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Convergence to self-similar solutions for the
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Abstract. The Boltzmann H-theorem implies that the solution to the Boltzmann equation tends
to an equilibrium, that is, a Maxwellian when time tends to infinity. This has been proved in vari-
ous settings when the initial energy is finite. However, when the initial energy is infinite, the time
asymptotic state is no longer described by a Maxwellian, but a self-similar solution obtained by
Bobylev—Cercignani. The purpose of this paper is to rigorously justify this for the spatially homo-
geneous problem with a Maxwellian molecule type cross section without angular cutoff.
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1. Introduction

Consider the homogeneous Boltzmann equation

df(t,v)=0O(f, f)t,v), veR reRt, (1.1)

with initial data

fO.0) = fow) =0, veR’, (1.2)
where the non-negative unknown function f (¢, v) is the distribution density function of
particles with velocity v € R? at time r € R*. The right hand side of (1.1) is the Boltz-
mann bilinear collision operator corresponding to the Maxwellian molecule type cross
section

(s, ) = f f B(”_—”* -o)(ﬂv’)g(v;)  fgn)dodv,.  (13)
R3 Js2 v — vy
Here foro € S2,
;U |v—v*|o ;U F Uk [v — vy
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and from the conservation of momentum and energy,
A U R LIRS M

The Maxwellian molecule type cross section B(t) in (1.3) is a non-negative func-
tion depending only on the deviation angle 6 = COS_I(\z:zL - o). As usual, 6 is re-
stricted to 0 < 8 < /2 by replacing B(cos 0) by its “symmetrized” version [B(cos ) +
B(mw — cos 6)|1p<g<x 2. Moreover, motivated by inverse power laws, throughout this pa-
per, we assume

911%1 B(cos 0)0*% = by (1.4)
—U+

for positive constants s € (0, 1) and by > 0.

As in [7-9, 11, 16], the Cauchy problem (1.1), (1.2) is considered in the set of prob-
ability measures on R3. We first introduce some function spaces defined in the previous
literature. For o € [0, 2], P*(R?) denotes the set of probability density functions f on
R3 such that

/ oI* £ (v) dv < oo,
]R3

and moreover, when o > 1,

/R%vjf(v)dv=0, j=123.

Following [7], the characteristic function ¢(z, &) is the Fourier transform of f (¢, v) €
PO(R3) with respect to v:

0(.8) = f(1.6) = F()@.§) = /R e vy dv. (1.5)

For each a € [0, 2], set P¥(R3) = F~1(K¥(R3)) with K(R3) = F(P°(R3)) and
K*RY) = {p e KR : o — 1]pa < 00}.

Here the Toscani distance D* with o > 0 between two suitable functions ¢(£) and ¢(§)
is defined by

o lp&) — )]
lg — @lipe = sup PN
06 €R3 &1

The set K%(R3) endowed with the D%-distance is a complete metric space. It follows
from [7, Lemma 3.12] that K%(R3) = {1} forall @ > 2, and {1} C K*(R3) c KF(R?) c
K@®R3) for2>a > pg>0.

The advantage of considering the Maxwellian molecule cross section is that the
Bobylev formula [5, 6] is in a simple form. Namely, taking the Fourier transform (1.5) of
equation (1.1) leads to the following equation for the new unknown ¢ = ¢(z, £):

§-0

dro(t,§) = /sz B(ﬁ)(fﬂ(h EDp(t,E7) —9(t,8)) do, (1.6)
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where we have used

0(1,0) =/ Ftvydv = 1.
R3

Here,
+ _ &E+1lo - _&—Ilo
> =2 > 1.7
§ R & > (.7
which satisfy
EVET=E ETPHIEP =8P (1.8)
From now on, we consider the Cauchy problem for (1.6) with initial condition
©(0,&) = go(§). (1.9)

For o € (2s, 2], itis shown in [7, 11, 12] that this Cauchy problem admits a unique global
solution ¢(t, &) € C([0, 00), K% (R?)) for every ¢o(&) € K%(R?). Moreover, f(t,-) €
LY (R3) N H®(R3) for any t > 0if F~ (o) (v) is not a Dirac mass [12, 13].

The large time behavior of the solution depends on whether the initial energy is finite
or not, and in the above setting, it depends on the parameter « (see [2, 7-9, 11, 12, 14-16]
and the references cited therein):

e When o = 2, the initial datum has finite energy so that the solution tends to the
Maxwellian defined by the initial datum. This was indeed proved in the early work
by Tanaka [15] using weak convergence in probability. And it was also proved later
in [9, 14, 16] by using analytic methods with convergence in Toscani metrics. More-
over, if some moment higher than the second order is assumed to be bounded, the
convergence in the D>9-distance with § > 0 is shown to be exponential in time [9].

e When 25 < «a < 2, the initial energy is infinite so that the solution will no longer tend
to an equilibrium, but to a self-similar solution

Fuk (t,v) = e Ml Yy, g (veHal)

constructed in [5, 6], where

ha oo\ [IE7I9 + |EH] )
0[= £ )"O[E B _1 d . ]10
o =" /S ( €] )( BE 7 (110)

Here, K > 0 is any given constant and W, x (v) is a radially symmetric non-negative
function satisfying

. 11—
/ Yo xdv=1, Y, k() eL*R>, lim L% {U) N (1.11)
R3

[n|—0 [n]*

The H°°(R3)-regularity of the self-similar solution was proved in [12, 13]. However,
convergence to the self-similar solution fy x (¢, v) is not well understood even though
there are some works [6—8] about pointwise convergence in the radially symmetric
setting or in weak topology with scaling. In fact, even how to show convergence in the
sense of distributions has been a problem.



2244 Yoshinori Morimoto et al.

The main difficulties in studying convergence to self-similar solutions come from the
fact that a self-similar solution has infinite energy and it decays to zero exponentially in
time except in Li-norm. The purpose of this paper is to show strong convergence when
a € (max{2s, 1}, 2] under some conditions on the initial perturbation.

_ For this, we first consider the D2+ _distance between two solutions. For fy(v) €
P*(R3) and go(v) € P*(R?), as in [9, 10], set

P(t, &) = e P(0,8),

- 13
P0,8) = 3 Z £&P1(0)X(8), (1.12)

Jl=1

‘Sjl 2
Py(0) = / (v,-vl——|v| )(fo(v)—go(v))dv,
R3 3

3 o-& o-£ 2)
A=-— Bl —= 1— —— do, 1.13
4/s2 (|s|)< (m) 7 (-1

dj1 is the Kronecker delta and X (§) = X(|&]) is a smooth radially symmetric function
satisfying 0 < X(§) < land X(§) = 1for|§| < 1and X(§) =0 for |§| > 2.

The first result in this paper, on the D> time asymptotic stability of the solutions, is
given by

where

Theorem 1.1. Suppose fy(v), go(v) € pa (R3) for a € (max{2s, 1}, 2]. Let f(t, &) and
8(t, &) be the corresponding two global solutions of the Cauchy problem (1.6) with initial
data fo(é) and go (&) respectively. Assume for some § € (0,a] N (0, A/uy), the initial
data satisfy

fR3 [I2(fo(v) — go(v)) dv = 0, (1.14)

/Rzlvlzlfo(v) — g(v)|dv < o0,

I fo() = 80() = P(0, )[lp2ss < 0.

(1.15)

Then there exists some positive constant C1 > 0 independent of t and & such that
1/t ) = 8, ) = P(t, )lipews < Cre™, 1> 0. (1.16)

Here, no = min{A — Sy, B} and

v Lo( )0

Note that for D?*9-convergence to a self-similar solution, one can simply take gy =
W,k (v). Based on this, in order to obtain convergence in the strong topology, such as in
the Sobolev norms, we will give a uniform in time estimate of the solution in H N _norm:

2446

0
cos =
2

2445 o S
)do, cos@:W. (1.17)

sin —
2
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Theorem 1.2. For max{l, 2s} < o < 2, assume that fo(v) € pa (R3) satisfies (1.14)—
(1.15) and is not a Dirac mass, and go(v) = Wy g (v). Then for any given positive con-
stant t; > 0 and any N € N, there exists a positive constant C3(t1, N) independent of t
such that

sup || f(z, gy < Ca(t1, N). (1.18)

t€lty,00)

Consequently, there exists a positive constant C3(t1, N) independent of t such that

£, ) = faur (6, Mgy = 1ft,0) — e Wy g (ve™ ") || yv < C3(t1, N)e™ 107

(1.19)
foranyt > t1 and any € € (0, ng).
Since
e o k )l 2 < Mok (8 )y < €72 W Ol g (1.20)
(1.19) and (1.20) imply that when
3pa < 210, (1.21)

the convergence rate given in (1.19) is faster than the decay rate of the self-similar solution
itself. Hence in this case, the infinite energy solution f (¢, v) converges to the self-similar
solution f, g (¢, v) exponentially in time.

Based on the estimate (1.19), we can further deduce the following L'(R3)-conver-
gence result:

/ | £t v) — ey g (e ") | dv < Cy(ty, NYe™ M0/470HalP=E - p >

R3
(1.22)

Here C4(#1, N) is some positive constant depending only on #;, N; € > 0 is any suffi-
ciently small positive constant; and p, g > 1 satisfy

I/p+1/g=1, q/p>3/Qua). (1.23)
Remark 1.1. Since uy, — 0+ as @ — 2, the condition (1.21) holds when « is close to 2.

For the case with finite energy, the above stability estimates give a better convergence
description of the solution than in the previous literature. This extends the exponential
convergence result in the Toscani metrics D>*® with 8§ > 0 (cf. [9]) to the Sobolev space
HY (R3) for any N € N. In fact, we have

Corollary 1.1. Suppose that fo(v) € P*(R?) is not a Dirac mass and satisfies
/R P fodv=3, 1fo¢) = p() = PO.)lpes <0, (1:24)

for some positive constant § € (0, 2] with u = (2n)’3/2e7|”‘2/2. Then for any N € N,
there exist positive constants Cs, C¢(t1, N) > 0 independent of t such that

1/t ) — () = P(t, ) pess < Cse™™, £ >0, (1.25)
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and
sup || f(, gy <Ces(t1, N), t=1. (1.26)

telr,00)

Here t| > 0 is any given positive constant and n1 = min{A, B}.
A direct consequence of (1.25) and (1.26) is

I, ) — @)y < Cr(ty, Nye M= (1.27)
and
f | f(t,v) — u(v)|dv < Cg(ty, N)e ™ M/a= ¢ > ¢, (1.28)
]R3

for any sufficiently small positive constant €, some positive constants C7(z;, N) and
Cs(t;, N) depending only on f; and N, and p, ¢ > 1 with p~! + ¢~ ! = 1 and 4¢g > 3p.

Remark 1.2. Two comments on the above two theorems are in order:

e By Lemma 2.6, sufficient conditions for the requirements (1.15) and (1.24) are

fR3 WP 1fow) = go(v)ldv < o9

and

/ﬂ;} WP 1fow) = p)ldv < oo,

respectively.
e The convergence rate in Corollary 1.1 is faster than in Theorems 1.1 and 1.2.

We now list some notation used throughout the paper. Firstly, C, C; withi € N, and O (1)
are used for generic large positive constants, and &, « stand for generic small positive
constants. When the dependence needs to be specified, the notation like C(-, -) is used.
For a multi-index 8 = (81, B2, B3), 8’3 = 8,’,31] 85322 8{)333. Finally, A < B means that there is
aconstant C > O suchthat A < CB,and A ~ Bmeans A < Band B < A.

The rest of this paper is organized as follows: Some known results concerning the
global solvability, stability, and regularity of solutions to the Cauchy problem (1.6), (1.9)
in K%(R?) are recalled in Section 2. Moreover, some properties of approximation of the
initial data in C¢ (R3) are also given there. The proofs of Theorem 1.1, Theorem 1.2, and
Corollary 1.1 will be given in the next three sections respectively.

2. Preliminaries

In this section, we first recall the global solvability, stability and regularity results on the
Cauchy problem (1.6), (1.9) obtained in [5-8, 11-13]. Then we study the properties of the
approximation fog(v) to the initial data f(v) defined in (2.3) for later stability estimates.

For the Cauchy problem (1.6),(1.9), the following estimates are proved in
[7,8, 11-13].
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Lemma 2.1. For o € (25,2, if po(§) € K¥(R>), then the Cauchy problem (1.6), (1.9)
admits a unique global classical solution ¢(t, &) = f(t, £) € C([0, 00), K*(R3)) satis-
fying
lp(t, ) — Lipe < e™llgo(-) — 1llpa. (2.1
If Y (t, €) € C([0, 00), K%(R?)) is another solution with initial data V¥o(£) € K*(R3),
then
le@, ) = (1, )llpa < e*"llgo(-) = Yo ()l pe. (22)
Furthermore, if fo(v) = }"_l(wo)(v) is not a Dirac mass, then f(t,-) € LY®R3 N
PER3) N H®R3) fort >0and0 < B < a.

And for the self-similar solution fy x (f, v) constructed in [5, 6], by [12, 13], we have

Lemma 2.2. For a € (2s,2) and a constant K > O, there exists a radially symmetric
Sunction ¥, g (§) € K¢ (R3) satisfying (1.11) such that

fuk (1, v) = e 3Hal @, g (ve™Hal)

is a solution of the Cauchy problem for (1.1) with initial datum Yy g (v). Moreover,
U, k(t,) e L'RHNPERY) N H®R?) for0 < B < a.

The relation between P2 (R3) and K*(R3) was given in [7] and [12] and it can be stated
as follows.

Lemma 2.3. (i) Fora € (0,2], if h(v) € P*(R3), then fz(E) € K*(R).
(i) Fora € (0,2, if h(€) € K%(R3), then h(v) € PP(R?) forany0 < B < a.

Since the energy of the initial data is infinite, we will first approximate the solution by a
cutoff at large velocity so that the moment of any order is bounded. Then it remains to
show that the solution with this kind of approximation has a uniform bound independent
of the cutoff parameter. On the other hand, the approximate solution cannot be arbitrary
because it has to be in the function space K£*.

Fora € (25,2] and fo(v) € P* (R3), let X (v) be the smooth function defined in the
construction of P(z, £), set Xg(v) = X (v/R), and define

_ 7 f = _ Jo(w)Xg(v)
for() = for(v +ag),  for(v) = T o Xr () dv (2.3)
i Jrz vfoW)Xr(v)d
f_ ~ L vjo(v RV v
¢ _/Rs VfoR Y = Xk dv @4

The properties of the approximation function are given in

Lemma 2.4. Forl < 8 <o <2, ifwe choose R > 0 sufficiently large, then:
) foR (£), Sor (&) € K2(R3), and for sufficiently large R > 0,

Il for (-) — Gor ()l p2
< c9<1 +/R3 Ivl(fo(v)+go(v))dv+/R3 |v|2|fo<v>—go<v>|dv>. 2.5)

Here the positive constant Cg depends only on fR3 A+ A (fo(v) + go(v)) dv.
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(i) For1 < B < a < 2 and sufficiently large R > 0, for(v) € PPR3) with PP (R)-

norm being uniformly bounded, precisely,

f |v|ﬁf0R(v)dv§f (1+[vIP) fo(v) dv.
R3 R3
Thus

I for() = Uips S 1, Nfor() = foOllps S 1,
dim [ for () = foO)llps = 0.

(2.6)

Q.7
2.8)

Proof. We first prove (2.6)—(2.8). Since it is straightforward to verify (2.6), and (2.7) is a
direct consequence of (2.6) and Lemma 2.3, we only prove (2.8). For this, note that

lim/ fow)XrW)dv =1.
R—o0 JR3

Choosing R sufficiently large, we have

1 1
/ foXrw)dv > -, / go(WXr(W)dv > =.
R3 2 R3 2
Thus
la}l < 2’ f 0o ()X p(v) dv
R3
= 2‘/ vfo(w)(1 — Xg(v)) dv| < 2Rl_ﬁ/ [vI? fo(v) dv.
R3 R3
Similarly,

afl <2817 [ oot dv.
R‘

From (2.9), (2.10), and the fact that

| for (&) — fo(®)] < /R3 | for(v) — fo(v)|dv

—1
< (fR fo<v>xR<v>dv> /R oo+ al) — fo()] dv

-1
+(/ fo(v)XR(v)dv> /fo(v)
R3 Rfi

we obtain

lim sup | for(§) — fo(£)| = 0.

=00 £ 3

Xg(v+al) - fR Jo@)Xr@)dv

2.9)

(2.10)

@2.11)

dv,

2.12)
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On the other hand, fo(é) e K*(R?) implies that |1 — f0||pa < 1. Consequently, for
l<B<a<?2,

11— fo(m)]
In|#

so that for each ¢ > 0, there exists a §1(¢) > 0 such that

< It = follpelnl*~*,

11— fol e
—_ < = (2.13)
Inl? 2
for any || < 8.
Choose B € (B, @) so that |[I — for|l 7 is bounded by a constant independent of R,
using (2.7). Then

11— for(n)|
Inl#

provided that || < 82(¢) for some sufficiently small §; > 0.
(2.13) together with (2.14) implies that for any ¢ > 0 and || < § = min{d1, 82},

<1 = forllpzlnlf = < mIf 7 < (2.14)

€
2

| for () = fol _ 11 = forp)| | 11 = fo)l _

2.15
I T Inlp @19
Now (2.8) follows directly from (2.12) and (2.15).
It remains to prove (2.5). Set
eV iy —1
k(v, &) = 5 (2.16)
€]
then
| for(€) — 8or(©)]
&1
So()Xg(v) go(v) Xg(v)
= k(v — ak, — k(v —a¥, d
‘/R< W T hmxewds TR go(v)XR(v)dv> v‘

< ‘/R3(k(v —a',g,é) — k(v —a%,€)) fo()Xr(v) dv‘

Jrs fow)Xg(v)dv
Fo) X g () 20() X(v)
| e A
VR =t O\ T foXr@dv o soXpwdv) @
=11+ L. 2.17)
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First, from (2.9), (2.11) and the fact that [k(v — a%, &)| < |v — af|?, we have

b < 2‘ /R = af o) — o) Xr(w) dv

+4VR} k(v — a1ge’ E)go(v)XR(v)</R}(fo(v) — go(v))XR(v)dv) dv

5/Rz(1 + v fo(v) = go(v)] d

+ / (1+ v go(W) X g (v) dv
R3

As(fo(v) —go() (1 — Xg(v)) dv

5/}1@(1 + 101 fow) = go(w) dv

+ /Rs(l + 1v[#)go(v) dv - R*7F . VR (fo(v) — go(@)(1 — Xg(v)) dv

5/ (1 + [ fov) — go(w)| dv
R3
+ [Lashmwade: [ WP - owde
R3 R3
5/R3(1 +|v|2)|fo(v)—go(v)|dv'<1 +fRz<1+|v|ﬂ)go(v)dv). (2.18)
For I, noticing that

. f . f
k(v = a}, &) — k(v — af, )] = 62T CTRE TR 1) 4 i(af —af) - &,

(2.19)
for |£] > 1 we have

k(v — ag, &) — k(v — a§, &) < laf —agl S R'F. (2.20)
For |£] < 1,
k(v — ah, &) — k(v — a5, €)|
S IEI2 [+ 0w — abl £ (=i(as — ab) - & + O()|a% — afPIE1?)
+i(ab —ap) -£]|
S lab —alh P+ v —ab|1ad — all + v — ab|1ad — al P €]
<1+ v)R'P. 2.21)

Thus, (2.19)—(2.21) imply that

k(v —al, £) — k(v —a%, &) S 1+ v, (2.22)
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and consequently

L < /R3(1 + |v]) fo(v) dv. (2.23)
Inserting (2.18) and (2.23) into (2.17) yields (2.5). ]
Now let s
IAHOE ViU — I o) (for@) = gor () dv (224
J R3 3

be the approximation of P;;(0) defined by (1.12)3. The following lemma gives the con-
vergence of lef (0) to P;j;(0) as R — oo.

Lemma 2.5. Assume
A;{ P1fo(v) = go(w)ldv < oo, (225)

Then
Jim_ P(0) = Pj(0). (2.26)

Proof. Notice that

PR = / (Ule _ @Mz) Jo(v +01€)XR(U +a,fg) — fow+a¥)Xr(v +af) i
: 3 Jrs o) Xg(v) dv

_1 8
—F(/R3 Jfo(w)Xr(v) dv) [1;{3 <vjv1—%|v|2)(fo(v+a§’;)—go(v+a§))XR(U+a§) dv

8
+/M <ij1 - é|v|2>go(v +af)Xr(v + af)

(L awxewar) = ([ wwxswar) - )an

S 5
- fR3[((vj_a’};j)(vl_ail)_%w_a’é'z)_<(Uj —af)(v —afy) = v - a§e|2)}
Jo(w)Xg(v)
X
fn@ Jo(w)Xg)dv
e gy St g0\ (o) — go(v) X R ()
+/1R3<(v/ ag;) (v —ag) 3Iv aR|> T o) Xn(0) dv dv

S g g Sz (fow) — go() X (v) dv
+/]RS <v,vz 3 [v] )go(v+aR)XR(v+aR)fR3 FoXR () dv - [ g0 (W) Xr(w) dv
=L+ 14+ Is. (2.27)

From

1 Sil
(-t —ady - Lo - af) - (@ - alypw - af - Lo - o))

f g 2 2
< laf —abl vl + 1a&? + lag]
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and (2.9) we have, for R > Ry,

3] < (lagl + Ia};I)/H;S(l + [vD) fo(v) dv.

This together with (2.10)—(2.11) implies that
lim I3 =0. (2.28)
R—o0

For Is, if R is sufficiently large, from (2.9), (2.11) and the assumption (2.25) we have

S
1Is] < ‘/}1@ (Ujvl - %Ivlz)go(v +a§)XR(v+a§)(fR3(fo(v) —go(v))XR(v)dv) dv

& /Rs(l + v = aggo(v +af) Xr (v +ajp) /R3<fo(v> — o) (1 — Xg(@) dv|dv
< [+ R 20Xk [ (o) = 0@ (1 = Xn(w) dv|do
S RUD (/R3(1 + Ivlﬂ)go(v)dv> </RS [vI?| fo(v) — go(v)|dv> < RAI-P),
Thus
Jim 15 =0, (2.29)

Finally for I4, from (2.10), (2.11), (2.25) and limg_, ng fo(w)Xg(v)dv = 1, the dom-
inated convergence theorem yields

8.
lim 7 = /R 3 (v,,-vz - §|v|2> (fow) — go(w) dv = Py(0).  (230)

R—o00

Inserting (2.28)—(2.30) into (2.27) gives (2.26). ]

In the last lemma of this section, a sufficient condition on f(v) — go(v) is given for (1.15)
in Theorem 1.1 to hold.

Lemma 2.6. Let0 < 6§ < 1. Then

I fo() = 80() — P(O, )Ipass < /R I+ [1*%)] fo(v) — go(v)| dv. (2.31)

Proof. In fact, by the assumption (1.14), we have

fo(€) — g0(&) — P(0, &)

. 13 S
= /11&3 [e—zv-é —1+iv-§— EHX::I EjSIX(§)<Ule - §|v|2>](fo(v) — go(v)) dv

, 1 3
= A\{S |:elU'$ —14+iv-&— Ele::l Sjélx(é)vjvl](f()(v) — go(v)) dv.
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The Taylor expansion of e ~/V¢ — 1 4 iv - £ to the second order implies that

21602
S ICIER,

i’ . IR
T~ T tivE— 2 Y gEX @y
jil=1

and the Taylor expansion of e 71V¢ — | 4 jv.& — % ;’121 £;& X (§)vjv; to the third order
gives

S+ P)gP.

. 1 3
eV [ 4iy.E— 3 Z §i&1 X (E)vjy

Jil=1

Thus interpolation yields

. 1S
e Nkiv g =2 Y GEX©@vu| S (1 + PR

ji=1

for all 0 < & < 1. Hence (2.31) follows. O

3. Proof of Theorem 1.1

To prove Theorem 1.1, as in [7], we first approximate the cross section by a sequence of
bounded cross sections defined by

B,(s) = min{B(s),n}, neN. 3.1

Then consider

3 H, + H, = _i/ / Bn(M>Hn(U/)Hn(U;)dG dv,,  (32)
R3 Js2

On [V — vyl

H, (0, v) = Hy(v). (3.3)

_ §-0
n = By| = ) do. 34
’ /s (m) 7 G4

For « € (max{2s,1},2] and fp(v), go(v) € ﬁ“(]l@), let for(v) and gog(v)
be the approximations of fp(v) and go(v) constructed in the previous section. Since
for(v), gor(v) € P2R3) c K*R3), it follows from Lemma 2.1 that the Cauchy
problem (3.2)—(3.3) with Hy(v) = for(v) [Ho(v) = gogr(v)] admits a unique non-
negative global solution Fy(t,v) [G'(t, v)] satisfying ﬁlg(t, £) € C([0, 00), K2(R3))
[Gn (2, &) € C([0, 00), K2(R?))]. Moreover, for max{2s, 1} < f < a < 2, (2.2) and
Lemmas 2.3 and 2.4 imply that

Here

A A )"n A A )Ln
IFR(t, ) — Fu(t, )ips < €1l for() — foO)llps < €8,

) e X g 3.5)
1GR(t,-) — Gu(t, )ips < e 1Igor(-) — 8o lIps S e™F.
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Here F, (¢, v) and G, (¢, v) denote the unique non-negative solutions of the Cauchy prob-
lem (3.2)—(3.3) with initial data fo(v) € P“ (R3) and go(v) € P* (R3) respectively, and

1 -0\ [IETI + £ )
M= — B, —1])do. 3.6
“ =5, Je <|s| )( BE 7 G0

Furthermore,

/R} WA, v) dv = /R ol for (v) dv < oo,

/R3 [|2G™ (1, v) dv = /R3 [v]2gor (v) dv < 0.
Consequently, Lemma 2.1 yields

IR, ) — Gt ip2 < I for() — 8orOllp2 S1. > 0. 3.7
Noticing that
|Fa(e, ) — Fu(t.§) < [E1PIER(. ) — Falt, ) ipe < 161P | for() — foOllps.

where (3.5) has been used, from (2.8) we have

Lemma 3.1. The limit

Jim (FR(e.€), Gt £) = (Fu(1.8), G (1. 6))

holds locally uniformly with respect tot € Rt and & € R3.

Setting R R N
Q1R (1, &) = Fp(t, &) — GRr(1,6) — PR, €) (3-8)
with

- 1 3
Pr(e, &) =S¢ 3 PIO&EX @),
jil=1

5 3.9
5 L) - (%) ]
Ay = — B\ —)|1—-|— do,
45, fg ( H &) 1
we now deduce the equation for <D’fR (t,&). Set
OF(F.6) = _i/ Bn(§l>ﬁ(t,§+)é(t,$_)da. (3.10)
On Js2 €]

Since I}l’g(t, &) and ér;e(t’ &) satisty

WFL + Fr = OV (R, FI,  8,G% +G% = 0T (G, G,
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we have
3 @"R 4+ DR = — (3, P + PRy + OF (IR, Fly + O (G, 1F)
+0H (P, FRy + 0T (G, P, (3.11)
CD?R(O, £) = for(€) — &or(§) — 5%(0, &).
Let

DN, &) = F"(t,§) — G"(1,&) — P"(1,&). (3.12)

By taking R — oo, from Lemmas 3.1 and 2.5 we deduce that <I>’17R(t, &) — D, &) as
R — oo, locally uniformly with respect to r € RT and & € R3. To derive the equation
for db’f (t, &), we first study

ER(t,§) = 0" (PR, FR) + 0" (G, PR) — i PR4L &) + PR, &), (3.13)
In fact, for E% (¢, &), we have
Lemma 3.2. We have
Rlew E%(t, &) = E"(t,8), (3.14)
locally uniformly with respect to t € R* and & € R3. Moreover,

O()|gPHe=(An=a/at | |g] < 1,

O(1)e=Ant €] > 1, G-19)

|E"(1,8)] < {

forany s € (0,a] N (0, xA, /ML) and some positive constant O (1) independent of t, &,
R and n.

Proof. Since

EN(t,€) = — (0, Pp(t, &) + Pp(t, £))

I < —Ant pR § 0\ ahpty st —E— Y (£~
o 2 R,l<0>/828n<|5—|)[sj ETXED) +E7E X E)do

3

Z e~ PR (0)

J.l=1

20,

x /S i Bn<ié—|a)[€f§,+x(é+)(ﬁ£(t, E) =D +& & XED(GREED — D] do,

it follows from Lemmas 3.1 and 2.5 that

dim ER(.8) = E"(1.8), (3.16)
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locally uniformly with respect to t € RT and £ € R>. Here

E"(t,€) = —(3P"(1,€) + P"(1,£))

20,,

‘A"’Pu(mf ( £ ) 576 X(ED) +676 XED)d

*Anfp,lm)/ ( ] ) [€F&r X EDE @, - 1)

+EEXEDG 1,6 — D]do

= —@P"(t,6) + P"(t1.) + Is + I (3.17)
and X
~ 1
Prg) = e Y Pa0)g6X (@), (3.18)
2 ji=1
To bound /¢ and I7, first note that for |£| > 1, the estimates
Fre ) <1, 16" E)] <1
imply that
|E"(t,&)] < O()(1 + Ape ' < O(1)e M, (3.19)
Here we have used the fact that A, has a uniform upper bound for any n € N.
If |£] < 1, then |ET| < 1 so that X (§%) = 1. Hence, as in [9], we have
L 1
§ & +E8 =8 + e g0,
and | : ” -,
Y n jS1
— B,| =— |ojojdo = =,
On /sz n( €] ) / / &2
Then
1< E.0
I = At P (0 / Ay
6 2onj,zf 51(0) <|s| )[s EN &g
Lo i §-0
== Z:j Piu(0) | Bul g Jlsi8 + & *0j01] do
13 1S
— — n
=12 ¢ MPOgE+ 7 Y e A"’P,-z<0>[<1 —240)6 + 8,-z|s|2]
Jil=1 Jil=1
= (1= Ay)P"(1,6) = & P"(t,&) + P" (1. 8).
Thus for |&] < 1, - -
Is — (0, P"(t, &) + P"(t,£)) = 0. (3.20)
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For I7, when |§| < 1 we have, from the assumption fy(v), go(v) € ﬁ“(}l@) and
Lemma 2.1,

|Fat,8) =11 < "1 Fn e, ) = Tlipe < 1€ fo() — Ve,
1Gu(t.8) — 1] < E[*[1Gnlt, ) — LD < €' |E[*]120() — 1]l pe.
The above estimates together with |}:" ", &) <1and |é" (¢, &)] < 1 imply that
|Fn(t. ) = 1|+ 1Go(t. ) — 1] < O(D) £ e ! (3:21)
for any ¢ € (0, 1]. Consequently, for |£| < 1,
|I7] < O(1)|g|F e (Anerall, (3.22)
(3.20) together with (3.22) implies that
|E™(t,8)] < O(D)[§PTE%e~ Akl g < 1. (3.23)

From (3.19) and (3.23), the estimate (3.15) follows immediately by writing § = ear. O

Now by letting R — oo in (3.11), we infer from Lemmas 2.5, 3.1 and 3.2 that @'/ (z, §) =
F(1,8) — G™(1, &) — P"(1, &) solves

J@I + @1 = 0 (@1, F") + 0F(G", @) + E"(1,6), (3.24)
D7(0,8) = fo€) = go(&) — P™(0, ). (3.25)

Here E"(t, &) satisfies (3.15). By Lemmas 2.5, 3.1 and 3.2, @'/ (¢, §), 1:"”(t &), Gn(t )
and E"(z, &) are continuous functlons of (t £) € Rt x R3 and satisfy (3.24) in the sense
of distributions. Since <I>” (t, &), En (t, &), Gn (t,&), and E" (¢, &) are uniformly bounded,
SO 1S ¢ <D” (t, &), so that CD” (t, &) is globally Lipschitz continuous with respect to ¢. Hence
(3.24) holds almost everywhere. Furthermore, by the continuity of ®/(t, £), jad t, &),
Gn (t,&) and E" (2, §), we see that 9, D[ (¢, &) is a continuous function of (¢, &) € Rt xR3
and consequently & (¢, &) satisfies (3.24) everywhere.

The next lemma gives an upper bound on [|®7 (¢, -) | p2+s for § € (0, a]N(0, €Ay /An).

Lemma 3.3. If | ®](0, -)[lp2+s < cowith$ € (0,a] N (0, aAy/Ay), then
1 (2, )l pass S e 0 (3.26)
Here g = min{B,, A, — 0\, /a} with

B, = - Bn(ﬁ)(l_
on Jo2 "\ IE

0 2448

cos —
2

.0
sin —
2

2+ .
)do, cosd = ——=.  (3.27)
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Proof. The proofis divided into two steps. The first step is to show that ®% (¢, £)/|& Ranis
L% (R?). Indeed, for ¥ > 0, from (3.24) we have

( U1, £) >+ U1, £)
E2EP +0) /), 1E1PQER + k)
1 o-£ QU ET)  ETIPUET 4+ k) 4 _
B, (1,
- ( ] >[|s+|2(|s+|8+x> BRI
DUt ET) |§‘|2(|§‘|3+K)} ot E"(t,£)
lE-121E 15 + &) EI2(EI° + ) 1121617 +x)

On the other hand, by letting R — oo in (3.7), we see from Lemma 3.1 that for ¢ > 0,

+ G (1, &) (3.28)

IE" () = G" (. )llp2 < 11/oC) = &o()llpz < 1. (3.29)
This together with the definition of pn (¢, &) implies that

(1, §)

_ LOOR3, 0,
BRI a

for any x > 0. Hence, by (3.28), Lemma 3.2 and the fact that lEE] < |&], |I:"”(t, &) <1,
|G" (¢, £)| < 1, we can deduce by using the Gronwall inequality that there exists a positive
constant C(T) > 0 independent of «, n and & such that

up BIEAGL C(T) (3.30)
ozeers [EIPUEL +1) —

for0 <t < T.Here T > 0is any given positive constant.
Since the positive constant C(T) > 0 in (3.30) is independent of «, we see from
(3.30) by letting x — 0 that

[P (2, )

C(T), 0<t<T. 3.31
ogsers 1§ =¢m =0= 331
Set
o (1,
DU, E) = |é|(2+§)' (3.32)

From (3.24) and the fact that |E¥|* = |§|2:|:2$.g\g\ = IEIZ(HZCCOSG) we can deduce that

2+48
COS —

2
0 2+5:| o + En(l‘, %—)

sin — W

3z<D§+<D" = _Lf Bn<$.—a> |:Cl>g(t,é+)ﬁ"(t,§_)
s2 €]

On

+G"(t, ENYDE(,E7) (3.33)

2
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A direct consequence of (3.33) is
18 @3 + 5| < (1 = B[ P51, )l + O(De A=kl (3.34)
Since 0 < B, < 1, we can apply the argument used in [9] to obtain
|®5(t, §)] < O(D)e™ ™, (3.35)

so that (3.26) follows. ]

We now turn to the proof of Theorem 1.1. Let F, (¢, v) and G, (¢, v) be the unique so-
lutions of the Cauchy problem (3.2)—(3.3) with initial data fy(v) and go(v) respectively.
Then

Fut,0) = Fu@nt, v),  gn(t,v) = Gp(Gnt, v) (3.36)
solve
_ _ o (v—1y) ’ ’
O fo+Tnfn = /ng”(—Iv —— )fn(v ) fn(v) dvy do, (3.37)
n(0,v) = fo(v),
and
_ o - (V—vy) / /
B +Tngn = /Szg”(m>g"(v Jon(n)dvedo, (338
8n(0,v) = go(v),
respectively.

The estimate (3.26) in Lemma 3.3 gives
IEa(t, ) — Gu(t, ) — P(1, )l pass < O(1)e™ 0" (3.39)

Putting (3.36) and (3.39) together yields

I fu(t, ) = &n(t, ) — P"@nt, ) pass < O(1)e 7", (3.40)
Noticing that
lim 0,A, = A, lim o,B, = B, lim 0,1, = Aq,
n— 00 n—oo n—oo
we have
lim & ,nq = no, lim P"(c,t,&) = P(t,§&). (3.41)
n—oo n—oo

On the other hand, it is shown in [7, 11] that ( f, (¢, £), 8.(, &)) — (f(t, &), 8(t, £))
as n — 0o, locally uniformly with respect to (1, £) € Rt x R3. By (3.40), we deduce
from (3.41) that

£, ) =&, ) = P(t, )paes S O(1)e ™", (3.42)

This is exactly (1.16), and thus the proof of Theorem 1.1 is complete.
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4. Proof of Theorem 1.2

To prove Theorem 1.2, compared with Theorem 1.1, we only need to obtain a uniform
H" (R3)-estimate (1.18) on f(z, v), and the key point is to deduce the following coerciv-
ity estimate.

Lemma 4.1. There exists a sufficiently large positive constant t| > 0 such that if |&| > 2
then
§-0

/ B(IS_|>(1 —ft. ) do = kePrel g 4.1
S2

for any t > t| and some positive constant k > 0 which depends only on t.

Proof. Noticing that
Uy x(8) € KXR?), Wy () e LYRY) N HX[R?), / Wy x(v)dv =1,
R3

we know from [12, Theorem 1.1] that Wy x (v) € PER3) forl < B < a < 2, and
consequently [1, Lemma 3] shows that there exists a positive constant k1 > 0 independent
of t and & such that

1 — [Wy k(8)] = iy min{1, |£]%).
Hence,

L= [y g (e"'E)] > kymin(l, [e"'&[*),  V(1,§) e RT xR’ 4.2)
On the other hand, from the D2+‘S-stability estimate in Theorem 1.1 we have

1f (1, €) — Wy k (eP'E)| < O[T 4+ |P(1, 8)|
< k2 (JEPPT0 4 (g [P ! 4.3)

for any (¢, £) € RT x R3 with a constant k» > 0 independent of 7 and &.
A direct consequence of (4.2) and (4.3) is

L= £t &) = (1= Vo g (E)) — | f(t. &) — Vu,k (")
>k min{l, [e* €Y — o (EPT + [E7)e ™™, V(1 §) eRY xR (44)
Thus
1= 1/, &) = max{0, iy min(1, |e"«'€ ]} — i2(1E7F° + €D} (45)

Having (4.5), we now turn to the proof of (4.1). First, note that |£~ 12 = | sin? 6/2).
If we choose #; > 0 so large that

_ K1 K1 _ K1
Kpe?tel — e > 362“‘” + ?ezl“"” — 2kpe” 0N > 362“‘”, vt >1, (4.6)

then for r > 1, || > 2 and 6 so small that

2 b4
S |:0, g,uu—t|§|] C |:O, E), “4.7)
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we have

iy minf1, lehe’ 712} — i (JE7 12T 4 [ P)e !
> kplet ETP — i (JETPT 4 [T P)e !

> (k12! — 2upe 72 > %ezﬂaﬂswz. (4.8)

Thus when t > t1, |€| > 2 and 6 satisfies (4.7), one can deduce from the assumption (1.4)
and the estimates (4.5), (4.6) and (4.8) that

/3(5 )(1—If(té ) do
s\ I§]
2/ (et &)
> 27 / B(cos ) (k1e?«! — 2icre ") |7 % sin 6 dO
0

2/(eta’ ) 0
> 7 (kje?teh)|g? B(cos 0) sin® = sin O d
0 2

5er el 2/ g
a |s|2/ B(cos0)63 do
s 0

|S|2S-

v

boK1e2““’ |§|2 /2/(eltat§) 01-25 gp — 21—2sb0K162suat
T (1 —s)m?

Here we have used the fact that sin6 > 20 /7 for 0 < 6 < 7/2. This completes the proof
of the lemma. O

With Lemma 4.1, we now deduce a uniform estimate on f (¢, v). Let gp(t &) be the Fourier
transform of f(t, v) with respect to v. Forany N e N, let M (§) = M(|E| (1= X(|E| /4))
with M(t) = ¥ and X (¢) defined as in Theorem 1.1. Multiplying (1.6) by 2M2($)<p(t &)
with ¢ (¢, £) being the complex conjugate of ¢(t, £) gives

d
—( / M@)o, S)Izdé)

/ / ( ) (@t D)ot £7) — (. ) M2 (EVg (1. &)} do d
R3 Js2 t
/ / ( )|M($)¢(f )+ IMEDer, e
R Js? €]
— e ENME D, NI @9 D)) do dé
/ / ( )|M(s><o<r OF — IMED. £HP) do di
N

/Rs /S ( | )f’ (. ET)ME) — MED))@(. EHME) (. 6)} do ds
= Ji— )= 2. “49)
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We estimate J;, J and J3 consecutively as follows. Since supp M(§) C {& € R3 :
|&| > 2}, it follows first from Lemma 4.1 that

I S — st /R EPIM@E 0, ©P de @.10)

because

IME)e(t, &)1F + IMED @, £D)1* = 20%{ot, EMED e, ENME)e(t, )}
> (1= lp(t, EHN(IME)(t, &)1* + IMED e, 1))
> (1 — lp(t, EDDIME)p(t, ).

For J,, if we use the change of variable & — £ for the term M (E1)p(t, £T), the
cancelation lemma [1, Lemma 1] implies that

|J2| =27

/2
f |M(§)<p(l,§)|2(/ B(cos ) sin9(1—cos3(9/2))d9> dé‘
R3 0

S [ M@ oF de. @i

For J3, note that

n= [ L8557 e e 2dte ~ e i - xaet )
x (1, EHM@9 T B)) do dt
+ [ [ B(55T e ef@ccast B - xaersa)
w o\l

x o(t, ENHME)p(t, §)} do d
= 131 + 132.

We estimate 131 and J32 separately.
For J3, since [§%]> = |£|*cos?(6/2) ~ [€|* for 6 € [0,7/2] and |§* — [EF|* =
€12 sin?(6/2), we have

|M@E) — MED)| < sin®(0/2MET),
and consequently
/2
FARS /R . ( /O B(cos ) sin 6 sin*(6/2) d9)|M<s)¢(t,s>| AME D, £ dE
S/RJM@wa,é)Fds. 4.12)

Here we have used the fact that | (¢, £7)| < 1.
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For J32, since

&P + (1 — n)l$+l2> €17 — |6+
4 4

X(E17/4) — X(|ET17/4) = X/(

2 in2 2 _ +12
_ Il sn;(e/z)x/(ma +<14 mIE > -
and
IET1? < &1 < 216713, supp{X'(I&1*/4)) C { e RP 14 < |&]* < 8},
we obtain

supp{M (£)(X (I€]*/4) — X (|ET12/4)} C (€ e R? 14 < [£]> < 16).

Hence, there exists a constant Cy > 0 depending on N such that

/2
2] < 4N / ( / B(cow)sinesin2<e/2)d9)|¢<t,s>| (. £)| de
|£]<4 \JO
<Cy (4.13)

because |¢(¢, £)| < 1. Now (4.12) together with (4.13) shows that there exists a C; > 0
such that

|J3] < C /R 11| M (&)g(t, £)1*dE + Cy . (4.14)

Inserting (4.10), (4.11) and (4.14) into (4.9), we have, for another C}, > 0,

d
d—(/ |M(éz>¢<r,s>|2ds)+ / IM(&)p(t, &)|*dE < Cy,
t \JR3 R3

which gives
fR3 M@, 6 dé 5e*<’*“>/Ra M@, O ds +Cy, 120, (415

Noting |¢(§)| < 1 again, by means of (4.15) we see that for any N € N there exists a
C(t1, N) > 0 such that

sup | f@llgy <C(f1,N) <oo, VN eN.

telty,00)
This and (1.20) give

sup 1 f(t,-) = fa.x(t, gy < C(t1,N) <00, VNeN,t>1. (4.16)

te(ty,00)
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Moreover, for any € € (0, 2) we have

| f(t,8) — g,k (e"'8)
SIf . 8) — Vg k(eM'e) — P(1,6)* + |P(t, )
S e (EPHPE £ (1, 8) — W g (ee'E) — P(1,6)|€ + [P (1, )
SLe™EPP P f (1, £) — Wa k (eME)[
+IEITX @) (IE1PCOX (§) e GmOmImeAl 724X (£)(27€))
S e £t £) — Wa k (eME)|
e 2 (|E|FFICTOX ()¢ + |E11X (8)%). @.17)

(4.16) and (4.17) yield

1F () = farx @) 5w
= /%3(1 +IEDNIF . &) — Do k() dE

S e fRsﬂ +1EPYVIEICHCO F 1, £) — By g (eHe'E)[€ dE

e [ (P + XTI dg S GO @)

Here we have used the fact that

/R I+ 15N |E1@HICO| f(r, 8) — Py g (eM'E)|¢ dE

UNE2—6)  20248)2—€) A A €/2
< (/Rga HIED T T 1 @) - %,K(e“a’snzds)
(2-e)/2
< ([Lavien2a)
R3
<C(,N), t=n.
Note that (4.18) is exactly (1.19).
To complete the proof of Theorem 1.2 and of the remarks following it, we have only

to deduce the L! (R3)-convergence result (1.22). For this purpose, we deduce from [12]
that forany | < 8 <« <2,

/ I (2, v)dv < e, (4.19)
R3

thusfor 1/p+1/qg =1 (p,q > 1) we get
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/ £t 0) = e e (e el v) | do
]R3

< / [(1+ )b £, v) — e Hal W, g (e Halv)[]/P
R3

x (14 ) TYPIf(t,v) — e 3 W, g (e Ml v)|]4 dv

1/p
< (/3(1 + WD f (@, v) — e, g (e )| dv>
R‘

—1/(2q)
x ( f (4 lu])~24¢/p dv) I£(r, v) — e73Hal Wy, g (e Halv)|| /e
R.

_ g, 1/p
<e Tu (/ (1 + WD f (1, v) — e 3l Wy, g (e Halp)] dv) (4.20)
R3
provided that
2q¢/p > 3. 4.21)
Since y
P
( / I+ |v|)‘fe—3ﬂa’xpa,,<(e—ﬂa’v)du) < ethallp (4.22)
R;

and by choosing g = ¢p; € (1,a), 1/p1 + 1/q1 = 1 (p1,q1 > 1), (4.19) and Holder’s
inequality imply that

1/p 1/p
(La+mtrema) = ([ a+miraormiseotna)
R? R
1/(pp1)
< (/ A+ b7 ra, v)dv)
R3
< et/ (pp1) efllﬂf/l” (4.23)

we conclude from (4.22) and (4.23) that

( /R (4 WA £ (2, v) — el Wy g (e Hel)| dv)l/p < emaxlbupt/pbial [P} (4.24)

Putting (4.20) and (4.24) together implies
/R3 |f(t,v) — e*SMaqua’K(e*Matv” dv < eMax{lupt/p.Luat/p}—C2no—€)t/(2q) (4.25)
Thus if the assumption (1.21) is true, so we can choose § sufficiently close to « such that
3pp < 2o, (4.26)

we can also choose ¢ and p, g > 1 such that

Lua/p <mo/q, ‘Lug/p <mno/q, 2q¢/p >3,

4.27)
L <tp1r=Be(l,a), 1/p+1/g=1, p1>1.
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Consequently,
max{€ug/p, tia/P} < N0/q, (4.28)
and (4.25) implies the exponential decay of fR3 | f(t,v) — e‘3“a’\Da,K(e_““’v)| dv.
Moreover, since we can choose f < « sufficiently close to @, p; > 1 close to 1,
and £ < B < « close to o, we can deduce from the above analysis that there exists a
sufficiently small positive constant € > 0 such that

/ |f(t,v) — e Wy g (e Halv)| dv S e~ 0/4—al PO (4.29)
R3

Here p, g > 1 satisfy

I/p+1/g=1, q/p>3/Qu). (4.30)

(4.29) is exactly the estimate (1.22), and thus the proof of Theorem 1.2, and of the remarks
that follow it, is complete.

5. Proof of Corollary 1.1

First of all, note that Theorems 1.1 and 1.2 hold for @ = 2. The purpose of Corollary 1.1
is to have a better convergence rate in the case of finite energy.

In fact, compared with Theorems 1.1 and 1.2, the main difference is that now the
initial data fo(v) is of finite energy and consequently the corresponding global solution
F, (2, v) of the Cauchy problem (3.2)—(3.3) with Hy(v) = fog(v) also has finite energy,
ie.

/ WPER( v) dv = / W for () dv < 1+ / WP Ao dv < oo, (5.1)
R3 R3 R3
With the use of (5.1), it is straightforward to show that

|Fat,8) — 1] < O(IEP, @) — 1] < O(DIEP. (5.2)

Consequently, the term /7 in (3.17) can be estimated by

4 —Anpt +
| < OM§"e™ ™", |§] =1, 1 €RT, (5.3)
O(lye 4!, £l =1, 1 eRT.

Here, G, (¢, v) = u(v).
Having (5.3), the proof of Corollary 1.1 is the same as the ones of Theorems 1.1
and 1.2. Therefore, we omit the details.
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