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Abstract. We prove that the existential theory of any function field K of characteristic p > 0 is
undecidable in the language of rings augmented by constant symbols for the elements of a suitable
recursive subfield, provided that the constant field does not contain the algebraic closure of a finite
field. This theorem is the natural generalization of a theorem of Kim and Roush from 1992. We
also extend our previous undecidability proof for function fields of higher transcendence degree to
characteristic 2 and show that the first-order theory of any function field of positive characteristic
is undecidable in the language of rings without parameters.
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1. Introduction

Hilbert’s Tenth Problem in its original form was to find an algorithm to decide, given
a polynomial equation f (x1, . . . , xn) = 0 with coefficients in the ring Z of integers,
whether it has a solution with x1, . . . , xn ∈ Z. Matiyasevich [Mat70], building on earlier
work by Davis, Putnam, and Robinson [DPR61], proved that no such algorithm exists,
i.e. Hilbert’s Tenth Problem is undecidable.

Since then, analogues of this problem have been studied by asking the same question
for polynomial equations with coefficients and solutions in other recursive commutative
rings. A recursive ring is a countable ring equipped with a bijection onto a recursive
subset S of natural numbers such that the graphs of addition and multiplication correspond
to recursive subsets of S3. Perhaps the most important unsolved question in this area is
Hilbert’s Tenth Problem over the field of rational numbers which, at the moment, seems
out of reach.

The function field analogue of Hilbert’s Tenth Problem in positive characteristic
turned out to be much more tractable. Hilbert’s Tenth Problem is known to be undecidable
for the function fieldK of a curve over a finite field [Phe91, Vid94, Shl96, Eis03]. We also
have undecidability of Hilbert’s Tenth Problem for certain function fields over possibly
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infinite constant fields of positive characteristic [Shl00, Shl03, Eis03, KR92]. The results
of [Eis03] and [Shl00] also generalize to higher transcendence degree (see [Shl02] and
[Shl03]) and give undecidability of Hilbert’s Tenth Problem for finite and some infinite
extensions of Fq(t1, . . . , tn) with n ≥ 2. In [Eis12] the problem was shown to be unde-
cidable for finite extensions of k(t1, . . . , tn) with n ≥ 2 and k algebraically closed of odd
characteristic. So all known undecidability results for Hilbert’s Tenth Problem in positive
characteristic either require that the constant field not be algebraically closed or that we
deal with a function field in at least two variables.

Given our theorems below, the only big question that remains for function fields of
positive characteristic is whether Hilbert’s Tenth Problem for a one-variable function field
over an algebraically closed field of constants is undecidable. Our two theorems below
will shrink the window of the “unknown” almost precisely to this question. Our results
enable us to finally give a complete generalization of the theorem by Kim and Roush
from 1992 that Hilbert’s Tenth Problem is undecidable for rational function fields F(t)
when F is a proper subfield of the algebraic closure of Fp (p > 2). Below we separate
the recursive and uncountable or non-recursive countable cases. Before proceeding we
should also note that any function field over a recursive field of constants is recursive.

Theorem 1.1. IfK is any recursive function field of positive characteristic not containing
the algebraic closure of a finite field, then Hilbert’s Tenth Problem is not solvable overK
(under any recursive presentation of the field).

Theorem 1.2. If K is any function field of positive characteristic not containing the al-
gebraic closure of a finite field, then there exists a recursive finitely generated subfield
Kf ⊆ K such that there is no algorithm to determine whether a polynomial equation
with coefficients in Kf has solutions in K . (We can take Kf to be a finite extension of
a rational field Fp(t), where Fp is a finite field of p elements and t is a non-constant
element of K to be specified later. We assume that we are given a recursive presentation
of Kf .)

In [ES09], the authors proved that the first-order theory of any function field not equal to
a function field of transcendence degree at least 2 and characteristic 2 in the language of
rings without parameters is undecidable. In this paper we prove the result in the missing
case, which yields the following theorem.

Theorem 1.3. The first-order theory of any function field of positive characteristic in the
language of rings without parameters is undecidable.

To explain the idea of the proof we need the notion of a diophantine (or existentially
definable) set. Given a commutative integral domain R and a positive integer k, we say
that a subset A ⊂ Rk is diophantine or existentially definable over R in the language
of rings if there exists a polynomial f (t1, . . . , tk, x1, . . . , xn) with coefficients in R such
that for any k-tuple ā = (a1, . . . , ak) ∈ R

k we have ā ∈ A ⇔ ∃b1, . . . , bn ∈ R :

f (ā, b1, . . . , bn) = 0. Then f (t1, . . . , tk, x1, . . . , xn) is called a diophantine definition
of A over R. In general, if the fraction field of a recursive integral domain is not alge-
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braically closed, a system of polynomial equations can always be effectively replaced
by a single polynomial equation without changing the relation [Shl06, Chapter 1, §2,
Lemma 1.2.3].

The current methods for proving undecidability of Hilbert’s Tenth Problem for func-
tion fields K of positive characteristic p usually require showing that the following sets
are existentially definable in the language of rings (or, equivalently, have a diophantine
definition over K):

P(K) = {(x, xp
s

) : x ∈ K, s ∈ Z≥0},

and for some nontrivial prime p of K ,

INT(K, p) = {x ∈ K : ordp x ≥ 0}.

This approach is due to Pheidas who used it to show that Hilbert’s Tenth Problem for
rational function fields over finite fields of odd characteristic is undecidable [Phe91].

In [ES09] we showed that we can existentially define one of these sets for a large class
of fields: we proved that the set P(K) of p-th powers is existentially definable in any
function field K of characteristic p > 2 whose constant field has transcendence degree at
least 1 over Fp. In [PPV14] a uniform definition of p-th powers was given for arbitrary
function fields with the characteristic “large enough” compared to the genus of the field.
In this paper, we show that the set P(K) is existentially definable in any function field K
of positive characteristic. In particular, we are finally able to remove the assumption in
[Shl00] and [Eis03] that the algebraic closure of Fp in K should have an extension of
degree p. So it took more than twenty years to achieve the complete generalization of the
pioneering lemma of Pheidas.

The most difficult part of our argument is defining ps-th powers of a special element t .
In [Shl00, Eis03] we needed to assume that we had suitable extensions of degree p of the
constant field to conclude that a certain set of equations over K , which was satisfied by
an element x ∈ K , actually forced x to be in the rational function field CK(t) ([Shl00,
Lemma 2.6] and [Eis03, Lemma 3.5]). Here CK denotes the constant field of K . This
argument does not work in our setting because our constant field can be algebraically
closed. Perhaps the most important new technical part is contained in Lemma 5.7, which
is the key new argument in Section 5.1 that allows us to define ps-th powers of t in
arbitrary function fields of positive characteristic.

The second set that is required to be existentially definable to prove the undecidability
of Hilbert’s Tenth Problem is the set INT(K, p) defined above. In [Shl00] the second
author showed that INT(K, p) was existentially definable for some non-trivial prime p
of K over any function field whose constant field was algebraic over a finite field and not
algebraically closed, and some higher transcendence degree constant fields not containing
the algebraic closure of a finite field. In fact, to show the diophantine undecidability of
a function field K of positive characteristic, it is enough to give an existential definition
of P(K) and of a set which we call INT(K, p, t). Here t is a non-constant element of K
with ordp t = 1. The set INT(K, p, t) will contain only elements x ∈ K with ordp x ≥ 0.
At the same time, if x ∈ k0(t), where k0 is the algebraic closure of a finite field in K , and
ordp x ≥ 0, then x will be in INT(K, p, t).
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The structure of the remainder of the paper is as follows. In Section 2 we explain
how to derive the existential undecidability of a function fieldK of positive characteristic
from existential definitions of P(K) and INT(K, p, t) for some non-trivial prime p of K
and a non-constant element t ∈ K . In Section 3 we discuss some general properties of
diophantine definitions. In Section 4 we discuss some properties of function fields of
positive characteristic we will need to define P(K). In Section 5 we give an existential
definition of P(K), and in Section 6 we give an existential definition of INT(K, p, t).
Finally, in Section 7 we use the existential definition of P(K) to obtain the first-order
results in Theorem 1.3.

2. From p-th powers and integrality at a prime to diophantine undecidability

In this section we show that existential definitions of p-th powers and (almost-)integrality
are enough to prove that Hilbert’s Tenth Problem is undecidable. This strategy was first
used by Pheidas [Phe91]. We start by defining a relation on positive integers.

Definition 2.1. For m, n ∈ Z>0 and p a rational prime number, write n |p m to mean
m = nps for some s ∈ Z≥0.

In [Phe87] Thanases Pheidas proved that the existential theory of (Z>0, 1,+, |p,=) is
undecidable by showing that multiplication of positive integers is definable using “+” and
“|p”. That means there is no uniform algorithm that, given a system of equations over
the positive natural numbers with addition and |p, determines whether this system has
a solution or not. (Here by “uniform” we mean “not dependent on the given system”.)
When P(K) and INT(K, p, t) are existentially definable, we can reduce this problem to
Hilbert’s Tenth Problem over K and prove that the latter must be undecidable.

To do this we define a map f from the positive integers to subsets ofK by associating
to an integer n the subset f (n) = {x ∈ INT(K, p, t) : ordp x = n}. Then the equation
n3 = n1 + n2 (ni ∈ Z>0) is equivalent to the existence of elements zi ∈ f (ni) with
z3 = z1 · z2.

To ensure that we are only constructing equations overK with zi elements of positive
order (to obtain elements in Z>0 under the map K \ {0} → Z that maps zi to ordp(zi)),
we add the condition that ordp(zi/t) ∈ INT(K, p, t).

We also note that for positive integers n,m,

n |p m ⇔ ∃s ∈ N : m = psn
⇔ ∃x ∈ f (n) ∃y ∈ f (m) ∃s ∈ N : ordp y = ps ordp x.

This equivalence can be seen by letting x = tn and y = tm.
But the last formula is equivalent to

∃x ∈ f (n) ∃y ∈ f (m) ∃w ∈ K ∃s ∈ N : w = xp
s

and {w/y, y/w} ⊂ INT(K, p, t).

Saying that both w/y and y/w are in INT(K, p, t) simply means that they have the
same order at p.

We have now proved the following proposition.
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Proposition 2.2. If K is a function field of positive characteristic p over a field of con-
stants k, p is a non-trivial discrete valuation (or prime) of K , t ∈ K \ k has order 1
at p, and P(K) and INT(K, p, t) are existentially definable overK , then for some finitely
generated subfield K0 of K , there is no algorithm to determine whether an arbitrary
polynomial equation in several variables and with coefficients in K0 has solutions in K .

3. Rewriting equations over finite extensions

In constructing diophantine definitions it is often convenient to work over a finite ex-
tension of the given field, sometimes in fixed extensions and sometimes in extensions of
bounded degree. The theorem below and its corollaries allow us to do this. It is essentially
[Shl06, Lemma B.7.5 in the Number Theory Appendix] or [Shl00, Lemma 1.3].

Theorem 3.1. Let K be a field, let K̃ be the algebraic closure of K , and let

g(X, T1, . . . , Tn), f (T1, . . . , Tn, X1, . . . , Xn2 , Y1, . . . , Yn3)

be polynomials with coefficients inK . Assume that the degree of g inX is positive and the
same for all values of T1, . . . , Tn. (In other words, the leading coefficient of g as a poly-
nomial in X over the algebraic closure of Fp(T1, . . . , Tn) is never zero for any choice of
T1, . . . , Tn ∈ K , and the degree of g in X is positive.) Let A ⊂ Kn be defined as follows:
(t1, . . . , tn) ∈ A if and only if there exist x1, . . . , xn2 ∈ K , x ∈ K̃ , y1, . . . , yn3 ∈ K(x)

such that

g(x, t1, . . . , tn) = 0 ∧ f (t1, . . . , tn, x1, . . . , xn2 , y1, . . . , yn3) = 0.

Then A has a diophantine definition over K . Further, there is a diophantine definition
of A with coefficients depending only on the coefficients and degrees of g and f , and it
can be constructed effectively from those coefficients.

The most often used versions of the theorem above are the following corollaries (though
we will also need the theorem itself).

Corollary 3.2. Let K be a field, let G be a finite extension of K , let f (T1, . . . , Tl,

X1, . . . , Xn2 , Y1, . . . , Yn3) be a polynomial with coefficients in K , and let A ⊂ K l be de-
fined in the following manner: (t1, . . . , tl) ∈ A if and only if there exist x1, . . . , xn2 ∈ K ,
y1, . . . , yn3 ∈ G such that

f (t1, . . . , tl, x1, . . . , xn2 , y1, . . . , yn3) = 0.

Then A has a diophantine definition over K .

Corollary 3.3. Let G/K be a finite extension of fields and assume Hilbert’s Tenth Prob-
lem is unsolvable over G (if G is uncountable or not recursive, then assume we are
considering equations with coefficients in a finitely generated recursive subfield of G). In
this case Hilbert’s Tenth Problem is unsolvable over K (as above, if K is uncountable,
then assume we are considering equations with coefficients in a finitely generated subfield
of K).
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4. Technical preliminaries

Notation and Assumptions 4.1. In this section we go over or prove several facts we
need to construct our existential definition of p-th powers. We will initially work under
the assumption that the constant field is algebraically closed. This assumption will be
removed later. Below we use the following notation and assumptions.

(1) By a function field (in one variable) over a field k we mean a field K containing
k and an element x, transcendental over k, such that K/k(x) is a finite algebraic
extension. The algebraic closure of k in K is called the constant field of K , and it is
a finite extension of k.

(2) Let M be a function field of genus g > 0 over an algebraically closed field F of
constants of characteristic p > 0.

(3) Let q = p, if p > 2, and q = p2 if p = 2.
(4) Let t ∈ M be such that it is not a p-th power. (Since the constant field is perfect,

this assumption implies M/F(t) is separable.)
(5) A prime of M is a discrete F -valuation of M .
(6) The degree of a prime is the degree of its residue field over the field of constants.

Under our assumption that the constant field is algebraically closed, the degree is
always 1.

(7) A divisor is an element of the free abelian group on the set of primes of M . We will
denote the group law multiplicatively.

(8) If I is an integral (or effective) divisor, we will denote by deg I the degree of I, i.e.
the number of primes in the product (counting multiplicity).

(9) If I is an integral divisor and p is a prime, then ordp I is the multiplicity of p in the
product.

(10) If I1 and I2 are integral divisors, we write I1 | I2 (I1 divides I2) to mean that for
all primes p of K we have ordp I1 ≤ ordp I2. Similarly for any prime p of M we
write p | I1 (p divides I1) to mean ordp I1 > 0.

(11) Given an M-prime p, let Rp be the valuation ring of p (i.e. the set of all elements
of M assigned a non-negative value by the valuation). We will also let p denote the
prime ideal of Rp. (The valuation ring is a local ring.) Now for any x ∈ Rp, there
exists n ∈ Z≥0 such that x ∈ pn and x 6∈ pn+1. We define ordp x to be n. If y 6∈ Rp,
then y−1

∈ Rp and we set ordp y = − ordp y−1.
(12) For x ∈ M , let n(x) =

∏
q, ordq x>0 q

ordq x denote the zero divisor of x and let

d(x) = n(x−1) be the pole divisor of x. Let (x) = n(x)
d(x) be the divisor of x. Let

H(x) denote the height of x, i.e. H(x) = deg d(x) = deg n(x).
(13) Since the extension M over F(t) is separable, we can define a global derivation

with respect to t . Over F(t), we use the usual definition of the derivative, and we
use implicit differentiation to extend a derivation to the extension (see [Mas96, p. 9
and p. 94]). Given an element x ofM , its derivative with respect to t will be denoted
in the usual fashion as x′ or dx

dt
. Observe that usual differentiation rules apply to the

global derivation with respect to t . In particular, dx
p

dt
= 0.
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(14) For any prime p of M , we can also define a local derivation with respect to the
prime p. More specifically, if π is any local uniformizing parameter with respect
to p (any element ofM which has order 1 at p) in the p-adic completion ofM , every
element x of the field can be written as an infinite power series

∞∑
i=m

aiπ
i

with m ∈ Z and ai ∈ F . Given this representation, we denote

∂x

∂p
=

∞∑
i=m

iaiπ
i−1

(see [Mas96, p. 9 and p. 96]). Observe that ordp ∂x
∂p is independent of the choice of

the local uniformizing parameter.
(15) For all primes p of M , let

dt (p) = ordp
∂t

∂p
.

(16) If U = A
B , where A and B are integral divisors, then we will write

L(U) = {f ∈ M : ordp f ≥ ordp A− ordpB for all primes p of M} ∪ {0},

which is a vector space over F , and `(U) for the dimension of L(U) over F .

The following lemma gathers some general formulae we need in this section.

Lemma 4.2. (1) Let E be a finite degree subfield of a function fieldK . Let P be a prime
of E and let p1, . . . , pn be the primes in K above P. Let e(pi/P) be the ramification
index of pi over P. Let f (pi/P) be the relative degree of pi over P (the degree of
the extension of the residue field). Then

[K : E] =

n∑
i=1

e(pi/P)f (pi/P).

If the field of constants of E is algebraically closed, the relative degrees will always
be equal to 1.

(2) (Riemann–Roch) Let U = A
B be a ratio of integral divisors of K such that degB−

degA = d ∈ Z.

(a) If g = 0 and d ≥ 0 then `(U) = d + 1.
(b) If g > 0 and 0 < d ≤ 2g − 2 then `(U) ≥ d − g + 1.
(c) If g > 0 and d > 2g − 2 then `(U) = d − g + 1.

Proof. For (1) see [FJ05, Proposition 2.3.2, Theorem 3.6.1]. For (2) see [Koc00, Theo-
rem 5.6.2]. ut

Below is the first application of the Riemann–Roch Theorem we need.
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Lemma 4.3. If t is a prime of M , and A and B are integral relatively prime divisors
of M , both also relatively prime to t, then there exists y ∈ M such that d(y) = t2g+1+degA

and n(y) = AC, where C is an integral divisor relatively prime to A and B. Further,
degC = 2g + 1.

Proof. Let U = A
t2g+1+degA and note that by Lemma 4.2(2),

`(U) = g + 2 > 0.

Further, let U1 =
A

t2g+degA and observe that `(U1) = g + 1 while L(U1) ⊂ L(U). Finally,
let A be the set of all primes r of M such that either ordr A 6= 0 or ordrB 6= 0, and
let |A| = m. Set Ui+1 =

Ari
tdegA+2g+1 , where ri is the i-th element of A under some

enumeration. Observe that by Lemma 4.2(2) again `(Ui+1) = g + 1 for i = 1, . . . , m,
while L(Ui+1) ⊂ L(U). (We remind the reader that since the constant field of M is
algebraically closed, all the primes are of degree 1.) Now consider

y ∈ L(U) \
m+1⋃
j=1

L(Uj ).

Such a y exists because a vector space over an infinite field is not the union of finitely
many proper subspaces. By construction, d(y) = t2g+1+degA and n(y) = AC, where C is
relatively prime to ABt. Finally,

degC = deg d(y)− degA = 2g + 1+ degA− degA = 2g + 1. ut

We now specialize the lemma above to a particular divisor.

Corollary 4.4. Let t be a prime of M . Suppose w ∈ M is an element whose divisor is
of the form XAq

YBq , where X,Y,A,B are pairwise relatively prime integral divisors and
degY ≥ degX. Assume further that t is a factor of Y. Let C be a positive constant such

that degY < C. Then w = ξ z
q

1
z
q

2
, where t is the only pole of z1 and z2, ξ does not have a

zero or a pole at any prime occurring in A or B, and H(ξ) < (q + 1)(C + g + 1).

Proof. First of all observe that 0 ≤ degY − degX = q degA − q degB < C. Further,
by Lemma 4.3, there exist z1, z2 ∈ M with divisors AC

tdegA+2g+1 , BD
tdegB+2g+1 , respectively,

such that A,B,C,D,X,Y are pairwise relatively prime and

degC = degD = 2g + 1.

Let ξ = w z
q

2
z
q

1
. Then

(ξ) =
XAq

YBq

BqDq

tq(degB+2g+1)
tq(degA+2g+1)

AqCq
=

X

Y

Dq tq(degA−degB)

Cq
,

and therefore

H(ξ) ≤ degX+ q degD+ q degA− q degB ≤ C + q(g + 1)+ qC
< (q + 1)(C + g + 1). ut
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The next two lemmas deal with the relationship between the derivatives (global and local)
and order at a prime.

Lemma 4.5. Let x ∈ M and t be a prime of M . We have

(1) ordt ∂x∂t ≥ ordt x − 1; and
(2) if ordt x ≥ 0, then ordt ∂x∂t ≥ 0.

Proof. See [Mas96, p. 9]. ut

Lemma 4.6. Let x ∈ M and let p be a prime of M .

(1) If ordp x ≥ 0, then ordp x′ ≥ max(0, ordp x − 1)− dt (p).
(2) If ordp x < 0, then ordp x′ ≥ ordp x − 1− dt (p).

Proof. By [Mas96, p. 96], for any prime p we have

∂x

∂p
=
dx

dt

∂t

∂p
. (4.1)

Hence if ordp(x) ≥ 0, then

ordp x′ = ordp
dx

dt
= ordp

∂x

∂p
− ordp

∂t

∂p
≥ max(0, ordp x − 1)− dt (p).

If ordp x < 0, then

ordp x′ = ordp
dx

dt
= ordp

∂x

∂p
− ordp

∂t

∂p
≥ ordp x − 1− dt (p)

by Lemma 4.5. ut

Lemma 4.7. For any z ∈ M \Mp there are at most 2g − 2+ 2H(z) primes t of M such
that dz(t) > 0, and for all M-primes t we have dz(t) ≤ 2g − 2+ 2H(z).

Proof. By [Mas96, equation (5) p. 10], we have∑
t

dz(t) =
∑
t

ordt
∂z

∂t
= 2g − 2,

since z has non-zero global derivative. By Lemma 4.5, if ordt(∂z/∂t)<0, then ordt z<0.
Thus, ∑

ordt(∂z/∂t)<0

|ordt(∂z/∂t)| ≤
∑

ordt z<0

(|ordt z| + 1) ≤ 2H(z).

Further,∑
ordt(∂z/∂t)>0

ordt(∂z/∂t) = 2g − 2+
∑

ordt(∂z/∂t)<0

|ordt(∂z/∂t)| ≤ 2g − 2+ 2H(z). ut

The last technical lemma of this section deals with the case of dt (t) = 0.
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Lemma 4.8. If t is a prime of M unramified over F(t), and t is not a pole of t , then
dt (t) = 0.

Proof. If t is unramified over F(t) and not a pole of t , then ordt(t − c) = 1 for some
c ∈ F . To see this, let T be the prime below t in F(t). Since the constant field is alge-
braically closed, all the primes of F(t) are of degree 1, that is, the residue field of every
prime is isomorphic to the constant field, and every element of the valuation ring of the
prime is equivalent to a constant modulo the prime. If t is not a pole of t , then T is not
either, and therefore t is an element of the valuation ring of T. Further, in the valuation
ring of T we have t ≡ c mod T. Thus, ordT(t − c) > 0. At the same time, in F(t), the
height of t is 1, and therefore ordT(t − c) = 1. Now ordt(t − c) = e(t/T) ordT(t − c),
where e(t/T) is the ramification degree of t over T. By assumption, t is unramified over T,
i.e. this degree is 1, and hence ordt(t − c) = ordT(t − c) = 1.

Consequently, if we set t − c = π , a t-adic expansion of t is of the form c + π , and
the derivative of that expression with respect to π is 1, implying ordt(∂t/∂t) = 0. ut

From this lemma we derive a corollary which will help us construct p-th powers. It fol-
lows directly from Lemmas 4.6 and 4.8

Corollary 4.9. If t is a prime of M which is unramified over F(t), and t is not a pole
of t , then for any x which is integral at t we have ordt(dx/dt) ≥ max(0, ordt x − 1).

5. Defining p-th powers

In this section we construct an existential definition of the set P(K) of ps-th powers. We
start under the assumption that the field of constants is algebraically closed and remove
this assumption later in Subsection 5.5. As for any construction of a diophantine defini-
tion, the construction of the set of ps-th powers has two main parts: one part consists in
showing that the given equations have at most ps-th powers as their solutions. For the
second part we have to show that elements of P(K) are in fact solutions. As it turns out,
the second part is trivial in our case and we will delay it until the very end in Lemma 5.24.
The bulk of the section below will be devoted to showing that the only elements that can
be solutions of our equations are the elements of P(K). We do this in several steps. As
in earlier papers, the first part will be devoted to dealing with ps-th powers of a particular
element, the second part will deal with ps-th powers of elements of the field with simple
zeros and poles, and finally the third part will address the case of arbitrary elements.

5.1. Defining p-th powers of a particular element

The most difficult part of the argument is the first one: defining ps-th powers of a partic-
ular element. We outline this construction before proceeding with the technical details.

We first fix a non-constant element t of M satisfying certain conditions described
below. We let q = p if p > 2 and set q = p2 if p = 2. Next we let z ∈ M be such that the
equations in Lemma 5.7 below are satisfied withw = z+c for a sufficiently large number
of c’s. Here the requisite number depends on the genus g of M and the characteristic p
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only. The equations lead us to conclude that either z has “bounded” height (with the
bound ultimately depending on g and p only), or the divisor of z + c is a q-th power of
another divisor for all c’s. In the first case we use the equations from Proposition 5.9 and
Corollary 5.10 to conclude that z ∈ F(t), and Propositions 5.11 and 5.12 to conclude that
either z is a q-th power of another field element, or z = t .

In the second case we use Lemmas 5.13–5.15 to conclude that z is a q-th power of
another element. Then we use a descent argument to obtain new equations which we re-
examine. Since this descent cannot continue forever, at some point we can conclude that
z was a ps-th power of t for some s ∈ Z>0.

Notation and Assumptions 5.1. We now extend the notation and assumptions from Sec-
tion 4.

(1) Assume that t has no zero or pole which is ramified in the extension M/F(t), or
equivalently, all zeros and poles of t are simple.

(2) Denote the zero divisor of t by P and the pole divisor by Q. (We will also use
the same notation for the primes which are the zero and the pole of t in F(t).) Let
P =

∏
i pi and Q =

∏
i qi be the factorizations of P and Q into distinct prime

divisors of M .
(3) Let E be the set of all primes ramifying in the extension M/F(t) and let e = |E |.
(4) Let MG be the Galois closure of M over F(t). Let k = [M : F(t)]. Let iG =
[MG

: M].
(5) For j = 1, . . . , k, let σj : M → MG be an embedding over F(t).
(6) Let � = {ω1 = 1, . . . , ωk} be a basis of M over F(t).
(7) Let H� = max{HMG(ωi) : i = 1, . . . , k}, where HMG is the height in MG.
(8) Let C = H(t). (In Lemma 5.5 we show that we can always assume that C ≤

max(1, 2g − 1).)
(9) Let C1 = 2g − 2+ 2(q + 1)(C + g + 1).

(10) Let C2 =
2g − 1+ 2(q + 1)(C + g + 1)

q − 1
.

(11) Let C3 = C + qC1C2.
(12) Let C4 = k!k

kH�C3.
(13) Let C5 = C4 + 2e + 2k + 4H(t)+ 2.
(14) Let F0 be the algebraic closure of Fp in F . Let C(F) = {c0, . . . , cC5} ⊂ F0 be a set

of pairwise distinct elements of F0 satisfying the following requirements:

(a) c1 6∈ Fp, and for i > 1, ci ∈ F0 is such that Fp(ci) is linearly disjoint from each
Fp(c1), . . . ,Fp(ci−1) over Fp.

(b) [Fp(ci) : Fp] is relatively prime to p − 1.

Let

Vi = {c
qk

i : k ∈ Z≥0},

let di,j = c
qj

j , and let ri = |Vi |.
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(15) If z ∈ M \ F , let Cz ⊂ C(F) be the set of all c ∈ C(F) such that for any positive
integer s, z− cq

s
does not have a zero at any prime which is a zero or a pole of t , or

at any prime ramified in M/F(t).
(16) For w ∈ M , let V(w) be a set of primes of F(t) satisfying the following require-

ments:

(a) Each prime in V(w) is unramified in the extension M/F(t).
(b) w is integral at all primes of V(w).
(c) The discriminant of {ω1, . . . , ωk} is relatively prime to every A ∈ V(w) so that
{ω1, . . . , ωk} is a local integral basis with respect to every prime in V(w).

(d) The size of V(w) is greater than C4.

Remark 5.2. Observe that since Fp(ci) is linearly disjoint from Fp(cj ) for i 6= j , the
equality cnii = c

nj
j for some positive integers ni and nj implies that both powers are in Fp.

Further, if c, c′ ∈ Vi , then c and c′ are images of ci under some (possibly different) powers
of Frobenius, and therefore if c

c′
∈ Fp, then c = c′. Indeed, since c and c′ are conjugate

over Fp, we have NFp(ci )/Fp
(
c
c′

)
= 1. If c

c′
∈ Fp, then NFp(ci )/Fp

(
c
c′

)
=
(
c
c′

)[Fp(ci ):Fp].
Since ([Fp(ci) : Fp], p− 1) = 1, it follows that c

c′
= 1. Thus, if for some c ∈ Vi we have

cq
r
−qs
∈ Fp, then cq

r
−qs
= 1.

We start with a sequence of preliminary lemmas, some of them coming from earlier papers
and included here for the convenience of the reader.

Lemma 5.3 (essentially [Shl06, Lemma 8.2.10]). For any u,w ∈ M \ F , the set
Cw ∩ Cu contains more than C4 + 2k + 2 elements.

Compared to the lemma in the citation we need more constants, so we start with more
constants, and in our case C4 + 2k replaces n, but otherwise the argument is the same.

The next lemma is an elementary fact concerning valuations, and we state it without
proof.

Lemma 5.4. For any non-constant z ∈ M and any constants c′ 6= c the zeros of z−c′

z−c
are

exactly the zeros of z− c′, and the poles of z−c′

z−c
are exactly the zeros of z− c.

The next lemma provides a bound on the chosen element t in terms of the genus of the
field.

Lemma 5.5. There exists t ∈ M satisfying condition (1) of Notation and Assumptions 5.1
such that

H(t) ≤ max(1, 2g − 1).

Proof. If g = 0, i.e.M is a rational function field, the assertion is clearly true. So suppose
g > 0 and apply Lemma 4.2(2c) with d = 2g − 1 to conclude that there is x ∈ M whose
height is 2g − 1. By an argument similar to the one in Lemma 5.3, for any constant field
large enough (and certainly for an infinite constant field) there exist constants c, c̃ such
that t = x−c

x−c̃
does not have zeros or poles at primes ramifying in the extension M/F(t).

Further, by Lemma 5.4 we have H(t) = H(x − c) = H(x) ≤ max(1, 2g − 1). ut
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Remark 5.6. While for the purposes of our arguments the bound on the height of t is
not important, since in the proofs below we only care about the fact that the height is
fixed, it is useful to know that all the bounds in the paper are determined by the genus
(and of course the characteristic), so the genus can serve as a measure of the diophantine
complexity of the field. Finally, note that k = [M : F(t)] = H(t) and iG ≤ k!, so that all
the constants occurring in the paper can be bounded in terms of the genus.

The lemma below is perhaps the most important new technical part which allowed for the
extension of earlier results.

Lemma 5.7. Suppose w, u, v ∈ M satisfy the following equations: w − t = vq − v,

1
w
−

1
t
= uq − u.

(5.1)

If the divisor of w is not a q-th power of another divisor, then H(w) < C3.

Proof. We assume that the divisor of w is not a q-th power of another divisor in M and
obtain a bound on its height. First of all note that all pole orders of vq−v and uq−u are 0
modulo q. Therefore, if for some prime r we have ordrw 6= 0, then either ordrw = ±1 or
ordrw ≡ 0 mod q. Further, if ordrw = −1, then ordr t = −1 and ordr v ≥ 0. Similarly,
if ordrw = 1, then ordr t = 1 and ordr u ≥ 0. Given our assumption that the divisor
of w is not a q-th power of another divisor, for at least one prime r we have ordrw = 1
(implying that for at least one other prime the order is −1 since the degrees of the zero
divisor and the pole divisor of w must be equal). Thus

(w) =
XAq

YBq
,

where X,Y,A,B are pairwise relatively prime integral divisors, the multiplicity of all
prime factors of X and Y is 1, degX < H(t) = C, and degY < H(t) = C. Note that
neither X nor Y is the trivial divisor. Further, without loss of generality we can assume
that degX ≤ degY; also note that the pole divisor of v is B, and that of u is A. Now as
in Corollary 4.4, using the same notation, set

w = ξ
z
q

1

z
q

2
, where H(ξ) ≤ (q + 1)(C + g + 1),

no prime factor of B occurs in the divisor of ξ , the zero divisor of z1 is of the form AC,
the zero divisor of z2 is of the form BD, the pole divisors of z1 and z2 are powers of a
prime factor of Y, and A, B, C, D, X, Y are pairwise relatively prime. Next rewrite the
first equation of (5.1) as

ξ
z
q

1

z
q

2
− t = vq − v,

so
ξz
q

1 − tz
q

2 = (vz2)
q
− (vz2)z

q−1
2 , (5.2)
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and set s = vz2. Note that if for some prime r of M we have ordrB = h > 0, then

ordr s = 0,

since the pole divisor of v is exactly B, and for any prime divisor r of B we have

ordr z2 = ordrB = h. (5.3)

In addition,
ordr tz

q

2 ≥ hq − 1 ≥ h(q − 1),
because all poles and zeros of t are simple by assumption. We have

ordr ξ = 0

because no prime factor of B occurs in the divisor of ξ . We also have

ordr z1 = 0

since B is relatively prime to the zero divisor of z1 and, by construction, the pole divisor
of z1 is a factor of Y, relatively prime to B. We now rewrite (5.2) to get

ξz
q

1 − s
q
= tz

q

2 − sz
q−1
2 .

Observe that ordr(tz
q

2 − sz
q−1
2 ) ≥ min(ordr tz

q

2 , ordr sz
q−1
2 ) ≥ h(q − 1) ≥ 2h, and

therefore
ordr(ξz

q

1 − s
q) ≥ 2h.

Also, since at least one zero or pole of ξ has order not divisible by p, ξ is not a p-th
power in M . Thus the global derivation with respect to ξ is defined, and we denote it
by x′. (We are using our assumption that the divisor of w is not a q-th power in this step.
Otherwise, X and Y are trivial, making ξ a constant, so that the derivation with respect
to ξ would not be defined.) Taking the derivative of ξzq1 − s

q with respect to ξ we see that
it is equal to zq1 , and thus ordr (ξz

q

1 − s
q)′ = 0. At the same time, by Lemma 4.6, we also

have ordr (ξz
q

1 − s
q)′ ≥ h(q − 1)− 1− dξ (r), implying that

dξ (r) ≥ h(q − 1)− 1 > 0. (5.4)

Thus r belongs to a finite set of primes of size

2g − 2+ 2H(ξ) < 2g − 2+ 2(q + 1)(C + g + 1) = C1.

Using Lemma 4.7 again and (5.4), we can also obtain a bound on h:

2g − 1+ 2(q + 1)(C + g + 1) ≥ dξ (r)+ 1 ≥ h(q − 1).

Hence
h <

2g − 1+ 2(q + 1)(C + g + 1)
q − 1

= C2.

Returning now to the structure of the divisor of w, we see that

H(w) ≤ degX+ q degB ≤ C + qC1C2. ut

The next lemma is a standard estimate of the height of the coefficients in a linear combi-
nation of basis elements in terms of the height of the linear combination itself.
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Lemma 5.8. If w ∈ M and w =
∑k
i=1Aiωi , where Ai ∈ F(t), then

H(Ai) < k!kkH�H(w).

Proof. Consider the non-singular linear system
∑k
i=1Aiσj (ωi) = σj (w), j = 1, . . . , k,

where we consider A1, . . . , Ak as the unknowns. Solving this system by Cramer’s rule,
and using the fact that the height of a sum/product is less than or equal to the sum of
heights, we can get an estimate on the height HMG(Ai). More specifically,

HMG(Ai) ≤ 2k!kk max(HMG(σj (w)),H�) ≤ k!k
kH�HMG(w).

Since HMG(z) = iGH(z) for z ∈ M , we cancel iG on both sides to get the desired result.
ut

The proposition below allows us to exploit fixed bounds on height. Elsewhere, this propo-
sition has been referred to as the Weak Vertical Method.

Proposition 5.9 (slightly modified [Shl06, Theorem 10.1.1]). Suppose for some w ∈ M
with H(w) < C3, for all primes A ∈ V(w) there are b(A) ∈ F such that for any factor c
of A in M we have

ordc(w − b(A)) ≥ e(c/A),

where e(c/A) is the ramification degree of c over A. Then w ∈ F(t).

Proof. First of all we note that by the description of V(w) in Notation and Assumption
5.1 (16c), any element z ∈ M integral with respect to A ∈ V(w), i.e. integral with respect
to every factor of A in M , can be written as

z =

k∑
i=1

fiωi,

where for all i = 1, . . . , n, we have fi ∈ F(t) and fi is integral at A. We now write
w =

∑k
i=1Aiωi , where Ai ∈ F(t). Observe that for all A ∈ V(w), the element w−b(A)

is equivalent to zero modulo A for every prime A ∈ V(w). At the same time

w − b(A) = A1 − b(A)+ A2ω2 + · · · + Akωk.

For each prime A ∈ V(w), let B(A) ∈ F(t) be such that ordA B(A) = 1. (Such a B(A)
exists by the Weak Approximation Theorem.) Note that z = w−b(A)

B(A) is integral at A, and

thus z =
∑k
i=1 fi(A)ωi , where fi(A) are elements of F(t) integral at A. Furthermore,

A1 − b(A)+ A2ω2 + · · · + Akωk = w − b(A) = B(A)z =
k∑
i=1

B(A)fi(A)ωi .

Thus, for i = 2, . . . , k and all A ∈ V(w), we have Ai = B(A)fi(A), implying
ordAAi > 0, implying H(Ai) > C4 or Ai = 0. The last inequality contradicts our
assumption on H(w) and Lemma 5.8. Therefore Ai = 0 for i = 2, . . . , k, and thus
w ∈ F(t). ut

We now apply the Weak Vertical Method to our situation.
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Corollary 5.10. Suppose that for some w ∈ M withH(w) < C3, and C4+e quadruples
(c, b, c′, b′) ∈ F 4 with b 6= b′ and each c occurring in one quadruple only, we have a
solution uc in M to

w − b′

w − b
−
t − c′

t − c
= u

q
c − uc. (5.5)

Then w ∈ F(t).

Proof. Suppose that c ∈ F occurs as the first element in one of the quadruples above,
so that the F(t)-prime Pc corresponding to the zero divisor of t − c is unramified in
the extension M/F(t), and let pc be any factor of Pc in M . (There are at least C4 such
elements c, since only e primes ramify in M/F(t).) Since pc is unramified, Lemma 5.4
implies that ordpc (t − c) = − ordpc

t−c′

t−c
= 1. At the same time, for any pole qc of uc

in M we have ordqc (u
q
c − uc) ≡ 0 mod q as above. Thus, b 6= b′, and by Lemma 5.4

again, − ordpc
w−b′

w−b
= ordpc (w − b) > 0. In other words, for C4 pairs (c, b) ∈ F 2 we

have w ≡ b mod Pc, where Pc is, as above, the zero divisor of t− c inM and F(t). Now
the assertion of the corollary follows from Proposition 5.9. ut

In the next proposition we describe the equations that let us conclude that an element w
is a qs-th power of t provided that we know that w is in the rational function field F(t).

Proposition 5.11 ([Shl06, Lemma 8.3.3, Corollary 8.3.4] and [Eis03, Lemma 3.4]).
Suppose for some element w ∈ F(t), having no poles or zeros at primes ramifying in
the extension M/F(t), there exist u, v ∈ M such that the following system is satisfied:

1
w
−

1
t
= uq − u,

w − t = vq − v.

(5.6)

Then w = tq
s

for some s ∈ Z≥0.

In general we do not know whetherw has all of its poles and zeros at primes not ramifying
inM/F(t). Therefore we might have to replacew by w−b

w−b′
, where b, b′ ∈ F0. (Recall that

F0 is the algebraic closure of Fp in F .) Observe that F(t) = F
(
w−b
w−b′

)
. The proposition

below carries out this construction.

Proposition 5.12. Let w ∈ F(t), assume that the system (5.6) holds, and for all r ∈
{0, . . . , C5}, there exist br ∈ Vr such that for all pairs (i, j) with j 6= i there exist
ui,j,bi ,bj , vi,j,bi ,bj ∈ M such that

w − bi

w − bj
−
t − ci

t − cj
= u

q
i,j,bi ,bj

− ui,j,bi ,bj ,

w − bj

w − bi
−
t − cj

t − ci
= v

q
i,j,bi ,bj

− vi,j,bi ,bj .

(5.7)

Then w = tq
s

for some s ∈ Z≥0.
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Proof. First of all, by Lemma 5.3, for some ci, cj 6∈ Fp and bi ∈ Vi , bj ∈ Vj , the
elements t − ci, t − cj , w − bi, w − bj do not have zeros at any prime ramifying in
M/F(t). Therefore t−ci

t−cj
,
w−bi
w−bj

∈ F(t) do not have zeros or poles at any prime ramifying

inM/F(t). It follows that all the zeros and poles of t−ci
t−cj

are simple, since they are simple
in F(t). Now Proposition 5.11 yields

w − bi

w − bj
=

(
t − ci

t − cj

)qs
(5.8)

for some s ≥ 0. From (5.8) we deduce

1+
bj − bi

w − bj
= 1+

c
qs

j − c
qs

i

tq
s
− c

qs

j

. (5.9)

Since we know from the second equation of (5.6) that t and w have a common zero,
considering the equation above modulo this prime gives

bj − bi

bj
=
c
qs

j − c
qs

i

c
qs

j

,

or
bi

bj
=
c
qs

i

c
qs

j

.

Thus, from (5.9), for some r ∈ Z≥0, since bj ∈ Vj = {c
qk

j : k ∈ Z≥0}, we have

w = bj +
bj − bi

c
qs

j − c
qs

i

(tq
s

− c
qs

j ) = bj +
bj

c
qs

j

(tq
s

− c
qs

j ) =
bj

c
qs

j

tq
s

=
c
qr

j

c
qs

j

tq
s

= c
qr−qs

j tq
s

.

In a similar fashion we deduce that for somem ∈ Z≥0 we havew = cq
m
−qs

i tq
s
, and hence

c
qr−qs

j = c
qm−qs

i . Thus, by Remark 5.2 we conclude that cq
r
−qs

j = 1 and w = tq
s
. ut

We will now prepare for the case when we cannot conclude right away that w is of
bounded height and use the Weak Vertical Method to see that it is in the fixed rational
subfield. In this case by Lemma 5.7, the divisor of w is a q-th power of another divisor.
In the three lemmas below we take advantage of this fact to conclude that under certain
conditions w is a q-th power of another field element. The proofs for all three lemmas
can be found in [Shl06].

Lemma 5.13 ([Shl06, Lemma 8.2.4]). LetM/G be a finite separable extension of fields
of positive characteristic p. Let α ∈ M be such that for some positive integer a, all the
coefficients of its monic irreducible polynomial over G are pa-th powers in G. Then α is
a pa-th power in M .
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Lemma 5.14 ([Shl06, Lemma 8.2.5]). LetM/G be a finite separable extension of fields
of positive characteristic p. Let [M : G] = n. Let r be a positive integer. Let x ∈ M be
such thatM = G(x) and for some distinct b0, . . . , bn ∈ Gwe have NM/G(b

pr

i −x) = y
pr

i

for y0, . . . , yn ∈ G. Then x is a pr -th power in M .

Lemma 5.15 ([Shl06, Lemma 8.4.1]). Let M be a function field over a perfect field L
of constants, and let t ∈ M be such that M/L(t) is a finite separable extension of
degree n. Let m be a positive integer. Let v ∈ M and assume that for some distinct
b0 = 0, b1, . . . , bn ∈ L, the divisor of each v + b0, . . . , v + bn is a pm-th power of some
other divisor of M . If for all i, v + bi does not have any zeros or poles at any prime
ramifying in M/L(t), then v is a pm-th power in M .

We are now ready to put all the parts together.

Proposition 5.16. Suppose for some w ∈ M , (5.6) and (5.7) hold with all the variables
taking values in M . Then w = tq

s
for some non-negative integer s.

Proof. We need to consider two cases:

Case 1: For one pair ci, cj with t − ci and t − cj corresponding to primes that do not
ramify (over F(t)), the divisor of w−bi

w−bj
is not a q-th power of another divisor in M . In

this case applying Lemma 5.7 we conclude that H
(
w−bi
w−bj

)
= H(w) < C3. (The equal-

ity of heights follows from Lemma 5.4.) Now by Corollary 5.10, using C5 quadruples
(ci, bi, cj , bj ) from (5.7) we conclude that w ∈ F(t). (Recall that C5 > C4+ e by defini-
tion ofC5 in Notation and Assumptions 5.1(13).) Applying Proposition 5.12, we conclude
that w = tq

s
for some s ∈ Z≥0.

Case 2: For all values of ci 6= cj such that the F(t)-primes corresponding to t − ci and
to t − cj do not ramify, the divisors of w−bi

w−bj
are q-th powers of other divisors. (Recall

that bi ∈ Vi and bj ∈ Vj .) In this case, the divisor of 1+ bj−bi
w−bj

is a q-th power of another

divisor. Let wj = 1
w−bj

and ai,j = 1
bj−bi

, so that

1
bj − bi

+
1

w − bj
= ai,j +

1
wj
.

Then the divisor of ai,j + 1
wj

is a q-th power of another divisor for all i 6= j such that the

F(t)-primes corresponding to t − ci and to t − cj do not ramify. This follows since w−bi
w−bj

and ai,j + 1
wj

differ by a constant factor only, and therefore have the same divisor in M .
By Lemma 5.3 we know that |Ct ∩ Cw| > 2k, or, in other words, we have at least

2k+ 1 values of r such that t − cr and w− br for any br ∈ Vr have no zeros at any prime
ramifying in M/F(t). Thus for a fixed r = j with cj ∈ Ct ∩Cw and at least k + 1 values
of i 6= j with ci ∈ Ct ∩Cw, the element ai,j+ 1

wj
does not have a pole or a zero at a prime

ramifying over F(t). Also, for any pair i1 6= i2 we have ai1,j 6= ai2,j , and the divisor of
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each ai,j + 1
wj

is a q-th power of another divisor. (If ai1,j = ai2,j , then bj −bi1 = bj −bi2 ,
bi2 = bi1 , and therefore some conjugate of ci1 over Fp is equal to some conjugate of ci2
over Fp. The last equality is impossible by construction of ci1 and ci2 .) Hence Lemma
5.15 shows that wj for this j is a q-th power in M , and thus w is a q-th power in M .

At this point we can, so to speak, take the “q-th root’’ of our equations as in the proof
of Proposition 5.11 and again ask, this time for the “new” w (a q-th root of the old w),
whether the divisor of w−bi

w−bj
is not a q-th power of another divisor for some i, j with

ci, cj ∈ Ct ∩ Cw.
Since our “q-th root descent’’ cannot go on indefinitely, at some step we conclude that

the divisor of w−bi
w−bj

is not a q-th power of another divisor for any i, j with ci, cj ∈ Ct ,
bi ∈ Vi, bj ∈ Vj . When this happens, we follow the argument of Case 1 to reach the
desired conclusion. ut

The results in Sections 5.2–5.4 are only slight modifications of known results going back
in some form to [Phe87]. We include these results and some of the proofs for the conve-
nience of the reader.

5.2. Defining p-th powers of elements with simple zeros and poles

In this section we need additional notation listed below.

Notation and Assumptions 5.17.

• For s ∈ Z≥0, i, l ∈ {1, . . . , C5}, ji ∈ {1, . . . , ri}, jl ∈ {1, . . . , rl}, z = −1, 1,m = 0, 1,
u, v, µi,ji ,l,jl ,z,m, λ1, λ−1, σi,ji ,l,jl ∈ M , let

D(s, i, ji, l, z,m, jl, u, v, µi,ji ,l,jl ,z,m, σi,ji ,l,jl , λ1, λ−1)

be the following system of equations:

ui,k =
u+ ci

u+ cl
, (5.10)

vi,ji ,l,jl =
v + di,ji

v + dl,jl
, (5.11)

v2z
i,ji ,l,jl

tmq
s

− u2z
i,l t

m
= µ

qs

i,ji ,l,jl ,z,m
− µi,ji ,l,jl ,z,m, (5.12)

vi,ji ,l,jl − ui,k = σ
q
i,ji ,l,jl

− σi,ji ,l,jl , (5.13)

v − u = λ
q

1 − λ1, (5.14)

v−1
− u−1

= λ
q

−1 − λ−1. (5.15)

• Let j, r, s ∈ Z≥0 and u, ũ, v, ṽ, x, y ∈ M . Let E(u, ũ, v, ṽ, x, y, j, r, s) denote the
following system of equations:

v = up
r

, (5.16)

ṽ = ũp
j

, (5.17)
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u =
xp + t

xp − t
, (5.18)

ũ =
xp + t−1

xp − t−1 , (5.19)

v =
yp + tp

s

yp − tp
s , (5.20)

ṽ =
yp + t−p

s

yp − t−p
s . (5.21)

• Let j, r, s ∈ Z≥0 and u, ũ, v, ṽ, x, y ∈ M , and let E2(u, ũ, v, ṽ, x, y, j, r, s) denote
the following system of equations:

v = u2r , (5.22)

ṽ = ũ2j , (5.23)

u =
x2
+ t2 + t

x2 + t
, (5.24)

ũ =
x2
+ t−2

+ t−1

x2 + t−1 , (5.25)

v =
y2
+ t2

s+1
+ t2

s

y2 + t2
s , (5.26)

ṽ =
y2
+ t−2s+1

+ t−2s

y2 + t−2s . (5.27)

We start with a way to produce elements with simple zeros and poles.

Lemma 5.18 ([Shl96, Lemma 4.5] or [Shl06, Lemma 8.4.2]). Let p > 2. Let x ∈ M .
Let u = xp+t

xp−t
. Let b ∈ F , b 6= ±1. Then all zeros and poles of u±1

+ b are simple except
possibly for zeros or poles of t or at primes ramifying in the extension M/F(t).

Proof. It is enough to show that the proposition holds for u; the argument for u−1 follows
by symmetry. First of all we remind the reader that the global derivation with respect to t
is defined over M , and the derivative follows the usual rules. So consider

d(u+ b)

dt
=

2xp

(xp − t)2
.

If t is a prime of M such that t does not ramify in the extension M/F(t) and is not a pole
or zero of t , then Corollary 4.9 implies that

ordt(u+ b) = ordt
(1+ b)xp + (1− b)t

xp − t
> 1

if and only if t is a common zero of u+ b and d(u+b)
dt

. If ordt 2xp
(xp−t)2

> 0, then t is either
a zero of x or a pole of xp − t . Any zero of x which is not a zero of t , is not a zero of
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u+ b for b 6= 1. Furthermore, no pole of x is a zero of u+ b. Thus all zeros of u+ b at
primes not ramifying in M/F(t) and different from poles and zeros of t are simple. Next
we note that poles of u+ b are zeros of u−1. Further

du−1

dt
=
−2xp

(xp + t)2
,

and by a similar argument, u−1 and du−1

dt
do not have any common zeros at any primes

not ramifying in M/F(t) and not being poles or zeros of t . ut

The following lemma (which we state without proof) deals with the case of p = 2.

Lemma 5.19 ([Eis03], Lemma 3.8). Let p = 2 and x ∈ M . Let u = x2
+t2+t
x2+t

. Let b ∈ F ,
b 6= 1. In this case all zeros and poles of u + b are simple except possibly for zeros or
poles of t or at primes ramifying in the extension M/F(t).

The lemma below is a result we need to define the q-th powers of elements with simple
zeros and poles.

Lemma 5.20 (slightly modified [Shl06, Lemma 8.2.11]). Let σ,µ ∈ M . Assume that no
primes that are poles of σ or µ ramify in the extension M/F(t). Further, assume that

t (σ q − σ) = µq − µ. (5.28)

Then σ q − σ = µq −µ = 0. (Here we remind the reader that by assumption, the primes
occurring in the divisor of t do not ramify in M/F(t).)

Proof. Let A,B be integral divisors of M , relatively prime to each other and to P =∏
i pi and Q =

∏
i qi (in other words, no prime occurring in A or B occurs in the divisor

of t), and such that the divisor of σ is of the form A
B

∏
i p
ni
i

∏
i q
ki
i , where ni, ki are

integers for all i. It is not hard to see that for some integral divisor C relatively prime to
B,P, Q, and for some integers ai, bi , the divisor of µ is of the form C

B

∏
i p
ai
i

∏
i q
bi
i .

Indeed, if t is a pole of µ that does not divide P or Q, then

0 > q ordt µ = ordt(µq − µ) = ordt(t (σ q − σ)) = ordt(σ q − σ) = q ordt σ.

Conversely, if t is a pole of σ that does not divide P or Q, then

0 > q ordt σ = ordt(σ q − σ) = ordt(t (σ q − σ)) = ordt(µq − µ) = q ordt µ.

Further we can also deduce that for each pi we have ordpi σ ≥ 0 and ordpi µ ≥ 0. To see
this, suppose ordpi σ < 0 and deduce that

ordpi (t (σ
q
− σ)) < 0, (5.29)

ordpi (t (σ
q
− σ)) 6≡ 0 mod p. (5.30)

At the same time (5.29) implies that

ordpi (µ
q
− µ) < 0, (5.31)

ordpi (µ
q
− µ) ≡ 0 mod p. (5.32)
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Therefore assuming ordpi σ < 0 leads to a contradiction. Similarly, if ordpi µ < 0 then
(5.31) and (5.29) hold and we again obtain a contradiction. Assuming that ordqi σ < 0
and ordqi µ < 0 results in a contradiction of a similar type. Thus, we can assume that
ai, bi, ni, ki ≥ 0 for all i.

By the Strong Approximation Theorem there exists b ∈ M× such that the divisor of b
is of the form BD

qc1
, where D is an integral divisor relatively prime to A,B,C,P,Q, and

c is a positive integer. Then bσ = s1, bµ = s2, where s1, s2 are integral over F [t] and
have zero divisors relatively prime to B. Indeed, consider the divisors of s1 = bσ :

BD

qc1

A

B

∏
i

p
ni
i

∏
j

q
kj
j = DA

∏
i

p
ni
i q

k1−c
1

∏
j>1

q
kj
j .

The pole of s1 is a factor of Q, and therefore s1 is integral over F [t]. Further, by con-
struction A and D are integral divisors relatively prime to P and B. A similar argument
applies to s2.

Multiplying (5.28) through by bq we obtain

t (s
q

1 − b
q−1s1) = s

q

2 − b
q−1s2. (5.33)

We can rewrite this in the form

s
q

1 t − s
q

2 = b
q−1(s1t − s2). (5.34)

If t is any prime factor of B in M , then t does not ramify in the extension M/F(t), and
since q > 2, we know that ordt(s

q

1 t − s
q

2 ) ≥ 2. Further, by Corollary 4.9 we also have

ordt
d(s

q

1 t − s
q

2 )

dt
> 0.

Finally,

ordt
d(s

q

1 t − s
q

2 )

dt
= ordt(s

q

1 ).

Therefore, s1 has a zero at t. This, however, is impossible by construction of s1 as de-
scribed above. Consequently, B is a trivial divisor, and µ and σ are constants since their
pole divisor is trivial. Now (5.28) implies that t times a constant is equal to a constant.
This can happen only if both constants are zero. ut

Lemma 5.21 ([Shl06, Lemma 8.4.4]). Let s ∈ Z>0. Let x, v ∈ M \ {0} and assume that
ṽq = v for some ṽ ∈ M . Let

u =


xp + t

xp − t
if p > 2,

x2
+ t2 + t

x2 + t
if p = 2.
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Further, assume that

∃µi,ji ,l,jl ,z,m, σi,ji ,l,jl , λ1, λ−1 ∈ M ∀i ∃ji ∀(l 6= i) ∃jl ∀m ∀z :

D(s, i, ji, l, jl, m, z, u, v, µi,ji ,l,jl ,z,m, σi,ji ,l,jl , λ1, λ−1). (5.35)

Then

∃µ̃i,ji ,l,jl ,z,m, σ̃i,ji ,l,jl , λ̃1, λ̃−1 ∈ M ∀i ∃ji ∀(l 6= i) ∃jl ∀m ∀z :

D(s − 1, i, ji, l, jl, m, z, u, ṽ, µ̃i,ji ,l,jl ,z,m, σ̃i,ji ,l,jl , ν̃i,ji ,z, λ̃1, λ̃−1). (5.36)

Lemma 5.22 ([Shl06, Lemma 8.4.5, Corollary 8.4.6] and [Eis03, Lemma 3.9]). Let
s ∈ Z≥0 and x, v ∈ M \ {0}. Let

u =


xp + t

xp − t
if p > 2,

x2
+ t2 + t

x2 + t
if p = 2.

Further, assume that (5.35) holds. Then v = uq
s
.

Proof. First of all, we claim that for all i, l, ui,l has no multiple zeros or poles except
possibly at primes with factors ramifying in M/F(t), or poles or zeros of t . Indeed, all
the poles of ui,l are zeros of u+ cl , and all the zeros of ui,l are zeros u+ ci . However, by
Lemma 5.18 and by assumption on ci and cl , all the zeros of u+ cl and u+ ci are simple,
except possibly for zeros at primes which are zeros or poles of t or have factors ramifying
in M/F(t).

We will show that if s > 0 then v is a q-th power in M , and if s = 0 then u = v. This
together with Lemma 5.21 will produce the desired conclusion.

Note that by Corollary 5.3, we can choose distinct natural numbers

i, l1, . . . , lk+1 ∈ {0, . . . , C5} such that {ci, cl1 , . . . , clk+1} ⊂ Cv ∩ Cu

and for all 1 ≤ ji ≤ ri and 1 ≤ jlf ≤ rlf with f = 1, . . . , k + 1, the elements ui,lf
and vi,ji ,lf ,jlf have no zeros or poles at primes of M with factors ramifying in M/F(t),
or primes occurring in the M-divisor of t . Note also that for the indices thus selected,
all the poles and zeros of ui,lf are simple. We now pick natural numbers i, l1, . . . , lk+1,

ji, jl1 , . . . , jlk+1 such that the equations in (5.10)–(5.13) are satisfied for these values of
indices, and ui,l1 , vi,ji ,l1,jl1 , . . . , ui,lk+1 , vi,ji ,lk+1,jlk+1

have no poles or zeros at primes
with factors ramifying in M/F(t), or at primes occurring in the M-divisor of t .

Now assume s > 0, and let f range over {1, . . . , k + 1}. First let z = ±1, while
m = 0, and consider the two versions of the equation in (5.12) with these values of z
and m:

v2
i,ji ,lf ,jlf

− u2
i,lf
= µ

q

i,ji ,lf ,jlf ,1,0
− µi,ji ,lf ,jlf ,1,0, (5.37)

v−2
i,ji ,lf ,jlf

− u−2
i,lf
= µ

q

i,ji ,lf ,jlf ,−1,0 − µi,ji ,lf ,jlf ,−1,0, (5.38)
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Here either for all f = 1, . . . , k + 1, the divisor of vi,ji ,lf ,jlf in M is a q-th power of
another divisor, or for some f and some prime t without factors ramifying in M/F(t)
and not occurring in the M-divisor of t we have ordt vi,ji ,lf ,jlf = ±1.

In the first case, given the assumption that vi,ji ,lf ,jlf ’s do not have poles or zeros at
ramifying primes, and Lemma 5.15, we find that v is a q-th power in M .

So suppose the second alternative holds. In this case, without loss of generality, as-
sume t is a pole of vi,ji ,lf ,jlf for some f . Next consider the equations

v2
i,ji ,lf ,jlf

tq
s

− u2
i,lf
t = µ

q

i,ji ,lf ,jlf ,1,1
− µi,ji ,lf ,jlf ,1,1, (5.39)

v2
i,ji ,lf ,jkf

− u2
i,lf
= µ

q

i,ji ,lf ,jlf ,0,1
− µi,ji ,lf ,jlf ,0,1, (5.40)

obtained from (5.12) by first taking z = 1, m = 1 and then z = 1, m = 0. (If t were a
zero of vi,ji ,lf ,jlf , then we would set z equal to −1 in both equations.) Since t does not
have a pole or zero at t, and q > 2, we conclude that

ordt(v2
i,ji ,lf ,jlf

tq
s

− u2
i,lf
t) = ordt(µ

q

i,ji ,lf ,jlf ,1,1
− µi,ji ,lf ,jlf ,1,1) ≥ 0,

ordt(v2
i,ji ,lf ,jlf

− u2
i,lf
) = ordt(µ

q

i,ji ,lf ,jlf ,0,1
− µi,ji ,lf ,jlf ,0,1) ≥ 0

Thus,

ordt v2
i,ji ,lf ,jlf

(tq
s

− t)

= ord(t)(µ
q

i,ji ,lf ,jlf ,1,1
− µi,ji ,lf ,jlf ,1,1 − tµ

q

i,ji ,lf ,jlf ,0,1
+ tµi,ji ,lf ,jlf ,0,1) ≥ 0.

Finally, we deduce that ordt(tq
s
− t) ≥ 2|ordt v|. But in F(t) all the zeros of tq

s
− t are

simple. Thus, this function can have multiple zeros only at primes ramifying in M/F(t).
By assumption t is not one of these primes, and thus we have a contradiction unless v is
a q-th power.

Suppose now that s = 0. Set e = 1 again and let i, l1, . . . , lk+1 be selected as above.
Then from (5.39) and (5.40) we obtain, for lf ∈ {l1, . . . , lk+1},

µ
q

i,ji ,lf ,jlf ,1,1
− µi,ji ,lf ,jlf ,1,1 = t (µ

q

i,ji ,lf ,jlf ,0,1
− µi,ji ,lf ,jlf ,0,1).

Note here that all the poles of µi,ji ,lf ,jlf ,1,1 and µi,ji ,lf ,jlf ,0,1 are poles of ui,lf , vi,ji ,lf ,jlf
or t , and thus there are no poles at any primes that ramify in M/F(t). From Lemma 5.20
and (5.40) we then conclude that for all lf ∈ {l1, . . . , lk+1},

v2
i,ji ,lf ,jlf

− u2
i,lf
= 0.

Thus, vi,ji ,lf ,jlf = ±ui,lf . Since all the poles of ui,lf are simple, (5.13) rules out “−”.
Therefore,

vi,ji ,lf ,jlf
= ui,lf . (5.41)
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Rewriting (5.41) we obtain

di,ji − dlf ,jlf

v + dlf ,jlf

=
ci − clf

u+ clf
,

or
v = au+ b, (5.42)

where a, b are constants. However, unless b = 0, this contradicts (5.15) because, unless
b = 0, the elements v−1 and u−1 have different, and in the case of u, always simple poles.
Finally, if a 6= 1, then we have a contradiction with (5.14) because the difference, unless
it is 0 (and therefore a = 1), will have simple poles. ut

5.3. Satisfying equations

We now address the issue we have avoided so far: satisfying the equations constituting
our diophantine definitions. Before we proceed, we introduce one more notation.

Notation 5.23. Let F1 = Fp(C(F )).

Lemma 5.24. If w = tq
s
, s ∈ Z≥0 then equations (5.6) can be satisfied over Fp(t) and

equations (5.7) can be satisfied over F1(t). Further, if v = uq
s

then equations (5.35) can
be satisfied over F1(t).

Proof. We start with an elementary equality which is the basis of all the constructions in
this section:

xq
s

− x = (xq
(s−1)
+ xq

(s−2)
+ · · · + x)q − (xq

(s−1)
+ xq

(s−2)
+ · · · + x). (5.43)

To satisfy (5.6), it is enough to note that (5.43) holds over Fp(x). To satisfy (5.7), it is
enough to make sure that if w = tq

s
with s ∈ Z≥0, then for all i, j there exist b ∈ Vi

and b′ ∈ Vj such that w+b
w+b′
=
(
t+ci
t+cj

)qs . This fact, however, follows immediately from the
definitions of Vi and Vj which contain all the q-th powers of ci and cj respectively.

Assuming v = uq
s
, for some 1 ≤ ji ≤ ri and 1 ≤ jk ≤ rk we have vi,ji ,k,jk = (ui,k)

qs

for the same reason, since |Vi | = ri and |Vj | = rj . ut

5.4. Defining p-th powers of arbitrary elements

We are now ready for the last sequence of propositions concluding the proof that the set
of p-th powers is diophantine over K . We will have to separate the case of p = 2 again.
We start with the case of p > 2.

Proposition 5.25 ([Shl06, Proposition 8.4.8]). Let p > 2. Let x, y ∈ M . Then there
exist v, ṽ, u, ũ, v1, ṽ1, u1, ũ1 ∈ M , s, i, j, r1, j1 ∈ Z≥0 such that{

E(u, ũ, v, ṽ, x, y, j, i, s)

E(u1, ũ1, v1, ṽ1, x + 1, y + 1, j1, r1, s)
(5.44)

hold if and only if y = xp
s
.
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The following propositions treat the characteristic 2 case.

Lemma 5.26 ([Shl06, Proposition 8.4.9]). Let p = 2. Then for x, y = ỹ2
∈ M , j, r, s ∈

Z≥0 \ {0} and u, ũ ∈ M there exist v, ṽ ∈ M such that

E2(u, ũ, v, ṽ, x, y, j, r, s) (5.45)

holds if and only if there exist v1, ṽ1 ∈ M such that

E2(u1, ũ1, v1, ṽ1, x, ỹ, j − 1, r − 1, s − 1) (5.46)

holds.

Proposition 5.27 ([Shl06, Proposition 8.4.10] and [Eis03, Theorem 3.1]). Let p = 2.
Then for x, y ∈ M and s ∈ Z≥0 there exist j, r ∈ Z≥0 and u, ũ, v, ṽ ∈ M such that
(5.45) holds if and only if y = x2s .

We now have the following theorem for function fields over algebraically closed fields of
positive characteristic:

Theorem 5.28. Let M be a function field over an algebraically closed field of constants
of characteristic p > 0. Then

P(M) = {(x, xp
s

) : x ∈ M, s ∈ Z≥0}

is diophantine over M .

Proof. This follows from Propositions 5.25 and 5.27. ut

5.5. Adjusting for arbitrary constant fields

We can now prove that the set of p-th powers is existentially definable in arbitrary func-
tion fields of positive characteristic.

Theorem 5.29. Let K be a function field of characteristic p > 0. Then

P(K) = {(x, xp
s

) : x ∈ K, s ∈ Z≥0}

is diophantine over K .

Proof. We have to adjust the arguments above to take care of the case where the field of
constants is not necessarily algebraically closed. So let K be an arbitrary function field
of positive characteristic. Let M be the field obtained from K by adjoining the algebraic
closure of the constant field of K , and as above denote the constant field of M by F . Let
t ∈ M be a non-constant element such that all of its poles and zeros are simple. (As we
have seen above, such an element always exists.) The element t and all other elements
of M are algebraic over K . Given such an element t , compute C5 and construct C(F).
Let K̂ = K(t, C(F )). Then K̂/K is a finite extension. Now all the equations discussed
above have their coefficients in K̂ and can be satisfied over K̂ . As far as solutions to these
equations are concerned, we can always consider solutions in M to make sure we have
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only the solutions we want. E.g., if we know that (5.6) and (5.7) imply that w = tq
s

when we are looking at all possible solutions in M , then this is certainly true of K̂ . Thus
P(K̂) is existentially definable over K̂ . Finally, we appeal to Corollary 3.2 to conclude
that P(K) is existentially definable over K . More specifically, to apply the corollary we
set G = K̂ , l = 2 and n2 = 0. Further, we let f be the diophantine definition P(K̂)
over K̂ and n3 the total number of variables required by that definition. ut

6. Subsets of a field that are integral at a prime

In this section we construct a diophantine definition of a set to be called INT(K, p, t).
Membership in this set will depend on the choice of a prime p and a non-constant el-
ement t of our function field. Thus, p and t appear in the name of the set. To be more
specific, we show that a set with the following properties is diophantine over K: the set
INT(K, p, t) will contain only elements x ∈ K with ordp x ≥ 0; at the same time, if
x ∈ k0(t), where k0 is the algebraic closure of a finite field in K , and ordp x ≥ 0, then
x will be in INT(K, p, t). Below, the set INT(K, p, t) can be taken to be the set of all
elements satisfying the norm equation (6.6).

Unfortunately, we have to modify somewhat the assumptions and notation for this
section. The new notation and assumptions can be found below. Also, as in the section
on p-th powers, our initial assumptions will include some conditions on the field which
might not be true of the given field. We will show, however, that they can be made true in
a finite extension of the given field.

Notation and Assumptions 6.1. • p, ` are two not necessarily distinct rational primes.
• Fp is a finite field of p elements.
• K is a function field over a field of constants C of characteristic p > 0 not containing

the algebraic closure of Fp.
• t ∈ K is such that K/C(t) is finite and separable.
• C0 is the algebraic closure of Fp in C, and K0 is the algebraic closure of C0(t) in K . If
` 6= p, then C0 contains a primitive `-th root of unity ξ`.
• Let γ ∈ K generate K over C(t) and let γ0 generate K0 over C0(t).
• For some a ∈ C0, the fields K and C contain no root of the polynomial

T ` − a (6.1)

in the case ` 6= p, and no root of

T p − T + a (6.2)

in the case ` = p. Let α be a root of (6.1) if ` 6= p, and of (6.2) otherwise.
• All the poles and zeros of t in K and K0 are simple. In particular, P, the zero of t

in C(t) or C0(t), does not ramify inK/C(t) orK0/C0(t). Note also that if p (or p0) is a
prime ofK (K0 respectively) lying above P, then ordp t = 1 (ordp0 t = 1 respectively).
• Denote by Q the pole divisor of t in K or K0.
• If ` 6= p, let b ∈ C0 \ {0} be such that c` = b for some c ∈ C0.
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• For w ∈ K , let hw = t−1w` + t−`.
• If p = `, let βw be the root in K̃ , the algebraic closure ofK , of T p−T − 1

hw
. If p 6= `,

set βw to be the root of T ` −
( 1
hw
+ 1

)
.

• Let δ ∈ K̃ be a root of T p−T + t if ` = p, and let δ be a root of T `− (t+1) if ` 6= p.
• Let N = K(δ) and N0 = K0(δ).

The diagram below shows the field extensions we will consider in this section:

N0(βw, α) // N(βw, α)

N0(βw) //

OO

N(βw)

OO

N0 = K0(δ)

OO

// N = K(δ)

OO

K0 = C0(t, γ0)

OO

// K = C(t, γ )

OO

C0(t)

OO

// C(t)

OO

Fp(t)

OO 66mmmmmmmmmmmmmm

We start with some basic lemmas concerning function fields and local fields. The proofs
of the facts in the first lemma can be found in [Lan02, Ch. V, §5, and Theorem 6.4].

Lemma 6.2. • If L is algebraic over a finite field of characteristic p > 0 and is not
algebraically closed, then it has an extension of prime degree `. Further, if ` 6= p, then
for some a ∈ L, the polynomial X` − a is irreducible, and if ` = p, then for some
a ∈ L, the polynomial Xp −X − a is irreducible.
• All the solutions to Xp −X− a = 0 in the algebraic closure of L can be written in the

form α + i, i = 0, . . . , p − 1, where α is any root of the equation.
• If L is algebraic over a finite field of characteristic p > 0 and is not algebraically

closed, then no finite extension of L is algebraically closed.

Lemma 6.3. Let G be a field of positive characteristic p and let ` be a prime number. If
` 6= p, assume G contains a primitive `-th root of unity ξ`. Let α be an element of the
algebraic closure of G. Let αj = α + j , j = 0, . . . , p − 1, if p = `, and let αj = ξ

j
` α,

j = 0, . . . , `− 1, if ` 6= p. Let

P(a0, . . . , a`−1) =

`−1∏
j=0

(a0 + a1αj + · · · + a`−1α
`−1
j ). (6.3)
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If [G(α) : G] = `, then P(a0, . . . , a`−1) = NG(α)/G(a0 + a1α + · · · + a`−1α
`−1).

If α ∈ G, then for any y ∈ G the equation P(X0, . . . , X`−1) = y has solutions
x0, . . . , x`−1 ∈ G.

Proof. Only the last assertion requires an argument. Consider the following linear system
of equations in a0, . . . , a`−1:

`−1∑
i=0

aiα
i
j = yj , j = 1, . . . , `, (6.4)

where y1 = y and yj = 1 for j = 2, . . . , `. Observe that the determinant of the system
is a Vandermonde determinant, and thus is non-zero. Hence the system has solutions. By
Cramer’s rule, all the solutions are in G. ut

Lemma 6.4. Let G/H be a Galois extension of algebraic function fields of degree n.
Let p be a prime of H with only one unramified factor in G. Let x ∈ H be such that
ordp x 6≡ 0 mod n. Then x is not a norm of an element of G.

Proof. Let y = y1, . . . , yn ∈ G be all the conjugates of a G-element y over H . Let P
be the prime above p in G. Then ordP yi = ordP yj for all i, j = 1, . . . , n. Therefore,
ordP NG/H (y) =

∑n
i=1 ordP yi = n ordP y ≡ 0 mod n. Moreover, ordP NG/H (y) =

ordp NG/H (y), and the conclusion follows. ut

Lemma 6.5. LetH/F be an unramified extension of local fields of degree n. Let p be the
prime of F . Let x ∈ F be such that ordp x ≡ 0 mod n. Then x is a norm of some element
of H .

Proof. Let π be a local uniformizing parameter for p. Then x = πnε, where ε is a unit.
Since πn is an F -norm, x is an F -norm if and only if ε is an F -norm. The latter is true
by [Wei74, Corollary, p. 226]. ut

We now consider the ramification behavior of a given set of primes in an extension.

Lemma 6.6. Let L be a function field of characteristic p, let v ∈ L and let δ be a root of
the equation

xp − x − v = 0. (6.5)

Then either δ ∈ L or δ is of degree p over L. In the latter case the extension L(δ)/L is
cyclic of degree p and the only primes possibly ramifying in this extension are the poles
of v. More precisely, if for some L-prime a, orda v 6≡ 0 mod p and orda v < 0, then a
factor of a in L(δ) will be completely ramified. At the same time all zeros of v will split
completely, i.e. into factors of relative degree 1, in L(δ).

Proof. Let δ = δ1, . . . , δp be all the roots of (6.5) in the algebraic closure of L. Then we
can number the roots so that δi = δ + i − 1. Thus, either the left side of (6.5) factors
completely, or it is irreducible. In the latter case δ is of degree p over L and L(δ) contains
all the conjugates of δ over L. Thus, the extension L(δ)/L is Galois of degree p, and
therefore cyclic. Next consider the different of δ. It is a constant. By [Che51, Lemma 2,
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p. 71], this implies that no prime of L at which δ is integral has any ramified factors
in L(δ)/L. Suppose now a is a prime of L described in the statement of the lemma. Let
ã be an L(δ)-prime above a. Then ordã v ≡ 0 mod p. Thus, ã must be totally ramified
over a. Finally, let b be a zero of v. Since the power basis of δ has a constant discriminant,
the power basis of δ is an integral basis with respect to b, and therefore if the irreducible
polynomial of v factors completely modulo b, then b factors completely in the extension.

ut

In a similar manner one can show the following.

Lemma 6.7. Let L be a function field of characteristic p > 0 possessing an `-th primi-
tive root of unity with ` 6= p. Let z ∈ L, let γ be a root of T ` − z, and let a be a prime
of L. If orda z 6≡ 0 mod `, then a is completely ramified in the extension L(γ )/L. Also,
if z is integral at a and z ≡ c` 6= 0 mod a, then a splits completely, i.e. into factors of
relative degree 1, in L(γ )/L.

We now specialize the lemmas above to our situation.

Corollary 6.8. The following statements are true about the extensionsN/K andN0/K0.

(1) There is no constant field extension.
(2) The factors of P split completely, i.e. into factors of relative degree 1.
(3) The factors of Q are completely ramified, i.e. into factors of relative degree 1.

Next we need to take a look at zeros and poles of hw and zeros and poles of w
in N,N0, N(βw), and N(βw). (We remind the reader that hw = t−1w` + t−`, βw is
a root of T p − T − 1

hw
if p = `, and a root of T ` −

( 1
hw
+ 1

)
if p 6= `.)

Lemma 6.9. The following statements are true:

(1) If p̂ is a prime of N(βw) and p̂ |P, while ordp̂w < 0, then the relative degree of p̂

over p̄, the prime below it in N , is 1, and therefore the relative degree of p̂ over p, the
prime below it in K , is 1.

(2) If p̂ is a prime of N(βw) and p̂ |P in N(βw) while ordp̂w < 0, then ordp̂ hw < 0
and ordp̂ hw 6≡ 0 mod `.

(3) If t is a prime of N(βw) and t - P, then ordt hw ≡ 0 mod `.
(4) If p is a prime of K such that p |P and ordpw ≥ 0, then ordp hw ≡ 0 mod `.

N0(βw) // N(βw)

N0 = K0(δ)

OO

// N = K(δ)

OO

K0

OO

// K

OO

C0(t)

OO

// C(t)

OO
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Proof. First let p |P in K and note that by Corollary 6.8, p splits completely in N into
factors of relative degree 1. Next, if ordpw < 0, then ordp hw < 0 and ordp hw 6≡
0 mod `. Further, for any p̄ | p in N we have ordp̄ hw = ordp hw, since p̄ splits completely
in N/K . Lemmas 6.6 and 6.7 imply that p̄ splits completely in N(βw)/N . So if p̂ | p̄ then
also ordp̂ hw = ordp̄ hw = ordp hw. At the same time, by the same argument, the relative
degree of p̂ over p is 1.

Again by Corollary 6.8, we have ordq̂ hw ≡ 0 mod ` for any N -prime q̂ lying above
a K-prime q dividing Q. Finally, consider the primes occurring in the divisor of hw.

If t is a pole of hw in K and t does not occur in the divisor of t , then it is a pole of w,
and hw has order at t divisible by `. Hence, if t̂ is a prime of N(βw) above t̄, we also see
that hw has order at t̂ divisible by `.

Now let t̄ be a zero of hw in N with order not divisible by `. Lemmas 6.6 and 6.7
imply that t̄ ramifies completely in N(βw)/N . Finally, the last assertion of the lemma
follows from the formula defining hw. ut

In an analogous fashion we can also prove the following.

Lemma 6.10. If w is algebraic over C0(t) then the following assertions are true:

(1) If p̂ is a prime of N0(βw) and p̂ |P, while ordp̂w < 0, then the relative degree of p̂
over p̄, the prime below it in N0, is 1, and therefore the relative degree of p̂ over p,
the prime below it in K0, is 1.

(2) If p̂ is a prime of N0(βw) and p̂ |P in N0(βw) while ordp̂w < 0, then ordp̂ hw < 0
and ordp̂ hw 6≡ 0 mod `.

(3) If t is a prime of N0(βw) and t - P, then ordt hw ≡ 0 mod `.
(4) If p is a prime of K0 such that p |P and ordpw ≥ 0, then ordp hw ≡ 0 mod `.

We now look at the solvability of some norm equations.

Lemma 6.11. If w has a pole at any factor of P in K , then there is no x ∈ N(α, βw)
such that

NN(α,βw)/N(βw)(x) = hw. (6.6)

Proof. Let p̂ be a factor of P in N(βw) such that w has a negative order at p̂. In this case,
w has a negative order at p, the prime below p̂ in K . By Lemma 6.10, p splits completely
into distinct unramified factors of relative degree 1, and p is of degree 1 in K , so there is
no constant field extension in N(βw)/N and either (6.1) or (6.2), depending on whether
p = ` or p 6= `, has no root in the residue field of p̂ in N(βw). Thus, p̂ does not split in
N(βw, α)/N(βw). If hw is a norm in this extension, it must have order at p̂ divisible by `.
However, by Lemma 6.10 again, ordp̂ hw = ordp hw 6≡ 0 mod `. ut

Lemma 6.12. If w is algebraic over Fp(t) and has no poles at any factor of P, then
there exists x ∈ N(α, βw) satisfying (6.6).

Proof. First we observe that it is enough to find x ∈ N0(α, βw) with

NN0(α,βw)/N0(βw)(x) = hw. (6.7)
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Indeed, since α is of degree ` over bothN(βw) andN0(βw) or of degree 1 over both fields,
any element x ∈ N0(α, βw) has the same coordinates with respect to the power basis of α
(which is either {1}, if the degree of α over the fields in question is 1, or {1, α, . . . , `−1},
if the degree is `). Thus x has the same conjugates overN(βw) andN0(βw), and therefore
the same norm. Next, by Lemmas 6.7 and 6.6, and by construction of hw, the divisor of
hw is an `-th power of another divisor. Now, if α ∈ N0(βw), we are done. Otherwise, we
observe that there is a finite extension N̂0 of Fp(t) such that

• α is of degree ` over N̂0,
• w, hw ∈ N̂0,
• the divisor of hw is an `-th power of another divisor.

By an argument similar to the one above, it is enough to solve

N
N̂0(α,βw)/N̂0(βw)

(x) = hw. (6.8)

Since the extension N̂0(α, βw)/N̂0(βw) is unramified, and thus locally every unit is a
norm (see [Wei74, Corollary, p. 226]), we conclude by the Strong Hasse Norm Principle
(see [Rei03, Theorem 32.9]) that hw is a norm, and therefore an x as required exists. ut

We now have the following theorem.

Theorem 6.13. Let αj = α + j , j = 0, . . . , p − 1, if p = `, and let αj = ξ
j
` α,

j = 0, . . . , `− 1, if ` 6= p. Let

P(a0, . . . , a`−1) =

`−1∏
j=0

(a0 + a1αj + . . .+ a`−1α
`−1
j ) = hw. (6.9)

Then there exist a0, . . . , a`−1 ∈ N(βw) such that (6.9) holds only if w has no poles at
any factor P. If w is algebraic over Fp(t) and has no poles at any factor of P, then there
exist a0, . . . , a`−1 ∈ N(βw) such that (6.9) holds.

Now combining Theorem 6.13 with Theorem 3.1 we have the following result:

Theorem 6.14. The set INT(K, p, t) is diophantine over K .

Proof. The only remaining task is rewriting (6.9) as a polynomial equation overK so that
the variables range over K . It is enough to consider the case of ` 6= p. The case of ` = p
is similar. First of all, it is not hard to see that the coefficients of P(a0, . . . , a`−1) are in
fact in Fp(a) ⊂ K . However, the variables a0, . . . , a`−1 can take values in N(βw). So to
reach the conclusion that

{w : ∃a0, . . . , a`−1 ∈ N(βw) : P(a0, . . . , a`−1) = hw = t
−1w` + t−`}

is diophantine over N we need Theorem 3.1. In our application of the theorem, we set
n = 1, n2 = 0, n3 = `, t1 = w, x = βw, g(X,w) = hwX

`
− (hw + 1), f (w, ā) =

P(ā)− hw. Observe that hw is never zero. ut

We now add our result on definability of p-th powers to the proposition above to conclude
that the following assertion is true:
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Theorem 6.15. Let K be a function field satisfying the assumptions of 6.1. Then there
exists a finitely generated recursive subfield Kf of the algebraic closure of Fp(t) such
that Hilbert’s Tenth Problem for K with coefficients in Kf is undecidable. That is, there
is no algorithm to determine whether a polynomial equation with coefficients in Kf has
solutions in K .

Remark 6.16. We observe that the only symbols we needed to write down an existential
definition of a model of the integers are contained in some finite extension of the rational
field over a finite field of constants. So as indicated in the introduction in the statement of
Theorem 1.2, we can take Kf to be a finite extension of Fp(t).

6.1. Proof of Theorems 1.1 and 1.2: removing the assumptions on K

To prove Theorems 1.1 and 1.2 we need to remove the assumptions we imposed on K at
the beginning of Section 6. We show that given an arbitrary function field G of positive
characteristic and not containing the algebraic closure of a finite field, we can a find a
finite extension K of G where all the assumptions above are satisfied. We proceed in
several steps.

(1) Let M be the field obtained by adjoining to G the algebraic closure F of the constant
field of G. Since the constant field of M is perfect, as in the section on p-th powers,
we can find a non-constant element z of M such that M/F(z) is separable, implying
z is not a p-th power in M .

(2) LetM0 be the algebraic closure of F0(z) inM . Here F0 is the algebraic closure of Fp.
Observe that z is not a p-th power in M0, and hence the extension M0/F0(z) is also
separable.

(3) Consider now the extensions M/F(z) and M0/F0(z). Let γ ∈ M and γ0 ∈ M0 be
such that M = F(γ, z) and M0 = F0(γ0, z). Let 0 ⊂ F be a finite set containing
all the coefficients of the monic irreducible polynomials of γ and γ0 over F(z) and
F0(z), respectively.

(4) Since both extensions M/F(z) and M0/F0(z) are finite and there are only finitely
many ramified primes, we can find c1, c2 ∈ F0 such that t = w−c1

w−c2
has only simple

zeros in both M and M0. We can also select c1, c2 so that t does not have zeros
or poles at the zeros of the discriminant of the power basis of γ or γ0, and γ and
γ0 are both integral with respect to the zero and pole divisors of t . Observe that
F0(t) = F0(z) and F(t) = F(z).

(5) Consider the monic irreducible polynomial of γ (or γ0) over F(z) (or F0(z)) modulo
the zero divisor of t and also modulo the pole divisor of t . Let 1 ⊂ F be a finite set
containing all the roots of the reduced polynomials.

(6) Set K = G(t, γ, γ0, 0,1) and add, if necessary, the primitive `-th roots of unity.

Now we can give the proofs of the main theorems.

Proof of Theorems 1.1 and 1.2. As above, let C and C0 be the constant fields of K0
andK , respectively, and consider the extensionsK/C(t) andK0/C0(t). By construction,
γ has the same monic irreducible polynomial over C(t) and F(t), and γ0 has the same
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monic irreducible polynomial over C0(t) and F0(t). Since the extensions M/F(t) and
M0/F0(t) are separable, all the roots of these polynomials are distinct. Hence the exten-
sionsK/C(t) andK0/C0(t) are also separable. Also by construction, the pole divisor and
the zero divisor of t are prime to the divisor of the discriminant of the power bases of γ
and γ0, and both γ and γ0 are integral with respect to the zero divisor and the pole divisor
of t . Consequently, the power bases of γ and γ0 are both integral bases with respect to the
primes which are the pole and the zero of t in F(t) and F0(t) respectively, and the pole
and the zero of t do not ramify in either extension.

Further, by [Lan70, Chapter 1, §8, Proposition 25], the factorization of the monic
irreducible polynomials of γ and γ0 corresponds to the factorization of the zero and the
pole of t in K and K0, respectively. However, by construction again, these polynomials
factor completely (into distinct factors) modulo the zero divisor and modulo the pole
divisor of t . So both primes will factor into (unramified) factors of relative degree 1.
Since the pole divisor and the zero divisor of t are are also of degree 1, we conclude that
their factors in M and M0 are also of degree 1. Finally, we note that C does not contain
the algebraic closure of Fp, as was noted in Lemma 6.2.

Now by Corollary 3.3, we can conclude that Hilbert’s Tenth Problem is unsolvable
over G (with the usual clarification in case G is uncountable). This concludes the proof
of Theorems 1.1 and 1.2. ut

7. First-order undecidability of function fields of positive characteristic

Let K be any function field of positive characteristic, and t ∈ K an element with simple
zeros and poles. In [ES09, Theorem 2.9] we showed that if P(K, t) = {x ∈ K :

∃s ∈ Z≥0 : x = tp
s
} is first-order definable over K , then (Z, 1, |,+,=) has a model

over K in a first-order ring language with finitely many parameters. Since the first-order
theory of (Z, 1, |,+,=) is undecidable (see [Rob49]), this implies that the first-order
theory of K in a ring language with finitely many parameters is undecidable whenever
P(K, t) is first-order definable over K . The transition to the ring language without pa-
rameters uses a result of R. Robinson [Tar53]. It is in [ES09, Section 5] and does not
depend on the nature of the field. Since we have now defined P(K, t) existentially over
any function field of positive characteristic, the conclusion of Theorem 2.9 applies to
any such field, and so does the strengthening of the result to the the first-order language
without parameters.
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