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Abstract. Let G be a permutation group on a set �. A subset of � is a base for G if its point-
wise stabilizer is trivial; the base size of G is the minimal cardinality of a base. In this paper we
initiate the study of bases for algebraic groups defined over an algebraically closed field. In par-
ticular, we calculate the base size for all primitive actions of simple algebraic groups, obtaining
the precise value in almost all cases. We also introduce and study two new base measures, which
arise naturally in this setting. We give an application concerning the essential dimension of simple
algebraic groups, and we establish several new results on base sizes for the corresponding finite
groups of Lie type. The latter results are an important contribution to the classical study of bases
for finite primitive permutation groups. We also indicate some connections with generic stabilizers
for representations of simple algebraic groups.
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1. Introduction

Let G be a transitive permutation group on a set � with point stabilizer H . A subset of
� is a base for G if its pointwise stabilizer in G is trivial. The base size of G, denoted
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by b(G,H) (or just b(G) if the context is clear), is the minimal size of a base for G.
Equivalently, the base size is the smallest number b such that the intersection of some b
conjugates of H in G is trivial.

Determining the base size of a given permutation group is a classical problem in per-
mutation group theory, with a long tradition and many applications. For finite permutation
groups, one of the earliest results is a theorem of Bochert [10] from 1889, which states that
ifG is a primitive permutation group of degree n not containing the alternating group An,
then b(G) ≤ n/2. The optimal bound in this situation was obtained by Liebeck [54],
showing that b(G) < 9 log n, unless n =

(
m
k

)r and G is a subgroup of Sm o Sr containing
(Am)

r , where Am acts on k-element subsets of {1, . . . , m}. The proof of this result relies
on the Classification of Finite Simple Groups. By imposing additional conditions on G it
is possible to establish stronger bounds. For example, if G is a finite primitive solvable
group then a theorem of Seress [70] states that b(G) ≤ 4.

Bases arise naturally in several different contexts. For example, Bochert’s result was
motivated by the classical problem of bounding the order of a finite primitive permutation
group, which attracted a lot of attention in the 19th century. Here |G| ≤ nb(G), so an up-
per bound on the base size of G yields an upper bound on its order. In more recent years,
bases have been used extensively in the computational study of finite permutation groups
(see [71, Chapter 4] for further details), whence the problem of calculating base sizes has
important practical applications. In the graph-theoretic literature, if 0 is a graph with au-
tomorphism group G = Aut(0), then b(G) is called the fixing number (also determining
number or rigidity index) of 0, and this is a well-studied graph invariant (see [4] and the
references therein). In a different direction, some classical problems in the representation
theory of groups can also be stated in terms of bases. For instance, if H is a group and V
is a faithful H -module, then H has a regular orbit on V if and only if the corresponding
affine group V oH ≤ AGL(V ) admits a base of size 2.

Recently, a number of papers have investigated bases for finite non-solvable permu-
tation groups (see [5, 15–21, 30, 35, 42, 43, 45, 46], for example). One of the central
motivations here comes from a conjecture of Cameron and Kantor [23] on finite almost
simple primitive groups. The conjecture asserts that there exists an absolute constant c
such that b(G) ≤ c for all such groups G, excluding a prescribed list of obvious excep-
tions involving the action of alternating and symmetric groups on subsets and partitions,
and also the action of classical groups on subspaces of the natural module. This con-
jecture was proved by Liebeck and Shalev [61], using probabilistic methods, and more
recently it has been shown that c = 7 is the best possible constant (see the sequence of
papers [15, 16, 19, 20]). More precisely, confirming a conjecture of Cameron [22, p. 122],
it is known that b(G) ≤ 7, with equality if and only if G = M24 in its 5-transitive action
on 24 points. Again, the proof uses probabilistic methods.

In this paper, we initiate the study of bases for infinite permutation groups. At this
level, very little is known in general, with the exception of a few special cases. For ex-
ample, in [35], Goldstein and Guralnick compute the base size for the action of the clas-
sical group PGL2n(k) on the set of cosets of the subgroup PGSp2n(k), for any field k.
Bases for the action of PGLn(k) on subspace partitions of the natural module are studied
by James [46]. In this paper we conduct a systematic study of bases for primitive actions
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of simple algebraic groups, motivated in part by the recent advances in our understand-
ing of bases for finite groups of Lie type. Of course, in this context the aforementioned
probabilistic methods are no longer available, so we need to develop a new approach and
methodology.

As we will see, the unprecedented scope and precision of our results also sheds new
light on the study of bases for finite primitive permutation groups. For instance, ear-
lier work shows that there are infinitely many so-called non-standard finite primitive
groups G with b(G) = b for 2 ≤ b ≤ 5, and a unique group with b(G) > 6, namely, the
Mathieu group G = M24 acting on 24 points (see [15, Definition 1.1] for the precise def-
inition of a non-standard group). In this paper, we complete the picture via Theorem 13,
which reveals that there are infinitely many with b(G) = 6 (only six examples were
known previously). More generally, a major project is to determine the exact base size
of every finite almost simple primitive group. In [17] and [18] we consider non-subspace
actions of finite classical groups (see [15, Definition 2.1]), and bases for finite exceptional
groups will also be the subject of a future paper. In particular, our work is an important
contribution to ongoing efforts to classify the finite primitive permutation groups with
base size two.

Let G be a (closed) connected affine algebraic group over an algebraically closed
field K of characteristic p ≥ 0. Let � be a faithful transitive G-variety with point stabi-
lizer H , so we may identify � with the coset variety G/H . We define three base-related
measures that arise naturally in this context:

(i) The exact base size, denoted b(G,H), is the smallest integer c such that � contains
c points with trivial pointwise stabilizer.

(ii) The connected base size, denoted b0(G,H), is the smallest integer c such that �
contains c points whose pointwise stabilizer has trivial connected component, i.e.
the pointwise stabilizer is finite.

(iii) The generic base size, denoted b1(G,H), is the smallest integer c such that the
product variety �c = �× · · · ×� (c factors) contains a non-empty open subvariety
3 and every c-tuple in 3 is a base for G.

Evidently, we have
b0(G,H) ≤ b(G,H) ≤ b1(G,H).

Our ultimate goal is to determine these base-related measures for all simple algebraic
groups G and all closed maximal subgroups H of G (that is, for all primitive actions
of simple algebraic groups). Indeed, we essentially achieve this goal by computing these
quantities in almost every case. In the handful of exceptional cases, we give a very narrow
range for the possible values. Note that if the context is clear, we will sometimes write
b(G), b0(G) and b1(G) for the three base measures defined above.

Remark 1. More generally, one can define b0(G,X), b(G,X) and b1(G,X) for any
affine algebraic groupG and faithful irreducibleG-varietyX. For instance, b0(G,X) = b

(respectively, b1(G,X) = b) if and only if b is minimal such that the product variety Xb

contains a non-empty open subvariety X0 with the property that the stabilizer of a point
in X0 is finite (respectively, trivial). In characteristic 0, these measures have been studied
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by various authors when G is semisimple and X is a KG-module (see Èlashvili [27, 28]
and Popov [64, 65], for example). In addition, there is a connection between stabilizers
of points on Grassmannians and stabilizers in certain tensor products of linear represen-
tations. We refer the reader to [66] for a very nice survey of results of this nature in
characteristic 0. In particular, all cases of irreducible modules for simple algebraic groups
where there is a regular orbit have been determined. This has recently been extended to
positive characteristic by Guralnick et al. [40].

Remark 2. The connected base size is also related to the notion of subgroup height ap-
pearing in the geometric group theory literature. Following [34], an infinite subgroup H
of a group G has height n, denoted µ(H) = n, if there exists a collection of n distinct
G-conjugates of H whose common intersection is infinite, but the intersection of any
n + 1 distinct conjugates of H is finite. In particular, if H is core-free, then � = G/H
is a faithful transitive G-set and µ(H) = n if there exist n points in � whose pointwise
stabilizer is infinite, but the stabilizer of any n + 1 points is finite. Evidently, if G is an
algebraic group with point stabilizer H , then b0(G,H) ≤ µ(H)+ 1.

A simple algebraic group G is either classical or exceptional, and there is a dichotomy in
our approach. The main theorem on the subgroup structure of classical algebraic groups
is due to Aschbacher [1] (see also Liebeck and Seitz [57]). Roughly speaking, a maximal
closed positive-dimensional subgroup H of G is either contained in one of five natu-
ral, or geometric, subgroup collections (denoted by C1, C2, C3, C4 and C6 in [57]), or the
connected component H 0 is simple (modulo scalars) and acts irreducibly on the natural
G-module V (we denote the latter collection by S). The geometric collections include sta-
bilizers of subspaces of V , and normalizers of appropriate direct sum and tensor product
decompositions of V .

In stating our results for a classical groupG, we make a distinction between the prim-
itive actions of G in which a point stabilizer H acts reducibly on V , and those in which
the stabilizer is irreducible. More precisely, we say that the action ofG on� is a subspace
action if one of the following holds:

(i) � is an orbit of subspaces of V ; or
(ii) the action of G on � is equivalent to the action of an isomorphic classical group L

on an orbit of subspaces of the natural L-module.

The possibilities that arise in case (ii) are conveniently listed in Table 1. Here the ‘type
of H ’ describes the approximate group-theoretic structure of H (this is consistent with
the notation used in [57]). In addition, we use the abbreviations ‘n.s.’ and ‘n.d.’ to denote
the terms ‘non-singular’ and ‘non-degenerate’, respectively.

It is worth noting that this is the first paper to systematically study the base size of
classical groups (finite or infinite) in these natural subspace actions (see Theorem 4). As
noted above (see Remark 1), some of our results for subspace actions of linear groups in
characteristic 0 are related to earlier work of Èlashvili [27], Popov [64] and others.

There is a similar description of the maximal subgroups of an exceptional algebraic
groupG, which is due to Liebeck and Seitz [58]. Essentially, a positive-dimensional max-
imal subgroup of G is either parabolic or of the form NG(X) for a known reductive sub-
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Table 1. Some subspace actions

G Type of H Conditions Equivalent action

Spn On p = 2, n ≥ 4 SOn+1 on n.s. 1-spaces
SO8 Sp4 ⊗ Sp2 p 6= 2 SO8 on n.d. 3-spaces
SO8 GL4 SO8 on n.d. 2-spaces
SO8 SO7 H irreducible, p 6= 2 SO8 on n.d. 1-spaces
SO8 Sp6 H irreducible, p = 2 SO8 on n.s. 1-spaces
SL4 Sp4 SO6 on n.d. 1-spaces
Sp4 Sp2 o S2 p 6= 2 SO5 on n.d. 1-spaces
Sp4 Sp2 o S2 p = 2 SO5 on n.s. 1-spaces

group X. Once again, we will make a distinction between parabolic and non-parabolic
subgroups.

In order to state our main results, we fix the following notation for the rest of the paper:
let K be an algebraically closed field of characteristic p ≥ 0, let G be a simple (and in
particular connected) algebraic group over K and let � be a primitive G-variety with
positive-dimensional point stabilizer H . We remark that in our results, we can take G to
be any version of the simple algebraic group; the center will lie in the kernel of the action
of G on �, and will be ignored in the statements. In addition, K can be any algebraically
closed field of characteristic p (see the end of Section 2 for further comments on the
underlying field).

In the statement of Theorem 1 we use the notation Pi to denote the standard maxi-
mal parabolic subgroup of G that corresponds to deleting the i-th node from the Dynkin
diagram of G, in terms of the standard labelling (see [12, p. 250]).

Theorem 1. LetG be a simple algebraic group over an algebraically closed field and let
� be a primitive G-variety with point stabilizer H . Assume G is not a classical group in
a subspace action. Then b1(G,H) ≤ 6, with equality if and only if (G,H) = (E7, P7),
(E6, P1) or (E6, P6).

Theorem 2. Let G be a simple classical algebraic group in a primitive non-subspace
action with point stabilizer H . Then b1(G,H) ≤ 4, with equality if and only if (G,H) =
(SL6,Sp6), (SO7,G2) (p 6= 2) or (Sp6,G2) (p = 2).

We note that Theorem 1 establishes a strong algebraic group analogue of Cameron’s con-
jecture for finite almost simple primitive groups (strong in the sense that we are able to
determine all the cases in which the generic base size is exactly 6). Also note that Theo-
rem 2 can be viewed as an algebraic group version of the main theorem of [15].

Theorem 3. Let G be a simple algebraic group over an algebraically closed field of
characteristic p 6= 2 and let � be a primitive G-variety with point stabilizer H . Then
b(G,H) > 2 if and only if one of the following holds:

(i) dimH > 1
2 dimG;
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(ii) G = SOn andH is the stabilizer of a d-dimensional non-degenerate subspace of the
natural G-module, where n = 2d + ` with 2 ≤ ` ≤ d and `2

≤ n;
(iii) G = SLn and H is of type GLn/2 o S2, where n ≥ 4;
(iv) G = Sp6 and H is of type Sp2 o S3;
(v) G = E6 and H = A1A5.

Remark 3. As a corollary of Theorem 3, note that if b(G,H) > 2 and dimH ≤
1
2 dimG, then either H contains a maximal torus of G, or G = SOn (with n even) and
H is the stabilizer of a d-dimensional non-degenerate subspace (d odd), with d satisfying
the conditions in part (ii) of Theorem 3. In addition, in each of these cases we have

b0(G,H) = b(G,H) = b1(G,H) = 3.

We can also state a version of Theorem 3 when p = 2. Indeed, if we exclude the cases

(G,H) = (SOn,On/2 o S2) (n/2 even), (E7, A7.2), (E6, A1A5), (G2, A1Ã1)

then b(G,H) > 2 if and only if we are in one of the cases (i)–(iv) in Theorem 3.

Theorems 1–3 follow immediately from the detailed results we present in Theorems 4–7
below. First assume G is a classical group in a primitive subspace action, so the point
stabilizer H fixes a proper non-zero subspace U of the natural G-module V . Note that
if G is a symplectic or orthogonal group then primitivity implies that either U is non-
degenerate or totally singular with respect to the relevant underlying form on V , or G is
orthogonal, p = 2 and U is a non-singular 1-space. Without loss of generality, we may
assume that dimU ≤ 1

2 dimV . Our main result on subspace actions is Theorem 4 below
(in the statement of this result, δi,j denotes the familiar Kronecker delta).

Theorem 4. Let G be a simple classical algebraic group in a primitive subspace ac-
tion with point stabilizer H = GU , where d = dimU , n = dimV and d ≤ n/2. Set
k = dn/de.

(i) Suppose G = SLn and n ≥ 2. If d divides n then

b0(G,H) = b(G,H) = b1(G,H) = k + ε,

where

ε =

 3 if 1 < d = n/2,
2 if 1 < d < n/2,
1 if d = 1.

Otherwise, if d does not divide n, then

k + 1 ≤ b0(G,H) = b(G,H) = b1(G,H) ≤ k + 2+ δ3,k.

(ii) Suppose G = Spn and n ≥ 4. Then either

b0(G,H) = b(G,H) = b1(G,H) = k,

or one of the following holds:
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(a) n = 6, d = 2 and b0(G,H) = b(G,H) = b1(G,H) = 4;
(b) U is totally singular, d = n/2, b0(G,H) = b(G,H) = 4 and b1(G,H) =

5− δ2,p;
(c) H = On, p = 2, b0(G,H) = b(G,H) = n and b1(G,H) = n+ 1.

(iii) Suppose G = SOn and n ≥ 7, with p 6= 2 if n is odd. Then either

b0(G,H) = b(G,H) = b1(G,H) = k,

or one of the following holds:

(a) n = (k − 1)d + 1 (with k ≥ 4 if U is totally singular), b0(G,H) = b(G,H) =

k − 1 and b1(G,H) = k − ε, where ε = 1 if n is even, otherwise ε = 0;
(b) U is totally singular, d = n/2, n 6= 10 and

b0(G,H) = b(G,H) = b1(G,H) = c(n),

where c(8) = 7, c(12) = 6 and c(n) = 5 for all n ≥ 14;
(c) U is totally singular, n = 10, d = 5 and 5 ≤ b0(G,H) ≤ b1(G,H) ≤ 6;
(d) U is totally singular, k = 3 and b0(G,H) = b(G,H) = b1(G,H) = 4− δn,3d .

The next result deals with the non-subspace actions of classical groups.

Theorem 5. Let G be a simple classical algebraic group in a primitive non-subspace
action with point stabilizer H . Then one of the following holds:

(i) b0(G,H) = b(G,H) = b1(G,H) = 2;
(ii) b0(G,H) = b(G,H) = b1(G,H) = b > 2 and (G,H, b) is recorded in Table 2;

(iii) b0(G,H) = b(G,H) = 2, b1(G,H) = 3 and either G = SL2 and H is of type
GL1 o S2, or p 6= 2 and (G,H) = (SLn,SOn), (Spn,GLn/2) or (SOn,On/2 o S2);

(iv) 2 = b0(G,H) ≤ b(G,H) ≤ b1(G,H) = 3, p = 2 and (G,H) = (SOn,On/2 oS2),
where n ≡ 0 (mod 4) and n ≥ 8.

Table 2. Values of b in Theorem 5(ii)

G Type of H Conditions b

SLn GLn/2 o S2 n ≥ 4 3
Spn n = 6 4
Spn n ≥ 8 3

Spn Spn/2 o S2 n ≥ 8 3
Spn/3 o S3 n = 6 3
G2 (n, p) = (6, 2) 4

SOn GLn/2 n ≥ 10 3
G2 n = 7, p 6= 2 4

In the next two theorems we present our results for parabolic and non-parabolic actions
of exceptional algebraic groups, respectively.
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Theorem 6. Let G be a simple exceptional algebraic group and let � = G/H , where
H = Pi is a maximal parabolic subgroup of G. Then

c − ε ≤ b0(G,H) ≤ b(G,H) ≤ b1(G,H) ≤ c,

where c is defined in Table 3. Here an asterisk indicates that ε = 1, otherwise ε = 0 and
thus b0(G,H) = b(G,H) = b1(G,H) = c.

Table 3. G exceptional, H parabolic

H = P1 P2 P3 P4 P5 P6 P7 P8

G = E8 4 3 3 3 3 3 4 5
E7 5 4 4 3 3 4 6
E6 6 5 4 4∗ 4 6
F4 5∗ 4∗ 4∗ 5∗

G2 4∗ 4∗

Theorem 7. LetG be a simple exceptional algebraic group in a primitive non-parabolic
action with point stabilizer H . Then one of the following holds:

(i) b0(G,H) = b(G,H) = b1(G,H) = 2;
(ii) b0(G,H) = b(G,H) = b1(G,H) = b > 2 and (G,H, b) is recorded in Table 4;

Table 4. Values of b in Theorem 7(ii)

G H 0 Conditions b

E8 A1E7 3
E7 A1D6 3

T1E6 3
E6 F4 4

D5T1 3
A1A5 p 6= 2 3

F4 B4 4
C4 p = 2 4
D4 3
D̃4 p = 2 3

G2 A2 3
Ã2 p = 3 3

(iii) b0(G,H) = b(G,H) = 2, b1(G,H) = 3, p 6= 2 and

(G,H 0) = (E8,D8), (E7, A7), (E6, C4), (F4, A1C3) or (G2, A1Ã1);

(iv) 2 = b0(G,H) ≤ b(G,H) ≤ b1(G,H) ≤ 3, p = 2 and

(G,H 0) = (E7, A7), (E6, A1A5) or (G2, A1Ã1).
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We outline the idea behind the proof. Let G be an algebraic group over an algebraically
closed field of characteristic p ≥ 0, and let � = G/H be a faithful transitive G-variety,
where H is a closed subgroup of G. Let c ≥ 2 be an integer. The expression

Q(G, c) =
c

c − 1
· sup
x∈P

dim(xG ∩H)
dim xG

will play a central role, where P denotes the set of elements of prime order in H (includ-
ing all non-trivial unipotent elements if p = 0) and xG is the conjugacy class of x in G.
In Theorem 2.13 we prove that if G is simple and H 0 is reductive, then b1(G,H) ≤ c if
Q(G, c) < 1. This result is an essential tool in our analysis. Bounds on dim(xG ∩ H) in
terms of dim xG are obtained for classical groups in [13] (for H irreducible), and in [52]
for exceptional groups, so we can compute good estimates for Q(G, c).

In order to obtain precise results, we require a lower bound on b0(G,H). By defini-
tion, if b = b0(G,H) then the product variety�b contains aG-orbit of dimension dimG,
whence dimG ≤ dim�b = b · dim� and thus

b0(G,H) ≥
dimG

dim�
=

dimG

dimG− dimH
.

It turns out that this lower bound, combined with analysis of Q(G, c), is effective in
most cases. However, we sometimes encounter problems if dimG/dim� = c − ε for
some integer c and small positive number ε (with ε < 1/10, for example). Frequently, in
such a situation, the usual analysis yields

c ≤ b0(G,H) ≤ b1(G,H) ≤ c + 1

and thus further work is needed to determine the precise base size. The case c = 2 is
particularly interesting because such a subgroup H often arises as the centralizer of an
involution in Aut(G) (at least when p 6= 2). Rather surprisingly, we find that the base size
in this situation is determined by whether or not the relevant involution inverts a maximal
torus of G.

Theorem 8. Let G be a simple algebraic group of rank r over an algebraically closed
field of characteristic p 6= 2. Let H = CG(τ ), where τ ∈ Aut(G) is an involution, and
let � = G/H be the corresponding coset variety. If τ inverts a maximal torus of G then

b0(G,H) = b(G,H) = 2, b1(G,H) = 3,

otherwise b0(G,H) ≥ 3. More precisely, if τ inverts a maximal torus then:

(i) H has a unique regular orbit on �.
(ii) The generic 2-point stabilizer has order 2r (more precisely, this is the 2-torsion

subgroup of a maximal torus). That is, there exists a non-empty open subvariety U
of �×� such that |Gα ∩Gβ | = 2r for all (α, β) ∈ U .

(iii) If G < A ≤ Aut(G) then A acts on �, b0(A,CA(τ )) = 2 and b(A,CA(τ )) =
b1(A,CA(τ )) = 3.
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As a special case of Theorem 8, we deduce that if G = A1, p 6= 2 and H = NG(T ) is
the normalizer of a maximal torus of G, then the generic 2-point stabilizer has order 2.
In general, if G is simple and H is the normalizer of a maximal torus then the generic
2-point stabilizer is trivial.

Theorem 9. Let G be a simple algebraic group over an algebraically closed field and
consider the action of G on � = G/H , where H is the normalizer of a maximal torus
of G. Then either b1(G,H) = 2, or G = A1 and the generic 2-point stabilizer has
order 2.

Theorem 9 answers a question posed by Zinovy Reichstein (personal communication),
and the proof is an easy application of Theorem 2.13 (see Section 6 for the details). This
result has the following corollary, where ed(H) denotes the essential dimension of an
algebraic groupH . We refer the reader to Reichstein’s ICM survey article [68] for further
details and references.

Corollary 10. Let G be a simple algebraic group of adjoint type over an algebraically
closed field withG of rank r ≥ 2. Let H be the normalizer of a maximal torus ofG. Then

ed(G) ≤ ed(H) ≤ dimG− 2r.

Lemire [53] proved this in characteristic 0 (the first inequality is well known and follows
from results of Springer—see [67, Proposition 4.3]). The point is that the action of H on
G/H is generically free (essentially by Theorem 9) and is known to be versal [26, Ex-
ample 7.3(c)], which gives the desired bound. A sketch proof is given in Section 6, and we
refer the reader to [26, 68] for more details and generalities about essential dimension. Us-
ing Theorem 9, Garibaldi and Guralnick [33] gave a slightly easier proof of Corollary 10
and improved the bound to dimG− 2r − 1.

Let G be an algebraic group acting on an irreducible variety X. Suppose there is a
non-empty open subvariety X0 of X such that the stabilizer Gx has a certain property P
for all x ∈ X0. In this situation, we say that a generic stabilizer in G has property P .
For example, notice that if there is at least one point x ∈ X such that Gx is finite, then
a generic stabilizer is finite (more generally, the generic stabilizers will have a fixed di-
mension). In particular, if X = G/H is a faithful transitiveG-variety, then b0(G,H) ≤ b

(respectively, b1(G,H) ≤ b) if and only if the generic stabilizer of a point in Xb is finite
(respectively, trivial). In almost every case whereG is simple and X = G/H is primitive,
we show that if b0(G,H) = b then the generic stabilizers of points in Xb form a single
conjugacy class of subgroups of H .

Let G be a simple algebraic group over an algebraically closed field K and let V be
a rational finite-dimensional KG-module. In characteristic 0, the existence of a generic
stabilizer is a non-trivial theorem under suitable hypotheses (that is, there is a non-empty
open subvariety of V such that the stabilizer of each vector in this subvariety belongs to
a fixed conjugacy class of subgroups). See for example [66, Chapter 7] and [69]. Rather
less is known in the positive characteristic setting, although a recent theorem of Guralnick
et al. [40] guarantees the existence of generic stabilizers when G is simple and V is irre-
ducible. Suppose that H is the generic stabilizer in G of a vector in V (up to conjugacy),
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let c be a positive integer and let W be the direct sum of c copies of V . The G-stabilizer
of a vector in an open subvariety of W is just the intersection of c G-conjugates of H .
In particular, if b1(G,H) ≤ c (in terms of the action of G on G/H ) then this generic
stabilizer is trivial. Similarly, if b0(G,H) ≤ c then the generic stabilizer is finite (and if
b(G,H) ≤ c, then some stabilizer is trivial).

There is an example in [40] (in characteristic 2) of a smooth affine (non-linear) G-
variety with G simple such that generic stabilizers do not exist.

Remark 4. Related problems of this nature have been studied extensively in characteris-
tic 0 (and hence also for large positive characteristic p). Indeed, work of Èlashvili [27] and
Popov [64] provides a complete classification of the rational KG-modules V of a simple
algebraic group G with the property that a generic stabilizer is finite (respectively, triv-
ial). We refer the reader to [28, 65, 66] for further results (again, in characteristic 0) for
semisimple algebraic groups G and irreducible KG-modules. We thank an anonymous
referee for drawing our attention to this important earlier work.

The interesting situation where the generic stabilizer is finite, but non-trivial, also comes
up extensively in recent work of Bhargava and coauthors (typically in characteristic 0, but
the analogous results in positive characteristic should lead to results concerning function
fields over finite fields)—see [6–9].

Here we record some special cases that follow immediately from our earlier results.

Corollary 11. LetG be a simple algebraic group over an algebraically closed fieldK of
characteristic p ≥ 0.

(i) If p 6= 2, G = SL(U) and W = Sym2(U) ⊕ Sym2(U), then the generic stabilizer
of a vector in W is a finite non-trivial elementary abelian 2-group.

(ii) Let G = E6 and W = V ⊕ V ⊕ V ⊕ V , where V is an irreducible KG-module of
dimension 27. Then the generic stabilizer of a vector in W is trivial.

(iii) LetG = G2 andW = V ⊕V ⊕V , where p 6= 2 and V is an irreducibleKG-module
of dimension 7. Then the generic stabilizer of a vector in W is trivial.

Let us also give an example for a tensor product action. Suppose that G1,G2 are sub-
groups of GL(V ), and consider the natural action of G = G1 ⊗ G2 on W = V ⊗ V . It
is straightforward to see that the generic stabilizer of a vector in W is the intersection of
generic conjugates of G1 and G2. In particular, we obtain the following corollary:

Corollary 12. Consider the natural action of G = SO(V ) ⊗ SO(V ) on W = V ⊗ V .
If p 6= 2 then the generic stabilizer of a vector in W is a finite non-trivial elementary
abelian 2-group.

Our results for algebraic groups have interesting consequences for the corresponding fi-
nite groups of Lie type. Let us briefly recall the general set-up. Let p be a prime, let G
be a simple algebraic group over the algebraic closure F̄p of the prime field Fp, and let
σ be a Frobenius morphism of G such that the set Gσ of fixed points is a finite group
of Lie type over Fq , for some p-power q. If H is a closed positive-dimensional σ -stable
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subgroup of G then we can consider the action of Gσ on the set of cosets of Hσ in Gσ .
We write b(Gσ , Hσ ) for the base size of Gσ in this action.

For a positive integer c, let P(Gσ , c) be the probability that c randomly chosen points
in Gσ /Hσ form a base for Gσ . We define the asymptotic base size of Gσ , denoted by
b∞(Gσ , Hσ ), to be the smallest value of c such that P(Gσ , c) tends to 1 as q → ∞.
With this set-up, there are five base-related numbers to consider:

b(G,H), b0(G,H), b1(G,H), b(Gσ , Hσ ), b
∞(Gσ , Hσ ).

In Section 2 we investigate various relations between these base measures. For ex-
ample, in Proposition 2.7 we use the Lang–Weil estimates to prove that the asymp-
totic base size of Gσ coincides with the generic base size of G. We also show that
b0(G,H) ≤ b(Gσ , Hσ ) if q > 2. In view of Theorem 2, the former observation implies
that if G is a classical group in a suitable non-subspace action then b∞(Gσ , Hσ ) ≤ 3 if
dimV > 7, where V is the naturalG-module. See [60, Theorem 1.11] for a similar result,
requiring the stronger condition dimV > 15. Similarly, if G is an exceptional algebraic
group then using Theorems 6 and 7 we can compute the precise asymptotic base size
b∞(Gσ , Hσ ) in almost all cases; this is a significant strengthening of the general estimate
b∞(Gσ , Hσ ) ≤ 6 stated in [19, Theorem 2].

Recall that if G is a non-standard finite almost simple primitive permutation group
with point stabilizer H (so G is not an alternating or symmetric group acting on subsets
or partitions, nor a classical group in a subspace action) then b(G) ≤ 7, with equality if
and only if G = M24 in its 5-transitive action on 24 points. The main theorem of [19]
reveals that there are infinitely many non-standard groups G with b(G) = 5, but it is not
known whether or not there are infinitely many with b(G) = 6. Indeed, to date the only
known examples (G,H) with b(G,H) = 6 are the following:

(E6(2), P1), (E6(2), P6), (M23,M22), (Co3,McL.2), (Co2,U6(2).2),
(Fi22.2, 2.U6(2).2).

Now, according to Theorem 6 we have b0(G,H) = 6 if

(G,H) ∈ {(E6, P1), (E6, P6), (E7, P7)}.

Therefore, if q > 2 we deduce that b(Gσ , Hσ ) ≥ 6 for the corresponding primitive
actions ofGσ = E6(q) and E7(q). Now the main theorem of [19] yields b(Gσ , Hσ ) ≤ 6,
so b(Gσ , Hσ ) = 6 for all q > 2 and we conclude that there are infinitely many non-
standard primitive groups with base size 6 (see Remark 5.6).

Theorem 13. There are infinitely many non-standard finite almost simple primitive per-
mutation groups G with b(G) = 6.

Finally, we make some remarks on the organization of the paper. In Section 2 we present
a number of preliminary results that we need for the proof of our main theorems. Two
key results here are Proposition 2.5 and Theorem 2.13, which provide effective lower
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and upper bounds on the base measures b0(G,H) and b1(G,H), respectively. By con-
sidering the fixed points of a Frobenius morphism σ , we also investigate the connection
between the base sizes of the algebraic group G and the corresponding finite group Gσ
(see Proposition 2.7). Next, in Section 3 we consider the special case where H = CG(τ )
for some involution τ ∈ Aut(G) (with p 6= 2), proving Theorem 8. The next two sections
of the paper deal with the remaining primitive actions of classical and exceptional alge-
braic groups, respectively, and we complete the proofs of Theorems 4–7. In Section 4 we
make a distinction between subspace and non-subspace actions of classical groups; sub-
space actions are handled in Section 4.1, and the remaining possibilities are considered in
Section 4.2. Similarly, in Section 5 we distinguish between parabolic and non-parabolic
actions of exceptional algebraic groups. Finally, in Section 6 we establish Theorem 9 and
we sketch the proof of Corollary 10.

2. Preliminaries

In this section we record a number of preliminary results that we will need in the proof of
our main theorems. Throughout this section, unless stated otherwise, the terms ‘variety’
and ‘algebraic group’ refer respectively to an algebraic variety and an affine algebraic
group defined over an algebraically closed fieldK of characteristic p ≥ 0. We begin with
two elementary results on fibers of morphisms. The first result is well known.

Lemma 2.1. Let φ : X → Y be a morphism of irreducible varieties. Then there ex-
ists a non-empty open subvariety U of φ(X) such that each fiber φ−1(u) has the same
dimension for all u ∈ U . Moreover, if u ∈ U then dimφ−1(u) ≤ dimφ−1(v) for all
v ∈ φ(X).

Lemma 2.2. Let φ : X → Y be a dominant morphism of irreducible varieties such that
φ−1(y) is non-empty and finite for some y ∈ Y . Then there exists a non-empty open
subvariety U of Y , and a positive integer n, such that |φ−1(u)| = n for all u ∈ U .

Proof. This is also well known (see [37, Corollaire 4]), but we give a proof for com-
pleteness. First observe that dimX = dimY by Lemma 2.1, so K(X)/K(Y ) is a finite
algebraic field extension. Then by [72, Theorem 5.1.6(iii)], we can take n to be the sepa-
rable degree of K(X)/K(Y ). ut

Lemma 2.3. Let G be an algebraic group, let � be an irreducible G-variety and let
0 = �× · · · ×� with c ≥ 1 factors. Set

µ = min
{

dim
( c⋂
i=1

Gαi

) ∣∣∣ (α1, . . . , αc) ∈ 0
}
.

(i) The subset {(α1, . . . , αc) ∈ 0 | dim
(⋂

i Gαi
)
= µ} contains a non-empty open

subvariety of 0.
(ii) If µ = 0 then there exists a non-empty open subvariety U of 0, and a positive integer

n, such that |
⋂
i Gαi | ≤ n for all (α1, . . . , αc) ∈ U .
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Proof. We may assume G is connected. Consider the morphism of irreducible varieties
φ : G× 0→ 0 × 0 defined by

φ : (g, α1, . . . , αc) 7→ (gα1, . . . , gαc, α1, . . . , αc).

If z = (gα1, . . . , gαc, α1, . . . , αc) ∈ im(φ) then the fiber φ−1(z) is isomorphic to⋂
i Gαi . Therefore Lemma 2.1 implies that there exists a non-empty open subvariety U

of φ(G× 0) such that dimφ−1(z) = µ for all z ∈ U . Part (i) now follows since φ maps
onto the second 0 factor, and part (ii) follows immediately from Lemma 2.2. ut

Lemma 2.4. Let G be an algebraic group and let X, Y be faithful irreducible G-vari-
eties. Suppose there exists a non-empty open subvariety U of X such that Gu is finite for
all u ∈ U . Then with respect to the induced action of G on 0 = X × Y , there exists a
non-empty open subvariety V of 0 such that Gv is trivial for all v ∈ V .

Proof. Replacing X by a suitable non-empty open subvariety, we may assume that there
is an integer n such that |Gx | = n for all x ∈ X. Fix x ∈ X and set L = Gx . For y ∈ Y ,
the G-stabilizer of (x, y) ∈ 0 is L ∩ J , where J = Gy . Suppose z ∈ L is non-trivial
and let C0(z) denote the set of fixed points of z on 0. Then C0(z) is a proper closed
subvariety of 0 (sinceG acts faithfully on X and Y ), so the finite union

⋃
1 6=z∈L C0(z) is

also contained in a proper closed subvariety of 0. Therefore, for each x ∈ X, the set

{(x, y) | y ∈ Y, Gx ∩Gy 6= 1}

is contained in a proper closed subvariety of {x} × Y .
Let π : X×Y → X be the projection map and setW = {(x, y) ∈ 0 | Gx ∩Gy 6= 1}.

For each x ∈ X we have π−1(x) = {x} × Y , so by the above argument we deduce that
dim(W ∩ π−1(x)) < dimY . Therefore

dimW ≤ dimX + dim(W ∩ π−1(x)) < dimX + dimY = dim0,

hence V = 0 \W is a non-empty open subvariety such that Gv = 1 for all v ∈ V . ut

Let G be a connected algebraic group and let � be a faithful transitive G-variety with
point stabilizer H . Let b(G,H) (or just b(G) if the context is clear) denote the base size
of the action ofG on�, so b(G,H) is the minimal integer c such that� contains c points
whose pointwise stabilizer in G is trivial. As advertised in the Introduction, we will also
study two new base-related measures, which are defined as follows:

(i) The connected base size, denoted b0(G,H), is the smallest integer c such that �
contains c points whose pointwise stabilizer has trivial connected component, i.e. the
pointwise stabilizer is finite.

(ii) The generic base size, denoted b1(G,H), is the smallest integer c such that the prod-
uct variety �c = � × · · · × � (c factors) contains a non-empty open subvariety 3
such that every c-tuple in 3 is a base for G.

From the definitions, it is clear that

b0(G,H) ≤ b(G,H) ≤ b1(G,H).

The next result records some additional properties of these base measures.
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Proposition 2.5. Let G be a connected algebraic group and let � = G/H be a faithful
transitive G-variety. Then:

(i) b0(G,H) ≤ dimH + 1.
(ii) If b0(G,H) = c then there exists a non-empty open subvariety U of �c such that
|
⋂
i Gαi | is finite for all (α1, . . . , αc) ∈ U .

(iii) b0(G,H) ≥ dimG/dim�.
(iv) b1(G,H) ≤ b0(G,H)+ 1.
(v) If H is finite and non-trivial then b0(G,H) = 1 and b(G,H) = b1(G,H) = 2.

Proof. First consider (i). We may assume H is positive-dimensional. Let Hj be the in-
tersection of j distinct G-conjugates of H and assume dimHj > 0. Let Kj denote the
connected component of Hj . We claim that there exists an intersection Hj+1 ≤ Hj of
j + 1 conjugates of H such that dimHj+1 < dimHj . If not, then Kj = Kj ∩ H

g for
all g ∈ G, which implies that Kj is a positive-dimensional normal subgroup of G con-
tained in H . This is a contradiction since H is core-free. It follows that there is a chain of
subgroups

H = H1 > H2 > · · · > Hm,

where each Hj is an intersection of j conjugates of H , Hm is finite and dimHj+1 <

dimHj for all j . Therefore b0(G,H) ≤ m and the bound in (i) follows since the di-
mension drops by at least 1 at each inclusion in the above chain. For the remainder set
b0(G,H) = c.

Part (ii) follows immediately from Lemma 2.3(ii), and part (iii) is an easy consequence
of the fact that G has an orbit of dimension dimG on the product variety �b

0(G,H). For
part (iv), consider the induced action of G on X × Y , where X = �c and Y = �. By
applying part (ii) (with respect to the action of G on X) it follows that the hypotheses of
Lemma 2.4 are satisfied, whence b1(G,H) ≤ c + 1 as required. Finally, part (v) follows
immediately from (iv). ut

Remark 2.6. Let G be a simple algebraic group over an algebraically closed field of
characteristic p ≥ 0 and suppose � = G/H is a faithful primitive G-variety.

(i) There are examples with b0(G,H) > ddimG/dim�e. For instance, if G = E6,
H = A1A5 and p 6= 2 then dimG = 78, dimH = 38 and b0(G,H) = 3 (see
Lemma 3.19). Similarly, if G = Sp6 and H is of type Sp2 o S3 then dimG = 21,
dimH = 9 and b0(G,H) = 3 (see Section 4.2).

(ii) By inspecting the proof of Theorems 4–7, we observe that b0(G,H) = b(G,H) in
almost all cases. Indeed, the only known exceptions are the cases with H finite.

Let G be a simple algebraic group over the algebraic closure of Fp, where p is a prime,
and let� = G/H be a faithfulG-variety. Let σ : G→ G be a Frobenius morphism ofG,
so the set Gσ of fixed points is a finite group of Lie type over Fq for some p-power q.
Assume H is σ -stable. Then the action of G on � induces an action of Gσ on Gσ /Hσ ,
and we write b(Gσ , Hσ ) for the corresponding base size. In addition, let b∞(Gσ , Hσ ) be
the asymptotic base size of Gσ , which is the smallest integer c such that P(Gσ , c) tends
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to 1 as q → ∞, where P(Gσ , c) is the probability that c randomly chosen elements of
Gσ /Hσ form a base for Gσ .

By definition, if b∞(Gσ , Hσ ) = c and q is sufficiently large then almost every c-tuple
of points in Gσ /Hσ forms a base for Gσ . Notice that the generic base size b1(G,H)

of G captures this asymptotic property at the algebraic group level, in the sense that if
b1(G,H) = c then there exists a dense subset 3 of �c such that every c-tuple in 3 is a
base forG. Part (i) of the next result reveals that the generic and asymptotic base sizes do
indeed coincide.

Proposition 2.7. With the notation established, the following hold:

(i) b∞(Gσ , Hσ ) = b1(G,H).
(ii) If q > 2 then b0(G,H) ≤ b(Gσ , Hσ ).

(iii) If q is sufficiently large, then b(Gσ , Hσ ) ≤ b∞(Gσ , Hσ ).

Proof. First consider (i). Suppose b1(G,H) = c and set 0 = �c and

3 =
{
(α1, . . . , αc) ∈ 0

∣∣∣ ⋂
i

Gαi 6= 1
}
,

so3 is contained in a proper closed subvariety of 0. Let3(q) and 0(q) denote the sets of
Fq -rational points in3 and 0, respectively. By considering the Lang–Weil estimates [47],
we deduce that the ratio

1− P(Gσ , c) = |3(q)|/|0(q)| ≈ qdim3−dim0

tends to zero as q → ∞, whence b∞(Gσ , Hσ ) ≤ b1(G,H). A similar argument shows
that b1(G,H) ≤ b∞(Gσ , Hσ ), hence equality holds.

Next consider (ii). Suppose b(Gσ , Hσ ) = c and b0(G,H) > c. Fix distinct points
α1, . . . , αc in � and set L =

⋂
i Gαi . Since b0(G,H) > c, the connected component

L0 is infinite, whence the hypothesis q > 2 implies that (L0)σ is non-trivial (see [35,
Proposition 8.1]). In particular, the stabilizer in Gσ of any c points in Gσ /Hσ is non-
trivial. This is a contradiction, hence (ii) follows.

Finally, note that if q is sufficiently large then P(Gσ , c)>0, where c=b∞(Gσ , Hσ ),
so Gσ admits a base of size c and (iii) follows. ut

Remark 2.8. There are examples with b(Gσ , Hσ ) < b∞(Gσ , Hσ ) for all values of q.
For example, if nq is odd, Gσ = PGLn(q) and Hσ is of type On(q) then b(Gσ , Hσ ) = 2
and b∞(Gσ , Hσ ) = 3 (see [18]).

The main goal of this paper is to determine the three base measures b0(G), b(G) and
b1(G) for every primitive action of a simple algebraic group G. Of course, if b0(G) ≥ c

and b1(G) ≤ c for an integer c, then we immediately deduce that

b0(G) = b(G) = b1(G) = c.

Therefore, our initial aim is to obtain accurate lower and upper bounds on b0(G) and
b1(G), respectively. In Proposition 2.5(iii) we established a useful lower bound on b0(G),
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so let us consider the generic base size b1(G). Our main result is Theorem 2.13 below,
which provides an effective upper bound on b1(G,H) in terms of the dimensions of some
specific conjugacy classes in G and H , assuming that H 0 is reductive. In order to prove
this key theorem, we require a couple of preliminary results.

In [63], Lusztig proved that a simple algebraic group contains only finitely many
conjugacy classes of unipotent elements. We require the following extension to algebraic
groups with reductive connected component.

Lemma 2.9. Let G be an algebraic group with G0 reductive. Then there are only finitely
many unipotent classes in G, and only finitely many conjugacy classes of elements of a
given finite order.

Proof. This is the main theorem of [39]. ut

Proposition 2.10. Let G be an algebraic group with G0 reductive, and let � be an irre-
ducibleG-variety. Let C be the set of conjugacy classes of G containing elements of prime
order (or arbitrary non-trivial unipotent elements if p = 0) and set 3 =

⋃
C∈C �(C),

where
�(C) =

⋃
x∈C

C�(x)

and C�(x) = {α ∈ � | xα = α} is the fixed point space of x. Then either 3 is contained
in a proper closed subvariety of �, or �(C) contains a non-empty open subvariety of �
for some C ∈ C.

Proof. Suppose 3 is not contained in a proper closed subvariety of �, so 3 is dense
in �. It suffices to show that �(C) is dense in � for some C ∈ C: if x ∈ C then C�(x) is
closed and the morphism φ : G×C�(x)→ � defined by φ(g, α) = gα has image�(C),
so �(C) contains a non-empty open subvariety of �(C) = �. Set m = min{dimGα |

α ∈ �} and note that 3 = {α ∈ � | Gα 6= 1}.
If m > 0 then every α ∈ � is fixed by a torus or a unipotent subgroup of G, and

so either by an element of order 2 + δ2,p, or a unipotent element (of order p if p > 0).
By Lemma 2.9, there are only finitely many G-classes of such elements, say C1, . . . , Cr ,
whence � =

⋃r
i=1�(Ci) and the irreducibility of � implies that �(Ci) is dense in �

for some i.
Finally, suppose m = 0. By Lemma 2.3, there exists a non-empty open subvariety U

of � and a positive integer n such that |Gu| ≤ n for all u ∈ U . If n = 1 then U ⊆ � \3,
which contradicts our initial assumption. Therefore n > 1 and thus U =

⋃s
i=1�(Ci)

for some G-classes Ci of elements of prime order dividing n. Since U is irreducible we
deduce that � = U = �(Ci) for some i, as required. ut

Corollary 2.11. Let G be a simple algebraic group and let � = G/H be a transitive
G-variety with H 0 reductive. Let c ≥ 2 be an integer and let 0 be the irreducible G-
variety �c−1. If

dim0(C) < dim0

for every H -class C of elements of prime order in H (including all non-trivial unipotent
elements if p = 0) then b1(G,H) ≤ c.
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Proof. Consider the action of H on 0. By Proposition 2.10, the hypothesis dim0(C) <

dim0 for all relevant H -classes C implies that {α ∈ 0 | Hα = 1} contains a non-empty
open subvariety of 0. We conclude that b1(G,H) ≤ c. ut

Lemma 2.12. Let G be an algebraic group, let H be a closed subgroup of G and let
� = G/H . Then for x ∈ H ,

dimC�(x) = dim�− dim xG + dim(xG ∩H).

Proof. This is [52, Proposition 1.14]. ut

Let P be the set of elements of prime order in H (including all non-trivial unipotent
elements in H if p = 0) and let c ≥ 2 be an integer. We define

Q(G, c) =
c

c − 1
· sup
x∈P

dim(xG ∩H)
dim xG

.

The next result is a key tool in our later analysis.

Theorem 2.13. Let G be a simple algebraic group and let � = G/H be a transitive
G-variety, where H 0 is reductive. Let c ≥ 2 be an integer such that Q(G, c) < 1. Then
b1(G,H) ≤ c.

Proof. Let x ∈ P and set C = xH , 0 = �c−1 and 0(C) =
⋃
y∈C C0(y). By Corollary

2.11, we need to show that dim0(C) < dim0.
First we claim that

dim0(C) ≤ (c − 1) dimC�(x)+ dim xH .

To see this, let C�(x)c−1
= C�(x) × · · · × C�(x) (with c − 1 factors) and consider the

morphism
φ : H × C�(x)

c−1
→ 0(C) (1)

sending (h, α1, . . . , αc−1) to (hα1, . . . , hαc−1). Now im(φ) = 0(C) and

φ((hy, y−1α1, . . . , y
−1αc−1)) = φ((h, α1, . . . , αc−1))

for all y ∈ CH (x), so dimφ−1(α) ≥ dimCH (x) for all α ∈ im(φ). Therefore

dim0(C) ≤ dimH + (c − 1) dimC�(x)− dimCH (x)

as claimed.
Now, Lemma 2.12 gives

dimC�(x) = dim�− dim xG + dim(xG ∩H),

and we may assume xG ∩H = xH since xG ∩H is a finite union of H -classes (see [39,
Theorem 1.2]). Since c dim xH < (c − 1) dim xG we conclude that

dim0(C) ≤ (c−1) dimC�(x)+dim xH = dim0−(c−1) dim xG+c dim xH < dim0,

as required. ut
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Corollary 2.14. Let c ≥ 2 be an integer such that

dim xH < (1− c−1) dim xG for all x ∈ P .

Then b1(G,H) ≤ c.

Proposition 2.15. Suppose � = G/H with H 0 reductive. Let x ∈ H be a semisimple
element of prime order such that

dimZ(CG(x)
0)+ rank H > rank G.

Then there exists y ∈ H of order 2+ δ2,p such that C�(x) ⊆ C�(y).

Proof. The bound dimZ(CG(x)
0) + rank H > rank G implies that Z(CG(x)0) ∩ H

contains a positive-dimensional torus L. Choose y ∈ L so that x and y are of coprime
order and set z = xy. We claim that C�(z) = C�(x).

Clearly, C�(z) ⊆ C�(x) since x is a power of z. Let T be a maximal torus of H
containing L. Let x = x1, x2, . . . , xm in T represent the distinct H -classes in xG ∩H , so
xi = x

wi for some wi in the Weyl group of H . Also set zi = ywi for all i, and note that
the zi are also in distinct H -classes. It is an easy exercise to see that C�(x) is the union
of m disjoint sets, each an orbit of CG(xi)/CH (xi) for some i. Similarly, C�(z) contains
the CG(zi)/CH (zi)-orbits. Since CH (zi) ≤ CH (xi) and CG(x) = CG(z), it follows that
C�(x) ⊆ C�(z). This justifies the claim.

Let S be the set of elements xy ∈ L such that the order of y ∈ L is relatively prime to
the order of x. Then S is dense in L, so by the previous claim we have C�(x) = C�(z)
for all z ∈ S and thus

C�(x) = C�(S) = C�(L) =
⋂
y∈L

C�(y).

In particular, if y ∈ L has order 2+ δ2,p then C�(x) ⊆ C�(y), as required. ut

Note that ifH has maximal rank then Proposition 2.15 applies to any semisimple element
x ∈ G with dimZ(CG(x)

0) > 0. The next result allows us to slightly weaken the con-
ditions in the statement of Corollary 2.14. In order to state the result, let P ′ ⊆ P be the
union of the set of unipotent elements in P and the set of semisimple elements x ∈ P
with the property that either x has order 2+ δ2,p or

dimZ(CG(x)
0)+ rank H ≤ rank G.

Corollary 2.16. Let c ≥ 2 be an integer such that

dim xH < (1− c−1) dim xG for all x ∈ P ′.

Then b1(G,H) ≤ c.
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Proof. By Corollary 2.11 it suffices to show that dim0(C) < dim0, where 0 = �c−1,
C = xH , x ∈ H is semisimple of prime order r > 2+ δ2,p and

dimZ(CG(x)
0)+ rank H > rank G.

By Proposition 2.15, there exists an element z ∈ H of order 2+ δ2,p such that C�(x) ⊆
C�(z), so 0(C) ⊆ 0(C′) for C′ = zH . Since z ∈ P ′ we have dim zH < (1−c−1) dim zG,
so dim0(C′) < dim0 as required. ut

The next proposition is a generalization of a result of Guralnick et al. [40].

Proposition 2.17. Suppose � = G/H with H 0 reductive, and let c ≥ 2 be an integer
such that:

(i) there exists a prime r 6= p such that dim xH < (1 − c−1) dim xG for all x ∈ H of
order r;

(ii) dim xH ≤ (1− c−1) dim xG for all unipotent elements x ∈ P .

Then b0(G,H) ≤ c.

Proof. Let 0 = �c−1. We need to show that there exists a non-empty open subvariety
U ⊆ 0 such that Hα :=

⋂c−1
i=1 Hαi is finite for all α = (α1, . . . , αc−1) ∈ U . Seeking

a contradiction, suppose that no such U exists. Then Hα is infinite for all α ∈ 0, so Hα
contains either a torus or a 1-dimensional unipotent subgroup.

By (i), the set of α ∈ 0 such that Hα contains a torus is contained in a proper closed
subvariety of 0 (namely, the subvariety

⋃
y∈3 C0(y), where 3 is the set of elements of

order r in H , and r 6= p is the prime in (i)). Therefore, (Hα)0 is unipotent for all α in
a non-empty open subvariety of 0. Since Hα is infinite and there are only finitely many
unipotent classes in H (see Lemma 2.9), it follows that there is a non-trivial unipotent
element x ∈ H such that dim(xH ∩ Hα) > 0 for all α in a non-empty open subvariety
W ⊆ 0. Set C = xH and 0(C) =

⋃
y∈C C0(y). As noted in the proof of Theorem 2.13,

0(C) is the image of the morphism

φ : H × C�(x)
c−1
→ 0

defined in (1), sending (h, α1, . . . , αc−1) to (hα1, . . . , hαc−1). Since dim(xH ∩Hα) > 0
for all α ∈ W , it follows that 0(C) contains a non-empty open subvariety of 0 and thus
dim0 = dim0(C). Clearly, φ is still a dominant morphism if we replace x by xi for any
positive integer i, so if p > 0 we can assume that x has order p.

Set V (x) = {(y, α) | y ∈ xH , α ∈ 0, yα = α}. Then V (x) surjects onto xH

and 0(C) via the two projection maps. Therefore, by considering the fibers of the first
projection we deduce that

dimV (x) = dim xH + dimC0(x)

and by applying Lemma 2.12 and the condition in (ii) we get

dimV (x) = dim0 + c dim xH − (c − 1) dim xG ≤ dim0.
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Similarly, the second projection shows that

dimV (x) = dim0(C)+ dim(xH ∩Hα)

for some α ∈ 0 with dim(xH ∩Hα) > 0. Therefore,

dim0 ≥ dimV (x) > dim0(C),

which is a contradiction. ut

Let X be a simple algebraic group with root system 8 and root subgroups

Uα = {xα(t) | t ∈ K}, α ∈ 8.

Recall that if α is a long root then Uα is a long root subgroup, and x ∈ X is a long root
element if x is X-conjugate to xα(t) for some long root α and t ∈ K∗.

Proposition 2.18. Suppose � = G/H with H 0 simple. Let C = xH , where x ∈ H 0 is a
long root element of H 0, and assume that each long root subgroup of H 0 is a long root
subgroup of G. Let c ≥ 2 be an integer and set 0 = �c−1. Then

dim0(C) ≤ dimH + (c − 1) dimC�(x)− dimCH (x)− 1.

Proof. Define the morphism φ : H × C�(x)
c−1
→ 0(C) as in the proof of Theorem

2.13 (see (1)). It suffices to show that dimφ−1(α) ≥ dimCH (x)+ 1 for all α ∈ im(φ).
First we claim that x belongs to a unique long root subgroup of G. To see this, let U

be a long root subgroup of G containing x, and suppose that x is contained in another
long root subgroup V of G. Set P = NG(U) and note that P is a parabolic subgroup
of G. Since U and V are G-conjugate we have V = Uawb, where a, b ∈ P and w is in
the Weyl group of G. Therefore, U ∩ V = U ∩ Uwb is conjugate to U ∩ Uw, which is
either trivial or equal to U . But x ∈ U ∩ V , so U = V as required.

Let W be a long root subgroup of H 0 containing x. By assumption, W is a long root
subgroup of G, so the previous claim implies that U = W ≤ H 0. Therefore, C�(x) is
invariant under a 1-dimensional torus normalizing U (but not centralizing x), so the proof
of Theorem 2.13 provides the desired bound dimφ−1(α) ≥ dimCH (x)+ 1. ut

Corollary 2.19. Suppose � = G/H with H 0 simple. Assume that each long root sub-
group of H 0 is a long root subgroup of G. Let c ≥ 2 be an integer such that

dim xH ≤ (1− c−1) dim xG for all x ∈ P ′,

with equality only if x ∈ H 0 is a long root element. Then b1(G,H) ≤ c.

We close this preliminary section with some remarks on the underlying field. In the fol-
lowing sections we will often work over the algebraic closure k of Fp, but it is important
to note that the same results hold if we replace k by any algebraically closed field of
characteristic p. Indeed, in almost all cases the arguments do not depend on the choice
of field, but there are some cases where we deduce the results for the algebraic group G
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from results for the corresponding finite group Gσ (the fixed points of a suitable Frobe-
nius morphism σ ). We first make some elementary observations.

Fix a prime p and let K be an algebraically closed field of characteristic p. Let G be
a simple algebraic group overK and letH be a maximal closed subgroup ofG. Note that
G andH are both defined over k. Let c be a positive integer and letXc denote the product
variety (G/H)c, with the natural G-action.

The algebraic group G(K) has an orbit on Xc(K) with finite stabilizer if and only if
the same is true for the action ofG(k) on Xc(k) (since dimension remains constant under
base change). This shows that the connected base size b0(G,H) remains constant under
base change. Similarly, the generic stabilizer in G(K) of a point in Xc(K) is finite of
size n if and only if the same is true for the G(k)-stabilizer of a generic point in Xc(k)
(because this condition holds on an open subvariety). Therefore, the generic base size
b1(G,H) is also constant under base change.

Next we show that the base size b(G,H) cannot increase under base change. In-
deed, if G(k) has a regular orbit on Xc(k) then this orbit remains regular for G(K)
on Xc(K) (the stabilizer in G(K) is still zero-dimensional, and thus finite, but the or-
bits of Aut(K/k) are either trivial or infinite, so this stabilizer must be trivial). In fact,
b(G,H) is constant under base change, and all of these assertions follow from more gen-
eral considerations—see [38, pp. 81–82].

Finally, by a straightforward ultraproduct construction, we see that for some alge-
braically closed field of characteristic 0 (and therefore for all, by the previous discussion),
the quantities b0(G,H), b(G,H) and b1(G,H) in characteristic 0 will be the same as for
all sufficiently large characteristics.

3. Involution-type subgroups

Let G be a simple algebraic group over an algebraically closed field K of characteristic
p ≥ 0. Let� be a primitiveG-variety with point stabilizerH . In this section we consider
the special case where H = CG(τ ) for an involution τ ∈ Aut(G). Our goal here is to
prove Theorem 8, as well as some auxiliary results that may be of independent interest.
We are mostly interested in the case p 6= 2, although some of the results will apply for
all p.

Our strategy is as follows. In Lemma 3.6 we show that there exists a unique G-class
of involutions in Aut(G) which invert a maximal torus of G, say C = xG. By Proposi-
tion 3.7, every element ofG is a product of two elements in C, so there exists g ∈ G such
that xxg = u is a regular unipotent element of G, and thus CG(u) is abelian and contains
no involutions for p 6= 2. Moreover, x inverts CG(u) by Proposition 3.9, and using this
we deduce that b0(G,H) = b(G,H) = 2 if τ ∈ C, otherwise b0(G,H) ≥ 3. We begin
by recording some preliminary lemmas.

3.1. Preliminaries

We begin with an elementary result that will be needed in the proof of Proposition 3.7.
Here Mn(K) denotes the algebra of n× n matrices with entries in the field K .



On base sizes for algebraic groups 2291

Lemma 3.1. Let K be an algebraically closed field and let A ∈ Mn(K). Then A is
similar to a symmetric matrix.

Proof. Let p denote the characteristic ofK . We may assume thatA is in Jordan canonical
form. Furthermore, we may assume that A is a single Jordan block, and we may take A to
be nilpotent. Let B = (bi,j ) ∈ Mn(K), where bi,n+1−i = 1 for 1 ≤ i ≤ n, and all other
entries are 0. Then B is symmetric and BAB−1

= A>, where A> denotes the transpose
of A.

If p 6= 2, or a diagonal entry of B is non-zero (i.e. n is odd), then we can write
B = X>X for some non-singular X (because any such non-singular symmetric matrix
is congruent to the identity matrix I , over an algebraically closed field). If p = 2 and
n = 2m is even, then replace B by B(I + A). Note that B(I + A) is non-singular,
symmetric and the (m + 1)-th diagonal entry of B(I + A) is non-zero, so we can write
B(I + A) = X>X for some X. Also note that B(I + A)A(I + A)−1B−1

= A>.
It is easy to check that XAX−1 is symmetric. ut

For the remainder of Section 3.1, unless stated otherwise, G will denote a connected
reductive algebraic group of rank r over an algebraically closed field K of characteristic
p ≥ 0.

Lemma 3.2. Let G be a connected algebraic group over an algebraically closed field of
characteristic p ≥ 0, and let τ ∈ Aut(G) be an involution. Then either G is abelian and
τ inverts G, or dimCG(τ ) > 0.

Proof. By [73, Theorem 7.2], τ normalizes a Borel subgroup B = T U of G, where T is
a maximal torus of G and U is the unipotent radical of B. Assume that dimCG(τ ) = 0,
so CG(τ ) is finite.

First suppose p = 2. If U is non-trivial then CU (τ ) is infinite, so we may assume
G = T is a torus. An involutory automorphism of a torus corresponds to an element of
GLr(Z) (acting on the character group of the torus), and any involution other than −Ir
centralizes a positive-dimensional subtorus. Since CG(τ ) is finite, we conclude that τ
inverts G.

Now assume that p 6= 2. First we show that U is abelian and τ inverts U . Let W
be a minimal connected characteristic subgroup of U . Then W is a vector space over K
and CW (τ ) is a subspace, hence CW (τ ) is trivial and thus τ acts as inversion on W .
Since 2 is invertible in K , the fixed points of τ on U surject onto the fixed points of τ
on U/W . So by induction, U/W is abelian and τ acts as inversion on U/W . Therefore
CU (τ ) ≤ CW (τ ) = 1. Note that [U,U ] ≤ W , and so since τ acts as inversion on U/W ,
τ centralizes [U,U ], whence U is abelian. Thus, τ acts as inversion on U .

Let T0 be the subgroup of T of elements of odd order. If we consider the action of τ
on UT0 then the above argument implies that UT0 is abelian and τ acts as inversion on
UT0. Therefore B = T ×U is abelian and τ acts as inversion on B. Since B is abelian, it
follows that G is solvable and thus G = B. ut

Lemma 3.3. Let τ ∈ Aut(G) be an involution and let H = CG(τ ). Let g ∈ G and set
D = CG(ττ

g).
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(i) H ∩H g
= 1 if and only if τ acts as inversion on D, D is abelian and D contains no

involutions.
(ii) H ∩H g is finite if and only if τ acts as inversion on D0, D0 is abelian and if p = 2,

D0 is a torus.

Proof. Suppose τ inverts D. Then clearly H ∩ H g consists of the involutions in D,
whence the backward implications of both statements follow.

Conversely, assume that H ∩H g is finite. Then CD(τ ) is finite and the result follows
from Lemma 3.2. ut

Lemma 3.4. Suppose G is semisimple and let x ∈ G be a regular unipotent element
contained in a Borel subgroup B = T U of G. Then CG(x) = A × Z(G) where A is an
abelian subgroup of U .

Proof. This is well known—see [62], for example. ut

Corollary 3.5. SupposeG is semisimple of adjoint type, p 6= 2 and there exist conjugate
involutions τ, τ ′ ∈ Aut(G) such that ττ ′ is regular unipotent and τ inverts CG(ττ ′). Then
CG(τ ) ∩ CG(τ

′) = 1.

Proof. By Lemma 3.4, CG(ττ ′) is unipotent and therefore contains no involutions since
p 6= 2. Now apply Lemma 3.3. ut

Lemma 3.6. There exists an involution τ ∈ Aut(G) that inverts a maximal torus T ofG,
and any two such involutions areG-conjugate. Also, dimCG(τ ) =

1
2 (dimG− r). If G is

simple and p 6= 2, the type of CG(τ ) and τ is recorded in Table 5.

Table 5. Involutions inverting maximal tori, p 6= 2

G Type of CG(τ ) Type of τ

An SOn+1 inner if n = 1, otherwise graph
Bn SOn+1 × SOn inner
Cn GLn inner
Dn SOn × SOn inner if n even, otherwise graph
E8 D8 inner
E7 A7 inner
E6 C4 graph
F4 A1C3 inner
G2 A1Ã1 inner

Proof. By passing to an isogeneous group, we may assume that G = S × G1 where S
is a torus and G1 is a direct product of simple and simply connected groups. We induct
on dimG. The case of a torus is clear and so a minimal counterexample would be a
simple group (and again we may assume that it is simply connected). Existence now
follows by inspection. (Note that τ is an involution modulo the center of G.) Moreover,
dimCG(τ ) =

1
2 (dimG − r) since τ permutes the root subgroups of G without fixed

points, and CT (τ ) is finite.



On base sizes for algebraic groups 2293

Suppose τ and τ ′ are involutory automorphisms of G which invert a maximal torus.
To see that τ and τ ′ are G-conjugate we may assume, without loss, that τ and τ ′ both
invert the same maximal torus T , so ττ ′ ∈ CAut(G)(T ) = T . Therefore τ and τ ′ belong
to the same coset of T in NAut(G)(T ), and since they both invert T it follows that τ and τ ′

are G-conjugate. ut

Proposition 3.7. Let τ ∈ Aut(G) be an involution that inverts a maximal torus ofG, and
assume that p 6= 2. Then

(i) τ inverts an element in each conjugacy class of G; and
(ii) if C = τG then G = C2.

Proof. Suppose (ii) holds. Let g ∈ G. Replacing g by a conjugate, we may assume
g = ττ x for some x ∈ G. Then zτ = z−1, where z = gx

−1
is conjugate to g. Therefore

(ii) implies (i). Conversely, if τ inverts g ∈ G, then ττ g = g2, and since p 6= 2, squaring
is a surjective morphism on G, whence (i) implies (ii). Therefore, it suffices to show that
(i) holds.

We may assume that G = Z(G)0 × A where A is simply connected and semisimple.
By induction on dimG, we reduce to the case where G is simple and simply connected
(the case when G is a torus is trivial).

Let X = xG be a conjugacy class of G. If x commutes with a non-central semisimple
element t ∈ G, then we may pass to the connected reductive group CG(t) (recall that
we are assuming that G is simply connected). We may assume that τ inverts a maximal
torus T containing t . In particular, τ acts on the connected reductive group CG(t) which
contains T , and by induction τ inverts some conjugate of x in CG(t). Consequently, we
may assume that x is a semiregular unipotent element that commutes with no non-central
semisimple element. Thus, CG(x) = Z(G)× U for some unipotent subgroup U .

Now G contains a unique class of regular unipotent elements, so if x is such an el-
ement then xy = x−1 for some y ∈ G. We can assume that y has order a power of 2,
hence y is an involution (modulo Z(G)). We want to show that y is conjugate to τ (or
equivalently, that y inverts some maximal torus). Note that the dimension of the image of
the multiplication map µ : yG× yG→ G is at least dimG− r , where r is the rank ofG.
In particular,

dim yG ≥ 1
2 (dimG− r). (2)

We now inspect the various possibilities for G, beginning with the classical groups.
If G = A1 or G2, then τ and y are both inner and since there is a unique class of

involutions (modulo the center in the case of A1), the result follows.
If G = Ar (with r > 1) then we take τ to be the inverse-transpose automorphism.

Then τ inverts any symmetric matrix and the result follows by Lemma 3.1.
If G = Cr (with r > 1) then an element is semiregular if and only if it is regular

unipotent. Moreover, τ and y are inner. Let x be such an element and recall that y ∈ G
is an involution inverting x. By conjugating we may assume that y is in the standard
maximal torus of G and so it inverts each root subgroup corresponding to a simple root.
This forces y to be conjugate to τ . The same proof (without any modification) also applies
for groups of type Br (with r > 1).
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Next suppose G = Dr and r > 3. If x does not commute with a non-central semi-
simple element, then x has Jordan form [J2e+1, J2f+1] on the naturalG-module, for some
e, f ≥ 0. Then x ∈ L := Be × Bf (where B0 is trivial), and we note that L = CG(z) for
a suitable involutory graph automorphism z of G. Let y ∈ L be an involution inverting x
and a maximal torus of L. Then either y or yz is conjugate to τ , and inverts x.

Now let us assume G is an exceptional algebraic group of rank r . Let {α1, . . . , αr} be
a set of simple roots for the root system of G, where we label simple roots in the usual
way (see [12]). Let Uα = {xα(t) | t ∈ K} be the root subgroup of G corresponding to the
root α, and write α = a1a2 · · · ar to denote the root α =

∑
i aiαi . In addition, we adopt

the standard Chevalley notation

nα(t) = xα(t)x−α(−t
−1)xα(t), hα(t) = nα(t)nα(1)−1 for t ∈ K∗.

IfG = F4 then x is regular and dim yG ≥ 24 by (2), whence y and τ areG-conjugate.
Next suppose that G = E6. Again, we may assume that x is a regular unipotent el-

ement. Further, we may also assume that x ∈ H := F4 = CG(γ ), where γ is a graph
automorphism ofG. Choose y ∈ H an involution which inverts x, and note that γy is also
an involution inverting x. There are precisely two conjugacy classes of graph automor-
phisms of E6, with centralizers F4 and C4. Note that dimCH (γy) = dimCH (y) = 24.
Therefore, dimCG(γy) ≤ 50 and so CG(γy) = C4, whence γy is in the conjugacy class
of involutions inverting a maximal torus of G.

Next consider G = E7. There are three semiregular classes of unipotent elements
in G, with respective centralizers of dimension 7, 9 and 11. Also, there are three classes
of involutions in G, with dimensions 52, 64 and 70. Let y ∈ G be an involution inverting
the semiregular unipotent element x (these classes are all real by [59, Corollary 5], for
example). As before, it suffices to show that y and τ are G-conjugate. Equivalently, we
need to show that dim yG = 70. Note that dim yG 6= 52 by (2).

Suppose dim yG = 64, so CG(y) = D6A1. We may viewG as a subgroup of L = E8
(note that it is really the double cover of G that is contained in E8, but y lifts to an
involution in the double cover). We claim that CL(y) = E7A1. To see this, we use an
argument provided by Ross Lawther (private communication). Take a representative y =
hα3(−1)hα5(−1)hα7(−1) of the D6A1-class in E7 and observe that

α2, α3, α4, α5, α6, α7, 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7

is a basis of the root system of CG(y). The root system of CL(y) has a basis containing
the above roots, together with

α1 + α3 + α4 + α5 + α6 + α7 + α8.

These roots form a simple system of typeE7A1. This establishes the claim and we deduce
that dim yL = 112.

By [59] we have dimCL(x) = 16, 20 or 24. Now dim yL ≥ 1
2 (248− dimCL(x)) and

therefore we may assume dimCL(x) = 24 (since dim yL = 112). Let µ : yL × yL → L

be the multiplication map and letW be the image of µ. Since dim xL = dim(yL× yL), it
follows that if x ∈ W then xL is an open dense subset of W and the generic fiber of µ is
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finite. In particular, W is contained in the set of unipotent elements of L. Thus, the same
is true for µ restricted to yG × yG, which we denote by µG. Therefore, the dimension of
the image of µG is at most 126 (the dimension of the unipotent variety of G), and hence
the generic fiber of µ has dimension at least 2. This is a contradiction since the generic
fiber is finite.

We conclude that dim yG = 70 is the only possibility, so y and τ are G-conjugate, as
required.

Finally, let us assume G = E8. There are two classes of involutions in G, of di-
mensions 128 and 112. Let x ∈ G be a semiregular unipotent element. The semiregular
unipotent classes have centralizers of dimension 8, 10 and 12, and there is an additional
class in characteristic 3 with dimCG(x) = 30.

Suppose dimCG(x) < 30 and let y ∈ G be an involution that inverts x (by [59,
Corollary 5], the class xG is real). Then dim yG ≥ 1

2 (dimG − dimCG(x)) ≥ 118 and
thus y and τ are G-conjugate.

To complete the proof, we may assume p = 3 and dimCG(x) = 30. Fix a maximal
torus T of G and a corresponding set of roots. We may take

x = x01121100(1)x00111100(1)x11110000(1)x00001110(1)x01121000(1)
× x00000111(1)x10111000(1)x01011100(1)x01122100(1)

(this follows by calculating the Jordan blocks of x on the adjoint module—see the class
labelled A(3)7 in [48, Table 9]). Let

y = hα2(−1)hα4(−1)hα7(−1)hα8(−1)nα2nα3nα5nα8 .

By inspecting the E8 structure constants given in the appendix of [58] we see that y is
an involution in NG(T ) that inverts x. Indeed, y reverses the order of the root elements
concerned and negates each coefficient.

Letw = gT be the corresponding element of the Weyl group. Note that the roots fixed
by w are 01121000, 01122221, 22343221, 23465421 and their negatives. We find that for
each such root α, the root vector eα is in fact negated by Ad(g). As w is the product of
four reflections in mutually orthogonal roots, the trace of Ad(g) on the Lie algebra Lie(T )
is 0; hence its trace on Lie(G) = Lie(T )⊕

⊕
α Keα is −8.

Let s and t be involutions in T such that CG(s) = A1E7 and CG(t) = D8. Since
dimCG(s) = 136, it follows that the trace of Ad(s) on Lie(G) is 136 − 112 = 24.
Therefore y is conjugate to t , which is conjugate to τ . ut

Remark 3.8. Part (ii) of Proposition 3.7 gives a conjugacy class C of automorphisms
ofG with the propertyG = C2. This observation is related to a well known open conjec-
ture of J. G. Thompson, which asserts that if G is a finite simple group then G = C2 for
some conjugacy class C. This has been verified if G is an alternating or sporadic group,
and also ifG is a simple group of Lie type over Fq with q > 8. We refer the reader to [29]
for further details.

Proposition 3.9. Assume that p 6= 2. Let τ ∈ Aut(G) be an involution that inverts a
maximal torus ofG, and let u be a regular element inverted by τ . Then τ acts as inversion
on CG(u).
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Proof. We argue by induction on dimG. In the usual manner, we first reduce to the case
where G is simple and simply connected. Recall that r denotes the rank of G.

Consider the multiplication map µ : τG × τG → G. By Proposition 3.7, this map is
surjective. By Lemma 3.6 we have dim τG = 1

2 (dimG + r), so Lemma 2.1 implies that
there is a non-empty open subvariety W of G such that dimµ−1(w) = r for all w ∈ W .
Therefore

dimµ−1(u) = r = dimCG(u).

If x′y′ = uwith x′, y′ ∈ τG, then x′ ∈ τCG(u). In particular, there exists v ∈ CG(u) such
that the coset τvCG(u)0 consists of involutions, whence τ acts as inversion on vCG(u)0.
If CG(u) is connected, this gives the result.

If u is not unipotent then τ normalizes the subgroup of semisimple elements inCG(u).
Since this subgroup properly contains Z(G), we can pass to CG(t) with t ∈ CG(u)

semisimple and non-central (note that CG(u) ≤ CG(t)). The result follows by induction.
Finally, suppose u is unipotent. Then CG(u) = Z(G) × U , where U consists of

unipotent elements, and so we may assume that Z(G) = 1. If p = 0, or if p is a good
prime forG, then CG(u) is connected and the result follows. In bad characteristic, CG(u)
is disconnected, but we have CG(u) = 〈CG(u)0, u〉. Since τ inverts u and a coset of
CG(u)

0, we conclude that τ inverts CG(u). ut

3.2. Proof of Theorem 8

We are ready to prove the main statement of Theorem 8.

Corollary 3.10. LetG be a simple algebraic group of rank r over an algebraically closed
field of characteristic p 6= 2. Let H = CG(τ ), where τ ∈ Aut(G) is an involution that
inverts a maximal torus of G, and let � = G/H be the corresponding homogeneous
space. Then:

(i) H has a unique regular orbit on �, so b0(G,H) = b(G,H) = 2.
(ii) The generic 2-point stabilizer has order 2r , i.e. there is a non-empty open subvariety

U ⊆ �×� such that |Gα ∩Gβ | = 2r for all (α, β) ∈ U .
(iii) b1(G,H) = 3.
(iv) If G < A ≤ Aut(G) then A acts on � and b0(A,CA(τ )) = 2, b(A,CA(τ )) =

b1(A,CA(τ )) = 3.

Proof. By Proposition 3.7, there exists a conjugate τ g of τ such that ττ g = u is a regular
unipotent element. Then τ inverts u, so Proposition 3.9 implies that τ inverts CG(u),
whence H ∩H g

= 1 by Corollary 3.5. In particular, we have b0(G,H) = b(G,H) = 2.
Conversely, suppose that CG(τ ) ∩ CG(τ ′) = 1 for some conjugate τ ′ of τ . Then τ

acts fixed-point-freely on CG(ττ ′), so τ inverts CG(ττ ′) and thus CG(ττ ′) is abelian
and contains no involutions. Therefore, u = ττ ′ is a semiregular unipotent element and
thus [51, Theorem 1] implies that u is regular. Since any two involutions in 〈τ, CG(u)〉 are
conjugate, it follows that CG(τ ) acts transitively on the set of regular unipotent elements
in G inverted by τ . As we have noted above, the points of � which belong to a regular
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CG(τ )-orbit are in bijection with the regular unipotent elements inverted by τ . Therefore,
H has a unique regular orbit on �.

Generically, the product of two conjugates of τ is a regular semisimple element (be-
cause the set of such elements is dense in G), whence there exists a non-empty open
subvariety U of �×� such thatGα ∩Gβ coincides with the set of involutions in a max-
imal torus of G, for all (α, β) ∈ U . Therefore (i) and (ii) hold, while (iii) follows from
Proposition 2.5(iv).

Finally, let us consider (iv). Since the class of involutions inverting a maximal torus
is invariant under A, we have A = NA(H)G and so A acts on � (with point stabi-
lizer CA(τ )). The only possible regular orbit would be the (unique) regular orbit of G,
but clearly A is not regular on this orbit so b(A,CA(τ )) ≥ 3. By (ii), it follows that a
generic pair of points has finite (but non-trivial) A-stabilizer, so b0(A,CA(τ )) = 2 and
b1(A,CA(τ )) = 3 as claimed. ut

Remark 3.11. Suppose p = 2 and τ ∈ Aut(G) is an involution inverting a maximal
torus of G. Since tori have no involutions, it is trivial to see that generically CG(τ ) ∩
CG(τ

g) = 1. Therefore, with respect to the action of G on τG, we see that

b0(G,CG(τ )) = b(G,CG(τ )) = b
1(G,CG(τ )) = 2.

Finally, the following result completes the proof of Theorem 8.

Proposition 3.12. LetG be a connected reductive algebraic group over an algebraically
closed field of characteristic p ≥ 0. Let τ ∈ Aut(G) be an involution that does not invert
a maximal torus of G. Set H = CG(τ ) and � = G/H . Then b0(G,H) ≥ 3.

Proof. If p = 2, the result follows by Lemma 3.3, so assume that p 6= 2. We proceed by
induction on dimG. Let τ ′ = τ g be a conjugate of τ .

The result is clear if dimG = 1, or more generally if G is solvable, as in the proof
of Lemma 3.3. By induction, we may assume that the solvable radical of G is trivial
and so G is semisimple. Again by induction, we may assume that τ permutes the simple
components ofG transitively and soG is either simple, or a product of two simple groups.
In the latter case, we see that generically the product ττ ′ is regular semisimple and the
common centralizer of τ and τ ′ is a diagonal torus. In particular, H ∩H g generically has
positive dimension, whence b0(G,H) ≥ 3.

So we may assume that G is simple. Set t = ττ ′ and L = CG(t). If L0 is non-
abelian then Lemma 3.2 implies that dimCL(τ ) > 0 and the result follows sinceCL(τ ) =
CG(τ ) ∩ CG(τ

′).
Now assume L0 is abelian. By [51, Theorem 2], we deduce that either t is regular, or

p = 3 andG = G2. In the latter case, Aut(G) has a unique class of involutions so τ must
invert a maximal torus, which is a contradiction. Therefore, we may assume t is regular.
As before, if dimCL(τ ) > 0 then the result follows, so let us assume otherwise.

By Lemma 3.2, τ inverts L0, and we claim that τ inverts a maximal torus ofG. By the
usual reduction argument, we may assume that t is unipotent. We may also assume that
Z(G) = 1. It follows that γCG(t) = τCG(t), where γ ∈ Aut(G) is an involution that
inverts a maximal torus of G. Therefore γ and τ are conjugate (since γ inverts CG(t))
and thus τ inverts a maximal torus. This final contradiction completes the proof. ut
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3.3. Applications

We will now use Theorem 8 to settle some special cases of Theorems 5 and 7. Let G be
a simple algebraic group over an algebraically closed field K of characteristic p ≥ 0 and
supposeH is an involution-type subgroup ofG. This means thatH is a maximal subgroup
of G with the same structure as a centralizer C

G̃
(τ ), where G̃ is a simple algebraic group

over an algebraically closed field of characteristic r 6= 2, τ ∈ Aut(G̃) is an involution
(where Aut(G̃) denotes the group of algebraic automorphisms of G̃), and the root systems
ofG and G̃ are isomorphic. For example,A1E7 andD8 are the involution-type subgroups
of E8.

Note that certain involution-type subgroups of symplectic and orthogonal groups act
reducibly on the natural module; we will deal separately with these subspace actions in
Section 4.1. The non-subspace involution-type subgroups we are interested in here are
listed in Table 6.

Table 6. Non-subspace involution-type subgroups

G Type of H

SLn GLn/2 o S2, Spn, SOn
Spn Spn/2 o S2 (n ≥ 8), GLn/2
SOn On/2 o S2, GLn/2
E8 A1E7, D8
E7 A1D6, T1E6, A7
E6 D5T1, C4 (p 6= 2), A1A5, F4
F4 B4, C4 (p = 2), A1C3 (p 6= 2)
G2 A1Ã1

Our main result on involution-type subgroups is the following:

Theorem 3.13. Let G be a simple algebraic group over an algebraically closed field K
of characteristic p ≥ 0, let H be a non-subspace involution-type subgroup of G and let
� = G/H be the corresponding coset variety. Then one of the following holds:

(i) b0(G,H) = b(G,H) = 2, b1(G,H) = 3, and either G = SL2 and H is of type
GL1 o S2, or p 6= 2 and

(G,H) = (SLn,SOn), (Spn,GLn/2), (SOn,On/2 o S2), (E8,D8), (E7, A7.2),

(E6, C4), (F4, A1C3) or (G2, A1Ã1);

(ii) b0(G,H) = b(G,H) = b1(G,H) = b and (G,H, b) is recorded in Table 7;
(iii) 2 = b0(G,H) ≤ b(G,H) ≤ b1(G,H) = 3, p = 2, G = SOn and H is of type

On/2 o S2, where n ≡ 0 (mod 4) and n ≥ 8;
(iv) 2 = b0(G,H) ≤ b(G,H) ≤ b1(G,H) ≤ 3, p = 2 and

(G,H) = (E7, A7.2), (E6, A1A5) or (G2, A1Ã1).
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Table 7. Values of b in Theorem 3.13(ii)

G Type of H Conditions b

SLn GLn/2 o S2 n ≥ 4 3
Spn n ≥ 6 3+ δ6,n

Spn Spn/2 o S2 n ≥ 8 3
SOn GLn/2 n ≥ 10 3
E8 A1E7 3

D8 p = 2 2
E7 A1D6 3

T1E6 3
E6 F4 4

D5T1 3
A1A5 p 6= 2 3

F4 B4 4
C4 p = 2 4

We prove Theorem 3.13 in a sequence of lemmas. First we record a couple of useful
preliminary results. Let V be a finite-dimensional vector space over K . We say that
g ∈ GL(V ) is a quadratic element if its minimal polynomial over K is quadratic (or
equivalently whenever g is semisimple, then g has precisely two distinct eigenvalues).

Lemma 3.14. Let g, h ∈ GL(V ) be quadratic elements and set G = 〈g, h〉. Then every
composition factor of the KG-module V has dimension at most 2.

Proof. We argue by induction on n = dimV . The result is clear if n ≤ 2. By induction,
it suffices to prove that G acts reducibly on V .

Let U ⊆ V be a g-eigenspace of largest dimension. Since g is quadratic, we have
dimU ≥ n/2. If h has an eigenvector in U , then G has a 1-dimensional invariant sub-
space, so let us assume otherwise. Now, if 0 6= v ∈ hU ∩ U then the span of v and hv is
G-invariant. Therefore, we may assume hU is a complement to U in V , whence n is even
and dimU = n/2. Let W be an h-eigenspace of largest dimension. The same argument
shows that dimW = n/2, so we may assume that V = U ⊕W = W ⊕ gW .

Thus, with respect to an appropriate choice of basis, we have

g =

(
aIn/2 A

0 bIn/2

)
, h =

(
cIn/2 0
B dIn/2

)
,

where A and B are invertible. Conjugating by an appropriate block diagonal matrix, we
may assume that A is the identity matrix and B is diagonal, whence G clearly has a 2-
dimensional invariant subspace. ut
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Corollary 3.15. Suppose G = SLn(K), A ∈ GLn(K) is a quadratic element and H =
NG(K[A]). Then

dim(H ∩H g) ≥

{
n/2− 1 if n is even,
(n− 1)/2 if n is odd,

for all g ∈ G.

Proof. Let V be the natural KG-module. There exists a non-empty open subset U of G
such that 〈A,Ag〉 contains a regular semisimple element of G for all g ∈ U . Therefore,
if g ∈ U then Lemma 3.14 implies that V is a direct sum of 1- and 2-dimensional non-
isomorphic irreducibleK〈A,Ag〉-modules, whence CG(A)∩CG(Ag) contains a torus of
dimension n/2− 1 if n is even, and one of dimension (n− 1)/2 if n is odd. The resulting
lower bound on dim(H ∩H g) holds for all g ∈ U , hence for all g ∈ G since U is dense
in G. ut

We are now ready to give the proof of Theorem 3.13. For the remainder of this section, let
P be the set of elements of prime order inH (including all non-trivial unipotent elements
if p = 0).

Lemma 3.16. Theorem 3.13 holds if G is a classical group.

Proof. First supposeG = SLn. IfH is of type GLn/2 oS2 then dim xH ≤ 1
2 dim xG for all

x ∈ P (see [14, proof of Proposition 2.1]), whence Corollary 2.14 yields b1(G,H) ≤ 3.
Now H = NG(K[A]) for a suitable quadratic element A ∈ GLn, so if n ≥ 3 then
Corollary 3.15 implies that b0(G,H) ≥ 3 and thus

b0(G,H) = b(G,H) = b1(G,H) = 3. (3)

Now suppose n = 2, so H = NG(T ) is the normalizer of a maximal torus T of G. If
p 6= 2 then H = CG(τ ), where τ is an involution inverting T , so in this case Theorem 8
implies that

b0(G,H) = b(G,H) = 2, b1(G,H) = 3. (4)

Now assume p = 2 and let X1, X2 be distinct tori in G. If X1 and X2 are not contained
in a common Borel subgroup then it is straightforward to see that NG(X1)∩NG(X2) has
order 2. On the other hand, if X1, X2 are contained in the same Borel subgroup ofG then
NG(X1) ∩NG(X2) is trivial, whence we have the same answer as for p 6= 2.

If H = Spn then [35, Theorem 1.1] yields

b0(G,H) = b(G,H) = b1(G,H) = 3+ δ6,n + 2δ4,n

(note that the case n = 4 is equivalent to a subspace action—see Table 1). Finally, if H
is of type SOn then p 6= 2 (since H is a maximal subgroup of G) and H = CG(τ ) for
a suitable involutory graph automorphism τ . By Theorem 8, since p 6= 2 and τ inverts a
maximal torus of G, we conclude that (4) holds.
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Next assume G = Spn. If H is of type Spn/2 o S2 then dimH > 1
2 dimG and thus

b0(G,H) ≥ 3 by Proposition 2.5(iii). Here [14, Proposition 2.1] states that

dim(xG ∩H) ≤
(

1
2
+

1
n

)
dim xG

for all x ∈ P , so
dim xH < 2

3 dim xG (5)

if n ≥ 8. In particular, Corollary 2.14 implies that (3) holds when n ≥ 8. (As noted in Ta-
ble 1, if n = 4 then the action ofG is equivalent to a subspace action—see Remark 4.11.)
Now supposeH is of type GLn/2. If p = 2 thenH is contained in a subgroup of type SOn,
so we may assume p 6= 2. Here H = CG(τ ), where τ ∈ G is an involution inverting a
maximal torus of G, so (4) holds by Theorem 8.

Finally, let us turn to the case G = SOn. First suppose H is of type GLn/2. Here
dimH > 1

2 dimG and thus b0(G,H) ≥ 3 by Proposition 2.5(iii). According to the proof
of [13, Lemma 4.2], if n ≥ 10 then

dim xH ≤

(
1
2
+

1
n− 2

)
dim xG

for all x ∈ P , so Corollary 2.14 implies that (3) holds. (Note that if n = 8 then the
action of G is equivalent to the action of SO8 on non-degenerate 2-spaces of the natural
module—see Table 1.)

Now supposeH is of typeOn/2 oS2, soH is the stabilizer of a pair of complementary
non-degenerate spaces. If p 6= 2 then H = CG(τ ) for an involution τ ∈ Aut(G) which
inverts a maximal torus of G, whence (4) holds by Theorem 8. Now assume p = 2, so
n/2 is even. By [14, Proposition 2.1] we have dim xH ≤ 1

2 dim xG for all x ∈ P (with
equality if and only if x is an involution of type cs (with 2 ≤ s ≤ n/2 and s even) or an/2,
in the notation of Aschbacher and Seitz [2]), so Corollary 2.13 yields b1(G,H) ≤ 3.
In fact, by applying Lemma 4.25 (see Section 4.1.4) we deduce that b0(G,H) = 2 and
b1(G,H) = 3 (the fact that b0(G,H) = 2 also follows from Proposition 2.17). However,
we have been unable to determine the exact value of b(G,H) in this case. ut

In order to complete the proof of Theorem 3.13, we may assume that G is an excep-
tional group, and we will consider each possibility for G in turn. Let us say a few words
on the notation and terminology we will use in the remainder of this section. Given a
semisimple subgroup X ≤ G we write 8(X) (respectively, 8+(X)) for the set of roots
(respectively, positive roots) of X with respect to a fixed maximal torus. If W is a KG-
module then W↓X denotes the restriction of W to X. For each simple factor Y of X we
fix a set {λ1, λ2, . . .} of fundamental dominant weights (numbered in the usual way, fol-
lowing [12]), and we write L(λ) for the irreducible KY -module with highest weight λ. If
W is aKX-module thenW ∗ denotes its dual. The Lie algebra ofX is denoted by Lie(X),
and we write Ti for an i-dimensional torus. In addition, Ji denotes a standard unipotent
Jordan block of size i, and we adopt the notation of [48] for labelling the unipotent classes
in G.
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Let 8 be a root system and let 9 be a subsystem of 8. Following [52, Section 5], we
say that 9 is A2-dense in 8 if every subsystem of 8 of type A2 meets 9. Note that if
81 is a subsystem of 8, and 9 is A2-dense in 8, then 9 ∩ 81 is A2-dense in 81. Such
subsystems are called anti-open in [49], and the complete list of all proper anti-open
subsystems of irreducible root systems is given in [49] (also see [52, Lemma 5.1]).

Lemma 3.17. Theorem 3.13 holds if G = E8.
Proof. Here H = NG(X) with X = A1E7 or D8 (see Table 7). Suppose X = A1E7,
so dimH = 136 and b0(G,H) ≥ 3 by Proposition 2.5(iii). We claim that (5) holds for
all x ∈ P . If x is unipotent then we can calculate the precise dimensions of xH and xG

from the information on class fusions recorded in [50, Table 23] (see [59, Chapter 22]
for a convenient list of unipotent class dimensions in exceptional algebraic groups), and
the claim quickly follows. Now assume x is semisimple. Since dim xH ≤ 128, we may
assume that dim xG ≤ 192, in which case the desired result follows from [52, Theorem 2].
For example, if CG(x) does not have anE7 orD8 factor then [52, Table 7.4] indicates that
dim xG − dim xH ≥ 70 and the result follows. This justifies the claim and we conclude
that (3) holds.

Now assume X = D8. If p 6= 2 then H = CG(τ ) and τ ∈ G is an involution which
inverts a maximal torus, so (4) holds by Theorem 8. Now suppose p = 2. If x ∈ H is an
involution then by inspecting [50, Table 22] we quickly deduce that

dim xH < 1
2 dim xG. (6)

For the remainder, let us assume x ∈ G is a semisimple element of prime order r with
D = CG(x). If r = 3 then D0

= A8, A2E6, E7T1 or D7T1 (see [52, Proposition 1.2]). In
the latter case we have dim xG = 156, and [52, Theorem 2] states that dim xG−dim xH ≥

80, so dim xH ≤ 76 < 1
2 dim xG. Next suppose D0

= E7T1, so dim xG = 114 and [52,
Theorem 2] yields dim xH ≤ 58. In fact, we claim that dim xH ≤ 56 < 1

2 dim xG. First
observe that D0 < L = E7A1. By [52, Lemma 5.1], the root systems 8(L) and 8(H)
are A2-dense in 8(G), so 8(L ∩ H) is A2-dense in both 8(L) and 8(H). A further
application of [52, Lemma 5.1] implies that L∩H = A7T1 orD6A

2
1. ThereforeD∩H =

A7T1 or D6A1T1, whence dim xH ≤ 56 as claimed. The other two cases are similar. For
example, supposeD0

= A8 so dim xG = 168. Since8(D∩H) isA2-dense in8(D), [52,
Lemma 5.1] indicates that 8(D ∩ H) = A1A6, A2A5 or A3A4, so dim xH ≤ 80 <
1
2 dim xG. Similarly, if D0

= A2E6 then dim xG = 162 and once again the A2-density of
8(D ∩H) in 8(D) implies that dim xH ≤ 80 < 1

2 dim xG.
Next suppose r ≥ 5 and D0 is semisimple, so D0 does not contain a positive-

dimensional central torus. Then it is easy to see that r = 5 and D0
= A4A4 is the

only possibility, so dim xG = 200. Now 8(D ∩H) is A2-dense in 8(D), and by apply-
ing [52, Lemma 5.1] we deduce that |8+(D ∩H)| ≥ |8+(A2

2A
2
1)| = 8, whence

dim xG − dim xH = 2
(
|8+(G)| − |8+(H)| − |8+(D)| + |8+(D ∩H)|

)
≥ 104

and thus dim xH ≤ 96. We conclude that (6) holds for all x ∈ H of order 2 or 3, and
also for any x ∈ H of prime order r ≥ 5 such that CG(x)0 is semisimple. Therefore
Corollary 2.16 implies that b1(G,H) = 2. ut
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Lemma 3.18. Theorem 3.13 holds if G = E7.

Proof. Here H = NG(X) with X = A1D6, T1E6 or A7. First assume X = A1D6, so
dimH = 69 and thus b0(G,H) ≥ 3. We claim that (5) holds for all x ∈ P . If x is unipo-
tent then the desired bound follows from the fusion information in [50, Table 19], so let us
assume x is semisimple with centralizer D = CG(x). If D contains an E6, D6 or A7 fac-
tor then (5) follows from [52, Theorem 2]. For example, if D0

= A7 then [52, Table 7.4]
indicates that dim xG − dim xH ≥ 32, whence dim xH ≤ 38 < 2

3 dim xG = 140/3. For
the remaining semisimple elements, [52, Theorem 2] yields dim xG − dim xH ≥ 40, so
we may assume dim xG ≥ 120. However, dim xH ≤ 62 for all x ∈ H , and thus (5) holds
in all cases. This justifies the claim and we conclude that (3) holds.

Next suppose X = T1E6. As in the previous case, we have b0(G,H) ≥ 3 since
dimH > 1

2 dimG, and again we claim that (5) holds for all x ∈ P , giving (3). If x is
unipotent then the conjugacy classes xH and xG have the same Bala–Carter label and we
quickly deduce that (5) holds. The argument for semisimple elements is entirely similar
to the previous case, using [52, Theorem 2].

Finally, let us assumeX = A7, soH = A7.2. If p 6= 2 thenH = CG(τ ) for a suitable
involution τ that inverts a maximal torus of G. Therefore (4) holds by Theorem 8. Now
assume p = 2. As in the statement of Corollary 2.16, let P ′ be the set of x ∈ H of prime
order r , where either r ≤ 3 or CG(x)0 is semisimple. We claim that dim(xG ∩ H) ≤
1
2 dim xG for all x ∈ P ′, with equality if and only if r = 2 and x belongs to one of the
classes labelled (3A1)

′, (3A1)
′′ or 4A1. In particular, a combination of Corollary 2.16 and

Proposition 2.17 implies that

2 = b0(G,H) ≤ b(G,H) ≤ b1(G,H) ≤ 3, (7)

but we are unable to determine the exact values of b(G,H) and b1(G,H) in this case.
To justify the claim, first assume x ∈ P ′ has odd order r . Let D = CG(x). Since

dimZ(D0) > 0 if r > 3, we may assume r = 3 and thus D0
= E6T1, D6T1, A6T1,

A1D5T1 or A2A5 (see [52, Proposition 1.2]). If D0
∈ {E6T1, A6T1, A1D5T1} then the

bound in (6) follows from [52, Theorem 2]. For example, ifD0
= A1D5T1 then dim xG =

84 and [52, Theorem 2] states that dim xG − dim xH ≥ 44, giving the required bound.
Next suppose D0

= D6T1. Here dim xG = 66 and [52, Theorem 2] yields dim xH ≤ 34.
In order to improve this bound, first note that D0 < L = D6A1, and the root systems
8(L) and8(H) are A2-dense in8(G) (see [52, Lemma 5.1]), so8(L∩H) is A2-dense
in both8(L) and8(H). Using [52, Lemma 5.1] to determine the possibilities for L∩H ,
we deduce that |8+(D ∩ H)| ≥ 12 and thus dim xH ≤ 32 as required. Finally, suppose
thatD = A2A5, so dim xG = 90. Using theA2-density of8(D∩H) in8(D), we deduce
that |8+(D ∩ H)| ≥ 6 and thus dim xH ≤ 44. This justifies the claim for semisimple
elements.

Finally, let us assume r = 2. The fusion of the H -classes of involutions in the con-
nected component H 0

= A7 is recorded in [50, Table 20], and we quickly deduce that
(6) holds for all involutions x ∈ H 0, unless x has Jordan form [J 4

2 ] on the natural module
for A7 (where J2 denotes a standard unipotent Jordan block of size 2). Here x is in the
G-class labelled (3A1)

′, so dim xH = 1
2 dim xG = 32. Finally, suppose x ∈ H \ H 0 is
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an involution. Let V56 be the 56-dimensional irreducible KG-module. Then [56, Propo-
sition 2.3] gives

V56↓A7 = L(λ2)⊕ L(λ6) = L(λ2)⊕ L(λ2)
∗

and x interchanges theA7-modules L(λ2) and L(λ2)
∗, so x has Jordan form [J 28

2 ] on V56.
In particular, [48, Table 7] indicates that x is in one of the G-classes labelled (3A1)

′′

or 4A1. In fact, if CH 0(x) = CC4(t) (where t ∈ C4 is a long root element) then the
proof of [52, Lemma 4.1] reveals that x is in 4A1, so dim xH = 1

2 dim xG = 35. Now,
if CH 0(x) = C4 then we can calculate the Jordan form of x on the Lie algebra Lie(G)
(using the fact that Lie(G)↓A7 = Lie(A7)⊕L(λ4), as noted in [56, Proposition 2.1]). We
find that x has Jordan form [J 53

2 , J 27
1 ], and by inspecting [48, Table 8] we conclude that x

is in the class (3A1)
′′. Therefore dim xH = 1

2 dim xG = 27. This justifies the claim. ut

Lemma 3.19. Theorem 3.13 holds if G = E6.

Proof. We have H = NG(X) and X ∈ {D5T1, C4 (p 6= 2), A1A5, F4}. First assume
X = D5T1. Since dimH = 46 > 1

2 dimG we deduce that b0(G,H) ≥ 3 by Propo-
sition 2.5(iii). We claim that (5) holds for all x ∈ P . If x is unipotent then the Bala–
Carter labels for the classes xG and xH are the same, and we quickly deduce that (5)
holds. Now assume x ∈ H is semisimple and set D = CG(x). If D has a D5 or A5
factor then (5) follows from [52, Theorem 2]; in all other cases, the same result gives
dim xG − dim xH ≥ 20, so we may assume dim xG ≥ 60. In fact, since dim xH ≤ 40
for all x ∈ H , we reduce to the case dim xG = 60, so D0

= A2
2T2 or A3T3. Here the

proof of [19, Lemma 4.17] yields dim xG − dim xH ≥ 24. This justifies the claim, and
we conclude that b0(G,H) = b(G,H) = b1(G,H) = 3.

Next consider the caseX = C4. Here p 6= 2 andH = CG(τ ), where τ ∈ Aut(G) is an
involutory graph automorphism that inverts a maximal torus of G. Therefore Theorem 8
implies that (4) holds.

Next suppose X = F4. Here dimH = 52 = 2
3 dimG, so b0(G,H) ≥ 3. We

claim that b0(G,H) = b(G,H) = b1(G,H) = 4. To see this, let {ω1, . . . , ω6} be a
set of fundamental dominant weights for G and let V = L(ω1) be the irreducible 27-
dimensionalKG-module with highest weight ω1. ThenH is theG-stabilizer of a generic
1-dimensional subspace of V , so we can identify � with a non-empty open subvariety in
the projective space P(V ). We may also identify V with the coset variety E7/P7, where
P7 is a maximal parabolic subgroup of E7 with Levi subgroup L = E6T1. Now F4 is the
L-stabilizer of a generic point in E7/P7, so L/F4 is open in V (with T1 acting as scalars).
In particular, the generic 3-point (respectively 4-point) stabilizer for the original action
ofG on � is the same as the generic 5-point (respectively 6-point) stabilizer in the action
of E7 on E7/P7. In Proposition 5.5 we will show that

b0(E7, P7) = b(E7, P7) = b
1(E7, P7) = 6,

whence b0(G,H) = b(G,H) = b1(G,H) = 4 as claimed.
Finally, let us assume X = A1A5. If p 6= 2 then H = CG(z) for a suitable in-

volution z ∈ G, and Theorem 8 implies that b0(G,H) ≥ 3 since z does not invert
a maximal torus of G. We claim that (5) holds for all x ∈ P , whence b0(G,H) =
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b(G,H) = b1(G,H) = 3 via Corollary 2.14. If x ∈ H is unipotent then the desired
bound quickly follows from the information in [50, Table 17], so assume x is semisimple
and let D = CG(x). If D has a D5 or A5 factor then [52, Theorem 2] is sufficient. In
all other cases we have dim xG − dim xH ≥ 24 by [52, Theorem 2], so we may assume
dim xG = 72. However, dim xH ≤ 32 for all x ∈ H , and the claim follows.

Now suppose p = 2. As in Corollary 2.16, let P ′ be the set of x ∈ H of prime order r ,
where either r ≤ 3 or CG(x)0 is semisimple. We claim that dim(xG∩H) ≤ 1

2 dim xG for
all x ∈ P ′, with equality if and only if r = 2 and x belongs to one of theG-classes labelled
2A1 or 3A1. In particular, a combination of Corollary 2.16 and Proposition 2.17 implies
that (7) holds, but we have not determined the exact values of b(G,H) and b1(G,H) in
this case.

If x ∈ H is an involution then the claim quickly follows from the fusion information
presented in [50, Table 17]. For example, if x = ([J2], [J

3
2 ]) ∈ H then x is in theG-class

labelled 3A1 and thus dim xH = 2+ 18 = 20 and dim xG = 40. Now assume x ∈ P ′ has
odd prime order r . Set D = CG(x). If r > 3 then dimZ(D0) > 0, so we may assume
r = 3, in which case D0

= A5T1, D4T2 or A3
2 (see [52, Proposition 1.2]). According

to [52, Lemma 5.1], the root system 8(H) is A2-dense in 8(G), whence 8(D ∩ H)
is A2-dense in 8(D). First assume D = A5T1, so dim xG = 42. Here the A2-density of
8(D∩H) in8(D) implies that8(D∩H) = A3A1 orA2

2. In particular, |8+(D∩H)| ≥ 6
so dim xH ≤ 20 as required. Next suppose D0

= D4T2. Here dim xG = 48 and the usual
argument implies that8(D∩H) = A3, whence |8+(D∩H)| ≥ 6 and thus dim xH ≤ 20.
Finally, if D0

= A3
2 then dim xG = 54 and the result follows since dim yH ≤ 26 for all

y ∈ H of order 3. This justifies the claim. ut

Lemma 3.20. Theorem 3.13 holds if G = F4.

Proof. Here H = NG(X) with X ∈ {B4, C4 (p = 2), A1C3 (p 6= 2)}. First assume X =
B4, so dimH = 36 > 2

3 dimG and thus b0(G,H) ≥ 4. A combination of [50, Table 13]
and [52, Theorem 2] implies that dim xH ≤ 3

4 dim xG for all x ∈ P , with equality if and
only if x is a long root element. Therefore b1(G,H) ≤ 4 by Corollary 2.19 (note that
every long root subgroup of H = H 0 is a long root subgroup of G), hence b0(G,H) =

b(G,H) = b1(G,H) = 4. The case X = C4 (with p = 2) now follows immediately
since subgroups of type C4 and B4 are conjugate in Aut(G); they are interchanged by an
involutory graph automorphism.

Finally, suppose X = A1C3 and p 6= 2 (note that A1C3 < F4 is non-maximal when
p = 2—see [58, Table 10.3]). Here H = CG(τ ), where τ ∈ G is an involution which
inverts a maximal torus ofG. Therefore b0(G,H) = b(G,H) = 2 and b1(G,H) = 3 by
Theorem 8. ut

Lemma 3.21. Theorem 3.13 holds if G = G2.

Proof. Here H = A1Ã1. If p 6= 2 then H = CG(τ ), where τ ∈ G is an involution that
inverts a maximal torus of G, so (4) holds by Theorem 8.

Now assume p = 2. We claim that dim(xG ∩ H) ≤ 1
2 dim xG for all x ∈ P , with

equality if and only if x is an involution in the G-class labelled Ã1. To justify the claim,
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first assume x ∈ H is semisimple. If CH (x)0 = A2 then dim xG = 6 and [52, Theorem 2]
indicates that dim xH = 2; in every other case we have dim xG ≥ 10 and the desired
bound follows since dim xH ≤ 4 for all x ∈ H . Finally, the result for involutions is easily
deduced from [50, Table 10]. Therefore Proposition 2.17 implies that (7) holds when
p = 2, but we are unable to determine the exact values of b(G,H) and b1(G,H). ut

4. Classical groups

Let G be a simple classical algebraic group over an algebraically closed field K of char-
acteristic p ≥ 0 with natural module V . In this section we complete the proofs of Theo-
rems 4 and 5.

The main theorem on the subgroup structure ofG is a result of Liebeck and Seitz [57],
which provides a natural algebraic group analogue of Aschbacher’s celebrated structure
theorem [1] for finite classical groups. Following [57, Section 1], we introduce six natural,
or geometric, collections of closed subgroups of G, labelled Ci for 1 ≤ i ≤ 6, and we set
C =

⋃
i Ci . A rough outline of the subgroups in each Ci collection is given in Table 8.

Table 8. The Ci collections

Rough description

C1 Stabilizers of subspaces of V
C2 Stabilizers of orthogonal decompositions V =

⊕
i Vi

C3 Stabilizers of totally singular decompositions V = V1 ⊕ V2
C4 Stabilizers of tensor product decompositions V =

⊗
i Vi

C5 Normalizers of symplectic-type r-groups, r 6= p prime
C6 Classical subgroups

The main theorem of [57] provides the following description of the maximal closed
subgroups of G.

Theorem 4.1. Let H be a closed subgroup of G. Then one of the following holds:

(i) H is contained in a member of C;
(ii) modulo scalars, H is almost simple and E(H) (the unique quasisimple normal sub-

group of H) is irreducible on V . Further, if G = SL(V ) then E(H) does not fix a
non-degenerate form on V . In addition, if H is infinite then E(H) = H 0 is tensor-
indecomposable on V .

Proof. This is [57, Theorem 1]. ut

We will write S to denote the collection of maximal closed subgroups of G that arise
in part (ii) of Theorem 4.1. Note that the subgroups in C5 are finite so they can be dis-
carded. Also notice that the members of C3 and C6 are involution-type subgroups, which
we considered in the previous section.
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In studying bases for a classical group G, it is natural to make a distinction between
the primitive actions of G in which the point stabilizer H acts reducibly on V (the so-
called subspace actions of G), and those in which H is irreducible. Indeed, for subspace
actions it is easy to see that the various base measures can be arbitrarily large, whereas
Theorem 2 states that b1(G,H) ≤ 4 when H is irreducible. We begin by considering
subspace actions.

4.1. Subspace actions

Let G be a classical algebraic group in a primitive subspace action on a G-variety �. As
defined in the Introduction, this means that either

(i) � is an orbit of subspaces of the natural G-module V ; or
(ii) the action of G on � is equivalent to the action of an isomorphic classical group L

on an orbit of subspaces of the natural L-module (see Table 1).

The purpose of this section is to prove Theorem 4, and we begin our analysis by dealing
with the linear groups.

4.1.1. Linear groups

Proposition 4.2. Let G = SLn and let � be the set of d-dimensional subspaces of V ,
with d ≤ n/2. Set k = dn/de.

(i) If d divides n then b0(G) = b(G) = b1(G) = k + ε, where

ε =


3 if 1 < d = n/2,
2 if 1 < d < n/2,
1 if d = 1.

(ii) If d does not divide n then

k + 1 ≤ b0(G) = b(G) = b1(G) ≤ k + 2+ δ3,k.

Proof. First note that the stabilizer in GL(V ) of any given collection of subspaces of V
coincides with the unit group of a suitable K-algebra and is therefore connected. Thus,
the same is true in G = SL(V ). It follows that b0(G) = b(G) = b1(G) in all cases.

Consider (i). The case d = 1 is trivial. Next suppose d = n/2 and n ≥ 4. Choose
four generic d-dimensional subspaces of V , say V1, V2, V3 and V4. By generic we mean
that Vi ∩ Vj = 0 for all i 6= j (note that this is an open condition), so V = V1 ⊕ V2 in
particular. Let L be the stabilizer in G of V1 and V2, so L is of type GL(V1) × GL(V2).
Conjugating by L, we may assume that V3 = {(v, f (v)) | v ∈ V1} and V4 = {(v, g(v)) |

v ∈ V1} for generic isomorphisms f, g : V1 → V2. By fixing a suitable basis we have
f, g ∈ Mn/2(K) and we are free to assume that f is the identity matrix. Since V4 has
been chosen generically, it follows that g is a regular semisimple matrix.

Suppose x ∈ G fixes each of the subspaces V1, V2 and V3. Then x is a block-diagonal
matrix of the form diag[y, y] with y ∈ GLn/2(K), so x fixes V4 if and only if y commutes
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with g. It follows that the common stabilizer of V1, . . . , V4 is a torus of dimension n/2−1,
whence b0(G) > 4. Now take V5 = {(v, h(v)) | v ∈ V1} so that g and h generate
the full matrix algebra Mn/2(K) (note that this is another generic condition). If x =
diag[y, y] ∈ G stabilizes each Vi (1 ≤ i ≤ 5) then y commutes with both g and h,
whence y (and thus x) is a scalar and we conclude that b1(G) = 5, as claimed.

Now suppose 1 < d < n/2 and d divides n, so k = n/d . Let V1, . . . , Vk be generic
d-dimensional subspaces of V , so V = V1 ⊕ · · · ⊕ Vk . Choose another d-dimensional
subspace Vk+1 so that its intersection with any sum of the subspaces V1, . . . , Vk (except
V =

∑
i≤k Vi of course) is trivial. TheG-stabilizer of V1, . . . , Vk and Vk+1 is isomorphic

to GL(V1) (embedded diagonally), whence b0(G) > k + 1. Now take

Vk+2 = {(v, f2(v), . . . , fk(v)) | v ∈ V1},

where the matrices fi ∈ Md(K) generate the full matrix algebra. As before we deduce
that the stabilizer in G of these k + 2 subspaces consists of scalars, hence b1(G) = k + 2
as claimed.

Finally, let us turn to (ii), so d does not divide n. Since k = dn/de we have

(k − 1)d + 1 ≤ n ≤ kd − 1.

First we claim that b0(G) ≥ k + 1. Let V1, . . . , Vk be generic d-dimensional subspaces.
We may assume thatW =

∑
i<k Vi is a direct sum, and we may write Vk = U⊕(Vk∩W)

for some non-trivial subspace U . Clearly, any x ∈ G that preserves U and acts as a scalar
on W preserves each Vi . The claim follows.

To complete the proof, it suffices to produce k + 2 + δ3,k subspaces of dimension d
whose common stabilizer inG consists of scalars (for then the generic stabilizer of k+2+
δ3,k d-dimensional subspaces is finite, and therefore trivial by the remark at the beginning
of the proof).

First assume that k ≥ 5. Let V1, . . . , Vk be generic d-dimensional spaces and set
W1 =

∑
i<k Vi andW2 =

∑
i>1 Vi . We may assume thatW1 andW2 are direct sums. Let

U1 be the diagonal d-dimensional subspace of W1, and let U2 = {(v, f3(v), . . . , fk(v)) |

v ∈ V2} where each fi is a generic isomorphism from V2 to Vi . Arguing as above, if
x ∈ G preserves U1, U2 and each Vi then x must be a scalar on V2 ⊕ · · · ⊕ Vk−1.
Furthermore, since x preserves U1 and U2 it follows that x induces the same scalar on V1
and Vk , whence b1(G) ≤ k + 2 as required.

For k = 4 we need to work a bit harder. Again, let V1, . . . , V4 be generic d-dimen-
sional spaces. We may assume that V =

∑4
i=1 Vi , dim(V1∩V4) = 1 and that V1+V2+V3

and V2+V3+V4 are direct sums. DefineU1 andU2 as in the previous paragraph. Suppose
x ∈ G preserves U1, U2 and each Vi . Let xi = x|Vi denote the restriction of x to Vi . Then
x1 = x2 = x3 and x1 commutes with f3. Moreover, x4 is uniquely determined by x2
and f4. In particular, since x4 must preserve V1 ∩ V4, generically this forces x4 to be a
scalar, so x itself is a scalar.

Finally, let us assume k = 3. Let V1 and V2 be generic d-dimensional subspaces. Let
U1 be the standard diagonal d-dimensional subspace of V1⊕V2 and letU2 be an additional
generic d-dimensional subspace of V1 ⊕ V2. Also, let V3 be another d-dimensional space
such that V =

∑3
i=1 Vi and dim(V1 ∩ V3) = 1. Let U3 be a generic d-dimensional
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subspace of V2⊕V3. Arguing as above, we deduce that any x ∈ G preserving each of the
subspaces Vi, Ui (for 1 ≤ i ≤ 3) is a scalar, so b1(G) ≤ 6. ut

4.1.2. Symplectic groups. Now assume G = Spn, where n ≥ 4 is even. There are three
cases to consider:

(i) H = GU is the stabilizer of a non-degenerate d-dimensional subspace U of V ,
where 2 ≤ d < n/2 is even;

(ii) H = GU is the stabilizer of a totally singular d-dimensional subspaceU of V , where
1 ≤ d ≤ n/2;

(iii) H = On and p = 2 (see Table 1).

First we deal with non-degenerate subspaces. Our main result is the following:

Proposition 4.3. Let G = Spn and let � be the set of d-dimensional non-degenerate
subspaces of V , with d < n/2. Set k = dn/de. Then either

b0(G) = b(G) = b1(G) = k,

or n = 6, d = 2 and b0(G) = b(G) = b1(G) = 4.

We require the following lemma concerning the (imprimitive) action of G on the set of
n/2-dimensional non-degenerate subspaces of V .

Lemma 4.4. Let G = Spn, where n ≡ 0 (mod 4), and let � be the set of n/2-dimen-
sional non-degenerate subspaces of V . Then

b0(G) = b(G) = b1(G) = 3+ δ4,n.

Proof. By dimension, b0(G) ≥ 3. First assume n ≥ 8. Let V1, V2, V3 be generic sub-
spaces in �. Let W be the orthogonal complement V ⊥1 , so V = V1 ⊥ W . Without loss of
generality we may assume that Vi = {(v, fi(v)) | v ∈ V1} for i = 2, 3, where each fi is
an isomorphism fi : V1 → W . Suppose x ∈ G stabilizes each Vi . Since x stabilizes V1
we can write x = (x1, x2) ∈ Sp(V1)× Sp(W). Now x stabilizes V2 and V3 if and only if

(x1(v), x2fi(v)) = (x1(v), fix1(v))

for all v ∈ V1 and i = 2, 3, or equivalently x2fi = fix1 for i = 2, 3. Therefore t :=
f−1

2 f3 must commute with x1. Now generically, t is a regular semisimple element of
GLn/2 and so its centralizer is a maximal torus T of GLn/2 (and an open subvariety of
maximal tori in GLn/2 are of this form). If n ≥ 8 and T < GLn/2 is a generic maximal
torus then the linear span of any even number of eigenspaces will be non-degenerate,
whence T ∩ Spn/2 is central and the result holds in this case.

Finally, suppose n = 4. Here T ∩ Sp2 is a 1-dimensional torus and so the stabilizer
of any three non-degenerate 2-dimensional spaces is positive-dimensional. Using the no-
tation as above, let V4 be another 2-dimensional space in �. Then x1 must centralize
f−1

2 f3 and f−1
3 f4, and generically they will have a trivial common centralizer. Therefore

b0(G) = b(G) = b1(G) = 4 in this case. ut
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Proof of Proposition 4.3. First observe that k ≥ 3 and (k − 1)d + 2 ≤ n ≤ kd, whence
b0(G) ≥ k. Indeed, if V1, . . . , Vk−1 are generic elements of� thenW = V1⊕· · ·⊕Vk−1
is non-degenerate of dimension (k − 1)d , so Sp(W⊥) stabilizes each Vi and has positive
dimension.

To begin with, let us assume d ≥ 4. First consider the case k = 3. Let V1, V2, V3 be
generic elements of �, so W = V1 ⊕ V2 is non-degenerate of dimension 2d. Further, we
may assume that there is a non-degenerate d-dimensional subspace W1 of W such that
V3 = {(u, f (u)) | u ∈ W1} (in terms of the decomposition V = W ⊥ W⊥) for some
surjective linear map f : W1 → W⊥. Suppose x ∈ G preserves each Vi , and consider
the restriction of x to W , which we denote by x1 ∈ Sp(W). Then x1 preserves V1, V2 and
W1, so Lemma 4.4 implies that x1 is a scalar. Without loss of generality we may assume
that x1 = 1. Let x2 denote the restriction of x to W⊥. Then x(u, f (u)) = (u, x2f (u)) =

(u, f (u)) and thus x2 = 1 on the image of f . The result follows.
Next suppose d, k ≥ 4. Let V1, . . . , Vk be generic elements of � and assume x ∈ G

preserves each Vi . By the analysis of the case k = 3 in the previous paragraph, x acts as
a scalar on each Vi ⊕ Vj ⊕ V` with 1 ≤ i < j < ` ≤ k, and the desired result follows.

Finally, let us consider the case d = 2. First assume k = 3 (so n = 6). Let V1, V2
and V3 be generic 2-spaces in �. Set W1 = V1, W2 = V

⊥

1 ∩ V12 and W3 = V
⊥

12, where
V12 = V1 ⊕ V2, so V = W1 ⊥ W2 ⊥ W3. Note that if x ∈ G stabilizes each Vi then it
also stabilizes each Wi . We may assume that

V2 = {(v, f (v), 0) | v ∈ V1}, V3 = {(v, f2(v), f3(v)) | v ∈ V1},

where f, f2 : V1 → W2 and f3 : V1 → W3 are isomorphisms. In particular, if x ∈ G sta-
bilizes each Vi then we may write x = (x1, x2, x3) ∈ Sp2×Sp2×Sp2, where x2f = f x1,
x2f2 = f2x1 and x3f3 = f3x1. It is straightforward to see that generically x1 belongs to
a torus of Sp2, whence b0(G) > 3. Arguing as above shows that b1(G) = 4, as required.

Now assume that d = 2 and k ≥ 4. Let V1, . . . , Vk be generic 2-spaces in �. Set Wi

to be the (direct) sum of all Vj , j 6= i. Then each Wi is non-degenerate of codimension 2
in V . Assume that we have handled the case k = 4; then by induction any x preserving
Vj (j 6= i) is a scalar on Wi , whence on V . So consider the case k = 4 and assume that
x preserves each Vi . Write V = W4 ⊕W

⊥

4 . Let V ′4 be the projection of V4 into W4 with
respect to this orthogonal decomposition of V . Then generically V ′4 is a non-degenerate
2-space. If x preserves each Vi , then x also preserves V ′4 and so by the case k = 3, x is a
scalar on W4 (and so similarly on Wi for each i), whence x is a scalar. We conclude that
b1(G) = k. ut

Next, let us turn our attention to stabilizers of totally singular subspaces.

Proposition 4.5. Let G = Spn and let � be the set of d-dimensional totally singular
subspaces of V , with d ≤ n/2. Set k = dn/de. Then either

b0(G) = b(G) = b1(G) = k,

or one of the following holds:

(i) n = 6, d = 2 and b0(G) = b(G) = b1(G) = 4;
(ii) d = n/2 and b0(G) = b(G) = 4, b1(G) = 5− δ2,p.
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We prove this result in a sequence of lemmas. First observe that b0(G) ≥ k. Indeed, if
V1, . . . , Vk−1 are elements of � then there is a positive-dimensional unipotent subgroup
of G that acts trivially on a hyperplane containing V1 + · · · + Vk−1.

Lemma 4.6. If d = 1 then b0(G) = b(G) = b1(G) = n.

Proof. As above, b0(G) ≥ n. First assume n = 4. Let {e1, e2, e3, e4} be a generic basis
for V and let {f1, f2} be a basis for 〈e1, e2〉

⊥, so e3 = a1e1 + a2e2 + b1f1 + b2f2 with
all coefficients non-zero. Suppose x ∈ G stabilizes each 〈ei〉. Then xe3 = ce3 for some
scalar c ∈ K , so xe1 = ce1 and xe2 = ce2 since x preserves 〈f1, f2〉 = 〈e1, e2〉

⊥. Since
〈e1, e2〉 is non-degenerate, it follows that c = ±1. Therefore xei = ±ei for all i, so x is
a scalar and thus b1(G) = 4 as required.

Now assume n ≥ 6. Let V1, . . . , Vn be generic elements of �. In particular, we may
assume that any four distinct Vi generate a non-degenerate 4-dimensional subspace. Sup-
pose that x ∈ G preserves each Vi . By the previous paragraph, x is a scalar on the sum of
any given four of the Vi . But the Vi generate V , so this implies that x is a scalar on V . ut

Lemma 4.7. If d = n/2 then b0(G) = b(G) = 4 and b1(G) = 5− δ2,p.

Proof. Let H be the stabilizer of an element of � and let Q denote the unipotent radical
of H . A generic 2-point stabilizer is a Levi subgroup L = GLn/2 of H (see Lemma 5.3
in Section 5.1). Moreover, since Q has a dense regular orbit on �, it suffices to compute
the base size for the action of L on Q by conjugation.

As an L-module, Q is isomorphic to the symmetric square of the natural L-module,
so a stabilizer in the conjugation action of L on Q corresponds to the stabilizer of a non-
degenerate symmetric bilinear form. Now, if p 6= 2 then such a stabilizer is an orthogonal
group On/2, and Theorem 3.13(i) implies that the intersection of two generic conjugates
of On/2 is finite but not trivial. We conclude that b0(G) = b(G) = 4 and b1(G) = 5.

Now assume p = 2 and consider the L-stabilizer of a pair of generic non-degenerate
symmetric bilinear forms. By conjugating we may assume that the first form is repre-
sented by the identity matrix I = In/2 and the second is represented by an invertible
symmetric matrix S. The stabilizer of this pair consists of all x ∈ L with xx> = I and
xSx> = xSx−1

= S. Generically, S is a regular semisimple matrix, so x is a polynomial
in S and therefore x is symmetric. Thus, x> = x = x−1 and so x2

= 1. However, no in-
volution commutes with a regular semisimple element, so the pairwise stabilizer is trivial
and thus b0(G) = b(G) = b1(G) = 4. ut

Lemma 4.8. Suppose d ≥ 2 and k = 3. Then

b0(G) = b(G) = b1(G) = 3+ δ2,d .

Proof. By definition of k we have 2d + 2 ≤ n ≤ 3d . Let V1, V2, V3 be generic ele-
ments of �. We may assume that W1 = V1 ⊕ V2 is non-degenerate of dimension 2d .
Set W3 = W⊥1 , so V = V1 ⊕ V2 ⊕ W3 and note that we may assume that V3 =

{(v, f2(v), f3(v)) | v ∈ V1}, where f2 : V1 → V2 is an isomorphism and f3 : V1 → W3
is a linear surjection. Suppose x ∈ G stabilizes each Vi (and therefore alsoW3). Let x1, x2
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denote the restriction of x to V1, V2, respectively, and let x3 ∈ Spn−2d be the restriction
of x to W3. Note that x preserves each Vi if and only if

x2 = x
−>

1 , x>1 f2x1 = f2 and x3f3 = f3x1.

It is not difficult to see that for a generic f2, the subgroup {y ∈ GLd | y>f2y = f2}

is a torus T of dimension bd/2c (and the only scalar in T is in the center of Spd ). Note
that x1 ∈ T , so x1 preserves the form defined by f2. If n < 3d then d ≥ 3 and f3
has a non-trivial kernel L, whence L must be x1-invariant (since x3f3 = f3x1). Given a
generic subspace L, no non-trivial element of T preserves L, whence x1 is trivial. Since
x2 = x

−>

1 and x3f3 = f3x1, we deduce that x2 and x3 are also trivial, so x is trivial and
thus b0(G) = b(G) = b1(G) = 3.

Finally, let us assume n = 3d, so d ≥ 2 is even. Here f3 is an isomorphism and
thus x3 = f3x1f

−1
3 . If d ≥ 4 then f3Tf

−1
3 ∩ Spd coincides with the center of Spd ,

so x1 = ±1 and x is a scalar. Again, we conclude that b0(G) = b(G) = b1(G) = 3.
However, if d = 2 then the same argument shows that the stabilizer of three generic
subspaces is a 1-dimensional torus, whence b1(G) ≥ 4. An easy argument now yields
b0(G) = b(G) = b1(G) = 4. ut

Lemma 4.9. Suppose d ≥ 2 and k ≥ 4. Then b0(G) = b(G) = b1(G) = k.

Proof. Let V1, . . . , Vk be generic subspaces in � and suppose x ∈ G fixes each Vi . Set
W = V1+V2+V3 and note that we may assume this is a direct sum. Further, if d is even
then we may assume W is non-degenerate. If d ≥ 4 is even then Lemma 4.8 implies that
the restriction of x to W is a scalar, and the result quickly follows. Now, if d ≥ 3 is odd
then we may assume that W has a 1-dimensional radical R and that each Vi (1 ≤ i ≤ 3)
intersects R trivially. By Lemma 4.8, x is a scalar on W/R and is therefore a scalar on
each Vi (and necessarily the same scalar). Again the result follows.

Finally, suppose d = 2. Arguing as above, we see that it suffices to prove the result
for k = 4 (so n = 8). A minor variation of the previous argument gives the result; we
leave the reader to check the details. ut

This completes the proof of Proposition 4.5. Finally, we deal with the one extra case that
arises when p = 2.

Proposition 4.10. Suppose G = Spn, p = 2 and � = G/H , where H = On. Then
b0(G) = b(G) = n and b1(G) = n+ 1.

Proof. We may viewG as acting indecomposably on the orthogonal moduleM of dimen-
sion n+ 1, so we can identify � with the set of non-degenerate hyperplanes in M . Now,
if V1, . . . , Vn−1 are generic hyperplanes in � then their intersection is a 2-dimensional
non-degenerate subspace X of M . Therefore, there is a positive-dimensional subgroup
of G acting trivially on M/X, whence b0(G) ≥ n.

Let V0 ∈ � denote the non-degenerate hyperplane fixed by H . Let V1, . . . , Vn−1 be
generic elements of �, so Ui = Vi ∩ V0 is a hyperplane in V0 for all i ≥ 1. Generically,
the radical of each Ui (with respect to the H -invariant alternating form on V0) will be
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a 1-dimensional non-degenerate subspace. Let 3 denote the set of 1-dimensional non-
degenerate subspaces of V0. By Lemma 4.23 (see Section 4.1.4), the stabilizer in H 0 of
n−1 generic elements in3 is trivial, but the corresponding stabilizer inH has order 2 (in-
deed, there is a transvection x ∈ H \H 0 fixing all n− 1 hyperplanes—see Remark 4.24).
Therefore b0(G) = n and b1(G) = n+ 1.

To complete the proof, note that we can choose V1, . . . , Vn−1 so that the intersection
of the Vi , 0 ≤ i ≤ n − 1, is a 1-dimensional totally singular subspace of M . In this
situation, there is no non-trivial element of H fixing the hyperplanes V1, . . . , Vn−1, so
b(G) = n as required. ut

Remark 4.11. Proposition 4.10 implies that b0(G) = b(G) = n and b1(G) = n + 1
for the equivalent action of G = SOn+1 (with p = 2) on the set of 1-dimensional non-
singular subspaces of the natural module forG (see Table 1). In particular, we deduce that
b0(G) = b(G) = 4 and b1(G) = 5 if G = Sp4, p = 2 and H is a C2-subgroup Sp2 o S2
(by Lemma 4.14, the same conclusion holds if p 6= 2).

4.1.3. Orthogonal groups, p 6= 2. In this section we deal with the subspace actions of
orthogonal groups SOn, where p 6= 2. We start by considering the stabilizers of non-
degenerate subspaces.

Lemma 4.12. Let G = SOn, where p 6= 2 and n ≥ 4 is even. Let � be the set of n/2-
dimensional non-degenerate subspaces of V . Then b0(G) = b(G) = 2 and b1(G) = 3.

Proof. Let H be the stabilizer of a subspace in �, so H is of type On/2 ×On/2. If n ≥ 6
then the result follows from Theorem 3.13(i), so let us assume n = 4. Here G = A1A1
and H is contained in the normalizer of a maximal torus, so the same conclusion holds in
this case too. ut

Proposition 4.13. Let G = SOn with n ≥ 7 and let � be the set of d-dimensional non-
degenerate subspaces of V , with 1 ≤ d < n/2. Set k = dn/de and assume p 6= 2. Then
either

b0(G) = b(G) = b1(G) = k,

or n = (k − 1)d + 1, b0(G) = b(G) = k − 1 and b1(G) = k − ε, where ε = 1 if n is
even, otherwise ε = 0.

The proof of Proposition 4.13 is given in the next two lemmas.

Lemma 4.14. If d = 1 then b0(G) = b(G) = n− 1 and b1(G) = n− ε, where ε = 1 if
n is even, otherwise ε = 0.

Proof. It is convenient to prove this result for all n ≥ 3. First observe that b0(G) ≥ n−1.
Indeed, the sum of n−1 generic non-degenerate 1-spaces is a non-degenerate hyperplane,
so the sum of n − 2 generic elements of � is non-degenerate and thus their common
stabilizer is positive-dimensional.

If n = 3 then the stabilizer of a non-degenerate 1-space is the normalizer of a maximal
torus, whence the result is clear in this case (see the proof of Lemma 3.16, for example).
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Now assume n ≥ 4. By induction, any x ∈ G stabilizing n−1 generic elements of�must
act as ±1 on the corresponding non-degenerate hyperplane (the sum of n − 1 spaces). If
n is even, this forces x to be a scalar and the result follows. Now assume n is odd. Here,
either x is a scalar or −x is a reflection, so in this situation we have b1(G) = n. Now we
can also choose n−1 elements of� so that their sum is a hyperplane with a 1-dimensional
radical; this forces x to be a scalar, so b0(G) = b(G) = n− 1. ut

Lemma 4.15. If d ≥ 2 then either b0(G) = b(G) = b1(G) = k, or n = (k − 1)d + 1,
b0(G) = b(G) = k − 1 and b1(G) = k − ε, where ε = 1 if n is even, otherwise ε = 0.

Proof. By definition of k we have (k − 1)d + 1 ≤ n ≤ kd and k ≥ 3. First assume
n > (k − 1)d + 1. As before, we have b0(G) ≥ k. Suppose k = 3 and let V1, V2, V3
be generic elements of �. Without loss of generality we may assume that W = V1 ⊕ V2
is a non-degenerate 2d-space. By Lemma 4.12, the stabilizer of V1 and V2 in SO(W)
is finite. The common G-stabilizer of V1, V2 and V3 preserves the orthogonal projection
of V3 into W , so this stabilizer acts as a scalar on V = V1 + V2 + V3 and thus b0(G) =

b(G) = b1(G) = 3. More generally, if k ≥ 4 and V1, V2, V3 are generic elements of �
then any x ∈ G that preserves each Vi acts as a scalar on V1 ⊕ V2 ⊕ V3. In particular, if
x ∈ G stabilizes k generic elements of � then x is a scalar and the result follows.

Finally, let us assume n = (k − 1)d + 1. Here b0(G) ≥ k − 1. Let V1, . . . , Vk−1 be
generic elements of �. Then W = V1 ⊕ · · · ⊕ Vk−1 is a non-degenerate hyperplane. By
the previous paragraph, any x ∈ G preserving each Vi acts as ±1 on W . If n is even then
we immediately deduce that b1(G) = k − 1. If n is odd, let x be the reflection with fixed
space W . Then −x ∈ G fixes each of the Vi , whence b1(G) = k in this case.

We can also choose the Vi so thatW is a hyperplane with a 1-dimensional radicalR. It
follows by induction that any x ∈ G preserving each Vi must be a scalar on W/R. Since
we may assume that R is not contained in any of the Vi , this implies that x is a scalar
on W , and thus a scalar on the whole space V . We conclude that b(G) = k − 1. ut

This completes the proof of Proposition 4.13. Next we turn our attention to totally sin-
gular subspaces, and we continue to assume that p 6= 2. Let H be the stabilizer of a
totally singular d-dimensional subspace of V and set � = G/H . Note that if d < n/2
then� is the set of all totally singular d-dimensional subspaces of V , whereas if d = n/2
then there are two distinctG-orbits on such subspaces, which are interchanged by a graph
automorphism ofG = SOn. In particular, if d = n/2 then the twoG-actions are permuta-
tion isomorphic. Our main result is the following, which we prove in Lemmas 4.17–4.21
below.

Proposition 4.16. Let G = SOn with n ≥ 7, let H be the stabilizer of a totally singular
d-dimensional subspace of V with 1 ≤ d ≤ n/2 and set � = G/H . Assume p 6= 2 and
set k = dn/de. Then either

b0(G) = b(G) = b1(G) = k,

or one of the following holds:

(i) d = n/2, n 6= 10 and b0(G) = b(G) = b1(G) = c(n), where c(8) = 7, c(12) = 6
and c(n) = 5 for all n ≥ 14;
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(ii) n = 10, d = 5 and 5 ≤ b0(G) ≤ b1(G) ≤ 6;
(iii) k = 3 and b0(G) = b(G) = b1(G) = 4− δn,3d ;
(iv) k ≥ 4, n = (k − 1)d + 1, b0(G) = b(G) = k − 1 and b1(G) = k − ε, where ε = 1

if n is even, otherwise ε = 0.

Lemma 4.17. If n ≥ 5 and d = 1 then b0(G) = b(G) = n − 1 and b1(G) = n − ε,
where ε = 1 if n is even, otherwise ε = 0.

Proof. Clearly, b0(G) ≥ n − 1. We can choose n − 1 subspaces in � so that their sum
is a hyperplane with a 1-dimensional radical (and the radical does not coincide with any
of the n − 1 spaces). It follows that any element stabilizing this hyperplane is a scalar,
whence b0(G) = b(G) = n − 1. Generically, the hyperplane is non-degenerate and we
now complete the argument by proceeding as in the proof of Lemma 4.14. ut

Lemma 4.18. If d = n/2 then either n = 10 and 5 ≤ b0(G) ≤ b1(G) ≤ 6, or b0(G) =

b(G) = b1(G) = c(n), where c(8) = 7, c(12) = 6 and c(n) = 5 for all n ≥ 14.

Proof. First observe that dim� = n2/8− n/4, so Proposition 2.5(iii) yields b0(G) ≥ 5.
To begin with, let us assume d is even. The intersection of two generic conjugates of H
is a Levi subgroup L ∼= GLd of H (see Lemma 5.3). Let Q be the unipotent radical
of H . NowQ has a dense orbit on �, so the intersection of three generic conjugates of H
coincides with the stabilizer in L of a non-degenerate alternating form on the natural
d-dimensional L-module U . Since d is even, this stabilizer is a symplectic group Spd .
Consequently, a generic 4-point stabilizer in G is the intersection of the L-stabilizers of
two non-degenerate alternating forms on U . The desired result now follows from [35,
Theorem 1.1].

Next suppose d ≥ 7 is odd. Let V1, . . . , V5 be generic subspaces in �. Then W =
V1+V2 is a hyperplane with a 1-dimensional radical R (note that any two complementary
d-dimensional totally singular subspaces of V are in different G-orbits, since d is odd).
In particular, if i > 2 then Vi ∩ W is a (d − 1)-dimensional totally singular subspace
of W (which intersects R trivially). We may assume that the Vi ∩W are all in the same
SO(W/R)-orbit, so by the previous paragraph it follows that the common G-stabilizer
of the Vi induces a scalar on W/R. In fact, since W =

∑
i(Vi ∩W), it follows that the

common G-stabilizer acts as a scalar on W , and thus a scalar on V . We conclude that
b0(G) = b(G) = b1(G) = 5 as required.

Finally, the same argument shows that b1(G) ≤ 6 if d = 5. ut

To complete the proof of Proposition 4.16, we may assume that k ≥ 3 and d ≥ 2.

Lemma 4.19. Suppose k ≥ 5 and d ≥ 2. Then either b0(G) = b(G) = b1(G) = k, or
n = (k − 1)d + 1, b0(G) = b(G) = k − 1 and b1(G) = k − ε, where ε = 1 if n is even,
otherwise ε = 0.

Proof. By definition of k we have (k − 1)d + 1 ≤ n ≤ kd. For now let us assume
n > (k − 1)d + 1, in which case b0(G) ≥ k (since the sum of any k − 1 subspaces
in � has codimension at least 2). Let V1, . . . , Vk be generic elements of � and let W =
V1⊕· · ·⊕V4, so dimW = 4d andW is non-degenerate. We may also assume that V1⊕V2
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and V3 ⊕ V4 are non-degenerate. By (the proof of) Lemma 4.12, the common stabilizer
of V1⊕V2 and V3⊕V4 in SO(W) is an elementary abelian 2-group. The same is true for
any such combination of V1, . . . , V4 into complementary non-degenerate 2d-dimensional
spaces. It quickly follows that the common stabilizer of V1, V2, V3 and V4 in G induces
only scalars on W . The same is true for the sum of any four of the Vi , so the G-stabilizer
of V1, . . . , Vk acts as scalars on V and the result follows.

Now assume n = (k − 1)d + 1, so b0(G) ≥ k − 1. Let V1, . . . , Vk−1 be generic
elements of �, soW =

∑
i Vi is a non-degenerate hyperplane. The commonG-stabilizer

of the Vi acts as a scalar ±1 on W , so b0(G) = b(G) = k − 1 and in the usual way we
deduce that b1(G) = k − ε, where ε = 1 if n is even, otherwise ε = 0. ut

Lemma 4.20. Suppose k = 4 and d ≥ 2. Then either b0(G) = b(G) = b1(G) = 4, or
n = 3d + 1, b0(G) = b(G) = 3 and b1(G) = 4− ε, where ε = 1 if n is even, otherwise
ε = 0.

Proof. Note that 3d + 1 ≤ n ≤ 4d and

dimG

dim�
=

n(n− 1)
d(2n− 3d − 1)

≥ 3,

with equality if and only if n = 3d + 1.
If n = 3d + 1 then b0(G) ≥ 3 (by Proposition 2.5(iii)) and the result follows by

repeating the argument in the final paragraph of the proof of Lemma 4.19. Now as-
sume n ≥ 3d + 2, so b0(G) ≥ 4. Let V1, . . . , V4 be generic subspaces in �. Let
W = V1 + V2, so W is non-degenerate and 2d-dimensional. Generically, the orthogo-
nal projections of V3, V4 intoW andW⊥ are injective with non-degenerate images (these
are open conditions, so one only has to see that it is possible). If x ∈ G preserves each Vi
then x preserves two non-degenerate d-dimensional subspaces of W , namely the projec-
tions of V3 and V4. By (the proof of) Lemma 4.12, the stabilizer of these d-spaces in
SO(W) is a finite 2-group. However, x also preserves V1 and V2, so x must induce a
scalar on W . By symmetry, the same is true for each combination Vi + Vj , whence x is a
scalar on V and the result follows. ut

Finally, let us assume k = 3. Note that d ≥ 3 since n ≥ 7.

Lemma 4.21. Suppose k = 3 and d ≥ 3. Then b0(G) = b(G) = b1(G) = 4− δn,3d .

Proof. Since k = 3 we have 2d + 1 ≤ n ≤ 3d. As in the proof of the previous lemma,
we have dimG/dim� ≥ 3, with equality if and only if n = 3d . Thus, b0(G) ≥ 4 unless
possibly n = 3d , in which case b0(G) ≥ 3.

Let H be the stabilizer of a subspace in � and note that the generic intersection of
two conjugates of H is a Levi subgroup L ∼= GLd × SOn−2d (see Lemma 5.3). Now
H = QL, where Q is the unipotent radical of H , and since Q has a regular dense orbit
on � it suffices to compute the base size for the action of L on Q by conjugation. Let X
and Y be the natural modules for GLd and SOn−2d , respectively.

NowQ has a normal subgroupQ1 withQ1 ∼= 3
2(X) as GLd -modules (with SOn−2d

acting trivially) and Q/Q1 ∼= Q2 ∼= X ⊗ Y as L-modules. Since Q ∼= Q1 × Q2 as
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varieties, it is sufficient to consider the action of L on Q1 ×Q2. Here the point stabilizer
in L of a generic point (q1, q2) is isomorphic to the intersection of the stabilizer L1 <

GLd of a non-degenerate alternating form on X and a subgroup L2 fixing an (n − 2d)-
dimensional subspace X′ of X (more precisely, L2 acts as SO(X′) on X′).

First assume n = 3d . Then L1 ∼= Spd and L2 ∼= SOd , embedded diagonally in L.
In particular, we see that L1 ∩ L2 = 1, whence b1(G) = 3 and the result follows.
Now assume n < 3d. It is straightforward to show that the intersection of two generic
conjugates of such a subgroup L1 ∩ L2 of L is trivial. For example, if n = 2d + 1 then
L1 is the stabilizer of an alternating form and L2 is the stabilizer of a vector x ∈ X. The
result follows. ut

This completes the proof of Proposition 4.16.

4.1.4. Orthogonal groups, p = 2. To complete the analysis of subspace actions we may
assume that G = SOn, where n ≥ 7 and p = 2. The arguments are similar (and often
easier) to the case p 6= 2. The main difference here is that we may assume n is even. In
addition, in the analysis of non-degenerate d-dimensional subspaces we may assume that
d = 1 or d is even. Indeed, any odd-dimensional space has a radical when considered as
an alternating space, so the action is imprimitive if the dimension is greater than 1. (For
convenience, we will refer to 1-dimensional non-degenerate subspaces, although strictly
speaking we should use the term non-singular.)

Proposition 4.22. Let G = SOn, where p = 2 and n ≥ 8 is even. Let � be the set
of d-dimensional non-degenerate subspaces of V , where d < n/2 and either d = 1 or
d is even. Set k = dn/de. Then b0(G) = b(G) = b1(G) = k − ε, where ε = 1 if
n = (k − 1)d + 1, otherwise ε = 0.

Lemma 4.23. Assume that n ≥ 4 is even and let � be the set of 1-dimensional non-
degenerate or totally singular subspaces of V . Then b0(G) = b(G) = b1(G) = n− 1.

Proof. We induct on n. First assume that n = 4, so G = SL2 × SL2. The stabilizer
of a singular 1-space is a Borel subgroup and thus b0(G) = b(G) = b1(G) = 3. The
stabilizer of a non-degenerate 1-space is a diagonal copy of SL2 (the centralizer of an
outer involution), and the result is an easy computation. (In the latter case we could start
the induction at n = 2, where the stabilizer of a non-degenerate 1-space is trivial.)

Clearly we have b0(G) ≥ n − 1. Let V1, . . . , Vn−1 be generic subspaces in �. We
may assume that the sum W =

∑
i Vi is a hyperplane with a 1-dimensional radical R

(with respect to the underlying symmetric form on V ). Moreover, we may assume that
the defining quadratic form on V does not vanish on R. By induction, it follows that the
common G-stabilizer of each Vi is trivial on W/R, and therefore trivial on each Vi . In
particular, the common stabilizer is trivial onW and so also on V . The result follows. ut

Remark 4.24. In the previous lemma, if G = On is the full orthogonal group and � is
the set of 1-dimensional non-degenerate subspaces of V , then b0(G) = b(G) = n − 1
and b1(G) = n. More precisely, the G-stabilizer of n− 1 generic elements of � contains
a transvection and has order 2.

The next result shows that the conclusion to Lemma 4.12 also holds when p = 2.
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Lemma 4.25. Suppose n ≡ 0 (mod 4) and let � be the set of n/2-dimensional non-
degenerate subspaces of V . Then b0(G) = b(G) = 2 and b1(G) = 3.

Proof. Let H be the stabilizer of a subspace in �, so H is of type On/2 × On/2. It is
straightforward to see that the G-stabilizer of two generic subspaces in � coincides with
the intersection in GLn/2 of two generic conjugates of On/2.

Now, the generic intersection in GLn/2 of two conjugates of Spn/2 is isomorphic to
the direct product of n/4 copies of SL2. Therefore, the intersection of generic conjugates
of On/2 and Spn/2 is the normalizer of a torus in the direct product (SL2)

n/4. Conse-
quently, the intersection in GLn/2 of two generic conjugates ofOn/2 is elementary abelian
of order 2n/4, and it can be trivial. The result follows. ut

The remainder of the proof of Proposition 4.22 is entirely similar to the argument given
in the case p 6= 2, the only difference being that certain cases do not arise when p = 2.
We leave the details to the reader.

Finally, let us consider the stabilizers of totally singular subspaces.

Proposition 4.26. LetG = SOn, where p = 2 and n ≥ 8 is even. Let H be the stabilizer
of a totally singular d-dimensional subspace of V with 1 < d ≤ n/2 and set � = G/H
and k = dn/de. Then either

b0(G) = b(G) = b1(G) = k,

or one of the following holds:

(i) d = n/2, n 6= 10 and b0(G) = b(G) = b1(G) = c(n), where c(8) = 7, c(12) = 6
and c(n) = 5 for all n ≥ 14;

(ii) n = 10, d = 5 and 5 = b0(G) ≤ b(G) ≤ b1(G) ≤ 6;
(iii) k = 3 and b0(G) = b(G) = b1(G) = 4− δn,3d ;
(iv) k ≥ 4, n = (k − 1)d + 1 and b0(G) = b(G) = b1(G) = k − 1.

Once again, the proof of this proposition is very similar to the case p 6= 2 (see Propo-
sition 4.16). We leave the reader to make the necessary minor modifications. Note that
b0(G) = 5 in case (ii): the usual argument yields b0(G) ≥ 5, and a straightforward
MAGMA calculation gives b(Gσ ) ≤ 5 for the corresponding action of Gσ = �+10(4), so
b0(G) ≤ 5 by Proposition 2.7(ii).

This completes the proof of Theorem 4.

4.2. Non-subspace actions

Here we complete the proof of Theorem 5. Let G be a simple classical algebraic group
over an algebraically closed field of characteristic p ≥ 0 and let � be a primitive non-
subspace G-variety with point stabilizer H . By the main theorem of [57] (see The-
orem 4.1), we may assume that H is a positive-dimensional subgroup in one of the
collections C2, C3, C4, C6 or S. In fact, in view of Theorem 3.13, we may assume that
H ∈ C2 ∪ C4 ∪ S. Our first result deals with the tensor product subgroups in C4 and the
irreducible almost simple subgroups in S .
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Proposition 4.27. IfH ∈ C4∪S is positive-dimensional then one of the following holds:

(i) b0(G,H) = b(G,H) = b1(G,H) = 2; or
(ii) (G,H) = (SO7,G2) (with p 6= 2) or (Sp6,G2) (with p = 2), and

b0(G,H) = b(G,H) = b1(G,H) = 4.

Proof. Assume p > 0 and letK be the algebraic closure of the prime field Fp. Let σ be a
Frobenius morphism ofG such thatGσ is an almost simple classical group over Fq , where
q is a p-power. We may assume H is σ -stable. If (G,H) 6= (SO7,G2) or (Sp6,G2) then
the proof of the main theorem of [18] implies that b(Gσ , Hσ ) = b∞(Gσ , Hσ ) = 2 with
respect to the action ofGσ onGσ /Hσ . Therefore Proposition 2.7(i) yields b1(G,H) = 2,
hence (i) holds. (Note that we could verify this independently of [18], by applying Theo-
rem 2.13, but it is convenient to use our results for the corresponding finite group actions.
In this way we see that the same conclusion holds ifK is any algebraically closed field of
characteristic p ≥ 0; this is discussed in more detail at the end of Section 2.)

Now assume (G,H) = (SO7,G2) or (Sp6,G2). By considering the corresponding
action of Gσ on the set of cosets of G2(q), and by inspecting the proof of [55, Proposi-
tion 2], we deduce that the generic 2-point stabilizer in the action ofG on� has connected
component A2. Now dimG2 + dimA2 > dimG, so every 3-point stabilizer is positive-
dimensional and thus b0(G,H) ≥ 4. According to the proof of [13, Lemma 7.7] we have
dim xH ≤ 3

4 dim xG for all x ∈ H of prime order (including all non-trivial unipotent
elements if p = 0), with equality if and only if x is a long root element. Therefore Corol-
lary 2.19 implies that b1(G,H) ≤ 4, as required (note that each long root subgroup of
H = H 0 is a long root subgroup of G). ut

Proof of Theorem 5. We may assume H is a C2-subgroup that stabilizes a direct sum
decomposition

V = V1 ⊕ · · · ⊕ Vt

with t ≥ 3 (if t = 2 then H is one of the involution-type subgroups considered in
Lemma 3.16). If G = SLn or SOn then [14, Proposition 2.1] implies that dim xH ≤
1
t

dim xG for all x ∈ H of prime order, whence Corollary 2.14 yields

b0(G,H) = b(G,H) = b1(G,H) = 2. (8)

Now assume G = Spn and H is of type Spn/t o St with t ≥ 3. Here [14, Proposi-
tion 2.1] yields

dim xH ≤

(
1
t
+

2
n+ 2

)
dim xG

for all x ∈ H of prime order (and all non-trivial unipotent elements if p = 0), so Corol-
lary 2.14 implies that (8) holds unless (n, t) = (6, 3). Here b1(G,H) ≤ 3 and we claim
that

b0(G,H) = b(G,H) = b1(G,H) = 3.
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By [35, Lemma 4.1], there is a self-adjoint element g ∈ GL6 such that CGL6(g) = H , so
according to [35, Lemma 2.2] there exists x ∈ GL6 with G ∩ Gx = H . In particular, if
y ∈ G then

H ∩H y
= G ∩Gx ∩Gxy,

so [35, Lemma 5.7] implies that dim(H ∩ H y) > 0. Therefore b0(G,H) ≥ 3 and the
claim follows.

This completes the proof of Theorem 5.

5. Exceptional groups

In this section we complete the proof of Theorems 6 and 7. LetG be a simple exceptional
algebraic group over an algebraically closed field K of characteristic p ≥ 0. Let us recall
the main theorem on the subgroup structure ofG, which is due to Liebeck and Seitz [58].

Theorem 5.1. LetH be a positive-dimensional maximal closed subgroup ofG. Then one
of the following holds:

(i) H is a parabolic subgroup;
(ii) G = E7, p 6= 2 and H = (22

×D4).S3;
(iii) G = E8, p 6= 2, 3, 5 and H = A1 × S5;
(iv) H = NG(X), with X given in Table 9.

Table 9. Some maximal non-parabolic subgroups of exceptional groups

G X NG(X)/X

E8 A1, B2, A1A2, A1G
2
2 (p 6= 2), G2F4 1, 1, Z2, Z2, 1

D8, A1E7, A8, A2E6, A
2
4, D

2
4 1, 1, Z2, Z2, Z4, Z2 × S3

A4
2, A

8
1, T8 GL2(3), AGL2(3), 2.O+8 (2)

E7 A1, A2, A
2
1, A1G2, A1F4, G2C3 1, Z2, 1, 1, 1, 1

T1E6, A1D6, A7, A2A5 Z2, 1, Z2, Z2
A3

1D4, A
7
1, T7 S3, GL3(2), Z2 × Sp6(2)

E6 A2, G2, C4 (p 6= 2), F4, A2G2 Z2, 1, 1, 1, Z2
T1D5, T2D4, A1A5, A

3
2, T6 1, S3, 1, S3, O

−

6 (2)
F4 A1, G2, A1G2, A1C3 1, 1, 1, 1

B4, C4 (p = 2), D4, D̃4 (p = 2), A2Ã2 1, 1, S3, S3, Z2
G2 A1, A1Ã1, A2, Ã2 (p = 3) 1, 1, Z2, Z2

Proof. This is [58, Corollary 2]. Note that in Table 9,D4 < F4 is the subgroup generated
by all long root subgroups, and if p = 2 we write D̃4 < F4 to denote the subgroup
generated by all short root subgroups. Similarly, we define A2 < G2 and Ã2 < G2 (if
p = 3). ut
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5.1. Parabolic actions

First let us consider Theorem 6, so � = G/H and H is a maximal parabolic subgroup
of G. Recall that H is conjugate to a standard parabolic subgroup Pi for some 1 ≤ i ≤ r ,
where r denotes the rank ofG. Further, this notation indicates that ifLi is a Levi subgroup
of Pi then the root system of the semisimple group L′i corresponds to the Dynkin diagram
of G with the i-th node deleted. We continue to follow Bourbaki [12] in the labelling of
Dynkin diagrams.

Proposition 5.2. Let G be a simple exceptional algebraic group and let � = G/H ,
where H = Pi is a maximal parabolic subgroup of G. Then

c − ε ≤ b0(G,H) ≤ b(G,H) ≤ b1(G,H) ≤ c,

where c is defined in Table 11. Here an asterisk indicates that ε = 1, otherwise ε = 0
and thus b0(G,H) = b(G,H) = b1(G,H) = c.

Proof. Let Pi = QiLi be a Levi decomposition of Pi and observe that dim� = dimQi

= |8+(G)| − |8+(L′i)|; for the reader’s convenience we record this dimension in
Table 10. By Proposition 2.5(iii) we have b0(G,H) ≥ dimG/dim�, while an upper
bound for b1(G,H) is obtained by combining Proposition 2.7(i) and [19, Theorem 3].
The result follows. ut

Table 10. G exceptional, dimG/Pi

H = P1 P2 P3 P4 P5 P6 P7 P8

G = E8 78 92 98 106 104 97 83 57
E7 33 42 47 53 50 42 27
E6 16 21 25 29 25 16
F4 15 20 20 15
G2 5 5

Table 11. G exceptional, H parabolic

H = P1 P2 P3 P4 P5 P6 P7 P8

G = E8 4 3 3 3 3 3 4∗ 5
E7 5 4 4∗ 3 3 4 6∗

E6 6∗ 5∗ 4 4∗ 4 6∗

F4 5∗ 4∗ 4∗ 5∗

G2 4∗ 4∗

In order to complete the proof of Theorem 6 we may assume that (G,H) is one of the
following cases:

(E8, P7), (E7, P3), (E7, P7), (E6, P1), (E6, P2), (E6, P6).

The next lemma is a key result in our analysis, and it holds for any semisimple alge-
braic group G over an algebraically closed field.
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Lemma 5.3. Let P be a maximal parabolic subgroup of G and set � = G/P . Let
P = QL be a Levi decomposition of P , and assume P is G-conjugate to its opposite
parabolic P− = UL. Then the generic 2-point stabilizer in the action of G on � is
conjugate to L.

Proof. First observe that Q ∩ P− = 1, so Q has a regular orbit on �. Since dim� =

dimG/P = dimQ, this orbit is open and dense in �. Moreover, this orbit is also L-
invariant. Therefore, if P = Gα then the 2-point stabilizer Gα,β is a conjugate of L for
any point β in the open Q-orbit. The result follows. ut

Note that if G is an exceptional group, the previous lemma applies unless G = E6
and P = P1, P3, P5 or P6.

Proposition 5.4. Suppose G = E6 and H = P1 or P6. Then b0(G,H) = b(G,H) =

b1(G,H) = 6.

Proof. Since P1 and P6 are interchanged by an involutory graph automorphism of G, we
may assume H = P1. Here dimH = 62, dim� = 16 and

5 ≤ b0(G,H) ≤ b1(G,H) ≤ 6

(see Proposition 5.2), so it remains to show that the generic 5-point stabilizer is positive-
dimensional. To do this, we may assume that p > 0.

Let q be a p-power. In the terminology of Cohen and Cooperstein [24], the corre-
sponding action of E6(q) is equivalent to the action on the subset of white points in the
standard 27-dimensional E6(q)-module. This transitive action has permutation rank 3,
and from the description of the suborbits (see [24, (P.1), p. 470]) we deduce that the
generic 2-point stabilizer for the original parabolic action of G is of the form UD4T2,
where U is a 16-dimensional unipotent subgroup. Moreover, U is a vector space and
U↓D4 = U1 ⊕ U2, where U1 and U2 are distinct irreducible 8-dimensional modules
for D4. It follows that U has a 16-dimensional regular orbit O on � = G/H , whence
O is open (and thus dense) in �. In particular, we may identify O with U and thus the
generic 5-point stabilizer of G on � is the same as the generic 2-point stabilizer of D4T2
on U .

Consider two generic points in U = U1 ⊕ U2, say u1 + u2 and v1 + v2, where
ui, vi ∈ Ui and each 〈ui, vi〉 is a non-degenerate 2-space. The D4-stabilizer of these
two generic points is the subgroup fixing each vector u1, v1, u2, v2, which is of the form
D3 ∩D

g

3 for some g ∈ D4. Now dimD4 = 28 and dimD3 = 15, so dim(D3 ∩D
g

3 ) ≥ 2
and thus the generic 5-point stabilizer of G on � is at least 2-dimensional. Therefore
b0(G,H) ≥ 6 and the result follows. ut

Proposition 5.5. Suppose (G,H) = (E7, P7). Then b0(G,H) = b(G,H) = b1(G,H)

= 6. Moreover, the generic 5-point stabilizer is 8-dimensional.

Proof. Here dimH = 106, dim� = 27 and 5 ≤ b0(G,H) ≤ b1(G,H) ≤ 6 (see
Proposition 5.2), so as in the proof of the previous proposition we need to show that
b0(G,H) > 5. Let H = QL be a Levi decomposition, so L = E6T1 and Q is abelian.
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By Lemma 5.3, we may assume that L is the generic 2-point stabilizer. Moreover, Q has
a regular open orbit O on �, on which L acts by conjugation, so it suffices to show that
the generic 3-point stabilizer in the conjugation action of L onQ is positive-dimensional.
We may assume p > 0.

Let q be a p-power. At the finite level, we may identify Q with the standard 27-
dimensional E6(q)-module. In the terminology of Cohen and Cooperstein [24], the
generic E6(q)-orbit on this module coincides with the subset of black points. This or-
bit has point stabilizer F4(q), so we see that F4 is the generic 3-point stabilizer in the
original action of G. Further, by considering [24, Table 2] we deduce that the generic
4-point stabilizer has connected component D4. Now

Q↓D4 = V1 ⊕ V2 ⊕ V3 ⊕ 0⊕ 0⊕ 0,

where V1, V2, V3 are the distinct irreducible 8-dimensional D4-modules, and 0 is the
1-dimensional trivial D4-module (see [56, Proposition 2.3]). A generic vector in Q is
of the form v = v1 + v2 + v3, where each vi ∈ Vi spans a non-degenerate subspace,
so the generic 5-point stabilizer in G is the intersection in D4 of three conjugates of a
subgroup B3 < D4. Since dimD4 = 28 and dimB3 = 21, it follows that the generic
5-point stabilizer is at least 7-dimensional, whence b0(G,H) > 5 as required.

Finally, let us show that the generic 5-point stabilizer is 8-dimensional. First observe
that the intersection of two generic conjugates of B3 < D4 is a subgroup G2 < D4 (one
way to see this is to consider the corresponding situation at the level of finite groups—
see [55, proof of Proposition 3]). Moreover, the intersection of G2 with an additional
generic conjugate of B3 is isomorphic to A2 (again, this follows from the proof of [55,
Proposition 3]). The claim follows. Indeed, this shows that the generic 5-point stabilizer
is precisely A2. ut

Remark 5.6. Recall that Theorem 13 states that there are infinitely many non-standard
finite almost simple primitive permutation groups with base size 6. This quickly follows
from Proposition 5.4 above. Indeed, assume p > 0, let G = E6 and let H be a σ -
stable P1 parabolic subgroup of G, where G is defined over the algebraic closure F̄p and
σ is a Frobenius morphism of G so that Gσ has socle E6(q) for some p-power q. Now
b0(G,H) = 6 by Proposition 5.4, so Proposition 2.7(ii) implies that b(Gσ , Hσ ) ≥ 6
for all q > 2, while the main theorem of [19] yields b(Gσ , Hσ ) ≤ 6. Therefore
b(Gσ , Hσ ) = 6 for all q > 2, and this establishes Theorem 13. In fact, by using a suitable
permutation representation of E6(2), it is straightforward to show that b(Gσ , Hσ ) = 6
when q = 2 (see [19, Remark 1]). Similarly, if G = E7 and H = P7 then Proposi-
tion 5.5 implies that b(Gσ , Hσ ) = 6 for all q. (Since the generic 5-point stabilizer in G
is 8-dimensional, it is not a split torus and thus [35, Proposition 8.1] implies that every
5-point stabilizer in Gσ is non-trivial when q = 2.)

In order to complete the proof of Theorem 6 we may assume that (G,H) = (E8, P7),
(E7, P3) or (E6, P2). In particular, note that Lemma 5.3 applies in each of these cases.

We need to introduce some new notation and terminology that we will use for the
remainder of this section. Fix a maximal torus T ofG, let8 denote the root system ofG,
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1 = {α1, . . . , αr} a set of simple roots (with the usual labelling), 8+ the corresponding
set of positive roots, and let {Uα | α ∈ 8} be the root subgroups of G. Suppose H = Pi .
Let 8J be the root system spanned by the simple roots J = 1 \ {αi} and set 8+J =
8J ∩ 8

+. By replacing H by a suitable conjugate, we may assume that H = QL is a
Levi decomposition of H , with Levi factor L = 〈T ,U±α | α ∈ J 〉 and unipotent radical
Q =

∏
U−β , the product taken over all β ∈ 8+ \8+J .

Let β ∈ 8+ \8+J , say β = diαi +
∑
j 6=i cjαj . Following [3], we define the level and

height of β by

level(β) = di, height(β) = di +
∑
j 6=i

cj .

For each positive integer j we define Qj =
∏
U−β , where the product is over the roots

β ∈ 8+ \8+J of level j . Finally, again following [3], we say thatG is special if (G, p) =
(F4, 2), (G2, 3) or (G2, 2).

The next result is a special case of [3, Theorem 2].

Theorem 5.7. Let G be a simple exceptional algebraic group and assume that G is not
special. Let H = QL be a maximal parabolic subgroup of G, let j ≥ 1 be an integer
and define Qj ≤ Q as above. Let TL′ be a maximal torus of L′ contained in T . Then:

(i) Qj is invariant under conjugation by L.
(ii) Qj is an irreducible KL′-module with highest weight −β|TL′ , where β ∈ 8+ is the

unique root of minimal height with level(β) = j .
(iii) L has an open dense orbit on Qj .

Let (G,H) be one of the remaining cases that we have to consider and let H = QL

be a Levi decomposition. By Lemma 5.3, we may assume that L is the generic 2-point
stabilizer in the action of G on the coset variety � = G/H . Moreover, Q has a regular
dense orbit on � so we can reduce the problem to computing the base size for the action
of L on Q. As an L-variety,

Q ∼= Q1 × · · · ×Qm

wherem ≥ 1 is the maximal level of a root β ∈ 8+ \8+J . In particular, the stabilizer in L
of a generic point in Q is the intersection of the generic stabilizers of L on each Qj .

The derived subgroup L′ is a product of simple groups L1, . . . , Lk for some k ≥ 1.
By Theorem 5.7(ii),Qj is an irreducibleKL′-module, so we can writeQj ∼= L(µ1)⊗· · ·

⊗L(µk) asKL′-modules, where L(µi) denotes the irreducibleKLi-module with highest
weight µi . For each factor Li we express µi in terms of a set {λ1, λ2, . . .} of fundamental
dominant weights (with respect to the usual ordering), unless Li = A1 when we will
write L(m) rather than L(mλ1). We write 0 for the trivial 1-dimensional KLi-module.
Finally, let {ω1, . . . , ωr} be a set of fundamental dominant weights for G.

Proposition 5.8. Suppose (G,H) = (E8, P7) or (E7, P3). Then b0(G,H) = b(G,H)

= b1(G,H) = 4.
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Proof. According to Proposition 5.2, in both of these cases we have b1(G,H) ≤ 4,
so it suffices to show that the intersection of three generic conjugates of H is positive-
dimensional. First consider the case (G,H) = (E8, P7). By Lemma 5.3, the generic
2-point stabilizer is a Levi subgroup L = E6A1T1 of H and so by the above discussion
it suffices to show that dimCL(q) > 0 for a generic element q ∈ Q, where Q is the
unipotent radical of H . Let j be a positive integer and define Qj as above. By applying
Theorem 5.7 we deduce that each Qj is an irreducible KL′-module with

Q1 ∼= L(λ6)⊗ L(1), Q2 ∼= L(λ1)⊗ 0, Q3 ∼= 0⊗ L(1)

as KL′-modules. For example, β = α7 is clearly the unique root of minimal height at
level 1, so Q1 is an irreducible KL′-module with highest weight −α7 = ω6 − 2ω7 + ω8
(restricted to a suitable maximal torus of L′ = E6A1), whence Q1 ∼= L(λ6) ⊗ L(1) as
claimed.

A generic point in Q1 ×Q2 ×Q3 has the form q = (a1 ⊗ b1 + a2 ⊗ b2, c, d), where
a1, a2 ∈ L(λ6), b1, b2, d ∈ L(1) and c ∈ L(λ1). As in the proof of Proposition 5.5, we see
that F4 is the generic stabilizer in the action of E6 on the 27-dimensional modules L(λ1)

and L(λ6), so CE6(q) is the intersection of three conjugates of F4 inE6. By Theorem 7(ii)
(see the proof of Lemma 3.19), the intersection of any three conjugates of F4 in E6 is
positive-dimensional, so dimCL(q) ≥ dimCE6(q) > 0 and thus b0(G,H) = b(G,H) =

b1(G,H) = 4 as required.
The case (G,H) = (E7, P3) is similar. Here the generic 2-point stabilizer is L =

A1A5T1 and once again it suffices to show that dimCL(q) > 0 for a generic q ∈ Q. In
this case, using Theorem 5.7, we calculate that

Q1 ∼= L(1)⊗ L(λ2), Q2 ∼= 0⊗ L(λ4), Q3 ∼= L(1)⊗ 0

as KL′-modules, and a generic point q ∈ Q1 × Q2 × Q3 has the form q = (a1 ⊗

b1 + a2 ⊗ b2, c, d), where a1, a2, d ∈ L(1), b1, b2 ∈ L(λ2) and c ∈ L(λ4). The generic
stabilizer in A5 with respect to the 15-dimensional modules L(λ2) and L(λ4) ∼= L(λ2)

∗

is C3 (note that L(λ2) = 3
2(W), whereW is the natural A5-module, so L(λ2) and L(λ4)

can be identified with the space of alternating forms on W ). Therefore CA5(q) is the
intersection of three conjugates of C3 in A5, which is positive-dimensional by Theorem
5(ii) (see [35, Theorem 1.1]). The desired conclusion follows as before. ut

Proposition 5.9. If (G,H) = (E6, P2) then b0(G,H) = b(G,H) = b1(G,H) = 5.

Proof. By Proposition 5.2 we have b1(G,H) ≤ 5, so it suffices to show that the inter-
section of four generic conjugates of H in G is positive-dimensional. By Lemma 5.3,
the generic 2-point stabilizer is L = A5T1. By applying Theorem 5.7 we deduce that
Q ∼= Q1 ×Q2 (as L-varieties), where Q1 ∼= L(λ3) and Q2 ∼= 0 as KL′-modules (note
that L(λ3) = 3

3(W), where W is the natural module for A5). If v ∈ Q1 is generic then
CA5(v) is a C2-subgroup of type GL3 o S2. By Theorem 5 (see the proof of Lemma 3.16),
the intersection of any two such centralizers in A5 is positive-dimensional, so the generic
2-point stabilizer of L on Q is also positive-dimensional, whence b0(G,H) > 4 as re-
quired. ut

This completes the proof of Theorem 6.
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Remark 5.10. A similar approach can also be used to investigate the remaining cases
where G = F4,G2 or (G,H) = (E6, P4). However, the analysis here is more compli-
cated and we do not get better results than the bounds provided in Proposition 5.2. If G
is special, that is, if (G, p) = (F4, 2), (G2, 3) or (G2, 2), then in these cases we can
calculate b0(G,H) via Proposition 2.7(ii) and a suitable computation with F4(4), G2(3)
and G2(4), using MAGMA [11]. We find that b0(G,H) = 4 if (G, p) = (F4, 2) and
H = P1 or P4, otherwise b0(G,H) = 3.

5.2. Non-parabolic actions

In this section we complete the proof of Theorem 7 on non-parabolic actions of excep-
tional groups. By Theorem 5.1, one of the following holds:

(i) G = E7, H = (22
×D4).S3 and p 6= 2;

(ii) G = E8, H = A1 × S5 and p 6= 2, 3, 5;
(iii) H = NG(X), with X given in Table 9.

We adopt the notation introduced earlier (see the discussion preceding the statement of
Lemma 3.17). In particular, Lie(G) is the Lie algebra of G and CLie(G)(x) denotes the
fixed point space of x ∈ G on Lie(G), with respect to the adjoint representation. Note
that

dimCG(x) ≤ dimCLie(G)(x)

for all x ∈ G, with equality if x is semisimple (see [44, Section 1.10], for example). Given
a simple algebraic group X, we will write W(λ) for the Weyl module for X with highest
weight λ, and we will express λ in terms of a set {λ1, λ2, . . .} of fundamental dominant
weights for X (unless X = A1, when we write W(m) rather than W(mλ1)). We denote
the trivial 1-dimensional KX-module by 0 and we will write P for the set of elements
in H of prime order (including all non-trivial unipotent elements if p = 0). We will use
the Aschbacher–Seitz [2] notation for involutions in classical groups when p = 2.

Proposition 5.11. Theorem 7 holds for G = E8.

Proof. If x ∈ G is non-trivial then dim xG ≥ 58 (minimal if x is a long root element),
hence Corollary 2.14 immediately implies that

b0(G,H) = b(G,H) = b1(G,H) = 2 (9)

if dimH < 29. For the remainder, let us assume dimH ≥ 29.
By Theorem 5.1, we have H = NG(X) with X given in Table 9. First assume H is

not a maximal rank subgroup of G, so H 0
= A1G

2
2 (p 6= 2) or G2F4 since dimH ≥ 29.

In both cases we claim that
dim xH < 1

2 dim xG (10)

for all x ∈ P , so (9) follows from Corollary 2.14. This is clear if H 0
= A1G

2
2 since

dim xH ≤ 26 for all x ∈ H (note that if x ∈ H \ H 0 has prime order then x is a
semisimple involution and thus dim xG ≥ 112—see [36, Table 4.3.1], for example).
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Next assume H = H 0
= G2F4. Here dim xH ≤ 60 for all x ∈ H , so we may

assume that dim xG ≤ 120. Suppose x is unipotent, so the bound on dim xG implies that
x belongs to one of the G-classes labelled A1, 2A1, 3A1 or A2 (see [52, Table 2]). The
fusion of unipotent classes inH is described in [50, Table 38] and we quickly deduce that
(9) holds.

Now assume x is semisimple and dim xG ≤ 120, so CG(x) = A1E7 or E7T1. If
CG(x) = A1E7 then p 6= 2 and x is an involution, so dim xH ≤ 36 since there
is a unique class of involutions in G2 (of dimension 8), and exactly two such classes
in F4 (dimensions 28 and 16). Finally, assume CG(x) = E7T1, so dim xG = 114 and
dimCLie(G)(x) = 134. Now

Lie(G)↓G2F4 = Lie(G2F4)⊕ (W(λ1)⊗W(λ4))

(see [56, Proposition 2.4]). If dim xH ≥ 58 thenCH (x) = T6 orA1T5, and from the above
description of Lie(G)↓G2F4 it is straightforward to see that dimCLie(G)(x) < 134, which
is a contradiction. For example, suppose x = x1x2 and CH (x) = T6. Up to conjugacy, x1
acts on W(λ1) as a diagonal matrix [I3, λI2, λ

−1I2] for some λ ∈ K∗ with λ 6= ±1, so
[61, Lemma 3.7] implies that dimCW(λ1)⊗W(λ4)(x) ≤ 78 and thus dimCLie(G)(x) ≤ 84.
This establishes (10) and we conclude that (9) holds (see Corollary 2.14).

For the remainder we may assume H = NG(X) is a maximal rank subgroup with

X ∈ {A4
2,D

2
4, A

2
4, A2E6, A8, A1E7,D8}

(see Table 9). The cases H 0
= D8 and A1E7 were handled in Lemma 3.17. In each of

the remaining cases we claim that (10) holds for all x ∈ P , in which case Corollary 2.14
implies that (9) holds.

First assume H 0
= A4

2, so H/H 0
= GL2(3) and dimH = 32. If x ∈ G is a long root

element then x ∈ H 0 (see [52, Proposition 1.13(iii)]), so dim xH ≤ 24, dim xG = 58
and the required bound follows. On the other hand, if x is not a long root element then
dim xG ≥ 92 and again the claim holds.

Next suppose H 0
= D2

4 . Here H/H 0
= Z2 × S3, where Z2 swaps the two fac-

tors, and S3 induces graph automorphisms (simultaneously on the two D4 factors). Now
dim xH ≤ 48 for all x ∈ H , so we may assume x is a unipotent element in one of the
G-classes labelledA1 or 2A1 (with respective dimensions 58 and 92). By [56, Proposition
2.1] we have

Lie(G)↓D4D4 = Lie(D4D4)⊕ (W(λ1)⊗W(λ1))⊕ (W(λ3)⊗W(λ3))

⊕ (W(λ4)⊗W(λ4)),

whereW(λ1) is the naturalD4-module, andW(λ3),W(λ4) are the two distinct irreducible
spin modules for D4.

First assume p 6= 2. We claim that dim(xG ∩H) = 10 if x ∈ A1, and dim(xG ∩H)
= 20 if x ∈ 2A1. To see this, let u, v ∈ D4 be elements with respective Jordan forms
[J 2

2 , J
4
1 ] and [J3, J

5
1 ] on the natural module W(λ1). We calculate that [J3, J

8
2 , J

9
1 ] and

[J 6
3 , J

10
1 ] are the respective Jordan forms of u and v on Lie(D4). In addition, we note
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that u has Jordan form [J 2
2 , J

4
1 ] on both W(λ3) and W(λ4), and v has Jordan form [J 4

2 ]

on these modules. Using the above decomposition for Lie(G)↓D4D4 we can calculate
the Jordan form of (u, 1), (v, 1), (u, u) ∈ H 0 on Lie(G), and then use [48, Table 9]
to determine the G-class of these elements. In this way, we deduce that (u, 1) ∈ A1
and (v, 1), (u, u) ∈ 2A1. Moreover, one can check that these elements represent the
only H -classes that are in A1 and 2A1. (For example, we find that (u, v) ∈ 3A1 and
(v, v) ∈ A2. Also, if p = 3 and x ∈ H \H 0 induces a triality automorphism on each D4
factor then x cyclically permutes the modules W(λ1),W(λ3) and W(λ4), so the Jordan
form of x on Lie(G) has at least 64 Jordan blocks of size 3 and thus x is not inA1 or 2A1.)
This justifies the claim.

Similarly, if p = 2 then careful calculation reveals that xG ∩H is a union of two H -
classes when x ∈ A1, with representatives (a2, 1), (b1, b1) ∈ H

0 (in the notation of [2]),
whence dim(xG∩H) = 14. Similarly, if x ∈ 2A1 then xG∩H comprises twoH -classes,
with representatives (a2, a2) and (c2, 1), so dim(xG ∩ H) = 20 as before. (Note that if
x ∈ H \H 0 interchanges the two D4 factors then the Jordan form of x on Lie(G) has at
least 96 Jordan blocks of size 2, so x is not in A1 nor 2A1.) We conclude that (10) holds
if H 0

= D2
4 .

Next consider the case H 0
= A2

4. Here H/H 0
= Z4 and dim xH ≤ 40 for all

x ∈ H , so we may assume x ∈ G is a long root element. In particular, x ∈ H 0 (see [52,
Proposition 1.13(iii)]) and by inspecting [50, Table 26] we deduce that dim xH ≤ 8.

It remains to deal with the cases H 0
= A2E6 and H 0

= A8. First suppose
H 0
= A2E6. Here H/H 0

= Z2 and dim xH ≤ 78 for all x ∈ H , so we may assume
dim xG ≤ 156. In particular, if x is semisimple then CG(x) = E7A1, E7T1, D8 or D7T1
(see [31]), and by applying [52, Theorem 2] we deduce that (10) holds. Now assume x
is unipotent. If x ∈ H 0 then the fusion information in [50, Table 24] is sufficient, so let
us assume p = 2 and x ∈ H \ H 0. There are two H -classes of involutions in H \ H 0,
represented by x1 and x2 say, where CH 0(x1) = A1F4 and CH 0(x2) = A1CF4(t), where
t ∈ F4 is a long root element (each xi acts as a graph automorphism on the A2 and E6
factors). By [56, Proposition 2.1] we have

Lie(G)↓A2E6 = Lie(A2E6)⊕ (W(λ1)⊗W(λ6))⊕ (W(λ2)⊗W(λ1))

and using this we calculate that the Jordan form of x1 and x2 on Lie(G) is [J 110
2 , J 28

1 ] and
[J 120

2 , J 8
1 ], respectively. Therefore, by inspecting [48, Table 9], we see that x1 ∈ 3A1 and

x2 ∈ 4A1, so dim xH1 = 31, dim xG1 = 112 and dim xH2 = 47, dim xG2 = 128.
Finally suppose H 0

= A8, so H/H 0
= Z2 and we may assume dim xG ≤ 144 since

dim xH ≤ 72 for all x ∈ H . If x is semisimple then CG(x) = E7A1, E7T1 or D8, and it
is easy to check that [52, Theorem 2] is sufficient. Similarly, if x ∈ H 0 is unipotent then
the desired bound follows from the information in [50, Table 25]. Finally, suppose p = 2
and x ∈ H \H 0 is an involution (so x is a graph automorphism of A8). Now

Lie(G)↓A8 = Lie(A8)⊕W(λ3)⊕W(λ6)

(see [56, Proposition 2.1]) and we deduce that x has Jordan form [J 120
2 , J 8

1 ] on Lie(G).
Therefore [48, Table 9] indicates that x is in the G-class labelled 4A1, so dim xH = 44
and dim xG = 128. ut
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Proposition 5.12. Theorem 7 holds for G = E7.

Proof. If x ∈ G is non-trivial then dim xG ≥ 34 (minimal if x is a long root element),
so we may as well assume dimH ≥ 17. According to Theorem 5.1, one of the following
holds:

(i) p 6= 2 and H = (22
×D4).S3; or

(ii) H = NG(X) with X ∈ {A1G2, A1F4,G2C3, T1E6, A1D6, A7, A2A5, A
3
1D4, A

7
1}.

IfH 0
= A7,A1D6 or T1E6 thenH is an involution-type subgroup and we refer the reader

to Lemma 3.18. In each of the remaining cases we claim that (10) holds for all x ∈ P , so

b0(G,H) = b(G,H) = b1(G,H) = 2.

Let V56 be the 56-dimensional irreducible KG-module.
First suppose H = (22

× D4).S3. Here p 6= 2 and dim xH ≤ 24 for all x ∈ P . In
particular, if x is not a long root element then dim xG ≥ 52 and thus dim xH < 1

2 dim xG,
so it suffices to show that there are no long root elements in H . To see this, first observe
that H 0

= D4 belongs to an A7 subgroup of G (embedded via the natural 8-dimensional
module for D4), and the root subgroups of this A7 are also root subgroups of G. Since
SO8 does not contain any transvections when p 6= 2, it follows that there are no long root
elements of G in H 0. By [52, Proposition 1.13(iii)], there are no long root elements in
H \H 0 either. Therefore, (10) holds for all x ∈ P .

If H = H 0
= A1G2 then dim xH ≤ 14 for all x ∈ P , and the claim follows since

dim xG ≥ 34. Next supposeH 0
= A7

1, soH/H 0
= GL3(2). If x ∈ H 0 then dim xH ≤ 14

and the result follows. On the other hand, if x ∈ H \H 0 then x is not a long root element
(see [52, Proposition 1.13(iii)]), so dim xG ≥ 52 > 2 dimH .

Now consider the case H = H 0
= A1F4. Here we may assume dim xG ≤ 100

since dim xH ≤ 50 for all x ∈ H . The fusion of unipotent elements in H can be read
off from the information in [50, Section 5.12] and we quickly deduce that (10) holds for
all unipotent elements x ∈ P . Now assume x ∈ P is semisimple. The possibilities for
D = CG(x) with dim xG ≤ 100 are listed in Table 12 (see [32], for example).

Table 12. D = CG(x), x semisimple, dim xG ≤ 100

D0 dim xG

A2
3A1 100 A5A1T1 94 A7 70

D4A1T2 100 A5A2 90 D6T1 66
A4A2T1 100 D5T2 86 D6A1 64
D4A

2
1T1 98 D5A1T1 84 T1E6 54

A5T2 96 A6T1 84

First assume p 6= 2 and x is an involution, soD0
= D6A1,A7 or T1E6 (see [36, Table

4.3.1]). The largest class of involutions in F4 has dimension 28, so dim xH ≤ 30 and thus
we may assume D0

= T1E6, whence dim xG = 54. Write x = x1x2, where x1 ∈ A1
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and x2 ∈ F4. If CF4(x2) 6= A1C3 then dim xH ≤ 18, so let us assume CF4(x2) = A1C3.
According to [56, Proposition 2.4] we have

Lie(G)↓A1F4 = Lie(A1F4)⊕ (W(2λ1)⊗W(λ4)), (11)

and we note that dimCLie(G)(x) = dimCG(x) = 79. However, dimCW(λ4)(x2) = 14 and
we deduce that dimCLie(G)(x) = 69 if x1 = 1, and dimCLie(G)(x) = 63 if x1 6= 1. This
is a contradiction and thus (10) holds for all involutions.

For the remainder, we may assume that x ∈ H has odd prime order. Suppose dim xG

= 98 or 100, so dimCLie(G)(x) = 33 or 35. Write x = x1x2 as before. We may assume
that dim xH = 50, so x1 and x2 are both regular. In particular, since x1 is regular, [61,
Lemma 3.7] implies that dimCW(2λ1)⊗W(λ4)(x) ≤ 26, whence dimCLie(G)(x) ≤ 5+ 26,
a contradiction.

Now assume D0
= A5T2, so dim xG = 96, dimCLie(G)(x) = 37 and we reduce to

the case dim x
F4
2 = 46 or 48. If x1 6= 1 then dimCW(2λ1)⊗W(λ4)(x) ≤ 26 as above, so

dimCLie(G)(x) ≤ 7 + 26 and we reach a contradiction. Now suppose x1 = 1, so x2 is
regular and dimCLie(G)(x) = 7+ 3α, where α = dimCW(λ4)(x2). We claim that α ≤ 8.

First observe that we may assume x2 ∈ D4 < D5 < E6. Let {ω1, . . . , ω6} and
{ξ1, . . . , ξ5} be fundamental dominant weights for E6 andD5, respectively, and let V27 be
the 27-dimensional irreducible module for E6 with highest weight ω1. By [56, Table 8.7]
we have

V27↓D5 = W(ξ1)⊕W(ξ4)⊕ 0, (12)

where W(ξ1) is the natural module for D5, and W(ξ4) is one of the irreducible spin
modules. The 26-dimensional F4-module W(λ4) is a section of V27. Since x2 ∈ D4 is
regular it follows that dimCW(ξ1)(x2) ≤ 4. Now the restriction of the D5 spin module
W(ξ4) to D4 is a sum of two non-isomorphic spin modules for D4. Therefore the reg-
ularity of x2 implies that dimCW(ξ4)(x2) ≤ 2 + 2 and thus α ≤ 4 + 2 + 2 = 8 as
claimed. In particular, dimCLie(G)(x) ≤ 7+ 24 = 31, which is a contradiction. The case
D0
= A5A1T1 is entirely similar. If D0

= A5A2 then x has order 3 and we deduce that
dim xH ≤ 2+ 36 = 38 < 1

2 dim xG (see [36, Table 4.7.1]).
Next consider the case D0

=D5T2, so dim xG=86 and we may assume dim xH ≥44.
As before, if x1 6= 1 then (11) implies that dimCLie(G)(x) ≤ 11+ 26, which is a contra-
diction. Now suppose x1 = 1, so dimCF4(x2) = 4, 6 or 8, and

dimCLie(G)(x) = 3+ dimCF4(x2)+ 3α (13)

with α = dimCW(λ4)(x2). Since dimCLie(G)(x) = 47, we reduce to the case dimCF4(x2)

= 8, so CF4(x2)
0
= T2A

2
1 is the only possibility. Here x2 ∈ D4 < D5 and using (12) we

calculate that α ≤ 10. For example, if CD4(x2) = GL2 × GL2 then dimCW(ξ1)(x2) = 2
and the proof of [13, Lemma 7.4] yields dimCW(ξ4)(x2) ≤ 8. Therefore dimCLie(G)(x) ≤

41 < 47. We conclude that (10) holds when D0
= D5T2. A similar argument applies

when D0
= D5A1T1 or A6T1.

To complete the analysis of the caseH = A1F4 we may assumeD0
= D6T1 or E6T1

(in the latter case we may also assume x has odd order). Suppose D0
= D6T1, so
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dim xG = 66 and we may assume dim xH ≥ 34. If x = x1x2 and x1 is non-trivial then
the usual argument implies that dimCLie(G)(x) ≤ 21+ 26, which is a contradiction. Now
assume x1 = 1 and note that (13) holds. By arguing as in the proof of [13, Lemma 7.4]
we calculate that α ≤ 14. However, dimCF4(x2) ≤ 18 since x1 = 1 and dim xH ≥ 34, so
3+dimCF4(x2)+3α ≤ 63, which contradicts (13) since dimCLie(G)(x) = 67. An entirely
similar argument applies if D0

= E6T1. We conclude that (9) holds when H = A1F4.
Now suppose H = H 0

= G2C3. First note that we may assume dim xG ≤ 60. If
x is unipotent then the relevant classes are labelled A1, 2A1 and (3A1)

′′, with respective
dimensions 34, 52 and 54. As explained in [50, Section 5.12], complete information on the
fusion of unipotent classes can be deduced from [50, Table 38], and it is straightforward
to check that (10) holds.

Now assume x ∈ H is semisimple. Here the hypothesis dim xG ≤ 60 implies that
CG(x) = E6T1, hence dim xG = 54 and we may assume dim xH ≥ 28, so CH (x) = T5
or A1T4, and thus x has odd prime order (if x ∈ H is an involution then dim xH ≤ 20).
By [56, Proposition 2.4] we have

Lie(G)↓G2C3 = Lie(G2C3)⊕ (W(λ1)⊗W(λ2))

and we note that dimCLie(G)(x) = 79. Write x = x1x2, where x1 ∈ G2 and x2 ∈ C3. Let
s denote the codimension of the largest eigenspace of x1 onW(λ1). Since CH (x) = T5 or
A1T4, we calculate that s ≥ 2 and thus [61, Lemma 3.7] implies that the codimension of
the largest eigenspace of x onW(λ1)⊗W(λ2) is at least 28. Therefore, dimCLie(G)(x) ≤

7+ 70, a contradiction.
Next suppose H 0

= A3
1D4. Here H/H 0

= S3 and dim xH ≤ 30 for all x ∈ H , so we
may assume dim xG ≤ 60. If x is semisimple then CG(x) = E6T1 and [52, Theorem 2]
implies that dim xH ≤ 18 < 1

2 dim xG. Now assume x is unipotent. The relevant G-
classes are labelled A1, 2A1 and (3A1)

′′, and we calculate that

V56↓A
3
1D4 = (W(1)⊗ 0⊗ 0⊗W(λ1))⊕ (0⊗W(1)⊗ 0⊗W(λ3))

⊕ (0⊗ 0⊗W(1)⊗W(λ4))⊕ (W(1)⊗W(1)⊗W(1)⊗ 0). (14)

If p = 2 then x is an involution, so dim xH ≤ 22 and therefore we may assume x is a long
root element. In particular, x ∈ H 0 (see [52, Proposition 1.13(iii)]). According to [48,
Table 7], a long root element has Jordan form [J 12

2 , J 32
1 ] on V56, and by considering the

above decomposition (14) we deduce that x is H -conjugate to x1x2x3x4 ∈ A
3
1D4, where

(i) x1 = J2 and xi = 1 for all i ≥ 2; or
(ii) x4 = a2 and xi = 1 for all i ≤ 3.

Therefore, dim xH ≤ 10 and the result follows. Finally, suppose p 6= 2 and x is unipotent.
If p = 3 and x ∈ H \H 0 then we calculate that x has Jordan form [J 18

3 , J 2
1 ] on V56, so x

belongs to one of the classes labelled 2A2 or 2A2 + A1 (see [48, Table 7]). In particular,
dim xH < 1

2 dim xG as required. Similarly, if x ∈ H 0 then we can determine the Jordan
form of x on V56; in this way, the reader can check that if x is in one of the relevant classes
A1, 2A1 or (3A1)

′′ then dim xH ≤ 14 < 1
2 dim xG.
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Finally, let us consider the case H 0
= A2A5. Here H/H 0

= Z2 and dim xH ≤ 36
for all x ∈ H , so we may assume dim xG ≤ 72. In particular, if x is semisimple then
CG(x)

0
= D6A1, A7, E6T1 or D6T1, and the bound provided by [52, Theorem 2] is

sufficient. For example, if CG(x)0 has a D6 factor then [52, Theorem 2] yields dim xG −

dim xH ≥ 39, so dim xH ≤ 27 < 1
2 dim xG. Now assume x is unipotent. Here the

relevant classes are labelled A1, 2A1, (3A1)
′′, (3A1)

′, A2 and 4A1. If x ∈ H \ H 0 then
p = 2 and x acts as a graph automorphism on the A2 and A5 factors of H 0, so dim xH ≤

5 + 20 = 25. In addition, [52, Proposition 1.13(iii)] implies that x is not a long root
element, so dim xG ≥ 52 and the desired bound follows. Finally, if x ∈ H 0 is unipotent
then the G-class of x is given in [50, Table 21] and the result quickly follows. ut

Proposition 5.13. Theorem 7 holds for G = E6.

Proof. We may assume that dimH ≥ 11 since dim xG ≥ 22 for all non-trivial x ∈ G.
According to Theorem 5.1, we have H = NG(X) with

X ∈ {G2, A2G2, T2D4, A
3
2, F4, A1A5, T1D5, C4 (p 6= 2)}.

If H 0
= F4, A1A5, T1D5 or C4 (with p 6= 2) then H is an involution-type subgroup,

and these cases have already been dealt with in Lemma 3.19. In each of the remaining
cases we claim that (10) holds for all x ∈ P , so (9) follows. Let {ω1, . . . , ω6} be a set
of fundamental dominant weights for G, and let V27 be the 27-dimensional irreducible
KG-module with highest weight ω1.

If H = H 0
= G2 then [50, Table 31] indicates that there are no long root elements

in H , so dim xG ≥ 32 for all x ∈ P and the claim follows since dim xH ≤ 12.
Next assume H 0

= A2G2. Here H/H 0
= Z2 and dim xH ≤ 18 for all x ∈ P , so

we may assume dim xG ≤ 36. Suppose x ∈ H is unipotent, so the relevant classes are
labelled A1 and 2A1 (with respective dimensions 22 and 32). If x ∈ H \ H 0 then p = 2
and [52, Proposition 1.13(iii)] implies that x is not a long root element, so dim xG ≥ 32.
Moreover, dim xH ≤ 5+8 = 13 since x is an involution, and the result follows. For unipo-
tent elements x ∈ H 0, Ross Lawther has determined the G-class of x (using the method
described in [50]), and we quickly deduce that (10) holds in all cases. For completeness,
we record this information in Table 13. For instance, if x = x1x2 ∈ A2G2 is unipotent,
where x1 ∈ A2 is regular and x2 ∈ G2 belongs to the class labelled Ã(3)1 (in which case
p = 3), then x is in the G-class labelled 2A2 + A1 and thus dim xH = 6 + 8 = 14,
dim xG = 54.

Table 13. The fusion of unipotent classes, A2G2 < E6

1 A1 Ã1 Ã
(3)
1 G2(a1) G2

1 1 A1 3A1 3A1 A2 D4
A1 2A1 3A1 A2 + A1 A2 + A1 A2 + 2A1 D5(a1)

3A1 (p = 2) D4 (p = 2)
A2 2A2 2A2 + A1 A3 + A1 2A2 + A1 D4(a1) E6(a3)

2A2 (p = 3) 2A2 + A1 (p = 3) D5(a1) (p = 2)
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Now suppose x ∈ H is semisimple, so CG(x)0 = D5T1 since dim xG ≤ 36. Here
dim xG = 32, so we may as well assume dim xH ≥ 16, whence CH (x)0 = T4 or A1T3.
Now dimCLie(G)(x) = 46 and [56, Proposition 2.4] gives

Lie(G)↓A2G2 = Lie(A2G2)⊕ (Lie(A2)⊗W(λ1)).

First assume CH (x)0 = T4. Write x = x1x2 ∈ A2G2. Since x1 and x2 are both regular
semisimple elements, with respect to suitable bases we calculate that x1 acts on Lie(A2) as
the diagonal matrix [I2, λI2, λ

−1I2, λ
2, λ−2

], and x2 acts on W(λ1) as [I3, µI2, µ
−1I2],

for some λ,µ ∈ K∗. In particular, dimCLie(A2)⊗W(λ1)(x) ≤ 18 and thus dimCLie(G)(x)

≤ 22 < 46, which is a contradiction. Similar reasoning eliminates the case CH (x)0 =
A1T3, and we conclude that (10) holds for all x ∈ P .

Next suppose H 0
= T2D4, so H/H 0

= S3. Since dim xH ≤ 24 for all x ∈ H , we
may assume dim xG ≤ 48. In particular, if x is semisimple then CG(x)0 = T1D5, A5A1,
A5T1 or T2D4, and the bound supplied by [52, Theorem 2] is sufficient. Now assume
x ∈ H is unipotent. By [56, Proposition 2.3] we have

V27↓D4 = W(λ1)⊕W(λ3)⊕W(λ4)⊕ 03

and in the usual way we can compute the Jordan form of x on V27 (and subsequently
determine the G-class of x via [48, Table 5]). In particular, if p = 2 and x ∈ H \ H 0

then x induces a b1 or b3 involution on the D4 factor (in the notation of [2]); in the
former case, x has Jordan form [J 10

2 , J 7
1 ], otherwise it is [J 12

2 , J 3
1 ]; it follows that the

respective G-classes are 2A1 and 3A1, and the result follows. Similarly, if p = 3 and
x ∈ H \ H 0 has order 3 then x induces a triality graph automorphism on the D4 factor
and we calculate that x has Jordan form [J 9

3 ] on V27 (there are two classes of triality
graph automorphisms; they have the same Jordan form on V27). Therefore, x is in one of
the classes 2A2 or 2A2 + A1, so dim xH ≤ 20 < 1

2 dim xG as required.
Finally, suppose H 0

= A3
2, in which case H/H 0

= S3. Here dim xH ≤ 18 for
all x ∈ P , so we may assume dim xG ≤ 36. As before, if x ∈ H is semisimple then
[52, Theorem 2] is sufficient (note that CG(x)0 = D5T1 is the only possibility with
dim xG ≤ 36), so let us assume x is unipotent. Here the relevant G-classes are labelled
A1 and 2A1, with respective dimensions 22 and 32. If x ∈ H 0 then the desired bound
quickly follows from the information in [50, Table 18]. Now assume x ∈ H \ H 0, so
p = 2 or 3. By [56, Proposition 2.3] we have

V27↓A
3
2 = (W(λ1)⊗W(λ2)⊗ 0)⊕ (W(λ2)⊗ 0⊗W(λ1))⊕ (0⊗W(λ1)⊗W(λ2)).

If p = 3 then x cyclically permutes the A2 factors of H 0, so from the above decom-
position we deduce that x has Jordan form [J 9

3 ] on V27 and thus [48, Table 5] indicates
that x is in one of the classes labelled 2A2 or 2A2 + A1, a contradiction. Finally, let us
assume p = 2 and x ∈ H \H 0 is an involution. By [52, Proposition 1.13(iii)], x is not a
long root element, so we may assume x ∈ 2A1 and thus dim xG = 32. Now x acts as a
transposition on the A2 factors, and it either centralizes or induces an involutory automor-
phism on the fixed factor. Therefore dim xH ≤ 8+ 5 = 13 < 1

2 dim xG as required. ut
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Proposition 5.14. Theorem 7 holds for G = F4.

Proof. In view of Theorem 5.1 and Lemma 3.20, we may assume H = NG(X) with

X ∈ {D4, D̃4 (p = 2), A1,G2, A1G2, A2Ã2}.

Note that if p = 2 then the subgroups D4 and D̃4 are interchanged by a graph auto-
morphism of G, so we only need to consider D4, which is generated by the long root
subgroups. Let {ω1, . . . , ω4} be a set of fundamental dominant weights for G, and let
V26 = W(ω4) be the 26-dimensional Weyl module for G with highest weight ω4.

First consider the case H 0
= D4. Here H/H 0

= S3 and dimH > 1
2 dimG, so

b0(G,H) ≥ 3 by Proposition 2.5(iii). We claim that dim xH < 2
3 dim xG for all x ∈ P ,

so
b0(G,H) = b(G,H) = b1(G,H) = 3

(see Corollary 2.14). Note that

V26↓D4 = W(λ1)⊕W(λ3)⊕W(λ4)⊕ 02. (15)

If x is semisimple then the claim follows from [52, Theorem 2], so let us assume x is
unipotent. If x ∈ H 0 then we can use the above decomposition (15) to determine the
G-class of x. For example, suppose p 6= 2 and x ∈ H 0 has Jordan form [J3, J

5
1 ] on the

natural D4-module W(λ1). Then x has Jordan form [J 4
2 ] on W(λ3) and W(λ4) (the two

spin modules forD4), so [J3, J
8
2 , J

7
1 ] is the Jordan form of x on V26 and thus [48, Table 3]

indicates that x belongs to the G-class labelled Ã1. In this way, it is straightforward to
verify the claim for all unipotent elements x ∈ H 0. (Note that if p = 2 then x ∈ D4 < B4
and the fusion of unipotent B4-classes is stated explicitly in the proof of [52, Lemma 4.6];
in particular, involutions of type c2 or a4 in H 0 belong to the G-class labelled Ã(2)1 .)

To complete the analysis of the case H 0
= D4 we may assume x ∈ H \ H 0 is

unipotent. Suppose p = 2 and x is an involution; there are two suchH -classes inH \H 0.
As before, using the decomposition (15), it is easy to calculate the Jordan form of x
on V26; if x is a b1-involution we get [J 10

2 , J 6
1 ], and [J 12

2 , J 2
1 ] is the Jordan form of a

b3-involution. The result now follows by inspecting [48, Table 3]. Finally, suppose x ∈
H \ H 0 and p = 3, so x acts on D4 as a triality graph automorphism. There are two
such H -classes in H \H 0, and we calculate that x has Jordan form [J 8

3 , J2] on V26, so x
is in one of the classes labelled Ã2 or Ã2 + A1 (with respective dimensions 30 and 36).
In particular, if CD4(x) = G2 then dim xH = 14 < 2

3 dim xG. On the other hand, if
CD4(x) 6= G2 then dim xH = 20 and we need to show that x belongs to the G-class
labelled Ã2 + A1. To see this, first observe that

Lie(G)↓D4 = Lie(D4)⊕W(λ1)⊕W(λ3)⊕W(λ4).

(see [56, Table 8.4]). Now x has Jordan form [J 8
3 , J

2
2 ] on Lie(D4), so x has Jordan form

[J 16
3 , J 2

2 ] on Lie(G). In particular, [48, Table 4] indicates that x is in one of theG-classes
labelled A2 + Ã1 or Ã2 + A1, but we know that x has Jordan form [J 8

3 , J2] on V26, so x
must be in the class Ã2 + A1, as required.
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In each of the remaining cases we claim that (10) holds for all x ∈ P (and thus (9)
follows). Since dim xG ≥ 16, the case H 0

= A1 is clear.
Next suppose H 0

= A2Ã2. Here H/H 0
= Z2 and dim xH ≤ 12 for all x ∈ P , so

we may assume dim xG ≤ 24. The claim quickly follows from [52, Theorem 2] if x is
semisimple, so let us assume x is unipotent. If x ∈ H 0 then the fusion information in [50,
Table 16] is sufficient, so we may assume p = 2 and x ∈ H \ H 0 is an involution. Here
x acts as a graph automorphism on each A2 factor, so dim xH = 10. By [52, Proposition
1.13(iii)], x is not a root element, so dim xG ≥ 22 and the result follows.

Now assume H = H 0
= G2. Here p = 7 (see [57, Corollary 2]) and we may as

well assume dim xG ≤ 24. In particular, if x is unipotent then x belongs to one of the
G-classes labelled A1 or Ã1, and the information in [50, Table 28] is sufficient. Now
assume x is semisimple. If x has odd order then dim xG ≥ 30, so we may assume x is an
involution. There is a unique class of involutions x ∈ G2 (this class has dimension 8) and
it suffices to show that CG(x) = A1C3 (rather than B4). To see this, first note that

Lie(G)↓G2 = Lie(G2)⊕W(λ1 + λ2)

(see [56, Proposition 2.4]). Now x acts on Lie(G2) as [−I8, I6], so it remains to show
that x acts on W(λ1 + λ2) as [−I20, I18], rather than [−I8, I30]. In terms of fundamental
dominant weights {µ1, µ2}, the restriction of the G2-module W(λ1 + λ2) to A2 < G2 is
given by

W(λ1 + λ2)↓A2 = Lie(A2)⊕W(2µ1 + µ2)⊕W(µ1 + 2µ2).

Now x = [−I2, I1] ∈ A2 acts on Lie(A2) as [−I4, I4] and [41, Theorem 8.3] rules out
the possibility that x acts on W(2µ1 + µ2) (and also W(µ1 + 2µ2) = W(2µ1 + µ2)

∗)
as [−I2, I13]. Therefore, x must act on W(λ1 + λ2) as [−I20, I18], so CG(x) = A1C3 as
claimed.

Finally, let us assume H = H 0
= A1G2, so p 6= 2 (see [57, Corollary 2]). Since

dim xH ≤ 14 for all x ∈ H , we may assume that dim xG ≤ 28. Consequently, if x is
unipotent then x belongs to one of the G-classes labelled A1, Ã1 or A1Ã1, and in each
case the required bound follows from the fusion information in [50, Table 29]. If x is
semisimple and dim xG ≤ 28 then CG(x) = B4 or A1C3. In particular, x is an involution.
Since dim xH ≤ 10 for all involutions x ∈ H , we reduce to the case CG(x) = B4. We
claim that dim xH = 2. By [56, Proposition 2.4] we have

Lie(G)↓A1G2 = Lie(A1G2)⊕ (W(4)⊗W(λ1)).

Write x = x1x2, where x1 ∈ A1 and x2 ∈ G2. Suppose x1 and x2 are both non-trivial.
There is a unique class of involutions in both A1 and G2, and it is easy to see that x1 acts
on W(4) as [−I2, I3], and x2 acts on W(λ1) as [−I4, I3]. It follows that x acts on Lie(G)
as [−I28, I24], so CG(x) = A1C3. In this way, we deduce that CG(x) = B4 if and only if
x1 6= 1 and x2 = 1, whence dim xH = 2 as claimed. ut

Proposition 5.15. Theorem 7 holds for G = G2.
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Proof. According to Theorem 5.1 we have H = NG(X) with

X ∈ {A1Ã1, A1, A2, Ã2 (p = 3)}.

Note that if p = 3 then the subgroups A2 and Ã2 are interchanged by a graph auto-
morphism of G, so we only need to consider A2, which is generated by the long root
subgroups. The case H 0

= A1Ã1 corresponds to an involution-type subgroup and this
has already been dealt with in Lemma 3.21. IfH = A1 then dim xH ≤ 2 for all x ∈ P , so
dim xH < 1

2 dim xG (since dim xG ≥ 6) and thus Corollary 2.14 implies that (9) holds.
Finally, suppose H 0

= A2. Here H/H 0
= Z2 and dimH = 8 > 1

2 dimG, so
b0(G,H) ≥ 3. We claim that dim xH ≤ 2

3 dim xG for all x ∈ P , with equality if and only
if x ∈ H 0 is a long root element. In particular, Corollary 2.19 implies that b1(G,H) ≤ 3,
so

b0(G,H) = b(G,H) = b1(G,H) = 3.

First assume x ∈ H is a unipotent element. If x ∈ H 0 then the claim follows from
the information in [50, Table 11], so let us assume p = 2 and x ∈ H \ H 0 is an
involution. Here x acts as a graph automorphism on H 0, so dim xH = 5 and we cal-
culate that x has Jordan form [J 3

2 , J1] on the 7-dimensional Weyl module V7 (since
V7↓A2 = W(λ1) ⊕ W(λ2) ⊕ 0). Therefore [48, Table 1] indicates that x is in the G-
class Ã1, and thus dim xG = 8. Finally, suppose x is semisimple. Since dim xH ≤ 6 we
may as well assume dim xG ≤ 8, so CG(x)0 = A1Ã1 or A2. In the latter case, x central-
izesH , so assume CG(x)0 = A1Ã1. Here p 6= 2, x is an involution and dim xH = 4. The
result follows. ut

This completes the proof of Theorem 7.

6. Normalizers of tori

In this final section we prove Theorem 9. Let G be a simple algebraic group of rank r
over an algebraically closed field of characteristic p ≥ 0, let T be a maximal torus of G
and consider the action of G on � = G/H , where H = NG(T ). Recall that Theorem 9
states that either b1(G,H) = 2, orG = A1 and the generic 2-point stabilizer has order 2.

Proof of Theorem 9. Suppose G = Ar , so H is a C2-subgroup of G of type GL1 o Sr+1.
If r = 1 and p 6= 2 then the desired result follows from Theorem 8, and the case p = 2 is
handled in the proof of Lemma 3.16. If r > 1 then Theorem 5 yields b1(G,H) = 2 (see
Section 4.2). Similarly, if G = Dr (with r ≥ 4) then H is a C2-subgroup of type O2 o Sr
and once again the result follows from Theorem 5. In each of the remaining cases, we
claim that

dim xH < 1
2 dim xG (16)

for all x ∈ P , where P is the set of elements of prime order inH (including all non-trivial
unipotent elements if p = 0). In particular, by applying Corollary 2.14, we deduce that
b1(G,H) = 2.
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If G is an exceptional algebraic group then dim xG > 2r for all x ∈ P , whence (16)
holds. Indeed, dim xG ≥ α where α is defined as follows:

G E8 E7 E6 F4 G2
α 58 34 22 16 6

Now, if G = Cr (with r ≥ 2) then either x is a long root element and dim xG = 2r ,
or dim xG ≥ 4r − 4 (see [13, Proposition 2.9]). We immediately deduce that (16) holds,
unless x is a long root element, or if r = 2, p 6= 2 and x = [−I2, I2] is an involution. In
the latter case we calculate that dim(xG ∩ H) = 1 and dim xG = 4. Similarly, if x ∈ H
is a long root element then p = 2 and dim(xG ∩H) = 1. Finally, let us assume G = Br
(with r ≥ 3 and p 6= 2). Here dim xG ≥ 2r , with equality if and only if x is a long
root element or x = [−I2r , I1]. But H does not contain any long root elements, and if
x = [−I2r , I1] we calculate that dim(xG ∩H) = 1. The result follows.

This completes the proof of Theorem 9. ut

Finally, we sketch a proof of Corollary 10. Define G, H and r as above, and assume
that G is of adjoint type, whence the center of Lie(G) is trivial. Let X be the product
variety G/H ×G/H .

We first show that the action ofG onX is generically free. By Theorem 9, the generic
orbits of G on X are free, so we need to show that there exists a non-empty open subva-
riety U of X such that for all x ∈ U , the map φx sending Lie(G) to the tangent space of
x in X is injective. Of course, this is equivalent to the fact that H acts generically freely
on G/H .

By [25, Proposition XI.5.9],H is a smooth group scheme. This implies that the kernel
of φx is just the intersection of two maximal Cartan subalgebras of Lie(G). It is easy to
see that generically this intersection is just the center of the Lie algebra, which is trivial.
Indeed, typically a Cartan subalgebra is the centralizer of a generic regular semisimple
element, and two such elements generically generate the Lie algebra, so the common
centralizer is the center.

By [26, Example 7.3(b)], the action of H on G/H is versal. Recall that one of the
equivalent definitions of ed(H) is the minimal value of dimX − dimH , where X ranges
over all generically free versal H -varieties (see [68, Remark 2.6]). Thus,

ed(H) ≤ dimG− 2r

where r = dimH is the rank ofG. As we have noted, the inequality ed(G) ≤ ed(H) was
already proved by Springer (see [67, Proposition 4.3]).

Remark 6.1. This result was improved to ed(H) ≤ dimG− 2r − 1 in [33]. The idea is
to show that NG(H) acts generically freely on the adjoint module for G (by Theorem 9)
which gives the bound in Corollary 10. Then one passes to projective space to improve
the bound by 1.
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MR 3363006

[7] Bhargava, M., Gross, B. H.: The average size of the 2-Selmer group of Jacobians of hy-
perelliptic curves having a rational Weierstrass point. In: Automorphic Representations
and L-functions, TIFR Stud. Math. 22, Tata Inst. Fund. Res., Mumbai, 23–91 (2013)
Zbl 1303.11072 MR 3156850

[8] Bhargava, M., Gross, B. H., Wang, X.: Arithmetic invariant theory II: Pure inner forms and
obstructions to the existence of orbits. In: Representations of Reductive Groups, Progr. Math.
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