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Abstract. We provide a compactness principle which is applicable to different formulations of
Plateau’s problem in codimension one and which is exclusively based on the theory of Radon mea-
sures and elementary comparison arguments. Exploiting some additional techniques in geometric
measure theory, we can use this principle to give a different proof of a theorem by Harrison and
Pugh and to answer a question raised by Guy David.
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1. Introduction

Since the pioneering work of Reifenberg there has been ongoing interest in formulations
of Plateau’s problem involving the minimization of the Hausdorff measure on closed sets
coupled with some notion of “spanning a given boundary”. More precisely, consider any
closed setH ⊂ Rn+1 and assume we have a class P(H) of relatively closed subsetsK of
Rn+1

\ H , which encodes a particular notion of “K bounds H”. Correspondingly, there
is a formulation of Plateau’s problem, where the relevant minimum is

m0 := inf{Hn(K) : K ∈ P(H)}, (1.1)

and a minimizing sequence {Kj }⊂P(H) is characterized by the property Hn(Kj )→m0.
Two good motivations for considering this kind of approach rather than the one based on
integer rectifiable currents are that, first, not every interesting boundary can be realized
as an integer rectifiable cycle, and second, area minimizing 2-d currents in R3 are always
smooth away from their boundaries, in contrast to what one observes with real world soap
films.

There are substantial difficulties related to the minimization of Hausdorff measures on
classes of closed (or even compact) sets. Depending on the convergence adopted, these
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are either related to lack of lower semicontinuity or to compactness issues. In both cases,
obtaining existence results in this framework is a quite delicate task, as exemplified in var-
ious works by Reifenberg [Rei60, Rei64a, Rei64b], De Pauw [DP09], Feuvrier [Feu09],
Harrison and Pugh [Har14, HP16], Fang [Fan16], Liang [Lia13] and David [Dav14].

Our goal here is to show that in some interesting cases these difficulties can be avoided
by exploiting Preiss’ rectifiability theorem for Radon measures [Pre87, DL08] in combi-
nation with the sharp isoperimetric inequality on the sphere and standard variational ar-
guments, notably elementary comparisons with spheres and cones. A precise formulation
of our main result is the following:

Definition 1 (Cone and cup competitors). LetH ⊂Rn+1 be closed. GivenK⊂Rn+1
\H

and Bx,r := {y ∈ Rn+1
: |x − y| < r} ⊂ Rn+1

\H , the cone competitor for K in Bx,r is
the set

(K \ Bx,r) ∪ {λx + (1− λ)z : z ∈ K ∩ ∂Bx,r , λ ∈ [0, 1]}; (1.2)

a cup competitor for K in Bx,r is any set of the form

(K \ Bx,r) ∪ (∂Bx,r \ A), (1.3)

where A is a connected component of ∂Bx,r \K .
Given a family P(H) of relatively closed subsets K ⊂ Rn+1

\ H , we say that an
element K ∈ P(H) has the good comparison property in Bx,r relative to P(H) if

inf{Hn(J ) : J ∈ P(H), J \ cl(Bx,r) = K \ cl(Bx,r)} ≤ Hn(L) (1.4)

whenever L is the cone competitor or any cup competitor for K in Bx,r . The family
P(H) is a good class if, for any K ∈ P(H) and for every x ∈ K , the set K has the good
comparison property in Bx,r for a.e. r ∈ (0, dist(x,H)).

Theorem 2. Let H ⊂ Rn+1 be closed and P(H) be a good class. Assume the infimum
in Plateau’s problem (1.1) is finite and let {Kj } ⊂ P(H) be a minimizing sequence of
countably Hn-rectifiable sets. Then, up to subsequences, the measures µj := Hn Kj
converge weakly∗ in Rn+1

\ H to a measure µ = θHn K , where K := sptµ \ H is a
countably Hn-rectifiable set and θ ≥ 1. In particular, lim infj Hn(Kj ) ≥ Hn(K).

Furthermore, for every x ∈ K the quantity r−nµ(Bx,r) is nondecreasing and

θ(x) = lim
r↓0

µ(Br(x))

ωnrn
≥ 1, (1.5)

where ωn is the Lebesgue measure of the unit ball in Rn.

Our point is that although Theorem 2 does not imply in general the existence of a min-
imizer in P(H), this might be achieved with little additional work (but possibly using
some heavier machinery from geometric measure theory) in some interesting cases.

We will give two applications. The first one is motivated by a very elegant idea of
Harrison, which can be explained as follows. Assume that H is a smooth closed com-
pact n − 1-dimensional submanifold of Rn+1; then we say that a relatively closed set
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K ⊂ Rn+1
\ H bounds H if K intersects every smooth curve γ whose linking number

with H is 1. A possible formulation of Plateau’s problem is then to minimize the Haus-
dorff measure in this class of sets. Building upon her previous work [Har15] on differen-
tial chains, Harrison [Har14] gives a general existence result for a suitable weak version
of this problem. In [HP16], Harrison and Pugh prove that the corresponding minimizer
yields a closed setK which is a minimizer in the original formulation of the problem, and
to which the regularity theory for (M, ξ, δ)-minimal sets by Almgren and Taylor [Alm76,
Tay76] can be applied. In particular, K is analytic off an Hn-negligible singular set, and
actually in the physical case n = 3 and away from the boundary set H , this singular set
obeys the experimental observations known as Plateau’s laws. Boundary regularity seems
a major issue to be settled.

We can recover the theorem of Harrison and Pugh in a relatively short way from
Theorem 2. In fact, our approach allows one to work, with the same effort, in a more
general setting.

Definition 3. Let n ≥ 2 and H be a closed set in Rn+1. When H is a closed compact
n−1-dimensional submanifold, following [HP16] we say that a closed setK ⊂ Rn+1

\H

spans H if it intersects any smooth embedded closed curve γ in Rn+1
\ H such that the

linking number of H and γ is 1.
More generally, for an arbitrary closed H let us consider the family

CH := {γ : S1
→ Rn+1

\H : γ is a smooth embedding of S1 into Rn+1
}.

We say that C ⊂ CH is closed by homotopy (with respect toH ) if together with any γ ∈ C,
the set C contains all elements belonging to the homotopy class [γ ] ∈ π1(Rn+1

\ H).
Given C ⊂ CH closed by homotopy, we say that a relatively closed subset K of Rn+1

\H

is a C-spanning set of H if

K ∩ γ 6= ∅ for every γ ∈ C. (1.6)

We denote by F(H, C) the family of C-spanning sets of H .

Observe that in some cases, the class F(H, C) might be trivial: for instance if C contains
a homotopically trivial curve, then any element of F(H, C) has nonempty interior. Of
course, we are interested in classes F(H, C) admitting at least one element with finite
Hausdorff measure.

Theorem 4. Let n ≥ 2, H be closed in Rn+1 and C be closed by homotopy with respect
to H . Assume the infimum in Plateau’s problem corresponding to P(H) = F(H, C) is
finite. Then:

(a) F(H, C) is a good class in the sense of Definition 1.
(b) There is a minimizing sequence {Kj } ⊂ F(H, C) which consists of Hn-rectifiable

sets. IfK is any set associated to {Kj } by Theorem 2, thenK ∈ F(H, C), and thusK
is a minimizer.

(c) The set K in (b) is an (M, 0,∞)-minimal set in Rn+1
\H in the sense of Almgren.
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Remark 5. As already mentioned, the variational problem considered in [Har14, HP16]
corresponds to the case where H is a closed compact (n − 1)-dimensional submanifold
of Rn+1 and C = {γ ∈ CH : the linking number of H and γ is 1}. In fact, there is yet a
small technical difference: in [Har14, HP16] the authors minimize the Hausdorff spheri-
cal measure, which coincides with the Hausdorff measure Hn on rectifiable sets, but it is
in general larger on unrectifiable sets. After completing this note we learned that Harrison
and Pugh have been able to improve their proof in order to minimize the Hausdorff mea-
sure as well [HP14]. Finally, we stress that, while points (a) and (c) can be deduced from
Theorem 2 using elementary results about Radon measures and isoperimetry, point (b)
relies in a substantial way upon the theory of Caccioppoli sets and minimal partitions.

We next exploit Theorem 2 to obtain an existence result in the context of “sliding mini-
mizers” introduced by David [Dav14, Dav13].

Definition 6. Let H ⊂ Rn+1 be closed and K0 ⊂ Rn+1
\ H be relatively closed. We

denote by 6(H) the family of Lipschitz maps ϕ : Rn+1
→ Rn+1 such that there exists

a continuous map 8 : [0, 1] × Rn+1
→ Rn+1 with 8(1, ·) = ϕ, 8(0, ·) = Id and

8(t,H) ⊂ H for every t ∈ [0, 1]. We then define

A(H,K0) := {K : K = ϕ(K0) for some ϕ ∈ 6(H)},

and say that K0 is a sliding minimizer if Hn(K0) = inf{Hn(J ) : J ∈ A(H,K0)}.

We will use the convention that, whenever E ⊂ Rn+1 and δ > 0, Uδ(E) denotes the
δ-neighborhood of E.

Theorem 7. A(H,K0) is a good class in the sense of Definition 1. Moreover, assume
that

(i) K0 is bounded and countably Hn-rectifiable with Hn(K0) <∞;
(ii) Hn(H) = 0 and for every η > 0 there exist δ > 0 and π ∈ 6(H) such that

Lipπ ≤ 1+ η, π(Uδ(H)) ⊂ H. (1.7)

Then, given any minimizing sequence {Kj } (in Plateau’s problem corresponding to P(H)
= A(H,K0)) and any set K as in Theorem 2, we have

inf{Hn(J ) : J ∈ A(H,K0)} = Hn(K) = inf{Hn(J ) : J ∈ A(H,K)}. (1.8)

In particular K is a sliding minimizer.

The proof of the second equality in (1.8) borrows important ideas from the work of De-
Pauw and Hardt [DPH03] and it uses in a substantial way the theory of varifolds, in par-
ticular Allard’s regularity theorem. A different approach to the existence of aK satisfying
the left hand equality of (1.8) has been suggested by David [Dav14, Section 7], who also
raised the question whether one could deduce the right hand equality. Our theorem gives
a positive answer to this question (see below for a stronger one, also raised by David).
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Remark 8. It seems hard to conclude something about the existence of a minimizer in
the original class A(H,K0) from our approach, without a deeper analysis of what sliding
deformations can do to the starting set K0. The following example illustrates this diffi-
culty. Let H be the union of two far away parallel circles and K0 be a cylinder joining
them, namely define, for R large,

H := {(x1, x2, x3) ∈ R3
: x2

1 + x
2
2 = 1, |x3| = R},

K0 := {(x1, x2, x3) ∈ R3
: x2

1 + x
2
2 = 1, |x3| < R}.

Let {Kj } ⊂ A(H,K0) be a minimizing sequence and µj = H2 Kj . We obviously
expect that H2 Kj → H2 K where

K := {(x1, x2, x3) : x
2
1 + x

2
2 < 1, |x3| = R}.

Of course K 6∈ A(H,K0), but we can easily build a map ϕ ∈ 6(H) which “squeezes”
K0 onto the set K1 := K ∪ {(0, 0, t) : |t | ≤ R}, i.e. the top and bottom disks connected
by a vertical segment. K1 is then a minimizer in A(H,K0). On the other hand, K =
spt(H2 K1), and thus a purely measure-theoretic approach does not seem to capture this
phenomenon. It is however very tempting to conjecture that, upon adding a suitable Hn-
negligible set (and possibly some more requirements on the boundaryH ), any setK as in
Theorem 7 is an element of A(H,K0) (cf. [Dav14]). We refer the reader to [Whi83] for
a result of a similar flavour.

The results presented in this paper are concerned with Plateau’s problem in codimension
one. This assumption is used in a crucial way when we exploit the cup competitors and
the optimal isoperimetric inequality in Sn to prove Theorem 2. Although we also take
advantage of some other typical codimension one tools (such as the degree theory and
the theory of minimal partitions), the main obstruction to extending our analysis to higher
codimension is really our use of cup competitors. Besides, in higher codimension the
available isoperimetric inequalities are more difficult to use (see for instance [Alm86]).
This point can be overcome by relying only on Lipschitz deformations to produce com-
petitors. In this way it is possible to give a different notion of “good class”, which is more
involved than the one considered here, but which still allows a general compactness re-
sult in the spirit of Theorem 2. Starting from this compactness principle, one can obtain
the higher-codimensional versions of both Theorems 4 and 7. These results are proved in
[DDG16] where, together with some of the ideas presented in this paper, new ones need
to be introduced, and more refined tools from geometric measure theory are exploited
(most notably, a suitable version of the deformation theorem for closed rectifiable sets
due to David and Semmes [DS00]).

2. Proof of Theorem 2

We start with the following classical fact. We include a quick proof just for the reader’s
convenience using sets of finite perimeter; the latter are however not really necessary,
in particular it should be possible to prove Theorem 2 without leaving the framework
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provided by the theory of Radon measures. In what follows we use the notation

σk := Hk({z ∈ Rk+1
: |z| = 1}) and ωk+1 := Hk+1({z ∈ Rk+1

: |z| ≤ 1}) =
σk

k + 1
.

Lemma 9 (Isoperimetry on the sphere). If J ⊂ ∂Bx,r is compact and {Ah}∞h=0 is the
family of all connected components of ∂Bx,r \ J , ordered so that Hn(Ah) ≥ Hn(Ah+1),
then

Hn(∂Bx,r \ A0) ≤ C(n)Hn−1(J )n/(n−1). (2.1)

Moreover, for every η > 0 there exists δ > 0 such that

min{Hn(A0),Hn(A1)} = Hn(A1) ≥ (σn/2− δ)rn ⇒ Hn−1(J ) ≥ (σn−1 − η)r
n−1.

(2.2)

The inequality (2.1) also holds if we replace ∂Bx,r with ∂Q for any cube Q ⊂ Rn+1 or
with any spherical cap ∂Bx,r ∩ {y : (y − x) · ν > εr}, where ν ∈ Sn and ε ∈ ]0, 1[.

Proof. We first prove (2.1) with J ⊂ ∂Bx,r . The proof can be easily adapted to bound-
ary of cubes and spherical caps. Since ∂Ah ⊂ J and (without loss of generality)
Hn−1(J ) < ∞, we know [AFP00, Prop. 3.62] that each Ah has finite perimeter and
∂∗Ah ⊂ J (where ∂∗Ah denotes the reduced boundary). By the properties of the reduced
boundary one easily infers that

∑
hHn−1 ∂∗Ah ≤ 2Hn−1 J . By the relative isoperi-

metric inequality on ∂Bx,r , if A ⊂ ∂Bx,r is of finite perimeter, then

min{Hn(A),Hn(∂Bx,r \ A)} ≤ C(n)Hn−1(∂∗A)n/(n−1). (2.3)

By the ordering property of the Hn(Ah), we thus find

Hn(Ah) ≤ C(n)Hn−1(∂∗Ah)
n/(n−1), ∀h ≥ 1.

Adding up over h ≥ 1 and using the superadditivity of the function t 7→ tn/(n−1) yields

Hn(∂Bx,r \ A0) ≤ C(n)
(∑
h≥1

Hn−1(∂∗Ah)
)n/(n−1)

≤ C(n)Hn−1(J )n/(n−1).

(2.2) can be proved via a compactness argument: assuming that it fails for a given η > 0,
we find a sequence Jk of sets, each violating the statement for δ = 1/k. LettingAk0 andAk1
be the corresponding connected components, we can use the compactness of Caccioppoli
sets to conclude that they converge to two sets A∞0 , A

∞

1 with

Hn(A∞0 ) = Hn(A∞1 ) =
σn

2
rn, Hn(A∞0 ∩ A

∞

1 ) = 0, (2.4)

max{Hn−1(∂∗A∞0 ),H
n−1(∂∗A∞1 )} ≤ (σn−1 − η)r

n−1. (2.5)

By (2.4), ∂∗A∞0 = ∂
∗A∞1 ; but then (2.5) contradicts the sharp isoperimetric inequality on

the sphere [BZ88, Theorem 10.2.1]. ut
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Proof of Theorem 2. Up to extracting subsequences we can assume the existence of a
Radon measure µ on Rn+1

\H such that

µj
∗

⇀ µ as Radon measures on Rn+1
\H, (2.6)

where µj = Hn Kj . We set K := sptµ \ H and divide the argument into four steps.
The first two steps feature some classical estimates in the theory of minimal surfaces (see
for instance [Mag12, Ch. 16–17]) adapted to our context.

Step 1. We show the existence of θ0 = θ0(n) > 0 such that

µ(Bx,r) ≥ θ0 ωnr
n, ∀x ∈ sptµ, ∀r < dx := dist(x,H). (2.7)

By [Mat95, Theorem 6.9], (2.7) implies

µ ≥ θ0Hn K on subsets of Rn+1
\H. (2.8)

We now prove (2.7). Let f (r) := µ(Bx,r) and fj (r) := Hn(Kj ∩ Bx,r), so that

fj (r)− fj (s) ≥

∫ r

s

Hn−1(Kj ∩ ∂Bx,t ) dt, 0 < s < r < dx,

by the coarea formula [Fed69, 3.2.22]. Since fj is nondecreasing on (0, dx), one has

Dfj ≥ f
′

j L
1 with f ′j (r) ≥ Hn−1(Kj ∩ ∂Bx,r) for a.e. r ∈ (0, dx)

(here Dfj denotes the distributional derivative of fj , f ′j the pointwise derivative and L1

the Lebesgue measure). By Fatou’s lemma, if we set g(t) := lim infj f ′j (t), then

f (r)− f (s) = µ(Bx,r \ Bx,s) ≥

∫ r

s

g(t) dt, provided µ(∂Bx,r) = µ(∂Bx,s) = 0.

This shows that Df ≥ gL1. On the other hand, using the differentiability a.e. of f and
letting s ↑ r , we also conclude f ′ ≥ g L1-a.e., whereas Df ≥ f ′L1 is a simple conse-
quence of the fact that f is a nondecreasing function.

Let Aj denote a connected component of ∂Bx,r \Kj of maximal Hn-measure, and let
K ′′j be the corresponding cup competitor of Kj in Bx,r (see (1.3)). Since P(H) is a good
class, for a.e. r < dx by (2.1) we find

fj (r) ≤ Hn(∂Bx,r \ Aj )+ εj ≤ C(n)
(
Hn−1(∂Bx,r ∩Kj )

)n/(n−1)
+ εj , (2.9)

where εj → 0 takes into account the almost minimality of Kj , namely we assume
Hn(Kj ) ≤ inf{Hn(K) : K ∈ P(H)} + εj . Letting j →∞ we find that

f (r) ≤ C(n)g(r)n/(n−1)
≤ C(n)f ′(r)n/(n−1) for a.e. r < dx,

from which
f (r)(n−1)/n

≤ C(n)f ′(r) for a.e. r < dx,
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which implies
1 ≤ C(n)(f (r)1/n)′, ∀r < dx .

Since the distributional derivative Df 1/n is nonnegative, we deduce that r ≤

C(n)(f (r)1/n − f (0)1/n), hence µ(Bx,r) ≥ θ0ωnr
n for a suitable value of θ0.

Step 2. We fix x ∈ sptµ \H and prove that

r 7→ f (r)/rn = µ(Bx,r)/r
n is nondecreasing on (0, dx). (2.10)

This property can be deduced by using the cone competitor in Bx,r in place of the cup
competitor: estimate (2.9) now becomes

fj (r) ≤ Hn(K ′j ∩ Bx,r)+ εj =
r

n
Hn−1(Kj ∩ ∂Bx,r)+ εj ≤

r

n
f ′j (r)+ εj ,

yielding f (r) ≤ (r/n)g(r) ≤ (r/n)f ′(r) for a.e. r < dx . Again the positivity of the mea-
sure D log(f ) implies the claimed monotonicity. By (2.8) and (2.10) the n-dimensional
density of the measure µ, namely

θ(x) = lim
r→0+

f (r)

ωnrn
≥ θ0,

exists, is finite and positive µ-almost everywhere. By the well known theorem of Preiss
[DL08, Theorem 1.1], this property implies that µ = θHn K̃ for some countably Hn-
rectifiable set K̃ and some positive Borel function θ . Since K is the support of µ, we
have Hn(K̃ \K) = 0. On the other hand, Hn(K \ K̃) = 0 by (2.8), and thus K must be
rectifiable and µ = θHn K .

Step 3. We prove that θ(x) ≥ 1 for every x ∈ K such that the approximate tangent space
to K exists (thus, Hn-a.e. on K). Fix any such x ∈ K \ H and suppose, up to rotating
the coordinates, that T = {xn+1 = 0} is the approximate tangent space to K at x; in
particular (cf. [DL08, Corollary 4.4]),

Hn K − x

r

∗

⇀ Hn T as r → 0+.

By the density lower bound (2.7), for every ε > 0 there is ρ > 0 such that

K ∩ Bx,r ⊂ x + {y ∈ Rn+1
: |yn+1| < εr}, ∀r < ρ. (2.11)

Indeed, assume r is so small that µ(Bx,2r \ (x + {|yn+1| < εr/2})) < θ02−nεnrn. Then
K ∩ (x + {|yn+1| ≥ εr}) ∩ Bx,r must be empty, since otherwise y belonging to that set
would imply

µ(Bx,2r \ (x + {|yn+1| < εr/2})) ≥ µ(By,εr/2) ≥ θ0ε
nrn/2n,

a contradiction. If we set c(ε) = ε/
√

1− ε2, then (2.11) can be equivalently stated as

K ∩ Bx,ρ ⊂ x + {(y
′, yn+1) : |yn+1| < c(ε)|y′|}. (2.12)
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If in addition we choose ρ satisfying Hn(K ∩ ∂Bx,ρ) = 0, then by the coarea formula
[Fed69, 3.2.22],

0 = lim
j→∞

µj
(
cl(Bx,ρ) ∩ (x + {(y′, yn+1) : |yn+1| ≥ c(ε)|y

′
|})
)

≥

∫ ρ

0
lim inf
j→∞

Hn−1(Kj ∩ ∂Bx,r ∩ (x + {(y′, yn+1) : |yn+1| ≥ c(ε)|y
′
|})
)
dr.

So, if ∂B+x,r,ε := {y ∈ ∂Bx,r : yn+1 > xn+1 + εr} and ∂B−x,r,ε := {y ∈ ∂Bx,r : yn+1 <

xn+1 − εr}, then

lim inf
j→∞

Hn−1(Kj ∩ ∂B
±
x,r,ε) = 0 for a.e. r < ρ. (2.13)

Let us fix r < ρ such that (2.13) holds, f ′(r) exists, f ′(r) ≥ g(r) and each Kj has the
good comparison property in Bx,r (all these conditions can be ensured for a.e. r). Using
Lemma 9, namely the relative isoperimetric inequality in the spherical cap ∂B+x,r,ε, one
finds that ifA+j denotes the connected component of ∂B+x,r,ε\Kj with largest Hn-measure,
then Hn(∂B+x,r,ε \ A

+

j ) ≤ C(n)H
n−1(Kj ∩ ∂B

+
x,r,ε)

n/(n−1), and thus, by (2.13),

lim
j→∞

Hn(A+j ) = Hn(∂B+x,ε,r);

similarly, Hn(A−j ) → Hn(∂B−x,ε,r) if A−j is the largest connected component of
∂B−x,r,ε \Kj .

We claim that, for j sufficiently large, A+j and A−j cannot belong to the same con-
nected component of ∂Bx,r \Kj : otherwise, we can compare with the cup competitor of
Kj in Bx,r defined by the connected component of ∂Bx,r \Kj containingA+j ∪A

−

j (which
is the largest connected component of ∂Bx,r \Kj when j is large enough), obtaining

µ(Bx,r) ≤ lim inf
j→∞

Hn(Kj ∩ Bx,r) ≤ lim inf
j→∞

Hn(∂Bx,r \ (A
+

j ∪ A
−

j ))

≤ Hn(∂Bx,r ∩ {|yn+1 − xn+1| < εr}) ≤ Cεrn,

contrary to the density lower bound (2.7).
If we now fix η, then we can choose ε so that Lemma 9 entails, for j large enough,

(σn−1 − η)r
n−1
≤ lim inf

j→∞
Hn−1(Kj ∩ ∂Bx,r) ≤ f

′(r).

In conclusion, f ′(r) ≥ (σn−1 − η)r
n−1 for a.e. r < ρ. As f (r) ≥ (σn−1 − η)r

n/n for
every r < ρ, one concludes that θ(x) ≥ (σn−1 − η)/(nωn). Letting η → 0 we obtain
θ(x) ≥ 1.

To complete the proof of Theorem 2 we recall that a standard consequence of the
monotonicity (2.10) is the upper semicontinuity of θ ; a simple density argument then
shows (1.5) (cf. [Sim83, Corollary 17.8]). ut
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3. Proof of Theorem 4

Most of the proof of Theorem 4 relies on the following elementary geometric remark.

Lemma 10. If K ∈ F(H, C), Bx,r ⊂⊂ Rn+1
\ H , and γ ∈ C, then either γ ∩

(K \Bx,r) 6= ∅, or there exists a connected component σ of γ ∩ cl(Bx,r) which is homeo-
morphic to an interval and whose end-points belong to distinct connected components of
cl(Bx,r) \K (and so to distinct components of ∂Bx,r \K). The same conclusion holds if
we replace Bx.r with an open cube Q ⊂⊂ Rn+1

\H .

Proof. Step 1. It is clearly sufficient to assume γ ∩ (K \ Bx,r) = ∅: since γ must inter-
sect K , it must intersect cl(Bx,r). We first prove the lemma under the assumption that γ
and ∂Bx,r intersect transversally.

Indeed, we can then find finitely many mutually disjoint closed circular arcs Ii ⊂ S1,
Ii = [ai, bi], such that γ ∩ Bx,r =

⋃
i γ ((ai, bi)) and γ ∩ ∂Bx,r =

⋃
i{γ (ai), γ (bi)}.

To reach a contradiction, we assume that for every i there exists a connected component
Ai of cl(Bx,r) \ K such that γ (ai), γ (bi) ∈ Ai . (Note that, possibly, Ai = Aj for some
i 6= j .) By connectedness of Ai , for each i we can find a smooth embedding τi : Ii → Ai
such that τi(ai) = γ (ai) and τi(bi) = γ (bi); moreover, one can easily achieve this by
enforcing τi(Ii) ∩ τj (Ij ) = ∅. Finally, we define γ̄ by setting γ̄ = γ on S1

\
⋃
i Ii ,

and γ̄ = τi on Ii . In this way, [γ̄ ] = [γ ] in π1(Rn+1
\ H), with γ̄ ∩ K \ cl(Bx,r) =

γ ∩ K \ cl(Bx,r) = ∅ and γ̄ ∩ K ∩ cl(Bx,r) = ∅ by construction; that is, γ̄ ∩ K = ∅.
Since there exists γ̃ ∈ CH with [γ̃ ] = [γ̄ ] = [γ ] in π1(Rn+1

\ H) which is uniformly
close to γ̄ , we get γ̃ ∩K = ∅, contradicting K ∈ F(H, C).

Step 2. We now prove the lemma for any ball Bx,r ⊂⊂ Rn+1
\ H . Since γ is a smooth

embedding, by Sard’s theorem we know that γ and ∂Bx,s intersect transversally for a.e.
s > 0. In particular, given ε small enough, for any such s ∈ (r − ε, r) we can construct
a smooth diffeomorphism fs : Rn+1

→ Rn+1 such that fs = Id on Rn+1
\ Bx,r+2ε and

fs(y) = x + (r/s)(y − x) for y ∈ Bx,r+ε, so that

fs → Id uniformly on Rn+1 as s → r−. (3.1)

We claim that one can apply Step 1 to fs◦γ . Indeed, the facts that fs◦γ ∈ C and fs◦γ and
∂Bx,r intersect transversally are straightforward; moreover, since dist(γ,K∩∂Bx,r) > 0,
(3.1) easily implies that (fs ◦ γ ) ∩K \ Bx,r = ∅. Hence, by Step 1, there exists a proper
circular arc I = [as, bs] ⊂ S1 such that fs(γ (as)) ∈ Ai(s) and fs(γ (bs)) ∈ Aj (s) for
some connected components Ai 6= Aj of cl(Bx,r) \ K , and (fs ◦ γ )(as, bs) ⊂ Bx,r . Up
to subsequences, we can assume that as → ā, bs → b̄ and the arc [as, bs] converges
to [ā, b̄]. It follows that γ (ā) and γ (b̄) must belong to distinct connected components of
cl(Bx,r) \ K , as otherwise by (3.1), fs(γ (as)) and fs(γ (bs)) would belong to the same
connected component for some s close enough to r . By (3.1) we also have γ ([ā, b̄]) ⊂
cl(Bx,r).

The argument for cubesQ is a routine modification of the one given above, and is left
to the reader. ut
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Proof of Theorem 4. Step 1. We start by showing that F(H, C) is a good class in the
sense of Definition 1. To this end, we fix V ∈ F(H, C) and x ∈ V , and prove that for
a.e. r ∈ (0, dist(x,H)) one has V ′, V ′′ ∈ F(H, C), where V ′ is the cone competitor of V
in Bx,r , and V ′′ is a cup competitor of V in Bx,r .

We thus fix γ ∈ C and, without loss of generality, we assume that γ ∩ (V \Bx,r) = ∅.
By Lemma 10, γ has an arc contained in cl(Bx,r) homeomorphic to [0, 1] and whose end-
points belong to distinct connected components of ∂Bx,r \ V ; we denote by σ : [0, 1] →
cl(Bx,r) a parametrization of this arc. By construction, either σ(0) or σ(1)must belong to
γ ∩V ′′∩∂Bx,r . This proves that V ′′ ∈ F(H, C). We now show that γ ∩V ′∩cl(Bx,r) 6= ∅.
If x ∈ σ , then trivially V ′ ∩ σ 6= ∅; if x 6∈ σ , then we can project σ radially on ∂Bx,r ,
and the projection π ◦ σ must intersect V ′ ∩ ∂Bx,r = V ∩ ∂Bx,r by connectedness. If z is
such an intersection point, then V ′ ⊃ π−1(z) ∩ σ([0, 1]) 6= ∅, as π−1(z) = λz for some
λ ∈ (0, 1). This proves that V ′ ∈ F(H, C).

Step 2. By Step 1, given a minimizing sequence {Kj } ⊂ F(H, C) which consists of
rectifiable sets, we can find a set K with the properties stated in Theorem 2. In order to
prove the second statement in (b) we just need to show that K ∈ F(H, C).

Suppose for contradiction that some γ ∈ C does not intersect K . Since both γ and K
are compact, there exists ε > 0 such that the tubular neighborhood U2ε(γ ) does not
intersect K and is contained in Rn+1

\H . Hence µ(U2ε(γ )) = 0, and thus

lim
j→∞

Hn(Kj ∩ Uε(γ )) = 0. (3.2)

Observe that if ε is small enough, there is a diffeomorphism 8 : S1
× Dε → Uε(γ )

such that 8|S1×{0} = γ , where Dρ := {y ∈ Rn : |y| < ρ}. Denote by γy the parallel
curve 8|S1×{y}. Then γy ∈ [γ ] ∈ π1(Rn+1

\ H) for every y ∈ Dε. Thus we must have
Kj ∩ (γ × {y}) 6= ∅ for every y ∈ Dε and every j ∈ N. If we let π̂ : S1

×Dε → Dε be
the projection on the second factor and define π : Uε(γ )→ Dε as π̂ ◦ 8−1, then π is a
Lipschitz map. The coarea formula then implies

Hn(Kj ∩ Uε(γ )) ≥
ωnε

n

(Lipπ)n
> 0,

which contradicts (3.2). This shows that K ∈ F(H, C), as claimed.

Step 3. We show that K is (M, 0,∞)-minimal, i.e.

Hn(K) ≤ Hn(ϕ(K))

whenever ϕ : Rn+1
→ Rn+1 is a Lipschitz map such that ϕ = Id on Rn+1

\ Bx,r and
ϕ(Bx,r) ⊂ Bx,r for some x ∈ Rn+1

\ H and r < dist(x,H). To this end, it suffices to
show that given such a ϕ, we have ϕ(K) ∈ F(H, C).

We fix γ ∈ C and assume that γ ∩ (K \ Bx,ρ) = ∅ for some ρ ∈ (r, dist(x,H)).
By Lemma 10, there exist two distinct connected components A and A′ of Bx,ρ \ K
and a connected component of γ ∩ cl(Bx,ρ) having end-points p ∈ cl(A) ∩ ∂Bx,ρ and
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q ∈ cl(A′) ∩ ∂Bx,ρ . We complete the proof by showing that p = ϕ(p) and q = ϕ(q) are
in the closures of distinct connected components of Bx,ρ \ ϕ(K).

To reach a contradiction, denote by � the connected component of Bx,ρ \ ϕ(K) with
p, q ∈ cl(�). If h denotes the restriction of ϕ to cl(A), then the topological degree of h is
defined on Rn+1

\ h(∂A), thus in �. (Recall that the degree of a continuous function h is
an integer valued locally constant function equal to the algebraic sum of the numbers of
preimages in h−1(y), the sign being chosen according to whether h preserves or changes
orientation; see [Hir94, Ch. 5] for more details.) Since ϕ = Id in a neighborhood of
∂Bx,ρ , one has deg(h, p′) = 1 for every p′ sufficiently close to p; since the degree is
locally constant and � is connected, deg(h, ·) = 1 on �. In particular, ϕ−1(y) ∩ A 6= ∅

for every y ∈ �. We apply this with y = q ′ for some q ′ ∈ � sufficiently close to q.
Let w ∈ ϕ−1(q ′); since ϕ = Id on Rn+1

\ Bx,r , if |q ′| > r then w = q ′, and thus
q ′ ∈ A. In other words, every q ′ ∈ Bx,ρ sufficiently close to q is contained in A. We
may thus connect in A any pair of points p′, q ′ ∈ Bx,ρ which are sufficiently close to p
and q respectively, that is, p and q can be connected in A. This contradicts A 6= A′, and
completes the proof of the fact that K is an (M, 0,∞)-minimal set. We are thus left to
prove (b).

Step 4. We want to show that given K ∈ F(H, C) with Hn(K) < ∞, there exists K ′ ∈
F(H, C) rectifiable such that Hn(K ′) ≤ Hn(K). The proof is divided into three further
steps. By [Fed69, 2.10.25], 0 = (ω1ωn/ωn+1)Hn+1(K) ≥

∫
∗

R Hn(K ∩ {x1 = t}) dt , thus
L1({t ∈ R : Hn(K ∩ {x1 = t}) > 0}) = 0. In particular,

L1
(⋃
j∈N

{
t ∈ (0, 1) : Hn

(
K ∩

⋃
h∈Z
{x1 = t + h/2j }

)
> 0

})
= 0,

so that, for a suitable x0
1 ∈ (0, 1) one has Hn(K∩{x1 = x

0
1+2−j h}) = 0 for every j ∈ N,

h ∈ Z. This argument can be repeated for each coordinate, giving a point x0
∈ Rn+1 such

that Hn(K ∩ {xm = x0
m + 2−jh}) = 0 for every m ∈ {1, . . . , n + 1}, j ∈ N, h ∈ Z.

As a consequence, one finds a grid Q of open dyadic cubes such that Hn(K ∩ ∂Q) = 0
for every Q ∈ Q. We let W be the Whitney covering of Rn+1

\ H obtained from Q as
in [Ste70, Theorem 3, p. 16], so that if Q′ is the concentric cube with twice the size of
Q ∈W , then Q′ ∩H = ∅.

Step 5. First, for every Q ∈ W we define a suitable replacement KQ in the cube Q
such that KQ ∩ cl(Q) is Hn-rectifiable with Hn(KQ ∩ cl(Q)) ≤ Hn(K ∩ cl(Q)) and
KQ \ cl(Q) = K \ cl(Q). Let us denote by {Fi}i the family of connected components
of Q′ \ K and consider the partitioning problem (into Caccioppoli sets, cf. for instance
[AFP00, Section 4.4])

inf
{
Hn
(
Q′ ∩

⋃
i

∂∗Ei

)
: {Ei}i is a partition modulo Hn+1 of Q′ with

Ei \Q = Fi \Q
}
. (3.3)

Since Fi is open with ∂Fi ⊂ K and Hn(K) <∞, the infimum in (3.3) is finite and there
exists a minimizing partition {Ei}i (one can apply, for instance, [AFP00, Theorem 4.19
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& Remark 4.20]). Let the closed set KQ be given by

KQ := (K \Q) ∪
(

cl(Q) ∩ cl
(⋃
i

∂∗Ei

))
.

By a slight modification of [Mag12, Lemma 30.2], Hn(Q∩ (KQ \
⋃
i ∂
∗Ei)) = 0, so that

cl(Q) ∩KQ is countably Hn-rectifiable. To prove Hn(KQ ∩ cl(Q)) ≤ Hn(K ∩ cl(Q)) it
suffices to show

Hn
(

cl(Q) ∩
(
KQ \

⋃
i

∂∗Ei

))
= 0.

Since Hn(Q ∩ (KQ \
⋃
i ∂
∗Ei)) = 0 and Hn(K ∩ ∂Q) = 0, we just need to prove

Hn
(
∂Q ∩

(
(KQ \K) \

⋃
i

∂∗Ei

))
= 0.

In turn, by [Mag12, Corollary 6.5], it is enough to find c0 > 0 such that

Hn
(
Bx,r∩

⋃
i

∂∗Ei

)
≥ c0r

n, ∀x ∈ ∂Q∩(KQ\K), ∀r < rx = dist(x,K\Q). (3.4)

To do so, let i0 be such that x ∈ Fi0 and, for r < rx , let Gi = Ei \ Bx,r if i 6= i0, and
Gi0 = Ei0 ∪ Bx,r . Since {Gi}i is admissible in (3.3), we find that

f (r) := Hn
(

cl(Bx,r)∩
⋃
i

∂∗Ei

)
≤ Hn

(
cl(Bx,r)∩

⋃
i

∂∗Gi

)
= Hn

(
∂Bx,r ∩

⋃
i

∂∗Gi

)
.

We next denote by E(τ )i the set of points x of density τ of the set Ei :

lim
r→0

Hn+1(Bx,r ∩ Ei)

ωn+1rn+1 = τ.

Now, for a.e. r < rx , one has Hn(∂Bx,r ∩ (E
(0)
i0
4 ∂∗Gi0)) = 0, as well as

Hn(∂Bx,r ∩ (E
(1)
i 4 ∂

∗Gi)) = 0, ∀i 6= i0, Hn
(
∂Bx,r ∩

(
E
(0)
i0
4

⋃
i 6=i0

E
(1)
i

))
= 0.

We thus find that f (r) ≤ Hn(∂Bx,r ∩ E
(0)
i0
) for a.e. r < rx ; now, again for a.e. r < rx ,

the set ∂Bx,r ∩ E
(0)
i0

has finite perimeter in ∂Bx,r with

Hn−1(∂∗∂Bx,r (∂Bx,r ∩ E(0)i0 )4 (∂Bx,r ∩ ∂∗Ei0)) = 0;

since Hn(∂Bx,r \ E
(0)
i0
) ≥ Hn(∂Bx,r)/2 by convexity of Q, the isoperimetric inequality

on ∂Bx,r yields f (r) ≤ C(n)Hn−1(∂∗Ei0 ∩ ∂Bx,r)
n/(n−1)

≤ C(n)f ′(r) for a.e. r < rx .
By arguing as in Step 1 of the proof of Theorem 2, we complete the proof of (3.4).
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Step 6. We finally set K ′ :=
⋃
Q∈W KQ ∩ cl(Q). By Step 2, K ′ is Hn-rectifiable, with

Hn(K ′) ≤
∑
Q∈W

Hn(KQ ∩ cl(Q)) ≤
∑
Q∈W

Hn(K ∩ cl(Q)) =
∑
Q∈W

Hn(K ∩Q),

where in the last identity we have used Step 4. This shows that Hn(K ′) ≤ Hn(K). We
now prove that K ′ ∈ F(H, C). Let γ ∈ C, so that γ ∩K ∩ cl(Q) 6= ∅ for some Q ∈W .
Since K ∩ ∂Q ⊂ KQ ∩ ∂Q ⊂ K ′ ∩ ∂Q, we may directly assume that γ ∩ K ∩Q 6= ∅.
By Lemma 10, there exists a connected component σ of γ ∩ cl(Q) with end-points p ∈
Fi∩∂Q and q ∈ Fj ∩∂Q for some distinct connected components Fi and Fj of cl(Q)\K .
If either p or q belongs to KQ there is nothing to prove; otherwise, p ∈ Ei and q ∈ Ej .
In particular, by connectedness of σ , we must have σ ∩KQ ∩ clQ 6= ∅. This completes
the proof of (b). ut

4. Proof of Theorem 7

Step 1. In this and in the next step we prove that A(H,K0) is a good class in the sense of
Definition 1. Let K ∈ A(H,K0); in this step we show (1.4) when L is a cup competitor
in Bx,r ⊂ Rn+1

\ H (at least for a.e. r). We therefore consider Bx,r ⊂⊂ Rn+1
\ H and

assume further Hn(K ∩ ∂Bx,r) = 0, which holds for a.e. r . Also, for convenience we can
translate, rescale and assume x = 0 and r = 1; we then write B instead of B0,1. Consider
the cup competitor of K in B defined by a given connected component A of ∂B \K . Its
Hausdorff measure is Hn(K \ B) +Hn(∂B \ A). Our goal is thus to show that, for any
given σ > 0, there is J ∈ A(H,K0) with the property that J \ cl(B) = K \ cl(B) and
Hn(J ) ≤ Hn(K \ B)+Hn(∂B \ A)+ σ , so

Hn(J ∩ cl(B)) ≤ Hn(∂B \ A)+ σ. (4.1)

By definition we need a map φ3 ∈ 6(H) such that J = φ3(K). In fact we will build φ3
so that φ3 = Id on Rn+1

\ B1+η for some sufficiently small η.
φ3 will be constructed building upon two additional maps φ1 and φ2. To construct φ1

we just fix x0 ∈ A and a small ρ so that Bx0,ρ ∩ K = ∅. Then φ1 projects B \ Bx0,ρ

onto ∂B along the rays emanating from x0, while it “stretches” Bx0,ρ ∩ cl(B) onto cl(B).
In doing so, we achieve that K1 = φ1(K ∩ cl(B)) is contained in ∂B and is disjoint
from Bx0,ρ .

We next claim that there exists a Lipschitz map φ2 : ∂B → ∂B with φ2 = Id on
Uε(K ∩ ∂B) for some positive ε and

Hn(φ2(K1)) ≤ Hn(∂B \ A)+ σ. (4.2)

The existence of φ2 will be shown in a moment.
Corresponding to ε, we can find η > 0 such that B1+η ⊂⊂ Rn+1

\H and

K ∩ ∂B1+t

1+ t
⊂ Uε(K ∩ ∂B), ∀t ∈ (0, η).
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Finally, we define φ3 : Rn+1
→ Rn+1 by setting

φ3(x) :=


φ2(φ1(x)) for |x| < 1,
|x| − 1
η

x +
1+ η − |x|

η
φ2(φ1(x)) for 1 ≤ |x| < 1+ η,

x, for |x| ≥ 1+ η.

Notice that φ3 is a Lipschitz map with

φ3 = Id on (Rn+1
\ B1+η) ∪ {(1+ t) x : t ∈ (0, η), x ∈ Uε(K ∩ ∂B)}.

In particular, J \ cl(B) = φ3(K \ cl(B)) = K \ cl(B) and J ∩ cl(B) = φ3(K ∩ cl(B)) =
φ2(K1) and, by (4.2), (4.1) holds.

Thus it remains to construct the map φ2. Up to conjugation with a stereographic pro-
jection with pole x0, the existence of φ2 is reduced to the following problem. Given

(i) a connected open set � ⊂ Rn with bounded complement and with Hn(∂�) = 0,
(ii) a ball BR ⊂ Rn such that ∂� ⊂⊂ BR and

(iii) a σ > 0,

find ε > 0 and a Lipschitz map φ : Rn→ Rn such that

(a) φ = Id on Uε(∂�) ∪ (Rn \�) ∪ Rn \ B2R and
(b) Hn(φ(BR ∩�)) < σ .

This can be achieved as follows. Let W be the Whitney decomposition of B2R ∩ �,
constructed from the standard family of dyadic cubes in Rn. Given ε > 0 we can find a
“face connected” finite subfamily W0 of W such that

(BR ∩�) \ Uε(∂�) ⊂
⋃

Q∈W0

Q,

and for which there exists Q0 ∈ W0 with Q0 \ BR 6= ∅. We now construct a Lipschitz
map f : Rn+1

→ Rn+1 such that f = Id on Rn+1
\
⋃
Q∈W0

Q with

f
( ⋃
Q∈W0

Q ∩ BR

)
⊂

⋃
Q∈W0

∂Q.

To this end we choose a ball U0 ⊂⊂ Q0 \ BR , and then define a Lipschitz map f0 :

Rn→ Rn with f0 = Id on Rn \Q0, f0(U0) = Q0 and f0(Q0 \U0) = ∂Q0 by projecting
Q0 \ U0 radially from the center of U0 onto ∂Q0, and then stretching U0 onto Q0. Let
now Q1 ∈ W0 share a hyperface with Q0, so that the side-length of Q1 is at most twice
that of Q0. In case the side of Q1 is twice that of Q0, we subdivide Q1 into 2n subcubes
and denote by Q̂1 the one sharing a hyperface with Q0; otherwise we set Q̂1 = Q1.
Let x1 ∈ Q0 be the reflection of the center of Q̂1 with respect to the common hyperface
between Q0 and Q̂1. Then we can find a ball U1 ⊂⊂ Q0 and define a Lipschitz map
f̂1 : Rn→ Rn such that f̂1 = Id on Rn\(Q0∪Q̂1), f̂1((Q̂1∪Q0)\U1) ⊂ ∂(Q0∪Q̂1) and
f̂1(U1) = Q̂1∪Q0. In the case when Q̂1 6= Q1 we perform a further radial projection onto
∂Q1 from a small ball centered at the center of Q̂1. In this way we construct a Lipschitz
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map f1 : Rn→ Rn such that f1 = Id on Rn\(Q0∪Q1), f1((Q1∪Q0)\U1) ⊂ ∂Q0∪∂Q1
and f1(U1) = Q1 ∪ Q0. Thus g1 := f1 ◦ f0 is a Lipschitz map such that g1 = Id on
Rn \ (Q0 ∪Q1) and g1((Q0 ∪Q1) \U0) ⊂ ∂Q0 ∪ ∂Q1. A simple iteration concludes the
proof.

Step 2. In this step we address cone competitors. As before, we consider ballsBr centered
at 0 with Br ⊂⊂ Rn+1

\H . We assume in addition thatK ∩ ∂Br is Hn−1-rectifiable with
Hn−1(K ∩ ∂Br) <∞ and that r is a Lebesgue point of (0,∞) 3 t 7→ Hn−1(K ∩ ∂Bt ).
All these conditions are fullfilled for a.e. r , and again by scaling we can assume that r = 1
and use B instead of B1. Let K ′ denote the cone competitor of K in B. For s ∈ (0, 1) set

ϕs(r) :=


0, r ∈ [0, 1− s),
r − (1− s)

s
, r ∈ [1− s, 1],

r, r ≥ 1,

and φs(x) := ϕs(|x|)x/|x| for x ∈ Rn+1. Then φs : Rn+1
→ Rn+1 is a Lipschitz map

with φs = Id on Rn+1
\ B. In particular, φs(K) \ B = K \ B, and thus we only need to

show that
lim sup
s→0+

Hn(φs(K ∩ B)) ≤ Hn(K ′ ∩ B).

Since φs(K ∩ B1−s) = {0}, we just have to show that

lim sup
s→0+

Hn(φs(K) ∩ (B \ B1−s)) ≤ Hn−1(K ∩ ∂B)/n.

Denoting by JKφs the tangential Jacobian of φs with respect to K , we find

Hn(φs(K) ∩ (B \ B1−s)) =

∫
K∩(B\B1−s )

JKφs dHn

=

∫ 1

1−s
dt

∫
K∩∂Bt∩{ν·x̂<1}

JKφs√
1− (ν · x̂)2

dHn−1
+

∫
K∩(B\B1−s )∩{ν·x̂=1}

JKφs dHn, (4.3)

where ν(x) ∈ Sn+1
∩ (TxK)

⊥ for Hn-a.e. x ∈ K and x̂ := x/|x|. We first notice that on
the set K ∩ (B \ B1−s) ∩ {ν · x̂ = 1} we have JKφs ≤ 1. Moreover

lim
s→0

Hn(K ∩ (B \ B1−s)) = 0,

and thus the second term in (4.3) can be ignored. At the same time, for a constant C,

JKφs(x) ≤ C +
√

1− (x̂ · ν)2 ϕ′s(|x|)(ϕs(|x|)/|x|)
n−1 for Hn-a.e. x ∈ K.

The constant C gives a negligible contribution to the integral as s ↓ 0; as for the second
term, having ϕ′s = 1/s on (1− s, 1), we find∫ 1

1−s
Hn−1(K ∩ ∂Bt )ϕ

′
s(t)

(
ϕs(t)

t

)n−1

dt =
1
s

∫ 1

1−s
Hn−1(K ∩ ∂Bt )

(
ϕs(t)

t

)n−1

dt.
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Since t = 1 is a Lebesgue point of (0,∞) 3 t 7→ Hn−1(K ∩ ∂Bt ), we have

lim
s→0

1
s

∫ 1

1−s
|Hn−1(K ∩ ∂Bt )−Hn−1(K ∩ ∂B)| dt = 0,

so that combining the above remarks we find

lim sup
s→0+

Hn(φs(K ∩ B)) ≤ Hn−1(K ∩ ∂B) lim sup
s→0+

1
s

∫ 1

1−s

(
ϕs(t)

t

)n−1

dt

=
Hn−1(K ∩ ∂B)

n
,

as required. This completes the proof that A(H,K0) is a good class.

Step 3. Having proved the first statement of the theorem, we now show the rest. Under the
rectifiability assumption onK0, any minimizing sequence in A(H,K0) consists of rectifi-
able sets, and we can therefore apply Theorem 2. Thus Hn Kj

∗

⇀ µ = θHn K , where
K is countably Hn-rectifiable and θ ≥ 1. Moreover we assume that εj ↓ 0 quantifies the
almost minimality of Kj , namely inf{Hn(J ) : J ∈ A(H,K0)} ≥ Hn(Kj )− εj .

In this step we prove that θ ≤ 1 µ-a.e. For contradiction, assume that θ(x) = 1 + σ
> 1 for some x where K admits an approximate tangent plane T (cf. Step 3 in the proof
of Theorem 2). Without loss of generality we can assume x = 0 and T = {y : yn+1 = 0}.
By (1.5), we can find r0 > 0 such that

K ∩ Br ⊂ Sεr , 1+ σ ≤
µ(cl(Br))
ωnrn

≤ 1+ σ + εσ, ∀r < r0, (4.4)

where Sεr = Br ∩ {|xn+1| < εr}. If we fix any r < r0 we then find j0 = j0(r) ∈ N such
that

Hn(Kj ∩Br) >

(
1+

σ

2

)
ωnr

n, Hn((Kj ∩Br)\Sεr) <
σ

4
ωnr

n, ∀j ≥ j0, (4.5)

and thus

Hn(Kj ∩ Sεr) >

(
1+

σ

4

)
ωnr

n, ∀j ≥ j0.

Set
Xεr := {x = (x

′, xn+1) ∈ Sεr : |x
′
| < (1−

√
ε)r},

and define f : Xεr∪ (Rn+1
\Br)→ Rn+1 with f (x) := (x′, 0) if x ∈ Xεr and f (x) := x

otherwise. In this way Lip f ≤ 1 + C
√
ε, and thus by Kirszbraun’s theorem [Fed69,

2.10.43] there exists a Lipschitz extension f̂ : Rn+1
→ Rn+1 with Lip f̂ ≤ 1 + C

√
ε.

Such an extension belongs to 6(H) and we thus find

Hn(Kj ∩ Br)− εj

≤ Hn(f̂ (Kj ∩Xεr))︸ ︷︷ ︸
I

+Hn(f̂ (Kj ∩ (Sεr \Xεr)))︸ ︷︷ ︸
II

+Hn(f̂ (Kj ∩ (Br \ Sεr)))︸ ︷︷ ︸
III

.
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By construction, I ≤ ωnrn, while, by (4.5), Hn(Kj ∩ Br) > (1+ σ/2)ωnrn and

III ≤ (Lip f̂ )nHn(Kj ∩ (Br \ Sεr)) < (1+ C
√
ε)n

σ

4
ωnr

n.

Hence, as j →∞,(
1+

σ

2

)
ωnr

n
≤ ωnr

n
+ lim inf

j→∞
II + (1+ C

√
ε)n

σ

4
ωnr

n,

that is, (
1
2
−
(1+ C

√
ε)n

4

)
σ ≤ lim inf

j→∞

II
ωnrn

. (4.6)

By (4.4) and again by the monotonicity of s−nµ(Bs), we finally estimate

lim sup
j→∞

II ≤ (1+ C
√
ε)nµ(cl(Br) \ B(1−√ε)r)

≤ (1+ C
√
ε)n
(
(1+ σ + εσ )− (1+ σ)(1−

√
ε)n
)
ωnr

n. (4.7)

However, since σ > 0, (4.6) and (4.7) are incompatible when ε is sufficiently small.

Step 4. We show that Hn(Kj ) → Hn(K), thus proving the first equality in (1.8). Note
that since Hn Kj weakly converges to Hn K in Rn+1

\ H , we only need to exclude
any concentration of mass in H in the limit, as well as any loss of mass at infinity.

We first let R0 > 0 be such that H ⊂ BR0 and consider the Lipschitz map ϕ(x) :=
min{|x|, R0}x/|x|. Obviously ϕ ∈ 6(H) and we easily compute

Hn(Kj )− εj ≤ Hn(ϕ(Kj )) ≤ Hn(Kj ∩ B2R0)+
1
2n

Hn(Kj \ B2R0).

This implies that Hn(Kj \ B2R0)→ 0. In order to prove Hn(Kj )→ Hn(K), it remains
to show that there is no loss of mass at H . To this end, fix η > 0, and consider δ > 0 and
the map π as in (1.7). Then, from π ∈ 6(H) and Hn(π(Uδ(H))) ≤ Hn(H) = 0,

Hn(K) ≤ lim sup
j→∞

Hn(Kj ) ≤ lim sup
j→∞

Hn(π(Kj )) ≤ (1+ η)n lim sup
j→∞

Hn(Kj \ Uδ(H))

= (1+ η)n lim sup
j→∞

Hn
(
(Kj ∩ cl(B2R0)) \ Uδ(H)

)
≤ (1+ η)nHn(K ∩ cl(B2R0)) ≤ (1+ η)

nHn(K).

The arbitrariness of η implies that lim supj Hn(Kj ) = Hn(K).

Step 5. To complete the proof we need to show the second equality in (1.8). We argue
in two steps, borrowing some important ideas from [DPH03]. We show in this step that
Hn(K) ≤ Hn(φ(K)) whenever φ ∈ 6(H) is a diffeomorphism. Let G(n) denote the
Grassmannian of n-planes in Rn+1, let d(τ, σ ) denote the geodesic distance onG(n), and
let J τφ be the tangential Jacobian of φ with respect to τ ∈ G(n). Given ε > 0, by Lusin’s
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theorem we can find δ > 0 and a compact set K̂ ⊂ K with Hn(K \ K̂) < ε such that K
admits an approximate tangent plane τ(x) at every x ∈ K̂ ,

sup
x∈K̂

sup
y∈Bx,δ

|∇φ(x)−∇φ(y)| ≤ ε, sup
x∈K̂

sup
y∈K̂∩Bx,δ

d(τ (x), τ (y)) < ε, (4.8)

and moreover, if we denote by Sx,r the set of points in Bx,r at distance at most εr from
x + τ(x), then K ∩ Bx,r ⊂ Sx,r for every r < δ and x ∈ K̂ . By the Vitali–Besicovitch
covering theorem [AFP00, Theorem 2.19] we can find a finite disjoint family of closed
balls {cl(Bi)} with Bi = Bxi ,ri ⊂⊂ Rn+1

\ H , xi ∈ K̂ , and ri < δ, such that Hn(K̂ \⋃
i cl(Bi)) = 0. In particular a finite subfamily of them, still denoted by {Bi}, satisfies

Hn(K̂ \
⋃
i cl(Bi)) < ε; furthermore, by slightly enlarging the radii we can still assume

that the balls are disjoint, that their radii are less than δ, and that Hn(K̂ \
⋃
i Bi) < ε.

By exploiting the construction of Step 3, we can find j (ε) ∈ N and maps fi : cl(Bi)→
cl(Bi) with Lip fi ≤ 1+ C

√
ε such that, for a certain Xi ⊂ Si = Sxi ,εri ,

fi(Xi) ⊂ Bi ∩ (xi + τ(xi)), (4.9)
Hn
(
fi((Kj ∩ Bi) \Xi)

)
≤ C
√
ε ωnr

n
i , ∀j ≥ j (ε). (4.10)

By (4.8), (4.9) and the area formula, using ωn rni ≤ Hn(K ∩Bi) (thanks to monotonicity)
and setting αi := Hn((K \ K̂) ∩ Bi), we obtain

Hn(φ(fi(Kj ∩Xi))) =

∫
fi (Kj∩Xi )

J τ(xi )φ(x) dHn(x) ≤ (J τ(xi )φ(xi)+ ε)ωnr
n
i

≤ (J τ(xi )φ(xi)+ ε)Hn(K ∩ Bi) ≤ (J
τ(xi )φ(xi)+ ε) (Hn(K̂ ∩ Bi)+ αi)

≤

∫
K̂∩Bi

(J τ(x)φ(x)+ 2ε) dHn(x)+ ((Lipφ)n + ε)αi

= Hn(φ(K̂ ∩ Bi))+ 2εHn(K ∩ Bi)+ ((Lipφ)n + ε)αi, (4.11)

where in the last identity we have used the injectivity of φ. Recalling Step 3, each fi is
the identity on ∂Bi . Since {cl(Bi)} is a finite disjoint family of closed balls, we can define
f : Rn → Rn by imposing f = fi on each Bi and f = Id on Rn \

⋃
i Bi . Obviously

f ∈ 6(H). Combining (4.10) with ωn rni ≤ Hn(K ∩ Bi), adding up over i, and letting
j → ∞ we thus find Hn(Kj ) − εj ≤ Hn(φ(f (Kj ))) ≤ Hn(φ(K̂)) + %(ε) for every
j ≥ j (ε), where %(ε)→ 0 as ε → 0+ in a way which depends on n, Lipφ, and Hn(K)

only. We first let j →∞ and then ε→ 0 to prove our claim.

Step 6. By Step 5, the canonical density one varifold associated to the rectifiable set K
turns out to be stationary in Rn+1

\H . By Allard’s regularity theorem [Sim83, Chapter 5]
there exists an Hn-negligible closed set S ⊂ K such that 0 := K \ S is a real analytic
hypersurface.

We may now exploit this fact to improve on Step 5 and show that Hn(K) ≤

Hn(φ(K)) for every φ ∈ 6(H), which proves that K is a sliding minimizer (and hence
an (M, 0,∞)-minimal set). The idea is that, by regularity of 0, at a fixed distance from
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the singular set one can project Kj directly onto K , rather than onto its affine tangent
planes localized in balls. More precisely, since Hn(H ∪ S) = 0 and Hn(K) < ∞, one
has

lim sup
j→∞

Hn(Kj ∩ Uδ(H ∪ S)) ≤ Hn(K ∩ cl(Uδ(H ∪ S))) =: %(δ), (4.12)

where %(δ) → 0 as δ → 0+. If Nε(A) denotes the normal ε-neighborhood of A ⊂ 0,
then by compactness of 0δ := 0 \Uδ(H ∪ S) there exists ε < δ such that projection onto
0 defines a smooth map p : N2ε(0δ)→ 0δ . We now define a Lipschitz map

fε,δ : Nε(0δ) ∪ Uδ/2(H ∪ S) ∪ (Rn+1
\ Uδ(0))→ Rn+1

by setting fε,δ = p on Nε(0δ), and fε,δ = Id on the remainder. Observe that

lim
ε↓0

Lip fε,δ = 1 <∞.

For every δ we then choose ε < δ so that f = fε,δ has Lipschitz constant at most 2 and
extend it to a Lipschitz map f̂ on Rn+1 with the same Lipschitz constant. Obviously f̂
belongs to 6(H). We can then estimate

Hn(f̂ (Kj ) \ 0δ) ≤ (Lip f̂ )nHn(Kj \Nε(0δ)). (4.13)

Observe that Rn+1
\Nε(0δ) ⊂⊂ Rn+1

\ Uε/2(K) ∪ U2δ(H ∪ S), and thus

lim sup
j→∞

Hn(Kj \Nε(0δ)) ≤ Hn(K ∩ U2δ(H ∩ S))
(4.12)
≤ %(2δ). (4.14)

Combining (4.13) and (4.14) yields

lim sup
j

Hn(f̂ (Kj ) \ 0δ) ≤ 2n%(2δ).

On the other hand, 0δ ⊂ K . Thus, combining (4.13) and (4.14) with a standard diagonal
argument we obtain a sequence of maps fj ∈ 6(H) such that Hn(fj (Kj )\K)→ 0. Since
each Kj equals ψj (K0) for some ψj ∈ 6(H), we conclude that there exists a sequence
{ϕj } ⊂ 6(H) such that Hn(ϕj (K0) \K)→ 0.

We are now ready to show the right identity in (1.8). Fix φ ∈ 6(H). Then

Hn(φ(K)) ≥ lim inf
j→∞

Hn(φ ◦ ϕj (K0))

≥ inf{Hn(J ) : J ∈ A(H,K0)} = Hn(K).

This shows that K is a sliding minimizer. ut
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(2009) Zbl 1184.49041 MR 2518893

[DPH03] De Pauw, T., Hardt, R.: Size minimization and approximating problems. Calc. Var. Par-
tial Differential Equations 17, 405–442 (2003) Zbl 1022.49026 MR 1993962

[DDG16] De Philippis, G., De Rosa, A., Ghiraldin, F.: A direct approach to Plateau’s problem in
any codimension. Adv. Math. 288, 59–80 (2016) Zbl 1335.49067 MR 3436382

[Fan16] Fang, Y.: Existence of minimizers for the Reifenberg Plateau problem. Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (5) 16, 817–844 (2016) Zbl 06678535

[Fed69] Federer, H.: Geometric Measure Theory. Grundlehren Math. Wiss. 153, Springer, New
York (1969) Zbl 0176.00801 MR 0257325

[Feu09] Feuvrier, V.: Condensation of polyhedric structures onto soap films. arXiv:0906.3505
(2009)

[Har93] Harrison, J.: Stokes’ theorem for nonsmooth chains. Bull. Amer. Math. Soc. 29, 235–242
(1993) Zbl 0863.58008 MR 1215309

[Har14] Harrison, J.: Soap film solutions to Plateau’s problem. J. Geom. Anal. 24, 271–297
(2014) Zbl 1302.49059 MR 3145925

[Har15] Harrison, J.: Operator calculus of differential chains and differential forms. J. Geom.
Anal. 25, 357–420 (2015) Zbl 1325.58003 MR 3299287

[HP12] Harrison, J., Pugh, H.: Topological aspects of differential chains. J. Geom. Anal. 22,
685–690 (2012) Zbl 1263.58002 MR 2927674

[HP14] Harrison, J., Pugh, H.: Personal communication (2014)
[HP16] Harrison, J., Pugh, H.: Existence and soap film regularity of solutions to Plateau’s prob-

lem. Adv. Calc. Var. 9, 357–394 (2016) Zbl 06636315 MR 3552459
[Hir94] Hirsch, M. W.: Differential Topology. Grad. Texts in Math. 33, Springer, New York

(1994) Zbl 0356.57001 MR 1336822

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0327.49043&format=complete
http://www.ams.org/mathscinet-getitem?mr=0420406
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0585.49030&format=complete
http://www.ams.org/mathscinet-getitem?mr=0855173
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0957.49001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1857292
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0633.53002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0936419
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1271.49030&format=complete
http://www.ams.org/mathscinet-getitem?mr=3060500
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1304.49083&format=complete
http://www.ams.org/mathscinet-getitem?mr=3329849
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0966.49024&format=complete
http://www.ams.org/mathscinet-getitem?mr=1683164
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1183.28006&format=complete
http://www.ams.org/mathscinet-getitem?mr=2388959
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1184.49041&format=complete
http://www.ams.org/mathscinet-getitem?mr=2518893
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1022.49026&format=complete
http://www.ams.org/mathscinet-getitem?mr=1993962
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1335.49067&format=complete
http://www.ams.org/mathscinet-getitem?mr=3436382
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06678535&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0176.00801&format=complete
http://www.ams.org/mathscinet-getitem?mr=0257325
http://arxiv.org/abs/0906.3505
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0863.58008&format=complete
http://www.ams.org/mathscinet-getitem?mr=1215309
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1302.49059&format=complete
http://www.ams.org/mathscinet-getitem?mr=3145925
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1325.58003&format=complete
http://www.ams.org/mathscinet-getitem?mr=3299287
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1263.58002&format=complete
http://www.ams.org/mathscinet-getitem?mr=2927674
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06636315&format=complete
http://www.ams.org/mathscinet-getitem?mr=3552459
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0356.57001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1336822


2240 C. De Lellis et al.

[Lia13] Liang, X.: Topological minimal sets and existence results. Calc. Var. Partial Differential
Equations 47, 523–546 (2013) Zbl 1271.49033 MR 3070554

[Mag12] Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems: an Introduc-
tion to Geometric Measure Theory. Cambridge Stud. Adv. Math. 135, Cambridge Univ.
Press, Cambridge (2012) Zbl 1255.49074 MR 2976521

[Mat95] Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Fractals and Recti-
fiability. Cambridge Stud. Adv. Math. 44, Cambridge Univ. Press, Cambridge (1995)
Zbl 0911.28005 MR 1333890

[Pre87] Preiss, D.: Geometry of measures in Rn: distribution, rectifiability, and densities. Ann.
of Math. (2) 125, 537–643 (1987) Zbl 0627.28008 MR 0890162

[Rei60] Reifenberg, E. R.: Solution of the Plateau problem form-dimensional surfaces of varying
topological type. Acta Math. 104, 1–92 (1960) Zbl 0099.08503 MR 0114145

[Rei64a] Reifenberg, E. R.: An epiperimetric inequality related to the analyticity of minimal sur-
faces. Ann. of Math. 80, 1–14 (1964) Zbl 0151.16701 MR 0171197

[Rei64b] Reifenberg, E. R.: On the analyticity of minimal surfaces. Ann. of Math. 80, 15–21
(1964) Zbl 0151.16702 MR 0171198

[Sim83] Simon, L.: Lectures on Geometric Measure Theory. Proc. Centre Math. Anal. Aus-
tral. Nat. Univ. 3, Centre for Mathematical Analysis, Canberra (1983) Zbl 0546.49019
MR 0756417

[Ste70] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Prince-
ton Math. Ser. 30, Princeton Univ. Press, Princeton, NJ (1970) Zbl 0207.13501
MR 0290095

[Tay76] Taylor, J. E.: The structure of singularities in soap-bubble-like and soap-film-like mini-
mal surfaces. Ann. of Math. (2) 103, 489–539 (1976) Zbl 0335.49032 MR 0428181

[Whi83] White, B.: Existence of least-area mappings of N -dimensional domains. Ann. of Math.
(2) 118, 179–185 (1983) Zbl 0526.49029 MR 0707165

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1271.49033&format=complete
http://www.ams.org/mathscinet-getitem?mr=3070554
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1255.49074&format=complete
http://www.ams.org/mathscinet-getitem?mr=2976521
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0911.28005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1333890
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0627.28008&format=complete
http://www.ams.org/mathscinet-getitem?mr=0890162
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0099.08503&format=complete
http://www.ams.org/mathscinet-getitem?mr=0114145
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0151.16701&format=complete
http://www.ams.org/mathscinet-getitem?mr=0171197
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0151.16702&format=complete
http://www.ams.org/mathscinet-getitem?mr=0171198
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0546.49019&format=complete
http://www.ams.org/mathscinet-getitem?mr=0756417
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0207.13501&format=complete
http://www.ams.org/mathscinet-getitem?mr=0290095
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0335.49032&format=complete
http://www.ams.org/mathscinet-getitem?mr=0428181
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0526.49029&format=complete
http://www.ams.org/mathscinet-getitem?mr=0707165

	Introduction
	Proof of Theorem 2
	Proof of Theorem 4
	Proof of Theorem 7
	References

