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Abstract. Family Floer theory is used to construct a functor from the Fukaya category of a sym-
plectic manifold admitting a Lagrangian torus fibration to a (twisted) category of perfect complexes
on the mirror rigid analytic space. This functor is shown to be faithful by a degeneration argument
involving moduli spaces of annuli.
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1. Introduction

Applications of Fukaya categories to symplectic topology require an algebraic model for
these categories; this involves finding a collection of Lagrangians which generate the
category in the sense that the Fukaya category fully faithfully embeds in the category
of modules over the corresponding A∞ algebra. For closed symplectic manifolds, the
known strategies for understanding such categories of modules rely on realising them,
in an instance of homological mirror symmetry, as modules over the endomorphism al-
gebra of (complexes of) coherent sheaves on an algebraic variety, or a non-commutative
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deformation thereof. Such descriptions are possible in a limited class of examples, which
include Calabi–Yau hypersurfaces in projective space [20, 21] and toric varieties [11, 5].
It is reasonable to expect that these methods will lead to descriptions of Fukaya categories
of complete intersections in toric varieties [4].

The goal of the family Floer program is to both give a more compelling proof of these
equivalences, and extend the class of examples for which they can be proved. Keeping
with tradition, we shall call the symplectic side the A-side, and the algebro-geometric
side the B-side. The current strategies rely on matching computations on the two sides,
without having a good reason for the agreement. Moreover, these computations work
for a very special class of symplectic structures; in the typical case of the K3 surface,
homological mirror symmetry is only understood for the restriction of the Fubini–Study
form to the quartic hypersurface, whereas the rank of the second cohomology group is 22.

There are essentially only two previous results on family Floer cohomology. In [10,
Section 6] Fukaya outlined a strategy for assigning to Lagrangians (complexes of) co-
herent sheaves on the mirror, under some convergence assumptions which should yield
a complex analytic mirror. Passing to the rigid analytic setting in which he derived con-
vergence by a clever use of Gromov compactness for tame almost complex structures,
Fukaya [9] gave a very general result constructing the local charts of the B-side, which
were shown by Tu [25] to admit compatible identifications over the overlaps.

In the author’s ICM address [1], the strategies behind these two results were com-
bined, and a (rigid analytic) coherent sheaf was assigned to Lagrangians on the A-side,
assuming the existence of a Lagrangian torus fibration. This paper extends this result
by (1) constructing a map of morphism spaces from the A-side to the B-side, (2) con-
structing a map of morphism spaces from the B-side to the A-side, (3) showing that the
composition of these two maps is the identity on the A-side, leading to the main result,
and (4) constructing an A∞ functor. The bulk of Section 2 contains a construction of the
mirror following [1], and corrects a minor oversight in the local-to-global construction of
the earlier paper (see Remark 2.6). The formal results are then stated in Theorem 2.10,
and a summary of the proof appears thereafter in Section 2.6.

Remark 1.1. In order to focus on the new ideas, we restrict the setting that we consider
by assuming that (1) the ambient symplectic manifold admits a Lagrangian torus fibration
all of whose fibres are smooth and bound no holomorphic discs, and (2) one can choose an
almost complex structure for each Lagrangian so that it bounds no holomorphic discs. The
requirement that the Lagrangians bound no holomorphic disc is really only technical, and
meant to avoid discussing foundations of multivalued perturbations in Lagrangian Floer
theory [12] (and multiplying the length of the paper by a potentially large factor). The
reader may consult the introduction to [1] for a discussion of the more serious difficulties
one would encounter in the presence of singular fibres.

Since the construction of the homotopy from the composition of the two maps we con-
struct to the identity uses a moduli space of annuli, faithfulness can be seen as the ana-
logue of the generation criterion [2]. Heuristically, the strategy for the proof is the fol-
lowing: Let X be a symplectic manifold equipped with a Lagrangian torus fibration over
a base Q (we denote the fibre over q ∈ Q by Fq ), and L a Lagrangian in X. Consider
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moduli spaces of holomorphic discs with three marked points, on which we impose La-
grangian boundary conditions given by L and a fibre. We shall consider two flavours for
this moduli space (see the leftmost diagram in Figure 1): in the first case, one marked point
is distinguished as an input mapping to L, and the remaining two are outputs mapping to
intersection points x and y of L with a fibre, while in the second case, the intersections
of L with a fibre correspond to inputs, while the marked point on L is an output.

In the classical versions of Floer theory, one would consider the subcategory of the
Fukaya category of X whose objects are fibres, and the Yoneda module over this subcat-
egory associated to L. By allowing the addition of an arbitrary number of marked points,
the first of these moduli spaces defines the map from the Floer cohomology L to the en-
domorphism algebra of this Yoneda module, and the second moduli space defines a map
which one could hope to show is a right inverse by gluing the two triangles to an annulus,
and degenerating this annulus to two discs meeting at an interior point; one of the discs
has Lagrangian boundary conditions on an arbitrary fibre and the other has Lagrangian
boundary conditions on L and carries the two boundary marked points. Since the moduli
space of discs with boundary on an arbitrary fibre gives us a copy of the ambient spaceX,
the first type of disc imposes no constraint, so we are simply considering the moduli space
of discs with boundary on L (and two marked points). This moduli space represents the
identity on Floer cohomology.

Trying to implement this strategy in this setting runs into a convergence problem:
since the fibres are disjoint, they are Floer-theoretically orthogonal, so the Yoneda module
defined by L is a direct product of the corresponding modules for all fibres. The map back
to Floer theory is not well-defined because it is the sum of infinitely many terms. The
correct framework for this argument is in fact family Floer cohomology, and the main
difficulty that arises is due to the need to make compatible families of perturbations in
defining the Floer cohomology of L with every fibre; in the classical case, one can choose
such perturbations independently for all pairs of objects.

2. Lagrangian torus fibrations and their rigid analytic dual

2.1. Flux and integral affine structure

Let (X, ω) be a closed symplectic manifold of dimension 2n, and π : X → Q a La-
grangian torus fibration, whose fibre at a point q ∈ Q is denoted Fq . We briefly recall the
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construction of an integral affine structure onQ induced by the symplectic structure onX
(see [13] for an extended discussion geared toward mirror symmetry).

Since π is a fibre bundle, the cohomology groups of the fibres form a local system over
the base, e.g. for any continuous path {qt }t∈[0,1] in Q, we have a canonical isomorphism

H 1(Fq0 ,Z)→ H 1(Fq1 ,Z) (2.1)

which depends only on the homotopy class of the path. The fact that the fibres are La-
grangian yields in addition an element of H 1(Fq1 ,R) associated to every homotopy class
of paths; this is the flux which is defined as the integral of the symplectic structure on
cylinders in X lying over paths in Q (see [16]). As a result, we obtain an integral affine
map

H 1(Fq0 ,R)→ H 1(Fq1 ,R) (2.2)

which takes the origin to the flux and whose derivative agrees with the classical isomor-
phism of (2.1) by passing to real coefficients.

Since points which are sufficiently close are connected by a canonical homotopy class
of paths, we obtain a map from a neighbourhood of every point q ∈ Q to a neighbourhood
of the origin inH 1(Fq ,R)which assigns to every point the flux of the corresponding short
path. The Arnol’d–Liouville theorem implies that this is a diffeomorphism near the origin,
and in particular we have a natural isomorphism

TqQ ∼= H
1(Fq ,R). (2.3)

In particular, whenever p lies in a sufficiently small neighbourhood of q, we write p − q
for the corresponding element of TqQ.

We say that a subset P ⊂ Q is an integral affine polygon if its image under the flux
map is a polygonal neighbourhood of the origin defined by inequalities of the form

〈u, vi〉 ≥ λi (2.4)

with vi an integral vector, and λi real. The key reason that this notion is well-behaved is
that the differential of the isomorphism in (2.2) preserves the integral structure on first
cohomology with real coefficients defined by the integral cohomology lattice.

2.2. Flux and the energy of holomorphic strips

Let J denote the space of ω-tame almost complex structures on X. Given a point q ∈ Q
and a closed Lagrangian L ⊂ X, pick a Hamiltonian diffeomorphism φ so that φL is
transverse to Fq .

In order to define the moduli spaces of holomorphic strips with boundary onL and Fq ,
pick a family J = {Jt ∈ J}t∈[0,1]. We obtain a holomorphic curve equation on the strip
B = R× [0, 1] with Lagrangian boundary conditions:

u : B → X, ∂su = Jt∂tu, (2.5)
u(s, 0) ∈ Fq , u(s, 1) ∈ φL. (2.6)
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Given a pair (x, y) ∈ φL ∩ Fq , denote by Mq(x, y) the moduli space of Floer tra-
jectories connecting x to y; this is the quotient by translation in the R factor of B of the
space of solutions to (2.5) and (2.6) which in addition satisfy the asymptotic conditions

lim
s→−∞

u(s, t) = x and lim
s→∞

u(s, t) = y. (2.7)

We denote by Mq(x, y) the Gromov–Floer compactification of this moduli space.
Floer theory uses the moduli spaces Mq(x, y) to define the Floer complex between

L and Fq ; the goal of family Floer cohomology is to study these complexes for varying
q ∈ Q. To this end, we denote by

XP → P (2.8)

the restriction of the fibration π to a neighbourhood P of q. Assume that such a neigh-
bourhood is contractible, and fix a Lagrangian section

τ : P → XP , (2.9)

which determines a basepoint τP ∩ Fp on each fibre of π over P . By the Arnol’d–
Liouville theorem, the projection of the cotangent bundle to P factors through XP ,

T ∗P → XP → P, (2.10)

and the choice of the section τ determines a canonical such factorisation which maps the
0-section of T ∗P to the image of τ . For this reason, we call the choice of τ a 0-section
over P .

We now assume that φL is transverse to all fibres Fp over points p ∈ P , which can
of course be achieved by shrinking P since φL and Fq were assumed to be transverse.
Since P is contractible, the transversality assumption implies that the intersection of φL
with XP is a union of components each of which is a (Lagrangian) section over P . For
each component x of φL ∩XP , choose a function

gx : P → R (2.11)

the graph of whose differential defines a lift of x to T ∗P under (2.10). Let us write x(p)
for the intersection of a component x of φL∩XP with the fibre Fp whenever p ∈ P . The
function gx determines a path {tdgx}t∈[0,1] from the basepoint on Fp to x(p).

Our goal is to compare areas of the moduli spaces Mp(x(p), y(p)) for varying
p ∈ P . To this end, we note that these moduli spaces decompose as unions of components
labelled by classes β ∈ π2(X, φL∪Fp). The transversality assumption (and contractibil-
ity of P ) implies that we have canonical identifications between these relative homotopy
groups. In particular, we say that u ∈ Mq(x(q), y(q)) and v ∈ Mp(x(p), y(p)) are
homotopic if the classes they represent agree under this identification.

One of the basic invariants of homotopy classes of holomorphic curves is the energy

E(u) =
∫
B

u∗(ω). (2.12)

Another such invariant is the class of the boundary

[∂u] ∈ H1(Fp,Z), (2.13)
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which is defined by concatenating the restriction of u to the boundary component mapping
to Fp with the paths from these intersection points to the 0-section that are determined by
the functions gx and gy . Whenever u and v are homotopic maps with boundary conditions
on Fq and Fp, the classes of their boundary are identified by the analogue of (2.1) on
homology.

We now state the following basic result, which is a direct consequence of Stokes’s
theorem, and which expresses the difference of the energy of homotopic maps:

Lemma 2.1. If u and v are homotopic, then

E(v)− E(u) = 〈p − q, [∂u]〉 + gy(q)− gy(p)+ gx(p)− gx(q). (2.14)
ut

While the proof is omitted (see [1, Lemma 3.2] for a related result), we shall comment on
the basic intuition, assuming for simplicity that [∂u] vanishes (note that given u and gx ,
the function gy may be chosen to achieve this). As illustrated in Figure 2, the expression
gx(q) − gx(p) measures the area of the region bounded by the 0-section and x, together
with the fibres Fq and Fp, while gy(q) − gy(p) measures the area of the corresponding
region with one boundary on the section y. The difference between these expressions
gives the area of the region bounded by the fibres Fq and Fp, together with the sections x
and y, which is the difference in areas between homotopic strips in Mq(x(q), y(q)) and
Mp(x(p), y(p)).

Fq Fp

φL

τ(P )

x

y

gx(q)− gx(p) gy(q)− gy(p)

E(u) E(v)

Fig. 2
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2.2.1. Fukaya’s trick. While Lemma 2.1 provides the key estimate comparing areas of
strips with boundaries on nearby fibres, it suffers from the following major deficiency:
the moduli spaces Mq(x(q), y(q)) and Mp(x(p), y(p)) may a priori be completely dif-
ferent so that the Floer theories of L with the fibres Fq and Fp may be unrelated. By
using Gromov compactness, one can in fact see that the situation is not as dire as we just
described: assuming all moduli spaces are regular, the components of Mq(x(q), y(q))

and Mp(x(p), y(p)) of bounded energy will be in bijective correspondence whenever
q and p are sufficiently close. Unfortunately, the minimal distance between q and p
which is required to achieve this bijection may shrink to 0 if we drop the bound on
energy.

Fukaya [9] introduced an elementary trick to resolve this difficulty using the fact that
the space of tame almost complex structures on a symplectic manifold is open in the
space of all almost complex structures. We discuss a minor variant which is adapted to
our situation (see [1] for more detail).

Recall that {Jt } is a family of tame almost complex structures used to define
Mq(x(q), y(q)). Let ψp be a diffeomorphism of X mapping Fq to Fp which is sup-
ported over a contractible subset of Q. Assume that ψp preserves the submanifold φL,
and that the pushforward (ψp)∗Jt is a tame almost complex structure for t ∈ [0, 1]. The
first condition is easy to achieve using the fact that φL is transverse to all fibres over
Fq , and the second by shrinking P if necessary, since the space of tame almost complex
structures is open in the space of all almost complex structures.

Lemma 2.2. If Mp(x(p), y(p)) is defined with respect to (ψp)∗Jt , then composition
with ψp defines a homeomorphism

Mq(x(q), y(q))
ψp
−→Mp(x(p), y(p)). (2.15)

ut

Lemma 2.2 provides the key idea for our approach to family Floer cohomology. In par-
ticular, in addition to the usual choices of auxiliary structure that enter in the construction
of Floer-theoretic structures (see e.g. [19]), we must keep track of various diffeomor-
phisms, and in fact families of diffeomorphisms, which map fibres to each other, and
which preserve the tameness of certain families of almost complex structures among other
requirements. This is the main reason for the technical complexity which the reader will
encounter in Section 5.

We shall return to the construction of the family Floer complex in Section 2.4, after
discussing the mirror side.

2.3. The rigid-analytic T -dual

In this section, we construct the space Y which will be mirror to X by an analogue of
SYZ duality in the non-archimedean setting. Such an approach was first suggested by
Kontsevich and Soibelman [15], and is discussed in more detail in [1].
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The space Y will be a rigid analytic space over a Novikov field; recall that we can
associate to any field k the universal Novikov field

3 =
{ ∞∑
i=0

aiT
λi

∣∣∣ ai ∈ k, λi ∈ R, lim
i→∞

λi = ∞
}
. (2.16)

This is a non-archimedean field, whose non-zero elements, denoted3∗, are equipped with
a valuation that assigns to a non-zero series the exponent of its leading order term:

val : 3∗→ R, a0T
λ0 +

∞∑
i=1

aiT
λi 7→ λ0, (2.17)

where a0 6= 0, and λ0 < λi for i > 0. The elements of vanishing valuation are called the
unitary elements,

U3 =
{
a0 +

∞∑
i=1

aiT
λi

∣∣∣ a0 6= 0, ai ∈ k, λi > 0, lim
i→∞

λi = ∞
}
, (2.18)

and form the analogue of the unit circle in C.
As a set, the analytic space Y is simply the union∐

q∈Q

H 1(Fq , U3) (2.19)

where each fibre H 1(Fq , U3) should be thought of as the dual torus to Fq , by anal-
ogy with H 1(Fq , S

1) = H 1(Fq ,R)/H 1(Fq ,Z). In order to exhibit the analytic structure
on Y , we shall construct Y by gluing simpler pieces called affinoid domains [23] which
are associated to integral affine polygons in Q. To this end, it is necessary to introduce
some combinatorics to keep track of a cover consisting of such polygons.

2.3.1. Covers of Q and Y . Let 6 be a partially ordered set labelling the vertices of
a simplicial triangulation of Q, i.e. there is a bijective correspondence between totally
ordered subsets of 6 and simplices of Q, which assigns to a subset of 6 the unique
simplex spanned by its vertices. Note in particular that all maximal totally ordered subsets
of 6 have n + 1 elements, since these correspond to top-dimensional simplices in Q,
which is a manifold of dimension n. We write σI for the cell associated to a (totally
ordered) subset I of 6.

For each element i ∈ 6, assume that we are given an integral affine polygon Pi with
basepoint qi = σi such that

Pj ⊂ Pi whenever i < j, (2.20)

Q =
⋃
i

Pi
/
∼, (2.21)

where the equivalence relation ∼ is generated by the inclusion Pj ⊂ Pi for i < j . As
before, we denote the image of every point p ∈ Pi in H 1(Fi,R) under the flux map by
p − qi , where Fi ≡ Fqi .



The family Floer functor is faithful 2147

Lemma 2.3. If Q is an integral affine manifold, there is a partially ordered set 6 index-
ing the vertices of a simplicial triangulation and a cover by integral affine polygons, so
that (2.20) and (2.21) hold, and such that σI is contained in the interior of Pmax I for
each totally ordered subset I ⊂ 6.

Proof. Pick a triangulation 1 of Q by affine (not necessarily integral) simplices. For
example, given an auxiliary Riemannian metric on Q we may choose, for a sufficiently
small ε, a generic finite set in Q which is ε-dense. There is a corresponding Delaunay
triangulation [7], which is dual to the Voronoi diagram of nearest-neighbours to the points
in the given finite set. Having chosen ε sufficiently small, we can construct the Delaunay
triangulation to have flat simplices with respect to the affine structure (i.e. define vertices
to be affine segments connecting vertices, faces to be affine simplices spanned by triples,
etc.).

For the remainder of the proof, we shall use letters i, j, . . . to denote vertices of the
triangulation 1. Recall that the barycentric subdivision B1 has vertices given by the
barycenters of the simplices of 1. We write B1I for these barycenters, and

B1I1⊂···⊂Ik ⊂ 1Ik (2.22)

for a higher-dimensional simplex. The partially ordered set 6 will correspond to the ver-
tices of the double barycentric subdivision so that its elements are given by sequences
I1 ⊂ · · · ⊂ Ik of nested simplices of 1 (note the conflict in notation with the statement,
where I refers to a subset of 6).

To construct the integral affine cover, choose for each set I labelling a simplex 1I of
1 an integral affine polygon PI with non-empty interior P̊I . To state the desired proper-
ties, we introduce the notation

PI1⊂···⊂Ik ≡ PI1 ∩ · · · ∩ PIk (2.23)

for a sequence I1 ⊂ · · · ⊂ Ik which corresponds to an element of 6.
We require the following properties to hold:

1I is contained in the union of the open sets P̊J for J ⊂ I , (2.24)
PI is contained in the union of the interiors of the
barycentric simplices that contain the barycenter B1I , (2.25)

B1I1⊂···⊂Ik ∩ P̊I1⊂···⊂Ik 6= ∅ for each nested sequence I1 ⊂ · · · ⊂ Ik . (2.26)

These conditions can be readily achieved by induction on the dimension of the simplex
(see Figure 21 for an implementation of the same idea in a different context): first pick
integral affine polygonal neighbourhoods Pi of all vertices which are contained in the
union of the interiors of simplices of the barycentric subdivision which are adjacent to1i .
In the inductive step, let 1′I ⊂ 1I be a convex subset of the interior containing the
barycenter such that 1I is covered by the interior of 1′I together with the union of the
previously chosen polygons PJ for J ⊂ I and

1′I ∩ B1I1⊂···⊂Ik⊂I ∩ P̊I1⊂···⊂Ik 6= ∅ (2.27)
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for every nested sequence with largest subset I . This second property can be achieved
because P̊I1⊂···⊂Ik intersects B1I1⊂···⊂Ik non-trivially by induction, which is contained
in the boundary of B1I1⊂···⊂Ik⊂I , which is itself a subset of 1I .

We then choose PI to be an integral affine polygonal neighbourhood of 1′I , suffi-
ciently small for (2.25) to hold. Condition (2.24) holds automatically, while (2.26) follows
from the assumption that1′I contains the barycenter of1I for the sequence of length one,
and in general from (2.27).

Note that (2.25) implies that
PI ∩ PJ = ∅ (2.28)

unless I ⊂ J or J ⊂ I . This implies that the cover {PI } satisfies (2.21), while (2.20)
follows by construction.

It remains to construct the triangulation labelled by 6 so that any simplex is con-
tained in the corresponding polytope. We shall construct the triangulation to have affine
simplices (not necessarily integral) which are the (local) convex hull of their vertices. It
thus suffices to pick points

σI1⊂···⊂Ik ∈ PI1⊂···⊂Ik ∩
˚B1I1⊂···⊂Ik . (2.29)

By construction, it automatically follows that whenever J1 ⊂ · · · ⊂ J` is a subsequence
of I1 ⊂ · · · ⊂ Ik we have

σJ1⊂···⊂J` ∈ PI1⊂···⊂Ik , (2.30)

hence the edge connecting these two vertices is contained in PI1⊂···⊂Ik , and more gener-
ally for any simplex. If we define the partial order on the elements of 6 to be given by
reverse inclusion, the result follows.

Having finished the proof, we return to the notation where i, j, . . . correspond to
elements of 6. ut

Remark 2.4. The proof gives a stronger statement: there is an integral affine polyhedral
cover of Q which has dimension n, i.e. there are no non-empty n+ 2-fold intersections.

Given a totally ordered subset I in 6, let

PI =
⋂
i∈I

Pi = Pmax I , qI = qmax I , FI = Fmax I . (2.31)

Let YI denote the inverse image of PI under the valuation map from H 1(FI ,3
∗) to

H 1(FI ,R) ∼= TqIQ. Since 3∗ splits as R× U3, the affine isomorphism in (2.2) yields a
natural identification

YI =
∐
p∈PI

H 1(Fp, U3) (2.32)

of sets. Moreover, we obtain an isomorphism

H 1(Fj ,3
∗)→ H 1(Fi,3

∗) (2.33)

defining an inclusion of Yj into Yi whenever i < j .
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Definition 2.5. The rigid-analytic T -dual of X is the quotient

Y =
∐
i∈6

Yi
/
∼ (2.34)

where the equivalence relation identifies points in Yj with their images in Yj under the
isomorphism (2.33).

Remark 2.6. Equation (2.21) was missing from the corresponding discussion in [1].
Note that, in general, the fact that the sets Pi cover Q implies that the natural map from
the right hand side in (2.21) to the left hand side is a surjection, which in fact admits a
splitting (by mapping q ∈ Q to the corresponding point in Pj for j maximal among those
containing q). Passing to the rigid analytic side, we would obtain a space which contains
the rigid-analytic T -dual as a retract.

Each Yi is an affinoid domain, equipped with the ring of regular functions consisting of
Laurent series on H1(Fi,Z) which converge in Yi :

Oi =
{ ∑
A∈H1(Fi ,Z)

fAz
A
qi
, fA ∈ 3

∣∣∣ ∀v ∈ Pi, lim
|A|→∞

(val(fA)+ 〈v,A〉) = ∞
}
. (2.35)

By construction, the inclusion Yj → Yi induces a (ring) map Oi → Oj . The space Y is
therefore a rigid analytic space in the sense of Tate [23]. Given a totally ordered subset
I = {i0 < i1 < · · · < id}, define the Oi0 -module

OI = Oid ⊗Oid−1
· · · ⊗Oi0

Oi0 . (2.36)

2.3.2. The twisting cocycle. LetXI denote the inverse image of PI inX. Fix Lagrangian
sections τi : Pi → Xi Moreover, choose functions fij : Pij → R such that fibrewise
addition of dfij agrees with the transition map between the restrictions of τi and τj to Pij .
We obtain a function

fij + fjk − fik : Pijk → R (2.37)

whose differential at qk lies in H1(Fk,Z) and define

αijk = T
fij (qk)+fjk(qk)−fik(qk)z

d(fij+fjk−fik)
qk ∈ O∗ijk (2.38)

where O∗ijk is the multiplicative group of non-vanishing functions.
If vijk is a Čech representative of a class v ∈ H 2(Q;Z2), define

αvijk = (−1)vijkαijk. (2.39)

Denote the corresponding cohomology class by αv ∈ H 2(Y,O∗). Given a pair (I, J ) of
ordered subsets of 6 such that min J = max I , it is convenient to introduce the notation

αvJ,I = α
v
min I,max I,max J . (2.40)
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2.3.3. Twisted sheaves

Definition 2.7. An (αv)−1-twisted pre-sheaf of perfect OY -modules consists of (i) a finite
rank graded free Oi-module F(i) for each i ∈ 6 and (ii) a degree 2− |I | map

FI : OI ⊗Oi0
F(i0)→ F(id) (2.41)

for each ordered subset I . These data are required to satisfy the equation∑
i 6=min I,max I

(−1)|I
≤

i |+|a|FI\ia −
∑
i∈I

αv
I
≥

i ,I
≤

i

FI≥i
◦ FI≤i

a = 0. (2.42)

Remark 2.8. The sign conventions used are those of [19]. At the cohomological level,
the justification for the terminology is given in [1, Section 2.4], though the reader should
be aware that the cocycle is on the wrong side of [1, (2.33)]): from an algebraic point of
view, the natural definition consists of maps GI satisfying∑

i 6=min I,max I

(−1)|I
≤

i |+|a|(αvi−ii+)
−1GI\ia −

∑
i∈I

GI≥i
◦ GI≤i

a = 0, (2.43)

where i± are respectively the elements of I immediately preceding and succeeding i.
These two notions are equivalent by setting GI = FI ·

∏
i∈I α

v
(min I )ii+ .

If Fij is a quasi-isomorphism, we call such an object an (αv)−1-twisted sheaf of perfect
OY -modules. Henceforth, we shall call such objects sheaves, specifying αv only when
necessary for clarity.

The sheaves form a differential graded category, with morphisms given by

Hom(F,F′) ≡
⊕
I

HomOmin I (F(min I ),F′(max I ))[1− |I |], (2.44)

where the direct sum is taken over totally ordered subsets I , and F(max I ) is an Omin I -
module via restriction. It is convenient to denote each summand on the right hand side
by

HomI (F,F
′) ≡ HomOmin I (F(min I ),F′(max I ))[1− |I |]. (2.45)

If we decompose every element T of this direct sum as T =
∑
I TI , the differential acts

on an element a ∈ HomI (F,F
′) according to the formula

µ1T (a) =
∑
i∈I

(
αv
I
≥

i ,I
≤

i

FI≥i
◦ TI≤i

(a)+ (−1)|I
≤

i |+(1−|T |)αv
I
≥

i ,I
≤

i

TI≥i
◦ FI≤i

(a)
)

+

∑
i 6=min I,max I

(−1)|I
≤

i |−1+|a|+|T |TI\i(a). (2.46)
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For a summand TI , we may rewrite the above as

µ1TI (a) =
∑
J

min J=max I

αvJ,IFJ ◦ TI (a)

+

∑
J

min I=max J

(−1)|I
≤

i |+(1−|TI |)αvI,JTI ◦ FJ (a)+
∑
I∪{j}

min I<j<max I

(−1)|I
≤

j |−1+|a|+|TI |TI (a),

(2.47)

where the sums on the right hand side are over all totally ordered subsets J and I ∪ {j}.
The composition of morphisms in this category is given on a ∈ HomI (F,F

′) by

µ2(S, T )(a) =
∑
i∈I

(−1)(|S|−1)|I≤i |αv
I
≥

i ,I
≤

i

SI≥i
◦ TI≤i

(a). (2.48)

2.4. The local mirror functor

We now shift our attention back to the symplectic manifoldX, whose Fukaya category we
plan to relate to the category of twisted sheaves on Y . We shall assume that π2(Q) = 0,
which excludes the presence of holomorphic spheres in X, or holomorphic discs with
boundary on any fibre Fq . Moreover, we shall only consider Lagrangians which are tau-
tologically unobstructed in the sense that

there exists JL ∈ J such that L bounds no JL-holomorphic discs. (2.49)

Returning to the setting of Section 2.2, we now impose the condition that the family {Jt }
of almost complex structures used to define the moduli space Mq(x, y) satisfies

J1 = φ∗(JL) ≡ φ∗ ◦ JL ◦ φ
−1
∗ . (2.50)

For generic choices of families {Jt }, classical Floer-theoretic methods imply, under these
assumptions, that Mq(x, y) is a manifold with boundary given by the union∐

z∈φL∩Fq

Mq(x, z)×Mq(z, y). (2.51)

In particular, we can define (ungraded) Floer complexes CF∗(L, Fq) over a Novikov field
in characteristic 2. Since there is much interest in working with Z-graded complexes in
characteristic 0, we discuss the necessary auxiliary conditions which L must satisfy.

2.4.1. Gradings and Pin+ structures. For any J ∈ J, there is a natural isomorphism of
complex vector bundles TX ∼= π∗(TQ)⊗R C. In particular, there is a natural homotopy
class of quadratic complex volume forms on TX obtained by complexifying a density
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on Q; let η be a quadratic complex volume form in this class. We then require that L
be graded with respect to η, i.e. the map L → RP1

= R/πZ induced by η is null-
homotopic, and that a lift of this null-homotopy to the universal cover of RP1 be fixed.
For a fibre L = Fq , the map Fq → RP1 is constant, and we fix the lift to R with value π .
This ensures that the Floer complexes are Z-graded, as explained in [19, Section (12b)],
since we can associate to each intersection point x ∈ φL ∩ Fq a well-defined Maslov
index deg x ∈ Z. The key reason for introducing the Maslov index is that the dimension
of moduli spaces of strips can be expressed in terms of it; more precisely, in the setting of
Section 2.2, we have

dimRM(x, y) = deg x − deg y − 1. (2.52)

In order to work over a field of arbitrary characteristic, consider a class w ∈
H 2(Q,Z2) which is the second Stiefel–Whitney class of a vector bundle E. We require
that

the restriction of π∗w to L agree with w2(L). (2.53)

Remark 2.9. The most important cases of interest are the trivial case and w = w2(Q).
As in [12], one can drop the condition that w be a Stiefel–Whitney class: the restriction
of w to the 3-skeleton may be represented as the second Stiefel–Whitney class of a vector
bundle. Since an orientation is a discrete datum, the uniqueness up to homotopy of a re-
traction from a 2-dimensional complex to the 3-skeleton suffices to establish consistency
of orientations, and no higher coherence is required, even in the parametrised setting.

Assumption (2.53) implies that π∗E|L⊕T L admits a Pin+ structure which we fix; this is
the choice of a relative Pin+ structure on L. Given a Hamiltonian isotopy φ, we obtain a
corresponding relative Pin+ structure on φL. For the fibres, we choose a Pin+ structure on
T ∗q Q⊕Eq , which induces a relative Pin+ structure on Fq using the isomorphism between
T ∗q Q and T Fq .

Given an intersection point x ∈ φL ∩ Fq , pick a path γx of linear Lagrangian sub-
spaces of TxX starting at TxφL and ending at TxFq , in the homotopy class prescribed by
the graded lift of these Lagrangian subspaces (see [19, Section (11j)]). We obtain a vector
bundle over the interval with fibre γx(t) ⊕ π∗E. The choice of relative Pin+ structures
on L and Fq yields Pin+ structures on the restrictions of this bundle to 0 and 1. Let νx
denote the free abelian group generated by the two choices of extensions of this Pin+

structure to the interval, with the relation that their sum vanishes. Let ox denote the de-
terminant line of the Cauchy–Riemann operator on complex linear maps from the upper
half-plane to TX with Lagrangian boundary conditions γx(t) (extended by φL and Fq
outside the interval), and |ox | its orientation line. We define

δx = |ox | ⊗ νx . (2.54)

2.5. Local mirror construction

Given i ∈ 6, we recall in this section the construction of an Oi-module F(L) associated to
the LagrangianL. Assume that the cover Pi is sufficiently fine that there exist Hamiltonian
diffeomorphisms φi such that φiL is transverse to all fibres over P , and that, for all p ∈ P ,
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there exists a diffeomorphism ψp mapping Fq to Fp, preserving the submanifold φL, and
such that (ψp)∗Jt is tame.

Given a pair of intersection points xi, yi ∈ Fi ∩ φiL and an element u ∈Mqi (yi, xi),
denote the orientation line of the linearised Cauchy–Riemann operator at u by

δu = |detDu| = |cokerDu|∨ ⊗ |kerDu|, (2.55)

where the absolute value symbol stands for the line of orientations, and |V |∨ is the dual
line. Index theory determines a canonical isomorphism (see [19, Remark 11.6])

δu ⊗ δxi
∼= δyi . (2.56)

Assuming that deg yi = deg xi + 1, the moduli space M(yi, xi) consists only of rigid
curves, and kerDu is 1-dimensional, which implies that it is generated by translation in
the s-direction. Fixing the orientation of this kernel corresponding to the positive direction
yields a map

∂u : δxi → δyi ; (2.57)
we denote by µ1

u the product of ∂u by (−1)deg(xi ).
The family Floer module and the differential are given by

F(L, i) ≡
⊕

xi∈φiL∩Fi

Oi ⊗ δxi , (2.58)

Fi : F(L, i)→ F(L, i)[1], (2.59)

Fi |δxi =
⊕
yi

∑
u∈Mqi

(yi ,xi )

T E(u)z[∂u]i ⊗ µ1
u. (2.60)

Fukaya’s fundamental observation [9] is that Gromov compactness implies that this
map is well defined, i.e. the expression

∑
u∈M(yi ,xi )

T E(u)z[∂u] gives a function in Oi
(see [1, Proposition 3.3]). Indeed, the condition of lying in Oi is equivalent to T -adic
convergence at every point z ∈ YP . Assuming that z lies over a point p ∈ Pi , we first
use Lemma 2.2 to identify Mq(yi, xi) with Mp(yi(p), xi(p)), and then Lemma 2.1 to
see that the result of evaluating z at such a point recovers the Floer differential for the
Lagrangian Floer theory of φL with Fp (equipped with a U3 local system). It is now
a standard fact that the Floer differential converges as a consequence of Gromov com-
pactness which asserts that there are only finitely many rigid holomorphic curves with
bounded energy.

2.6. Statement of the main theorem, and outline of the paper

The main result of this paper is the following:

Theorem 2.10. Let X → Q be a Lagrangian torus fibration with π2(X) = 0, and
L and L′ Lagrangians satisfying condition (2.49). Given a sufficiently fine cover of Q,
we can associate to L and L′ (twisted) sheaves F(L) and F(L) of perfect complexes
(with respect to the induced cover of Y ), as well as maps

CF∗(L,L′)
C
−→ Hom(F(L),F(L′))

P
−→ CF∗(L,L′) (2.61)

whose composition is homotopic to the identity up to sign. Given a finite collection of
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Lagrangians, the map C extends to a faithful A∞ functor from the corresponding Fukaya
category to the category of twisted sheaves of perfect complexes.

We now indicate how the proof can be pieced together from the paper:

• Section 5.1 introduces the precise notion of a sufficiently fine cover.
• The construction of the twisted sheaf F(L) is done in Section 8.5, with Lemma 8.5

asserting that the necessary equations hold.
• The chain map C is constructed in Section 8.4, with Lemma 8.6 showing that it is a

chain map.
• The corresponding results for P are proved in Section 8.5, in particular Lemma 8.7.
• The proof that the composition is homotopic to the identity is given in Proposition 8.8.
• In the Appendix, we construct the A∞ functor. In fact, we give a slightly simpler de-

scription of this map in the Appendix than in the main part of the paper. The additional
complexity of the paper’s main construction comes from the need to see the holomor-
phic curves defining such a map arise as components of the boundary of a moduli space
of annuli.

We now explain how the results of Section 8 rely on the previous sections:

• The construction of F entails the construction of maps FI for |I | ≥ 2 yielding a
(twisted) sheaf (of perfect complexes) on Y . This will require the study of higher con-
tinuation maps in Floer theory and their convergence.
• The construction of C and P is conceptually not too different from that of higher contin-

uation maps, but the combinatorics required to keep track of the various moduli spaces
and to appropriately formulate convergence is significantly more complicated.

In order to do this, we introduce certain abstract moduli spaces in Section 3 and the cor-
responding spaces of maps in Section 4. The convergence problems are discussed in Sec-
tion 5, which is at the heart of the paper. The key idea it to choose a very fine triangulation
of the base of the fibration, make controlled choices at the vertices of this triangulation,
and associate to higher-dimensional cells families of equations which interpolate between
these.

The remaining sections begin the transition from moduli spaces to the algebraic struc-
tures constructed in Section 8:

• In Section 6 we show that the composite CF∗(L,L′) → Hom(F(L),F(L′)) →
CF∗(L,L′) may be interpreted as a moduli space of degenerate annuli parametrised
by Q.
• In Section 7 we build a cobordism between the moduli space of degenerate annuli and

a moduli space which defines the identity on Floer cohomology. The main delicate
point is that it is not possible to perform the gluing construction continuously in such a
way that the annuli over every point in the base are obtained by gluing the degenerate
annuli corresponding to that point. This is responsible for the notion of an annulus
gluing function introduced in Definition 7.1.
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3. Families of Riemann surfaces

3.1. Adams’s moduli space

Let M2,d denote the moduli space of discs with two boundary punctures and d interior
marked points (z1, . . . , zd). Since the complement of two points on the boundary of a
disc is biholomorphic to a strip, and the biholomorphism is unique up to translation, we
obtain a subset

M{1/2},ord
2,d ⊂M2,d (3.1)

consisting of configurations for which the marked points lie on R × {1/2} after identifi-
cation with the strip, and whose ordering along the real line is opposite to the ordering
of the labels. We obtain coordinates for M{1/2},ord

2,d by taking the differences in the first
coordinates of the marked points, which identifies this space with (0,∞)d−1. In partic-
ular, the fibre of the universal curve over M2,d at a point in M{1/2},ord

2,d with coordinates
(r1, . . . , rd−1) is biholomorphic to a strip with marked points satisfying

zi+1 − zi = (−2ri, 0). (3.2)

The universal curve over M{1/2},ord
2,d naturally extends to a universal curve Ud with

marked point over the product

Ad ≡ [0,∞]d−1, (3.3)

with the property that setting a coordinate equal to∞ increases the number of components
by one, while setting it equal to 0 does not change the number of components but reduces
the number of marked points by one. We shall presently give an explicit description of this
universal curve, but it is useful to note that it can be constructed more abstractly: consider
the closure M{1/2},ord

2,d of M{1/2},ord
2,d in M2,d and note that there is a natural projection

M{1/2},ord
2,d → Ad , (3.4)

which is obtained by forgetting all components which are not discs. The universal curve
over Ad is then obtained by taking the union of disc components of the universal curve
over M{1/2},ord

2,d . For example, M{1/2},ord
2,3 can be obtained from A3 by replacing the stra-

tum with coordinates (0, 0) with an interval. The fibre of U3 over this point is a strip with
a single interior marked point (see Figure 3), whereas the fibre of the universal curve over
a point in M{1/2},ord

2,3 which projects to this vertex is a nodal curve which is the union of
this strip with a sphere with three marked points in addition to the node. The cross ratio
between the four points is a real number because the condition of lying in M{1/2},ord

2,3 is
a real colinearity condition, and the corresponding real number parametrises the fibre of
M{1/2},ord

2,3 over the points (0, 0).

Remark 3.1. We can alternatively construct Ad as a subset of the configuration space
of points on a disc, in which points are allowed to collide (unlike in the moduli space
where they bubble). In this case, Ud is simply the restriction of the universal curve over
the configuration space.
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3 03 0

3 0 3 0 3 2 0

3 2 0

3 2 1 03 1 03 1 0

Fig. 3. The moduli space A3, with strata labelled by the fibre of the universal curve.

We shall now give an explicit description of this fibre over a point Er ∈ Ad . First, we
associate to each pair (r, r ′) of non-negative real numbers the finite strip

Br,r ′ = [−r, r
′
] × [0, 1]. (3.5)

Whenever r or r ′ are infinite, we let the corresponding half of the interval be open:

B∞,r ′ = (−∞, r
′
] × [0, 1] and Br,∞ = [−r,∞)× [0, 1]. (3.6)

Finally, we set B∞,∞ = B, B+ = B0,∞, and B− = B∞,0.
Given Er ∈ Ad , consider the union of strips

B∞,rd−1 q Brd−1,rd−2 q · · · q Br2,r1 q Br1,∞. (3.7)

The fibre U Er is the quotient of the above union by the following equivalence relation: if
ri is finite, we identify

{ri} × [0, 1] ∼ {−ri} × [0, 1] (3.8)

where the first interval lies in Bri+1,ri and the second in Bri ,ri−1 . This fibre has marked
points which are the images of the points (0, 1/2) in each strip Bri ,ri−1 , as shown in
Figure 4.

−r3 r20

r1−r2 0−r4 r30

0 r4 0−r1

Fig. 4. Decomposition of U Er into finite strips.

Remark 3.2. In [6], Adams constructed a family of paths in the d-simplex from the
initial to the terminal vertex which are parametrised by the d − 1-cube. Identifying the
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interval [0, 1] with [0,∞], we obtain the moduli spaces Ad as we defined them. We shall
not explicitly need the connection between our construction and Adams’s.

The fact that the moduli space of discs with d−1 marked points is denoted Ud is justified
by the eventual Floer-theoretic application as explained in the next remark:

Remark 3.3. Assuming some familiarity with Floer theory, we give an informal descrip-
tion of how these moduli spaces shall be used. The informal ideas discussed here will be
implemented in detail later in the text, hence can be safely skipped by those seeking only
precise definitions.

Assume that L and F are Lagrangian submanifolds, and that {Ji}di=0 are choices of
almost complex structures with respect to which one can define the Floer complexes
{CF∗(L, F ; Ji)}di=0. A choice of path connecting Ji to Jk allows one to write a con-
tinuation equation on the strip R × [0, 1], which defines a chain map CF∗(L, F ; Ji) →
CF∗(L, F ; Jk).

We shall only be interested in such continuation maps for i < j ; in particular, there are
finitely many ways (in fact, exactly 2d−1) of composing these continuation maps to obtain
a map CF∗(L, F ; J0) → CF∗(L, F ; Jd). Each such composition corresponds to a path,
along the 1-skeleton of the simplex 1d , with initial point 0 and terminal point d, with the
property that any intermediate vertices appear in increasing order along the path. This is
naturally a description of the vertices of Ad as follows: the composition of continuation
maps associated to the sequence (J0, Ji1 , . . . , Jik , Jd) corresponds to the vertex of Ad
with coordinates labelled (i1, . . . , ik) equal to∞, and all others equal to 0.

Recall that the continuation map CF∗(L, F ; Ji)→ CF∗(L, F ; Jk) is associated to a
path Jik(s) of almost complex structures, parametrised by s ∈ (−∞,∞), which agrees
with Ji for s � 0 and with Jk for s � 0. In order to see a general point in Ad arise
from Floer-theoretic considerations, we heuristically think of such a path as obtained by
smoothing a discontinuous path of almost complex structures which agree with Ji for
s > 0 and Jk for s < 0. In later sections, we shall choose smooth paths, but for this
informal discussion, it is simpler to take discontinuous paths, which have the advantage
of being canonical, even though the continuation map is strictly speaking not defined for
them.

With the above in mind, we can interpret a point in Ad as giving rise to a continuation
map CF∗(L, F ; Ji)→ CF∗(L, F ; Jk). Identify [0, 1)d−1 with [0,∞)d−1, and associate
to a point (r1, . . . , rd−1) ∈ [0,∞)d−1 the path of almost complex structures J (s) given
by the piecewise conditions

J (s) = Jk if 2(r1 + · · · + rk−1) < s < 2(r1 + · · · + rk). (3.9)

Whenever all coordinates rk vanish, we obtain the continuation map CF∗(L, F ; J0) →

CF∗(L, F ; Jd), whereas, in the limit where all rk are infinite, we recover the composition
of the continuation maps

CF∗(L, F ; J0)→ CF∗(L, F ; J1)→ · · · → CF∗(L, F ; Jd), (3.10)

by considering the Gromov–Floer limit of continuation equations. More generally, re-
quiring that a given coordinate rk vanish corresponds to omitting it from the continuation
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map, i.e. considering the family of continuation equations corresponding to paths in the
subsimplex 1d−1 ⊂ 1d obtained by omitting the kth vertex. In the rk → ∞ limit, we
obtain paths which pass through the kth vertex; in Floer-theoretic terms, this corresponds
to factoring through CF∗(L, F ; Jk).

3.2. Stratification of the Adams moduli space

Before giving the explicit description of the boundary strata of Ad and the corresponding
fibre of the universal curve, it is useful to introduce a more general choice of labels:

Definition 3.4. Let K be a totally ordered set. The compactified Adams moduli space of
paths AK is the product

AK = [0,∞]K\{minK,maxK}. (3.11)

We also denote by AK ⊂ AK the open subset corresponding to the inclusion [0,∞) ⊂
[0,∞]. If d = |K| − 1, let UK denote the copy of the space Ud over AK , and U Er denote
the fibre over Er ∈ AK . The fibre over each point in AK is a strip, and the elements of K \
{minK,maxK} label the intervals between the marked points (as subsets of R× {1/2}),
while minK labels the positive end, and maxK the negative end. The fibre over points in
the complement of AK are disjoint unions of strips.

To keep the notation consistent, one can identify the space Ad with that corresponding
toK = {0, . . . , d} (to reduce the complexity of the notation, we often writeK = 01 · · · d
for such a set).

The space AK is naturally stratified, and the partially ordered set of strata, with order-
ing given by inclusion, consists of pairs of subsets I and J of K such that

{minK,maxK} ⊂ I ⊂ J. (3.12)

The partial ordering is such that the pair I ⊂ J precedes I ′ ⊂ J ′ whenever I ⊂ I ′ ⊂

J ′ ⊂ J . We write AI⊂J for the stratum corresponding to an element of this poset, and
note the identification

A{minK,maxK}⊂K ≡ AK . (3.13)

The geometric description of strata of AK is recovered as follows (see Figure 5): the
pair I ⊂ J labels the stratum of AK = [0,∞]K\{minK,maxK} for which the coordinates
in I \ {minK,maxK} equal∞, and the coordinates in K \ J vanish.

Remark 3.5. Continuing the discussion of Remark 3.3, recall that the vanishing of a co-
ordinate rk corresponds to omitting a given choice of almost complex structure Jk from
the construction of families of continuation equations, whereas requiring that it equal∞
corresponds to continuation maps which factor through the Floer complex for Jk . In par-
ticular, the stratum labelled by the pair I ⊂ J corresponds to continuation equations
constructed from the almost complex structures Jk with k ∈ J , with the additional con-
straint that all maps factor through the Floer complexes for Ji with i ∈ I .
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02⊂02 012⊂012

0

2

0

2

0

1

2

Fig. 5. The moduli space U012 over A012.

There is an alternative description of the boundary strata which is often more useful.
Introduce the notation

K
≥

i = {j ∈ K | j ≥ i} and K
≤

i = {j ∈ K | j ≤ i}. (3.14)

Lemma 3.6. The boundary stratum corresponding to I ⊂ J admits a natural product
decomposition

AI⊂J ∼= AJ≥id
×AJ≤id∩J

≥

id−1
× · · · ×AJ≤i1∩J

≥

i0
×AJ≤i0

, (3.15)

where I = {minK, i0, i1, . . . , id ,maxK}. ut

Given i ∈ K \ {maxK,minK}, and by using (3.13), the above result for facets yields a
natural identification

A{minK,maxK}⊂K\{i} ∼= AK\{i}, (3.16)

A{minK,i,maxK}⊂K ∼= AK≥i
×AK≤i

, (3.17)

corresponding to the locus where the ith coordinate vanishes or equals∞. The union of
the images of these inclusions over all i ∈ K \ {maxK,minK} covers the boundary
of AK .

The identification in (3.16) induces a natural inclusion

UK\{i}→ UK , (3.18)

which on the top stratum can be described in terms of the marked points (z1, . . . , zd−1)

giving rise to (z1, . . . , zi−1, zi−1, zi, . . . , zd−1). On the other hand, (3.17) induces a map

UK≥i ×AK≤i
∪AK≥i

× UK≤i → UK . (3.19)

If we restrict attention to the boundary strata of top dimension, this corresponds to the
fact that the fibre of UK over a point in AK≥i

× AK≤i
consists of a union of two curves,

and that the marked points which occur to the left of the interval labelled i lie on one of
these curves, with the other points lying on the other.
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Remark 3.7. The case |K| = 1 is a degenerate case of the above discussion. Whenever
it appears, we shall fix the convention that AK is a point.

Denote by
U {0}K ⊂ UK ⊃ U {1}K (3.20)

the two subsets of UK which are represented by points of the form (t, 0) (respectively
(t, 1)) in a constituent finite strip of a fibre U Er .

3.2.1. Gluing strips. Consider the projection map

fI⊂J : AK ∼= [0,∞]K\{minK,maxK}
→ [0,∞]J\I ∼= AI⊂J , (3.21)

and note that composition with the inclusion AI⊂J → AK is obtained by setting all
coordinates labelled by I \ {minK,maxK} equal to infinity, and all coordinates in K \ J
equal to 0.

Expressing the boundary stratum AI⊂J as a product of Adams moduli spaces yields
a projection AI⊂J → AI ′⊂J ′ whenever I ⊂ I ′ ⊂ J ′ ⊂ J , so that the following diagram
commutes:

AK //

""

AI⊂J

��
AI ′⊂J ′

(3.22)

In order to define the gluing map, let us fix the maps

Br,∞→ Br,r ′ and B∞,r ′ → Br,r ′ (3.23)

which split the inclusion Br,r ′ → Br,∞ and Br,r ′ → B∞,r ′ and are given outside these
regions by the projections

[r ′,∞)× [0, 1] → {r ′} × [0, 1], (3.24)
(−∞,−r] × [0, 1] → {−r} × [0, 1]. (3.25)

Returning to the description of the fibre U Er in (3.7), we see that (3.23) induces a
surjective (continuous) map

UfI⊂J (Er )→ U Er (3.26)

which is a diffeomorphism outside the infinite ends of UfI⊂J (Er ) that are labelled by ele-
ments of K \ J . Letting Er vary over a neighbourhood νAI⊂J of AI⊂J in AK , we obtain
a gluing map

GI⊂J : f
∗

I⊂J (UK |AI⊂J )|νAI⊂J → UK |νAI⊂J . (3.27)

Let F : UK → Z be a map from UK to a topological space Z. Such a map is constant
along the positive (respectively negative) end if there is a map f : [0, 1] → Z such that
the restriction of F to each fibre U Er agrees with f near s = ∞ on the last component in
(3.7) (respectively near −∞ on the first component).
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Definition 3.8. The map F is obtained by gluing if its restriction to neighbourhoods of
all boundary strata yields a commutative diagram

f ∗I⊂J (UK |AI⊂J )
GI⊂J //

fI⊂J
��

UK |νAI⊂J

F

��
UK |AI⊂J

F // Z

(3.28)

Since the gluing mapGI⊂J is surjective, F is determined, on a neighbourhood of a bound-
ary stratum, by its restriction to the stratum and the gluing map. In addition, continuity
implies that its restriction to the boundary is constant along each glued end.

To achieve transversality of moduli spaces of maps, it is convenient to introduce a
notion which is less rigid than the above gluing construction. To this end, we introduce
the thick part of the fibre:

Definition 3.9. If R < ri for all i ∈ I , the R-thick part of U Er (relative to I ⊂ K) is the
union:

(1) for i ∈ I of the strips

B0,R ⊂ Bri+ ,ri and BR,0 ⊂ Bri ,ri− (3.29)

where i− < i < i+ are successive elements of K;
(2) for j /∈ I of the strips

B0,rj ⊂ Brj+ ,rj and Brj ,0 ⊂ Brj ,rj− (3.30)

where j− < j < j+ are successive elements of K .

−r2 r1R0

−r1 −R 0 Rr20−R

0123

Fig. 6. The R-thick part of U0123 relative to I = 013.

Let FI⊂J : UK |νAI⊂J → Z be a function obtained by gluing, and assume Z is a Fréchet
manifold whose tangent space is equipped with a fixed collection of seminorms. We shall
say that a section of F ∗I⊂JT Z is consistent if the following properties hold: (i) there is
a constant R such that the support is contained in the interior of the R-thick part and
(ii) the seminorms of the sections at a point Er ∈ νAI⊂J are bounded by a constant mul-
tiple of

∑
i∈I\{minK,maxK} e

−ri . A consistent perturbation of FI⊂J is the image under
exponentiation of a consistent section.
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Definition 3.10. A map F : UK → Z is obtained by perturbed gluing if its restriction to
νAI⊂J for all pairs I ⊂ J agrees with a consistent perturbation of a function obtained by
gluing.

In addition, we fix maps

εminK : AK × B+→ UK and εmaxK : AK × B−→ UK (3.31)

whose restrictions to Er ∈ AK give positive (resp. negative) strip-like ends on the fibre
U Er , which agree up to translation with the natural ones coming from the last (respectively
first) factor in (3.7), and which are compatible with the gluing maps near every boundary
stratum.

3.3. Adams spaces with a distinguished marker

Equip K × {−,+} with the total ordering obtained by extending the ordering on K via
(+, i) < (−, j) for all i, j ∈ K . Write every subset ofK×{−,+} as a unionK−×{−}∪
K+ × {+}. The constructions of the previous section, applied to this ordered set, yield a
family of Riemann surfaces

UK−,K+ → AK−,K+ , (3.32)

and an open subset AK−,K+ ⊂ AK−,K+ over which the fibres of UK−,K+ are connected.

There are inclusions of the boundaries of each fibre U {i}K−,K+ ⊂ UK−,K+ for i = 0, 1. The
additional data of the decomposition distinguishes the finite strip Br(−,minK−),r(+,maxK+)

in
each fibre of UK−,K+ , and hence the corresponding component. We let w denote the
image of (0, 1) under this embedding; we represent elements of AK−,K+ by drawing this
marked point, and dropping the interior marked point which is the image of (0, 1/2) under
the above embedding, as in Figure 7.

k1
− k0

−

w

k2
+

k1
+ k0

+

Fig. 7. A fibre of UK−,K+ with K+ = {k0
+
< k1
+
< k2
+
}, and K− = {k0

−
< k1
−
}.

To state the compatibility of the distinguished marker with the boundary decomposi-
tion of AK−,K+ , note that such a stratum is labelled by pairs I± and J± such that

minK+ ∈ I+ ⊂J+ ⊂ K+ and maxK− ∈ I− ⊂ J− ⊂ K−. (3.33)

Whenever I± are singletons (i.e. respectively consist only of minK+ and maxK−), the
corresponding boundary stratum is naturally identified with the moduli space AJ−,J+ .
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Lemma 3.11. The codimension 1 boundary strata of AK−,K+ are∐
i∈K−\maxK−

AK−\i,K+ , (3.34)∐
i∈K+\minK+

AK−,K+\i, (3.35)∐
i∈K−\maxK−

AK≥
−,i
×AK≤

−,i ,K+
, (3.36)∐

i∈K+\minK+

AK−,K
≥

+,i
×AK≤

+,i
. (3.37)

The restriction of UK−,K+ to these strata is naturally isomorphic to the union of pullbacks
of the universal curves on each factor. ut

Using the above description of the boundary strata, inductively choose families of positive
(respectively negative) strip-like ends

ε± : AK−,K+ × B±→ UK−,K+ (3.38)

whose restrictions to the boundary strata are compatible with the inductive choices and
those made in Section 3.1.

Assume now that maxK+ ≤ minK−, with respect to the ordering on K . Let zin
denote the boundary marked point w. For each Er ∈ 1K−,K+ fix the following positive
strip-like ends near zin:

εin : B+→ B ⊂ U Er , (s, t) 7→
√
−1− e−s−t

√
−1π , (3.39)

where the complex coordinates on B are given by its embedding in C. By construction,
these strip-like ends are compatible with gluing. Since U {1}K−,K+ is naturally ordered via
its identification with a union of real lines, the points preceding or succeeding zin define
subsets of the boundary:

Uzin>
K−,K+

= {z ∈ U {1}K−,K+ | z < zin}, Uzin<
K−,K+

= {z ∈ U {1}K−,K+ | zin < z}. (3.40)

Assume instead that maxK− ≤ minK+ with respect to the ordering onK , and repeat
the same procedure to obtain a marked point zou on each fibre of UK−,K+ . Pick negative
strip-like ends

εou : B−→ B ⊂ U Er (3.41)

whenever Er ∈ 1K−,K+ , which are compatible with gluing. The points preceding or suc-

ceeding zou yield subsets Uzou>
K−,K+

⊂ U {1}K−,K+ ⊃ Uzou<
K−,K+

.
Given I ⊂ K , introduce the notation

K
≥

I ≡ K
≥

max I and K
≤

I ≡ K
≤

min I (3.42)
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where the sets K≥i and K≤i are as in (3.14). Given a nested pair I ⊂ K , define the
following subsets of K × {+,−}:

K in
I ≡ (K

≥

I × {−},K
≤

I × {+}) and Kou
I ≡ (K

≤

I × {−},K
≥

I × {+}). (3.43)

Lemma 3.12. The minimal element of K in
I is (minK,+), and the maximal element is

(maxK,−). The minimal element of Kou
I is (max I,+), and the maximal element is

(min I,−). ut

3.4. Strips with one input marked point

Let EK be a nested sequence of totally ordered sets whose maximal element is K and
minimal element is K0.

Definition 3.13. The Adams moduli space with one input A EK;in is the product

A EK;in ≡ [0,∞]
EK\K . (3.44)

The cells of A EK;in are given by pairs of subsets K ∈ EI ⊂ EJ ⊂ EK . Write A EI⊂ EJ ;in for
the corresponding stratum. Define the open subset A EK;in ⊂ A EK;in corresponding to the
inclusion [0,∞) ⊂ [0,∞]. It is the union of the strata for which {K} = EI .

We shall build a universal curve on A EK;in by pulling back the universal curve on AK in
K0

as follows: Let min EK ⊂ K denote the set of minimal elements of subsets of K which lie
in EK , and max EK the set of maximal elements. Assign to a sequence EJ ⊂ EK the subset
of K in

K0
given by

µin EJ ≡ max EJ × {−} qmin EJ × {+}. (3.45)

There is a natural map
µin : A EK;in → A

µin EK
⊂ AK in

K0
(3.46)

inducing the map of posets EI ⊂ EJ 7→ µin EI ⊂ µin EJ . In coordinates, we simply set
the coordinate of µin(Er ) labelled by (j,+) to equal

∑
max J=j rj , while the coordinate

labelled by (j,−) is given by
∑

min J=j rj , with both sums taken over J ∈ EK .

Definition 3.14. The universal curve over A EK;in is the projection map

U EK;in ≡ µ
∗

in(UK in
K0
)→ A EK,in. (3.47)

We give some examples of these universal curves for K = 012.

Example 3.15. If EK = {2 ⊂ 12 ⊂ 012}, then µin EK = {(0,+) < (1,+) < (2,+) <
(2,−)}. In particular, A EK;in and A

µin EK
are both 2-dimensional. In order to describe the
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image of the vertices, note that they canonically correspond to subsets of EK contain-
ing the maximal element (because EI = EJ if and only if the corresponding stratum is
0-dimensional). Using this convention to simplify the notation, we can write the map µin
on vertices as:

012 7→ {(0,+), (2,−)}, (3.48)
2 ⊂ 012 7→ {(0,+), (2,+), (2,−)}, (3.49)

12 ⊂ 012 7→ {(0,+), (1,+), (2,−)}, (3.50)
2 ⊂ 12 ⊂ 012 7→ {(0,+), (1,+)(2,+), (2,−)}. (3.51)

It is therefore easy to see that µin is an isomorphism. The fibres of U EK;in are shown in
Figure 8.

2 02 0

2 0 2 0 2 2 0

0 2 0

2 2 1 02 1 02 1 0

Fig. 8. The moduli space A EK;in, with vertices labelled by fibres of U EK;in ( EK = 2 ⊂ 12 ⊂ 012).

It is easy to find a map µin which cannot be injective because the dimension of the source
is larger than that of the target:

Example 3.16. If EK = {0 ⊂ 02 ⊂ 012}, then µin EK = {(0,+) < (0,−) < (2,−)}, so
A EK;in is 2-dimensional while A

µin EK
has dimension 1.

There are more interesting examples of maps µin, which are neither injective nor surjec-
tive, despite the source and target having the same dimension:

Example 3.17. If EK = {1 ⊂ 01 ⊂ 012}, then µin EK = {(0,+) < (1,+) < (1,−) <
(2,−)}, so A EK;in and A

µin EK
both again have dimension 2. On vertices, we have

012 7→ {(0,+), (2,−)}, (3.52)
1 ⊂ 012 7→ {(0,+), (1,+), (1,−), (2,−)}, (3.53)

01 ⊂ 012 7→ {(0,+), (1,−), (2,−)}, (3.54)
1 ⊂ 01 ⊂ 012 7→ {(0,+), (1,+), (1,−), (2,−)}. (3.55)
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2 02 0

2 0 2 0 2 1 1 0

2 1 1 0

2 1 1 01 022 1 0

Fig. 9. The moduli space A EK;in, with vertices labelled by fibres of U EK;in ( EK = 1 ⊂ 01 ⊂ 012).

Since the second and the last vertex above have the same image in A
µin EK

, this map cannot
be injective. In fact, we can easily compute that it is given, in coordinates, by

(r1, r01) 7→ (r1, r1 + r01), (3.56)

so the map is in fact injective on A EK;in, but not on the closure.

3.4.1. Maps induced by minimal and maximal elements. Before proceeding with a more
convenient combinatorial description of the boundary strata of A EK,in, we introduce maps
associated to minimal and maximal elements: let EJ be a sequence of nested subsets with
maximal element J that is ordered, and minimal element I . Since the minimal (respec-
tively maximal) element of J ′ ∈ EJ ≥I lies between the minimal (resp. maximal) elements
of I and J , we have maps

min : A EJ → AJ≤I
and max : A EJ → AJ≥I

. (3.57)

Given i ∈ J≤I \ {min I,min J }, the i-coordinate of min(Er ) (resp. max(Er )) is the sum
of the coordinates rJ ′ for elements J ′ ∈ EJ \ {J, I } whose minimum equals i (if there
are no such elements, the corresponding coordinate vanishes). In the same way, given
i ∈ J

≥

I \ {max I,max J }, the i-coordinate of max(Er ) is the sum of the coordinates rJ ′ for
elements J ′ ∈ EJ \ {J, I } whose maximum equals i. On the associated partially ordered
sets, the maps are simply given by

EJ1 ⊂
EJ2 7→ min EJ1 ⊂ min EJ2 and EJ1 ⊂

EJ2 7→ max EJ1 ⊂ max EJ2. (3.58)

Some examples of sequences EJ of length 4, i.e. such that the corresponding moduli
spaces A EJ have dimension 2, are given in Table 1. We describe two of the cases in more
detail:
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Table 1. Properties of the map min×max on A EJ in some examples.

EJ dimA
J
≥

I
dimA

J
≤

I
Injective Surjective

01 ⊂ 012 ⊂ 0123 ⊂ 01234 2 0 Yes Yes
34 ⊂ 234 ⊂ 1234 ⊂ 01234 0 2 Yes Yes
34 ⊂ 134 ⊂ 1234 ⊂ 01234 0 1 No Yes
3 ⊂ 134 ⊂ 1234 ⊂ 01234 0 2 No No

2 ⊂ 12 ⊂ 123 ⊂ 01234 1 1 No No
2 ⊂ 124 ⊂ 1234 ⊂ 01234 1 1 No No

Example 3.18. Consider the sequence EJ = {2 ⊂ 12 ⊂ 123 ⊂ 01234}. The moduli
space A EJ is 2-dimensional, with coordinates given by r12 and r123, and both AJ≤I

and AJ≥I
are 1-dimensional, with coordinates r1 and r3. In these coordinates, the map (max,min)
is (r123, r12 + r123). This map is injective on A EJ , but not on the closure.

Example 3.19. Consider the sequence EJ = {2 ⊂ 124 ⊂ 1234 ⊂ 01234}. The moduli
space A EJ has coordinates given by r124 and r1234, while the targets of min and max
have coordinates r1 and r3. In these coordinates, the map (max,min) factors through the
inclusion of the diagonal in the square AJ≥I

×AJ≤I
.

With the above examples in mind, we characterise the sequences EJ of maximal length for
which the map (max,min) is injective:

Lemma 3.20. Assume that EJ consists of |J | − |I | + 1 elements. Then

dimA EJ ≥ dim(AJ≥I ×AJ≤I
), (3.59)

with equality if and only if one of the following three conditions holds: (i) max I = max J
and min is injective on EJ , (ii) min I = min J and max is injective on EJ , or (iii) I = J \{i}
for i 6= min J,max J . Moreover, if equality holds, the map (min,max) is an isomorphism.

Proof. By assumption, successive subsets of J appearing in EJ differ by exactly one ele-
ment, hence

|J | − |I | + 2 ≥ |J≤I | + |J
≥

I |, (3.60)

with I contributing two elements to the union of J≤I and J≥I , and each subsequent element
of EJ at most one. Note that this inequality is strict if and only if each subset of J appearing
in EJ is obtained by adding an element which is either larger than the maximum of the
preceding subset or smaller than the minimum.

This inequality allows us to compare the dimensions of the sources and targets in
(3.57). We begin by noting that the conventions fixed in Remark 3.7 imply that the di-
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mensions of the moduli spaces we are considering are

dimA EJ = |J | − |I | − 1, (3.61)

dimAJ≥I
= max(|J≥I | − 2, 0), (3.62)

dimAJ≤I
= max(|J≤I | − 2, 0). (3.63)

We now rewrite (3.60) as

dimA EJ ≥ |J
≤

I | + |J
≥

I | − 3, (3.64)

from which we conclude that equality of dimensions can only hold if one of J≥I or J≤I is
a singleton. We now consider the three cases in reverse order:

Case (iii): If both J≥I or J≤I are singletons, then the dimensions of the corresponding
moduli spaces are both 0, so equality of dimensions requires that A EJ be 0-dimensional,
hence a point, which corresponds to I = J \ {i}. Surjectivity is obvious.

Case (ii): If J≤I is a singleton, but J≥I is not, then (3.64) becomes

dimA EJ ≥ dimAJ≥I
, (3.65)

with equality holding whenever the inequality in (3.60) is strict. This corresponds to max
being injective, so that surjectivity follows.

Case (i): Entirely analogous to the previous case. ut

3.4.2. Stratification of the boundary of A EK,in. Given a sequence EJ of nested subsets
of an ordered set K , with maximal element J and minimal element J0, and an element
I ∈ EJ , we first introduce the notation EJ ≥I and EJ ≤I as before for the nested collection of
sets preceding and succeeding I . By the construction of the previous section, we have
maps

min : A EJ ≥I
→ AJ≤I

and max : A EJ ≥I
→ AJ≥I

. (3.66)

We now have the necessary notation to describe the restriction of the universal curve to
the boundary strata of A EK,in: denoting by I0 the minimal element of EI , the boundary
stratum of A EK;in labelled by K ∈ EI ⊂ EJ is

A EI⊂ EJ ;in
∼= A EI⊂ EJ ≥I0

×A EJ ≤I0 ;in
, (3.67)

where A EI⊂ EJ ≥I0
is the cube on EJ ≥I0 \

EI . When EI = {I } is a singleton, the pair {I } ⊂ EJ ≥I
labels the top-dimensional stratum of A EJ ≥I

. Figure 10 illustrates the fibres of the universal
curve over this stratum; we shall presently explain how to describe the components of this
restricted universal curve as pullbacks, after introducing the relevant maps.
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maxK max I min I minK

Fig. 10. A fibre of the universal curve over A EK;in restricted to A EJ ≤I ;in
× A EJ ≥I

. The curve in the
middle is U EJ ≤I ;in

, while the curves on the left and the right are the pullbacks of the universal curves
over Amin EJ ≥I

and Amax EJ ≥I
respectively.

On the first factor of the right hand side in (3.67), consider the product map

A EI⊂ EJ ≥I0

(min,max)
−−−−−−→ Amin EI⊂min EJ ≥I0

×Amax EI⊂max EJ ≥I0
⊂ AK≤I0

×AK≥I0
, (3.68)

using the fact that K ∈ EJ to derive the inclusion. On the other hand, the second factor in
(3.67) maps by µin to

Amax EJ ≤I0 ,min EJ ≤I0
⊂ AI0

≥

J0
,I0
≤

J0
≡ AI0in

J0
. (3.69)

The product of the right hand sides in (3.68) and (3.69) is a stratum of AK in
K0

, and

these map fit in a commutative diagram:

A EI⊂ EJ ≥I0
×A EJ ≤I0 ;in

∼= //

��

A EI⊂ EJ ;in
// A EK;in

��
Amin EI⊂min EJ ≥I0

×Amax EI⊂max EJ ≥I0
×AI0in

J0

// AK≥I0
×AI0in

J0
×AK≤I0

// AK in
K0

(3.70)

We now specialise the above discussion to the codimension 1 strata of A EK;in. These
come in two types, both labelled by an element I ∈ EK \ {K}. The first corresponds to
EI = {K} and EJ = EK \ {I }, and in this case diagram (3.70) reduces to

A EJ ;in
∼= A

{K}⊂ EK\{I };in
//

��

A EK;in

��
AK in

J0

// AK in
K0

(3.71)

The second case corresponds to EI = {I ⊂ K} and EJ = EK , and in this case, we find
that the projection A

{I⊂K}⊂ EK;in → AK in
K0

factors through the map

A EK ≥I
→ Amin EK ≥I

×Amax EK ≥I
, (3.72)

which is derived from (3.68) by using the fact that {I,K} ⊂ EK
≥

I labels the top-
dimensional stratum of A EK ≥I

.
Using (3.34)–(3.37) we obtain an explicit description of the fibres over boundary

strata of A EK;in (see Figure 10 for an example):
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Lemma 3.21. The boundary of A EK;in is covered by the following codimension 1 strata:⋃
I∈ EK\{K}

A EK\{I };in,
⋃

I∈ EK\{K}

A EK ≥I
×A EK ≤I ;in

. (3.73)

The restriction of U EK;in to the first type of stratum is naturally isomorphic to U EK\{I };in,
and the restriction to the second is given by

(max∗ Umax EK ≥I
qmin∗Umin EK ≥I

)×A EK ≤I ;in
qA EK ≥I

× U EK ≤I ;in. (3.74)

Proof. The first type of stratum in (3.73) corresponds to the case when the coordinate
labelled by I vanishes, and the other to the case when this coordinate is∞. In (3.74), the
projection fromK in

K0
toK can be used to identify max EK ≥I ×{−} as a subset ofK in

K0
with

max EK ≥I , and similarly for min EK ≥I . ut

3.5. Strips with one output marked point

The construction of moduli spaces with outputs is entirely analogous to that of moduli
spaces with inputs, with the partially ordered set K in

K0
replacing Kou

K0
in the construction,

and with a few other minor changes.

0 00 0

0 0 0 2 0

0 2 0

0 2 1 00 1 00 1 0

0 0

Fig. 11. The moduli space A EK;ou, with vertices labelled by fibres of U EK;ou ( EK = 0 ⊂ 01 ⊂ 012).

Definition 3.22. The Adams moduli space with one output, A EK;ou, is the product

A EK;ou ≡ [0,∞]
EK\K0 . (3.75)

The cells of A EK;ou are given by pairs of subsetsK0 ∈ EI ⊂ EJ ⊂ EK , and the union of those
strata for which EI = {K0} corresponds to the open subset A EK;ou.

There is a natural map
µou : A EK;ou → AKou

K0
(3.76)

which assigns to a sequence EJ ⊂ EK the subset min EJ × {−} qmax EJ × {+} of Kou
K0

.
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Definition 3.23. The universal curve over A EK;ou is the projection map

U EK;ou ≡ µ
∗
ou(UKou

K0
)→ A EK,ou. (3.77)

By pullback, (3.38) determines families of strip-like ends ε− and ε+, and a family of
distinguished components which are trivialised by a map we still denote ι.

As in (3.70), the boundary strata of A EK;ou and their images under µou fit in a commu-
tative diagram

A EI⊂ EJ ;ou
∼= A EJ ≥I ;ou ×A EI⊂ EJ ≤I

//

��

A EK;ou

��
AI≤K0

×AJ ou
I
×AI≥K0

// AKou
K0

(3.78)

The boundary of A EK;ou admits a natural decomposition as a union of codimension 1
strata ⋃

I∈ EK\K0

A EK\I ;ou q
⋃

I∈ EK\K0

A EK ≥I ;ou ×A EK ≤I
. (3.79)

The fibres of U EK;ou are given by U EK\I ;ou over the first type of stratum, and

A EK ≥I ;ou × (max∗ Umax EK ≤I
qmin∗Umin EK ≤I

)q U EK ≥I ;ou ×A EK ≤I
(3.80)

over the second kind.

4. Lagrangian Floer theory

We now return to the setting of Sections 2.2 and 2.4. In particular, we recall that J denotes
the space of tame almost complex structures, and that all Lagrangians L we consider are
equipped with an almost complex structure JL for which they bound no holomorphic
disc, and are graded with respect to the quadratic complex volume form on X induced by
a density on Q. In particular, whenever L and L′ are both graded Lagrangians, and x ∈
L ∩ L′ is a transverse intersection point, there is a well-defined Maslov index deg x ∈ Z,
as explained in [19, Section (12b)].

If L and L′ are graded Lagrangians which are transverse, and which both satisfy
condition (2.49), pick a family Jt of almost complex structures such that J0 = JL and
J1 = JL′ , and which is constant in a neighbourhood of the point t = 1/2. To each pair
x, y ∈ L ∩ L′, there corresponds a moduli space M(x, y) of holomorphic strips with
boundary conditions given by L along R × {0} and L′ along R × {1}. Condition (2.52)
holds in this case, as does the analogue of the decomposition of the boundary of the
moduli space given by (2.51).
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4.1. Continuation maps

Let K be a totally ordered set.

Definition 4.1. A consistent family of continuation data parametrised by UK is a map

8K = (φK , JK , ψK) : UK → H × J×D (4.1)

such that (i) 8K is constant along each end of a fibre of UK , (ii) the maps φK and ψK
are obtained by gluing, and JK by perturbed gluing, (iii) ψk(z) preserves the image of L
under φk(z), and (iv) for each z ∈ U {1}K ,

JK(z) = (ψK(z) ◦ φK(z))∗JL. (4.2)

Remark 4.2. Only the restrictions of φK and ψK to U {1}K will be used.

The assumption that φK is obtained by gluing implies that we have well-defined Hamil-
tonian diffeomorphisms {φi}i∈K . To simplify the notation, we let Li = φi(L).

Given a consistent family one can define, for each Er ∈ AK , a holomorphic curve
equation with moving Lagrangian boundary conditions:

u : U Er → X, ∂su(z) = JK(z)∂tu(z), (4.3)

u(z) ∈ Fq if z ∈ U {0}Er , u(z) ∈ φK(z)L if z ∈ U {1}Er . (4.4)

Given a pair of points y ∈ LminK ∩ Fq and x ∈ LmaxK ∩ Fq , denote by

Mq,K(x, y)→ AK (4.5)

the moduli space of solutions to (4.3)–(4.4) which in addition satisfy the asymptotic con-
ditions

lim
s→−∞

u ◦ ε−(s, t) = x, lim
s→∞

u ◦ ε+(s, t) = y. (4.6)

x y

Fq

φK (z)LLmaxK LminK

Fig. 12. The moduli space Mq,K (x, y). The presence of one interior marked point is shorthand
that allows us to distinguish moduli spaces of continuation maps from solutions to Floer’s equation.
A more precise figure would show one fewer marked point than |K|.

For a generic family JK , the Gromov–Floer compactification Mq,K(x, y) is a mani-
fold with boundary such that

dimRMq,K(x, y) = deg x − deg y + dimAK = deg x − deg y + |K| − 2. (4.7)
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The generalisation of (2.51) is that the codimension 1 strata of the boundary come in two
families: ∐

i∈K

∐
z∈Li∩Fq

Mq,K
≥

i
(x, z)×Mq,K

≤

i
(z, y), (4.8)

∐
i∈K\{minK,maxK}

Mq,K\{i}(x, y). (4.9)

Breaking of Floer strips is incorporated in the first case, corresponding to i = maxK or
i = minK . So the first strata project to the interior of AK or to the boundary stratum
where the coordinate corresponding to i equals∞, and the second to the stratum where
this coordinate vanishes.

Remark 4.3. Since the choice of data in Definition 4.1 takes place for a fixed K , there
is a slight abuse of notation in (4.8) and (4.9), given that the moduli spaces which appear
are defined with respect to the Floer data restricted from UK . This issue will be addressed
in Section 5, where such data will be chosen inductively so that there is no ambiguity in
the description of the boundary strata.

4.2. Continuation with a distinguished marker

Let L+ and L− be graded Lagrangians which are transverse, and which both satisfy
condition (2.49) for almost complex structures JL+ and JL− . Let K−,K+ be subsets
of K × {−,+} as in Section 3.3.

Definition 4.4. A consistent family of continuation data with a distinguished marker
parametrised by UK−,K+ is a map

8K−,K+ = (φK−,K+ , JK−,K+ , ψK−,K+) : UK−,K+ → H × J×D (4.10)

such that (i) the restriction to every end is constant, (ii) JK−,K+ is obtained by per-
turbed gluing and the other maps by gluing in a neighbourhood of each boundary stratum,
(iii) ψK−,K+(z) preserves the image of L+ (respectively L−) under φK−,K+(z) whenever
z ∈ Uz1<

K−,K+
as defined in (3.40) (respectively z ∈ Uz1>

K−,K+
), and (iv) we have

JK−,K+(z) =

{(
ψK−,K+(z) ◦ φK−,K+(z)

)
∗
JL+ if z ∈ Uz1<

K−,K+
,(

ψK−,K+(z) ◦ φK−,K+(z)
)
∗
JL− if z ∈ Uz1>

K−,K+
.

(4.11)

We obtain, for each Er ∈ AK−,K+ , a holomorphic curve equation ∂su(z) = J (z)∂tu(z)

with moving Lagrangian boundary conditions

u : U Er → X, u(z) ∈ Fq if z ∈ U {0}Er , (4.12)

u(z) ∈ φ(z)L− if z ∈ Uz1>
Er , u(z) ∈ φ(z)L+ if z ∈ Uz1<

Er . (4.13)
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4.3. Continuation with one input

LetK− andK+ be subsets ofK such that maxK+ ≤ minK−, and let L and L′ be graded
Lagrangians satisfying condition (2.49) for almost complex structures JL and JL′ . In the
setting of the previous section, setL+ = L andL− = L′. Given points x′ ∈ L′maxK−∩Fq ,
x ∈ LminK+ ∩ Fq and xin ∈ L ∩ L

′ , define

Mq,K−,K+(x
′
; xin, x)→ AK−,K+ (4.14)

to be the moduli space of solutions to (4.12)–(4.13) which in addition satisfy

lim
s→−∞

u ◦ ε−(s, t) = x
′, u(zin) = xin, lim

s→∞
u ◦ ε+(s, t) = x. (4.15)

x′ x

Fq

xin
L′maxK− LminK+

Fig. 13. The moduli space Mq,K−,K+(x
′
; xin, x).

For a generic family of parametrised Floer data, the Gromov–Floer compactification
Mq,K−,K+(x

′
; xin, x) is a manifold with boundary such that

dimRMq,K−,K+(x
′
; xin, x) = deg x′ − deg xin − deg x + |K−| + |K+| − 2. (4.16)

If EK is a nested sequence of subsets of K , with minimal element K0, let

M
q, EK;in(x

′
; xin, x)→ A EK;in (4.17)

be the pullback of Mq,K in
K0
(x′; xin, x) by the map from A EK;in to AK in

K0
(see (3.43)). For

generic Floer data, this is a manifold with boundary such that

dimRM
q, EK;in(x

′
; xin, x) = deg x′ − deg xin − deg x + | EK| − 1. (4.18)

maxK max J min J
L′ L

minK

Fig. 14. A schematic picture of the holomorphic curve problem for curves over A EK ≤J ;in
×A EK ≥J

.

The boundary decomposition of A EK;in leads to the decomposition of the boundary of
M

q, EK;in(x
′
; xin, x) into the following parts:∐

y′∈L′maxK∩Fq

Mq(x
′, y′)×M

q, EK;in(y
′
; xin, x), (4.19)

∐
y∈LminK∩Fq

M
q, EK;in(x

′
; xin, y)×Mq(y, x), (4.20)
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yin∈L∩L′

M
q, EK;in(x

′
; yin, x)×M(yin, xin), (4.21)∐

I∈ EK\K

M
q, EK\I ;in(x

′
; xin, x), (4.22)

∐
I∈ EK\K

∐
y∈Lmin I∩Fq

∐
y′∈L′max I∩Fq

max∗M
q,max EK ≥I

(x′, y′)×A
EK
≥

I

min∗M
q,min EK ≥I

(y, x)

×M
q, EK

≤

I ;in
(y′; xin, y). (4.23)

Lemma 4.5. Assume that EK consists of |K| elements, and dimRM
q, EK;in(x

′
; xin, x) = 1.

If all Floer data are regular, the only contributions to the stratum in (4.23) are given by I
such that (i) max I = maxK and min is injective on EK ≥I , in which case the boundary
contribution is ∐

y∈Lmin I∩Fq

M
q, EK

≤

I ;in
(x′; xin, y)×M

q,min EK ≥I
(y, x), (4.24)

or (ii) min I = minK and max is injective on EK ≥I , which contribute∐
y′∈L′max I∩Fq

M
q,max EK ≥I

(x′, y′)×M
q, EK

≤

I ;in
(y′; xin, x), (4.25)

or (iii) I = K \ {i} for i 6= minK,maxK , in which case the corresponding stratum is

M
q, EK

≤

I ;in
(x′; xin, x). (4.26)

Proof. Under the assumption on EK , successive elements of this sequence differ by exactly
one element of K , hence the same property holds for EK ≥I . The result now follows from
Lemma 3.20, which asserts that, whenever the conditions above do not hold, the stratum
in (4.23) is obtained by pulling back a moduli space of curves parametrised by a manifold
of dimension lower than the dimension of the stratum. Assuming regularity, this moduli
space has negative virtual dimension, hence is empty. ut

4.4. Continuation with one output

Let K = K− ∪K+ be a decomposition of K such that minK+ = maxK−. Set L− = L
and L+ = L′.

Given points x ∈ LmaxK− ∩ Fq , x′ ∈ L′minK+ ∩ Fq , and xou ∈ L ∩ L
′ , denote by

Mq,K−,K+(x, xou; x
′)→ AK−,K+ (4.27)

the compactified moduli space of solutions to the Cauchy–Riemann equation determined
by such data with asymptotic conditions

lim
s→−∞

u ◦ ε−(s, t) = x, u(zou) = xou, lim
s→∞

u ◦ ε+(s, t) = x
′. (4.28)

If EK is a sequence of nested subsets with minimal element K0 and maximal ele-
ment K , let M

q, EK;ou(x, xou; x
′) be the pullback of Mq,Kou

K0
(x, xou; x

′) under the projec-
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tion map from A EK;ou to AKou
K0

. Assuming that all Floer data are chosen generically, this
is a manifold with boundary such that

dimRM
q, EK;ou(x, xou; x

′) = deg x + deg xou − deg x′ + | EK| − n− 1. (4.29)

minK0 min I max I

L L′

maxK0

Fig. 15. A schematic picture of the holomorphic curve problem for curves over A EK ≥I ;ou ×A EK ≤I
.

The boundary decomposition of A EK;ou leads to the decomposition of the boundary of
M

q, EK;ou(x, xou; x
′) into the following parts:∐

y′∈L′maxK0
∩Fq

M
q, EK;ou(x, xou; y

′)×Mq(y
′, x′), (4.30)

∐
y∈LminK0∩Fq

Mq(x, y)×M
q, EK;ou(y, xou; x

′), (4.31)

∐
you∈L∩L′

M(xou, you)×M
q, EK;ou(x, you; x

′), (4.32)∐
I∈ EK\K0

M
q, EK\I ;ou(x, xou; x

′), (4.33)

∐
I∈ EK\K0

∐
y∈Lmin I∩Fq

∐
y′∈L′max I∩Fq

min∗M
q,min EK ≤I

(y′, x′)×A
EK
≤

I

max∗M
q,max EK ≤I

(x, y)

×M
q, EK

≥

I ;ou(y, xou; y
′). (4.34)

We also have the analogue of Lemma 4.5:

Lemma 4.6. Assume that EK consists of |K| elements, and dimRM
q, EK;ou(x, xou; x

′) =

0. The only contribution to the stratum in (4.34) is given by I such that (i) I = K0 ∪ {i}

for i 6= minK,maxK , in which case the corresponding stratum is

M
q, EK

≥

I ;ou(x, xou; x
′), (4.35)

or (ii) max I = maxK0, and min is injective on EK ≤I , which contribute∐
y∈Lmin I∩Fq

M
q,min EK ≤I

(x, y)×M
q, EK

≥

I ;ou(y, xou; x
′), (4.36)

or (iii) min I = minK0, and max is injective on EK ≤I , which contribute∐
y′∈L′max I∩Fq

M
q, EK

≥

I ;ou(x, xou; y
′)×M

q,max EK ≤I
(y′, x′). (4.37)

ut
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5. Floer theory and convergence

5.1. Uniformly small choices of perturbations

Let L and L′ be Lagrangians which are tautologically unobstructed with respect to a pair
of tame almost complex structures JL and JL′ . Fix an embedded path {Jt }1t=0 from JL
to JL′ . Pick a sequence of contractible neighbourhoods in J of this path,

J0
⊂ J1

⊂ · · · ⊂ Jn+3, (5.1)

so that the closure of Ji lies in the interior of Ji+1.
Let H0 be a contractible neighbourhood of the identity in the space of Hamiltonian

diffeomorphisms such that
φ∗(Jt ) ∈ J0 (5.2)

for all φ ∈ H0. Let L and L′ denote the families of Lagrangians obtained by applying
elements of H0 to L and L′.

Let D be a neighbourhood of the identity in Diff(X) such that D(Ji) ⊂ Ji+1, where
the action is by pushforward as in (2.50). Given a subset W ⊂ Q2, define

DW (L) ⊂ W × L×D (5.3)

to be the subset consisting of triples ((q, p), φL,ψ) such that

ψ(Fq) = Fp, ψ(φL) = φL, (5.4)

and similarly for L′. Dropping the first condition yields a family D(L) over L, and drop-
ping the second, a family DW over W . For a fixed element of L, write

D(φL) = {ψ ∈ D | ψ(φL) = φL}, DW (φL) = {ψ ∈ DW | ψ(φL) = φL} (5.5)

for the fibres of D(L) and DW (L) over φL ∈ L.
For all q ∈ Q, pick φq ∈ H0 so that φqL is transverse to Fq . Since Q is compact,

there is a finite cover U of Q and maps φU , φ′U ∈ H0, for all U ∈ U, such that φU (L)
and φ′U (L

′) are transverse to Fq if q ∈ U . For a pair (p, q) ∈ U2, this implies the
existence of diffeomorphisms mapping q to p and preserving φU (L) or φ′U (L

′). Such
diffeomorphisms may not act appropriately on the spaces Jk of almost complex structure,
but if the elements of U are sufficiently small, there is a sequence of neighbourhoods

Id = D0
⊂ D1

⊂ · · · ⊂ D2n+1
⊂ D (5.6)

which are invariant under inversion and such that

Di
◦Dj

⊂ Di+j (5.7)

and we have acyclic fibrations Dk(L)→ L, Dk(L′)→ L′, and

Dk
U2(φUL)

$$

Dk
U2

��

Dk
U2(φUL

′)

yy
U2

(5.8)

We now apply the construction of Section 2.3.1 with the above cover in mind:
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Lemma 5.1. There is a partially ordered set 6, labelling a simplicial triangulation ofQ
and a cover {Pi}i∈6 ofQ by integral affine polygons which refine U, such that (2.20) and
(2.21) hold, and the open star of each cell σI for I ⊂ 6 is contained in PI .

Proof. Lemma 2.3 provides a cover satisfying all the properties except the inclusion of
the open star. To remedy this, let B6 denote the barycentric subdivision of 6, which is
a partially ordered set whose elements are the totally ordered subsets of 6; we set the
ordering on B6 to be given by reverse inclusion. For I ∈ B6 define BPI to be Pmin I .
To reduce the clutter, we write

BPi0···ik ≡ BP{i0,...,ik}. (5.9)

The polyhedra BPI satisfy (2.20) since min J ≤ min I whenever I ⊂ J (this justifies the
ordering by reverse inclusion). To check (2.21), consider the natural map⋃

I∈B6

BPI
/
∼→

⋃
i∈6

Pi
/
∼ = Q (5.10)

associated to the assignment I 7→ min I . Observe that, for each I ∈ B6, the above map
restricts to an isomorphism⋃

J⊂I

BPJ
/
∼→

⋃
min I≤i

Pi
/
∼ = Pmin I , (5.11)

hence the subsets BPi = Pi cover the left hand side of (5.10). For a pair i < j , the
inclusions

BPi ⊂ BPij ⊃ BPj (5.12)

imply that the map (5.10) is injective. We conclude as desired that it is therefore a hom-
eomorphism.

Iterating the barycentric subdivision construction yields open stars whose diameter
goes to 0, while the corresponding cover does not shrink because it consists of repetitions
of the original cover. There is therefore a finite iteration such that the open star of every
vertex is contained in the corresponding polygon. ut

For each i, pick φi, φ′i ∈ H0 arbitrarily among those Hamiltonian diffeomorphisms φU
and φ′U where Pi ⊂ U . It is immediate that Di

P 2
i

, Di

P 2
i

(φiL) and Di

P 2
i

(φiL
′) are acyclic

fibrations over P 2
i . In addition, choose generic families Ji, J ′i : [0, 1] → J1 so that

Ji,0 = (φi)∗JL and J ′i,0 = (φ
′

i)∗JL′ (5.13)

and all moduli spaces of Floer trajectories Mqi (x, y) and Mqi (x
′, y′) defined with re-

spect to these families of almost complex structures are regular if x, y ∈ Li ∩ Fi and
x′, y′ ∈ L′i ∩ Fi . We write

8i = (φi, Ji, Id) : [0, 1] → H0
× J×D, (5.14)

where the first and last maps are constant, and similarly for 8′i . Moreover, pick sections

ψi : Pi → D1
{qi }×Pi

(Li). (5.15)
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Remark 5.2. In order not to increase the awkwardness of the notation, we shall adopt
the following conventions: Let Z be a topological space. Given maps

(8,9) : Z→ D×H × J×D (5.16)

with 8 = (φ, J, ψ), use pushforward and composition (pointwise in Z) to define

9∗(8) ≡ (φ,9∗J,9 ◦ ψ) : Z→ H × J×D. (5.17)

Also, write 9−1 for the pointwise inverse of 9.

5.2. Locally constant families of continuation maps

Let I be a totally ordered subset of6, and recall the notation from (2.31) for the intersec-
tion PI and element qI ∈ PI . Pick a map

9I : PI × U I → D2|I |−1
(5.18)

which is the identity on {qI } × U I , and continuation data

8I = (φI , JI , ψI ) : U I → H0
× J|I | ×D2|I |−1

. (5.19)

Remark 5.3. The remainder of this section is likely to be less incomprehensible if the
reader keeps in mind that the holomorphic curve problem on the moduli space U I is
defined with Lagrangian boundary conditions FI over the boundary labelled 0. The map
9I is introduced to transport this holomorphic curve problem to nearby fibres.

A potentially helpful reference is [1, Section 3] which essentially covers the case
where the set I consists of two elements. In this case, U I is a strip, so that (5.18) is
the choice of a family of diffeomorphisms of X parametrised by the product of PI with
a strip. As a warning to the reader, we note that we required in [1, (3.50)] that 9I be
constant in a certain region of the strip, which ensured that it preserved the image of L
under a moving Hamiltonian isotopy. In the present account, this is replaced by condition
(5.25) below which is more flexible.

In addition to the conditions imposed on8I in Definition 4.1, assume that the restrictions
of (8I , 9I ) agree with

(ψmin I (qI )∗8min I , ψmin I ◦ ψ
−1
min I (qI )) along the end ε+, (5.20)

(8max I , ψmax I ) along the end ε−, (5.21)

(8I\i, 9I\i) on U I\i, (5.22)

(8I≥i
, 9I≥i

) on U I≥i ×AI≤i
, (5.23)

(9I≤i
(qI )∗8I≤i

, 9I≤i
◦9−1

I
≤

i

(qI )) on AI≥i
× U I≤i . (5.24)
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Remark 5.4. The last factor in (5.20) should be interpreted as follows:9I is a map which
depends on q ∈ PI = Pmax I , whereas ψmin I depends on q ∈ Pmin I . By assumption,
Pmax I ⊂ Pmin I , so it makes sense to require that

9I (q, z) = ψmin I (q) ◦ ψ
−1
min I (qI )

whenever z lies along the end ε+ of U I . Condition (5.24) is to be interpreted in the same
way.

Moreover, on the boundary of each fibre,

9I (q, z) ∈ D2|I |−1
(φI,z(L)) if z ∈ U {1}I , (5.25)

9I (q, z) ∈ D2|I |−1

qI ,q
if z ∈ U {0}I . (5.26)

Lemma 5.5. There are choices of maps (8I , 9I )which are obtained by perturbed gluing
in a neighbourhood of every boundary stratum so that (5.20)–(5.26) are satisfied.

Proof. Proceed by induction on the number of elements of I . In the base case, |I | = 2, so
AI is a point, U I = B, and U {1}I ∼= R . Pick a map φI which agrees with φmin I and φmax I
at the two ends. Then pick ψI agreeing with Id near the negative end and with ψmin I (qI )

near the positive end, and so that ψI (φI (z)L) = φI (z)L for all z ∈ U {1}I . Note that both
values at the endpoints lie in D1, so such a path may be chosen in D1 by the assumption
that the forgetful map from Dk(L) to L is an acyclic fibration. Also choose a family of
almost complex structures JI whose restriction to the negative end is Jmax I and to the
positive end is ψmin I (qI )∗Jmin I , and which agrees with (ψI ◦ φI )∗J along U {1}I . Since
all these almost complex structures lie in J2, the image of JI may be required to also lie
in J2 since this space was assumed to be contractible. This completes the construction of
8I for 2-element subsets I .

Pick a map 9I on PI × U I subject to the condition that along the ends, (5.20) and
(5.21) hold. These constraints imply that the image of9I along the ends lies in D2; extend
it to a map from PI × U I to D2, with the requirement that (5.25) and (5.26) hold along
the two boundaries of the strip. This completes the base case.

Given an ordered subsetK of6, assume by induction that continuation data and fam-
ilies of diffeomorphisms for all subsets I of K which satisfy (5.20)–(5.26) have been
chosen. Define (8K , 9K) along the boundary strata of UK using (5.22)–(5.24). The
inductive hypothesis for (8I , 9I ) implies that this construction, which is a priori de-
fined only on each separate codimension 1 cell of UK , restricts to the same map on
each codimension 2 cell, hence defines a map from the boundary of UK . Moreover, the
conditions imposed on the ends in (5.20)–(5.21) show that the restriction of these data
to an end of a component of a fibre in UK which is labelled by i ∈ K is given by
(ψi(qK)∗8i, ψi ◦ ψ

−1
i (qK)).

One can therefore use gluing to extend these data from the boundary of UK to its
interior as follows: first pick the extension φK by gluing with image in H0. Then pick the
extension ψK by gluing which preserves the Lagrangian boundary conditions, and whose
restrictions to the positive and negative ends are respectively given by ψminK(qK) and the
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identity. By induction, the images of ψI and 9I both lie in D2|I |−1
⊂ D2|K|−2

, so such an
extension may be chosen to have image in D2|K|−1

. The essential condition here is (5.24)
in which the two maps, which by induction lie in D2|K|−2

, are composed.
The next step is to extend JK by perturbed gluing subject to the condition that it agree

with the pushforward of J under ψK ◦ φK on U {1}K , with the pushforward of JminK under
ψminK(qK) along the positive end, and with Jmax(K) along the negative end. The same
argument as above shows that the image of JK may be chosen to lie in J|K|: (5.24) again
imposes the main constraint, since the almost complex structure in this region is obtained
via pushing JI≤i forward by 9I≤i ∗

. By induction, this pair lies in J|K|−1
×D2|K|−2

, which

is contained in J|K|−1
×D, so the pushforward lies in J|K|.

Finally, by the inductive hypothesis, the image of 9I lies in D2|I |−1
⊂ D2|K|−2

. By
(5.22)–(5.24) the map defined on the boundary strata of UK has image in D2|K|−1

. Since
this space is contractible, choose an extension to a map9K defined on UK . Construct this
map by gluing in a neighbourhood of the boundary strata, requiring in addition that (5.20)
and (5.21) hold along the ends, and (5.25) and (5.26) along the boundary; these properties
can be achieved given the assumptions on the acyclicity of D2|K|−1

(L) and D2|K|−1

P 2
K

. This
completes the construction of the data (8I , 9I ) by induction on |I |. ut

Denote the pushforward 9K∗8K by

8PK : PK × UK → H × J|K|+1
×D2|K| . (5.27)

The conditions imposed on φK in the previous section imply that, for each q ∈ PK ,
8PK(q) is a compatible family of continuation data in the sense of Definition 4.1. For each
k ∈ K , the diffeomorphism ψk(q)maps Fk to Fq , and preserves φkL, hence maps a point
xk ∈ Fk ∩ φkL to

xk(q) ≡ ψk(q)xk ∈ Fq ∩ φkL. (5.28)

Lemma 5.6. Given y ∈ FminK ∩ φminKL and x ∈ FmaxK ∩ φmaxKL, composition with
9K(q) yields a homeomorphism

Mq,K(x(q), y(q))
∼=
−→MqK ,K(x(qK), y(qK)). (5.29)

ut

When there is no ambiguity, we shall write MK(x, y) for this moduli space. Fix generic
choices of continuation data 8K for which all such moduli spaces are regular.

5.3. Locally constant continuation maps with a distinguished marker: input

Start by assuming that data (8I , 9I ) and (8′I , 9
′

I ) for the Lagrangians L and L′ have
been chosen for all totally ordered subsets I of6. As in Section 4.4, pick a decomposition
I = I− ∪ I+ with the property that max I+ = min I−.
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Remark 5.7. To make sense of this section, the reader should consult Figure 14. The
holomorphic curve problem in the presence of an input along the boundary has La-
grangian boundary conditions Fmax I along the t = 0 boundary (we use the fact that
max I = max I−).

Pick a continuation datum with inputs 8I−,I+ , and a family of diffeomorphisms 9I−,I+
which agree with the identity on {qI } × U I−,I+ and are obtained by gluing

8I−,I+ : U I−,I+ → H0
× J|I−|+|I+|−1

×D2|I−|+|I+|−2
, (5.30)

9I−,I+ : PI × U I−,I+ → D2|I−|+|I+|−2
. (5.31)

The restrictions of these maps to subsets of U I−,I+ are required to agree with

(ψmin I (qI )∗8min I , ψmin I ◦ ψ
−1
min I (qI )) along the end ε+, (5.32)

(8′max I , ψ
′

max I ) along the end ε−, (5.33)

(8I−\{i},I+ , 9I−\{i},I+) on U I−\{i},I+ , (5.34)

(8I−,I+\{i}, 9I−,I+\{i}) on U I−,I+\{i}, (5.35)(
8P
I
≤

+,i

(qI ),9I≤
+,i
◦ (9I≤

+,i
(qI ))

−1) on AI−,I
≥

+,i
× U I≤

+,i
, (5.36)

(8I−,I
≥

+,i
, 9(I−,I

≥

+,i )
) on U I−,I≥+,i ×AI≤

+,i
, (5.37)

(8′
I
≥

−,i

, 9 ′
I
≥

−,i

) on U I≥
−,i
×AI≤

−,i ,I+
, (5.38)(

(9(I≤
−,i ,I+)

(qI ))∗8I≤
−,i ,I+

, 9(I≤
−,i ,I+)

◦ (9(I≤
−,i ,I+)

(qI ))
−1) on AI≥

−,i
× U I≤

−,i ,I+
, (5.39)

where we interpret (5.32), (5.36), and (5.39) in accordance with Remark 5.4. Moreover,
on the boundary of each fibre, the following conditions hold:

9I−,I+(q, z) ∈ D2|I−|+|I+|−2
(φI−,I+,z(L)) if z ∈ Uzin<

I−,I+
, (5.40)

9I−,I+(q, z) ∈ D2|I−|+|I+|−2
(φI−,I+,z(L

′)) if z ∈ Uzin>
I−,I+

, (5.41)

9I−,I+(q, z) ∈ D2|I−|+|I+|−2

qmax I− ,q
if z ∈ U {0}I−,I+ . (5.42)

The existence of such data again follows from an inductive argument on the number of
elements of I− and I+, as in the proof of Lemma 5.5.

The pushforward of 8I−,I+ by 9I−,I+ defines a map

8PI−,I+ : Pmax I− × U I−,I+ → H0
× Jn+2

×D2n+1
. (5.43)

As in Section 5.2, given x ∈ φmin I+L ∩ Fmin I+ , xin ∈ L ∩ L
′, and x′ ∈ φmax I−L

′
∩

Fmax I− , evaluation of 8PI−,I+ at q defines a moduli space Mq,I−,I+(x
′(q); xin, x(q)),

where x′(q) and x(q) are the images of x′ and x under ψ ′max I−(q) and ψmin I+(q). By
construction, composition with 9I−,I+(q) yields a homeomorphism

Mqmax I− ,I−,I+
(x′(qmax I−); xin, x(qmax I−))

∼=Mq,I−,I+(x
′(q); xin, x(q)). (5.44)

We choose the continuation data generically so that all such moduli spaces are regular.
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5.4. Locally constant continuation maps with a distinguished marker: output

As in Section 4.4, assume that I− and I+ are totally ordered subsets of 6 such that
min I+ = max I−, with I = I− ∪ I+ also totally ordered.

Remark 5.8. Figure 15, and the fact that the holomorphic curve problem on the moduli
space U I−,I+ in the presence of an output along the boundary is defined with Lagrangian
boundary conditions Fmin I+ , may be helpful in understanding the construction.

Pick a continuation datum with outputs 8I−,I+ , and a family of diffeomorphisms 9I−,I+
which are obtained by gluing and agree with the identity on {qmin I+} × U I−,I+ :

8I−,I+ : U I−,I+ → H0
× J|I−|+|I+|−1

×D2|I−|+|I+|−2
, (5.45)

9I−,I+ : Pmin I+ × U I−,I+ → D2|I−|+|I+|−2
. (5.46)

The restrictions of these maps to subsets of U I−,I+ are required to be

(8′min I+ , ψ
′

min I+) along the end ε+, (5.47)(
(ψmax I−(qmin I+))∗8max I− , ψmax I− ◦ ψ

−1
max I−(qmin I+)

)
along the end ε−, (5.48)

(8I−\{i},I+ , 9I−\{i},I+) on U I−\{i},I+ , (5.49)

(8I−,I+\{i}, 9I−,I+\{i}) on U I−,I+\{i}, (5.50)

(8′P
I
≤

+,i

(qmin I+),9
′

I
≤

+,i

◦ (9 ′
I
≤

+,i

(qmin I+))
−1) on AI−,I

≥

+,i
× U I≤

+,i
, (5.51)(

(9(I−,I
≥

+,i )
(qmin I+))∗8I−,I

≥

+,i
, 9(I−,I

≥

+,i )
◦9−1

(I−,I
≥

+,i )
(qmin I+)

)
on U I−,I≥+,i ×AI≤

+,i
, (5.52)

(8P
I
≥

−,i

(qmin I+),9I≥
−,i
◦9−1

I
≥

−,i

(qmin I+)) on U I≥
−,i
×AI≤

−,i ,I+
, (5.53)

(8I≤
−,i ,I+

, 9(I≤
−,i ,I+)

) on AI≥
−,i
× U I≤

−,i ,I+
. (5.54)

On the boundary of each fibre we have

9I−,I+(q, z) ∈ D2|I−|+|I+|−2
(φI−,I+,z(L

′)) if z ∈ Uzou<
I−,I+

, (5.55)

9I−,I+(q, z) ∈ D2|I−|+|I+|−2
(φI−,I+,z(L)) if z ∈ Uzou>

I−,I+
, (5.56)

9I−,I+(q, z) ∈ D2|I−|+|I+|−2

qmin I+ ,q
if z ∈ U {0}I−,I+ . (5.57)

It is crucial at this stage that PI was required to include the closure of the open star of the
cell corresponding to I , as expressions of the form 9I (qi), with i an arbitrary element
of I , must be defined.

The pushforward of 8I−,I+ by 9I−,I+ defines a map

8PI−,I+ : Pmin I+ × U I−,I+ → H0
× Jn+2

×D2n+1
. (5.58)
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Given x ∈ φmax I−L ∩ Fmax I− , xou ∈ L ∩ L
′, and x′ ∈ φmin I+L

′
∩ Fmin I+ , the data

8PI−,I+(q) yield a moduli space Mq,I−,I+(x(q), xou; x
′(q)) for each point q ∈ Pmax I+ ,

where x(q) and x′(q) are the images of x and x′ under ψmax I−(q) and ψ ′min I+(q). Com-
position with 9PI−,I+(q) yields a homeomorphism

Mqmin I+ ,I−,I+
(x(qmin I ), xou; x

′(qmin I )) ∼=Mq,I−,I+(x(q), xou; x
′(q)). (5.59)

5.5. Moduli spaces associated to cells of 6

Combining the discussions of Sections 3.4 and 4.3 yields a moduli space

M
q, EK;in(x

′(q); xin, x(q)) (5.60)

whenever q ∈ Pmax EK , by taking the fibre product of Mq,K in
K0
(x′(q); xin, x(q))with A EK;in

over AK in
K0

. Given a totally ordered subset K of 6, define

Mq,K;in(x
′(q); xin, x(q)) =

⋃
| EK|=|K|

K=max EK

M
q, EK;in(x

′(q); xin, x(q)), (5.61)

where the moduli spaces on the right are glued along the boundary strata obtained by
omitting an element of EK . This moduli space is again independent of q by applying the
homeomorphism in (5.44), so it is denoted MK;in(x

′
; xin, x).

This moduli space is parametrised by a manifold of dimension |K| − 1, obtained
by taking the union of the spaces A EK;in for EK a maximal length sequence with largest
element K , glued along the boundary strata in (3.73). Assuming that all its strata are
defined using regular continuation data, the dimension of the interior is

deg x′ − deg xin − deg x + |K| − 1. (5.62)

Lemma 5.9. If the above dimension is 1, then MK;in(x
′
; xin, x) is a 1-dimensional man-

ifold with boundary decomposing into∐
yin∈L∩L′

MK;in(x
′
; yin, x)×M(yin, xin), (5.63)∐

i∈K

∐
y∈φiL∩Fi

MK
≥

i ;in
(x′; xin, y)×MK

≤

i
(y, x), (5.64)∐

i∈K

∐
y′∈φiL

′∩Fi

MK
≥

i
(x′, y′)×MK

≤

i ;in
(y′; xin, y), (5.65)∐

i∈K\{minK,maxK}

MK\{i};in(x
′
; xin, x). (5.66)
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Proof. The description of the boundary follows from Lemma 4.5. The key point is that
MK;in(x

′
; xin, x) is obtained by gluing the moduli spaces M EK;in(x

′
; xin, x) along the

strata given in (4.22), so these correspond to the boundary. The strata in (4.24)–(4.26)
correspond to (5.64)–(5.66). ut

There are parallel results for moduli spaces with outputs:

M
q, EK;ou(x(q), xou; x

′(q)) (5.67)

is the fibre product of Mq,Kou
K0
(x′(q); xou, x(q)) with A EK;ou over AKou

K0
, and is defined

whenever q ∈ Pmin EK . Given a totally ordered subset I of 6, form the union

Mq,I ;ou(x(q), xou; x
′(q)) =

⋃
I=min EK

M
q, EK;ou(x(q), xou; x

′(q)). (5.68)

As this moduli space is independent of q, denote it MI ;ou(x, xou; x
′).

For generic data, the interior is a manifold of dimension

deg x + deg xou − deg x′ + n+ 1− |I |. (5.69)

Lemma 5.10. If this dimension is 1, then MI ;ou(x, xou; x
′) is a 1-dimensional manifold

with boundary decomposing into∐
you∈L∩L′

M(xou, you)×MI ;ou(x, you; x
′), (5.70)∐

max J=min I

∐
y∈Lmin J∩Fmin J

MJ (x, y)×MJ∪I ;ou(y, xou; x
′), (5.71)∐

min J=max I

∐
y′∈Lmax J∩Fmax J

MI∪J ;ou(x, xou; y
′)×MJ (y

′, x′), (5.72)∐
I∪{j}

min I<j<max I, j /∈I

MI∪{j};ou(x, xou, x
′). (5.73)

ut

6. Moduli space of degenerate annuli

6.1. Dual and pair subdivisions

As in Sections 2.3.1 and 5.1, let 6 denote a partially ordered set labelling a simplicial
triangulation of Q. In particular, every maximal totally ordered subset of 6 consists of
n + 1 elements. Given a totally ordered subset J of 6, denote by σJ the corresponding
simplex included in Q. The barycenters of the top-dimensional simplices are the vertices
of the dual polyhedral subdivision (which is not in general a triangulation), corresponding
to the partially order set6∨ which is obtained from6 by reversing the order; write σ̌J for
the cell dual to σJ . This cell can be realised as the polyhedron associated to the partially
ordered set {K | J ⊂ K} equipped with the ordering which reverses inclusions (i.e. J
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Fig. 16. The pairs barycentric subdivision of a simplex.

is the unique maximal element of this ordering, and corresponds to the top-dimensional
face). In particular,

∂σ̌I =
⋃
I⊂J

|J |=|I |+1

σ̌J . (6.1)

The minimal common refinement of a triangulation and its dual subdivision is called
the pairs subdivision (as far as the author knows, the terminology is due to Denis Sullivan,
though the concept has appeared earlier [18]). Combinatorially, the pairs subdivision P6
of 6 is the partially ordered set whose elements are nested pairs I ⊂ K of totally ordered
subsets of 6. The cells associated to totally ordered subsets of P6 correspond to pairs of
intersecting cells associated to totally ordered subsets of6 and6∨. Moreover, these cells
are cubes: This can be seen algebraically by noting that the maximal elements of P6 are
pairs {i} ⊂ K , where K has length n + 1; the corresponding cell of Q is associated to
the set of elements preceding this pair, which consists of all pairs I ⊂ J contained in K
and containing i. This is exactly the totally ordered set associated to the cube on the set
K \ {i}, as such a pair I ⊂ J with i ∈ I and J ⊂ K corresponds to the face in which all
coordinates labelled by I \ {i} equal 1, while those corresponding to K \ J vanish.

There are also geometric proofs that the intersection of dual cells is a cube: Embed
the n-simplex 1n in Rn as the convex hull of (−1, . . . ,−1), and the set of points with
one coordinate equal to n, and all others equal to −1. Let 5 ⊂ Rn denote the simplicial
complex whose unique vertex is the origin, whose 1-skeleton consists of the negative
coordinate axes and the ray spanned by (1, . . . , 1), and whose top-dimensional cells are
the octants spanned by any choice of n of these rays. As subcomplexes of Rn, 1n and 5
are dual, and the intersection of the simplex with the octant spanned by the coordinate
axes is obviously a cube. Another proof appears in Shtan’ko and Shtogrin [22, Proof of
main theorem].

6.2. The pairs barycentric subdivision

One motivation for introducing the pairs subdivision is the following: Assume that one has
moduli spaces ZI ;in parametrised by cells of a triangulation ofQ, and ZI,ou parametrised
by cells of the dual subdivision, and one wanted to interpret the products ZI ;in×ZI ;ou as
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moduli spaces parametrised by cells of a subdivision of Q. The dual pairs subdivision is
then the natural choice, as its top-dimensional simplices are naturally products of cells
and their duals (this fact is mentioned only for motivation, and will not be used). In
Section 5.5, we constructed moduli spaces MI ;in and MI ;ou labelled by cells of the
triangulation of Q. It turns out that these spaces do not quite fit within this framework,
but this can be remedied by a further refinement.

Let B6 denote the barycentric subdivision of 6 whose elements are totally ordered
subsets, and whose partial ordering is given by inclusion. Denote a totally ordered subset
of B6 by EI , and the corresponding simplex by σ EI .

Let PB6 denote the pairs subdivision of the barycentric subdivision, which will
henceforth be called the pairs barycentric subdivison. Cells correspond to pairs EI ⊂ EJ
where EJ is a totally ordered subset of 6. Write σ EI⊂ EJ for the corresponding cube embed-
ded inQ. We shall presently see that the cells of PB6 naturally parametrise the products
of moduli spaces M EK;in and M EK;ou and their boundary strata.

Let I0 and J0 (respectively I and J ) denote the minimal (respectively maximal) el-
ements of EI and EJ . Recalling the definition of the moduli space AK and its variants as
a product of copies of [0,∞] (see e.g. (3.3)), an identification of the interval [0, 1] with
[0,∞] yields natural maps

A EJ ≥I ;ou ← σ EI⊂ EJ → A EJ ≤I0 ;in
(6.2)

where the ordered sets EJ ≤I0 and EJ ≥I respectively consist of elements of EJ which are con-
tained in I0 and which contain I . At the level of partially ordered sets the first map takes
a pair of subsets EI 1

⊂ EJ 1 to their intersections with EJ ≥I , and the second to their intersec-
tions with EJ ≤I0 :

EI
1,≥
I ⊂ EJ

1,≥
I ← EI 1

⊂ EJ 1
→ EI

1,≤
I0
⊂ EJ

1,≤
I0

. (6.3)

Lemma 6.1. If EI = {I }, the product map is a bijection

σ EI⊂ EJ → A EJ ≥I ;ou ×A EJ ≤I ;in
. (6.4)

Proof. By construction, σ EI⊂ EJ is the cube on EJ \I , whereas A EJ ≤I ;in
and A EJ ≥I ;ou are respec-

tively the cubes on EJ ≤I \I and EJ ≥I \I (we have used the fact that I0 = I ). By assumption,
every element of EJ may be uniquely written as the union of an element of EJ ≤I and EJ ≥I .
The map (6.4) realises the induced product decomposition

[0, 1] EJ \I ∼= [0, 1] EJ
≤

I \I × [0, 1] EJ
≥

I \I . (6.5)
ut

Composing (6.2) with the maps defined in (3.46) and (3.76) yields maps

AJ ou
I

µou
←−− σ EI⊂ EJ

µin
−→ AI0in

J0
. (6.6)
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zin

min I

max I

A
I in
J0

AJ ou
I

zou

Fig. 17. A fibre of C∞(σ
{I }⊂ EJ

), with curves labelled by the moduli space from which they are
obtained by pullback.

Taking the union of the pullbacks of the universal curves on these spaces, we obtain a
moduli space of Riemann surfaces over σ

{I }⊂ EJ
, which we denote C∞(σ

{I }⊂ EJ
), and call

the moduli space of degenerate annuli parametrised by σ
{I }⊂ EJ

(see Figure 17).
Note that all top-dimensional strata of the pairs barycentric subdivision are of this

form. In the next section, we shall show that this construction is appropriately compatible
across boundary strata, i.e. we obtain a moduli space of degenerate annuli parametrised
by Q.

6.3. Degenerate annuli over a cell of the pairs barycentric subdivision

Given a pair EI ⊂ EJ , define

min EI ( EJ ) = {min J1 | I0 ⊂ J1 ⊂ I and J1 ∈ EJ }, (6.7)

max EI ( EJ ) = {max J1 | I0 ⊂ J1 ⊂ I and J1 ∈ EJ }. (6.8)

For each cell of the pairs barycentric subdivision, this defines maps

AI≥I0

max
←−− σ EI⊂ EJ

min
−−→ AI≤I0

(6.9)

which, at the level of partially ordered sets, are given by

max EI ( EI1) ⊂ max EI ( EJ1)← [ EI1 ⊂
EJ1 7→ min EI ( EI1) ⊂ min EI ( EJ1). (6.10)

Define the universal curve C∞
EI⊂ EJ

over

A
∞

EI⊂ EJ ≡ AJ ou
I
×AI≥I0

×AI≤I0
×AI0in

J0
(6.11)

to be the union of the pullbacks of the universal curves of each factor.

Definition 6.2. The universal family of degenerate annuli C∞(σ EI⊂ EJ ) over σ EI⊂ EJ is the
pullback of C∞

EI⊂ EJ
by the product of µou, max, min, and µin.

The reader should consult Figure 18 which shows how to interpret the fibre of C∞(σ EI⊂ EJ )
as a degenerate annulus for an example with EI consisting of four nested sets.
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zin

min I1
0

max I1
0

A
I

1,in
0,J1

0

max I0

A
I
≥

0,I1
0

min I0
A
I
≤

0,I1
0

max I

A
I
≥

I0

min I

A
I
≤

I0

max I1

A
I

1,≥
I

min I1

A
I

1,≤
I

A
J

1,ou
I1

zou

Fig. 18. A fibre of C∞(σ EI 1⊂ EJ 1) for EI 1
= {I1

0 ⊂ I0 ⊂ I ⊂ I1
}, with curves labelled by the

moduli space from which they are obtained by pullback.

Given a pair of strata σ EI 1⊂ EJ 1 ⊂ σ EI⊂ EJ , there is a commutative diagram for the restric-
tions of µin and µou:

A
I

1,in
0,J1

0

AI≥
0,I1

0

×A
I

1,in
0,J1

0

×AI≤
0,I1

0

oooo � � // AI in
0,J0

σ EI 1⊂ EJ 1
� � //

��

OO
µin

gg

µou

ww

σ EI⊂ EJ

µin

OO

µou

��
A
J

1,ou
I1

A
I

1,≤
I
×A

J
1,ou
I1
×A

I
1,≥
I

� � //oooo AJ ou
I

(6.12)

To help the reader navigate the above diagram, note that the upward pointing arrow la-
belled µin is the map appearing in (6.6). Since the middle and top horizontal maps are
inclusions, the unlabelled upward pointing arrow is the restriction of µin to the boundary
stratum σ EI⊂ EJ . This stratum is equipped with its own map µin coming from (6.6), which is
the left-upward pointing arrow. The bottom half of the diagram is determined in the same
way, mutatis mutandis.

On the other hand, the maps min and max fit into the diagram

A
I

1,≥
I1
0

AI≥
0,I1

0

×AI≥I0
×A

I
1,≥
I

// //? _oo AI≥I0

σ EI 1⊂ EJ 1
� � //

��

OO
max

gg

min

ww

σ EI⊂ EJ

max

OO

min
��

A
I

1,≤
I1
0

A
I

1,≤
I
×AI≤I0

×AI≤
0,I1

0

// //? _oo AI≤I0

(6.13)



2190 Mohammed Abouzaid

One can navigate this diagram in essentially the same way as the previous one: the left-
upward pointing map is the map max from (6.9), applied to the boundary stratum σ EI 1⊂ EJ 1 .
Since the top left pointing arrow is an inclusion, the commutativity of this diagram is
equivalent to this map factoring through the substratum AI≥

0,I1
0

×AI≥I0
×A

I
1,≥
I

of the target.

This stratum projects to its middle factor, which is the image of the map max defined on
σ EI⊂ EJ . The commutativity of the top square should then be interpreted as the assertion that
the map max defined on σ EI⊂ EJ , when restricted to its boundary stratum σ EI 1⊂ EJ 1 , factors
through the image of the map max defined on this stratum. Similar considerations apply
to the bottom part of the diagram. To complete our analysis of the comparison between
the fibres of C∞(σ EI 1⊂ EJ 1) over different strata, define

∂ EI 1⊂ EJ 1A
∞

EI⊂ EJ ≡ A
J

1,ou
I1
×A

I
1,≥
I
×AI≥I0

×AI≥
0,I1

0

×AI≤
0,I1

0

×AI≤I0
×A

I
1,≤
I
×A

I
1,in
0,J1

0

; (6.14)

inspection of Figure 18 may help in decoding the notation.

Lemma 6.3. The products of the maps µou, max, min, and µin fit in a commutative dia-
gram

σ EI 1⊂ EJ 1
� � //

��xx

σ EI⊂ EJ

��
A
∞

EI 1⊂ EJ 1 ∂ EI 1⊂ EJ 1A
∞

EI⊂ EJ
� � //? _oo A

∞

EI⊂ EJ

(6.15)

Proof. The vertical maps are those arising in Definition 6.2. The bottom horizontal maps
are natural inclusions, which we make explicit for the benefit of the reader: For the left
pointing arrow, we factor ∂ EI 1⊂ EJ 1A

∞

EI⊂ EJ as

A
J

1,ou
I1
×
(
A
I

1,≥
I
×AI≥I0

×AI≥
0,I1

0

)
×
(
AI≤

0,I1
0

×AI≤I0
×A

I
1,≤
I

)
×A

I
1,in
0,J1

0

. (6.16)

The terms at the two ends appear in diagram (6.12), and are factors of A
∞

EI 1⊂ EJ 1 . Up to
reordering, the two “blocks” of three terms appear in diagram (6.13), and are contained
in the remaining two factors of A

∞

EI 1⊂ EJ 1 .
For the right pointing arrow, we factor ∂ EI 1⊂ EJ 1A

∞

EI⊂ EJ as

A
J

1,ou
I1
×A

I
1,≥
I︸ ︷︷ ︸ ×AI≥I0

×

︷ ︸︸ ︷
AI≥

0,I1
0

×AI≤
0,I1

0

×AI≤I0
×A

I
1,≤
I︸ ︷︷ ︸×

︷ ︸︸ ︷
A
I

1,in
0,J1

0

. (6.17)

The three terms above underbraces, as well as those below overbraces, appear in diagram
(6.12) and are contained in two of the factors of A

∞

EI⊂ EJ . The remaining factors of A
∞

EI⊂ EJ

are those which are not labelled in (6.17) at all.
Now that we have described all the maps in diagram (6.17), its commutativity is an

immediate consequence of the commutativity of diagrams (6.12) and (6.13). ut

By construction, the universal curves over the left and right products of Adams path
spaces in the bottom row of diagram (6.15) restrict to the natural universal curve in the
product in the middle. In particular:
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Lemma 6.4. There is a natural identification

C∞(σ EI 1⊂ EJ 1) ∼= C∞(σ EI⊂ EJ )|σ EI 1⊂ EJ 1 . (6.18)
ut

The above result implies the existence of a family of degenerate annuli over Q,

C∞(Q)→ Q, (6.19)

whose restriction to each top-dimensional cell of the pairs barycentric subdivision la-
belled by {I } ⊂ EJ admits a natural isomorphism

C∞(σ
{I }⊂ EJ

) ∼= µ
∗
ouUJ ou

I
∪ µ∗inU I in

J0
. (6.20)

The boundaries of the fibres will be denoted

C{0},∞Q = µ∗ouU
{0}
J ou
I
∪ µ∗inU

{0}
I in
J0

and C{1},∞Q = µ∗ouU
{1}
J ou
I
∪ µ∗inU

{1}
I in
J0
, (6.21)

with the restrictions to q ∈ Q denoted C{0},∞q and C{1},∞q .

The marked points zin and zou on the fibres of U {1}
I in
J0

and U {1}J ou
I

over AI in
J0

and AJ ou
I

yield

marked points on C{1},∞q for every q ∈ Q which induce a decomposition

C{1},∞Q = Czin<zou,∞
Q ∪ Czou<zin,∞

Q (6.22)

with the first component being the union of the pullbacks of Uzin<

I in
J0

and Uzou>
J ou
I

, while the

second component is the union of the pullbacks of Uzin>

I in
J0

and Uzou<
J ou
I

.

6.4. Floer data on degenerate annuli

On each top-dimensional cell of the pairs barycentric subdivision, consider the map
8∞
{I }⊂ EJ

defined as the composition

C∞(σ EI⊂ EJ ) = µ
∗

inU I in
J0
∪ µ∗ouUJ ou

I
� _

��

H0
× Jn+3

×D2n+2

σ
{I }⊂ EJ

× U I in
J0
∪ σ
{I }⊂ EJ

× UJ ou
I

� � // Pmax I × U I in
J0
∪ Pmax J × UJ ou

I

(8P
I in
J0

,8P
Jou
I
)

OO

(6.23)

The horizontal arrow is induced by the inclusions of σ
{I }⊂ EJ

in Pmax I and Pmax J , arising
from the fact that σ

{I }⊂ EJ
, as a cell of the pairs barycentric subdivision, is contained in

the open star of the vertices labelled by max I and max J , and from our assumption in
Section 5 that the open star of every vertex be contained in the corresponding polygon.
To describe the bottom pointing arrow, recall that µ∗inU I in

J0
is the space over σ

{I }⊂ EJ
ob-
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tained by pulling back U I in
J0
→ AI in

J0
. The restriction of the left vertical map to the first

component is then the product of the projection to the base and the natural map to U I in
J0

.

The second component of the left vertical map is given in the same way.
Over a codimension 1 stratum, the restrictions of the maps 8∞

{I }⊂ EJ
agree under the

natural identifications; on the first component, this follows from (5.34)–(5.39), while on
the second, from the analogous conditions imposed in (5.49)–(5.54). Taking the union
over all top-dimensional cells, we obtain a map

8∞Q = (φ
∞

Q , J
∞

Q , ψ
∞

Q ) : C
∞(Q)→ H0

× Jn+3
×D2n+2

. (6.24)

Given intersection points xin, xou ∈ L ∩ L
′, define

M∞

EI⊂ EJ
(xou; xin) (6.25)

to be the moduli space of finite energy maps from a fibre of C∞(σ EI⊂ EJ ) to X such that

∂su(z) = J
∞

Q (z)∂tu(z), u(z) ∈ φ∞Q (z)(L) if z ∈ Czin<zou,∞(σ EI⊂ EJ ), (6.26)

u(z) ∈ Fq if z ∈ C{0},∞(q), u(z) ∈ φ∞Q (z)(L
′) if z ∈ Czou<zin,∞(σ EI⊂ EJ ), (6.27)

and which converge to xin and xou at the ends, and with compatible convergence to inter-
section points along ends (i.e. each node of the corresponding nodal Riemann surface is
labelled by an intersection point of Lagrangians).

Remark 6.5. The above moduli space represents a significant change in perspective from
previous constructions wherein the labels on any moduli space determined a basepoint
in Q whose corresponding fibre served as the boundary condition for all elements of the
moduli space. The results of Section 5 ensure that we can choose any fibre in a fixed
neighbourhood of the basepoint, and obtain a bijective correspondence between the mod-
uli spaces defined for different fibres. The new point of view is that, using the fact that the
moduli spaces we consider are parametrised moduli spaces, we can choose any map from
the parameter space to the space of fibres over which the given Floer data are defined, and
introduce a new moduli space, with elements in bijective correspondence to the old as a
fibre product.

To be specific, let us consider the case of the moduli space MI (x, y). The maps 9I
and 8I chosen in Section 5.2 allow us to define Floer data 9I ∗(8I ) parametrised by
PI × U I . If we fix a point q ∈ PI , then these data, together with the Lagrangian bound-
ary condition Fq along U {0}I , yield moduli spaces Mq,I (x, y), which are intertwined by
homeomorphisms induced by 9I . In this example, the new point of view is to instead
pick a map AI → PI , and consider the composition of 9I ∗(8I ) with the map

U I → AI × U I → PI × U I . (6.28)

This gives a new family of Floer data on U I , which again yields a moduli space homeo-
morphic to MI (x, y), but now with the boundary along U {0}I prescribed according to the

map AI → PI (i.e. over the line U {0}Er over a point Er ∈ AI , the Lagrangian boundary
condition is the fibre at the image of Er in PI ).
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Lemma 6.6. There is a natural homeomorphism

M∞

{I }⊂ EJ
(xou; xin) ∼=

∐
x∈FI∩LI
x′∈FI∩L

′
I

M
qI , EJ

≥

I ;ou(x, xou, x
′)×M

qI , EJ
≤

I ;in
(x′, xou, x). (6.29)

Proof. By the bijection (6.4), σ EI⊂ EJ splits as a product of the spaces parametrising
M

qI , EJ
≥

I ;ou(x, xou, x
′) and M

qI , EJ
≤

I ;in
(x′, xou, x), and the universal curve C∞(σ

{I }⊂ EJ
) is

obtained by pulling back the domains of these moduli spaces. Since the Cauchy–Riemann
equations defining M∞

{I }⊂ EJ
(xou; xin) are also obtained by pullback, we obtain an identifi-

cation of moduli spaces of solutions after applying the family of homeomorphisms from
(5.59) to the constituent moduli spaces of continuation maps. ut

The virtual dimension of M∞

EI⊂ EJ
(xou; xin) is

dim σ EI⊂ EJ − n+ deg xou − deg xin. (6.30)

Since the Floer data on each component of a fibre of C∞(σ EI⊂ EJ ) were chosen generically
in Sections 5.2, 5.3, and 5.4, this moduli space is empty whenever the virtual dimension
is negative. If we assume that deg xou = deg xin, all moduli spaces are therefore empty,
except those for which dim σ EI⊂ EJ = n, i.e. EI = {I }, and EJ has length n+ 1. Define

M∞

I (xou; xin) ≡
⋃

I∈EI⊂ EJ

M∞

EI⊂ EJ
(xou; xin). (6.31)

Our regularity assumptions imply that this space has virtual dimension deg xou − deg xin,
and that it is stratified by the submanifolds M∞

EI⊂ EJ
(xou; xin) whose codimension is equal

to the codimension of σ EI⊂ EJ . Whenever the virtual dimension vanishes, we conclude that
the only contributions to this moduli space come from cells of the form σ

{I }⊂ EK
, since

the moduli spaces parametrised by all other cells have negative virtual dimension. In this
case, there is a straightforward description of the moduli space:

Lemma 6.7. If deg xou = deg xin, there is a natural homeomorphism

M∞

I (xou; xin) ∼=
∐

x∈FI∩L
x′∈FI∩L

′

∐
γ∈H1(FqI ,Z)

MqI ,I ;ou(x, xou; x
′)×MqI ,I ;in(x

′
; xin, x).

(6.32)

Proof. We apply Lemma 6.6 to each such cell, and note that, according to (5.61) and
(5.68), we have

MqI ,I ;ou(x, xou; x
′)×MqI ,I ;in(x

′
; xin, x)

=

∐
I=max EI
I=min EJ

M
q, EI ;in(x

′(q); xin, x(q))×M
q, EJ ;ou(x(q), xou; x

′(q)). (6.33)

The result follows from the fact that the assignment EK = EI ∪ EJ yields a bijective
correspondence between pairs ( EI , EJ ) such that max EI = I = min EJ and sequences EK
containing I . ut
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We now restrict attention to the space of annuli whose restriction to the boundary fibre is
a null-homologous circle:

M∞

[0],I (xou; xin) ⊂M∞

I (xou; xin). (6.34)

Denote by M∞

[0],I (xou; xin) the Gromov–Floer compactification.
In order to describe this decomposition in terms of the constituent curves, consider

the natural decompositions

MqI ,I ;ou(x, xou, x
′) ≡

∐
γ∈H1(FqI ,Z)

MqI ,I,γ ;ou(x, xou, x
′), (6.35)

MqI ,I ;in(x
′
; xin, x) ≡

∐
γ∈H1(FqI ,Z)

MqI ,I,γ ;in(x
′
; xin, x), (6.36)

where the components of the right hand side labelled by γ consist of curves u whose
boundary along qI yields a circle in FqI representing the homology class γ after concate-
nation with the paths from x and x′ to the basepoint on FI , which we fix as in Section 2.2.

The following result is now an immediate consequence of Lemma 6.7:

Lemma 6.8. If deg xou = deg xin, then M∞

[0],I (xou; xin) is a 0-dimensional manifold,
which agrees with its Gromov–Floer compactification, and which is naturally homeo-
morphic to∐

x∈FI∩L
x′∈FI∩L

′

∐
γ∈H1(FqI ,Z)

MqI ,I,γ ;ou(x, xou; x
′)×MqI ,I,γ ;in(x

′
; xin, x). (6.37)

ut

Write M∞

[0](xou; xin) for the union of the moduli spaces M∞

[0],I (xou; xin) over all cells I
of 6.

6.5. Gluing description of Floer data on degenerate annuli

As in Lemma 6.4, consider an inclusion of cells of the pairs barycentric subdivision
σ EI 1⊂ EJ 1 ⊂ σ EI⊂ EJ . Composing the maps µin and µou with projection to the factors labelled
by elements which do not lie in min EI 1 and max EI 1 yields a map

σ EI⊂ EJ → [0,∞]
min EI 1

\min EI
× [0,∞]max EI 1

\max EI . (6.38)

This map provides a gluing description of the restriction of C∞(σ EI⊂ EJ ) to a neighbour-
hood of σ EI 1⊂ EJ 1 . Indeed, composing the map from σ EI⊂ EJ to A

∞

EI⊂ EJ with the maps in (3.21)
for each factor of the target defines a map σ EI⊂ EJ → A

∞

EI 1⊂ EJ 1 . After restricting to a neigh-
bourhood ν EI⊂ EJ σ EI 1⊂ EJ 1 of σ EI 1⊂ EJ 1 in σ EI⊂ EJ , we denote the pullback of the universal curve
under this map by

C∞
EI 1⊂ EJ 1(ν EI⊂ EJ σ EI 1⊂ EJ 1)→ ν EI⊂ EJ σ EI 1⊂ EJ 1 . (6.39)

The gluing map in (3.27) yields a map of families of surfaces over ν EI⊂ EJ σ EI 1⊂ EJ 1 ,

C∞
EI 1⊂ EJ 1(ν EI⊂ EJ σ EI 1⊂ EJ 1)→ C∞(ν EI⊂ EJ σ EI 1⊂ EJ 1). (6.40)
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Define the continuation data

8∞
EI 1⊂ EJ 1 = (φ

∞

EI 1⊂ EJ 1 , J
∞

EI 1⊂ EJ 1 , ψ
∞

EI 1⊂ EJ 1) : C∞EI 1⊂ EJ 1(σ EI⊂ EJ )→ H0
×Jn+3

×D2n+2
(6.41)

to be the composition of 8∞Q with the gluing map of (6.40).
If V EI 1⊂ EJ 1 is a neighbourhood of σ EI 1⊂ EJ 1 inQwhose intersection with every cell σ EI⊂ EJ

lies in ν EI⊂ EJ σ EI 1⊂ EJ 1 , we define

C∞
EI 1⊂ EJ 1(V EI 1⊂ EJ 1)→ V EI 1⊂ EJ 1 (6.42)

to be the union of the restrictions

C∞
EI 1⊂ EJ 1(ν EI⊂ EJ σ EI 1⊂ EJ 1)|ν EI⊂ EJ σ EI 1⊂ EJ 1 ∩ V EI 1⊂ EJ 1 , (6.43)

glued along the natural identifications across strata of the pairs barycentric subdivision.
The compatibility of the Floer data across strata implies that the maps in (6.41) yield a
continuous family of Floer data

8∞
EI 1⊂ EJ 1 : C∞EI 1⊂ EJ 1(V EI 1⊂ EJ 1)→ H0

× J2n+2
×D2n+2

. (6.44)

7. Cardy’s relation

The reader familiar with the use of Cardy’s relation in the generation criterion for Fukaya
categories [2] is likely already aware of what will happen in the rest of the paper: having
constructed a moduli space of degenerate annuli parametrised by q ∈ Q, we shall realise
this moduli space as a boundary of a moduli space of annuli of arbitrary modular param-
eter. This moduli space will have another boundary component, which will be shown to
give rise to the identity map on Floer cohomology.

There is one remaining technical difficulty ahead, arising from the need to define
compatible gluings of the moduli spaces of degenerate annuli defined over different cells
of the pairs barycentric subdivision associated to 6. In the next few paragraphs, which
have no content subsequently required in the paper, we attempt to give some intuition
for the problem we shall face. The reader who would like to continue with the logical
development can safely skip to Section 7.1.

In essence, the difficulty has nothing to do with annuli, and can be illustrated more
succinctly by considering a moduli space of continuation maps parametrised by a 1-
dimensional manifold Q, which is stratified as two closed intervals meeting at a point q.
The reader should have in mind the example in which the moduli spaces we shall next
describe arise as unions of components in the moduli space of degenerate annuli.

Assume that we have a totally ordered set i < j < k < l, and the moduli space
corresponding to q is the product Akl×Ajk×Aij , which is simply a point, with universal
curve shown in Figure 19. We parametrise each of the intervals comprising Q by [0,∞],
with∞ corresponding to the common point. We identify the first interval with Ajkl×Aij

and the second with Akl×Aijk . Some readers may be wondering at this point about which
smooth structure we use on [0,∞]; this is completely irrelevant, since the issue we shall
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Fig. 19. On the left is a continuous family of nodal Riemann surfaces with interior marked points
over the interval. On the right is a naive attempt to produce a family of smooth nodal surfaces by
gluing, resulting in a discontinuous family.

encounter is one of continuity, not smoothness. It should be clear at this stage that we
have a continuous family of moduli spaces over I as shown in the left part of Figure 19.

Our goal is to define a universal curve over I × [R,∞] for some (positive) real num-
ber R, which restricts to the moduli space just described over I × {∞}. Over each top-
dimensional stratum, there is a straightforward construction: there are natural embeddings

Akl ×Aijk × [R,∞] → Aijkl and Ajkl ×Aij × [R,∞] → Aijkl, (7.1)

and the moduli space can then simply be defined by pullback. The problem is that this
construction is not consistent at q as shown in Figure 19: the curve associated to the point
(q, S) lies in Ajkl ×Aij for the first stratum, and in Akl ×Aij l for the second stratum.

It is of course not too surprising that this naive attempt to construct an extension fails:
We start with a stratified mapQ→ ∂Aijkl , and the gluing coordinates define embeddings
into Aijkl of the product of [R,∞] with the two top-dimensional strata of ∂Aijkl which
we are considering. However, these embeddings do not restrict to the same embedding
at the intersection of these two strata, which is a point; indeed, we have described Aijkl
as the product [R,∞] × [R,∞], and the two gluing coordinates correspond to the two
factors. The problem can be summarised by noting that Q × [R,∞] is a manifold with
boundary, whereas the gluing coordinates make Aijkl into a manifold with corners.

The solution to this problem is rather straightforward: for any real number R, there is
certainly some topological embedding ∂Aijkl×[R,∞] → Aijkl , which can moreover be
chosen to be given by the gluing coordinates away from a neighboorhood of the corner
stratum (the size of the neighbourhood depends on R). The embedding can be given by
a (varying) combination of the two gluing functions near the corner. For example, one
can start by setting the embedding of the product of the corner with [R,∞] into Aijkl
to be the diagonal map into the pair of gluing coordinates, then cut off one of the two
factors as one moves towards the interior of the two strata. This is the basic idea behind
Definition 7.1, which will be given in Section 7.2.
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7.1. Moduli of smooth annuli over Q

Let C → [0,∞) be the family of curves over the positive real line whose fibre at S is the
annulus

R/4SZ× [0, 1] ∼= {z ∈ C | e−π/(2S) ≤ |z| ≤ 1}, (7.2)

where the left hand side is equipped with coordinates (s, t) and complex structure
j∂s = ∂t , and the identification is via the coordinates e−2π 1−t−is

4S (see Figure 20).

−2S 2S0

zinzou

zinzou |z| = e−π/(2S)

|z| = 1

Fig. 20

For S = 0, the fibre is the unit disc. Let CS denote the fibre over S. Given any subset
U ⊂ Q, let

C(U)→ U × [0,∞) (7.3)

denote the pullback of this family of annuli via projection to the first factor, with CS(U)
the fibre over S. Fix the holomorphic embeddings

ιin, ιou : [−S, S] × [0, 1] → R/4SZ× [0, 1] (7.4)

which are the identity on the [0, 1] factor, and whose images are respectively the natural
inclusions of [−S, S] × [0, 1] and [S, 3S] × [0, 1]. Note in particular that the image of
(0, 1) under the first map is (0, 1), and under the second map is (2S, 1); in the model of the
annulus embedded in the unit disc, these marked points are±1. Denote the corresponding
sections of C(Q) by

zin, zou : Q→ C(Q). (7.5)

We write C{0}(Q) for the family of circles over C(Q) corresponding to R/4SZ × {0},
Czin<zou(Q) for the family of intervals (0, 2S) × {1}, and Czou<zin(Q) for the family of
intervals (−2S, 0)× {1}. Let C{1}(Q) denote the union of all these intervals.

Fixing an identification of the complement of ±1 in the unit disc with the strip B,
mapping ±1 to ±∞, defines positive and negative strip-like ends on neighbourhoods of
{zin, zou}. Choose a family of strip-like ends

ε± : Q× (0,∞] × B±→ C(Q) (7.6)

covering neighbourhoods of zin and zou, which agree with these strip-like ends for S close
to 0, and agree with the ends obtain by gluing whenever S is sufficiently large.
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7.2. Contractible choices of gluing

Let σ EI 1⊂ EJ 1 ⊂ σ EI⊂ EJ be cells of the pairs barycentric subdivision, ν EI⊂ EJ σ EI 1⊂ EJ 1 the neigh-
bourhood fixed in Section 6.5, and ν̊ EI⊂ EJ σ EI 1⊂ EJ 1 its interior.

Fix a cover {V EI⊂ EJ } of Q by open subsets whose closures V EI⊂ EJ satisfy

V EI 1⊂ EJ 1 ⊂

⋃
EI⊂EI 1⊂ EJ 1⊂ EJ

ν̊ EI⊂ EJ σ EI 1⊂ EJ 1 , (7.7)

V EI 1⊂ EJ 1 ∩ V EI⊂ EJ = ∅ unless the corresponding cells are nested. (7.8)

As illustrated in Figure 21, the intuition is that V EI⊂ EJ is an open neighbourhood in Q of
the complement in σ EI⊂ EJ of a neighbourhood of the boundary. In particular, the second
condition precludes σ EI⊂ EJ being contained in V EI⊂ EJ for all cells, since this would imply
the existence of intersections for elements of the cover labelled by cells which are adjacent
but not nested (i.e. share a common cell in their boundaries).

V EJ⊂ EJ

V
{i⊂ijk}⊂ EJ

V
{ij⊂ijk}⊂ EJ

V
{i⊂ij}⊂ EJ

V
{ijk}⊂ EJ

V
{ij}⊂ EJ

V
{i}⊂ EJ

Fig. 21. Constructing the cover {V EI⊂ EJ } by induction near the barycenter of the simplex labelled

by EJ = {i ⊂ ij ⊂ ijk}.

Definition 7.1. An annulus gluing function on V EI⊂ EJ is a map

gC : V EI⊂ EJ × (0,∞] → (0,∞]min EI
× (0,∞]max EI (7.9)

which is smooth on V EI⊂ EJ × (0,∞) and such that the sum of the coordinates in each of
the factors on the right agrees with the projection to (0,∞].

Since addition of coordinates defines a smooth fibre bundle (0,∞)d → (0,∞) with
contractible fibres, which extends to an acyclic fibration (0,∞]d → (0,∞], the space of
choices of gC extending any given choice on a subset of the domain is contractible.

By restricting the domain of the map (7.9) to∞ in the second factor, (6.38) yields a
map on the intersection of V EI 1⊂ EJ 1 with each stratum

V EI 1⊂ EJ 1 ∩ ν EI⊂ EJ σ EI 1⊂ EJ 1

g EI⊂EI 1
−−−→ (0,∞]min EI 1

\min EI
× (0,∞]max EI 1

\max EI

→ (0,∞]min EI 1
\min EI

× {∞}
min EI
× (0,∞]max EI 1

\max EI
× {∞}

max EI , (7.10)
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where we remind the reader that min EI is the subset of 6 consisting of all minimal ele-
ments of the nested subsets which comprise EI , and max EI is the set of maximal elements.

We obtain a continuous map

gC
∞

: V EI⊂ EJ × {∞} → (0,∞]min EI
× (0,∞]max EI . (7.11)

If σ EI 1⊂ EJ 1 ⊂ σ EI⊂ EJ , the product of (6.38) with the choice of a map gC on V EI⊂ EJ yields
a map

V EI⊂ EJ ∩ V EI 1⊂ EJ 1 × (0,∞] → (0,∞]min EI 1
× (0,∞]max EI 1

. (7.12)

Since the space of choices is contractible, such a map may be extended to a map on
V EI 1⊂ EJ 1 . Proceeding by descending induction on the dimension of σ EI⊂ EJ , one shows:

Lemma 7.2. There is a choice of annulus gluing maps gC restricting to gC
∞

on the
boundary, and which extends the map in (7.12) for every nested pair. ut

7.3. Gluing maps from degenerate to smooth annuli

Let V EI⊂ EJ be the open set associated to σ EI⊂ EJ in the previous section. Recall that the com-
ponents of the fibres of C∞

EI⊂ EJ
(V EI⊂ EJ ) over a point in V EI⊂ EJ are identified with strips, and

have ends labelled by the pairs (min I0,max I0), (min I,max I ), or successive elements
of either min EI or max EI .

Given an element i ∈ max EI ∪max EJ , we write gCi for the corresponding component
of the gluing function gC . Since the closure of V EI⊂ EJ does not intersect any cell which
does not include σ EI⊂ EJ , the Floer data are constant outside the union of the finite strips

[−gCmax I0(v, S), g
C
min I0(v, S)] × [0, 1], (7.13)

[−gCmin I (v, S), g
C
max I (v, S)] × [0, 1], (7.14)

[−gCj (v, S), g
C
i (v, S)] × [0, 1] (7.15)

whenever S is large enough, where i < j are successive elements of min EI or max EI in
the last product (see Figure 22).

zin

min I0

max I0max I

min I

zou

Fig. 22. A fibre of C∞(σ EI⊂ EJ ) for EI = {I0 ⊂ I }, with shaded regions determined by the func-

tion gC .
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Restricting the embeddings ιin and ιou defines maps

[−gCmax I0(v, S), g
C
min I0(v, S)] × [0, 1] → R/4SZ× [0, 1], (7.16)

[−gCmin I (v, S), g
C
max I (v, S)] × [0, 1] → R/4SZ× [0, 1], (7.17)

where the image of the second map is [2S − gCmin I (v, S), 2S + gCmax I (v, S)] × [0, 1].
To define the embeddings corresponding to the other components of C∞

EI⊂ EJ
(V EI⊂ EJ ), let

Rj (v, S) = 2
∑

k∈min EI
j≤k

gCk (v, S) (7.18)

for j ∈ min EI and define the embedding in R/4SZ× [0, 1],

[−gCj (v, S), g
C
i (v, S)] × [0, 1]

→ [Rj (v, S)− g
C
j (v, S), Rj (v, S)+ g

C
j (v, S)] × [0, 1], (7.19)

for successive elements min I0 6= i < j of min EI . SinceRmin I (v, S) = 2S by assumption,
these embeddings intersect only on the boundary, and their images cover the finite strip

[gCmin I0(v, S), 2S − gCmin I (v, S)] × [0, 1] ⊂ R/4SZ× [0, 1]. (7.20)

Similarly, if j ∈ max EI , define

Rj (v, S) = 2
∑

k∈max EI
j≥k

gCk (v, S), (7.21)

and consider the embedding

[−gCj (v, S), g
C
i (v, S)] × [0, 1]

→ [−Ri(v, S)− g
C
j (v, S),−Ri(v, S)+ g

C
i (v, S)] × [0, 1]. (7.22)

The union of these strips is

[−2S + gCmax I (v, S),−g
C
max I0(v, S)] × [0, 1] ⊂ R/4SZ× [0, 1]. (7.23)

Note that the annulus is covered by the images of the maps (7.16), (7.17), (7.20), and
(7.23) (see Figure 23). Collapsing the infinite ends of each strip containing the domains of
(7.16), (7.17), (7.19), and (7.22) to the corresponding boundary interval yields a surjective
map

GC
EI⊂ EJ
: C∞
EI⊂ EJ

(V EI⊂ EJ )→ CS(V EI⊂ EJ ). (7.24)
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ιou ιin ιou

−2S −2gC
∞

max I0
(v, S) 2gC

∞

min I0
(v, S)0 2S

zinzou

Fig. 23. Decomposition of the annulus for gluing parameter S into finite strips.

7.4. Floer data on annuli

Floer data on annuli are given by a map

8Q = (φQ, JQ, ψQ) : C(Q)→ H0
× J×D (7.25)

such that (i) the pullback of 8Q under εin and εou agrees with (Id, Jt , Id), (ii) the re-
striction of JQ to Czin<zou(Q) agrees with the pushforward of J under ψQ, and (iii) the
restriction of JQ to Czou<zin(Q) agrees with the pushforward of J ′ under ψQ.

By gluing,8∞
EI⊂ EJ

induces Floer data8 EI⊂ EJ on a neighbourhood of S = ∞ in C(V EI⊂ EJ )
by requiring the commutativity of the diagram

C∞
EI⊂ EJ

(V EI⊂ EJ )
//

8∞
EI⊂ EJ ''

CS(V EI⊂ EJ )

8 EI⊂ EJ
��

H0
× J×D

(7.26)

whenever S is sufficiently large. The maps (φQ, ψQ) are said to be obtained by gluing if
their restrictions to CS(V EI⊂ EJ ) agree with (φ EI⊂ EJ , ψ EI⊂ EJ ) whenever S is sufficiently large.

As in the case of strips, a more general class of almost complex structures is needed.
Define the R-thick subset of C(V EI⊂ EJ ) to be the union of the images of [−R,R] × [0, 1]
under the maps (7.16), (7.17), (7.19), and (7.22). A section of the pullback of T J by J EI⊂ EJ
is consistent if it is supported in the interior of the R-thick part, and vanishes to infinite
order at S = ∞.

Definition 7.3. The data8Q are obtained by perturbed gluing if φQ andψQ are obtained
by gluing, and the restriction of JQ to a neighbourhood of S = ∞ in C(V EI⊂ EJ ) agrees with
a consistent perturbation of J EI⊂ EJ .

7.5. Moduli spaces of annuli

The identification of the complement of zin and zou in C0 with a strip yields data

(φ0
Q, J

0
Q, ψ

0
Q) ≡ (Id, Jt , Id) : C0(Q)→ H0

× J×D. (7.27)

There is a natural embedding CS(Q) ⊂ C0(Q). Say that Floer data (φQ, JQ, ψQ) are
obtained by gluing near S = 0 if they agree with the restriction of the above data for
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S sufficiently small. This agrees with the usual notion of gluing under the assumption,
made in Section 2.4, that Jt is constant in a neighbourhood of t = 1/2. Such data are
obtained by perturbed gluing if there is a compact subset of the interior of the punctured
disc where the almost complex structure agrees with the restriction of the almost complex
structure J 0

Q up to a perturbation which vanishes to infinite order at S = 0.
Choose Floer data (φQ, JQ, ψQ) which are obtained by perturbed gluing near S = 0

and S = ∞, and whose pullbacks under the strip-like ends ε± agree with the restrictions
of (φ0

Q, J
0
Q, ψ

0
Q). Given intersection points xin, xou ∈ L ∩ L

′, define MS(xou; xin) to be
the union over q ∈ Q of the space of finite-energy maps from fibres of CS(Q) to X with
boundary conditions

∂su(z) = JQ(z)∂tu(z), u(z) ∈ Fq if z ∈ C{0}(q), (7.28)
u(z) ∈ φQ(z)(L) if z ∈ Czin<zou(Q), u(z) ∈ φQ(z)(L

′) if z ∈ Czou<zin(Q), (7.29)

and which converge to xin and xou at the ends. Let

M(0,∞)(xou; xin) ≡
∐

S∈(0,∞)

MS(xou; xin), (7.30)

which is topologised as a parametrised moduli space over Q× (0,∞).

Lemma 7.4. For generic Floer data 8Q, M(0,∞)(xou; xin) is a smooth manifold and

dimM(0,∞)(xou; xin) = 1+ deg xou − deg xin. (7.31)

Proof. The formula for the virtual dimension is a special case of [19, Section (12c)].
The assertion that generic Floer data yield smooth moduli spaces follows from [8, Theo-
rem 5.1]. ut

Denote by M(0,∞)
[0] (xou; xin) the space of annuli such that the image of the boundary com-

ponent mapping to a fibre is null-homologous. Let M[0,∞]
[0] (xou; xin) denote its Gromov–

Floer compactification. To describe the boundary, define K(xou; xin) to be the moduli
space of solutions to the Floer equation with one interior marked point lying on the line
R × {1/2}. This moduli space can be thought of as the continuation moduli space for a
constant Hamiltonian family, and is the product of a closed interval with M(xou; xin),
unless xou = xin, in which case it is a point.

Lemma 7.5. Whenever deg xou = deg xin, M[0,∞]
[0] (xou; xin) is a compact 1-dimensional

manifold if the data are chosen generically, and its boundary is stratified into

K(xou; xin), (7.32)∐
x∈L∩L′

M(0,∞)
[0] (xou; x)×M(x; xin), (7.33)∐

x∈L∩L′

M(xou; x)×M(0,∞)
[0] (x; xin), (7.34)

M∞

[0](xou; xin). (7.35)
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Proof. Since we have excluded interior sphere bubbling by a topological assumption,
and disc bubbling by the careful choice of almost complex structure along the boundary,
the virtual dimension of all strata of the Gromov–Floer compactification is negative if
deg xou < deg xin, so the regularity of the choices of Floer data implies that they are
empty. If deg xou = deg xin, the only strata which do not have negative virtual dimension
are those given in the statement. The first and last strata correspond to S = 0 and S = ∞
respectively, and the middle two correspond to breaking along the ends.

The proof that M[0,∞]
[0] (xou; xin) is a manifold with boundary follows from a standard

gluing argument. For S = 0, this takes the form of interior gluing of the element of
K(xou; xin) with the family of constant (ghost) discs on fibres of π . For S = ∞, there is
a natural projection map

C∞
[0](xou; xin)→ Q. (7.36)

Choose an open subset V EI⊂ EJ containing the image of a map u in the left hand side. The
gluing description of Floer data on C(V EI⊂ EJ ) yields a gluing chart near this boundary
point. ut

8. Floer cochains and morphisms of sheaves

Let us fix, as in the previous section, a choice of triangulation6 ofQwhich is sufficiently
fine so that the results of Section 5 apply.

8.1. Relative Pin+ structures and orientation lines

Let L and L′ be graded Lagrangians as in Section 4, equipped with choices of Pin+

structures as in Section 2.4.1. Replacing Fq by L′ in the discussion of Section 2.4.1, we
obtain a rank-1 free abelian group

δx = |ox | ⊗ νx (8.1)

which is the tensor product of (i) the orientation line on ox , which is the determinant
line of a Cauchy–Riemann operator on the upper half-plane associated to a path from
TxL to TxL′ in the Grassmannian of Lagrangians of TxX, and (ii) the line νx whose
trivialisations correspond to choices of Pin+ structures on the vector bundle over the
interval corresponding to this path, extending the choices at the two endpoints.

For each vertex i of the triangulation 6 of Q, fix a Pin+ structure on T ∗qiQ⊕Eqi . By
the isomorphism of the tangent space of fibres with the cotangent space of the base, this
induces such a structure on

T Fi ⊕ π
∗E|Fi, (8.2)

where we write Fi = Fqi as in Section 2.3.1. For each pair i < j in6, fix a Pin+ structure
on the restriction of T ∗Q ⊕ E to the corresponding edge σij of the triangulation of σ ,
which agrees with the Pin+ structure chosen on the ends. Given a triple i < j < k in 6,
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there is a canonical homotopy between σik and the concatenation of σij and σjk , which is
associated to the simplex σijk . Define a Čech cochain with coefficients in Z2 by

vijk =

{
0 if the induced Pin+ structures agree,
1 otherwise.

(8.3)

Lemma 8.1. Equation (8.3) defines a cocycle representing w2(Q)⊕ w2(E).

Proof. The corresponding formula for orientable vector bundles is well-known (see
e.g. [17]). The general case follows from the existence of a canonical isomorphism be-
tween the set of Pin+ structures on a bundle E and Spin structures on (detE)⊕3

⊕ E

(see [14]). ut

Assume we are given, for each i ∈ 6, a Hamiltonian diffeomorphism φi such that
Li ≡ φiL is transverse to Fq for all q ∈ Pi . Since Pi is convex, there is a unique
way of associating to each intersection point x ∈ Li ∩ Fi an intersection point between
Li and Fq , which we denote x(q). The Cauchy–Riemann operator associated to x(q) and
the relative Pin+ structure determine a local system over Pi with fibre δx(q). Given a pair
i < j , the assumption that Pj is contained in Pi therefore yields a map

δx → δx(qj ). (8.4)

Given an ordered triple i < j < k, the map δx → δx(qk) defined by σik agrees with the
composition

δx → δx(qj )→ δx(qk) (8.5)

if and only if the Pin+ structure on the restriction of TQ ⊕ E to the boundary of σij
extends to the interior. From Lemma 8.1, we conclude:

Corollary 8.2. The isomorphisms in (8.5) and (8.4) differ by (−1)vijk . ut

8.2. Energy of strips and annuli

Recall that we have fixed a choice of Lagrangian section τi over Pi as in Section 2.3.2.
The intersection of this section with Fi equips this fibre with a basepoint.

Since Li is assumed to be transverse to all fibres over Pi , we can identify the compo-
nents of Li ∩XPi with the intersection points of Li and Fi . Given an intersection point x,
we pick, as in Section 2.2, a function

gx : Pi → R (8.6)

such that the section corresponding to x is obtained by fibrewise addition of dgx to τi . As
in Section 2.2, this function determines a path along Fi from the basepoint to x. Given a
map u from a strip to X, with one boundary component mapping to Fi and converging at
both ends to intersection points with Li , we obtain a homology class

[∂u] ∈ H1(Fi,Z) (8.7)

by concatenating the boundary of u along Fi to the two paths connecting the intersection
points to the basepoint.
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We shall need a notion of energy for continuation maps. Assume that u satisfies a
holomorphic curve equation with moving Lagrangian boundary conditions along R×{1}
given by a Hamiltonian family φs , parametrised by s ∈ R. Let

H : R×X→ R (8.8)

be the Hamiltonian generating this family, normalised so that the integral of Hs with
respect to a fixed volume form vanishes. Define the energy of u to be

E(u) =
∫
B

u∗(ω)−

∫
R
Hs(u(s, 1)) ds. (8.9)

The analogue of Lemma 2.1 holds for such maps, i.e. whenever u and u′ are holomorphic
maps from a strip with boundary conditions given by the same path of Lagrangians along
R× {1}, and by Fq and Fq ′ along R× {0}, we have

E(u′)− E(u) = 〈q ′ − q, [∂u]〉 + gy(q)− gx(q)+ gx′(q ′)− gy′(q ′) (8.10)

whenever u and u′ are homotopic. Here, (x, y) are the limits of u along the ends (which
are intersection points of Fq with the appropriate Lagrangians) and (x′, y′) the corre-
sponding limits of u′.

A generalisation of this result to annuli will be required. Fix the normalised Hamil-
tonian H : C(Q) → R generating a moving path of Lagrangians along the boundary of
C(Q). For a fibre in A

S
(xou; xin), we obtain an expression for the energy

E(u) =
∫
CS
u∗(ω)−

∫
[0,4S]

H(1,s)(u(1, s)) ds. (8.11)

Extending this map to A
∞
(xou; xin) by the sum of the energies of each constituent strip

yields a real-valued function E on A
[0,∞]

(xou; xin), which is easily seen to be locally
constant if the boundary condition Fq is fixed. If we change boundary conditions, (8.10)
implies that the energies of (nearby) curves in A

∞
(xou; xin) with boundary on Fq and Fq ′

differ by 〈q ′ − q, γ 〉, where γ is the homology class of the boundary in H1(Fq ,Z). This
implies that the energy is locally constant on A

∞

[0](xou; xin). By expressing the difference
of energies of nearby annuli as the integral of ω over an annulus in X connecting the
boundary conditions, this result extends to all annuli:

Lemma 8.3. E is locally constant on A
[0,∞]
[0] (xou; xin). ut

8.3. From local to global

LetK be a totally ordered subset of6, which we recall is a triangulation ofQ as produced
in Section 5.1. Given xminK ∈ φminKL ∩ FminK and xmaxK ∈ φmaxKL ∩ FmaxK , recall
that

MK(xmaxK ; xminK) ≡MqK ,K(xmaxK ; xminK(qK)). (8.12)
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There is a natural isomorphism

|TuMK(xmaxK ; xminK)| ⊗ δxminK (qmaxK ) ≡ |AK | ⊗ δxmaxK . (8.13)

If we assume that deg xmaxK = deg xminK + 2− |K|, rigidity yields an isomorphism

κu : δxminK → δxmaxK (8.14)

by fixing (i) the isomorphism in (8.4) and (ii) the orientation of AK arising from its
description as a product of intervals, and the ordering on K . Define

FK : F(L,minK)→ F(L,maxK)[2− |K|],

FK |δxminK =

⊕
xmaxK

T fminK,maxK z
dfminK,maxK−dgmaxK+dgminK
maxK

·

∑
u∈MK (xmaxK ;xminK )

T E(u)z[∂u]maxK ⊗ κu.

(8.15)

The discussion given in Section 2.5 readily extends to show that this map is convergent
(see also [1, Proposition 3.11]).

There is a natural bijection between the boundary of the 1-dimensional moduli spaces
MK(xmaxK ; xminK), given in (4.8)–(4.9), and the terms of (2.42):

MK
≥

i
×MK

≤

i
↔ FK≥i

× FK≤i
, MK\{i} ↔ FK\{i}. (8.16)

To conclude that (2.42) holds, it suffices to show that the coefficient of each term is
correct, i.e. prove the cancellation of the terms in (2.42) which have as coefficient a fixed
monomial.

Fix an energy E and a homology class β ∈ H 1(FqmaxK ,Z), and denote the corre-
sponding component of the moduli space by ME,β

qmaxK ,K
(xmaxK ; xminK).

Lemma 8.4. Up to sign, the contribution to (2.42) of every curve u lying in a boundary
stratum of ME,β

qmaxK ,K
(xmaxK ; xminK) agrees with

T fminK,maxK (qmaxK )z
dfminK,maxK−dgmaxK (xmaxK )+dgminK (xminK )

maxK T E(u)z[∂u]maxK ⊗ κu. (8.17)

Proof. The only strata for which this does not follow immediately from the definition are
those corresponding to MK

≥

i
×MK

≤

i
, for E corresponds to the energy of a holomorphic

curve with boundary conditions FmaxK , while the map FK≤i
is defined using a moduli

space with boundary conditions Fi .
In particular, the functions fminK,i and fi,maxK both contribute to the composition

FK≥i
× FK≤i

, whereas fminK,maxK contributes to FK\{i}. By multiplying FK≥i
× FK≤i

by the cocycle αminK,i,maxK , we correct this discrepancy between strata (see (2.38) and
[1, Lemma 4.2]). ut
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There is a final matter of signs to discuss: the strata corresponding to MK
≥

i
×MK

≤

i

contribute terms in (2.42) which are compositions of the two maps FK≥i
× FK≤i

. Let
(u≥, u≤) be elements of such a stratum, which respectively converge to intersection points
(xmaxK , xi) and (xi, xminK) at the ends. We must compare the composition κu≥ ◦κu≤ with
the map obtained as follows: apply a diffeomorphism to u≤ so that its boundary condition
becomes FmaxK , and then glue the two maps. Since we have to apply this diffeomorphism,
the sign contribution of this stratum to (2.42) entails comparing the composition

δxminK → δxminK (qi )→ δxminK (qmaxK ) (8.18)

with the natural map from the left to the right given by parallel transport along
σminK,maxK . The sign computation from Corollary 8.2 therefore implies:

Lemma 8.5 (cf. [1, Lemma 4.2]). The maps FK define an (αv)−1-twisted sheaf of per-
fect OY -modules. ut

8.4. From Floer to Čech

For Lagrangian branes (L,L′), consider the Floer complex

CF∗(L,L′) =
⊕

x∈L∩L′

3⊗ δx . (8.19)

Every rigid curve u ∈M(y, x) determines a map ∂u : δx → δy defined as in (2.57) (the
linearised ∂̄ operator at u has a kernel coming from translation, which we trivialise using
∂su). Letting µ1

u denote (−1)deg x∂u, we obtain the differential

µ1
|δx =

⊕
y

∑
u∈M(y,x)

T E(u)
⊗ µ1

u. (8.20)

Given xminK ∈ LminK ∩ FminK , x′maxK ∈ L
′

maxK ∩ FmaxK , and xin ∈ L ∩ L
′, let

MK;in(x
′

maxK ; xin, xminK) =
⋃

K=max EK

M
q, EK
(x′maxK ; xin, xminK(qK)) (8.21)

as in Section 5.5. Each element of the right hand side is a parametrised moduli space

M
q, EK
(x′maxK ; xin, xminK(qK))→ A EK;in. (8.22)

If | EK| = |K|, subsequent elements of EK differ by one element ofK . We fix the orientation
of A EK;in coming from the ordering of these elements. Together with the isomorphisms
in (8.4), this results in a natural isomorphism

µu : δxin ⊗ δxminK → δxmaxK (8.23)
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for every rigid element u ∈MK;in(x
′

maxK ; xin, xminK). Define

CK : CF∗(L,L′)⊗ F(L,minK)→ F(L′,maxK)[1− |K|],

CK |δxin ⊗ δxminK =

⊕
x′maxK

T fminK,maxK z
dfminK,maxK−dg

′
maxK (x

′
maxK )+dgminK (xminK )

maxK

·

∑
u∈MK;in(x

′
maxK ;xin,xminK )

T E(u)z[∂u]maxK ⊗ µu,

(8.24)

and denote the direct sum of these maps by

C : CF∗(L,L′)→ Hom(F(L),F(L′)). (8.25)

The boundary strata of MK;in(x
′

maxK ; xin, xminK) listed in (5.63)–(5.66) are matched
with the terms appearing in the equation for a chain map with respect to the Floer differ-
ential and the differential in (2.46) as follows:

MK;in ×M↔ CK ◦ (µ
1
⊗ id),

MK
≥

i ;in
×MK

≤

i
↔ CK≥i

◦ (id⊗FK≤i ),

MK
≥

i
×MK

≤

i ;in
↔ FK≥i

× CK≤i
,

MK\{i};in ↔ CK\{i}.
(8.26)

This correspondence between strata and compositions of maps implies:

Lemma 8.6. C is a chain map.

Sketch of proof. The cocycle αv , which appears in the differential on Hom(F(L),F(L′))
(see (2.46)), arises as in Lemma 8.5 because the functions fij , which enter the definition
of C and F do not themselves satisfy the cocycle condition. ut

8.5. From Čech to Floer

Let I be a totally ordered subset of 6. Given x′min I ∈ L′min I ∩ Fmin I , xmax I ∈

Lmax I ∩ Fmax I , and xou ∈ L ∩ L
′, consider

MI ;ou(xmin I , xou; x
′

max I ) =
⋃

I=min EK

M
q, EK
(xmin I (qK), xou; x

′

max I ) (8.27)

as in Section 5.5. Each stratum of the right hand side is a parametrised moduli space
over A EK;ou. If | EK| = n− |I | + 2, subsequent elements of EK differ by one element of the
maximal element of EK . Fix the orientation of A EK;ou coming from the ordering of these
elements. Together with the isomorphisms in (8.4), this gives a natural isomorphism

ρu : δx′max I
→ δxmin I ⊗ δxou (8.28)

for every rigid element u ∈ MI ;ou(xmin I , xou; x
′

max I ). Given φ ∈ Hom(δxmin I , δx′max I
),

the trace of the composition with ρu yields a map

tr(ρu ◦ φ) : Z→ δxou . (8.29)
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Using the fact that Laurent polynomials are dense, one defines a map

Pu : OI ⊗ Hom(δxmin I , δx′max I
)[1− |I |] → 3⊗ δxou (8.30)

which is given by

z
γ

I ⊗ φ 7→

T −fminK,maxK z
−dfminK,maxK+dg

′
maxK (x

′
maxK )−dgminK (xminK )

maxK T E(u)
⊗ tr(ρu ◦ φ) (8.31)

whenever the homology class [∂u] ∈ H1(FK ,Z) vanishes, and is otherwise 0.
Using the decomposition of HomOmin I (Fmin I (L),Fmax I (L

′)) as a direct sum⊕
xmin I∈φmin IL∩Fmin I
x′max I∈φmax IL∩Fmax I

OI ⊗ Hom(δxmin I , δx′max I
)[1− |I |], (8.32)

define the components of a map P to the Floer complex:

PI : HomOmin I (Fmin I (L),Fmax I (L
′))→ CF∗(L,L′),

PI |OI ⊗ Hom(δxmin I , δx′max I
)[1− |I |] =

⊕
xou

∑
u∈MI ;ou(xmin I ,xou;x

′
max I )

Pu. (8.33)

To establish that P is a chain map, it is convenient to use the expression for the differential
on morphisms of sheaves given in (2.46), which yields

µ1
◦ P(z

γ

I ⊗ φ) =
∑
J∈B6

min J=max I

αvJ,IPI∪J (FJ (L
′) ◦ (z

γ

I ⊗ φ))

+

∑
J∈B6

min I=max J

(−1)|I
≤

i |(1−|φ|)αvI,JPJ∪I ((z
γ

I ⊗ φ) ◦ FJ (L))

+

∑
I∪{j}∈B6

min I<j<max I

(−1)|I
≤

j |−1−deg(xmin I )+|φ|P(z
γ

I ⊗ φ), (8.34)

assuming as in (8.31) that φ ∈ Hom(δxmin I , δx′max I
)[1− |I |].

The correspondence between the boundary strata of MI ;ou(xmin I , xou; x
′

max I ) given
in (5.70)–(5.73) and the terms in the chain map equation is as follows:

M×MI ;ou ↔ µ1
◦ PI (φ),

MI∪J ;ou ×MJ ↔ PI∪J (FJ (L
′) ◦ φ),

MJ ×MJ∪I ;ou ↔ PJ∪I (φ ◦ FJ (L)),

MI∪{j};ou ↔ PI∪{j}.

(8.35)

Lemma 8.7. P is a chain map.
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Sketch of proof. To check the coefficients, restrict to the subset of the moduli space
MI ;ou(xmin I , xou; x

′

max I ) consisting of curves with [∂u] = γ . The coefficient in 3 of
each term in P is given by the energy of the corresponding curve with one boundary
condition on the fibre FI . We conclude that the first and last lines in (8.35) also have
coefficients given by the energy of the corresponding broken curve. The remaining two
cases require the argument used in Lemma 8.4 and (8.10). We consider only the case
corresponding to the term PI∪J (FJ (L

′) ◦ φ), leaving the other to the reader.
Let u be a curve contributing to FJ (L

′). The coefficient E(u) appearing in (8.15) is the
area of a curve with boundary on Fmax J . The difference with the area of the corresponding
curve with boundary on Fmax I is given by

〈qJ − qI , [∂u]〉 + gx′max J
(qJ )− gxmax I (qJ )+ gxmax I (qI )− gx′max J

(qI ) (8.36)

as in (8.10). The first term appears when changing coefficients from zI to zJ , i.e.

z
γ

I = T
〈γ,qJ−qI 〉z

γ

J . (8.37)

The remaining coefficients arise as the sums of the exponents of the coefficients of αvI,J
and the coefficients in the definition of FJ (L′) (see (8.15)). ut

8.6. Homotopy from the composition to an isomorphism

Comparing (8.24) and (8.31) implies that the composition

P ◦ C : CF∗(L,L′)→ CF∗(L,L′) (8.38)

is given on δxin by counts of elements of C∞
[0](xou, xin), and that the corresponding

Novikov coefficient is given by the energy.
By Lemma 7.5, the moduli space A

[0,∞]
[0] (xou, xin) yields a cobordism between

C∞
[0](xou, xin) and K(xou; xin). If deg xou = deg xin, the only elements of K(xou; xin) are

constant curves, and the corresponding map is the identity.

Proposition 8.8. The composition P ◦ C is homotopic to (−1)n(n−1)/2 Id.

Proof. It remains to orient A
[0,∞]
[0] (xou, xin) relative to δxin and δxou . Consider a rigid el-

ement u ∈ A
[0,∞]
[0] (xou, xin), with boundary condition on Fq . We have a natural isomor-

phism
R ∼= |TuA

[0,∞]
[0] (xou, xin)| ∼= |det(∂u)| ⊗ |T (0,∞)| ⊗ |TqQ| (8.39)

where ∂u is the linearised Cauchy–Riemann operator at u, and det(∂u) its determinant
line. Here, |(0,∞)| and |TqQ| appear because they respectively correspond to changing
the modular parameter and the fibre Fq . On the other hand, by gluing the linearised oper-
ator to the operators associated to xin, and degenerating the domain of the linearisation of
the Cauchy–Riemann operator at u to the union of two discs meeting at a point, we obtain
an isomorphism

|det(∂u)| ⊗ δxin
∼= |T Fq | ⊗ |TX|

−1
⊗ δxou (8.40)
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by noting that one of the discs has Lagrangians boundary condition T Fq , hence has deter-
minant line naturally isomorphic to |T Fq |, and the other has determinant line trivialised
by the choices of Pin+ structures on L and L′. Using the isomorphism TX ∼= TQ⊕T Fq
we conclude that every rigid element induces a map δxin

∼= δxou .
By construction, this map agrees with that defined by rigid elements of K(xou; xin).

However, the orientations at C∞
[0](xou, xin) differ from the product orientation by

(−1)n(n−1)/2, as first noticed by Fukaya, Oh, Ohta, and Ono [11, Proposition 3.9.1] (see
also [3, Lemma 5.5.23]). This accounts for the sign in the statement. ut

Appendix. The family Floer functor

A.1. The A∞ structure

Let L → X be a closed Lagrangian immersion in X in generic position, i.e. such that
L meets itself in pairs of transverse double points. Assume that (i) L is tautologically
unobstructed, i.e. there exists a tame almost complex structure for which there are no
JL-holomorphic maps D2

→ X such that the complement of one point on the boundary
lifts to L, (ii) each irreducible component of L is a graded Lagrangian, i.e. there is a
fixed lift to R of the S1-valued phase on each component, and (iii) the pullback of w ∈
H 2(X,Z2) to each component agrees with the second Stiefel–Whitney class.

Remark A.1. The union of a finite collection of transverse immersed Lagrangians in
generic position which satisfy these conditions for the same JL again satisfies these prop-
erties. The constructions of this section can be carried out for different almost complex
structures associated to each component, but the notation becomes more cumbersome.

Choose a Hamiltonian H : X → R whose time-t flow φt lies in the contractible set H0

chosen in Section 5.1, and such that φ1L is transverse to L. Pick a family J : [0, 1] → J0

of almost complex structures on X parametrised by t ∈ [0, 1] which agree with φt∗JL at
t = 0, 1. Generically, all moduli spaces of strips M(x, y) are regular for x, y ∈ φ1L∩L.
The orientation lines from (2.54), with differential from (8.20), define the Floer complex

CF∗(L) =
⊕

x∈L∩φ1L

3⊗ δx . (A.1)

Let Rd+1
denote the moduli space of discs with d+1 marked points on the boundary,

one of which is distinguished as outgoing. Let Ud+1
denote the universal punctured curve

over this moduli space. For all d, fix a consistent family of negative strip-like ends ε0
at the outgoing point, and of positive strip-like ends {εi}di=1 at all other points as in [19,
Section (9g)]. Pick a consistent family of Floer data

(φd+1, J d+1) : Ud+1
→ H0

× J0 (A.2)

such that (i) J d+1(z) = φd+1
∗ (z)JL whenever z lies on the boundary of a fibre, and (ii) the

pullback of (φd+1, J d+1) under the strip-like ends agrees with (φt , Jt ).
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Remark A.2. It is only for notational convenience that φd+1 is defined as a map on Ud+1
,

since only its values on the boundary of each fibre will ever be used. The fact that H0 is
contractible implies that there is no obstruction to extending a function to H0.

Given a sequence {xj }dj=0 of intersection points between L and φ1L, let us denote by
Md+1(x0; xd , . . . , x1) the moduli space of maps from a fibre 6 of Ud+1

to X such that

du(z) ◦ j = J d+1(z) ◦ dt, u(z) ∈ φd+1(z)L if z ∈ ∂6, (A.3)

and u converges at the kth strip-like end to xk . These moduli spaces are regular for generic
choices of almost complex structures J d+1, and a choice of orientation of Rd+1

yields a
map

µu : δxd ⊗ · · · ⊗ δx1 → δx0 (A.4)

whenever u is rigid. Define the A∞ structure on CF∗(L) to be given by the operations

µd |δxd ⊗ · · · ⊗ δx1 =

∑
x0∈L∩φ

1L

deg x0=2−d+
∑d
j=1 deg xj

(−1)
∑d
i=1(i+1) deg xiT E(u)

⊗ µu, (A.5)

where the sign is as in [19], whose conventions we follow.

A.2. Adams moduli spaces with d marked points

Let K be a totally ordered set consisting of more than one element, and UK the universal
curve over AK from Section 3.1. Given an integer d , let A

d

K denote the compactified

moduli space of fibres of UK equipped with d boundary punctures along U {1}K . Let UdK
denote the punctured universal curve over A

d

K .
We extend this definition to the case when K is a singleton as follows: if d > 1, we

define A
d

{k} to be a copy of Rd+2
in which two successive marked points are distinguished,

and Ud{k} the corresponding universal curve in which these two marked points have been
removed. Each fibre of Ud{k} over the interior of A

d

{k} can be represented as a strip B =
R× [0, 1] equipped with marked points on its boundary R× {1}, and this representation
is unique up to translation.

Remark A.3. We treat the case of a singleton separately because a strip with no boundary
marked points is unstable, which led us to define AK to be a point, while the universal
curve over it was empty.

The boundary strata of the universal curve, shown in Figure 24, are as follows:

UdK\{i}→ A
d

K\{i}, i ∈ K, (A.6)

Ud2
K
≥

i
×A

d1
K
≤

i
∪A

d2
K
≥

i
× Ud1

K
≤

i
→ A

d2
K
≥

i
×A

d1
K
≤

i
, i ∈ K, di ≥ 0, d1 + d2 = d, (A.7)

Ud2
K ×Rd1+1

∪A
d2
K × Ud1+1

→ A
d2
K ×Rd1+1

, 1 ≤ j ≤ d2, d1 ≥ 2, d1+d2 = d+1.
(A.8)
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maxK minK

A
4
K\{i}

maxK i

A
1
K
≥

i
×A

3
K
≤

i

minK minKmaxK

A
3
K ×R3

Fig. 24. Representative boundary strata of A
4
K .

Fix consistent families of positive strip-like ends {εj }dj=1 at all punctures, and for all fibres
of UdK ; the consistency requirement is an inductive choice on d and |K|, with the base

case being the choices of strip-like ends on fibres of Ud+1
over Rd+1

. As in (5.14), denote
by8k the triple of maps (φk, Jk, Id) from the interval to H× J×D. We also write8 for
the corresponding map (φ, J, Id) chosen in Section A.1.

Definition A.4. A consistent family of continuation data parametrised by UdK is a map

8dK = (φ
d
K , J

d
K , ψ

d
K) : U

d

K → H × J×D (A.9)

such that (i) the pullback under every end labelled by k ∈ K is given by 8k , (ii) the
pullback under the end εj is given by8, (iii) the maps φdK and ψdK are obtained by gluing,
and J dK by perturbed gluing, (iv) ψdK(z) preserves the image of L under φdK(z), and (v) for

each z ∈ Ud,{1}K , we have

J dK(z) = (ψ
d
K(z) ◦ φ

d
K(z))∗JL. (A.10)

Assuming that Lk ≡ φkL is transverse to Fq for all k ∈ K , we obtain a holomorphic
curve equation ∂su(z) = J dK(z)∂tu(z) on the space of maps from fibres of UdK to X, with
boundary conditions

u(z) ∈ Fq if z ∈ U {0}K , u(z) ∈ φdK(z)L if z ∈ Ud,{1}K . (A.11)

A.3. Choices of continuation data with multiple inputs

Fix the choices made in Section 5.1, i.e. nested sequences {Ji}n+3
i=1 of subsets of the space

of tame almost complex structures and {Di
}
2n+2

i=1 of the space of diffeomorphisms, the
simplicial triangulation 6 of Q, the associated cover Pi by polyhedra with basepoints qi ,
and maps φi ∈ H0 mapping L to a Lagrangian transverse to Fi . These choices should be
made so that Di(L) is an acyclic fibration over L, and both Di

P 2
i

and Di

P 2
i

(Li) are acyclic
fibrations over P 2

i . A section ψi of Di
qi ,Pi

(Li) is fixed.
Assume that the maps (8I , 9I ) from Section 5.2 are chosen, and define

8d+1
= (φd+1, J d+1, Id) : Ud+1

→ H0
× J0
×D. (A.12)
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For each ordered subset of I , pick continuation data and families of diffeomorphisms

8dI = (φ
d
I , J

d
I , ψ

d
I ) : U

d

I → H0
× J|I | ×D2|I |−1

, (A.13)

9dI : PI × UdI → D2|I |−1
, (A.14)

where 9dI is obtained by gluing near every boundary stratum, and is the identity on

{qI } × UdI . In addition, we require that the restrictions of (8dI , 9
d
I ) agree with

(ψmin I (qI )∗8min I , ψmin I ◦ ψ
−1
min I (qI )) along the end ε+, (A.15)

(8max I , ψmax I ) along the end ε−, (A.16)
(8, Id) along each end εj , (A.17)

(8dI\i, 9
d
I\i) on UdI\i, (A.18)

(8
d2
I
≥

i

, 9
d2
I
≥

i

) on Ud2
I
≥

i
×A

d1
I
≤

i
, (A.19)(

9
d1
I
≤

i

(qI )∗8
d1
I
≤

i

, 9
d1
I
≤

i

◦ (9
d1
I
≤

i

(qI ))
−1) on A

d2
I
≥

i
× Ud1

I
≤

i
, (A.20)

(8
d2
I , 9

d2
I ) on Ud2

I ×Rd1
, (A.21)

(8d1 , Id) on A
d2
I × Ud1

, (A.22)

where (A.15) and (A.20) are interpreted as in Remark 5.4. Moreover, on the boundary of
each fibre,

9dI (q, z) ∈

{
D2|I |−1

(φI,z(L)) if z ∈ Ud,{1}I ,

D2|I |−1

qI ,q
if z ∈ Ud,{0}I .

(A.23)

Such data can be constructed by a double induction: assuming that they have been chosen
for all pairs (d1, I ) whenever d1 < d, construct the data for d by induction on the number
of elements of I as in Lemma 5.5.

The pushforward of 8dK by 9dK yields compatible families parametrised by PK :

8
d,P
K : PK × UdK → H0

× J|K|+1
×D2|K| . (A.24)

Given x ∈ FminK ∩ LminK and y ∈ FmaxK ∩ LmaxK , let x(q) and y(q) be as in (5.28)
whenever q ∈ PK . If xj ∈ L ∩ φ1L for 1 ≤ j ≤ d , the compactified moduli space
of solutions to the holomorphic curve equation determined by 8d,PK (q), with boundary
conditions as in (A.11), and asymptotic conditions x(q) at the positive end of the strip,
y(q) at the negative end, and xj along the j th strip-like end, will be denoted

Md

q,K(y(q); xd , . . . , x1, x(q)). (A.25)

Composition with 9dK(q) yields a homeomorphism

Md

qK ,K
(y(qK); xd , . . . , x1, x(qK))→Md

q,K(y(q); xd , . . . , x1, x(q)), (A.26)

so we omit q and qK from the notation.
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With the use of the description of the boundary of A
d

K given in (A.6)–(A.8), the
boundary of Md

K(y; xd , . . . , x1, x) decomposes into

Md

K\{i}(y; xd , . . . , x1, x), (A.27)∐
y′∈Fi∩Li

MK
≥

i
(y, y′)×Md

K
≤

i
(y′; xd , . . . , x1, x), (A.28)

∐
x′∈Fi∩Li

Md

K
≥

i
(y; xd , . . . , x1, x

′)×MK
≤

i
(x′, x), (A.29)

∐
1≤d1,d2
d1+d2=d

∐
x′∈Fi∩Li

Md2
K
≥

i
(y; xd , . . . , xd1+1, x

′)×Md1
K
≤

i
(x′; xd1 , . . . , x1, x), (A.30)

Md2
K (y; xd , . . . , xd1+j+1, x0, xj , . . . , x1, x)×Rd1+1

(x0; xd1+j , . . . , xj+1). (A.31)

In the above, the strata corresponding to (A.7) for which d1 or d2 vanish are listed sep-
arately, while the breaking of strips at the ends is incorporated into (A.28), (A.29), or
(A.31) depending on whether it takes place at ε−, ε+, or one of the ends εj for 1 ≤ j ≤ d.

A.4. The A∞ functor

Assume now that the Floer data are chosen generically so that the moduli spaces in the
previous section are manifolds of the expected dimension. We begin by noting that we
have a natural identification of the interior of A

d

K with

Rd+2
× [0,∞)|K|. (A.32)

Fixing the orientation on Rd+2 used in [19], and the natural orientation on [0,∞), yields
an orientation of the moduli space A

d

K . We then obtain a map

κu : δxd ⊗ · · · ⊗ δx1 ⊗ δx → δy (A.33)

associated to every rigid element u ∈Md

K(y; xd , . . . , x1, x). Define

µu = (−1)deg x+
∑d
i=1(i+1) deg xiκu, (A.34)

where the sign is the same as that of [19, (12.24)], and consider the map

CdK : CF∗(L)⊗d ⊗ F(L,minK)→ F(L,maxK)[2− |K| − d] (A.35)

whose restriction to δxd ⊗ · · · ⊗ δx1 ⊗ δx is given by⊕
y∈LK∩FK

T fminK,maxK z
dfminK,maxK−dg

′
maxK+dgminK

maxK

∑
u∈Md

K (y;xd ,...,x1,x)

T E(u)z[∂u]maxK ⊗ µu.

(A.36)
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The direct sum of these maps over all K will be denoted

Cd : CF∗(L)⊗d → Hom(F(L),F(L)). (A.37)

Recall that an A∞ homomorphism from an A∞ algebra to a differential graded alge-
bra consists of such maps which satisfy the equation

µ1(Cd(ad , . . . , a1))+
∑

d1+d2=d

µ2(Cd2(ad , . . . , ad1+1),C
d1(ad1 , . . . , a1)

)
=

∑
d1,d2,j

d1+d2=d+1

(−1)
∑j

i=1 |aj |−jCd2
(
ad , . . . , ad1+j+1, µ

d1(ad1+j , . . . , aj+1), aj , . . . , a1
)
.

(A.38)

The terms on the right hand side correspond to the boundary strata in (A.31), those in
the second term of the left to (A.30), and the first term to (A.27)–(A.29). To see the last
part, use the definition of the differential in (2.46). Our choice of split orientations on A

d

K

allows us to directly appeal to the sign considerations of [19, Section 12]:

Proposition A.5. The maps Cd are the components of an A∞ homomorphism from
CF∗(L) to the endomorphism algebra of C(L) as an (αv)−1-twisted sheaf. ut
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