—/—1—/—0 [ ————— ——
0—/0 0—=0 0—/2—=-0
0—/0 0—"=0 [ m—————]

Fig. 11. The moduli space ﬁl?'ou’ with vertices labelled by fibres of ﬁk,ou (12 =0 c 01 c012).

Definition 3.22. The Adams moduli space with one output, A %-ou 18 the product
Ag.on = [0, 0010, (3.75)
The cells of A #-ou re given by pairs of subsets K € I c J c K, and the union of those

strata for which I = {Ko} corresponds to the open subset Ag. | .
There is a natural map

Mou: Ag.qn — ZK?% (3.76)

which assigns to a sequence J C K the subset min J x {—} LI max J x {+} of KI%‘:)
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Definition 3.23. The universal curve over A &:ou 18 the projection map
Ugion = 1oaUip) > Ag oy 3.77)

By pullback, (3.38) determines families of strip-like ends €_ and €4, and a family of
distinguished components which are trivialised by a map we still denote ¢.

As in (3.70), the boundary strata of A K:ou and their images under oy fit in a commu-
tative diagram

l (3.78)

The boundary of A %:ou 2dmits a natural decomposition as a union of codimension 1
strata

U AIE\I§OUH U Alzlz;ouX‘AI}f' (3.79)

- * ~ sk - 7/ -
‘AKF;ou x (max Z/{max Kli LI min min KIS) HUK]Z;OU G

over the second kind.

4. Lagrangian Floer theory

We now return to the setting of Sections 2.2 and 2.4. In particular, we recall that J denotes
the space of tame almost complex structures, and that all Lagrangians L we consider are
equipped with an almost complex structure J; for which they bound no holomorphic
disc, and are graded with respect to the quadratic complex volume form on X induced by
a density on Q. In particular, whenever L and L’ are both graded Lagrangians, and x €
L N L' is a transverse intersection point, there is a well-defined Maslov index deg x € Z,
as explained in [19, Section (12b)].

If L and L’ are graded Lagrangians which are transverse, and which both satisfy
condition (2.49), pick a family J; of almost complex structures such that Jo = Jr and
J1 = Jp/, and which is constant in a neighbourhood of the point + = 1/2. To each pair
x,y € L N L, there corresponds a moduli space M(x, y) of holomorphic strips with
boundary conditions given by L along R x {0} and L’ along R x {1}. Condition (2.52)
holds in this case, as does the analogue of the decomposition of the boundary of the
moduli space given by (2.51).
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4.1. Continuation maps

Let K be a totally ordered set.

Definition 4.1. A consistent family of continuation data parametrised by U g is a map
Pk = (dx. Jx. Yx): Uk — FH xIx D .1

such that (i) ® g is constant along each end of a fibre of Uk, (ii) the maps ¢g and Vg
are obtained by gluing, and Jx by perturbed gluing, (iii) ¥« (z) preserves the image of L

under ¢ (z), and (iv) for each z € HK R
Jk (@) = (Yk (2) 0 Pk (2))+JL. 4.2)
Remark 4.2. Only the restrictions of ¢x and ¥ to E{KI} will be used.

The assumption that ¢ is obtained by gluing implies that we have well-defined Hamil-
tonian diffeomorphisms {¢; };cx . To simplify the notation, we let L; = ¢;(L).

Given a consistent family one can define, for each 7 € ATK, a holomorphic curve
equation with moving Lagrangian boundary conditions:

w:ly — X, du(z) = Jx (2)du(z), 4.3)
. —{0 . —{1
u(z) € Fyifz GU,{:}, u(z) € px(z)Lif z GU;}. 4.4)
Given a pair of points y € Lmink N Fy and x € Lmax x N Fy, denote by
My k(x,y) — Ak 4.5)

the moduli space of solutions to (4.3)—(4.4) which in addition satisfy the asymptotic con-
ditions

lim uoe_(s,t)=x, lim uoes(s, t) =y. 4.6)
§—>—00 §—>00
Lmax k ¢k ()L Link
X ° y
Fq

Fig. 12. The moduli space M g (x, y). The presence of one interior marked point is shorthand
that allows us to distinguish moduli spaces of continuation maps from solutions to Floer’s equation.
A more precise figure would show one fewer marked point than | K|.

For a generic family Jx, the Gromov—Floer compactification ﬂq, k (x, y) is a mani-
fold with boundary such that

dimqu,K(x, y) = degx —degy 4+ dimAg = degx —degy + |K| — 2. “.7
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The generalisation of (2.51) is that the codimension 1 strata of the boundary come in two
families:

IT 11 ﬂq,K?(X’ ) x MLK’; (z,¥), (4.8)

ieK zeLiNky

Mg k\(iy (x5 ). 4.9)
ieK\{min K,max K}

Breaking of Floer strips is incorporated in the first case, corresponding to i = max K or
i = min K. So the first strata project to the interior of A or to the boundary stratum
where the coordinate corresponding to i equals co, and the second to the stratum where
this coordinate vanishes.

Remark 4.3. Since the choice of data in Definition 4.1 takes place for a fixed K, there
is a slight abuse of notation in (4.8) and (4.9), given that the moduli spaces which appear
are defined with respect to the Floer data restricted from Z{ x . This issue will be addressed
in Section 5, where such data will be chosen inductively so that there is no ambiguity in
the description of the boundary strata.

4.2. Continuation with a distinguished marker

Let Lt and L~ be graded Lagrangians which are transverse, and which both satisfy
condition (2.49) for almost complex structures J;+ and J;-. Let K_, K be subsets
of K x {—, +} as in Section 3.3.

Definition 4.4. A consistent family of continuation data with a distinguished marker
parametrised by U g_ k. is a map

Px_ k. = (Pr_ ks Tk Ko YK k) Uk _k, > HXxIxD (4.10)

such that (i) the restriction to every end is constant, (ii) Jx_ k, is obtained by per-
turbed gluing and the other maps by gluing in a neighbourhood of each boundary stratum,
(iii) ¥k _ k. (z) preserves the image of L (respectively L™) under ¢k _ k., (z) whenever
zZ€ UZK]j K, as defined in (3.40) (respectively z € 27;5 Ky and (iv) we have

Ji+ ifzelds r.,
(Vk_ .k, @) o dk_k,(2), I+ ifz Ggg;ﬁ @11

J =
K- K4 (2) (Vk_k, (@o¢x k() Jo- ifzely g, .

We obtain, for each 7 € .ZKﬂ K, » a holomorphic curve equation dsu(z) = J(2)d;u(z)
with moving Lagrangian boundary conditions

w:lty — X, u(z) € Fyifz €Uy, (4.12)
u(z) € )L ifz €U, u(z) e p)LYifz €U . (4.13)
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4.3. Continuation with one input

Let K_ and K be subsets of K such that max K4y < min K_, and let L and L’ be graded
Lagrangians satisfying condition (2.49) for almost complex structures J; and Jy . In the

setting of the previous section, set L* = Land L~ = L'. Givenpointsx” € L! . NF,,
X € Lyink, N Fy and xjp € LN L', define
Mgk k. (5 Xin, x) > Ak k. (4.14)
to be the moduli space of solutions to (4.12)—(4.13) which in addition satisfy
lim uoe (s,t) =x', u(zin) =X, lim uoei(s,t)=x. (4.15)
§—>—00 §—>00
L;nax K_ Xin Lmin Ky
x’ X
Fq

Fig. 13. The moduli space M, x_ k., (x"; Xin, X).

For a generic family of parametrised Floer data, the Gromov—Floer compactification
Mgk k. (x’; xin, x) is a manifold with boundary such that

dimg My k_ k. (x'; Xin, x) = degx’ — degxin — degx + |K_| + |K4+| —2.  (4.16)
If K is a nested sequence of subsets of K, with minimal element Ky, let

M, fin 5 Xin, ¥) = Agy 4.17)
be the pullback of Mq’K}?o (x’; xin, x) by the map from Al?;in to AK;?O (see (3.43)). For

generic Floer data, this is a manifold with boundary such that

dimg M, g.;, (s Xin, x) = degx’ — deg xip — degx + K| — 1. (4.18)
L' L
max K . max J ' min J ° min K
Fig. 14. A schematic picture of the holomorphic curve problem for curves over A £ =ein X A Pz
i J

The boundary decomposition of A %.in leads to the decomposition of the boundary of

Mq Ig.in(x’; Xin, X) into the following parts:
My, ) x M g0 (V5 Xin, %), (4.19)
y/EL:nameFq
[T M, @ xin 3) x My(y, %), (4.20)

Y€LminkNFy
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[T M, 2 yin, ©) x M(3in, xin), (4.21)
yin€LNL'

L[ M, 2\ s Xin, X), (4.22)
IeK\K

]_[ L[ ]_[ max™* ﬂq,max = @', y) XA min*mq,min & (v, x)

IeK\K YELmin1NFq y'eL!  NF, 1

x M, £Ein (Y Xin y). (4.23)

max /

Lemma 4.5. Assume that K consists of |K| elements, and dimp ./\/lq an (x'; Xin, x) = 1.
If all Floer data are regular, the only contributions to the stratum in (4.23) are given by I
such that (i) max I = max K and min is injective on K , in which case the boundary
contribution is

[T M, g zin G xin ) X M iy = (00, (4.24)
YE€Lmin 1 NFy

or (il) min I = min K and max is injective on KIZ, which contribute

I Mgz 69 x M g =500 2, ), (4.25)

y eLmaxl F‘i

or (iii) I = K \ {i} fori # min K, max K, in which case the corresponding stratum is
M, R (s Xin, X). (4.26)

Proof. Under the assumption on K, successive elements of this sequence differ by exactly
one element of K, hence the same property holds for K . The result now follows from
Lemma 3.20, which asserts that, whenever the condmons above do not hold, the stratum
in (4.23) is obtained by pulling back a moduli space of curves parametrised by a manifold
of dimension lower than the dimension of the stratum. Assuming regularity, this moduli
space has negative virtual dimension, hence is empty. O

4.4. Continuation with one output

Let K = K_ U K be a decomposition of K such that min K = max K_. Set L™ = L
and LT = L'.

Given points x € Lyaxg_ N Fy, x' el N Fy,and xoy € LN L', denote by

min K |

Mgk k, (X, Xou; X) = Ak_ k., (4.27)

the compactified moduli space of solutions to the Cauchy—Riemann equation determined
by such data with asymptotic conditions
lim uoe (s,t) =x, u(Zow) =%Xou, limuoey(s,t)=x" (4.28)
§—>—00 §—>00
If K is a a sequence of nested subsets with minimal element Ko and maximal ele-

ment K, let M e ou (X Xou: x") be the pullback of Mq, K (x, Xou; x") under the projec-
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tion map from A s ﬁK;u . Assuming that all Floer data are chosen generically, this
’ 0
is a manifold with boundary such that

dimg M, g.0, (¢, Xou; X) = deg x + deg xou — degx’ + [K| —n —1.  (4.29)
L \ L
min K . min / ' max [ L] max Ko
Fig. 15. A schematic picture of the holomorphic curve problem for curves over A FZou ¥ A 7=
Ix i

The boundary decomposition of ﬁk_ ou l€ads to the decomposition of the boundary of
Mq’lggou (x, Xou; x) into the following parts:

[T M,z Xous ¥) x Mg (', x), (4.30)
yeLmdeO Fq
[T Moy x M, gou (s Xous X, (4.31)
yELminKoqu
[T Mouw you) x M, .00 (%, Yous X, (4.32)
You€LNL'
[T M, & o Xous X, (4.33)
1€K\Ky
]_[ ]_[ ]_[ min*qumK <(y, x)xA max quaxK <(x,y)

I
F!I

x A_Aq,f,z;ou(y’ Xous ). (4.34)

IEK\KO yEmelnFq y ELdeI
We also have the analogue of Lemma 4.5:

Lemma 4.6. Assume that K consists of |K| elements, and dimpg M s (x, xou; x') =
0. The only contribution to the stratum in (4.34) is given by I such that (1) I = KyU {i}
fori # min K, max K, in which case the corresponding stratum is

Mq,l?,z;ou(x’ Xou; X'), (4.35)
or (i) max I = max Ky, and min is injective on K IS, which contribute

M i =0 Y) X M g2 (9, Xout 1), (4.36)
YE€Lmin1NFy

. . e . o< . .
or (iil) min / = min Ko, and max is injective on K =, which contribute

T M, 22000 Xous ¥ X M g g =0, 2. (4.37)

y'eL . ,NFy ]

max /
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5. Floer theory and convergence

5.1. Uniformly small choices of perturbations

Let L and L’ be Lagrangians which are tautologically unobstructed with respect to a pair
of tame almost complex structures J; and Jy /. Fix an embedded path {J;}}ZO from Jg,
to Jy. Pick a sequence of contractible neighbourhoods in J of this path,

Pcgc...cgt, 5.1

so that the closure of J' lies in the interior of Jit!.

Let H° be a contractible neighbourhood of the identity in the space of Hamiltonian
diffeomorphisms such that

¢u(J) € 3 (5.2)

for all ¢ € H. Let £ and £’ denote the families of Lagrangians obtained by applying
elements of H° to L and L'.

Let D be a neighbourhood of the identity in Diff(X) such that D(J*) c J*!, where
the action is by pushforward as in (2.50). Given a subset W C Q2 define

Dw(L)yCcWxLxD (5.3)
to be the subset consisting of triples ((¢, p), ¢ L, ¥) such that

V(Fy) =Fp, Y(@L)=4¢L, (5.4

and similarly for £’. Dropping the first condition yields a family D (L) over £, and drop-
ping the second, a family Dy over W. For a fixed element of £, write

D@L)={y €eDIy@L) =9¢L}, Dw@@L)={y € Dw |y (pL) =¢L} (5.5
for the fibres of D(L) and Dy (L) over L € L.

For all ¢ € Q, pick ¢, € HO so that ¢4 L is transverse to Fy. Since Q is compact,
there is a finite cover U of Q and maps ¢y, ¢, € HO, for all U € U, such that ¢y (L)
and ¢y, (L') are transverse to F, if ¢ € U. For a pair (p,q) € U?, this implies the
existence of diffeomorphisms mapping ¢ to p and preserving ¢y (L) or ¢;,(L"). Such
diffeomorphisms may not act appropriately on the spaces J¥ of almost complex structure,
but if the elements of U are sufficiently small, there is a sequence of neighbourhoods

d=D'cD'c...cD* cD (5.6)
which are invariant under inversion and such that
Do D/ c DI (5.7)
and we have acyclic fibrations D¥(£) — £, D¥(L') — L', and
Dt (¢uL) Dy, Dy (puL))
\\\\\ l%//// (5.8)
U2

We now apply the construction of Section 2.3.1 with the above cover in mind:
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Lemma 5.1. There is a partially ordered set X, labelling a simplicial triangulation of Q
and a cover { P;}icx. of Q by integral affine polygons which refine U, such that (2.20) and
(2.21) hold, and the open star of each cell oy for I C X is contained in Pj.

Proof. Lemma 2.3 provides a cover satisfying all the properties except the inclusion of
the open star. To remedy this, let BX denote the barycentric subdivision of X, which is
a partially ordered set whose elements are the totally ordered subsets of X; we set the
ordering on BX to be given by reverse inclusion. For I € BX define B P; to be Pyin ;.
To reduce the clutter, we write

BPj,..i, = BPy,. .. i)- 5.9

The polyhedra B Py satisfy (2.20) since min J < min / whenever I C J (this justifies the
ordering by reverse inclusion). To check (2.21), consider the natural map

U Bri/~—> P/~ =0 (5.10)
IeBX iex

associated to the assignment / — min /. Observe that, for each I € BX, the above map
restricts to an isomorphism

UBPJ/N_) U PI/NZPminI, (5.11)
Jcli min I <i

hence the subsets BP; = P; cover the left hand side of (5.10). For a pair i < j, the
inclusions

BP; C BP;j D BP; (5.12)
imply that the map (5.10) is injective. We conclude as desired that it is therefore a hom-
eomorphism.

Iterating the barycentric subdivision construction yields open stars whose diameter
goes to 0, while the corresponding cover does not shrink because it consists of repetitions
of the original cover. There is therefore a finite iteration such that the open star of every
vertex is contained in the corresponding polygon. O

For each i, pick ¢;, ¢! € HO arbitrarily among those Hamiltonian diffeomorphisms ¢y
and ¢, where P; C U. It is immediate that D;z, 'D;z (¢iL) and @;2(¢>,-L/) are acyclic

fibrations over Pl.z. In addition, choose generic families J;, Jl.’ :[0,1] = 4 150 that

Jio = (¢i)xJr and J/o= (@)«Jr (5.13)

and all moduli spaces of Floer trajectories M(Ii (x,y) and M‘]i (x', ¥) defined with re-
spect to these families of almost complex structures are regular if x,y € L; N F; and
x',y" € L, N F;. We write

®; = (i, Ji, 1d): [0, 1] = HO x I x D, (5.14)
where the first and last maps are constant, and similarly for ®}. Moreover, pick sections

Yi: P = Dy p (L) (5.15)
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Remark 5.2. In order not to increase the awkwardness of the notation, we shall adopt
the following conventions: Let Z be a topological space. Given maps

(O, ¥): Z—>DxHxIxD (5.16)
with ® = (¢, J, ¥), use pushforward and composition (pointwise in Z) to define
Y (P)=(p, Vo J,Voy): Z—>HxJxD. (5.17)

Also, write W~! for the pointwise inverse of W.

5.2. Locally constant families of continuation maps

Let I be a totally ordered subset of X, and recall the notation from (2.31) for the intersec-
tion P; and element g; € P;. Pick a map

;P x Uy — D2 (5.18)
which is the identity on {g;} X U, and continuation data
®; = (¢r. I ¥ Uy — 3O x g1 x D2 (5.19)

Remark 5.3. The remainder of this section is likely to be less incomprehensible if the
reader keeps in mind that the holomorphic curve problem on the moduli space I is
defined with Lagrangian boundary conditions F; over the boundary labelled 0. The map
Wy is introduced to transport this holomorphic curve problem to nearby fibres.

A potentially helpful reference is [1, Section 3] which essentially covers the case
where the set I consists of two elements. In this case, U/; is a strip, so that (5.18) is
the choice of a family of diffeomorphisms of X parametrised by the product of P; with
a strip. As a warning to the reader, we note that we required in [1, (3.50)] that W be
constant in a certain region of the strip, which ensured that it preserved the image of L
under a moving Hamiltonian isotopy. In the present account, this is replaced by condition
(5.25) below which is more flexible.

In addition to the conditions imposed on ®; in Definition 4.1, assume that the restrictions
of (O, Wy) agree with

(wmin 1 (QI)*q)minIa 1ﬁminl o ll/I;iL[(QI)) alOng the end €4, (5.20)
(Pmax 1> Ymax 1) along the end €_, (52D
(P> Y onlp, (5.22)
(@2, ¥,2) onl ;= x A=, (5.23)

i

<

(V)= (@n)s®;=. W= 0 v 2(gn) on A= xU,-=. (5.24)

i i
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Remark 5.4. The last factor in (5.20) should be interpreted as follows: W; is a map which
depends on ¢ € P; = Pmax1, whereas Yin; depends on g € Ppins. By assumption,
Pmax1 C Pmin1, S0 it makes sense to require that

W(g,2) = Ymin1(q) o ¥, (qr)

whenever z lies along the end € of I/;. Condition (5.24) is to be interpreted in the same
way.

Moreover, on the boundary of each fibre,

Wi(q.2) e DX (gL itz el (5.25)
V(g2 e D2 itzell,. (5.26)

Lemma 5.5. There are choices of maps (9, Vi) which are obtained by perturbed gluing
in a neighbourhood of every boundary stratum so that (5.20)—(5.26) are satisfied.

Proof. Proceed by induction on the number of elements of /. In the base case, || = 2, so

ﬁI is a point, Ur = B,and H{Il} = R. Pick a map ¢; which agrees with @iy 7 and Pmax 1

at the two ends. Then pick v, agreeing with Id near the negative end and with Yryin 71 (qr)
near the positive end, and so that ¥j(¢;(z)L) = ¢;(z)L for all z € 27{11}. Note that both
values at the endpoints lie in D!, so such a path may be chosen in D! by the assumption
that the forgetful map from D¥(L) to £ is an acyclic fibration. Also choose a family of
almost complex structures J; whose restriction to the negative end is Jyax; and to the

positive end iS Ymin 7 (¢71)«Jmin 1, and which agrees with (7 o ¢7)4J along 17{1”. Since
all these almost complex structures lie in J2, the image of J; may be required to also lie
in J2 since this space was assumed to be contractible. This completes the construction of
&, for 2-element subsets /.

Pick a map W; on P; x U; subject to the condition that along the ends, (5.20) and
(5.21) hold. These constraints imply that the image of W; along the ends lies in D?; extend
it to a map from P; x U; to D2, with the requirement that (5.25) and (5.26) hold along
the two boundaries of the strip. This completes the base case.

Given an ordered subset K of X, assume by induction that continuation data and fam-
ilies of diffeomorphisms for all subsets / of K which satisfy (5.20)—(5.26) have been
chosen. Define (g, V) along the boundary strata of Uk using (5.22)—(5.24). The
inductive hypothesis for (®;, ¥;) implies that this construction, which is a priori de-
fined only on each separate codimension 1 cell of g, restricts to the same map on
each codimension 2 cell, hence defines a map from the boundary of HK. Moreover, the
conditions imposed on the ends in (5.20)—(5.21) show that the restriction of these data
to an end of a component of a fibre in U x which is labelled by i € K is given by
(Wi (a0« i Yi 0 ¥ (gx))-

One can therefore use gluing to extend these data from the boundary of Ux to its
interior as follows: first pick the extension ¢ by gluing with image in H°. Then pick the
extension Y g by gluing which preserves the Lagrangian boundary conditions, and whose
restrictions to the positive and negative ends are respectively given by ¥rmin x (¢x ) and the
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1 1 i : . .. I1—-1 K|—2
identity. By induction, the images of yr; and W, both lie in Dz‘ | C DQ' | , so such an
extension may be chosen to have image in p2k-t

. The essential condition here is (5.24)
in which the two maps, which by induction lie in @2‘“72, are composed.

The next step is to extend Jg by perturbed gluing subject to the condition that it agree
with the pushforward of J under yx o ¢x on 27{K1 , with the pushforward of Jmin x under
VYmin k (k) along the positive end, and with Jiax(k) along the negative end. The same
argument as above shows that the image of Jx may be chosen to lie in J'XI: (5.24) again
imposes the main constraint, since the almost complex structure in this region is obtained
via pushing ]Iis forward by \I-’Iis*. By induction, this pair lies in §1X1=1 x Dz‘KH, which
is contained in §'X1=1 x D, so the pushforward lies in J'X!.

Finally, by the inductive hypothesis, the image of Wy lies in P2 p2*7 By
(5.22)—(5.24) the map defined on the boundary strata of Uk has image_ in DZ‘KH. Since
this space is contractible, choose an extension to a map W defined on U/ . Construct this
map by gluing in a neighbourhood of the boundary strata, requiring in addition that (5.20)
and (5.21) hold along the ends, and (5.25) and (5.26) along the boundary; these properties
can be achieved given the assumptions on the acyclicity of p2K! (L) and DafH. This

completes the construction of the data (®;, ¥;) by induction on |/|. K m]

Denote the pushforward Vg, ®x by
P Py x Uy — 3 x P 5 2, (5.27)

The conditions imposed on ¢k in the previous section imply that, for each ¢ € Pk,
P 1}; (g) is a compatible family of continuation data in the sense of Definition 4.1. For each
k € K, the diffeomorphism v, (¢) maps Fj to Fy, and preserves ¢y L, hence maps a point
xx € Fr N L to

xik(q) = Yi(g)xk € Fyg N L. (5.28)

Lemma 5.6. Given y € Fpink N $mink L and x € Fmax k N ¢max k L, composition with
Wk (q) yields a homeomorphism

~

Mgk (x(9), ¥(@)) = Mgy x (x(gK), y(gK))- (5~29D)

When there is no ambiguity, we shall write M (x, y) for this moduli space. Fix generic
choices of continuation data ® ¢ for which all such moduli spaces are regular.

5.3. Locally constant continuation maps with a distinguished marker: input

Start by assuming that data (®;, ¥;) and (®/, W) for the Lagrangians L and L’ have
been chosen for all totally ordered subsets I of 2. As in Section 4.4, pick a decomposition
I = I_ U [, with the property that max /4 = min /_.
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Remark 5.7. To make sense of this section, the reader should consult Figure 14. The
holomorphic curve problem in the presence of an input along the boundary has La-
grangian boundary conditions Fp,x; along the + = 0 boundary (we use the fact that
max [ = max [_).

Pick a continuation datum with inputs ®;_ ;,, and a family of diffeomorphisms ¥;_ ;,
which agree with the identity on {g;} x Z717, 1, and are obtained by gluing

O g, Uy g, — HO x U= 22 (5.30)

Yo P xUp g, — 2 (5.31)
The restrictions of these maps to subsets of /;_; . are required to agree with
(Ymin 1 (1) Pnin 1 Yimin 1 © Yomin 1 (@1) alongtheend ¢4,  (5.32)
(Prax 1> Vinax 1) alongtheende_,  (5.33)
(P iy 1 Vi) 1y) onUs \iiy 1, (5.34)
(Pr_1\Giys Yo, 10\()) onlU_ 1,\(i), (5.35)

P —1 — —

(@ 1<, @Ds = o (Y= (an) ) onA; = xUz. (536)
(4317’15.[_, W(LJE,;)) on Z/IL’IEJ X AlfJ, (5.37)
(@)=, ¥2) onlfy= xA;= ;. (538)

(s, 1) @@= W, g0 (Vs @) onApz xUp= 4o (5:39)

where we interpret (5.32), (5.36), and (5.39) in accordance with Remark 5.4. Moreover,
on the boundary of each fibre, the following conditions hold:

11|+ 14 1-2 . —Zin

V1, (g.2) €D g, (L) ifz el (5.40)
M 1142 . —Zin

V(g0 e DT @ (L) ifz el (5.41)
— 1= . —{0

W1, (g2 e D2 itzell) ), (5.42)

The existence of such data again follows from an inductive argument on the number of
elements of /_ and I, as in the proof of Lemma 5.5.
The pushforward of ®;_ ;, by W;_ j, defines a map

cpi,lJr: Prmax1_ X 171_,1+ — HO x J"2 x 'DZHI. (5.43)

As in Section 5.2, given x € ¢minz, L N Fuinz,, Xin € LN L', and x” € ¢ax s L' N
Fiax 1, evaluation of CD}I:I+ at g defines a moduli space /\_/lq,[ﬂ[+ x'(q); xin, x(q)),
where x(¢) and x(g) are the images of x" and x under ¥ ., (¢) and Y¥minz, (). By
construction, composition with W;_ ;. (¢) yields a homeomorphism

m(Jmaxl,,l—,h— (x/(Qmax 1_); Xin, X(gmax 1)) = mq,l_,h_ (x/(CI); Xin, X(q)). (5.44)

We choose the continuation data generically so that all such moduli spaces are regular.
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5.4. Locally constant continuation maps with a distinguished marker: output

As in Section 4.4, assume that /_ and I; are totally ordered subsets of ¥ such that
min /4 = max I_, with I = I_ U I also totally ordered.

Remark 5.8. Figure 15, and the fact that the holomorphic curve problem on the moduli
space U _ . in the presence of an output along the boundary is defined with Lagrangian
boundary conditions Fin 7, , may be helpful in understanding the construction.

Pick a continuation datum with outputs ®;_ ;. , and a family of diffeomorphisms ¥;_ ;.
which are obtained by gluing and agree with the identity on {gmin 7, } X u N

O g Up g, — HO x U=l 2 (5.45)
Uy gyt Paing, xUp 1, — 2 (5.46)
The restrictions of these maps to subsets of I;__; . are required to be

(Pint, > Ymin1,) alongtheende,, (5.47)
((I/fmax 1 (@min 1))+ Pmax I_» Ymax I_ © w;alx 7 (@min I+)) along the end €, (5.48)
(Pr (i) 1y YiGiL1L) onlUs \ii 1, s (5.49)
(P vty Vi, 10\ onlU_ 1\, (5.50)
(CD/I}J%I (Qminhr)a \IJ;E,,- o (\I";fl (Qminbr))_l) on AI-”E,[ X U[EJ, (551)

—1
((W(L»E,i)(qminIJr))*q)L,lfl-’ ly(l*’]i,i) o \p(l_,lf'i)(qmi“u))
onld, iz, Tq,f’i, (5.52)
(@7 @min1): V)2 0 \II;‘ (gmin1,)) onlly= x A= ;.. (553)

(q)lf,,-.bf’ \p(lf_i,h)) on AI;J X ulfi,h‘ (5.54)

On the boundary of each fibre we have

[ |+ =2 . —Zou<
V(@2 e D G, (L)) ifz e U], (5.55)
[T+ ]-2 . —Zou
V(g0 e DT @ (L) ifz e U™ (5.56)
|+ 12 . —{0}

Wi, (q.2) €D ifzely .. (5.57)

It is crucial at this stage that P; was required to include the closure of the open star of the
cell corresponding to I, as expressions of the form W;(g;), with i an arbitrary element
of 1, must be defined.

The pushforward of ®;_ ;, by W;_ ;, defines a map

77 7 n+1
‘Di,1+1 Puinz, xUp_ 1, — HO x J"2 x D', (5.58)
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Given x € ¢max1_L N Fax1_, Xou € LN L', and x" € ¢min, L' N Fping,, the data
q>£~,1+ (g) yield a moduli space MN_A (x(q), Xou; x'(g)) for each point ¢ € Ppax1, ,
where x(g) and x’(q) are the images of x and x” under Ymax 7_(¢) and ¥/ . I (¢). Com-
position with W 1}1 a (g) yields a homeomorphism

Mauinr, 1,1 5 (Gmin 1) Xous X' (qmin 1)) = Mg 11, (x(@), Xous ¥'(9)).  (5.59)

5.5. Moduli spaces associated to cells of X

Combining the discussions of Sections 3.4 and 4.3 yields a moduli space
M, 2.0 (@); Xin, X(9)) (5.60)

wheneverq € P, g, by taking the fibre product ofmq)K}?o (x'(q); xin, x(g)) with ﬁ,g;in

over A Kin - Given a totally ordered subset K of ¥, define
0

My kin@ (@i xin x@) = | M, 5.0 (@3 xin, x(9)), (5.61)
|K|=IK|
K=max K

where the moduli spaces on the right are glued along the boundary strata obtained by
omitting an element of K. This moduli space is again independent of g by applying the
homeomorphism in (5.44), so it is denoted ./\_/IK; in(x’; Xin, x).

This moduli space is parametrised by a manifold of dimension |K| — 1, obtained
by taking the union of the spaces Az %iin for K a maximal length sequence with largest
element K, glued along the boundary strata in (3.73). Assuming that all its strata are
defined using regular continuation data, the dimension of the interior is

degx’ — degxj, —degx + |K| — 1. (5.62)

Lemma 5.9. Ifthe above dimension is 1, then /VK;in (x'; Xin, x) is a 1-dimensional man-
ifold with boundary decomposing into

]_[ A_/IK;in(x/; Yin, X) X -A_/l(yina Xin), (5.63)
yin€LNL’
]_[ ]_[ Mgz in & xine 3) x Mgz (y.0), (5.64)
€K yed; LN '
]_[ L[ ﬂmxﬂ V) X Mg=i(V's Xins 3), (5.65)
€K y'eg; LN ' !
Mi\(iyiin (X' Xin, X). (5.66)

ieK\{min K,max K}
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Proof. The description of the boundary follows from Lemma 4.5. The key point is that
MK;in(x’ ; Xin, X) 1s obtained by gluing the moduli spaces M,g; in()c’ ; Xin, X) along the
strata given in (4.22), so these correspond to the boundary. The strata in (4.24)—(4.26)
correspond to (5.64)—(5.66). m]

There are parallel results for moduli spaces with outputs:
M, 200 ¥ (@), Xou; X' (@) (5.67)

is the fibre product of mq, Ko (x'(q); xou, x(g)) with A R:ou OVET ﬁK;a(u , and is defined
0 ’ 0
wheneverg € P, 5. Given a totally ordered subset / of X, form the union

My rion@@). X0 X' @) = | M, £10a(@). Xou: X' (@) (5.68)

I=min K

As this moduli space is independent of ¢, denote it ﬂl; ou(x, Xou; x).
For generic data, the interior is a manifold of dimension

degx +degxoy —degx’ +n+1—|I]. (5.69)

Lemma 5.10. [f this dimension is 1, then MI;OU (x, Xou; X) is a 1-dimensional manifold
with boundary decomposing into

]_[ /V(xous You) X Ml;ou(xv You; x/)s (5.70)
You€LNL’
[T Mty x Myorou(y, Xous x), (5.71)
max J=min I y€Lmin N FninJ
Miug:ou®, Xous ¥') x My(y', x), (5.72)
min J=max I y’'€Lmax JNFmax J
mIu{j};ou(xs Xou» x/)‘ (5.73)
1U{j} O

min/<j<max I, j¢I

6. Moduli space of degenerate annuli

6.1. Dual and pair subdivisions

As in Sections 2.3.1 and 5.1, let ¥ denote a partially ordered set labelling a simplicial
triangulation of Q. In particular, every maximal totally ordered subset of X consists of
n + 1 elements. Given a totally ordered subset J of X, denote by o, the corresponding
simplex included in Q. The barycenters of the top-dimensional simplices are the vertices
of the dual polyhedral subdivision (which is not in general a triangulation), corresponding
to the partially order set ¥ which is obtained from X by reversing the order; write & for
the cell dual to 0. This cell can be realised as the polyhedron associated to the partially
ordered set {K | J C K} equipped with the ordering which reverses inclusions (i.e. J
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Fig. 16. The pairs barycentric subdivision of a simplex.

is the unique maximal element of this ordering, and corresponds to the top-dimensional
face). In particular,

wr= |J 61 6.1)
IcJ
| |=T|+1

The minimal common refinement of a triangulation and its dual subdivision is called
the pairs subdivision (as far as the author knows, the terminology is due to Denis Sullivan,
though the concept has appeared earlier [18]). Combinatorially, the pairs subdivision P X
of X is the partially ordered set whose elements are nested pairs I C K of totally ordered
subsets of 2. The cells associated to totally ordered subsets of PX correspond to pairs of
intersecting cells associated to totally ordered subsets of ¥ and . Moreover, these cells
are cubes: This can be seen algebraically by noting that the maximal elements of PX are
pairs {i} C K, where K has length n + 1; the corresponding cell of Q is associated to
the set of elements preceding this pair, which consists of all pairs / C J contained in K
and containing i. This is exactly the totally ordered set associated to the cube on the set
K\ {i}, as suchapair I C J withi € [ and J C K corresponds to the face in which all
coordinates labelled by 7 \ {i} equal 1, while those corresponding to K \ J vanish.

There are also geometric proofs that the intersection of dual cells is a cube: Embed
the n-simplex A, in R” as the convex hull of (—1, ..., —1), and the set of points with
one coordinate equal to 7, and all others equal to —1. Let [T C R” denote the simplicial
complex whose unique vertex is the origin, whose 1-skeleton consists of the negative
coordinate axes and the ray spanned by (1, ..., 1), and whose top-dimensional cells are
the octants spanned by any choice of n of these rays. As subcomplexes of R”, A, and I1
are dual, and the intersection of the simplex with the octant spanned by the coordinate
axes is obviously a cube. Another proof appears in Shtan’ko and Shtogrin [22, Proof of
main theorem].

6.2. The pairs barycentric subdivision

One motivation for introducing the pairs subdivision is the following: Assume that one has
moduli spaces Z;.i, parametrised by cells of a triangulation of Q, and Z; ,, parametrised
by cells of the dual subdivision, and one wanted to interpret the products Zj.in X Zy.ou as
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moduli spaces parametrised by cells of a subdivision of Q. The dual pairs subdivision is
then the natural choice, as its top-dimensional simplices are naturally products of cells
and their duals (this fact is mentioned only for motivation, and will not be used). In
Section 5.5, we constructed moduli spaces M,;in and M/;ou labelled by cells of the
triangulation of Q. It turns out that these spaces do not quite fit within this framework,
but this can be remedied by a further refinement.

Let BX denote the barycentric subdivision of ¥ whose elements are totally ordered
subsets, and whose partial ordering is given by inclusion. Denote a totally ordered subset
of BX by I, and the corresponding simplex by o7y.

Let PBX denote the pairs subdivision of the barycentric subdivision, which will
henceforth be called the pairs barycentric subdivison. Cells correspond to pairs I C J
where J is a totally ordered subset of X. Write o7 7 for the corresponding cube embed-
ded in Q. We shall presently see that the cells of P BY naturally parametrise the products
of moduli spaces M % and /\/l ., and their boundary strata.

Let Io and Jy (respectively 1 and J) denote the minimal (respectively maximal) el-
ements of 7 and J. Recalling the definition of the moduli space Ag and its variants as
a product of copies of [0, co] (see e.g. (3.3)), an identification of the interval [0, 1] with
[0, oo] yields natural maps

Ajzon < 7ci = Aj=in (6.2)

o

where the ordered sets J, f and J ,Z respectively consist of elements of J which are con-
tained in Iy and Wthh contam I. At the level of partlally ordered sets the first map takes
a pair of subsets ! C J 1 to their intersections with J .= , and the second to their intersec-

tions with J ,a.

e <Ii'ci'>1=ci) (6.3)
Lemma 6.1. If I = {I}, the product map is a bijection
Ofcj ‘Afﬁ;ou X Afﬁ;in' (6.4)

Proof. By construction, o} 7 is the cube on J \ 1, whereas A J=in and A 7700 ATE TESpEC-

tively the cubes on J 15 \ 7 and J IZ \ I (we have used the fact that Iy = I). By assumption,

every element of J may be uniquely written as the union of an element of J IS and J Iz
The map (6.4) realises the induced product decomposition

10,1\ = 10, 1177\ x [0, 1777\, (6.5)
O

Composing (6.2) with the maps defined in (3.46) and (3.76) yields maps

- Mou Min
.AJIOU < Uicj — AI 1r£). (6'6)
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Zin

Fig. 17. A fibre of C*°(c
obtained by pullback.

j), with curves labelled by the moduli space from which they are

{nc

Taking the union of the pullbacks of the universal curves on these spaces, we obtain a
moduli space of Riemann surfaces over e which we denote Coo(a{ Ic 7), and call
the moduli space of degenerate annuli parametrised by oinci (see Figure 17).

Note that all top-dimensional strata of the pairs barycentric subdivision are of this
form. In the next section, we shall show that this construction is appropriately compatible
across boundary strata, i.e. we obtain a moduli space of degenerate annuli parametrised

by Q.

6.3. Degenerate annuli over a cell of the pairs barycentric subdivision
Given a pair i C J , define
miny (J) = {min J; | I C J; C I and J; € J}, 6.7)
max;(J) = {max J; | Iy € Ji C I and J; € J}. (6.8)
For each cell of the pairs barycentric subdivision, this defines maps

— max min —
.AII% “—— 07cJ —>A11§ (6.9

which, at the level of partially ordered sets, are given by
max;(I}) C max;(J;) <= I, C J; +> min;(I;) C min(J,). (6.10)

Define the universal curve C%”;i over

Afeq=Rgp x Az x Az x A ©6.11)

in
Iy To,

to be the union of the pullbacks of the universal curves of each factor.

Definition 6.2. The universal family of degenerate annuli C*(o;_j) over o7 _j is the
pullback of C;Zi by the product of 1oy, max, min, and piy.

The reader should consult Figure 18 which shows how to interpret the fibre of C*° (07 7)
as a degenerate annulus for an example with I consisting of four nested sets.
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A Lz A I A= 1
! 0 0.1
/ ~ maxI! . max I . max I .
J [
Zou -:- \ AJ 1,ou
\ \\ /1
\\\\min I e min / o min /g .
A A< A<
I 11‘S 1 10' /1

Fig. 18. A fibre of C*®(07,_j1) for I'' = {1} c Iy c I c I'}, with curves labelled by the
moduli space from which they are obtained by pullback.

Given a pair of strata Of1cj1 COfcjs there is a commutative diagram for the restric-
tions of iy and poy:

Apin <—Ap XA XAz = Ajin

0. 0.1} 0./ 0.1 0.J0
Min T Hin[
.. cC .- =
Ofici! OicJ (6.12)

I’LOU
l Hou l

Ajlliou ~<— Z[ll,s X -Zjlliou X Z,{l,z(_)ﬁj;’“
To help the reader navigate the above diagram, note that the upward pointing arrow la-
belled uj, is the map appearing in (6.6). Since the middle and top horizontal maps are
inclusions, the unlabelled upward pointing arrow is the restriction of uj, to the boundary
stratum o7 _ ;. This stratum is equipped with its own map pin coming from (6.6), which is
the left-upward pointing arrow. The bottom half of the diagram is determined in the same
way, mutatis mutandis.
On the other hand, the maps min and max fit into the diagram

Ajpz<—A: xApzxA 1 —Ap>
I =, 1 1 I}
I 0,1 0 1 0
0 0
max T max{
S G
Oficy! Orcy (6.13)
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One can navigate this diagram in essentially the same way as the previous one: the left-
upward pointing map is the map max from (6.9), applied to the boundary stratum oy 71.
Since the top left pointing arrow is an inclusion, the commutativity of this diagram is

equivalent to this map factoring through the substratum A 1z XAz x Az of the target.
0,11 Io 1
0

This stratum projects to its middle factor, which is the image of the map max defined on
0jj- The commutativity of the top square should then be interpreted as the assertion that

the map max defined on Ojcjs when restricted to its boundary stratum Ofic1s factors
through the image of the map max defined on this stratum. Similar considerations apply
to the bottom part of the diagram. To complete our analysis of the comparison between
the fibres of C* (071 7 1) over different strata, define

S _ _ _ _ _ _ _ _
icjiAicy EAJ;I.OU X.AI}.z XAz x Az xAps xAps X./llll,g X.All,in ; (6.14)

I 1 1 I 1
0 0‘10 0.[0 0 0,74

inspection of Figure 18 may help in decoding the notation.

Lemma 6.3. The products of the maps [Loy, max, min, and Wiy fit in a commutative dia-

gram
Oficy! Ofcy

e

—00 —00 —00
Aficjt =—0nc Al Alcj
Proof. The vertical maps are those arising in Definition 6.2. The bottom horizontal maps

are natural inclusions, which we make explicit for the benefit of the reader: For the left
pointing arrow, we factor 97 J—.A?OC 7 as

Zjlliou X (ﬁlll,z X Tllz X 7&12 ) X (.Zlg X 7&15 X ﬁl},g) X .le,m. (6.16)

I 1 1 I 1
0 0, I0 0,10 0 O’JO

The terms at the two ends appear in diagram (6.12), and are factors of .Z}Z(IC ji1-Upto
reordering, the two “blocks” of three terms appear in diagram (6.13), and are contained
in the remaining two factors of A7 cjt

For the right pointing arrow, we factor d ficit ﬁ}zoc jas

_ _ _ . _ _ angan
Ajl,gu X AILZ X AIIZ X ‘AIZ X ‘AIS X Alls X .A.Il,g X All,in . (617)
—’l\,_l,/ 0 0.1} 0.1 ) 1 o]

The three terms above underbraces, as well as those below overbraces, appear in diagram
(6.12) and are contained in two of the factors of ﬁ?oc 7- The remaining factors of AT?OC 7
are those which are not labelled in (6.17) at all.

Now that we have described all the maps in diagram (6.17), its commutativity is an
immediate consequence of the commutativity of diagrams (6.12) and (6.13). ]

By construction, the universal curves over the left and right products of Adams path
spaces in the bottom row of diagram (6.15) restrict to the natural universal curve in the
product in the middle. In particular:
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Lemma 6.4. There is a natural identification
Cx(oticj) ECT (07 Ploticj- (6.18)
O
The above result implies the existence of a family of degenerate annuli over Q,

C*(Q) — 0, (6.19)

whose restriction to each top-dimensional cell of the pairs barycentric subdivision la-
belled by {/} C J admits a natural isomorphism

C®(oyyep) = wi U Jou U M;;H,%. (6.20)
The boundaries of the fibres will be denoted

C{Q()},oo 7710} U{O} and

1
= /,LOUZ/{Jou U [m C{Q]}OO - ujou U Z/l{ }

Min Im ’

6.21)

{0},00 {l}oo

and C
The marked points zj, and zo, on the fibres of L{ [m and U Jou over A Im and A Jou yield

with the restrictions to g € Q denoted C,

marked points on Cg {1 for every g € Q which 1nduce a decomposmon

{1},oo __ »zin<zZou,o0 Zou <Zin, 00
C o = C 0 uc 0 (6.22)
with the first component being the union of the pullbacks of un Jin ~ and Hj“lo“f, while the
o
second component is the union of the pullbacks of U™ and Ui"é’f.

Iin
Jo

6.4. Floer data on degenerate annuli

On each top-dimensional cell of the pairs barycentric subdivision, consider the map
®>° . defined as the composition

{1ycJ
— j— n+2
C¥(ojcj) = M;knulif(') Y Mé“ujfu HO x g7 x D?
oF P
R (623)
e xu,m Uoinci xZ/{Jou% Prax1 X Z/[Im U Prax J xUJou

The horizontal arrow is induced by the inclusions of onei in Ppax s and Ppay g, arising
from the fact that o, 7, as a cell of the pairs barycentric subdivision, is contained in
the open star of the vertices labelled by max / and max J, and from our assumption in
Section 5 that the open star of every vertex be contained in the corresponding polygon.
To describe the bottom pointing arrow, recall that ,u;"nﬁ I}?) is the space over onei ob-
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tained by pulling back I/ i = .Zli]n. The restriction of the left vertical map to the first
0 0 —
component is then the product of the projection to the base and the natural map to I/ rin-
0
The second component of the left vertical map is given in the same way.
Over a codimension 1 stratum, the restrictions of the maps cD??}cf agree under the

natural identifications; on the first component, this follows from (5.34)—(5.39), while on
the second, from the analogous conditions imposed in (5.49)—(5.54). Taking the union
over all top-dimensional cells, we obtain a map

OF = ($F. I UF): CX(Q) — 3 x J"H3 x D¥'T (6.24)
Given intersection points xiy, Xou € L N L', define
Mclzocj(xou; Xin) (6.25)

to be the moduli space of finite energy maps from a fibre of C*°(07 ) to X such that

ou(z) = Jg’(z)atu(z), u(z) € d)g)(z)(L) if z € Cin=fon (7 _7), (6.26)
u(z) € Fyifz € C%®(q), u(z) € pF(2)(L)if z € C=n ¥ (o7 7).,  (6.27)

and which converge to xj, and x,, at the ends, and with compatible convergence to inter-
section points along ends (i.e. each node of the corresponding nodal Riemann surface is
labelled by an intersection point of Lagrangians).

Remark 6.5. The above moduli space represents a significant change in perspective from
previous constructions wherein the labels on any moduli space determined a basepoint
in Q whose corresponding fibre served as the boundary condition for all elements of the
moduli space. The results of Section 5 ensure that we can choose any fibre in a fixed
neighbourhood of the basepoint, and obtain a bijective correspondence between the mod-
uli spaces defined for different fibres. The new point of view is that, using the fact that the
moduli spaces we consider are parametrised moduli spaces, we can choose any map from
the parameter space to the space of fibres over which the given Floer data are defined, and
introduce a new moduli space, with elements in bijective correspondence to the old as a
fibre product.

To be specific, let us consider the case of the moduli space M (x, y). The maps ¥;
and ®; chosen in Section 5.2 allow us to define Floer data W;,(®;) parametrised by
P; x Uy. If we fix a point g € Py, then these data, together with the Lagrangian bound-

ary condition F;, along u 30}, yield moduli spaces Hq, 1(x,y), which are intertwined by
homeomorphisms induced by W;. In this example, the new point of view is to instead
pick amap A; — Py, and consider the composition of W, (®;) with the map

ﬂ] — Z[ X ﬁ; — P; x U[. (6.28)
This gives a new family of Floer data on {7, which again yields a moduli space homeo-

morphic to M (x, y), but now with the boundary along / 30} prescribed according to the

— . . 10 .o — .
map A; — P; (i.e. over the line Z/l; } over a point r € Ay, the Lagrangian boundary
condition is the fibre at the image of 7 in Py).
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Lemma 6.6. There is a natural homeomorphism

My @ouiain) =[] My, 5o (bou X)X My Ge i (8 xou, x). - (6.29)
xeFiNLy
x/GFlﬁL/,
Proof. By the bijection (6.4), o7_; splits as a product of the spaces parametrising
Mql,flz;ou(x Xou, X') and Mq: e (x/, Xou, X), and the universal curve COO(O’{I}Cf) is
obtained by pulling back the domams of these moduli spaces. Since the Cauchy—Riemann
equations defining M i -(Xou; Xin) are also obtained by pullback, we obtain an identifi-
cation of moduli spaces of solutions after applying the family of homeomorphisms from
(5.59) to the constituent moduli spaces of continuation maps. O

The virtual dimension of M?"C] (Xou; Xin) 18
dim Ojcj—n+ deg xoy — deg xip. (6.30)

Since the Floer data on each component of a fibre of C*° (o - 7) were chosen generically
in Sections 5.2, 5.3, and 5.4, this moduli space is empty whenever the virtual dimension
is negative. If we assume that deg x,, = deg xj,, all moduli spaces are therefore empty,
except those for which dim Ojcj=n ie I = {1}, and J has length n + 1. Define

M(;O(xoui Xin) = U M?Ocj(xouQ Xin)- (6.31)
lelc]

Our regularity assumptions imply that this space has virtual dimension deg xo, — deg xip,
and that it is stratified by the submanifolds M‘;f’cf(xou; Xin) whose codimension is equal
to the codimension of Oicj Whenever the virtual dimension vanishes, we conclude that
the only contributions to this moduli space come from cells of the form O\ nck since
the moduli spaces parametrised by all other cells have negative virtual dimension. In this
case, there is a straightforward description of the moduli space:

Lemma 6.7. If degx,, = deg xiy, there is a natural homeomorphism

~ Vi ’ wi ’
M(;O(xou; Xin) = | | | | Mq;,];ou(xv Xou; X') X MqI,I;in(x } Xin, X).
xEFIOL yeH|(Fy,,Z)
x'eFnL’ o (6.32)

Proof. We apply Lemma 6.6 to each such cell, and note that, according to (5.61) and
(5.68), we have

My, ou(x, Xous X) X Mg, 1:in(x"; Xin, X)

[ My 70 @) %in, (@) X M, 50, (6(@), Xou; ¥'(@))- - (633)

I=max [
I=min J

The result follows from the fact that the assignment K=1U J yields a bijective
correspondence between pairs (I J ) such that max] = I = minJ and sequences K
containing /. O
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We now restrict attention to the space of annuli whose restriction to the boundary fibre is
a null-homologous circle:

Mf(?]J(xou; Xin) C MC[)o(xou; Xin)- (6.34)

Denote by /\_/l(fg] 7 (Xou; xin) the Gromov—Floer compactification.
In order to describe this decomposition in terms of the constituent curves, consider
the natural decompositions

Mql,l;ou(x7x0mx/) = ]_[ MqI,l‘y;ou(x»xou»x/)» (6.35)
yeH\ (Fy; ,Z)

MqI,I;in(x/; Xin, X) = ]_[ Mql,l,y;in(x/§ Xin, X), (6.36)
yeH (Fy, . 2)

where the components of the right hand side labelled by y consist of curves u whose

boundary along ¢ yields a circle in Fy;, representing the homology class y after concate-

nation with the paths from x and x’ to the basepoint on F;, which we fix as in Section 2.2.
The following result is now an immediate consequence of Lemma 6.7:

Lemma 6.8. If degxo,, = deguxin, then Mfg]’ 1 (Xou; Xin) is a O-dimensional manifold,
which agrees with its Gromov—Floer compactification, and which is naturally homeo-
morphic to

R /.
| | | | MqI,I,y;ou(x»xou’ x') X MqI,I,y;in(x ; Xin,y X). (6.37)
x€FINL yeH,(Fy;.7) O
x'eFNL’

Write Mfgl (Xou; Xin) for the union of the moduli spaces M[og’] 1 (Xous Xin) over all cells 1
of X.

6.5. Gluing description of Floer data on degenerate annuli

As in Lemma 6.4, consider an inclusion of cells of the pairs barycentric subdivision
Oj1cj1 COfcj- Composing the maps pip and pq, With projection to the factors labelled
by elements which do not lie in min 7 ! and max I ! yields a map

Ofcj — [0, oo]min il\min I x [0, Oo]max Iql\maxlq’ (638)

This map provides a gluing description of the restriction of C*°(0j7) to a neighbour-
hood of 071 71. Indeed, composing the map from o} to AT(IZOC] with the maps in (3.21)

for each factor of the target defines a map oj ;7 — 7{% c 1. After restricting to a neigh-
bourhoog VicjOiicji of ojij1inof 7, we denote the pullback of the universal curve
under this map by

cJ>
CH e Wiciorici) = Vicioiicjt- (6.39)
The gluing map in (3.27) yields a map of families of surfaces over vy _jojij1,

C;xfcjl(vicfailcf') —>C°°(vicj0ilcf1). (6.40)
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Define the continuation data
. . Lo 0 +3 2n+2
CID??le _(¢19(1)cf1"[19<1>cf1’w$?cf1)'C??cfl(GICJ)_)g{ x 3" xD (6.41)

to be the composition of <I>°Q° with the gluing map of (6.40).
If V7171 is aneighbourhood of o7, - 71 in Q whose intersection with every cell o _ 5

lies in VicjOf1cf1, We define

CH e Ve = Ve (6.42)
to be the union of the restrictions

CH e Wicionci)licioici N Vit (6.43)
glued along the natural identifications across strata of the pairs barycentric subdivision.
The compatibility of the Floer data across strata implies that the maps in (6.41) yield a
continuous family of Floer data

n+2 n+2
(D(,zcicjﬁC??le(vflcjl)ﬁj{OXHZJr x D, (6.44)

7. Cardy’s relation

The reader familiar with the use of Cardy’s relation in the generation criterion for Fukaya
categories [2] is likely already aware of what will happen in the rest of the paper: having
constructed a moduli space of degenerate annuli parametrised by ¢ € Q, we shall realise
this moduli space as a boundary of a moduli space of annuli of arbitrary modular param-
eter. This moduli space will have another boundary component, which will be shown to
give rise to the identity map on Floer cohomology.

There is one remaining technical difficulty ahead, arising from the need to define
compatible gluings of the moduli spaces of degenerate annuli defined over different cells
of the pairs barycentric subdivision associated to X. In the next few paragraphs, which
have no content subsequently required in the paper, we attempt to give some intuition
for the problem we shall face. The reader who would like to continue with the logical
development can safely skip to Section 7.1.

In essence, the difficulty has nothing to do with annuli, and can be illustrated more
succinctly by considering a moduli space of continuation maps parametrised by a 1-
dimensional manifold Q, which is stratified as two closed intervals meeting at a point g.
The reader should have in mind the example in which the moduli spaces we shall next
describe arise as unions of components in the moduli space of degenerate annuli.

Assume that we have a totally ordered seti < j < k < [, and the moduli space
corresponding to g is the product Az x f_{jk x A; j» which is simply a point, with universal
curve shown in Figure 19. We parametrise each of the intervals comprising Q by [0, oo],
with oo corresponding to the common point. We identify the first interval with f_[.i Kl X ATU
and the second with ﬁkl X ﬁi jk- Some readers may be wondering at this point about which
smooth structure we use on [0, oo]; this is completely irrelevant, since the issue we shall



2196 Mohammed Abouzaid

N k k S k |R R

J J S R Rl J S

i i i i i i i
q q

Fig. 19. On the left is a continuous family of nodal Riemann surfaces with interior marked points
over the interval. On the right is a naive attempt to produce a family of smooth nodal surfaces by
gluing, resulting in a discontinuous family.

encounter is one of continuity, not smoothness. It should be clear at this stage that we
have a continuous family of moduli spaces over I as shown in the left part of Figure 19.
Our goal is to define a universal curve over I x [R, oo] for some (positive) real num-
ber R, which restricts to the moduli space just described over I x {oo}. Over each top-
dimensional stratum, there is a straightforward construction: there are natural embeddings

Zk] X zijk X [R, 00] —> ﬁijkl and ﬁjkl X Z,‘j X [R, 00] — Zijkl, (7.1)

and the moduli space can then simply be defined by pullback. The problem is that this
construction is not consistent at g as shown in Figure 19: the curve associated to the point
(g, S) lies in A ikl X A, ; for the first stratum, and in Ay x .A, 1 for the second stratum.

It is of course not too surprising that this naive attempt to construct an extension fails:
We start with a stratified map Q — 9.A; k> and the gluing coordinates define embeddings
into AT,- ki of the product of [R, co] with the two top-dimensional strata of EJZ,- ki which
we are considering. However, these embeddings do not restrict to the same embedding
at the intersection of these two strata, which is a point; indeed, we have described ﬁ,- ki
as the product [R, 0o] x [R, 0o], and the two gluing coordinates correspond to the two
factors. The problem can be summarised by noting that O x [R, oo] is a manifold with
boundary, whereas the gluing coordinates make A; ki into a manifold with corners.

The solution to this problem is rather straightforward: for any real number R, there is
certainly some topological embedding d.A;jx; x [R, o0] — Al jki> which can moreover be
chosen to be given by the gluing coordinates away from a neighboorhood of the corner
stratum (the size of the neighbourhood depends on R). The embedding can be given by
a (varying) combination of the two gluing functions near the corner. For example, one
can start by setting the embedding of the product of the corner with [R, co] into ﬁ,- ikl
to be the diagonal map into the pair of gluing coordinates, then cut off one of the two
factors as one moves towards the interior of the two strata. This is the basic idea behind
Definition 7.1, which will be given in Section 7.2.
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7.1. Moduli of smooth annuli over Q

Let C — [0, co) be the family of curves over the positive real line whose fibre at S is the
annulus

R/ASZ x [0, 11 = {z € C | ™™ < 7] < 1}, (7.2)
where the left hand side is equipped with coordinates (s, ?) and complex structure

1—t—is
s

Jjds = 9, and the identification is via the coordinates e~ (see Figure 20).

lz] =1

Zou Zin

- Zou

-2 0 28

Fig. 20

For § = 0, the fibre is the unit disc. Let CS denote the fibre over S. Given any subset
U cC Q,let
C(U) — U x [0, ) (7.3)

denote the pullback of this family of annuli via projection to the first factor, with C5(U)
the fibre over S. Fix the holomorphic embeddings

tin, tou® [—S, S]1 x [0, 1] = R/4SZ x [0, 1] (7.4)

which are the identity on the [0, 1] factor, and whose images are respectively the natural
inclusions of [—S, S] x [0, 1] and [S, 3S] x [0, 1]. Note in particular that the image of
(0, 1) under the first map is (0, 1), and under the second map is (2S5, 1); in the model of the
annulus embedded in the unit disc, these marked points are £1. Denote the corresponding
sections of C(Q) by

Zin, Zou: Q@ — C(Q). (7.5)

We write C{%(Q) for the family of circles over C(Q) corresponding to R/4S7Z x {0},
Céin<zou(Q) for the family of intervals (0, 2S) x {1}, and C%u<%n(Q) for the family of
intervals (=25, 0) x {1}. Let C{!}(Q) denote the union of all these intervals.

Fixing an identification of the complement of =1 in the unit disc with the strip B,
mapping *+1 to o0, defines positive and negative strip-like ends on neighbourhoods of
{zin, Zou}. Choose a family of strip-like ends

€+: 0 x (0,00] x BL — C(Q) (7.6)

covering neighbourhoods of zj, and z,y, which agree with these strip-like ends for S close
to 0, and agree with the ends obtain by gluing whenever S is sufficiently large.
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7.2. Contractible choices of gluing

Letoji-j1 C Ofci be. cells of the pairs barycen.tric' subFlivision, Vi 70711 the neigh-
bourhood fixed in Section 6.5, and ¥ 7cjOr1cjt its interior.
Fix a cover {V;_;} of O by open subsets whose closures V:_ 7 satisfy

IcJ
Vieinc U bicjoiici (1.7)
Ici'cJcJ
ViicjiNVicj =9 unless the corresponding cells are nested. (7.8)

As illustrated in Figure 21, the intuition is that V;_; is an open neighbourhood in Q of
the complement in oy 5 of a neighbourhood of the boundary. In particular, the second

condition precludes o7 ; being contained in V; cj for all cells, since this would imply

the existence of intersections for elements of the cover labelled by cells which are adjacent
but not nested (i.e. share a common cell in their boundaries).

Viiciji)
V{i jcijkycT

Viike7

Fig. 21. Constructing the cover {V7 c 7hby induction near the barycenter of the simplex labelled
by J ={i Cij Cijk}.

Definition 7.1. An annulus gluing function on V;_j is a map

g% Vi x (0,001 — (0, 0™ x (0, oo]m (7.9)

which is smooth on V;_; x (0, c0) and such that the sum of the coordinates in each of

the factors on the right agrees with the projection to (0, co].

Since addition of coordinates defines a smooth fibre bundle (0, 00)¢ — (0, 00) with
contractible fibres, which extends to an acyclic fibration (0, oo]d — (0, o0], the space of
choices of g€ extending any given choice on a subset of the domain is contractible.

By restricting the domain of the map (7.9) to oo in the second factor, (6.38) yields a
map on the intersection of Vj; _ ;1 with each stratum

8icr! min 7 "\min 7 max [ '\max
Vitgji Nvjcjojicji —— (0, 00™" Ml 5 (0, 00] )

N (0 oo]minil\mini X {oo}mmf X (0 oo]maxil\maxi X {oo}maxf (710)
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where we remind the reader that min 7 is the subset of X consisting of all minimal ele-
ments of the nested subsets which comprise 7, and max [ is the set of maximal elements.
We obtain a continuous map
g% 1 Vij x {00} = (0, 00]™"! x (0, co™ . (7.11)
If o171 C ojj, the product of (6.38) with the choice of a map g€ on Vicj yields
a map

Vici N Viicji x (0, 00] — (O, oo]mianl x (0, oo]maXil. (7.12)

Since the space of choices is contractible, such a map may be extended to a map on
Vi il Proceeding by descending induction on the dimension of Ojcj»one shows:

Lemma 7.2. There is a choice of annulus gluing maps gC restricting to gcOQ on the
boundary, and which extends the map in (7.12) for every nested pair. o

7.3. Gluing maps from degenerate to smooth annuli

Let V;j be the open set associated to o 7 in the previous section. Recall that the com-
ponents of the fibres of C‘;‘;](Vi cj) over apointin V;_7 are identified with strips, and
have ends labelled by the pairs (min Iy, max Ip), (min /, max /'), or successive elements
of either min / or max I.

Given an element i € max U max J , We write gic for the corresponding component
of the gluing function €. Since the closure of Vicj does not intersect any cell which
does not include Ojcjs the Floer data are constant outside the union of the finite strips

(=88 1 (Vs S): &Sm0 (02 )1 x [0, 11, (7.13)
[=85in1 (¥, S), 85 1 (v, )T x [0, 11, (7.14)
(-85 (v, $). g5 (v, )] x [0, 1] (7.15)

whenever S is large enough, where i < j are successive elements of min I ormax I in
the last product (see Figure 22).

/ - max / ° max [y

Zou + Zin

\\ \77 min / ° min I

Fig. 22. A fibre of Coo(aicj) for I = {Ip C I}, with shaded regions determined by the func-

tion gc.
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Restricting the embeddings ti, and ¢y, defines maps
(8% 1y (¥ ), 85in 1, (v, )1 X [0, 11 — R/4SZ x [0, 1], (7.16)
[—gC: (0, 5), g5, (v, )] x [0,1] > R/4SZ x [0, 1], (7.17)

where the image of the second map is [25 — gglinl(v, $),28 + gfli’laxl(v, SH)] x [0, 1].
To define the embeddings corresponding to the other components of c;‘;j(v; cj)let

Ri(v,8)=2 > gf.S) (7.18)
kemin T
J<k

for j € min I and define the embedding in R/4SZ x [0, 1],

[—&f (v, 5), g€ (v, ) x [0, 1]
— [Ri(v.8) — g5 (1. ), Rj(v, ) + g5 (v, )] x [0, 1],  (7.19)

for successive elements min Iy # i < j of min I. Since Rmin 1 (v, S) = 28 by assumption,
these embeddings intersect only on the boundary, and their images cover the finite strip

(851, (U $). 28 — g5, (v, ) x [0, 1] € R/4SZ x [0, 1. (7.20)
Similarly, if j € max I, define

Ri(v,$)=2 Y gf®9), 7.21)

kemax I
Jj=k

and consider the embedding

[—&f (v, 8), g (v, )] x [0, 1]
= [-Ri(v.5) — gf (v, 5), —R; (v, §) + gF (v, )] x [0, 1].  (7.22)

The union of these strips is
[—2S + gfm,(v, S), —gf;:ax 1, HIx [0, 1] C R/4SZ x [0, 1]. (7.23)

Note that the annulus is covered by the images of the maps (7.16), (7.17), (7.20), and
(7.23) (see Figure 23). Collapsing the infinite ends of each strip containing the domains of
(7.16), (7.17), (7.19), and (7.22) to the corresponding boundary interval yields a surjective
map

GG 7 C3;(Viey) = CS(Vicj). (7.24)
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Zou

lou lou

-28 c® 0 c® 28
—28max 1, (V> ) 28min 1, (V5 S)

Fig. 23. Decomposition of the annulus for gluing parameter S into finite strips.

7.4. Floer data on annuli

Floer data on annuli are given by a map
Do = (¢0, Jo, V0): C(Q) = HO x I x D (7.25)

such that (i) the pullback of ® ¢ under €;, and €,, agrees with (Id, J;, Id), (ii) the re-
striction of Jp to C¥n=%u () agrees with the pushforward of J under v, and (iii) the
restriction of Jg to C%r<%in( Q) agrees with the pushforward of J' under /.

By gluing, @;iocf induces Floer data @ _ 7 on a neighbourhood of § = coin C(V; )
by requiring the commutativity of the diagram

CX 2 (Viej) —=C(Vicj)
l%i (7.26)

HO%xJxD

o .
1cJ

whenever S is sufficiently large. The maps (¢, V) are said to be obtained by gluing if
their restrictions to C5 (Vy c 7) agree with (¢ i U c 7) whenever § is sufficiently large.

As in the case of strips, a more general class of almost complex structures is needed.
Define the R-thick subset of C (Vic 7) to be the union of the images of [-R, R] x [0, 1]
under the maps (7.16), (7.17), (7.19), and (7.22). A section of the pullback of 79 by J; 7
is consistent if it is supported in the interior of the R-thick part, and vanishes to infinite
order at § = oo.

Definition 7.3. The data ® g are obtained by perturbed gluing if ¢ and V¢ are obtained
by gluing, and the restriction of J¢ to a neighbourhood of § = oo in C(V; ;) agrees with
a consistent perturbation of J; ;.

7.5. Moduli spaces of annuli
The identification of the complement of zj, and z,, in CO with a strip yields data

@0 19 W) = (d, J;, 1d): €°(Q) - H" x § x D. (7.27)

There is a natural embedding CS(Q) C CO(Q). Say that Floer data (¢, Jg, ¥¢) are
obtained by gluing near S = 0 if they agree with the restriction of the above data for
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S sufficiently small. This agrees with the usual notion of gluing under the assumption,
made in Section 2.4, that J; is constant in a neighbourhood of t = 1/2. Such data are
obtained by perturbed gluing if there is a compact subset of the interior of the punctured
disc where the almost complex structure agrees with the restriction of the almost complex
structure J 8 up to a perturbation which vanishes to infinite order at S = 0.

Choose Floer data (¢, Jg, ¥¢) which are obtained by perturbed gluing near § = 0
and S = oo, and whose pullbacks under the strip-like ends €4 agree with the restrictions
of (¢0 ,J g, wg). Given intersection points xin, Xou € L N L', define M5 (Xou; Xin) to be
the union over g € Q of the space of finite-energy maps from fibres of C5(Q) to X with
boundary conditions

du(z) = Jo(2)du(2), u(z) € F,ifz € ¢%(g), (7.28)
u(z) € po(2)(L) if z € Cn=*(Q),  u(z) € po(2)(L) if z € C**=n(Q), (7.29)

and which converge to xj, and x,, at the ends. Let

MO (xis xin) = ]_[ M (Xou: Xin), (7.30)
S€(0,00)

which is topologised as a parametrised moduli space over Q x (0, 00).

Lemma 7.4. For generic Floer data ® g, M%) (xou: xin) is a smooth manifold and

dim M (xou; xin) = 1 + deg xou — deg xig. (7.31)

Proof. The formula for the virtual dimension is a special case of [19, Section (12c)].
The assertion that generic Floer data yield smooth moduli spaces follows from [8, Theo-
rem 5.1]. O

Denote by /\/lfg]’ o) (xou; Xin) the space of annuli such that the image of the boundary com-

ponent mapping to a fibre is null-homologous. Let ﬂ{gim] (Xou; Xin) denote its Gromov—
Floer compactification. To describe the boundary, define C(xoy; xin) to be the moduli
space of solutions to the Floer equation with one interior marked point lying on the line
R x {1/2}. This moduli space can be thought of as the continuation moduli space for a
constant Hamiltonian family, and is the product of a closed interval with M(xou; Xin),
unless xoy = Xip, in Which case it is a point.

— [0
Lemma 7.5. Whenever deg x,, = deg xip, M{Ojoo] (Xou; Xin) is a compact 1-dimensional
manifold if the data are chosen generically, and its boundary is stratified into

K (xou; Xin), (7.32)
]_[ Mfgjoo)(xou;m X M(x; Xin), (7.33)
xeLNL’/
[] Moo x) x MG (s xin). (7.34)
xeLNL’/

M) (Xous Xin).- (7.35)
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Proof. Since we have excluded interior sphere bubbling by a topological assumption,
and disc bubbling by the careful choice of almost complex structure along the boundary,
the virtual dimension of all strata of the Gromov—Floer compactification is negative if
deg xoy < degxin, so the regularity of the choices of Floer data implies that they are
empty. If deg xo, = deg xj,, the only strata which do not have negative virtual dimension
are those given in the statement. The first and last strata correspond to S = 0 and S = oo
respectively, and the middle two correspond to breaking along the ends.

The proof that M{gf"] (xou; Xin) 1s a manifold with boundary follows from a standard
gluing argument. For § = 0, this takes the form of interior gluing of the element of
K (xou; xin) With the family of constant (ghost) discs on fibres of . For § = oo, there is
a natural projection map

C[O(;j](xom Xin) = Q. (7.36)

Choose an open subset V; 7 containing the image of a map u in the left hand side. The
gluing description of Floer data on C(Vj_j) yields a gluing chart near this boundary
point. O

8. Floer cochains and morphisms of sheaves

Let us fix, as in the previous section, a choice of triangulation ¥ of Q which is sufficiently
fine so that the results of Section 5 apply.

8.1. Relative Pin™ structures and orientation lines

Let L and L’ be graded Lagrangians as in Section 4, equipped with choices of Pin™
structures as in Section 2.4.1. Replacing F,, by L’ in the discussion of Section 2.4.1, we
obtain a rank-1 free abelian group

Oy = [0x| ® vy 8.1

which is the tensor product of (i) the orientation line on oy, which is the determinant
line of a Cauchy—Riemann operator on the upper half-plane associated to a path from
T.L to T,L’ in the Grassmannian of Lagrangians of T, X, and (ii) the line v, whose
trivialisations correspond to choices of Pin' structures on the vector bundle over the
interval corresponding to this path, extending the choices at the two endpoints.

For each vertex i of the triangulation ¥ of Q, fix a Pin™ structure on T, 0 ® E,. By
the isomorphism of the tangent space of fibres with the cotangent space of the base, this
induces such a structure on

TF; ® n*E|F;, (8.2)

where we write F; = Fy; asin Section 2.3.1. For each pairi < jin X, fix a Pin™ structure
on the restriction of 7*Q @ E to the corresponding edge o;; of the triangulation of o,
which agrees with the Pin™ structure chosen on the ends. Given a triple i < j < k in X,
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there is a canonical homotopy between o;; and the concatenation of o;; and o, which is
associated to the simplex o; . Define a Cech cochain with coefficients in Z> by

0 if the induced Pin™ structures agree,

o 8.3
vijk 1  otherwise. (8-3)

Lemma 8.1. Equation (8.3) defines a cocycle representing wy(Q) @ wa(E).

Proof. The corresponding formula for orientable vector bundles is well-known (see
e.g. [17]). The general case follows from the existence of a canonical isomorphism be-
tween the set of Pin™ structures on a bundle E and Spin structures on (det E)®3 @ E

(see [14]). O
Assume we are given, for each i € X, a Hamiltonian diffeomorphism ¢; such that
L; = ¢;L is transverse to Fy, for all ¢ € P;. Since P; is convex, there is a unique

way of associating to each intersection point x € L; N F; an intersection point between
L; and F;, which we denote x(g). The Cauchy—Riemann operator associated to x (¢) and
the relative Pin" structure determine a local system over P; with fibre 8y (4. Given a pair
i < j, the assumption that P; is contained in P; therefore yields a map

8x = Sx(g))- (8.4)

Given an ordered triple i < j < k, the map 8, — &g, defined by o agrees with the
composition
8y — 8x(f1j) - ‘SX(qk) (8.5)

if and only if the Pin™ structure on the restriction of TQ @ E to the boundary of o; i
extends to the interior. From Lemma 8.1, we conclude:

Corollary 8.2. The isomorphisms in (8.5) and (8.4) differ by (—1)Viik, ]

8.2. Energy of strips and annuli

Recall that we have fixed a choice of Lagrangian section t; over P; as in Section 2.3.2.
The intersection of this section with F; equips this fibre with a basepoint.

Since L; is assumed to be transverse to all fibres over P;, we can identify the compo-
nents of L; N X p, with the intersection points of L; and F;. Given an intersection point x,
we pick, as in Section 2.2, a function

g: P >R (8.6)

such that the section corresponding to x is obtained by fibrewise addition of dgy to ;. As
in Section 2.2, this function determines a path along F; from the basepoint to x. Given a
map u from a strip to X, with one boundary component mapping to F; and converging at
both ends to intersection points with L;, we obtain a homology class

[0ul] € H(F;,Z) 8.7

by concatenating the boundary of u along F; to the two paths connecting the intersection
points to the basepoint.
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We shall need a notion of energy for continuation maps. Assume that u satisfies a
holomorphic curve equation with moving Lagrangian boundary conditions along R x {1}
given by a Hamiltonian family ¢°, parametrised by s € R. Let

H:Rx X —>R (8.8)

be the Hamiltonian generating this family, normalised so that the integral of H; with
respect to a fixed volume form vanishes. Define the energy of u to be

E(u) =/u*(a))—/ H(u(s, 1))ds. 8.9)
B R

The analogue of Lemma 2.1 holds for such maps, i.e. whenever u and u’ are holomorphic
maps from a strip with boundary conditions given by the same path of Lagrangians along
R x {1}, and by F;; and F, along R x {0}, we have

EW) —Ew) = (q" — q.[0ul) + gy(q) — gx(q) + g (q") — gy (q") (8.10)

whenever u and u’ are homotopic. Here, (x, y) are the limits of u along the ends (which
are intersection points of F, with the appropriate Lagrangians) and (x’, y") the corre-
sponding limits of u’.

A generalisation of this result to annuli will be required. Fix the normalised Hamil-
tonian H: C(Q) — R generating a moving path of Lagrangians along the boundary of

C(Q). For a fibre in ZS (Xou; Xin), We obtain an expression for the energy
Eu) = / u*(w) — / Hq,5(u(l,s))ds. (8.11)
CS [0,4S]

Extending this map to A (Xou; Xin) by the sum of the energies of each constituent strip
yields a real-valued function £ on .Z[O’oo] (Xou; Xin), Which is easily seen to be locally

constant if the boundary condition Fy, is fixed. If we change boundary conditions, (8.10)

implies that the energies of (nearby) curves in A (Xou; Xin) With boundary on Fy; and F/
differ by (¢’ — g, y), where y is the homology class of the boundary in H;(F,, Z). This

implies that the energy is locally constant on Zf[;] (xou; Xin)- By expressing the difference
of energies of nearby annuli as the integral of w over an annulus in X connecting the
boundary conditions, this result extends to all annuli:

—0,
Lemma 8.3. & is locally constant on A{O]oo] (Xou; Xin)- O

8.3. From local to global

Let K be a totally ordered subset of ¥, which we recall is a triangulation of Q as produced
in Section 5.1. Given Xmin k € @min Kk L N Fiin k and Xmax &k € Pmax k L N Fmax k» recall
that

Mg (Xmax K3 Xmink) = MqK,K(xmaxK; xminK(QK))- (8.12)
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There is a natural isomorphism

| Ty Mk (Xmax K ; Xmin k)| @ Oxmin & (Gmax ) = |z1<| ® Sxpmax & - (8.13)
If we assume that deg xmax k = deg xminxk + 2 — | K|, rigidity yields an isomorphism

Ky - axminl( - 5Xmalxl( (814)

by fixing (i) the isomorphism in (8.4) and (ii) the orientation of .ZK arising from its
description as a product of intervals, and the ordering on K. Define

Fgx:F(L,minK) - F(L,max K)[2 — |K]|],

‘i 4 dfmlnl( max K —dgmax K +d&gmin K
?K|8xmm1< — @ Tfman,deK maxK

Xmax K (815)
Tg(u) [314 ® Ky

ue Mg (Xmax K X¥min k)

The discussion given in Section 2.5 readily extends to show that this map is convergent
(see also [1, Proposition 3.11]).

There is a natural bijection between the boundary of the 1-dimensional moduli spaces
Mg (Xmax K3 Xmin k), given in (4.8)—(4.9), and the terms of (2.42):

Mz x My= & Tz x F=, - Mgy < Fry. (8.16)

To conclude that (2.42) holds, it suffices to show that the coefficient of each term is
correct, i.e. prove the cancellation of the terms in (2.42) which have as coefficient a fixed
monomial.

Fix an energy E and a homology class 8 € H 1(Fq Z), and denote the corre-

max K ?

sponding component of the moduli space by J\/l ﬂ K (Xmax K Xmin K )-

Lemma 8.4. Up to sign, the contribution to (2.42) of every curve u lying in a boundary

E.p . .
stratum of M G kK (Xmax K ; Xmin k) agrees with

‘min K .max K (¢max )dfmml(maxl( dgmdxK(Xln.ixK)+dgm|nK(xm|nK) g(u) [Ou]
Tf e e fdma K Zmax K T maxK®K” (8.17)

Proof. The only strata for which this does not follow immediately from the definition are
those corresponding to M = x M <, for E corresponds to the energy of a holomorphic
curve with boundary condiéions Fm;X k., while the map F k= is defined using a moduli
space with boundary conditions F;. I

In particular, the functions fmink,; and f; max k¥ both contribute to the composition
ff"K_ X ff"K , whereas fmin k,max k contributes to Fg(;;. By multiplying ff"K_ X ?K_

by the cocycle O'min K ,i,max K » W€ correct this discrepancy between strata (see (2 38) and
[1, Lemma 4.2]). O
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There is a final matter of signs to discuss: the strata corresponding to sz X WKE
contribute terms in (2.42) which are compositions of the two maps Fp> x Fg=. Let

(4>, u<) be elements of such a stratum, which respectively converge to intersection points
(*max K » Xi) and (x;, Xmin k) at the ends. We must compare the composition k,,_ ok,_ with
the map obtained as follows: apply a diffeomorphism to u < so that its boundary condition
becomes Fax i, and then glue the two maps. Since we have to apply this diffeomorphism,
the sign contribution of this stratum to (2.42) entails comparing the composition

Sxmin kK 8Xmin k(qi) - Sxmin K (gmax k) (8 1 8)

with the natural map from the left to the right given by parallel transport along
Omin K, max k - The sign computation from Corollary 8.2 therefore implies:

Lemma 8.5 (cf. [1, Lemma 4.2]). The maps Fx define an (a’) ™ -twisted sheaf of per-
fect Oy-modules. O

8.4. From Floer to Cech

For Lagrangian branes (L, L’), consider the Floer complex

CF*(L.L)= P A®s;. (8.19)
xelLNL’

Every rigiq curve u € M(y, x) determines a map 9, : 6, — J defined as in (2.57) (the
linearised 0 operator at u# has a kernel coming from translation, which we trivialise using
dsu). Letting L14 denote (—1)9€8¥ 9, we obtain the differential

Wis=@ Y T¢W @ ul. (8.20)
Y ueM(y,x)

Given Xmink € Lmink N Fnink»> Xy k € Liax k N Fmax k> and xip € L N L, let

Min Gy i Xins Xmin k) = () M g Ot &5 Xins ¥mink (g5)) (821
K=max K

as in Section 5.5. Each element of the right hand side is a parametrised moduli space
M, i Choax &5 Xins Xmin k (GK)) = Ag - (8.22)

If | E | = | K|, subsequent elements of K differ by one element of K. We fix the orientation

of Ag.. coming from the ordering of these elements. Together with the isomorphisms

in (8.43, this results in a natural isomorphism

Mo - axin ® 8xminK - Sxmaxk (823)
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!

max K; Xins Xmin K). Define

for every rigid element u € MK;in (x

Cx: CF*(L, L") ® F(L, min K) — F(L', max K)[1 — |K]|],

; d fimin K. max K —4&ax k ®rax ) Fd&min K Kmin k)
€K|8)C' ®8x . — @ TfmmK.maxKZ » max K “'max K
in min K max K
¥

max K (8.24)
Y redlen
UMk in(X) 0 k5 Xin Xmin k)
and denote the direct sum of these maps by
C: CF*(L, L") — Hom(F(L), F(L")). (8.25)

The boundary strata of /V;Qin (x’ } Xin,» Xmin k) listed in (5.63)—(5.66) are matched

max K’
with the terms appearing in the equation for a chain map with respect to the Floer differ-

ential and the differential in (2.46) as follows:
B ﬂm‘iﬂ < Cgo (,u1 ® id), mK,-Z X ﬂ,{;;m <~ ?Kiz X GK,'S’ 8.26)
MKiZ;in X MKl_s < @Kl_z o (id®9’Kl_s), M (iyin < Cr\i}-
This correspondence between strata and compositions of maps implies:

Lemma 8.6. C is a chain map.

Sketch of proof. The cocycle a”, which appears in the differential on Hom(F (L), F(L'))
(see (2.46)), arises as in Lemma 8.5 because the functions f;;, which enter the definition
of € and J do not themselves satisfy the cocycle condition. O

8.5. From Cech to Floer

Let I be a totally ordered subset of X. Given x/. , € L.,
Lmax7 N Fmax 1, and xoy € L N L, consider

Ml;ou(xminl’ Xous xr/nax 1) = U Mq,[}(xminl(CIK)y Xous xr/na,(]) (8.27)

I=min K

N Fmin7s Xmax7 €

as in Section 5.5. Each stratum of the right hand side is a parametrised moduli space
over Ag. .. If |K| =n —|I| + 2, subsequent elements of K differ by one element of the

maximal element of K. Fix the orientation of A %:ou COming from the ordering of these
elements. Together with the isomorphisms in (8.4), this gives a natural isomorphism

®4 (8.28)

Xmin / Xou

Pu er/naxl )
for every rigid element u € M,;ou (Xmin 7, Xou; xr’nax ;). Given ¢ € Hom(dy,,,,, 0, 1)’
.. . . max
the trace of the composition with p, yields a map

tr(pyod): Z — § (8.29)

Xou *
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Using the fact that Laurent polynomials are dense, one defines a map

Puz O ® Hom(8y,y, 8y 1= |11 > A®3S (8.30)

X
ax [ ou

which is given by

I ®P
— fi —d fmin K, max dg,., - —dgmin ‘min
i K amax K 5~/ Komax K408 i O ) =8min K Comin ) 1 E40) @ 415 0 ) (8.31)

max K
whenever the homology class [0u] € H|(Fk, Z) vanishes, and is otherwise 0.
Using the decomposition of Homo ;. , (Fmin 1 (L), Fmax 1(L")) as a direct sum

01 ® Hom(.,, 8, 11— 1111 (832
Xmin I €Pmin 1 LN Fmin 1
xr’nax I €Pmax 1 LNFmax 1

define the components of a map P to the Floer complex:
CPI : Homomml (Srminl(L)» g:maxI(L/)) g CF*(La L/)v
Pr107 @ Hom(8yy,,» 8, D1 —1111=EP > P,.  (833)

X oyt
ou MEM!;Ou(xminlsxomxmaX 1)

To establish that P is a chain map, it is convenient to use the expression for the differential
on morphisms of sheaves given in (2.46), which yields

pWoP@ @)= > ) P (L) o] ®¢)

JeBX
min J=max /

+ Y DIy (] @ ¢) 0 F (L))

JEBXY
min /=max J

+ Z (_1)|1j’|—1—deg(xmin1)+|¢|j)(Z}/ R @), (8.34)

1U{j}eBS
min / < j<max /

assuming as in (8.31) that ¢ € Hom(dy,,,, 8,/ [)[1 —|I]].

The correspondence between the boundary strata of Mhou (Xmin 7> Xou; xr’naX ;) given
in (5.70)—(5.73) and the terms in the chain map equation is as follows:
m X mI;ou <~ Hl o Pr(¢9),
Miuiou x My < Prug(F(L) o ¢), 8.35)

My x Myur.on < Pyur(g o Fy(L)),
Miugyon < Prug)-

Lemma 8.7. P is a chain map.
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Sketch of proof. To check the coefficients, restrict to the subset of the moduli space
Mkou(xmin I, Xou; x;nax ;) consisting of curves with [du] = y. The coefficient in A of
each term in P is given by the energy of the corresponding curve with one boundary
condition on the fibre F;. We conclude that the first and last lines in (8.35) also have
coefficients given by the energy of the corresponding broken curve. The remaining two
cases require the argument used in Lemma 8.4 and (8.10). We consider only the case
corresponding to the term Py (F;7(L') o ¢), leaving the other to the reader.

Let u be a curve contributing to F; (L’). The coefficient £ (1) appearing in (8.15) is the
area of a curve with boundary on Fy, j. The difference with the area of the corresponding
curve with boundary on Fi.x 7 is given by

(g7 —q1.[0u]) + gv  (47) = 8xmax1 (@) + 8xmax (@1) — &x' (q1) (8.36)

as in (8.10). The first term appears when changing coefficients from z; to zy, i.e.
Z}I/ — T(V,LIJ—QHZ?;. (8.37)

The remaining coefficients arise as the sums of the exponents of the coefficients of o]
and the coefficients in the definition of F; (L') (see (8.15)). ]

8.6. Homotopy from the composition to an isomorphism

Comparing (8.24) and (8.31) implies that the composition
PoC: CF*(L,L"Yy - CF*(L,L" (8.38)

is given on 8y, by counts of elements of CF()% (Xous Xin), and that the corresponding
Novikov coefficient is given by the energy.

. —0, . .
By Lemma 7.5, the moduli space A{O]OO] (Xou, Xin) yields a cobordism between
C[%‘i (Xou, Xin) and K(xoyu; xin). If degxoy = deg xin, the only elements of K(xqy; Xin) are
constant curves, and the corresponding map is the identity.

Proposition 8.8. The composition P o € is homotopic to (—1)"*~D/21d.

. . . —I0, . . ..
Proof. It remains to orient A{O]oo] (Xou, Xin) relative to 8y, and dy,,. Consider a rigid el-

Xou
—[0, : .. .

ement u € A{O]OO] (Xous Xin), With boundary condition on F;. We have a natural isomor-

phism

~ —1[0,00] ~ =
R = T, Apg) Crous Xin)| = [det(@,)] ® |T(0, 00)| ® |T, Q| (8.39)

where 9,, is the linearised Cauchy—Riemann operator at u, and det(gu) its determinant
line. Here, |(0, 00)| and |T, Q| appear because they respectively correspond to changing
the modular parameter and the fibre F;;. On the other hand, by gluing the linearised oper-
ator to the operators associated to xj,, and degenerating the domain of the linearisation of
the Cauchy—Riemann operator at u to the union of two discs meeting at a point, we obtain
an isomorphism

|det(@)] ® 8y, = |TFy| @ ITX| ™' ® 0 (8.40)

Xou
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by noting that one of the discs has Lagrangians boundary condition T F;, hence has deter-
minant line naturally isomorphic to |7 Fy|, and the other has determinant line trivialised
by the choices of Pin™ structures on L and L’. Using the isomorphism TX = T Q @ TF,
we conclude that every rigid element induces a map 8y, = 8y, -

By construction, this map agrees with that defined by rigid elements of IC(xoy; Xin)-
However, the orientations at Cf”(j] (xou, xin) differ from the product orientation by

(—1)"("_1)/2, as first noticed by Fukaya, Oh, Ohta, and Ono [11, Proposition 3.9.1] (see
also [3, Lemma 5.5.23]). This accounts for the sign in the statement. O

Appendix. The family Floer functor

A.l. The Ay structure

Let L — X be a closed Lagrangian immersion in X in generic position, i.e. such that
L meets itself in pairs of transverse double points. Assume that (i) L is tautologically
unobstructed, i.e. there exists a tame almost complex structure for which there are no
Jr-holomorphic maps D> — X such that the complement of one point on the boundary
lifts to L, (ii) each irreducible component of L is a graded Lagrangian, i.e. there is a
fixed lift to R of the S!-valued phase on each component, and (iii) the pullback of w €
H?(X, Z,) to each component agrees with the second Stiefel-Whitney class.

Remark A.1. The union of a finite collection of transverse immersed Lagrangians in
generic position which satisfy these conditions for the same J;, again satisfies these prop-
erties. The constructions of this section can be carried out for different almost complex
structures associated to each component, but the notation becomes more cumbersome.

Choose a Hamiltonian H: X — R whose time-¢ flow ¢’ lies in the contractible set H°
chosen in Section 5.1, and such that ¢! L is transverse to L. Pick a family J : [0, 1] — J°
of almost complex structures on X parametrised by ¢ € [0, 1] which agree with ¢.J; at
t =0, 1. Generically, all moduli spaces of strips M (x, y) are regular forx, y € ¢' LN L.
The orientation lines from (2.54), with differential from (8.20), define the Floer complex

CFr(L)= @ A®6,. (A.1)
xeLN$!'L

Let ﬁdﬂ denote the moduli space of discs with d 4+ 1 marked points on the boundary,
one of which is distinguished as outgoing. Let H‘H denote the universal punctured curve
over this moduli space. For all d, fix a consistent family of negative strip-like ends €
at the outgoing point, and of positive strip-like ends {e; }?:1 at all other points as in [19,
Section (9g)]. Pick a consistent family of Floer data

@, 7y T S 0 g (A2)

such that (i) J9t1(z) = ¢f +1(z)J; whenever z lies on the boundary of a fibre, and (ii) the
pullback of (¢9+!, J4+1) under the strip-like ends agrees with (¢', J;).
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. . . . —d+1
Remark A.2. Itis only for notational convenience that ¢?*! is defined as a map on I * ,
since only its values on the boundary of each fibre will ever be used. The fact that HO is
contractible implies that there is no obstruction to extending a function to F°.

Given a sequence {x]} .o of intersection points between L and ¢! L let us denote by
/\/ld+ 1(x0; x4, - . ., x1) the moduli space of maps from a fibre ¥ of Z/{ to X such that
duz)o j=J"Y2)odt, uiz) e (2L ifzedx, (A.3)

and u converges at the k" strip-like end to x;. These moduli spaces are regular for generic

. . . . —d+1 .
choices of almost complex structures J¢*!, and a choice of orientation of R* ' yields a
map

Mut by @+ @8y, — by, (A4)
whenever u is rigid. Define the A, structure on CF*(L) to be given by the operations
d ,
w8y ® - ® by, = > (—DZim Dl e @y, (AS5)
xoeLNg!L

deg x0:2—d+27=1 deg x;

where the sign is as in [19], whose conventions we follow.

A.2. Adams moduli spaces with d marked points

Let K be a totally ordered set consisting of more than one element, and I/ ¢ the universal
— . . . —d .

curve over Ag from Section 3.1. Given an integer d, let Ag denote the compactified

moduli space of fibres of Uk equipped with d boundary punctures along H{,;}. Let HGII(

. —d
denote the punctured universal curve over Ag.
We extend this definition to the case when K is a singleton as follows: if d > 1, we

—d —=d+2 . . . . Co
define A (k) to be acopy of R ** in which two successive marked points are distinguished,

and 27, (k) the correspondmg universal curve in Wthh these two marked points have been

removed. Each fibre of Z/{ {ky over the interior of A{k} can be represented as a strip B =
R x [0, 1] equipped with marked points on its boundary R x {1}, and this representation
is unique up to translation.

Remark A.3. We treat the case of a singleton separately because a strip with no boundary
marked points is unstable, which led us to define Ak to be a point, while the universal
curve over it was empty.

The boundary strata of the universal curve, shown in Figure 24, are as follows:
—d —d .

z7‘,’<2_2xA<UA>xu<_>A>xA < ieK, di=0,di+d=d, (A7)

d1+1

—d- — d+1 d+1
Uy xR ! !

(A.8)
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SN 1 ¥ T T
max K min K
—4
A\
' H
max K i min K max K min K
Az x Ay Ay xR

Fig. 24. Representative boundary strata of ﬁ‘}(

Fix con51stent families of positive strip-like ends {¢; ¥4 oy at all punctures, and for all fibres
of L{ k» the consistency requirement is an inductive ch01ce on d and |K |, with the base
case being the choices of strip-like ends on fibres of L{ over R . As in (5.14), denote

by @ the triple of maps (¢, Ji, Id) from the interval to H x J x D. We also write @ for
the corresponding map (¢, J, Id) chosen in Section A.1.

egs . . . . . —d .
Definition A.4. A consistent family of continuation data parametrised by Uy is a map

oL = (¢%, 4 yd): Uy > HxJxD (A.9)

such that (i) the pullback under every end labelled by k € K is given by &, (ii) the
pullback under the end ¢; is given by ®, (iii) the maps qb% and wld( are obtained by gluing,
and Jl‘é by perturbed gluing, (iv) w;‘g (z) preserves the image of L under ¢;1( (2), and (v) for

—d, {1
each z € L{K{ }, we have

JH2) = W (2) 0 ¢ (@))udr (A.10)

Assuming that Ly = ¢ L is transverse to Fy for all k € K, we obtain a | Bolomorphic
curve equation d;u(z) = Jl‘é (z)0;u(z) on the space of maps from fibres of i/ to X, with
boundary conditions

{1}

u@) e Fy ifzellly, u@) edb@L ifzelly (A1)

A.3. Choices of continuation data with multiple inputs

Fix the choices made in Section 5.1, i.e. nested sequences {9 }"+3 of subsets of the space

of tame almost complex structures and {D’}2 , of the space of diffeomorphisms, the
simplicial triangulation ¥ of Q, the associated cover P; by polyhedra with basepoints g;,
and maps ¢; € H” mapping L to a Lagrangian transverse to F;. These choices should be
made so that D’ (£) is an acyclic fibration over £, and both D’P2 and D! P2 (L;) are acyclic
fibrations over P2 A section v; of CD P (L;) is fixed. '

Assume that the maps (P;, ¥y) from Section 5.2 are chosen, and define

4+ = (p*1 g4+ 1dy: T S 30 % g0 x D (A.12)
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For each ordered subset of I, pick continuation data and families of diffeomorphisms
—d 111
o4 = @4, 7,y U; - HOx g x D>, (A.13)
v px Uy — ¥, (A.14)

where \IJ;I is obtained by gluing near every boundary stratum, and is the identity on

—d .. . .. .
{q1} x U;. In addition, we require that the restrictions of (4, \D}i ) agree with

(Wmin 114 Prmin 1+ Ymin1 © Yymin ;@) along the end €., (A.15)

(Pmax 7> Ymax 1) along the end €_, (A.16)

(9, 1d) along each end ¢/, (A.17)

—d

((Dtli\i’ \p;i\i) on u[\,', (A.18)
dy qd —dy,  —d

(<I>1i22, \I/l% on L{]iz X .AI’;, (A.19)
_ —dy  —d

(‘ljzé (91)*‘1)215, ‘l'ié o (\IJZIS @) on Alizz X Z/lli'g, (A.20)

@%, W) only x R™, (A21)

(@41, 1d) on AV x U™, (A22)

where (A.15) and (A.20) are interpreted as in Remark 5.4. Moreover, on the boundary of
each fibre,

D2 (gro(L)) ifzelly",
RO S Pz —i0) (A23)
2.q ifz el

Such data can be constructed by a double induction: assuming that they have been chosen
for all pairs (d;, 1) whenever d; < d, construct the data for d by induction on the number
of elements of / as in Lemma 5.5.

The pushforward of <I>‘Il< by ‘-IJI"( yields compatible families parametrised by Pg:

0% Py x Uy — HO x gIKIF 5 D2, (A24)

Given x € Fping N Lming and y € Fnaxk N Lmax k., let x(g) and y(g) be as in (5.28)
whenever g € Px. If x; € L N ¢1L for 1 < j < d, the compactified moduli space

of solutions to the holomorphic curve equation determined by @‘Il(’P (g), with boundary
conditions as in (A.11), and asymptotic conditions x(q) at the positive end of the strip,
y(q) at the negative end, and x; along the j t strip-like end, will be denoted

M (@) %as - 1, (@), (A.25)

Composition with \I/?< (g) yields a homeomorphism

My xR Xd - 21, x(qK)) = My k(@) %o x1.x(@), (A26)

so we omit ¢ and gg from the notation.
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With the use of the description of the boundary of ﬁ?( given in (A.6)-(A.8), the

boundary of JVCI]((y; Xd, ..., X1, x) decomposes into
—d
MK\{,'}(%Xd,n-,Xl,x), (A.27)
— —d
[T Miz0.9) x Mgz xd, - x1,0), (A.28)
}'/GF[ﬂL,‘
—d J—
[ MizGixa....x1.x) x Myg=@',x), (A.29)
x'eF;NL; ' '

_d2 —dl
]_[ ]_[ MKiz(y;xd,...,deH,x’)XMK?(x’;xdl,...,xl,x), (A.30)
1<d,,d» x'eF;NL;
dy+dy=d
——d> —d1+1
./\/lK(y;xd,...,xd1+j+1,x0,xj,...,xl,x)XR (xo;xd1+j,...,xj+1). (A.31)
In the above, the strata corresponding to (A.7) for which d; or d; vanish are listed sep-

arately, while the breaking of strips at the ends is incorporated into (A.28), (A.29), or
(A.31) depending on whether it takes place ate_, €, or one of the ends ¢; for 1 < j < d.

A.4. The A functor

Assume now that the Floer data are chosen generically so that the moduli spaces in the
previous section are manifolds of the expected dimension. We begin by noting that we

have a natural identification of the interior of ﬁcli( with
R2 % [0, 00) K1, (A.32)

Fixing the orientation on R4+2 yged in [19], and the natural orientation on [0, c0), yields

. . . —d .
an orientation of the moduli space A . We then obtain a map

Kytlyy @ @8y @8y —> by (A.33)
associated to every rigid element u € ./V;l( (v; x4, ..., x1, x). Define
= (=TT e (A34)

where the sign is the same as that of [19, (12.24)], and consider the map
G‘}( : CF*(L)®d ® F(L,min K) — F(L, max K)[2 — |K| — d] (A.35)
whose restriction to §;, ® - -+ ® x; ® 8 is given by

’
fmink, K d fmin K,mi\xK_dgmaxK"l'dgminK E(u) lou]
@ T /min Komax ZmaxK r ZmaxK ® M-

eLgNF, i
YELKTITK ueMy (¥3Xd, s X1,X)

(A.36)
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The direct sum of these maps over all K will be denoted
e?: CF*(L)® — Hom(F(L), F(L)). (A.37)

Recall that an A, homomorphism from an A, algebra to a differential graded alge-
bra consists of such maps which satisfy the equation

ul(ed(ad, ..., ap)) + Z /ﬁ(e‘h(ad, e Adi41), ed (aq,, - - ,al))

dy+dy=d
I ajl—j od d
= Z (_1)lellaj‘ jez(ada"~7ad1+j+17l'(/ I(ad1+j’"'7aj+1)7aj7"'7a1)'
dy,da, ]
dy+dy=d+1

(A.38)

The terms on the right hand side correspond to the boundary strata in (A.31), those in
the second term of the left to (A.30), and the first term to (A.27)—(A.29). To see the last

.. . . . . . —d
part, use the definition of the differential in (2.46). Our choice of split orientations on A
allows us to directly appeal to the sign considerations of [19, Section 12]:

Proposition A.5. The maps C? are the components of an As, homomorphism from
CF*(L) to the endomorphism algebra of C(L) as an (V)" -twisted sheaf. ]
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