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Abstract. We show asymptotic completeness for a class of superradiant Klein–Gordon equations.
Our results are applied to the Klein–Gordon equation on the De Sitter–Kerr metric with small
angular momentum of the black hole. For this equation we obtain asymptotic completeness for
fixed angular momentum of the field.
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1. Introduction

1.1. Introduction

Asymptotic completeness is one of the fundamental properties one might want to show
for a Hamiltonian describing the dynamics of a physical system. Roughly speaking it
states that the Hamiltonian of the system is equivalent to a free Hamiltonian for which
the dynamics is well understood. The dynamics that we want to understand behaves then
at large times like this free dynamics modulo possible eigenvalues. In the case when
the Hamiltonian is selfadjoint with respect to some suitable Hilbert space inner product,
an enormous amount of literature has been dedicated to this question. The question is
much less studied in the case when the Hamiltonian is not selfadjoint. This situation
occurs for example for the Klein–Gordon equation when the field is coupled to a (strong)
electric field. This system has been studied by Kako [25] in the short range case and by
C. Gérard [16] in the long range case. In this situation the Hamiltonian, although not
selfadjoint on a Hilbert space, is selfadjoint on a so called Krein space. In a previous
paper [17] we addressed the question of boundary values of the resolvent for selfadjoint
operators on Krein spaces. Applications to propagation estimates for the Klein–Gordon
equation are given in [18].
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The Klein–Gordon equation can be written in a quite general setting in the form

(∂2
t − 2ik∂t + h)φ = 0, φ : R→ H, (1.1)

with selfadjoint operators k and h. However, if h is not positive the natural conserved
energy for (1.1),

‖∂tφ‖
2
+ (φ|hφ),

is not positive and in general no positive conserved energy is available. This happens in
particular when the equation is associated to a Lorentzian manifold with no global time-
like Killing vector field. In this situation natural positive energies can grow in time, and we
will loosely speak about superradiance, the most famous example being the (De Sitter)
Kerr metric which describes rotating black holes. This example does not enter into the
framework of our previous papers because the Hamiltonian can no longer be realized as
a selfadjoint operator on a Krein space whose topology is given by some natural positive
(but not conserved) energy. The problem comes from the fact that the operator k has
different “limit operators” at the different ends of the manifold. In the one-dimensional
case scattering results for this situation have been obtained by Bachelot [4].

Asymptotic completeness for wave equations on Lorentzian manifolds has been stud-
ied for a long time since the works of Dimock and Kay in the 1980’s (see e.g. [10]).
The main motivation came from the Hawking effect. Such results are a necessary step to
give mathematically rigorous descriptions of the Hawking effect (see Bachelot [3] and
Häfner [22]). The most complete scattering results exist in the Schwarzschild metric (see
e.g. Bachelot [2]). Asymptotic completeness has also been shown on the Kerr metric
for nonsuperradiant modes of the Klein–Gordon equation (see Häfner [21]) and for the
Dirac equation (for which no superradiance occurs; see Häfner–Nicolas [23]). In this set-
ting asymptotic completeness can be understood as an existence and uniqueness result
for the characteristic Cauchy problem in energy space at null infinity (see [23] for de-
tails). As far as we are aware, asymptotic completeness has not been addressed in the
setting of superradiant equations on the (De Sitter) Kerr background. Note however that
scattering results have been obtained by Dafermos, Holzegel and Rodnianski [6] in the
difficult nonlinear setting of the Einstein equations supposing exponential decay for the
scattering data on the future event horizon and at future null infinity. Also there has been
enormous progress in the last years on a somewhat related question of decay of the local
energy for the wave equation on the (De Sitter) Kerr metric. In this context we mention
the papers of Andersson–Blue [1], Dyatlov [12], Dafermos–Rodnianski [7], Dafermos–
Rodnianski–Shlapentokh-Rothman [8], Finster–Kamran-Smoller–Yau [14], [15], Tataru–
Tohaneanu [29] and Vasy [30] as well as references therein for an overview.

Let us make some comments on the similarities and differences between asymptotic
completeness results and decay of the local energy:

– For a hyperbolic equation like the wave equation, the essential ingredients for asymp-
totic completeness are minimal velocity estimates stating that the energy in cones inside
the light cone goes to zero. No precise rate is required, but no loss of derivatives is per-
mitted in the estimates.
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– Energy estimates are necessary for asymptotic completeness. One needs to estimate the
energy at null infinity by the energy on a t = 0 slice and the energy at the time t = 0
slice by the energy at null infinity. Leaving aside the question of loss of derivatives, the
first estimate can probably be deduced from the local energy decay estimates. For the
other direction however a new argument is needed. Indeed, most of the local energy
decay estimates use the redshift, which becomes a blueshift in the inverse sense of time
(see [6]).

– The choice of coordinates has probably to be different. Whereas coordinates that extend
smoothly across the event horizon are well adapted to the question of decay of local
energy, they do not seem to be well adapted for showing asymptotic completeness
results.

We refer to [27] for a more detailed discussion on the link between local energy decay
and asymptotic completeness results.

In this paper we show asymptotic completeness results for the superradiant Klein–
Gordon equation in a quite general setting. Our abstract Klein–Gordon operators have to
be understood as operators acting on Rt ×6, where 6 is a manifold with two ends, both
asymptotically hyperbolic. Another important feature is that the operators are independent
of t , which allows us to reduce the Klein–Gordon equation to the form (1.1) and to rewrite
it as a first order evolution equation

∂tu = iHu, u = (φ, i−1∂tφ)

(see Subsect. 2.2). The generator H will be called the Hamiltonian in what follows.
A more detailed description is given in Sect. 2.

We also impose the existence of “limit Hamiltonians” at the ends which can be re-
alized as selfadjoint operators on a Hilbert space. In this setting the nonreal spectrum of
the Hamiltonian consists of a finite number of complex eigenvalues with finite multiplic-
ity, we can define a smooth functional calculus for the Hamiltonian, and the truncated
resolvent can be extended meromorphically across the real axis. We show propagation
estimates for initial data which in energy are supported outside so called singular points.
These singular points are closely related to real resonances, but unlike the selfadjoint
setting there may be singular points which are not real resonances.

From the propagation estimates it follows in particular that the evolution is uniformly
bounded for data supported in energy outside the singular points. The same holds true for
high energy data for which no superradiance appears.

We then apply our results to the De Sitter–Kerr metric with small angular momentum.
We show asymptotic completeness for a fixed but arbitrary angular momentum n of the
field. For n 6= 0 the absence of real resonances follows from the results of Dyatlov [11].
However, some additional work is required to show the absence of singular points. As
usual for asymptotic completeness results and to simplify the exposition, we consider
only the limit as t →∞. All the results in this paper also hold for the t →−∞ limit and
the proofs are the same.

Our main example is the Klein–Gordon equation for the De Sitter–Kerr metric. Never-
theless we have found it appropriate to present several parts of this paper in more abstract
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settings. We have tried to present each type of results (definition of energy spaces, gen-
erator of the dynamics, meromorphic extension of the resolvent, propagation estimates
etc.) in its natural generality. On the one hand, this permits one to better understand the
mechanisms behind the proofs, on the other hand the method seems general enough to
include other examples in the future. For example, the charged Klein–Gordon equation
for the De Sitter–Reissner–Norström metric can certainly be handled by this method. For
this equation there is also no positive conserved energy if the product of the charge of
the black hole and the charge of the field is too big. However, the method does not seem
to be general enough to treat the charged Klein–Gordon equation on the De Sitter–Kerr
Newman metric. In this case the operator k has limits which depend on the angle θ and the
limit operator does not commute with the equation, which is an essential feature of our
construction. A summary of our results for a class of Klein–Gordon equations including
the case of the De Sitter–Kerr spacetime is given in the next section.

Note added in proof. After this paper was completed, Dafermos, Rodnianski and Shla-
pentokh-Rothman [9] have shown existence and completeness of wave operators in the
Kerr spacetime by quite different methods making use of their decay results in [8]. Our
restriction to fixed angular momentum is dropped in [9].

1.2. Plan of the paper

– Sect. 2 contains a summary of the main results of this paper.
– In Sect. 3 we collect some results on general abstract Klein–Gordon equations and give

some basic resolvent estimates. It turns out that already in this abstract setting superra-
diance can only occur at low frequencies, as expressed in the estimates of Lemma 3.6.
This fact is already known for the Kerr metric (see e.g. Dafermos–Rodnianski [7]), but
not in this spectral formulation. We also study gauge transformations in Sect. 3.5.3. In
a more geometric language, they correspond to choices of different Killing fields.

– In Sect. 4 we recall some elements of meromorphic Fredholm theory. We show that a
meromorphic extension of the truncated resolvent of h gives a meromorphic extension
of the weighted resolvent of H .

– In Sect. 5 we describe the abstract setting for a Klein–Gordon operator on a manifold
with two ends. Our assumptions ensure that the asymptotic Hamiltonians at the ends
are selfadjoint. Gluing the resolvents of the asymptotic operators together gives the
resolvent forH by using the Fredholm theory of Sect. 4. In this way we obtain resolvent
estimates for the Hamiltonian H which are sufficient to construct a smooth functional
calculus for H .

– In Sect. 6 we prove propagation estimates which are needed for the proof of the asymp-
totic completeness result. We also introduce the notion of singular points. Singular
points are obstacles to uniform boundedness of the evolution and therefore also to
asymptotic completeness. A useful criterion for the absence of singular points is given.

– In Sect. 7 we show uniform boundedness of the evolution for data which are spectrally
supported outside the singular points.

– Asymptotic completeness is shown in the abstract setting in Sect. 8. The scattering
space corresponds to data which are supported in energy outside the singular points.
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– The geometric setting introduced in Sect. 2 is developed in Sect. 9. The main task is to
check that the operators there fulfill the hypotheses of the abstract setting. In particular,
existence of meromorphic extensions of weighted resolvents is deduced from a result
of Mazzeo–Melrose [26].

– In Sect. 10 we apply our general result of Sect. 8 to the geometric setting and obtain an
asymptotic completeness result in that setting.

– In Sect. 11 we describe the Klein–Gordon equation for the De Sitter–Kerr metric.
– In Sect. 12 the main results are formulated in the De Sitter–Kerr setting. Two types

of results are established: comparison to spherically symmetric asymptotic dynamics
on the same energy space and comparison to asymptotic profiles. These asymptotic
profiles give rise to energy spaces which are bigger than the original ones. The wave
operators can therefore only be defined as limits on dense subspaces. They then extend
by continuity to the whole energy space for the profiles. Inverse wave operators exist
on the whole energy space as limits.

– The proofs of the theorems in the De Sitter–Kerr setting are given in Sect. 13. We ap-
ply our earlier abstract theorems. To obtain the meromorphic extensions of the differ-
ent truncated resolvents it is crucial that the cosmological constant is strictly positive.
The absence of real resonances and complex eigenvalues follows from the work of
Dyatlov [11] for a compactly supported cut-off resolvent. A hypoellipticity argument
enables us to use an exponential weight. Our general criterion of Section 6 then yields
the absence of singular points.

The paper contains a certain number of hypotheses. Hypotheses (A), (ME), (TE), (PE)
and (B) are formulated in an abstract Hilbert space setting. The more concrete geometric
hypotheses (G) imply hypotheses (A), (ME), (TE), (PE), and (B). Below we list the places
where the different hypotheses are introduced.

• The geometric hypotheses (G) are introduced in Sect. 2.1.
• The abstract hypotheses (A) are introduced in Sect. 3.4.
• The hypotheses on meromorphic extensions (ME) are introduced in Sect. 4.2.
• The hypotheses on Klein–Gordon operators “with two ends” (TE) are introduced in

Sects. 5.1 and 5.2.
• The additional hypothesis to obtain propagation estimates (PE) is introduced in

Sect. 6.4.
• The additional hypothesis for boundedness (B) is introduced at the beginning of Sect. 7.

2. Summary of the results

In this section we will present a summary of the results of our paper about concrete Klein–
Gordon equations. We introduce a class of Klein–Gordon equations which, while being
more general than the Klein–Gordon equations on De Sitter–Kerr spacetimes, retain their
essential features: invariance under time translations and axial rotations, and existence of
an ergosphere. These Klein–Gordon equations fit into the general framework

(∂2
t − 2ik∂t + h)φ = 0, (2.1)
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where φ : R → H and h, k are two selfadjoint operators on some Hilbert space H, to
which a large part of the paper is devoted.

2.1. A class of Klein–Gordon equations

We set M = ]r−, r+[r × Sd−1
ω . We consider Klein–Gordon equations on Rt ×M of the

form
(∂2
t − 2ik∂t + h)φ = 0, (2.2)

where k, h are differential operators on M of order 1 and 2 respectively independent of t ,
and are perturbations of simpler separable operators, which we now introduce.

To measure the size of a perturbation, we set q(r) :=
√
(r+ − r)(r − r−) and define

T σ = {f ∈ C∞(M) : ∂αr ∂
β
ωf ∈ O(q(r)σ−2α)}, (2.3)

so that f ∈ T σ for σ > 0 vanishes at r = r±. We also fix cut-off functions i± ∈
C∞([r−, r+]) with i− = 0 in a neighborhood of r+, i+ = 0 in a neighborhood of r− and
i2− + i

2
+ = 1.

2.1.1. Separable Klein–Gordon equations. We fix

P =

d−1∑
i,j=1

D∗i αij (ω)Dj ≥ 0,

a symmetric elliptic operator on L2(Sd−1, dω), so that (P,H 2(Sd−1, dω)) is selfadjoint.
We assume that for a suitable choice of coordinate θ1 (the azimuthal angle ϕ if d = 3),
L2(Sd−1, dω) has a basis of eigenfunctions ofDθ1 . Let Y n be the eigenspace correspond-
ing to the eigenvalue n ∈ Z. Then we have

L2(Sd−1, dω) =
⊕
n∈Z

Y n.

Our first assumption is

[P,Dθ1 ] = 0, i.e. the αij are independent of θ1. (G1)

We fix a second order differential operator on M of the form

h0,s = α1Drα
2
2Drα1 + α

2
3P + α

2
4 . (2.4)

Here αi, 1 ≤ i ≤ 4, are smooth functions depending only on r . We suppose that there
exist α±j ∈ R, 1 ≤ j ≤ 4, such that for some δ > 0,

αj − q(r)(i−α
−

j + i+α
+

j ) ∈ T
1+δ, αj & q(r). (G2)

Note that (G2) implies
αj ∈ T

1, αj . q(r). (2.5)
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We will also need a first order operator on M of the form

ks = ks,rDθ1 + ks,v. (2.6)

Here ks,r and ks,v are smooth functions depending only on r . We suppose that there exist
k−s,v, k

−
s,r ∈ R such that for some δ > 0,

i+ks,r , i+ks,v ∈ T
2,

i−(ks,r − k
−
s,r) ∈ T

2,

i−(ks,v − k
−
s,v) ∈ T

2.

(G3)

We set
hs = h0,s − k

2
s .

The associated separable Klein–Gordon equation is

(∂2
t − 2iks∂t + hs)φ = 0. (2.7)

2.1.2. Perturbed Klein–Gordon equations. We fix a perturbation h0 of h0,s of the form

h0|C∞0 (M) = h0,s +

d−1∑
i,j=1

D∗i g
ijDj +

d−1∑
i=1

(giDi +D
∗

i g
i)

+Drg
rrDr + g

rDr +Drg
r
+ f

=: h0,s + hp. (2.8)

We also fix a perturbation k of ks of the form

k := ks + (kp,rDθ1 + kp,v) =: ks + kp, (2.9)

We assume

the functions gij , gi, grr , gr , f, kp,r , kp,v are independent of θ1, (G4)

h0 & α1(r)(Drq
2(r)Dr + P + 1)α1(r),

h0,s & α1(r)(Drq
2(r)Dr + P + 1)α1(r),

(G5)

where the notation & is explained in Subsect. 3.1.
The asymptotic behavior of the various coefficients of the perturbations hp, kp is as-

sumed to be as follows:

gij ∈ T 2+δ, grr ∈ T 4+δ, gr ∈ T 2+δ, for some δ > 0,
gi, kp,r , kp,v, f ∈ T

2.
(G6)

We set
h := h0 − k

2,

and consider the perturbed Klein–Gordon equation

(∂2
t − 2ik∂t + h)φ = 0. (2.10)
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We introduce the Hilbert spaces H = L2(]r−, r+[r×Sd−1
ω ; drdω) and Hn

= H ∩
Ker(Dθ1−n). All operators have natural restrictions to the space Hn, which we denote by
a superscript n, for example hn0 is the restriction of h0 to Hn. The operator kn is bounded
and (hn,D(hn0)) is selfadjoint. Let j± ∈ C∞(]r−, r+[) be such that j− = 1 close to r−,
j− = 0 close to r+, j+ = 1 close to r+, j+ = 0 close to r− and

j±i± = j±, i+j− = i−j+ = 0.

Let ` := nk−s,r + k
−
s,v and

k± := k ∓ j̀2
∓, h± := h0 − k

2
±. (2.11)

We also set

h̃− := h− + 2`k− − `2
= h0 − (`− k−)

2. (2.12)

We require

∃` ∈ R such that (h+, k+) and (h̃−, k− − `) satisfy (G5) with h0 replaced by hn+, h̃
n
−.

(G7)

Remark 2.1. Let us now make some comments on the various hypotheses (G): (G1) and
(G4) express the axisymmetry of the problem, (G2), (G3), (G5) and (G6) the behavior
at the two infinities r = r± of the various operators. In other words, h0 tends to h0,s
at r = r±, while k tends to 0 at r+ and to k−s,r(r−)Dθ1 + k

−
s,v(r−) at r−. It is an essen-

tial feature of the problem that ks,r(r±) and ks,v(r±) are constants independent of θ . The
positivity condition (G5) expresses the fact that the Cauchy surface {t = 0} is spacelike.
Finally, condition (G7) can be interpreted as follows. Whereas the operator h is not posi-
tive, it is positive near r+. Further, h+ is an operator which is equal to h near r+ and differs
from it near r− so that it becomes positive. This change can be seen as only effected on
k, we keep h0 which is the good positive operator. The change of k gives a change of h
via the formula h = h0 − k

2. Condition (G7) ensures that the asymptotic operators so
constructed give rise to a selfadjoint problem on an appropriate energy space. The situ-
ation near r− seems at first glance a little different, but can be reduced to the situation
near r+ by considering v = e−it`u instead of u. The function v fulfills a Klein–Gordon
equation, where h is replaced by h0 − (k − `)

2 and k is replaced by k − `. We then apply
this same procedure to the new operators h0 − (k − `)

2, k − `. Rather than a change in
the unknown function, this can also be seen as a change of the energy we consider. In the
De Sitter–Kerr case this means that near r− we consider an energy associated to ∂t + c∂ϕ
for some appropriate c rather than ∂t . We refer to Sect. 3.5.3 for details.

It will be shown in Sect. 11 that Klein–Gordon equations in De Sitter–Kerr spacetimes
can be reduced to (2.10), with assumptions (G) satisfied, after some changes of unknown
function.
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2.2. Energy spaces

Set H = L2(]r−, r+[ × Sd−1, drdω) and consider the Cauchy problem for (2.10):
(∂2
t − 2ik∂t + h)φ = 0,

φ|t=0 = u0,

i−1∂tφ|t=0 = u1,

(2.13)

for φ : R→ H. The hyperbolic nature of the equation is expressed by the condition

h0 := h− k
2
≥ 0.

Setting u(t) = (φ(t), i−1∂tφ(t)), we can formally rewrite (2.13) as

u(t) = eitHu, u = (u0, u1),

for

H =

(
0 1

h 2k

)
.

It is well known that there are two natural hermitian forms formally conserved by the
evolution eitH . The first is the charge:

q(u, u) = (u1|u0)H + (u0|u1)H − 2(u0|ku0)H (2.14)

where (·|·)H is the scalar product for the Hilbert space H = L2(]r−, r+[r×Sd−1
ω , drdω).

The charge is of course related to the symplectic nature of Klein–Gordon equations.
The second is the energy

E(u, u) := (u1|u1)H + (u0|hu0)H (2.15)

related in concrete models to the Killing vector field ∂t . On De Sitter–Kerr spacetimes,
there exists no global time-like Killing vector fields, which implies that E(u, u) is not
positive. Therefore E cannot be directly used to equip the space of Cauchy data with a
topology.

A large part of our paper will be devoted to the proof of resolvent estimates for
(H − z)−1 when z approaches the real axis. The natural functional framework is as fol-
lows:

One defines the homogeneous energy space Ė to be the completion of C∞0 (M) ⊕

C∞0 (M) for the norm

‖u‖2Ė := ‖u1 − ku0‖
2
H + (u0|h0u0)H (2.16)

(see Subsect. 3.5). One can then show that the formal expression H has a natural mean-
ing as a closed, densely defined operator on Ė , denoted by Ḣ (see Subsect. 3.5), which
is the generator of a strongly continuous group on Ė , henceforth denoted by eitḢ (see
Subsect. 3.6).

One then denotes by Ėn, Ḣ n the energy spaces and generators associated to Hn.
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Remark 2.2. Let v = e−iktu. Then u is a solution of (2.1) if and only if v is a solution
of

(∂2
t + h(t))v = 0, h(t) = e−ikth0e

ikt , h0 = h+ k
2
≥ 0.

The natural energy for v is
‖∂tv‖

2
+ (h(t)v|v).

Rewriting this energy for u gives (2.16).

2.3. Propagation estimates

Applying the abstract results of Sect. 5 to our concrete situation, we obtain the following
intermediate results.

2.3.1. Smooth functional calculus. The operators Ḣ n admit a smooth functional calcu-
lus, i.e. there exists a map

C∞0 (R) 3 χ 7→ χ(Ḣ n) ∈ B(Ėn)

which is a ∗-algebra morphism.
The above functional calculus extends trivially to the space C1 + C∞0 (R) of smooth

functions constant near ∞ by setting (λ + χ)(Ḣ n) = λ1 + χ(Ḣ n) for λ ∈ C and
χ ∈ C∞0 (R).

Moreover if σC
pp(Ḣ

n) = ∅ (i.e. Ḣ n has no complex eigenvalues), then for χ ∈ C∞0 (R)
with χ ≡ 1 near 0 one has

s- lim
R→∞

χ(R−1Ḣ n) = 1

(see Prop. 5.11).

2.3.2. Boundedness of the evolution away from singular points. From Sect. 5 one also
obtains the existence of a bounded, closed, discrete set Sn ⊂ R such that if χ ∈ C1 +
C∞0 (R) vanishes near Sn then

sup
t∈R
‖eitḢ

n

χ(Ḣ n)‖B(Ėn) <∞. (2.17)

We call the elements of S =
⋃
n∈Z Sn singular points for Ḣ .

2.3.3. Propagation estimates away from singular points. Another consequence of the ab-
stract results of Sect. 6 is propagation estimates for eitḢ

n
away from S: if χ ∈ C∞0 (R\S)

and ε > 0 then ˆ
R
‖q(r)εe−itḢ

n

χ(Ḣ n)u‖2Ėn dt ≤ Cn‖u‖
2
Ėn . (2.18)
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2.3.4. Absence of singular points for De Sitter–Kerr. One of the key intermediate results
of our paper is Prop. 13.1, which asserts that for De Sitter–Kerr Klein–Gordon equations,
S is actually empty, provided the blackhole angular momentum a is small enough. We
deduce this from the work of Dyatlov [11].

2.4. Scattering theory

If we know that S = ∅, the estimates (2.17) and (2.18) are sufficient to apply the gen-
eral methods of time-dependent scattering theory to the (nonselfadjoint) operators Ḣ n,
provided one first defines appropriate comparison dynamics.

Since M has two ends r = r±, we need two comparison dynamics, generated by
Hamiltonians Ḣ±∞. For l = l(n) = nk−s,r + k

−
s,v ∈ R we set (see (G3))

h+∞ := h0,s, h−∞ := h+∞ − `
2, k+∞ := 0, k−∞ := `.

The asymptotic Hamiltonians are then

Ḣ+∞ :=

(
0 1

h+∞ 0

)
, Ḣ−∞ :=

(
0 1

h−∞ 2`

)
,

which are selfadjoint as operators on their natural energy spaces Ė±∞ (see Sect. 10).
Moreover the cut-off maps i± introduced in Subsect. 2.1 map Ė±∞ into Ė and Ė into
Ė±∞.

The main result of our paper is then the following theorem (see Thm. 10.5), which
by 2.3.4 applies to Klein–Gordon equations on De Sitter–Kerr spacetimes for a small
enough:

Theorem 2.3. Assume hypotheses (G) and that S = ∅. Then:

(i) For all ϕ± ∈ Ė±∞ there exist ψ± ∈ Ė such that

e−itḢ
n

ψ± − i±e
−itḢ n

±∞ϕ±→ 0, t →∞, in Ė .

(ii) For all ψ± ∈ Ė there exist ϕ± ∈ Ė±∞ such that

e−itḢ
n
±∞ϕ± − i±e

−itḢ n

ψ±→ 0, t →∞, in Ė±∞.

Remark 2.4. (i) Theorem 2.3 is an asymptotic completeness result. We fix the angular
momentum n. Then for every data in the asymptotic energy space we find data in the
full energy space such that the difference between the asymptotic solution multiplied by
a suitable cut-off and the full solution goes to zero (part (i)). Similarly for every data in
the full energy space we find data in the asymptotic energy space such that an analogous
difference goes to zero (part (ii)). Part (i) asserts the existence of direct wave operators,
and (ii) the existence of inverse wave operators.

(ii) An important point in the theorem is that Ḣ n
± are selfadjoint operators on their

energy space. The associated dynamics can now be compared to even simpler asymptotic
dynamics by the usual Hilbert space methods. We will illustrate this point in the concrete
case of the De Sitter–Kerr metric.
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2.5. The Klein–Gordon equation for the De Sitter–Kerr metric

We refer to Section 11 for an introduction to the De Sitter–Kerr metric and the Klein–
Gordon equation associated to it. Let Ḣ n and Ė be the first order Klein–Gordon operator
and homogeneous energy space associated to the Klein–Gordon equation with fixed an-
gular momentum n for the De Sitter–Kerr metric with angular momentum a.

Remark 2.5 (Energy spaces in the De Sitter–Kerr case). In the De Sitter–Kerr case the
energy ‖u‖Ė follows the local rotation of the spacetime. To see this, first observe that in
this case

∂t − ik =
∇
a t

(∇bt∇bt)1/2
=: T ,

and T is the four-velocity of a locally nonrotating observer. The energy ‖u‖Ė is associated
to T rather than ∂t . We also observe that k = �Dϕ and � has finite limits �−/+ when
r → r∓. Here r− corresponds to the black hole horizon and r+ to the cosmological
horizon. These limits are called the angular velocities of the horizons. The Killing fields
∂t − �−/+∂ϕ on the De Sitter–Kerr metric are timelike close to the black hole (−) resp.
cosmological (+) horizon. Working with these Killing fields rather than with ∂t leads to
the conserved energies

‖u‖2Ẽ−/+
= ‖(∂t −�−/+∂ϕ)u‖

2
+ (h0 − (k −�−/+Dϕ)

2u | u).

Note that in the limit k→ �−/+Dϕ the expressions of ‖u‖Ė and ‖u‖Ẽ−/+ coincide.

Our first result is

Theorem 2.6. There exists a0 > 0 such that for all |a| < a0 and n ∈ Z, there exists
Cn > 0 such that

‖e−itḢ
n

u‖Ėn ≤ Cn‖u‖Ėn , u ∈ Ėn, t ∈ R. (2.19)

To describe our asymptotic completeness result we introduce a Regge–Wheeler type coor-
dinate x. This change of coordinate gives rise to a change of the Hamiltonian, the Hilbert
space Hn and the energy space. We denote the resulting Hamiltonian and spaces again
by Ḣ n, Hn and Ėn. We now introduce the Hamiltonians Ḣ+, Ḣ− which describe the
simplest possible asymptotic comparison dynamics. Let `± := �±n and

hn+/− := −∂
2
x − `

2
+/−, k+/− := `+/−,

acting on Hn. We associate to these operators the natural homogeneous energy spaces
Ėn−/+ and Hamiltonians Ḣ n

−/+.

Theorem 2.7. There exists a0 > 0 such that for all |a| < a0 and n ∈ Z\{0} the following
holds:

(i) For all u ∈ Efin,n
+/− the limits

W+/−u := lim
t→∞

eitḢ
n

i2+/−e
−itḢ n

+/−u

exist in Ėn. The operators W+/− extend to bounded operators W+/− ∈ B(Ėn+/−; Ėn).
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(ii) The inverse wave operators

�+/− := s- lim
t→∞

eitḢ
n
+/− i2+/−e

−itḢ n

exist in B(Ėn; Ėn+/−).

Statements (i) and (ii) also hold for n = 0 if m > 0.

Remark 2.8. (i) The limits in (i) cannot exist on the whole asymptotic homogeneous
energy space. The spaces Efin,n

+/− are subspaces of the asymptotic homogeneous energy
spaces. The elements of these energy spaces have a finite number of eigenmodes with
respect to a certain elliptic reference operator (see Sect. 12.3 for details). This problem
does not exist if one compares for example to a separable comparison dynamics (see
Sect. 12.2).

(ii) The dynamics in the above theorem can be computed explicitly (see Sect. 12.3 for
details).

(iii) Other comparison dynamics are natural, in particular in the massless case. In this
case an interesting comparison dynamics is the one that pushes the first component along
the flow of incoming principal null geodesics and the second component along the flow of
outgoing principal null geodesics. In this case an asymptotic completeness result can be
interpreted as an existence and uniqueness result for the characteristic Cauchy problem at
infinity. We refer to [27] for the Schwarzschild case and to [23] for the Dirac equation for
the Kerr–Newman metric.

(iv) Theorem 2.7 is a result for fixed angular momentum. It seems nevertheless to be
a good starting point if one wants to establish a mathematically precise description of the
Hawking effect for bosons in the De Sitter–Kerr setting. Indeed the chemical potential of
the Hawking state will depend on the angular momentum (see [22]).

3. Background on abstract Klein–Gordon operators

3.1. Notation

– If X, Y are sets and f : X → Y , we write f : X →̃ Y if f is bijective. We use the
same notation if X, Y are topological spaces and f is a homeomorphism.

– If H is a Banach space we denote by H∗ its adjoint space, the set of continuous anti-
linear functionals on H equipped with the natural Banach space structure. Thus the
canonical anti-duality 〈u,w〉, where u ∈ H and w ∈ H∗, is anti-linear in u and linear
in w. In general we denote by 〈·|·〉 hermitian forms on H, again anti-linear in the first
argument and linear in the second one, but if H is a Hilbert space its scalar product is
denoted by (·|·).

– B(H) is the space of bounded operators on H, and B∞(H) the subspace of compact
operators.

– If S is a closed densely defined operator on a Banach space, thenD(S), ρ(S), σ(S) are
its domain, resolvent set and spectrum. We use the notation 〈S〉 = (1 + S2)1/2 if S is
an operator for which this expression has a meaning, in particular if S is a real number.
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– If S is a selfadjoint operator on a Hilbert space then S > 0 means S ≥ 0 and
Ker S = {0}.

– If A,B are two selfadjoint operators or real numbers (possibly depending on some
parameters), we write A . B if A ≤ CB for some constant C > 0 (uniformly with
respect to the parameters).

3.2. Scales of Hilbert spaces

Let H be a Hilbert space identified with its adjoint space H∗ = H via the Riesz isomor-
phism. If h is a selfadjoint operator on H we associate to it the nonhomogeneous Sobolev
spaces

〈h〉−sH := Dom |h|s, 〈h〉sH := (〈h〉−sH)∗, s ≥ 0.

The spaces 〈h〉−sH are equipped with the graph norm ‖〈h〉su‖. We keep the notation

(u|v), u ∈ 〈h〉−sH, v ∈ 〈h〉sH,

for the duality bracket between 〈h〉−sH and 〈h〉sH.
If Kerh = {0} then we also define the homogeneous Sobolev space |h|sH equal to

the completion of Dom |h|−s for the norm ‖ |h|−su‖. The notation 〈h〉sH or |h|sH is
convenient but somewhat ambiguous because usually aH denotes the image of H under
the linear operator a. We refer to [18, Subsect. 2.1] for a complete discussion of this
question.

Let us mention some properties of the scales of spaces defined above:

• 〈h〉−sH ⊂ 〈h〉−tH if t ≤ s, 〈h〉−sH ⊂ |h|−sH and |h|sH ⊂ 〈h〉sH if s ≥ 0,
• 〈h〉0H = |h|0H = H, 〈h〉sH = (〈h〉−sH)∗, |h|sH = (|h|−sH)∗,
• 0 ∈ ρ(h)⇔ 〈h〉sH = |h|sH for some s 6= 0⇔ 〈h〉sH = |h|sH for all s,
• the operator |h|s is unitary from |h|−tH to |h|s−tH for all s, t ∈ R.

3.3. Quadratic pencils

Let H be a Hilbert space, h a selfadjoint operator on H, and k ∈ B(H) a bounded sym-
metric operator. Then h0 = h + k

2 is a selfadjoint operator on H with the same domain
as h, hence 〈h〉sH = 〈h0〉

sH for s ∈ [−1, 1]. Thus the operators h and h0 define the same
scale of Sobolev spaces for s ∈ [−1, 1], which we shall denote

Hs
:= 〈h〉−sH = 〈h0〉

−sH if −1 ≤ s ≤ 1.

We define the quadratic pencil

p(z) = h+ z(2k − z) = h0 − (k − z)
2, z ∈ C.

A priori these are operators on H with domain H1 and we clearly have p(z)∗ = p(z) as
operators on H. Moreover, for each s ∈ [0, 1] they extend to operators in B(Hs

;Hs−1)

and, for example, the relation p(z)∗ = p(z) holds as operators H1/2
→ H−1/2. From this

it is easy to deduce the following lemma (see [17, Lemma 8.1] for a more general result).
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Lemma 3.1. The following conditions are equivalent:

(1) p(z) : H1
→̃ H, (2) p(z) : H1

→̃ H,
(3) p(z) : H1/2

→̃ H−1/2, (4) p(z) : H1/2
→̃ H−1/2,

(5) p(z) : H →̃ H−1, (6) p(z) : H →̃ H−1.

In particular, the set

ρ(h, k) := {z ∈ C : p(z) : H1/2
→̃ H−1/2

} = {z ∈ C : p(z) : H1
→̃ H} (3.1)

is invariant under complex conjugation.

The next result is easy to prove in the present context; one can find a proof under more
general conditions in [17, Lemma 8.2].

Proposition 3.2. If h is bounded below then there exists c0 > 0 such that

{z : |Im z| > |Re z| + c0} ⊂ ρ(h, k).

We shall now prove some estimates on p−1(z) for z ∈ ρ(h, k). Note that they are valid
under much more general assumptions on h and k than those imposed in this paper.

Lemma 3.3. Assume that h+ c ≥ 0 for some c ≥ 0 and let b > 1. If z ∈ ρ(h, k) then

‖p(z)−1
‖ ≤

b

|z Im z|
if |z|2 ≥

bc

b − 1
. (3.2)

Proof. We abbreviate p = p(z) and µ = Im z. The main point is the identity

Im
z

µp
=

1
p∗
(h+ |z|2)

1
p
, (3.3)

which is rather obvious:
z

p
−

z

p∗
=

1
p∗
(zp∗ − zp)

1
p
= (z− z)

1
p∗
(h+ |z|2)

1
p
.

Then (3.3) gives (|z|2 − c) 1
p∗

1
p
≤ Im z

µp
, hence

|µ|(|z|2 − c)‖p−1u‖2 ≤ | Im(u|zp−1u)| ≤ |z| ‖u‖ ‖p−1u‖,

hence |µ|(|z|2 − c)‖p−1u‖2 ≤ |z| ‖u‖, which is more than required. ut

Lemma 3.4. Assume h0 ≥ 0 and k2
≤ αh0 + β with α < 1. Then h is bounded from

below and if h+ c ≥ 0 and ε > 0 then there is a number C such that for z ∈ ρ(h, k) and
|z| ≥

√
c + ε,

‖h
1/2
0 p(z)−1

‖ ≤ C|Im z|−1. (3.4)

Proof. If we set q = p−1 then (3.3) implies q∗((1−α)h0+|z|
2)q ≤ βq∗q+µ−1 Im zq,

hence

(1− α)‖h1/2
0 p−1u‖2 ≤ β‖p−1u‖2 + |z/µ| ‖u‖ ‖p−1u‖ ≤

βb2

|zµ|2
‖u‖2 +

b

µ2 ‖u‖
2

if |z|2 ≥ bc
b−1 . This estimate is more precise than (3.4). Note that we may take c = β. ut
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3.4. Spaces

The operators h, k, h0 and the spaces Hs are as in the preceding subsection, in particular
k is a bounded operator in H, but now we shall impose much stronger conditions.

From now on we always assume that

h0 := h+ k
2 > 0. (A1)

Then the homogeneous scale hs0H associated to h0 is well defined. Note that, if h is
injective, the spaces |h|−1H and h−1

0 H are quite different in general, although 〈h〉−1H =
〈h0〉

−1H.
We shall require k to behave well with respect to the homogeneous h0-scale:

k ∈ B(h−1/2
0 H);

if z /∈ R then (k − z)−1
∈ B(h−1/2

0 H) and
‖(k − z)−1

‖B(h−1/2
0 H) . |Im z|−n for some n > 0;

there exists m > 0 such that if |z| ≥ m‖k‖B(H) then

‖(k − z)−1
‖B(h−1/2

0 H) .
∣∣|z| − ‖k‖B(H)∣∣−1

.

(A2)

The next comments will clarify the meaning of these conditions. Recall that h−s0 H and
hs0H are adjoints to each other but they are not comparable, and neither are they compa-
rable with H. The first assumption says that the operator k leaves D(h1/2

0 ) invariant and
that its restriction to D(h1/2

0 ) extends to a bounded operator, say k, in h−1/2
0 H. The rest

of the assumption concerns the resolvent of k in this space. In order not to overcharge the
notation we keep the notation k for k.

The preceding assumptions allow us to get a new estimate on the quadratic pencil p.

Lemma 3.5. Under conditions (A1) and (A2), there are numbers C,M > 0 such that

‖h
1/2
0 p(z)−1(k − z)u‖ ≤ C|Im z|−1

‖h
1/2
0 u‖ if |z| ≥ M‖k‖B(H). (3.5)

Proof. We abbreviate p = p(z) and m = z − k, so that m∗ = z − k and p = h0 − m
2.

We have

z

m
h0

1
p
m−m∗

1
p∗
h0

z

m∗
= m∗

1
p∗

(
p∗

z

|m|2
h0 − h0

z

|m|2
p

)
1
p
m.

If we replace here p by h0 −m
2 and then develop and rearrange the terms, we get

m∗
1
p∗

(
(z− z)h0

1
|m|2

h0 + h0
zm

m∗
−
zm∗

m
h0

)
1
p
m.

Since m∗

m
= 1− z−z

m
and z

m
= 1+ k

m
, a simple computation gives

h0
zm

m∗
−
zm∗

m
h0 = (z− z)

(
h0 + h0

k

m∗
+
k

m
h0

)
.
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To conclude, we have proved, with µ = Im z,

1
µ

Im
(
z

m
h0

1
p
m

)
= m∗

1
p∗

(
h0 + 2 Re

(
k

m
h0

)
+ h0

1
|m|2

h0

)
1
p
m.

We may also write this as follows:

1
µ

Im(u|zm−1h0p
−1mu) = ‖h

1/2
0 p−1mu‖2 + 2 Re(p−1mu|km−1h0p

−1mu)

+ ‖m−1h0p
−1mu‖2.

Since the last term is positive, we get

‖h
1/2
0 p−1mu‖2 ≤

1
µ

Im(u|zm−1h0p
−1mu)− 2 Re(p−1mu|km−1h0p

−1mu)

=
1
µ

Im(h1/2
0 u|h

−1/2
0 zm−1h

1/2
0 · h

1/2
0 p−1mu)

− 2 Re(h1/2
0 p−1mu|h

−1/2
0 km−1h

1/2
0 · h

1/2
0 p−1mu).

Set a(z) = ‖h−1/2
0 zm−1h

1/2
0 ‖ and b(z) = 2‖h

−
1
2

0 km−1h
1/2
0 ‖. Since zm−1

= 1 + km−1,
assumption (A2) implies the boundedness of a(z) for large z and b(z) → 0 if z → ∞.
Finally, we have

(1− b(z))‖h1/2
0 p−1mu‖ ≤ a(z)|µ|−1

‖h
1/2
0 u‖,

which proves the lemma. ut

For easier reference later on, in the next proposition we summarize a particular case of
the estimates we got in Lemmas 3.3–3.5.

Proposition 3.6. Assume that conditions (A1) and (A2) are satisfied and let ε > 0. Then
there are numbers C,M > 0 such that

‖p−1(z)‖ ≤ C|z|−1
|Im z|−1 if |z| ≥ (1+ ε)‖k‖B(H), (3.6)

‖h
1/2
0 p−1(z)‖ ≤ C|Im z|−1 if |z| ≥ (1+ ε)‖k‖B(H), (3.7)

‖h
1/2
0 p−1(z)(k − z)u‖ ≤ C|Im z|−1

‖h
1/2
0 u‖ if |z| ≥ M‖k‖B(H). (3.8)

Sometimes it is useful to consider also the homogeneous h-scale. The following assump-
tion will be convenient in such situations:

h ≥ ck2 for some real c > 0. (A3)

This means that h is positive and ‖ku‖ ≤ c−1/2
‖h1/2u‖ for all u ∈ D(h1/2).

Lemma 3.7. If c > 0 is real then h ≥ ck2
⇔ h ≥ c

1+ch0. Thus (A3) is satisfied if and
only if there is b > 0 real such that bh0 ≤ h ≤ h0. If (A1) and (A3) hold then h > 0.
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Proof. Note that h = h0 − k
2
≤ h0. On the other hand, if c > 0 is real then we clearly

have
h ≥ ck2

⇔ h0 ≥ (1+ c)k2
⇔ h ≥

c

1+ c
h0, (3.9)

and this implies the assertions of the lemma. ut

Corollary 3.8. If (A1) and (A3) are satisfied then hs0H = h
sH for all −1/2 ≤ s ≤ 1/2.

Proof. Indeed, from bh0 ≤ h ≤ h0 we get bθhθ0 ≤ h
θ
≤ hθ0 if 0 ≤ θ ≤ 1. ut

3.4.1. Inhomogeneous energy spaces. The inhomogeneous energy space is the vector
space

E := H1/2
⊕H,

equipped with the natural direct sum topology which makes it a Hilbertizable space. For
consistency with the norm that we introduce later in the homogeneous case, we take∥∥∥∥(u0

u1

)∥∥∥∥2

E
:= ‖u1 − ku0‖

2
+ ((h0 + 1)u0 | u0), (3.10)

but of course we could replace here k by zero. It is convenient, as explained in [17], to
identify its adjoint space E∗ with H⊕H−1/2 the anti-duality being given by

〈u, v〉 := (u0 | v1−kv0)+(u1−ku0 | v0) if u =
(
u0

u1

)
∈ E, v =

(
v0

v1

)
∈ E∗, (3.11)

usually called the charge. Observe that E ⊂ E∗ continuously and densely. We identify
E∗∗ = E as in the Hilbert space case by setting 〈v, u〉 = 〈u, v〉.

In what follows it will often be convenient to use the operator

8(k) :=

(
1 0
k 1

)
. (3.12)

Note that 8(k) : E →̃ E and 8(k) : E∗ →̃ E∗ with 8−1(k) = 8(−k) and we may write

E = 8(k)(〈h0〉
−1/2H⊕H) and E∗ = 8(k)(H⊕ 〈h0〉

1/2H), (3.13)

which explains the choice of the norm in (3.10) and makes the connection with (3.15).

3.4.2. Homogeneous energy spaces. We define the homogeneous energy space Ė as the
completion of E under the norm defined by∥∥∥∥(u0

u1

)∥∥∥∥2

Ė
:= ‖u1 − ku0‖

2
+ (h0u0|u0). (3.14)
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The completion is the set of couples u =
(
u0
u1

)
with u0 ∈ h

−1/2
0 H, u1 ∈ (1 + h

−1/2
0 )H,

and such that u1 − ku0 ∈ H. We shall realize its adjoint space Ė∗ with the help of the
charge anti-duality defined as in (3.11). Observe that since k ∈ B(h−1/2

0 H) by (A2), we
also have

Ė = 8(k)(h−1/2
0 H⊕H), Ė∗ = 8(k)(H⊕ h1/2

0 H). (3.15)

If assumption (A3) is satisfied then we also define the h-homogeneous energy spaces

˙̃E := h−1/2H⊕H, ˙̃E∗ := H⊕ h1/2H.

Here the direct sums are in the Hilbert space sense, and the identification of ˙̃E∗ with the
space adjoint to ˙̃E is done with the help of the sesquilinear form defined as in (3.11) but
with k = 0.

Lemma 3.9. Assume (A1)–(A3). Then Ė = ˙̃E and the norms ‖ · ‖Ė and ‖ · ‖ ˙̃E are equiv-
alent.

Proof. We have to prove that ‖u1 − ku0‖
2
+ (h0u0|u0) ' ‖u1‖

2
+ (hu0|u0). But this is

obvious by (A3) and Lemma 3.7. ut

3.4.3. Conserved quantities. On E we introduce for ` ∈ R the hermitian forms

〈u|u〉` := (u1 − `u0 | u1 − `u0)+ (p(`)u0 | u0), (3.16)

where p(`) := h0− (k− `)
2. If u = (φ, i−1∂tφ) and φ is a solution of the Klein–Gordon

equation (2.1) then these forms are formally conserved. Indeed, we compute

d

dt
〈u|u〉` =

d

dt

(
(∂tφ − i`φ | ∂tφ − i`φ)+ ((h+ 2k`− `2)φ | φ)

)
= 2 Re(∂2

t φ − i`∂tφ | ∂tφ − i`φ)+ 2 Re((h+ 2k`− `2)φ | ∂tφ)

= 2 Re(i(2k − `)∂tφ − hφ | ∂tφ − i`φ)+ 2 Re((h+ 2k`− `2)φ | ∂tφ)

= −2 Re((2k − `)∂tφ | `φ)+ 2 Re((2k`− `2)φ | ∂tφ) = 0.

These forms are however in general not positive.

Lemma 3.10. For all ` ∈ R, 〈·|·〉` is continuous with respect to the norm ‖ · ‖E .

Proof. Due to the polarization identity it suffices to show |〈u|u〉`| . ‖u‖2E for all u ∈ E .
Since

〈u|u〉` = ‖u1 − `u0‖
2
+ ‖h

1/2
0 u0‖

2
− ‖(k − `)u0‖

2 (3.17)

and k is bounded, this is obvious. ut

Lemma 3.11. For all ` ∈ R, 〈·|·〉` is continuous with respect to the norm ‖ · ‖Ė if and
only if

h0 & (k − `)2. (3.18)
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Proof. We have ‖u‖2Ė = ‖u1 − ku0‖
2
+ ‖h

1/2
0 u0‖

2 and we have to decide when |〈u|u〉`|

. ‖u‖2Ė . By (3.17) this holds if and only if there is a number c such that

∣∣‖u1 − `u0‖
2
− ‖(k − `)u0‖

2∣∣ ≤ c‖u1 − ku0‖
2
+ c‖h

1/2
0 u0‖

2.

If this holds, let u1 = ku0 + ε(k − `)u0 with ε > 0. Then a‖(k − `)u0‖
2
≤ c‖h

1/2
0 u0‖

2

with a = 2ε + (1− c)ε2 and a > 0 for small ε, hence (3.18) is satisfied. The converse is
obvious. ut

3.5. Energy Klein–Gordon operators

Let

Ĥ :=

(
0 1
h 2k

)
= 8(k)K̂8−1(k) where K̂ :=

(
k 1
h0 k

)
. (3.19)

The energy Klein–Gordon operators will be various realizations of Ĥ . The operator K̂ is
a charge Klein–Gordon operator and will only play a technical role.

3.5.1. Klein–Gordon operator on the inhomogeneous energy space. The inhomogeneous
Klein–Gordon operator is the operatorH induced by Ĥ on E . This means that its domain
is

D(H) := {u ∈ E : Ĥu ∈ E} = H1
⊕H1/2,

and for u ∈ D(H) we have Hu = Ĥu. For the second equality above, see [18, Sect. 5.2].
We also recall [18, Prop. 5.3]:

Proposition 3.12. Assume (A1) and (A2).

– One has ρ(H) = ρ(h, k).
– In particular, if ρ(h, k) 6= ∅ then H is a closed densely defined operator in E and its

spectrum is invariant under complex conjugation.
– If z ∈ ρ(h, k), then

R(z) := (H − z)−1
= p−1(z)

(
z− 2k 1
h z

)
. (3.20)

We may similarly define the operator K induced by K̂ in E and one may easily check,
under the same conditions (A1) and (A2), that 8(k) : H1

⊕ H1/2
→̃ H1

⊕ H1/2 with
inverse 8(−k), hence H and K have the same domain and H = 8(k)K8(−k). This
implies

(K − z)−1
=

(
p−1(z)(z− k) p−1(z)

1+ (z− k)p−1(z)(z− k) (z− k)p−1(z)

)
. (3.21)



Asymptotic completeness for superradiant Klein–Gordon equations 2391

3.5.2. Klein–Gordon operator on the homogeneous energy space. The homogeneous
Klein–Gordon operator is the operator Ḣ induced by Ĥ on Ė . This means that its do-
main is

D(Ḣ ) = {u ∈ Ė : Ĥu ∈ Ė}

and for u ∈ D(Ḣ ) we have Ḣu = Ĥu. The proofs will involve the homogeneous oper-
ator K̇ associated to the auxiliary operator K̂ and acting in the space h−1/2

0 H ⊕H with
domain

D(K̇) = {v ∈ h
−1/2
0 H⊕H : K̂v ∈ h−1/2

0 H⊕H}.

From (3.15) and (3.19) we see that 8(k) induces an isomorphism of h−1/2
0 H⊕H with Ė

whose inverse is 8(−k). Clearly then Ḣ = 8(k)K̇8(−k).

Lemma 3.13. Under conditions (A1) and (A2) we have

D(Ḣ ) = 8(k)
(
(h
−1/2
0 H ∩ h−1

0 H)⊕H1/2).
Proof. From the preceding comments we see that the assertion of the lemma is equivalent
to

D(K̇) = (h
−1/2
0 H ∩ h−1

0 H)⊕H1/2 (3.22)

Since K̂v =
(
kv0+v1
h0v0+kv1

)
, if v belongs to the right hand side above then kv0+ v1 ∈ h

−1/2
0 H

and h0v0+kv1 ∈ H, thus K̂v ∈ h−1/2
0 H⊕H, hence v ∈ D(K̇). Conversely, if v ∈ D(K̇)

then

v0 ∈ h
−1/2
0 H, v1 ∈ H, kv0 + v1 ∈ h

−1/2
0 H, h0v0 + kv1 ∈ H.

We have to show v0 ∈ h
−1/2
0 H ∩ h−1

0 H and v1 ∈ H1/2, which follow from v0 ∈ h
−1
0 H

and v1 ∈ h
−1/2
0 H. The last relation is a consequence of kv0 + v1 ∈ h

−1/2
0 H because

k ∈ B(h−1/2
0 H). Since k is bounded on H, we finally get h0v0 ∈ H − kv1 ⊂ H, hence

v0 ∈ h
−1
0 H. ut

Lemma 3.14. Assume that conditions (A1) and (A2) are satisfied and let z ∈
ρ(h, k)\R. Then the maps p(z)−1 and p(z)−1h0 induce continuous operators h−1/2

0 H→
h
−1/2
0 H ∩ h−1

0 H and h−1/2
0 H→ H1/2 respectively.

Proof. We set m = z − k and, to simplify the writing, we do not specify z unless this is
really necessary, e.g. we write p for p(z) and p = h0 − m

2. From (A2) it follows that
m induces bounded invertible operators in all the spaces Hs with −1/2 ≤ s ≤ 1/2 and
in the space h−1/2

0 H (in all hs0H with −1/2 ≤ s ≤ 1/2, in fact). Since h0 extends to a
unitary operator h−1/2

0 H→ h
1/2
0 H and h1/2

0 H is a dense subspace of H−1/2, the operator
p−1h0 extends to a bounded map p−1h0 : h

−1/2
0 H→ H1/2. Then we write

p−1
= p−1(m2

− h0 + h0)m
−2
= p−1h0m

−2
−m−2,



2392 V. Georgescu et al.

from which it follows that p−1 extends to an operator in B(h−1/2
0 H). We still have to

prove that p−1 sends h−1/2
0 H into h−1

0 H. For this we note that

h0p
−1
= (h0 −m

2
+m2)p−1

= 1+m2p−1,

and thus, by what we have just proved, we see that h0p
−1h
−1/2
0 H ⊂ h−1/2

0 H, hence p−1

sends h−1/2
0 H into h−3/2

0 H ∩ h−1/2
0 H ⊂ h−1

0 H, which clearly proves the assertion. ut

Proposition 3.15. If (A1) and (A2) are true then ρ(Ḣ ) \ R = ρ(h, k) \ R, and for z in
this set,

Ṙ(z) := (Ḣ − z)−1
= 8(k)

(
p−1(z)(z− k) p−1(z)

1+ (z− k)p−1(z)(z− k) (z− k)p−1(z)

)
8(−k).

(3.23)

Proof. As in the proof of Lemma 3.13, we prove the corresponding statement for the
operator K̇ . Fix z ∈ ρ(h, k) \ R and adopt the notation of the proof of Lemma 3.14. We
show that z ∈ ρ(K̇) and that (K̇ − z)−1 is just the matrix in (3.23) or in (3.21):

(K̇ − z)−1
=

(
p−1m p−1

1+mp−1m mp−1

)
. (3.24)

We denote by S the matrix on the right hand side of (3.24) and first show that S sends
h
−1/2
0 H⊕H into D(K̇) as defined in (3.22). Thus, if v0 ∈ h

−1/2
0 H and v1 ∈ H we must

prove that

p−1mv0+p
−1v1 ∈ h

−1/2
0 H∩h−1

0 H and (1+mp−1m)v0+mp
−1v1 ∈ H1/2. (3.25)

From Lemma 3.1 we get p−1v1 ∈ H1
⊂ h
−1/2
0 H ∩ h−1

0 H, hence also mp−1v1 ∈ H1/2.
Thus it remains to treat the terms involving v0. From Lemma 3.14 we get p−1mv0 ∈

h
−1/2
0 H ∩ h−1

0 H. On the other hand, since p = h0 − m
2, Lemma 3.1 and a simple

computation give
1+mp−1m = mp−1h0m

−1 (3.26)

in the sense of bounded operators H−1/2
→ H1/2. From this relation and Lemma 3.14

we get (1+mp−1m)v0 ∈ H1/2.
Thus S : h−1/2

0 H⊕H→ D(K̇) and a straightforward computation gives (K̇ − z)Sv
= v for all v ∈ h−1/2

0 H ⊕H. On the other hand, if u ∈ D(K̇) and v = (K̇ − z)u then it
is easy to show that u = Sv. This finishes the proof of the relation S = (K̇ − z)−1, i.e.
of (3.24).

It remains to show that ρ(K̇) \ R ⊂ ρ(h, k). Assume that z /∈ R and

K̇ − z : (h
−1/2
0 H ∩ h−1

0 H)⊕H1/2
→ h

−1/2
0 H⊕H

is bijective. Then for any v =
( 0
v1

)
∈ h
−1/2
0 H ⊕H there is a unique u =

(
u0
u1

)
with u0 ∈

h
−1/2
0 H ∩ h−1

0 H and u1 ∈ H1/2 such that −mu0 + u1 = 0 and h0u0 −mu1 = v1. Then
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u0 = m
−1u1 ∈ H1/2 and also u0 ∈ h

−1
0 H, hence u ∈ H1 and pu0 = (h0 −m

2)u0 = v1.
Thus p : H1

→ H is surjective. It is also injective, because if pu0 = 0 for some u0 ∈ H1

then u =
(
u0
mu0

)
∈ D(K̇) and (K̇ − z)u = 0, hence u = 0. ut

We point out a simple relation betweenH and Ḣ (a similar statement holds forK and K̇).
Recall that E ⊂ Ė continuously and densely.

Lemma 3.16. Ḣ coincides with the closure of H in Ė .
Proof. If z ∈ ρ(h, k) \ R then z belongs to ρ(H) ∩ ρ(Ḣ ) and the resolvents R :=
(H − z)−1 and Ṙ = (Ḣ − z)−1 are bounded operators in E and Ė respectively. Moreover,
Ṙ is clearly a continuous extension of R to Ė , so it is the closure of R in Ė . By thinking
in terms of graphs one easily sees that Ḣ − z = Ṙ−1 is the closure of H − z = R−1

in Ė . ut

We will often consider the case where (A3) is fulfilled. In this case

D(Ḣ ) = (h−1/2H ∩ h−1H)⊕H1/2

and Ḣ is selfadjoint (see e.g. [21, Lemme 2.1.1]). Note also that the resolvent of Ḣ is
then given by (see [18, Prop. 5.7])

Ṙ(z) =

(
z−1p−1(z)h− z−1 p−1(z)

p−1(z)h zp−1(z)

)
. (3.27)

Moreover, if we assume (A3), then ‖Ṙ(z)‖B(Ė) ≤ |Im z|−1. Using [18, Prop. 5.10] we
obtain the following resolvent estimate for H :

Proposition 3.17. Assume (A1)–(A2). Then

‖R(z)‖B(E) . (1+ |z|−1)‖Ṙ(z)‖B(Ė) + |z|
−1. (3.28)

Assume in addition (A3). Then

‖R(z)‖B(E) . (1+ |z|−1)|Im z|−1. (3.29)

3.5.3. Gauge transformations. Let us recall that our starting point was the Klein–Gordon
equation

(∂t − ik)
2u+ h0u = 0. (3.30)

If u is a solution of (3.30) and ` ∈ R, then v = e−it`u solves

(∂t − i(k − `))
2v + h0v = 0. (3.31)

Let us formulate this in terms of generators: if

8(`)H8−1(`) =: H` + `,

then

H` =

(
0 1
p(`) 2(k − `)

)
, p(`) = h0 − (k − `)

2.

It follows that if there exists ` ∈ R such that (A3) is fulfilled with h replaced by p(`)
and k by k − `, then Ḣ is selfadjoint on the homogeneous energy space

Ė = 8(`)(p(`)−1/2H⊕H).
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3.6. Existence of the dynamics

From [17, Cor. 8.6] we obtain:

Lemma 3.18. H is the generator of a C0-group e−itH on E .

Now we show that e−itH extends to a C0-group on Ė .

Lemma 3.19. Ḣ is the generator of a C0-group on Ė and for each real t the opera-
tor e−itḢ coincides with the continuous extension of e−itH to Ė .

Proof. We start by proving that for some constants C,ω > 0 we have

‖e−itHϕ‖Ė ≤ Ce
ω|t |
‖ϕ‖Ė ∀ϕ ∈ E . (3.32)

Let first ϕ ∈ D(H). We compute, by using (3.14) for u = (u0, u1) = e
−itHϕ,

d

dt
‖u‖2Ė = 2 Re(ihu0 + iku1 | u1 − ku0)+ 2 Re(h0u0|iu1)

= ([ik, h]u0 | u0) . (h0u0|u0) . ‖u‖
2
Ė .

The inequality (3.32) then follows for ϕ ∈ D(H) by Gronwall’s lemma and for ϕ ∈ E
by density. From (3.32) we see that e−itH extends to a continuous operator Vt on Ė such
that ‖Vt‖Ė ≤ Ce

ω|t |. This clearly implies that Vt is a C0-group on Ė , and from Nelson’s
invariant domain theorem it follows that its generator is the closure of H in Ė , which by
Lemma 3.16 is just Ḣ . ut

4. Meromorphic extensions

In this section we discuss various facts related to meromorphic extensions of quadratic
pencils.

4.1. Background and definitions

Definition 4.1. Let H be a Hilbert space. For z0 ∈ C, let U be a neighborhood of z0, and
let F : U \ {z0} → B(H) be a holomorphic function. We say that F is finite meromorphic
at z0 if the Laurent expansion of F at z0 has the form

F(z) =

∞∑
n=m

(z− z0)
nAn, m > −∞,

the operators Am, . . . , A−1 being of finite rank ifm < 0. If, in addition, A0 is a Fredholm
operator, then F is called Fredholm at z0.

We will need the following fact (cf. [19, Prop. 4.1.4]):

Proposition 4.2. Let D ⊂ C be a connected open set, let Z ⊂ D be a discrete and closed
subset of D, and let F : D \ Z→ B(H) be a holomorphic function. Assume that

– F is finite meromorphic and Fredholm at each point of D;
– there exists z0 ∈ D \ Z such that F(z0) is invertible.
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Then there exists a discrete closed subset Z′ of D such that Z ⊂ Z′ and

– F(z) is invertible for each z ∈ D \ Z′;
– F−1

: D \ Z′→ B(H) is finite meromorphic and Fredholm at each point of D.

4.2. Meromorphic extensions of weighted resolvents

Letw be a positive selfadjoint operator on H with bounded inversew−1. One should think
of w as a weight function. Both w and w−1 will act on E, Ė by w(u0, u1) = (wu0, wu1)

etc. In this subsection we will require (A3).
We need the following hypotheses:

(a) wkw ∈ B(H),
(b) [k,w] = 0,
(c) h−1/2

[h,w−ε]wε/2 ∈ B(H) for all 0 < ε ≤ 1,
(d) if ε > 0 then ‖w−εu‖ . ‖h1/2u‖ for all u ∈ h−1/2H,
(e) w−1

〈h〉−1
∈ B∞(H).

(ME1)

Note that part (d) of (ME1) is a Hardy type inequality and it implies the boundedness of
the operators w−εh−1/2 and h−1/2w−ε . Later on we shall see that these two operators are
compact if (ME1) is satisfied (see the proof of Lemma 4.3).

Observe that from part (c) we also get wε/2[h,w−ε]h−1/2
∈ B(H). Moreover, we

shall have w−ε〈h〉−ε̃ ∈ B∞(H) for all ε, ε̃ > 0. Indeed, w−z〈h〉−z ∈ B∞(H) is an
analytic function of z in the region Re z > 0, and by (e) this is a compact operator for
Re z ≥ 1, hence for any z.

We also need the assumption{
∀ε > 0 ∃δε > 0 such that w−ε(h− z2)−1w−ε extends from Im z > 0
to Im z > −δε as a finite meromorphic function with values in B∞(H).

(ME2)

Lemma 4.3. Assume (A1)–(A3) and (ME1)–(ME2) and let 0 < ε ≤ 1. Then the opera-
tors

(i) w−εp−1(z)w−ε ,
(ii) (h+ 1)1/2w−εp−1(z)w−ε ,

(iii) w−εp−1(z)hw−εh−1/2,
(iv) h1/2w−εp−1(z)(z− 2k)w−εh−1/2

extend from {Im z > 0} to {Im z > −δε/2} as finite meromorphic functions with values
in B∞(H).
Proof. The relation p(z) = (1+ 2zk(h− z2)−1)(h− z2) yields

w−εp−1(z)w−ε = w−ε(h− z2)−1w−ε
(
1+ 2zwεkwε · w−ε(h− z2)−1w−ε

)−1
.

Applying Prop. 4.2 to

F(z) = 1+ 2zwεkwε · w−ε(h− z2)−1w−ε

proves (i).
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We now write

hw−εp−1(z)w−ε = w−εhp−1(z)w−ε + [h,w−ε]wε/2w−ε/2p−1(z)w−ε

= w−2ε
+ z(z− 2k)w−εp−1(z)w−ε + [h,w−ε]wε/2w−ε/2p−1(z)w−ε .

This allows us to compute the second operator:

(h+ 1)1/2w−εp−1(z)w−ε

= (h+ 1)−1/2w−2ε
+ (h+ 1)−1/2z(z− 2k) · w−εp−1(z)w−ε

+ (h+ 1)−1/2
[h,w−ε]wε/2 · w−ε/2p−1(z)w−ε + (h+ 1)−1/2w−εp−1(z)w−ε .

By using (i) and hypotheses (c), (e) of (ME1) we get (ii).
Let us now prove (iii). Let χ ∈ C∞0 (R) with χ = 1 in a neighborhood of 0. We write

w−εp−1(z)hw−εh−1/2
= w−εp−1(z)hw−εh−1/2(1− χ(h))

+ w−εp−1(z)hw−εh−1/2χ(h) =: T1 + T2.

We have

T1 = w
−2εh−1/2(1− χ(h))+ w−εp−1(z)w−ε · z(z− 2k)h−1/2(1− χ(h)).

The first term is compact by the second comment after hypothesis (ME1), and the second
is compact outside the poles of w−εp−1(z)w−ε by part (i). We have

T2 = w
−εp−1(z)w−ε/2 · wε/2[h,w−ε]h−1/2χ(h)+ w−εp−1(z)w−ε · h1/2χ(h).

By the same comment we see that both terms here extend to finite meromorphic functions
in {Im z > −δε/2} with values in B∞(H). Thus (iii) is proved.

Note that since h = p + z(z− 2k) we have

w−εp−1(z)hw−εh−1/2
= w−2εh−1/2

+ w−εp−1(z)w−ε/2 · z(z− 2k)w−ε/2h−1/2.

The left hand side here is a compact operator by what we have just proved, and the last
term is also compact by (i) and because w−ε/2h−1/2 is bounded by (ME1)(d). Since
0 < ε ≤ 1 is arbitrary, we see that w−εh−1/2 and h−1/2w−ε are compact operators if
0 < ε ≤ 1.

Finally, we prove (iv). We have

h1/2w−εp−1(z)(z− 2k)w−εh−1/2

= h−1/2
[h,w−ε]wε/2 · w−ε/2p−1(z)w−ε/2 · (z− 2k)w−ε/2h−1/2

+ h−1/2w−ε/2 · w−ε/2hp−1(z)w−ε/2 · (z− 2k)w−ε/2h−1/2.

For the first term of the right hand side we use (ME1)(c) as well as (i) and the boundedness
of w−ε/2h−1/2. For the last term we note that it is equal to

h−1/2w−ε(z− 2k)w−εh−1/2

+ h−1/2w−ε/2z(z− 2k) · w−ε/2p−1(z)w−ε/2 · (z− 2k)w−ε/2h−1/2.

The first term is a holomorphic function with values in B∞(H) because w−εh−1/2 and
h−1/2w−ε are in B∞(H) . The last line is treated as before. This proves (iv). ut
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Using this lemma we obtain a meromorphic extension of the truncated resolvent of H .

Proposition 4.4. Assume the hypotheses of Lemma 4.3 and let ε > 0. Thenw−εR(z)w−ε

and w−εṘ(z)w−ε extend finite-meromorphically to {Im z > −δε/2} as operator valued
functions with values in B∞(E) and B∞(Ė) respectively.

Proof. We first prove the assertion concerning R(z). Using (3.20) we see that

w−εR(z)w−ε = w−εp(z)−1
(
z− 2k 1
h z

)
w−ε

=

(
0 0

w−2ε 0

)
+ w−εp−1w−ε

(
z− 2k 1
z(z− 2k) z

)
.

We then use Lemma 4.3(i), (ii) as well as assumption (ME1)(e).
Let us now treat Ṙ(z). Recall that under hypothesis (A3) we have

Ṙ(z) =

(
z−1p−1(z)h− z−1 p−1(z)

p−1(z)h zp−1(z)

)
.

Using the fact that w−εh−1/2 is bounded by hypothesis (ME1)(d), we can write

w−εṘ(z)w−ε = w−εp−1(z)

(
z− 2k 1
h z

)
w−ε .

We therefore have to show that

h1/2w−εp−1(z)(z− 2k)w−εh−1/2, h1/2w−εp−1(z)w−ε,

w−εp−1(z)hw−εh−1/2, w−εp−1(z)zw−ε

all extend finite-meromorphically with values in B∞(H). This follows from Lemma 4.3.
ut

5. Klein–Gordon operators with “two ends”

In this section we discuss an abstract framework corresponding to Klein–Gordon opera-
tors on manifolds with “two ends”. The essential condition is that the asymptotic Hamil-
tonians in both ends are selfadjoint for a positive energy norm, modulo some gauge trans-
formation.

5.1. Assumptions

We assume that there exists a selfadjoint operator x on H with σ(x) = σac(x) = R
such that w is a smooth function of x, k commutes with x, and h0 is local in x in the
following sense: if χ1, χ2 ∈ C

∞(R) are bounded together with all their derivatives and if
suppχ1 ∩ suppχ2 = ∅, then χ1(x)h0χ2(x) = 0. To summarize, we assume [x, k] = 0,

w = w(x) with w ∈ C∞(R),
h0 is local in x.

(TE1)
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Let i± ∈ C∞(R) be such that i2+ + i
2
− = 1, 0 ≤ i± ≤ 1, and

supp i− ⊂ ]−∞, 1[, i− = 1 on ]−∞,−1],
supp i+ ⊂ ]−1,∞[, i+ = 1 on [1,∞[.

Let
j± := i±(x ∓ 3).

We then have
j±i± = j±, i+j− = i−j+ = 0.

Let
k± := k ∓ j̀2

∓, h± := h0 − k
2
±. (5.1)

We also set
h̃− := h− + 2`k− − `2

= h0 − (`− k−)
2. (5.2)

We require

there exists ` ∈ R such that (h+, k+) and (h̃−, k− − `) satisfy (A3). (TE2)

We also set p±(z) := h± + z(2k± − z). Note that h̃− = p−(`).

Remark 5.1 (on assumptions (TE1)–(TE2)). x has to be thought of as a position vari-
able and w as a weight function depending on x. The mixed term k has to commute with
the position variable. (TE2) ensures that the asymptotic Hamiltonians define a selfadjoint
problem.

5.2. Asymptotic Hamiltonians

We introduce the homogeneous energy spaces

Ė+ := h−1/2
+ H⊕H, Ė− := 8(`)(h̃−1/2

− H⊕H).

Then the operators

Ḣ± =

(
0 1
h± 2k±

)
(5.3)

are selfadjoint with domains

D(Ḣ+) = h
−1/2
+ H ∩ h−1

+ H⊕ 〈h+〉−1/2H,

D(Ḣ−) = 8(`)
(
(h̃
−1/2
− H ∩ h̃−1

− H)⊕ 〈h̃−〉−1/2H
)
.

We denote Ṙ±(z) := (Ḣ± − z)−1.
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We will also need the following assumption for ` as in (TE2). Let ĩ ∈ C∞0 (]−2, 2[)
with ĩ = 1 on [−1, 1].

(a) wi+ki+w,wi−(k − `)i−w ∈ B(H),
(b) [h, i±] = ĩ[h, i±]ĩ,

(c) (h+, k+, w) and (h̃−, k− − `,w) fulfill (ME1), (ME2),

(d) h1/2
± i±h

−1/2
± , h

1/2
0 i±h

−1/2
0 ∈ B(H),

(e) the operators w[h, i±]wh
−1/2
± , w[h, i±]wh

−1/2
0 , [h, i±]h

−1/2
± ,

[h, i±]h
−1/2
0 , h

−1/2
0 [w−1, h0]w are bounded on H,

(f) if ε > 0 then ‖w−εu‖ . ‖h1/2
0 u‖ for all u ∈ h−1/2

0 H.

(TE3)

Remark 5.2 (on assumption (TE3)). Large parts of assumption (TE3) just ensure that
the operations linked to commutators are local also in this abstract setting. (TE3)(a) states
that k has finite limits at ±∞ and the convergence rate can be measured by the weight
function w. (TE3)(c) will ensure that the weighted resolvents of the asymptotic Hamilto-
nians have meromorphic extensions. (TE3)(f) is some abstract Hardy type inequality.

As a direct consequence of Proposition 4.4 we obtain

Proposition 5.3. For any ε > 0 the functions w−εR±(z)w−ε and w−εṘ(z)w−ε extend
finite-meromorphically to {Im z > −δε/2} with values in B∞(E±) and B(Ė±) respectively.

5.3. Construction of the resolvent

We will need the following lemma:

Lemma 5.4. The linear maps

i± : Ė → Ė, i± : Ė±→ Ė±, i± : Ė±→ Ė, i± : Ė → Ė±

are bounded.

Proof. First note that condition (TE3)(d) and the relation [k, i±] = 0 give the continuity
of the maps i± : Ė → Ė and i± : Ė±→ Ė±. Then note that

i+(h+ + k
2)i+ = i+h0i+, i−(h̃− + (k − `)

2)i− = i−h0i−.

This together with (TE3)(d) gives the continuity of i± : Ė → Ė±. We then claim that

i+(h0 + k
2)i+ . i+h+i+, (5.4)

i−(h0 + (k − `)
2)i− . i−h̃−i−. (5.5)

Indeed, (5.4) follows from

i+(h0 + k
2)i+ . i+h+i+ + w

−2i2+ . i+h+i+.
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Here we have used (TE3)(c). Then (5.5) follows from

i−(h0 + (k − `)
2)i− . i−h̃−i− + i−(k − `)

2i− . i−h̃−i− + w
−2i2− . i−h̃−i−.

Finally, (5.4), (5.5) and (TE3)(d) give the continuity of i+ : Ė+→ Ė and i− : Ė−→ Ė .
ut

We now introduce a new operator:

Q(z) := i−(Ḣ− − z)
−1i− + i+(Ḣ+ − z)

−1i+. (5.6)

Thanks to Lemma 5.4,Q(z) is well defined as a bounded operator on Ė . We now compute

(Ḣ − z)Q(z) = 1+ [Ḣ , i−](Ḣ− − z)−1i− + [Ḣ , i+](Ḣ+ − z)
−1i+.

Note that

[Ḣ , i±] =

(
0 0
[h, i±] 0

)
.

Let

K±(z) :=

(
0 0
[h, i±] 0

)
Ṙ±(z)i±, K̃±(z) := i±Ṙ±(z)

(
0 0
[h, i±] 0

)
. (5.7)

Note that by assumptions (TE1) and (TE3) the operators

[Ḣ , i±]w
ε and i±(1− j±)wε are bounded on Ė for all ε > 0. (5.8)

We set

A(z) := K−(z)(1− j−)+K+(z)(1− j+) : C+→ B(Ė).

Using Proposition 5.3 and Lemma 5.4 we see that A(z) extends meromorphically to
Im z > −δ with values in B∞(Ė) for some δ > 0. As Ḣ± are selfadjoint, it follows
that

‖A(z)‖B(Ė) ≤ 1/2

for Im z sufficiently large. Thus (1 + A(z))−1 exists for Im z large enough. By Proposi-
tion 4.2 there exists a closed discrete subset Z+ of the half-plane {Im z > −δ} such that
(1+A(z))−1 exists if Im z > −δ and z /∈ Z+, and (1+A(z))−1 is finite meromorphic in
{Imz > −δ} and analytic in {Im > −δ} \ Z+. Let

K(z) = K−(z)+K+(z).

Now observe that jaKb = 0 for a = ±, b = ± by assumption (TE3)(b). Therefore

1+K(z) =
(
1+K−(z)j− +K+(z)j+

)(
1+K−(z)(1− j−)+K+(z)(1− j+)

)
,(

1+K−(z)j− +K+(z)j+
)−1
= 1−K−(z)j− −K+(z)j+.
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We can now construct the resolvent of Ḣ by

RḢ (z) := Q(z)(1+K(z))
−1

= Q(z)
(
1+K−(z)(1− j−)+K+(z)(1− j+)

)−1(1−K−(z)j− −K+j+). (5.9)

The same considerations are valid in the lower half-plane, and we obtain a set of polesZ−.
The set (Z− ∩ C−) ∪ (Z+ ∩ C+) is clearly finite.

Proposition 5.5. If conditions (A1)–(A2) and (TE1)–(TE3) are satisfied then there is a
finite set Z ⊂ C \R with Z = Z such that the spectra of H and Ḣ are included in R∪Z
and the resolvents R and Ṙ are finite meromorphic functions on C \ R. Moreover, the
point spectrum of H coincides with the point spectrum of Ḣ , and the set Z consists of
eigenvalues of finite multiplicity of H and of Ḣ .

Proof. From the previous arguments it follows that if we define RH (z) := RḢ (z)|E then
RH (z) = R(z) and RḢ (z) = Ṙ(z) for z with sufficiently large (positive or negative)
imaginary part. We know by Proposition 3.15 that ρ(Ḣ ) ∩ (C \ R) = ρ(h, k) ∩ (C \ R).
Then we use Proposition 3.6 to see that all the poles of Ḣ in C \ R are in a finite ball.
But in this ball (1 + A(z))−1 has only a finite number of poles. By using (5.9) and an
analyticity argument we see that Ṙ(z) has only a finite number of poles in C \ R. From
the analyticity properties of a resolvent family it follows then that the nonreal spectrum Z

of Ḣ coincides with the set of nonreal poles of its resolvent, in particular it is finite.
From ρ(Ḣ ) \ R = ρ(h, k) \ R and Lemma 3.1 we see that the complex spectrum is

invariant under conjugation. Note also that every eigenvector of Ḣ for a nonzero eigen-
value is in D(H), and thus is an eigenvector of H . It remains to show that the complex
point spectrum consists exactly of the complex eigenvalues of Ḣ and that the correspond-
ing eigenspaces are finite-dimensional. If z0 is a pole of Ṙ(z), then on a neighborhood
of z0 we may write Ṙ(z) =

∑N
n=1(z0 − z)

−nSn + S(z) with S holomorphic near z0 and
the Sn 6= 0 of finite rank because the function A(z) is finite meromorphic. From this it
follows that z0 is an eigenvalue of finite multiplicity of Ḣ (see [32, Ch. VIII, Sect. 8] for
details). ut

From now on we denote by σC
pp(Ḣ ) the set of nonreal eigenvalues of Ḣ . For z ∈ σC

pp(Ḣ )

the Riesz projector is defined by

E(z, Ḣ ) :=
i

2π

‰
γ

(Ḣ − z)−1 dz,

where γ is a small curve in ρ(Ḣ ) surrounding z. Let

1
C
pp(Ḣ ) :=

⊕
z∈σCpp(H)

E(z, Ḣ ) and EC
pp(Ḣ ) := 1

C
pp(Ḣ )Ė .

Let furthermore

1R(Ḣ ) := 1− 1
C
pp(Ḣ ), ER(Ḣ ) := 1R(Ḣ )Ė .

We clearly have Ė = ER(Ḣ )⊕ EC
pp(Ḣ ) and both spaces are invariant under e−itḢ .
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5.4. Resolvent estimates

For R, δ > 0 we set

U0(R, δ) = {z ∈ C : 0 < |Im z| ≤ δ, |Re z| ≤ R}.

Lemma 5.6. Assume (A1)–(A2) and (TE1)–(TE3). Then for each R > 0 there are
M, δ > 0 such that σ(H) \ R does not intersect U0(R, δ) and for all z ∈ U0(R, δ),

‖Ṙ(z)‖B(Ė) . |Im z|−M , (5.10)

‖R(z)‖B(E) . (1+ |z|−1)|Im z|−M + |z|−1. (5.11)

Proof. Recall that

Ṙ(z) = Q(z)(1+ A(z))−1(1−K−(z)j− −K+(z)j+).
We choose δ > 0 sufficiently small such that (1+A(z))−1 has no poles in U0(R, δ). Then

‖Q(z)‖B(Ė) . |Im z|−1.

The meromorphic extension of (1 + A(z))−1 has only a finite number of real poles in
U0(R, δ), hence

‖(1+ A(z))−1
‖B(Ė) . |Im z|−M1 , M1 > 0.

Noting that [H, i±] : Ė → Ė is bounded by assumption (TE3) we obtain

‖1−K−(z)j− −K+(z)j+‖B(Ė) . |Im z|−1.

This gives (5.10) with M = M1 + 2; and (5.11) now follows from Proposition 3.17. ut

Remark 5.7. If σC
pp(Ḣ ) = ∅, then we can choose δ independently of R.

Lemma 5.8. Let R ≥ M‖k‖B(H) with M as in Proposition 3.6. Then

‖Ṙ(z)‖B(Ė) . |Im z|−1 if |z| ≥ R.

Proof. Recall from (3.23) that

Ṙ(z) := (Ḣ − z)−1
= 8(k)

(
−p−1(z)(k − z) p−1(z)

1+ (k − z)p−1(z)(k − z) −(k − z)p−1(z)

)
8(−k).

Therefore it is sufficient to show

‖h
1/2
0 p−1(z)(k − z)u‖ .

1
|Im z|

‖h
1/2
0 u‖, (5.12)

‖h
1/2
0 p−1(z)u‖ .

1
|Im z|

‖u‖, (5.13)

‖(k − z)p−1(z)u‖ .
1
|Im z|

‖u‖, (5.14)∥∥(1+ (k − z)p−1(z)(k − z)
)
u
∥∥ .

1
|Im z|

‖h
1/2
0 u‖, (5.15)
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for |z| ≥ R. Estimates (5.12)–(5.14) follow from Proposition 3.6. To show (5.15) we use
(3.26) and write

1+ (k − z)p−1(z)(k − z) = (k − z)p−1(z)h
1/2
0 h

1/2
0 (k − z)−1h

−1/2
0 h

1/2
0 .

Then using (3.7) and (A2) we obtain∥∥(1+ (k − z)p−1(z)(k − z)
)
u
∥∥ . (‖k‖B(H) + |z|)

1
|Im z|

1
|z| − ‖k‖B(H)

‖h
1/2
0 u‖.

We can suppose M ≥ 2 and obtain

(‖k‖B(H) + |z|)
1

|z| − ‖k‖B(H)
. 1,

which finishes the proof of the lemma. ut

5.5. Smooth functional calculus

The resolvent estimates in Lemma 5.6 easily allow us to construct a smooth functional
calculus for Ḣ . For f ∈ C∞0 (R) we denote by f̃ ∈ C∞0 (C) an almost analytic extension
of f , satisfying

f̃ |R = f,∣∣∣∣∂f̃ (z)∂z

∣∣∣∣ ≤ CN |Im z|N , N ∈ N.

Proposition 5.9. Assume (A1)–(A2) and (TE1)–(TE3).

(i) Let f ∈ C∞0 (R). Let f̃ be an almost analytic extension of f with supp f̃ ∩ σC
pp(Ḣ )

= ∅. Then the integral

f (Ḣ ) :=
1

2πi

ˆ
C

∂f̃

∂z
(z)Ṙ(z) dz ∧ dz

is norm convergent in B(Ė) and is independent of the choice of f̃ .
(ii) The map C∞0 (R) 3 f 7→ f (Ḣ ) ∈ B(Ė) is a continuous algebra morphism if we

equip C∞0 (R) with its canonical topology.

Remark 5.10. (i) The condition supp f̃ ∩ σC
pp(Ḣ ) = ∅ can always be satisfied by

choosing supp f̃ close enough to the real axis.
(ii) If χ ∈ C∞(R) with χ = 1 on R \ ]−R,R[ then we define χ(Ḣ ) := 1R(Ḣ ) −

(1− χ)(Ḣ ).
(iii) In the same way we define a smooth functional calculus forH,H±, Ḣ±. For Ḣ± this

coincides with the smooth functional calculus for selfadjoint operators.

Proposition 5.11. If σC
pp(Ḣ ) = ∅ and χ ∈ C∞0 (R) with χ = 1 in a neighborhood of

zero, then
s- lim
L→∞

χ(L−1Ḣ ) = 1.
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Proof. First note that for some M > 0,

‖Ṙ(z)‖B(Ė) .
1
|Im z|

+
1

|Im z|M
, |Im z| > 0. (5.16)

Indeed, we first choose R > 0 as in Lemma 5.8. Then

‖Ṙ(z)‖B(Ė) .
1
|Im z|

, ∀z ∈ C \ B(0, R).

By Remark 5.7 we can choose δ = R in Lemma 5.6 to obtain

‖Ṙ(z)‖B(Ė) .
1

|Im z|M
, ∀z ∈ B(0, R) ⊂ U0(R,R).

In particular we can choose the same almost analytic extension of χ to define χ(L−1Ḣ )

for all L > 0. We now show that

lim
L→∞

χ(L−1Ḣ )− i−χ(L
−1Ḣ−)i− − i+χ(L

−1Ḣ+)i+ = 0. (5.17)

We have

χ(L−1Ḣ )− i−χ(L
−1Ḣ−)i− − i+χ(L

−1Ḣ+)i+

=
1

2πi

ˆ
∂χ̃(z)L(Ṙ(Lz)−Q(Lz)) dz ∧ dz.

Now recall that Ṙ(z) = Q(z)(1+K(z))−1, thus

Ṙ(Lz)−Q(Lz) = −Ṙ(Lz)K(Lz).

Thanks to (5.16), for L ≥ 1 we have the estimate

‖∂χ̃(z)LṘ(Lz)K(Lz)‖ . 1/L→ 0.

This implies (5.17). As Ḣ± is selfadjoint in Ė±, using Lemma 5.4 we find

s- lim
L→∞

i±χ(L
−1Ḣ±)i± = i

2
±.

Thus
s- lim
L→∞

χ(L−1Ḣ ) = i2− + i
2
+ = 1. ut

6. Propagation estimates

In this section we derive resolvent and propagation estimates for Ḣ , similar to those
obtained for selfadjoint operators. The key ingredients are the meromorphic extension
of Ṙ(z) in Sect. 4 and the fact that the asymptotic Hamiltonians Ḣ± are selfadjoint for
their energy norms. There is however a new difficulty not present in the selfadjoint case:
in addition to resolvent poles and thresholds, additional spectral singularities may appear.
In the theory of selfadjoint operators on Krein spaces used in our previous works [17, 18]
these spectral singularities are known as critical points.



Asymptotic completeness for superradiant Klein–Gordon equations 2405

6.1. Resonances and boundary values of the resolvent

By the usual arguments the operator

Aw(z) := w
εK−(z)(1− j−)w−ε + wεK+(z)(1− j+)w−ε

can also be extended meromorphically from the upper half-plane to {Im z > −δε/2} with
values in B∞(Ė). By the same argument as in the construction of the resolvent, for Im z

large enough we have
‖Aw(z)‖B(Ė) ≤ 1/2.

Using Proposition 4.2 we see that (1+Aw(z))−1 is meromorphic in {Im z > −δε/2}. Let
Sw be the set of its poles. Now we have

w−εṘ(z)w−ε = w−εQ(z)w−ε(1+ Aw(z))−1

×
(
1− wεK−(z)j−w−ε − wεK+(z)j+w−ε

)
. (6.1)

Using (6.1) we see that w−εṘ(z)w−ε can be extended meromorphically from the upper
half-plane to {Im z > −δε/2} with values in B∞(Ė). The same result also holds for the
resolvents of Ḣ±, by assumption (TE3)(c).

Definition 6.1. The poles in {Im z ≤ 0} of the meromorphic extension of w−εṘ(z)w−ε

are called resonances of Ḣ . The set of real resonances of Ḣ , resp. Ḣ±, is denoted by T ,
resp. T±.

Note that T , T± are obviously closed discrete sets. As a consequence of the meromorphic
extensions of w−εṘ(z)w−ε and w−εṘ±(z)w−ε we obtain:

Proposition 6.2. Assume (A1)–(A2) and (TE1)–(TE3). Let ε > 0.

– There exists ν > 0 such that for all χ ∈ C∞0 (R \ T ) and all k ∈ N we have

sup
ν≥δ>0, λ∈R

‖w−εχ(λ)Ṙk(λ± iδ)w−ε‖B(Ė) <∞. (6.2)

– For all χ ∈ C∞0 (R \ T±) and all k ∈ N we have

sup
δ>0, λ∈R

‖w−εχ(λ)Ṙk±(λ± iδ)w
−ε
‖B(Ė±) <∞. (6.3)

We apply [31, Thm. 4.3.1] to obtain:

Corollary 6.3. Assume (A1)–(A2) and (TE1)–(TE3). Let ε > 0 and T± be as in Propo-
sition 6.2(ii). Then for all χ ∈ C∞0 (R \ T±),

sup
‖u‖Ė±=1, δ 6=0

ˆ
R
‖w−εṘ±(λ+ iδ)χ(λ)u‖

2
Ė±
dλ <∞. (6.4)

Note that we cannot directly apply [31, Thm. 4.3.1] to Ḣ , because the selfadjointness of
the operator is crucial in this theorem. To discuss this further let us introduce a definition.
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Definition 6.4. We call λ ∈ R a regular point of Ḣ if there exists χ ∈ C∞0 (R) with
χ(λ) = 1 and ν > 0 such that

sup
‖u‖Ė±=1, ν>|δ|>0

ˆ
R
‖w−εṘ(λ+ iδ)χ(λ)u‖2Ė±

dλ <∞. (6.5)

Otherwise we call it a singular point. We denote by S the set of singular points of Ḣ .

Remark 6.5. Denoting by S± the analog of S for Ḣ± we see that S± = T± by Kato’s
theory of H -smoothness (see [31, Ch. 4, Sect. 3]).

In our situation it is still possible to control the set of singular points. Recall that

Q(z) = (1− K̃−(z)− K̃+(z))Ṙ(z).

We then have

w−εQ(z) =
(
1− w−εK̃−(z)wε − w−εK̃+(z)wε

)
w−εṘ(z).

Let
Ãw(z) := −w

−εK̃−(z)w
ε
− w−εK̃+(z)w

ε .

By the usual arguments Ãw is meromorphic in {Im z > −δε/2} with values in B∞(Ė).
Also ‖Ãw(z)‖B(Ė) ≤ 1/2 for Im z sufficiently large. We can therefore again apply Propo-
sition 4.2 to see that (1 + Ãw(z))−1 is meromorphic for {Im z > −δε/2}. We then have

w−εṘ(z) = (1+ Ãw(z))−1w−εQ(z). (6.6)

Proposition 6.6. Assume (A1)–(A2) and (TE1)–(TE3).

(i) Let Nw be the set of real poles of Ãw(z). Then

S ⊂ Nw ∪ T+ ∪ T−.

It follows that S is a closed and discrete set.
(ii) Let λ be a regular point of Ḣ . Then there exists χ ∈ C∞0 (R) with χ(λ) = 1 and

ν > 0 such that

sup
‖u‖Ė±=1, ν>|δ|>0

ˆ
R
‖w−εṘ(λ+ iδ)χ(Ḣ )u‖2Ė±

dλ <∞.

Proof. The first part follows from (6.6) and Corollary 6.3. For the second part we have to
show that we can replace χ(λ) by χ(Ḣ ) at a regular point. We choose χ̃ ∈ C∞0 (I ) with
χ̃χ = χ and write

‖w−εṘ(λ± iδ)χ(Ḣ )f ‖2Ė . ‖w−εṘ(λ± iδ)χ̃(λ)χ(Ḣ )f ‖2Ė
+ ‖w−εṘ(λ± iδ)(1− χ̃(λ))χ(Ḣ )f ‖2Ė . (6.7)
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The estimate for the first term follows from the definition of regular points and (6.5). Let
us treat the second term. We claim

‖w−εṘ(λ± iδ)(1− χ̃(λ))χ(Ḣ )‖B(Ė) . 〈λ〉
−1,

uniformly in δ. In fact let

f ελ (x) := 〈λ〉
1

x − (λ+ iδ)
(1− χ̃(λ))χ(x).

It is sufficient to show that all the seminorms ‖f ελ ‖m are uniformly bounded with respect
to λ, δ. Note that gλ(x) = (1 − χ̃(λ))χ(x) vanishes to all orders at x = λ. If suppχ ⊂
[−C,C] this is enough to ensure that ‖f ελ ‖m is uniformly bounded in λ ∈ [−2C, 2C] and
δ > 0. For |λ| ≥ 2C we observe that∣∣∣∣〈λ〉 1

x − (λ+ iδ)

∣∣∣∣ . 1,

with analogous estimates for the derivatives. This gives the integrability of the second
term in (6.7). ut

6.2. Propagation estimates

As an immediate consequence of Proposition 6.2 we obtain:

Proposition 6.7. Assume (A1)–(A2) and (TE1)–(TE3). Let ε > 0.

– For all χ ∈ C∞0 (R \ T ) and k ∈ N we have

‖w−εe−itḢχ(Ḣ )w−ε‖B(Ė) . 〈t〉
−k. (6.8)

– For all χ ∈ C∞0 (R \ T±) and k ∈ N we have

‖w−εe−itḢ±χ(Ḣ±)w
−ε
‖B(Ė±) . 〈t〉

−k. (6.9)

Proof. We only prove (i), the proof of (ii) being analogous. We have

w−εe−itḢχ(Ḣ )w−ε =
1

2πi

ˆ
χ(λ)e−itλw−ε

(
Ṙ(λ+ i0)− Ṙ(λ− i0)

)
w−ε dλ.

Integration by parts gives

w−εe−itḢχ(Ḣ )w−ε =
1

2πi
1

(it)k

∑
±

k+1∑
j=1

±C
j−1
k

ˆ
χj (λ)e

−itλw−εṘj (λ± i0)w−ε dλ

with χj := χ (k+1−j). The estimate then follows from Proposition 6.2. ut

Proposition 6.8. Assume (A1)–(A2) and (TE1)–(TE3). Let ε > 0. Then for all χ ∈
C∞0 (R \ S), ˆ

R
‖w−εe−itḢχ(Ḣ )ϕ‖2Ė dt . ‖ϕ‖

2
Ė . (6.10)
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Proof. We write

w−ε
(
Ṙ(λ+ iδ)− Ṙ(λ− iδ)

)
χ(Ḣ )f = i

ˆ
R
w−εe−δ|t |eiλte−iḢ tχ(Ḣ )f dt.

By Plancherel’s formula this yields
ˆ
R

∥∥w−ε(Ṙ(λ+ iδ)− Ṙ(λ− iδ))χ(Ḣ )f ∥∥2
Ė dλ =

ˆ
R
e−2δ|t |

‖w−εe−itḢχ(Ḣ )f ‖2Ė dt.

By Proposition 6.6(ii) the left hand side of this equation is uniformly bounded in δ for δ
small enough. ut

Corollary 6.9. If (A1)–(A2) and (TE1)–(TE3) hold and λ is a real eigenvalue of Ḣ then
λ ∈ S.

6.3. Estimates on singular points

It will be important in applications to prove that Ḣ has no singular points. To do this we
will use the following proposition.

Proposition 6.10. Assume (A1)–(A2) and (TE1)–(TE3). Then

S ⊂ T ∪ T− ∪ T+.

Proof. From (5.9) we obtain, for Im z� 1,

Ṙ(z) = Q(z)(1+K(z))−1
= Q(z)−Q(z)(1+K(z))−1K(z),

hence

w−εṘ(z) = w−εQ(z)− w−εQ(z)(1+K(z))−1w−εwεK(z)

= w−εQ(z)− w−εṘ(z)w−εwεK(z).

Next we write wεK(z) = wεK−(z) + w
εK+(z) and deduce from the expression (5.7)

for K±(z) that wεK±(z) = mεṘ±(z)i± for mε ∈ B(Ė). It then suffices to recall the
expression (5.6) for Q(z), and apply Remark 6.5. ut

6.4. Additional resolvent estimates

In this subsection we make the link between the poles of ηp−1(z)η and those of ηṘ(z)η
for η ∈ C∞0 (R).

We will need the following hypothesis:{
(a) ψ ∈ C∞0 (R)⇒ h

1/2
0 ψ(x)h

−1/2
0 ∈ B(H),

(b) ψ ∈ C∞0 (R), ψ ≥ 0, ψ = 1 near 0 ⇒ s-limn→∞ ψ(x/n) = 1 in h−1/2
0 H.

(PE)
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Lemma 6.11. Let η, η̃ ∈ C∞0 (R) with η̃η = η. If z is not a pole of η̃p−1(z)η̃ then z is
not a pole of ηR(z)η or of ηṘ(z)η, and if P(z) := ‖η̃p−1(z)η̃‖B(H) then

‖ηR(z)η‖B(E) . 〈z〉
2(1+ 〈z〉P2(z)), (6.11)

‖ηṘ(z)η‖B(Ė) . 〈z〉
2(1+ 〈z〉P2(z)). (6.12)

Proof. We choose η1, η0 ∈ C
∞

0 (R) with η0η = η, η1η0 = η0 and η̃η1 = η1. We first
notice that (6.12) follows from (6.11) because

‖ηṘ(z)ηu‖Ė . ‖ηR(z)ηu‖E . 〈z〉2(1+ 〈z〉P2(z))‖η0u‖E . 〈z〉2(1+ 〈z〉P2(z))‖u‖Ė ,

where we have used Hardy’s inequality, (TE3)(f). Now recall from (3.23) that

Ṙ(z) := (Ḣ − z)−1
= 8(k)

(
−p−1(z)(k − z) p−1(z)

1+ (k − z)p−1(z)(k − z) −(k − z)p−1(z)

)
8(−k).

It is therefore sufficient to show that

‖ηp−1(z)(k − z)ηu‖H1 . 〈z〉(1+ 〈z〉2P(z))‖u‖H1 , (6.13)
‖ηp−1(z)ηu‖H1 . (1+ 〈z〉2P(z))‖u‖H, (6.14)

‖η(1+ (k − z)p−1(z)(k − z))ηu‖H . 〈z〉(1+ 〈z〉2P2(z))‖u‖H1 , (6.15)
‖η(k − z)p−1(z)ηu‖H . 〈z〉P(z)‖u‖H. (6.16)

First, (6.16) is clear; let us consider (6.14). By complex interpolation (6.14) will fol-
low from

‖ηp−1(z)ηu‖H2 . (〈z〉2P(z)+ 1)‖u‖H. (6.17)

We compute

h0ηp
−1(z)η = [h0, η]p

−1(z)η + ηh0p
−1(z)η

= (h0 + 1)−1
[h0, η]η0(h0 + 1)p−1(z)η

+ (h0 + 1)−1
[h0, [h0, η]]η0p

−1(z)η + ηh0p
−1(z)η,

η0h0p
−1(z)η = η + (k − z)2η0p

−1(z)η.

Thus

‖η0h0p
−1(z)ηu‖ . (1+ 〈z〉2P(z))‖u‖H.

As (h0 + 1)−1
[h0, [h0, η]] is bounded, this gives (6.17) and thus (6.14).

Let us now consider (6.13). First note that ‖(k − z)u‖H1 . 〈z〉‖u‖H1 . We then esti-
mate, using (6.14),

‖ηp−1(z)ηu‖H1 . (〈z〉2P(z)+ 1)‖u‖H1 .

This gives (6.13).
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Let us now show (6.15). We write

η
(
1+ (k − z)p−1(z)(k − z)

)
η

= ηp−1(z)η1[h0, kη0]h
−1/2
0 h

1/2
0 η1p

−1(z)(k − z)η + ηp−1(z)(k − z)2η.

Using (6.13) we have

‖ηp−1(z)η1[h0, kη0]h
−1/2
0 h

1/2
0 η1p

−1(z)(k − z)ηu‖H

. P(z)‖h1/2
0 η1p

−1(z)(k − z)η‖B(H)‖u‖H . 〈z〉P(z)(1+ 〈z〉2P(z))‖u‖H1 .

This proves (6.15). ut

Corollary 6.12. If w−εp−1(z)w−ε has no real poles then w−εṘ(z)w−ε has no real
poles.

Proof. By the preceding lemmas ηṘ(z)η has no real poles for all η ∈ C∞0 (R). Suppose
that w−εṘ(z)w−ε has a pole at z = z0 ∈ R. In a neighborhood of z = z0 we have

w−εṘ(z)w−ε =

m∑
j=1

Aj

(z− z0)j
+H(z),

where H(z) is holomorphic and the Aj are of finite rank. Let η1, η2 ∈ C
∞

0 (R). We have

w−εη1Ṙ(z)η2w
−ε
=

m∑
j=1

η1Ajη2

(z− z0)j
+ η1H(z)η2.

As η1Ṙ(z)η2 does not have a pole at z = z0, we have

η1Ajη2 = 0, ∀η1, η2 ∈ C
∞

0 (R), j = 1, . . . , m.

It follows that
Ajη = 0, ∀η ∈ C∞0 (R), j = 1, . . . , m.

In view of (PE) this implies that Aj = 0. ut

7. Boundedness of the evolution 1: abstract setting

The aim of this section is to show that the evolution is bounded outside the complex
eigenvalues and the singular points of Ḣ . We assume

w−1
: D(h0)→ D(h0), and [−ik, h] . w−1h0w

−1 as quadratic forms on D(h0). (B)

For χ ∈ C∞(R) and µ > 0 we set χµ(λ) := χ(λ/µ).
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Theorem 7.1. Assume (A1)–(A2), (TE1)–(TE3), (PE), and (B). Assume furthermore
σC

pp(Ḣ ) = ∅.

(i) Let χ ∈ C∞(R) with χ = 0 on [−1, 1] and χ = 1 outside [−2, 2]. Then there are
µ0, C1 > 0 such that for all µ ≥ µ0 and t ∈ R,

‖e−itḢχµ(Ḣ )u‖Ė ≤ C1‖χµ(Ḣ )u‖Ė , u ∈ Ė . (7.1)

(ii) If χ ∈ C∞0 (R \ S) then there is C2 > 0 such that for all u ∈ Ė and t ∈ R we have

‖e−itḢχ(Ḣ )u‖Ė ≤ C2‖u‖Ė . (7.2)

Remark 7.2. If σC
pp(Ḣ ) 6= ∅, then the theorem still holds for e−itḢ |ER(Ḣ ). Here ER(Ḣ ) =

1R(Ḣ )Ė (see Sect. 5.3).

The proof of Thm. 7.1 is divided into a high frequency analysis (part (i)) and a low
frequency analysis (part (ii)).

7.1. High frequency analysis

Lemma 7.3. Assume (A1)–(A2), (TE1)–(TE3), (PE), and (B). If χ is as in the statement
of Thm. 7.1 then for µ > 0 sufficiently large,

‖(χµ(Ḣ )u)0‖H .
1
µ
‖χµ(Ḣ )u‖Ė .

Proof. Let χ̂ be as χ with χ̂χ = χ . Set ϕ = χ̂ − 1 and observe that ϕ = −1 on ]−1, 1[.
Let ϕ̃ be some (finite order) almost analytic extension of ϕ given by (for some N ≥ 1)

ϕ̃(x + iy) =

N∑
r=0

ϕ(r)(x)
(iy)r

r!
τ

(
y

δ〈x〉

)
with τ ∈ C∞0 (R), τ (s) = 1 in |s| ≤ 1/2, and τ(s) = 0 in |s| ≥ 1. Here δ is chosen such
that Ṙ(z) has no poles in |Im z| ≤ δ〈x〉 if x ∈ suppϕ. We compute

∂ϕ̃(z) = χ̂ (N+1)(x)
(iy)(N+1)

(N + 1)!
τ

(
y

δ〈x〉

)
+

( N∑
r=0

ϕ(r)(x)
(iy)r

r!

)
τ ′
(
y

δ〈x〉

)(
i

δ〈x〉
+

yx

δ〈x〉2

)
=: ϕ̃1(x + iy)+ ϕ̃2(x + iy).

Let µ ≥ µ0 = max{(1 + ε)‖k‖B(H), 2(1+ ε)‖k‖B(H)/δ}. Then supp ∂ϕ̃ ⊂ K :=

{z ∈ C : |µz| ≥ (1+ ε)‖k‖B(H))} ∩ {z ∈ C : |z| ≥ min{1, δ/2}}. Indeed, on supp ϕ̃1 we
have |z| ≥ 1 and thus

|µz| ≥ µ0 = (1+ ε)‖k‖B(H).
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On supp ϕ̃2 we have |z| ≥ δ|z|/2 and thus

|µz| ≥ µδ/2 ≥ (1+ ε)‖k‖B(H).

Note that

1 = −(χ − 1)(0) =
1

2πi

ˆ
∂ϕ̃(z)

1
z
dz ∧ dz.

We have

χ̂µ(Ḣ ) = ϕµ(Ḣ )+ 1

=
1

2πi

ˆ
∂ϕ̃(z)

((
Ḣ

µ
− z

)−1

+
1
z

)
dz ∧ dz

= −
1

2πi

ˆ
∂ϕ̃(z)(Ḣ − µz)−1 Ḣ

z
dz ∧ dz. (7.3)

Let vµ = χµ(Ḣ )u. We compute(
(Ḣ − µz)−1 Ḣ

z

(
v
µ
0

v
µ
1

))
0
=

1
z
p−1(µz)(µzv

µ
1 + hv

µ
0 ).

For z ∈ supp ∂ϕ̃(z) we estimate, using Proposition 3.6,

‖p−1(µz)zµv
µ
1 ‖H . ‖p−1(µz)zµ(v

µ
1 − kv

µ
0 )‖H + ‖p

−1(µz)zµkv
µ
0 ‖H

.
1

|Im z|µ
‖(v

µ
1 − kv

µ
0 )‖H +

1
µ|Im z|

‖v
µ
0 ‖H,

‖p−1(µz)hv
µ
0 ‖H . ‖p−1(z)h0v

µ
0 ‖H + ‖p

−1(µz)k2v
µ
0 ‖H

.
1

|Im z|µ
‖h

1/2
0 v

µ
0 ‖H +

1
µ2|Im z|

‖v
µ
0 ‖H

.
1

|Im z|µ
‖h

1/2
0 v

µ
0 ‖H +

1
µ2|Im z|

‖v
µ
0 ‖H

Using (7.3) we obtain

‖(χµ(Ḣ
n)u)0‖H .

1
µ
‖χµ(Ḣ

n)u‖Ė +
1
µ2 ‖(χµ(Ḣ

n)u)0‖H.

This gives the conclusion for µ sufficiently large. ut

Corollary 7.4. Assume (A1)–(A2), (TE1)–(TE3), (PE), and (B). Let χ be as in Thm. 7.1.
Then for µ > 0 sufficiently large there exists ε > 0 such that for all u ∈ E ,

〈χµ(Ḣ )u, χµ(Ḣ )u〉0 ≥ ε‖χµ(Ḣ )u‖
2
Ė .
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Proof. By Lemma 7.3 we have

〈χµ(Ḣ )u, χµ(Ḣ )u〉0 ≥ ‖χµ(Ḣ )u‖
2
Ė − 2‖k(χµ(Ḣ )u)0‖2H

≥ (1− C/µ2)‖χµ(Ḣ )u‖
2
Ė ,

which gives the conclusion for µ sufficiently large. ut

Corollary 7.5. Assume (A1)–(A2), (TE1)–(TE3), (PE), and (B). Let χ be as in Thm. 7.1.
Then there exists C1 > 0 such that for all u ∈ Ė and t ∈ R,

‖e−itḢχµ(Ḣ )u‖Ė ≤ C1‖χµ(Ḣ )u‖Ė .

Proof. We use the fact that 〈e−itḢχµ(Ḣ )u, e−itḢχµ(Ḣ )u〉0 is conserved. By Corol-
lary 7.4 we have

‖e−itHχµ(Ḣ )u‖
2
Ė . 〈e−itḢχµ(Ḣ )u, e

−itḢχµ(Ḣ )u〉0

= 〈χµ(Ḣ )u, χµ(Ḣ )u〉0 . ‖χµ(Ḣ )u‖
2
Ė . ut

7.2. Low frequency analysis

Part (ii) of Thm. 7.1 follows from the following

Lemma 7.6. Assume (A1)–(A2), (TE1)–(TE3), (PE), and (B). Let χ ∈ C∞0 (R\S). Then
there exists C > 0 such that

‖e−itḢχ(Ḣ )u‖Ė ≤ C‖u‖Ė , u ∈ Ė, t ∈ R. (7.4)

Proof. Let u ∈ Ė . Let

ψ(t) := (ψ0(t), ψ1(t)) := e
−itk

(
1 0
−k 1

)
e−itḢχ(Ḣ )u.

Note that

‖e−itḢχ(Ḣ )u‖2Ė = ‖ψ1‖
2
+ (h(t)ψ0(t)|ψ0(t)) =: ‖ψ(t)‖

2
E(t)

with h(t) = e−itk(h+ k2)eitk , and that solves the wave equation

(∂2
t + h(t))ψ0(t) = 0, ψ1(t) = −i∂tψ0(t).

Thus
d

dt
‖e−itḢχ(Ḣ )u‖2Ė = (h

′(t)ψ0(t)|ψ0(t)),

where

h′(t) = e−itk[−ik, h]eikt . w−1e−ikth0e
iktw−1,

by (B). Therefore

d

dt
‖e−itḢχ(Ḣ )u‖2Ė . ‖w−1ψ(t)‖2E(t) . ‖w

−1e−itḢχ(Ḣ )u‖2Ė , (7.5)
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where we have used the fact that w−1 commutes with e−itk
(

1 0
k 1

)
(see (TE1)). Integrating

(7.5) we obtain

‖e−itḢχ(Ḣ )u‖2Ė . ‖u‖2Ė +
ˆ t

0
‖w−1e−it

′Ḣχ(Ḣ )u‖2Ė dt
′ . ‖u‖2Ė ,

by Prop. 6.8. ut

We end this section by proving a weak convergence result, which will be important in
Sect. 8.

Lemma 7.7. Assume (A1)–(A2), (TE1)–(TE3), (PE), and (B). Then

e−itḢχ(Ḣ ) ⇀ 0, ∀χ ∈ C∞0 (R \ S).
Proof. Since e−itḢχ(Ḣ ) is uniformly bounded in t by Thm. 7.3, it suffices to prove
that 〈v|e−itḢχ(Ḣ )u〉Ė → 0 for u, v in a dense subspace of Ė , where 〈·|·〉Ė is the scalar
product associated to the norm of Ė . By (PE) the space {u ∈ Ė : u = χ(x)u, χ ∈ C∞0 (R)}
is dense in Ė . For such u, v the convergence to 0 follows from Prop. 6.7. ut

8. Asymptotic completeness 1: abstract setting

In this section we prove existence and completeness of wave operators, comparing the
full dynamics e−itḢ with the two asymptotic dynamics e−itḢ± , for energies away from
the set S of singular points. We first define the spaces of scattering states.

Definition 8.1. We call χ ∈ C∞(R) an admissible cut-off function for Ḣ if
– χ = 0 in a neighborhood of S, and
– χ = 0 or χ = 1 on R \ ]−R,R[ for some R > 0.
We denote by CH the set of all admissible cut-offs for Ḣ .

Definition 8.2. The spaces of scattering states are defined as

Ėscatt := {χ(Ḣ )u : u ∈ Ė, χ ∈ CH }, Ėscatt± := {χ(Ḣ±)u : u ∈ Ė±, χ ∈ CH }.
We will need the following three lemmas.

Lemma 8.3. Assume (A1)–(A2) and (TE1)–(TE3). Then w[Ḣ , i±]w ∈ B(Ė; Ė±).
Proof. We have

w[Ḣ , i±]w =

(
0 0

w[h, i±]w 0

)
∈ B(Ė; Ė±),

by hypothesis (TE3)(e). ut

Lemma 8.4. Assume (A1)–(A2) and (TE1)–(TE3).
(i) Let χ ∈ C∞0 (R). Then

i±χ(Ḣ±)− χ(Ḣ )i± ∈ B∞(Ė±; Ė).

(ii) Let χ ∈ C∞(R) be such that χ = 1 outside ]−R,R[ for some R > 0. Then

i±χ(Ḣ±)− χ(Ḣ )i± ∈ B∞(Ė±; Ė).
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Proof. Note first that (ii) follows from (i), by replacing χ by 1 − χ . We therefore only
have to prove (i). Let χ̃ be an almost analytic extension of χ such that supp χ̃ does not
contain complex poles of Ṙ(z). We have

i±χ(Ḣ±)− χ(Ḣ )i± =
1

2πi

ˆ
∂χ̃(z)Ṙ(z)[Ḣ , i±]Ṙ±(z) dz ∧ dz.

By hypotheses (TE3)(b) and (TE3)(e) we have

[Ḣ , i±]Ṙ±(z) ∈ B∞(Ė±; Ė).

Then we apply the estimates in Lemma 5.6. ut

Theorem 8.5. Assume (A1)–(A2), (TE1)–(TE3), (PE), and (B).

(i) For all ϕ± ∈ Ėscatt± there exists ψ± ∈ Ėscatt such that

e−itḢψ± − i±e
−itḢ±ϕ±→ 0, t →∞, in Ė .

(ii) For all ψ ∈ Ėscatt there exist ϕ± ∈ Ėscatt± such that

e−itḢ±ϕ± − i±e
−itḢψ → 0, t →∞, in Ė±.

Proof. Let χ ∈ CH . We only prove (i), the proof of (ii) being analogous. We first show
that the limit

W±ϕ := lim
t→∞

eitḢχ(Ḣ )i±e
−itḢ±χ(Ḣ±)ϕ (8.1)

exists for all ϕ ∈ Ė±. We first treat the case χ = 0 on R \ ]−R,R[. Using Thm. 7.1(i),
Lemma 5.4 and the fact that Ḣ± are selfadjoint, we obtain

‖eitḢχ(Ḣ )i±e
−itḢ±χ(Ḣ±)ϕ‖Ė . ‖ϕ‖Ė± . (8.2)

By (8.2) and assumption (PE) we may assume that ϕ ∈ D(w). We compute

d

dt
eitḢχ(Ḣ )i±e

−itḢ±χ(Ḣ±) = e
itḢχ(Ḣ )[Ḣ , i±]e

−itḢ±χ(Ḣ±). (8.3)

Integrating (8.3) and using Lemma 8.3 and Proposition 6.7 we obtain

‖eitḢχ(Ḣ )i±e
−itḢ±χ(Ḣ±)− e

isḢχ(Ḣ )i±e
−isḢ±χ(Ḣ±)ϕ‖

.
ˆ t

s

‖w−1e−it
′Ḣ±χ(Ḣ±)ϕ‖Ė± dt

′ .
ˆ t

s

〈t ′〉−2 dt ′ ‖wϕ‖Ė± → 0, s, t →∞.

This gives the existence of the limit (8.1). Let now χ = 1 on R\]−R,R[. Let χ̂ ∈ C∞0 (R)
with χ̂ = 1 in a neighborhood of 0. Using the fact that eitḢχ(Ḣ ) is uniformly bounded
by Thm. 7.1(ii), and Lemmas 8.4 and 6.11, we see that

s- lim
t→∞

eitḢχ(Ḣ )i±e
−itḢ± χ̂2(L−1Ḣ±)χ(Ḣ±)

= s- lim
t→∞

eitḢχ(Ḣ )χ̂(L−1Ḣ )i±e
−itḢ± χ̂(L−1Ḣ±)χ(Ḣ±)
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exists, since χ̂(L−1
·) is compactly supported. Let ε > 0. We estimate

‖eitḢχ(Ḣ )i±e
−itḢ±χ(Ḣ±)ϕ

±
− eisḢχ(Ḣ )i±e

−isḢ±χ(Ḣ±)ϕ
±
‖Ė

≤ ‖eitḢχ(Ḣ )i±e
−itḢ± χ̂2(L−1Ḣ±)χ(Ḣ±)ϕ

±

− eisḢχ(Ḣ )i±e
−isḢ± χ̂2(L−1Ḣ±)χ(Ḣ±)ϕ

±
‖Ė + 2‖(1− χ̂2(L−1Ḣ±))ϕ

±
‖Ė < ε,

if we choose first L and then t, s large enough. This shows the existence of the limit (8.1)
if χ = 1 on R \ ]−R,R[.

For φ± ∈ Ė± let

ψ±t := e
itḢχ(Ḣ )i±e

−itḢ±χ(Ḣ±)φ
±, ψ± := lim

t→∞
ψ±t .

Let us write

ψ±t = ψ
±
+ r(t), r(t)→ 0, t →∞.

Let χ̃ ∈ CH with χ̃χ = χ. We clearly have χ̃(Ḣ )ψ±t = ψ
±
t and thus

χ̃(Ḣ )ψ± + χ̃(Ḣ )r(t) = ψ± + r(t).

Taking the limit t →∞ we find

χ̃(Ḣ )ψ± = ψ±, in particular ψ± ∈ Ėscatt,

hence e−itḢψ± is uniformly bounded by Thm. 7.1. It follows that

e−itḢψ± − χ(Ḣ )i±e
−itḢ±χ(Ḣ±)φ

±
→ 0.

Applying Lemma 8.4 we find

e−itḢψ± − i±e
−itḢ±χ2(Ḣ±)φ

±
→ 0, t →∞. (8.4)

Applying once more a density argument we obtain (i). ut

9. Geometric setting

In this section we consider the geometric framework introduced in Subsect. 2.1. The main
task will be to check that the hypotheses (G) imply the abstract hypotheses of Sects. 4, 5.
We will check the hypotheses for the restrictions of the operators to Hn and the corre-
sponding energy spaces. In the following, we will drop the index n.

9.1. Asymptotic Hamiltonians

To apply the framework of Sect. 5 we need a coordinate function x on M with range
equal to R. This is easily done with the change of variables given by

dx

dr
= α−2

1 (r).
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Note that there is a freedom in the choice of the integration constant. This choice, how-
ever, is not important for what follows. For r → r− we find

x(r)− x(r−) =

ˆ r

r−

1
α2
−q

2
dr ′ +

ˆ r

r−

h(r ′) dr ′

with h(r) ∈ O((r − r−)
−1+δ). Here we have used (G2). Recalling that q(r) =√

(r+ − r)(r − r−) we find, for r close to r−,

x(r)− x(r−) ≥
1
κ−

ln(r − r−)− C

with κ− = (α−)2(r+ − r−). It follows that

r − r− . eκ−x, r → r−.

In a similar way we obtain

r+ − r . e−κ+x, r → r+,

where κ+ = (α+)2(r+ − r−). Since ∂x = α−2
1 (r)∂r , we find that

f (r) ∈ T σ iff f (r(x)) ∈ T σx for

T σx :=

{
f ∈ C∞(R× Sd−1) : ∂αx ∂

β
ωf ∈

{
O(eσκ−x/2), x →−∞,
O(e−σκ+x/2), x →∞

}}
.

This change of variables gives rise to the unitary transformation

U1 : L
2(]r−, r+[ × Sd−1, drdω)→ L2(R× Sd−1, dxdω) =: H1,

v(r, ω) 7→ α1(r(x))v(x, ω).

We set
E±,1 := (U1 ⊕ U1)E±, h1

± := U1h±U−1
1 , k1

± := U1k±U−1
1 .

We compute

h1
0 = U1h0U−1

1 = U1h0,sU−1
1 +

d−1∑
i,j=1

D∗i g
ijDj +

d−1∑
i=1

(giDi +D
∗

i g
i)

+ α−1
1 (r)Dxg

rrα−2
1 (r)Dxα

−1
1 (r)+ α−1

1 (r)grDxα
−1
1 (r)

+ α−1
1 (r)Dxg

rα−1
1 (r)+ f,

U1h0,sU1 = Dxα
2
2α
−2
1 Dx + α

2
3P + α

2
4 .

We will often drop the exponent 1 when it is clear which coordinate system is used.

9.2. Meromorphic extensions

In this subsection we will check that h+, h̃− satisfy (ME2). To do so we use a result of
Mazzeo and Melrose [26] about the meromorphic extension of the truncated resolvent for
the Laplace operator on asymptotically hyperbolic manifolds. We start by briefly recalling
this result.
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9.2.1. A result of Mazzeo–Melrose. Let Y be a compact n-dimensional manifold with
boundary given by the defining function y:

∂Y = {y = 0}, dy|∂Y 6= 0, y|Y 0 > 0.

Let g be a complete metric on Y of the form

g = h/y2, (9.1)

where h is a C∞ metric on Y . One is usually interested in the Laplace–Beltrami opera-
tor 1g . We have to consider slightly more general operators. Let

V0(Y ) = {V ∈ C
∞(Y ; T Y ) : V |∂Y = 0},

the space of vector fields vanishing on the boundary. In local coordinates (y, x) near ∂Y
the vector fields y∂y, y∂xj span V0(Y ).

We now need the definition of the normal operator. For p ∈ ∂Y the tangent space TpY
is divided into two half-spaces by the hypersurface Tp∂Y . We will denote by Yp the half-
space on the “Y ” side (that is, spanned by Tp∂Y and the inward normal vector at p).
Then any smooth coefficient polynomialQ in V0(Y ) defines a natural constant coefficient
operator on Yp:

Np(Q)u := lim
r→0

R∗r f
∗Q(f−1)∗R∗1/ru, (9.2)

where u ∈ C∞(Yp), Rr is the natural R+-action on Yp ' N+Tp∂Y given by multiplica-
tion by r on the fibers, and f is a local diffeomorphism from � ⊂ Y, p ∈ �:

f : �→ �′, �′ ⊂ TpY, f (p) = 0, dfp = I, f (∂Y ) ⊂ Tp∂Y.

The definition is independent of f . The normal operator freezes the coefficients at a
point p, one obtains a polynomial in the elements of V0(Yp). The following result is
implicit in [26]. We use here the formulation in [28].

Proposition 9.1 (Mazzeo–Melrose, 1987). Let Q be a second order differential opera-
tor on Y which is a polynomial in V0(Y ) with coefficients in C∞(Y ). Assume that

(i) the principal part of Q is an elliptic polynomial in the elements of V0(Y ) uniformly
on Y ,

(ii) for every p ∈ ∂Y the normal operator of Q defined by (9.2) is given by

Np(Q) = −K

[
z2

1D
2
z1
+ i(n− 2)z1Dz1 + z

2
1

n∑
i,j=2

hij (p)DziDzj −

(
n− 1

2

)2]
,

Yp = {z ∈ Rn : z1 ≥ 0}, [hij ] ≥ C1, C > 0,

where K < 0 is constant on the components of ∂Y .
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Then for any metric g of the form (9.1),

RQ(z) = (Q− z
2)−1
: L2(Y, dvolg)→ L2(Y, dvolg)

is holomorphic in {Im z � 1}. For N > 0 the operator yNRQ(z)yN extends to a mero-
morphic operator in {Im z > −δ} for some δ > 0.

Remark 9.2. The width of the strip onto which one can extend the truncated resolvent is
of order N if one removes some special points along the imaginary axis. At these points,
which are given by (−K)1/2(−i)

( 2k−1
2

)1/2, k ∈ N, essential singularities might occur. If
the operator is the Laplacian associated to an asymptotic hyperbolic metric and the metric
is even, then no essential singularities appear—see [20] for a detailed discussion of these
questions. In our case it is sufficient to know that there exists a meromorphic extension in
some strip, and we will not study the type of singularities.

9.2.2. Meromorphic extensions of the resolvents of h+, h̃−

Lemma 9.3. Assume hypotheses (G). Then (h+, k+, w) and (h̃−, k− − `,w) satisfy
(ME1)–(ME2) for w = q(r)−1.

Proof. We will show that w−ε(hn± − z
2)−1w−ε has a meromorphic extension to a strip

{Im z > −δε}, δε > 0. Let us start with h+.
We want to apply Prop. 9.1 for Y =M = [r−, r+]×Sd−1. The principal part of hn+ is

an elliptic polynomial in the elements of V0(Y ) and hypothesis (i) of Prop. 9.1 is fulfilled.
Near each boundary component we set z = r − r− and z = r+ − r resp. We change the
C∞ structure on Y (as a manifold with boundary) and allow a new smooth coordinate
y =
√
z. We will denote the new manifold by Y1/2 and think of Y1/2 as a conformally

compact manifold in the sense of having a metric of the form (9.1).
Near r = r− the operator hn+ becomes

h+ =
1
4 (α
+

1 )
2(α+2 )

2(r+ − r−)
4DyyDyy + (α

+

3 )
2(r+ − r−)

2y2
d−1∑
i,j=1

D∗i αijDj

− (k+s,rn+ k
+
s,v)

2
+O(yδ)(Dyy)2 +O(yδ)y2

d−1∑
i,j=1

D∗i αijDj +O(yδ).

We now conjugate h+ by a weight function (see [28]) and set

Q = ((1− χ)+ χy2)h+((1− χ)+ χy2)−1, (9.3)

where χ ∈ C∞(Y ) with χ = 1 for y < ε < 1/2 and χ = 0 for y > 2ε. It follows that
the normal operator becomes

Np(Q) =
1
4 (α
+

1 )
2(α+2 )

2(r+−r−)
4
(
y2
(
D2
y+

4(α+3 )
2

(α+1 )
2(α+2 )

2(r+−r−)2

d−1∑
i,j=1

D∗i αij (p)Dj

)

+ iyDy − 1−
4(k+s,rn+ k

+
s,v)

2

(α+1 )
2(α+2 )

2(r+ − r−)4

)
.
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This operator is shifted with respect to the model operator of Prop. 9.1, and the points
where essential singularities may occur are now given by z2

= (−K)
(
β −

( 1−2k
2

)2),
k ∈ N, where−K = 1

4 (α
+

1 )
2(α+2 )

2(r+− r−)
4 and β = −

4(k−s,rn+ks,v)
2

(α+1 )
2(α+)2(r+−r−)4

. As β is neg-

ative, all these points have strictly negative imaginary part. Hence we obtain a meromor-
phic continuation of w−ε(Q− z2)−1w−ε , where Q is given by (9.3). Since for Im z� 0
we have

(h+ − z
2)−1
= ((1− χ)+ χy2)−1(Q− z2)−1((1− χ)+ χy),

we obtain a meromorphic continuation of w−ε(h+ − z2)−1w−ε . The proofs near r = r+
and for h̃− are similar. ut

9.3. Verification of the abstract hypotheses

Proposition 9.4. Assume hypotheses (G). Then conditions (A1)–(A2), (TE1)–(TE3),
(PE), and (B) are satisfied.

The rest of the subsection is devoted to the proof of Prop. 9.4. We start by some prepara-
tions.

9.3.1. Some useful facts. By (G5) we have estimates

‖q(r)Drα1(r)u‖ . ‖h
1/2
0 u‖, (9.4)

‖q(r)Dju‖ . ‖h
1/2
0 u‖, j = 1, . . . , d − 1, (9.5)

‖q(r)u‖ . ‖h1/2
0 u‖. (9.6)

The estimates (9.4)–(9.6) also hold with h0 replaced by h+ or h̃−. We will also need the
following Hardy type estimate.

Lemma 9.5. We have

(i) ‖〈x(r)〉−1u‖H . ‖h1/2
0 u‖H,

(ii) ‖f u‖H . ‖h1/2
0 u‖H, f ∈ T δ, δ > 0.

Proof. Since 〈x(r)〉 ∼ |ln(r − r±)| as r → r±, (ii) follows from (i). We recall a version
of Hardy’s inequality:

ˆ
∞

0
|v(x)|2x−2 dx ≤ 4

ˆ
∞

0
|v′(x)|2 dx, v ∈ C∞0 (R \ {0}). (9.7)

Let χ1 ∈ C
∞

0 (R) with χ1(0) = 1, and χ2 ∈ C
∞(R) with χ1 + χ2 = 1. We have

‖〈x〉−1χ1u‖
2
H1

. ‖χ1u‖
2
H1

. ((−∂2
x + α

2
1)u | u)H1
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because α2
1 & χ2

1 . Now applying (9.7) to χ2u gives

‖〈x〉−1χ2u‖
2
H1

.
ˆ
R×S2
|∂x(χ2u)|

2 dx dω

.
ˆ
R×S2

(χ ′2)
2
|u|2 dx dω +

ˆ
R×S2

χ2
2 |u
′
|
2 dx dω . ((−∂2

x + α
2
1)u | u)H1

because (χ ′2)
2 . α2

1 . It follows thatˆ
〈x〉−2

|u|2 dx dω .
ˆ
(|Dxu|

2
+ α2

1 |u|
2) dx dω.

Changing to (r, ω) coordinates yields, since dx = 1
α2

1
dr and Dx = α2

1Dr ,
ˆ
〈x(r)〉−4

|u|2
1
α2

1
dr dω .

ˆ
(|α1Dru|

2
+ |u|2) dr dω.

Setting v = 1
α1
u gives
ˆ
〈x(r)〉−4

|v|2 dr dω .
ˆ
(|α1Drα1v|

2
+ α2

1 |v|
2) dr dω,

.
ˆ
(|qDrα1v|

2
+ α2

1 |v|
2) dr dω,

and using h0 & α1(Drq
2Dr + 1)α1 and (G5) we complete the proof. ut

Lemma 9.6. Let f, g ∈ C∞(R) with lim|x|→∞ f (x) = lim|x|→∞ g(x) = 0. Then the
operators f (x)g(h+) and f (x)g(h̃−) are compact.

Proof. We only prove the lemma for h+, the proof for h̃− being analogous. We may
assume that f, g ∈ C∞0 (R). Let � be a bounded domain which contains supp f . Then
f (x)g(h+) sends L2(M) to H 2(�). But H 2(�) ↪→ L2(�) ↪→ L2(M) and the first
embedding is compact. ut

9.3.2. Verification of hypotheses (A1)–(A2). We have already noticed that (G5) implies
(A1) (in particular (G5) implies 0 /∈ σpp(h0)). Let us check (A2). We first check that
h

1/2
0 kh

−1/2
0 ∈ B(H). This will follow from

kh0k . h0 on C∞0 (M). (9.8)

Several terms have to be estimated:

−kα1∂rα
2
2∂rα1k = −α1∂rk

2α2
2∂rα1 − α1∂rkα

2
2α1k

′
+ α2

1k
′2α2

2 + α1k
′α2

2k∂rα1

. −α1∂rq
2∂rα1 − α1∂rkα

2
2α1k

′
+ α2

1k
′2α2

2 + α1k
′α22k∂rα1,

−k∂rg
rr∂rk = −α1∂r

(
k

α1

)2

grr∂rα1 − α1∂rkg
rr

(
k

α1

)′
+

(
k

α1

)′
grrk∂rα1

. −α1∂rq
2∂rα1 − α1∂rk

(
k

α1

)′
grr +

(
k

α1

)′
grrk∂rα1,
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and

kgrDrk =
k2

α1
grDrα1 +

1
i
kgr

(
k

α1

)′
α1.

Summing and adding the angular terms we find

kh0k . α1Drq
2Drα1 − α1∂rkα

2
2α1k

′
+ α2

1(k
′)2α2

2 + α1k
′α2

2k∂rα1 − α1∂rk

(
k

α1

)′
grr

+

(
k

α1

)′
kgrr∂rα1 +

1
i
kgr

(
k

α1

)′
α1 +

k2

α1
grDrα1 + α1Dr

k2

α1
gr −

1
i

(
k

α1

)′
kα1g

r

+

∑
i,j

α3D
∗

i αijk
2Djα3 + k

2α2
4 +

∑
i,j

D∗i k
2gijDj +

∑
i

(gik2Di +D
∗

i k
2gi)+ k2f

+

∑
i,j

D∗i kα
2
3αij (Djk)−

∑
i,j

α2
3(D

∗

i k)αijkDj −
∑
i,j

α2
3(D

∗

i k)αij (Djk)

+

∑
i,j

D∗i kg
ij (Djk)−

∑
i,j

(D∗i k)g
ijkDj −

∑
i,j

(D∗i k)g
ij (Djk)

+

∑
i

kgi(Dik)−
∑
i

(D∗i k)kg
i
+ 2 Im grkk′.

We have

kα2
2k
′
∈ T 2, α2

1(k
′)2α2

2 ∈ T
4, k′α2

2k ∈ T
2,

k

q

(
k

α1

)′
grr ∈ T δ, kα1g

r

(
k

α1

)′
∈ T δ,

k2

α1
gr

1
q
∈ T δ, gik2

∈ T 2, kα2
3αij (Dik) ∈ T

4, α2
3(D

∗

i k)αij (Djk) ∈ T
6,

kgij (Djk) ∈ T
4+δ, (D∗i k)g

ij (Djk) ∈ T
6+δ, kgi(Dik) ∈ T

4, grkk′ ∈ T 2+δ.

This gives (9.8) by using (G5), (9.4)–(9.6) and Lemma 9.5. The estimate for

‖(k − z)−1
‖B(h−1/2

0 H)

is exactly the same with the derivatives of k replaced by ∂k

(k−z)2
. Here we also use the

inequalities

‖(k − z)−1
‖B(H) ≤

1
|Im z|

, ‖(k − z)−1
‖B(H) ≤

1
|z| − ‖k‖B(H)

,

the second one being valid for |z| ≥ (1+ ε)‖k‖B(H), ε > 0.

9.3.3. Verification of hypotheses (TE1)–(TE3). (TE1) is obvious; let us check (TE2). We
check it for h+, the proof for h̃− being analogous. First note that (G5) for h+ implies
0 /∈ σpp(h+). We have k2

+ ∈ T
2. This implies the estimate

‖k+u‖ . ‖h
1/2
+ u‖.

We now check that (TE3) is fulfilled. Recall that w = q−1.
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– (TE3)(a) follows from (G3).
– (TE3)(b) is clear.
– (TE3)(c): We have already shown in Sect. 9.2.2 that h+, h̃− fulfill (ME2). Let us check

(ME1):

– (ME1)(a) follows from (G3).
– (ME1)(b) is clear.
– (ME1)(c): Let us show that h−1/2

+ [h+, w
−ε
]wε/2 is bounded. We have

[ih+, w
−ε
] = α1Drα

2
2α1(w

−ε)′ +Drg
rr(w−ε)′ + gr(w−ε)′ + hc

= α1Drα
2
2α1(w

−ε)′ + α1Dr
grr

α1
(w−ε)′ −

1
i
α1

(
1
α1

)′
grr(w−ε)′

+ gr(w−ε)′ + hc

= α1Drqα + β

with α ∈ T ε and β ∈ T ε+δ . We have h−1/2
+ βwε/2 ∈ B(H) by Lemma 9.5. We have

h
−1/2
+ α1Drqαw

ε/2
∈ B(H) by (9.4). The proof for h̃− is analogous.

– (ME1)(d) follows from Lemma 9.5.
– (ME1)(e) follows from Lemma 9.6.

– (TE3)(d): The proof is exactly the same as for (A2), we omit the details.
– (TE3)(e): We start with w[h, i+]wh

−1/2
+ . We have

w[ih, i+]w = w(α1Drα
2
2α1i

′
+ +Drg

rr i′+ + g
r i′+ + hc)w = αqDrα1 + β

with α ∈ T∞ and β ∈ T∞. This gives w[h, i+]wh
−1/2
+ ∈ B(H). The proof for the

other operators is the same, except for h−1/2
0 [w−1, h0]w

1/2 for which it is analogous
to the proof for h−1/2

+ [h,w−ε]wε/2. We omit the details.
– (TE3)(f) follows from Hardy’s inequality of Lemma 9.5.

9.3.4. Verification of hypotheses (PE) and (B). For (PE), thanks to (9.4)–(9.6) we see
that ‖h1/2

0 u‖2 is equivalent to

‖Dxu‖
2
+

d−1∑
j=1

‖q(r(x))Dju‖
2
+ ‖q(r(x))u‖2.

As ψ(x/n)u→ u in L2(R× Sd−1), we only have to show that

[iDx, ψ(x/n)]u→ 0

for u ∈ h−1/2
0 H. We have[

iDx, ψ

(
x

n

)]
u =

x

n
ψ ′
(
x

n

)
1
x
h
−1/2
0 h

1/2
0 u.
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By Lemma 9.5 it is sufficient to show that

x

n
ψ ′
(
x

n

)
v→ 0 for v ∈ L2(R× Sd−1),

which is obvious.
For (B), first note that w−ε clearly sends D(h0) into itself. We compute

[ih0,s, k] = α1Drα
2
2k
′α1 +

∑
i,j

D∗i αij (∂jk)α
2
3 + hc =: Cr + Cω.

We have

wεCrw
ε
= α1w

εDrα
2
2k
′α1w

ε
+ hc = α1Drα

2
2k
′α1w

2εk′α1 −
1
i
(wε)′α2

2α
2
1w

ε
+ hc.

Using

α2
2w

2εk′ ∈ T 2−2ε, (wε)′α2
2α

2
1w

ε
∈ T 2−2ε, α2

3αij (∂jk)w
2ε
∈ T 4−2ε,

we find that for ε < 1,

wεCrw
ε . h0, wεCωw

ε . h0,

by Lemma 9.5. We now compute

wε[i(h0 − h0,s), k]w
ε
=

∑
i,j

D∗i q
gij (iDjk)w

2ε

q
+

∑
i

gi(Dik)w
2ε

+ α1Drw
2εα−1

1 grrk′ −
1
i
α1

(
wε

α1

)′
grrk′wε + hc.

Noting that

gij

q
(Djk)w

2ε
∈ T 3+δ−2ε, gi(iDjk)w

2ε
∈ T 3+δ−2ε,

grk′w2ε
∈ T 2+δ−2ε,

w2εgrrk′

qα1
∈ T 2+δ−2ε,(

wε

α1

)′
α1g

rrk′wε ∈ T 2+δ−2ε,

and using (9.4)–(9.6) and Lemma 9.5, we find that, for ε > 0 sufficiently small,

wε[i(h0 − h0,s), k]w
ε . h0.

Thus (B) is fulfilled.

10. Asymptotic completeness 2: geometric setting

In this section we will compare the full dynamics to the asymptotic spherically symmetric
dynamics. We set

h+∞ := h0,s, h−∞ := h+∞ − `
2, k+∞ := 0, k−∞ := `.
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The operators

Ḣ+∞ :=

(
0 1

h+∞ 0

)
, Ḣ−∞ :=

(
0 1

h−∞ 2`

)
are selfadjoint on

Ė+∞ := (h+∞)−1/2H⊕H resp. Ė−∞ := 8(`)((h+∞)−1/2H⊕H)

with domains

D(Ḣ+∞) = (h+∞)
−1/2H∩ (h+∞)−1H⊕ 〈h+∞〉−1/2H, D(Ḣ−∞) = 8(`)D(Ḣ+∞).

Remark 10.1. We have σpp(Ḣ±∞) = ∅. This follows from [21, Lemme 4.2.1].

Lemma 10.2. Assume (G1)–(G7). Then Ė+∞ = Ė+ and Ė−∞ = Ė− with equivalent
norms.

Proof. We have to show

h+∞ . h+ . h+∞, h+∞ . h̃− . h+∞. (10.1)

Recalling that h0,s = h+∞, it is sufficient to show (10.1) for h+∞ replaced by h0,s . First
note that

h0,s . α1(Drq
2Dr + P + 1)α1. (10.2)

(G7) then gives
h0,s . h+, h0,s . h̃−.

By (G5), (G6), the Hardy inequality of Lemma 9.5, and the estimates (9.4)–(9.6) we have

h0 . h0,s .

Now,
h+ = h0 − k

2
+ . h0 . h0,s, h̃− = h0 − (k− − `)

2 . h0 . h0,s,

which finishes the proof. ut

Lemma 10.3. Assume (G1)–(G7). For χ ∈ C∞0 (R) we have

χ(Ḣ±∞)− χ(Ḣ±) ∈ B∞(Ė±).

Proof. Let χ ∈ C∞0 (R). We prove the conclusion for χ(Ḣ+∞) − χ(Ḣ+), the proof for
χ(Ḣ−∞)−χ(Ḣ−) being analogous. Let us introduce, for a positive selfadjoint operator h,
the transformation

U(h) :=
1
√

2

(
h1/2 i

h1/2
−i

)
, U−1(h) =

1
√

2

(
h−1/2 h−1/2

−i i

)
.

Note that

U(h+) : Ė±→ H⊕H, U(h+∞) : Ė+∞→ H⊕H
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are unitary. We set

L+∞ := U(h+∞)Ḣ+∞U∗(h+∞), L+ := U(h+)Ḣ+U∗(h+).

By [21, Lemmes 6.1.3, A.4.4] we have

(1− U(h+∞)U∗(h+))χ(L+), χ(L+∞)− χ(L+) ∈ B∞(H⊕H). (10.3)

We now write

χ(Ḣ+∞)− χ(Ḣ+) = U∗(h+∞)(1− U(h+∞)U∗(h+))χ(L+)U(h+)
+ U∗(h+∞)(χ(L+∞)− χ(L+))U(h+∞)
+ U∗(h+∞)χ(L+)(1− U(h+)U∗(h+∞))U(h+∞),

which is compact by (10.3). ut

Let

Ṙ±∞(z) := (Ḣ±∞ − z)
−1.

In the same way as for Ḣ± we can show:

Proposition 10.4. Assume (G1)–(G7). Let ε > 0. There exists a discrete and closed set
T±∞ ⊂ R such that for all χ ∈ C∞0 (R \ T±∞) and all k ∈ N we have

sup
ε>0, λ∈R

‖w−εχ(λ)Ṙk±∞(λ± iε)w
−ε
‖B(Ė±∞) <∞. (10.4)

Let T̂ := S ∪ T±∞. The admissible energy cut-offs for Ḣ±∞ are now defined in exactly
the same manner as for Ḣ , with S replaced by T̂ in the definition. Let CH±∞ be the set of
all admissible cut-off functions for Ḣ±∞. We define

Ėscatt,±∞ := {χ(Ḣ±∞)u : χ ∈ CH±∞ , u ∈ Ė±∞},
Ėscatt := {χ(Ḣ )u : χ ∈ CH±∞ , u ∈ Ė}.

Theorem 10.5. Assume (G1)–(G7).

(i) For all ϕ± ∈ Ėscatt,±∞ there exists ψ± ∈ Ėscatt such that

e−itḢψ± − i±e
−itḢ±∞ϕ±→ 0, t →∞, in Ė .

(ii) For all ψ ∈ Ėscatt there exists ϕ± ∈ Ėscatt,±∞ such that

e−itḢ±∞ϕ± − i±e
−itḢψ → 0, t →∞, in Ė±∞.
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Proof. Let χ ∈ CH±∞ . By Thm. 8.5 it is sufficient to show the existence of the wave
operators

W±χ := s- lim
t→∞

eitḢ±e−itḢ±∞χ(Ḣ±∞) in Ė±,

�±χ := s- lim
t→∞

eitḢ±∞e−itḢ±χ(Ḣ±) in Ė±,

and that
χ̃(Ḣ±)W

±
χ = W

±
χ , χ̃(Ḣ±∞)�

±
χ = �

±
χ (10.5)

for χ̃ ∈ CH±∞ with χ̃χ = χ . The existence of W+χ and �+χ follows directly from [21,
Thm. 6.2.2]. For the existence of W−χ , �

−
χ note that

8(`)Ḣ−∞8
−1(`) = Ḣ `

−∞ + `1, 8(`)Ḣ−8
−1(`) = Ḣ `

− + `1,

where

Ḣ `
−∞ :=

(
0 1

h0,s 0

)
, Ḣ `

− :=

(
0 1

h0 − (k− − `)
2 2(k− − `)

)
.

Again the existence of

W̃−χ := s- lim
t→∞

eitḢ
`
−e−itḢ

`
−∞χ(Ḣ `

−∞), �̃−χ := s- lim
t→∞

eitḢ
`
−∞e−itḢ

`
−χ(Ḣ `

−)

follows from [21, Thm. 6.2.2]. The existence of W−χ , �
−
χ then follows by applying the

transformation 8(`). The identity (10.5) follows from Lemma 10.3. ut

Remark 10.6. (i) Note that the results of [21] apply here although the situation con-
sidered in [21] is slightly different. In [21] the cylindrical manifold R × Sd−1 has one
asymptotically Euclidean end and one asymptotically hyperbolic end, whereas here we
consider two asymptotically hyperbolic ends. The latter situation is simpler, in particular
no gluing of the two conjugate operators for the ends in the setting of Mourre theory is
necessary.

(ii) As σpp(Ḣ±∞) = ∅ and Ḣ±, Ḣ±∞ are selfadjoint, the wave operators

W± := s- lim
t→∞

eitḢ±e−itḢ±∞

exist. In a similar way we obtain the existence of the wave operators

�± := s- lim
t→∞

eitḢ±∞e−itH±1ac(Ḣ±),

where 1ac(Ḣ±) is the projection on the absolutely continuous subspace of Ḣ±.

11. The Klein–Gordon equation on the De Sitter–Kerr spacetime

In this section we recall the Klein–Gordon equation on the De Sitter–Kerr spacetime,
which will be our main example of the geometric framework from Sect. 9.
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11.1. The De Sitter–Kerr metric in Boyer–Lindquist coordinates

In Boyer–Lindquist coordinates the De Sitter–Kerr spacetime is described by a smooth
4-dimensional Lorentzian manifold MBH = Rt × Rr × S2

ω, whose spacetime metric is
given by

g :=
1r − a

2 sin2 θ 1θ

λ2ρ2 dt2 +
2a sin2 θ ((r2

+ a2)1θ −1r)

λ2ρ2 dtdϕ

−
ρ2

1r
dr2
−
ρ2

1θ
dθ2
−

sin2 θσ 2

λ2ρ2 dϕ2, (11.1)

ρ2
:= r2

+ a2 cos2 θ, 1r :=
(
1− 1

33r
2)(r2

+ a2)− 2Mr,

1θ := 1+ 1
33a

2 cos2 θ, σ 2
:= (r2

+ a2)21θ − a
21r sin2 θ, λ := 1+ 1

33a
2.

Here 3 > 0 is the cosmological constant, M > 0 is the mass of the black hole and a its
angular momentum per unit mass. The metric is defined for 1r > 0; we assume that this
holds on an open interval ]r−, r+[. (For a = 0, this is true when 93M2 < 1; it remains
true if we take a small enough.)

Note that the vector fields ∂t and ∂ϕ are Killing. The De Sitter–Schwarzschild metric
(a = 0) is a special case of the above. The set {ρ2

= 0} is a true curvature singularity.
In contrast to ρ2, the roots of 1r are mere coordinate singularities. r− and r+ represent
event horizons and we will only be interested in the region r− < r < r+. This region
is not stationary in the sense that there exists no global time-like Killing vector field. In
particular there are regions in Rt×]r−, r+[r×S2

ω in which ∂t becomes space-like. Indeed,
the function 1′r has a single zero rmax on ]r−, r+[. The function 1r is strictly increasing
on ]r−, rmax[, and strictly decreasing on ]rmax, r+[. Therefore there exist r1(θ), r2(θ)
defined on ]0, π[ such that

1r − a
2 sin2 θ 1θ


< 0 on ]r−, r1(θ)[,
> 0 on ]r1(θ), r2(θ)[,
< 0 on ]r2(θ), r+[.

As a consequence the vector field ∂t is

– time-like on {(t, r, θ, ϕ) : r1(θ) < r < r2(θ)},
– space-like on {(t, r, θ, ϕ) : r− < r < r1(θ)} ∪ {(t, r, θ, ϕ : r2(θ) < r < r+} =:

A− ∪A+.
The regions A± are called ergospheres. Of particular interest are the locally nonrotating
observers. These observers have four-velocity

ua =
∇
a t

(∇bt∇bt)1/2
.

They rotate with coordinate angular velocity

� = −
gtϕ

gϕϕ
=
a((r2

+ a2)1θ −1r)

σ 2 . (11.2)
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Their four-velocity is then (see also Remark 2.5)

ua = ∂t −�∂ϕ .

Note that the angular velocity has finite limits at both horizons:

�± := �(r±, θ) =
a

r2
± + a

2
. (11.3)

11.2. The Klein–Gordon equation on the De Sitter–Kerr spacetime

We now reduce the Klein–Gordon equation on the De Sitter–Kerr spacetime to the ab-
stract form (2.1).

A standard computation using 2g = |g|
−1/2∂a|g|

1/2gab∂b yields, for the De Sitter–
Kerr metric,(

σ 2λ2

ρ21θ1r
∂2
t − 2

a(1r − (r
2
+ a2)1θ )λ

2

ρ21θ1r
∂ϕ∂t −

(1r − a
2 sin2 θ 1θ )λ

2

ρ21θ1r sin2 θ
∂2
ϕ

−
1
ρ2 ∂r1r∂r −

1
sin θ ρ2 ∂θ sin θ 1θ∂θ +m2

)
φ = 0. (11.4)

We multiply the equation on the left by c2
=

ρ21r1θ
λ2σ 2 to obtain(

∂2
t − 2

a(1r − (r
2
+ a2)1θ )

σ 2 ∂ϕ∂t −
(1r − a

2 sin2 θ 1θ )

sin2 θ σ 2
∂2
ϕ

−
1r1θ

λ2σ 2 ∂r1r∂r −
1r1θ

λ2 sin θ σ 2 ∂θ sin θ 1θ∂θ +
ρ21r1θ

λ2σ 2 m2
)
φ = 0. (11.5)

We now consider the unitary transform

U : L2
(
M,

σ 2

1r1θ
drdω

)
→ L2(M, drdω), φ 7→

σ
√
1r1θ

φ.

If φ solves (11.5), then u = Uφ solves(
∂2
t − 2

a(1r − (r
2
+ a2)1θ )

σ 2 ∂ϕ∂t −
1r − a

2 sin2 θ 1θ

sin2 θσ 2
∂2
ϕ −

√
1r1θ

λσ
∂r1r∂r

√
1r1θ

λσ

−

√
1r1θ

λ sin θ σ
∂θ sin θ 1θ∂θ

√
1r1θ

λσ
+
ρ21r1θ

λ2σ 2 m2
)
u = 0. (11.6)

We introduce a Regge–Wheeler type coordinate x by the requirement

dx

dr
= λ

r2
+ a2

1r
.

We then introduce the unitary transform

V : L2(]r−, r+[ × S2)→ L2(R× S2, dx dω), v(r, ω) 7→

√
1r

λ(r2 + a2)
v(r(x), ω).
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Let u be a solution of the Klein–Gordon equation (11.6) and ψ =
√

1r
λ(r2+a2)

u. Then

(
∂2
t − 2

a(1r − (r
2
+ a2)1θ )

σ 2 ∂ϕ∂t −
1r − a

2 sin2 θ 1θ

sin2 θ σ 2
∂2
ϕ

−

√
(r2 + a2)1θ

σ
∂x(r

2
+ a2)∂x

√
(r2 + a2)1θ

σ

−

√
1r1θ

λ sin θ σ
∂θ sin θ 1θ∂θ

√
1r1θ

λσ
+
ρ21r1θ

λ2σ 2 m2
)
ψ = 0. (11.7)

12. Asymptotic completeness 3: The De Sitter–Kerr case

In this section we state the main theorems for the De Sitter–Kerr spacetime. The proofs
are given in Sect. 13.

We consider the Klein–Gordon equation (11.7) and write it in the usual form

(∂2
t − 2ik∂t + h)ψ = 0.

Let
Hn
= {u ∈ L2(R× S2) : (Dϕ − n)u = 0}, n ∈ Z. (12.1)

We construct the energy spaces Ėn, En as well as the Klein–Gordon operators H n, Ḣ n

as in Sect. 3. Also let i± ∈ C∞(R), i− = 0 in a neighborhood of ∞, i+ = 0 in a
neighborhood of −∞ and i2− + i

2
+ = 1. We will use two types of comparison dynamics:

– a separable comparison dynamics,
– asymptotic profiles.

12.1. Uniform boundedness of the evolution

Theorem 12.1. There exists a0 > 0 such that for all |a| < a0 and all n ∈ Z, there exists
Cn > 0 such that

‖e−itḢ
n

u‖Ėn ≤ Cn‖u‖Ėn , u ∈ Ėn, t ∈ R. (12.2)

Note that for n = 0 the Hamiltonian Ḣ n
= Ḣ 0 is selfadjoint, therefore the only issue is

n 6= 0.
Because of the existence of a zero resonance the evolution is not expected to be uni-

formly bounded on the inhomogeneous energy space. This is already the case for the De
Sitter–Schwarzschild metric, i.e. if a = 0. In fact from [5, Thm. 1.3], denoting by r the
zero resonance state, for χ ∈ C∞0 (R) we have

χe−itHχu = γ

(
rχ(χr|u1)

0

)
+ E(t) for some γ > 0, (12.3)

‖E(t)‖E . e−εt‖〈−1S2〉u‖E , (12.4)
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with some ε > 0. Note that in [5] the norm

‖u1‖
2
+ (h0u|u)+

ˆ 1

0

ˆ
S2
|u0|

2(x, ω) dx dω

is used, but the same proof also gives (12.4). Now suppose that e−itH is uniformly
bounded on E . Then from (12.3) we obtain, as t →∞,

‖rχ(rχ |u1)‖E . ‖u‖E , u ∈ C∞0 (R× S2)⊕ C∞0 (R× S2),

and thus
‖rχ(rχ |u1)‖H . ‖u‖E , u ∈ E,

by density. Here H = L2(R× S2, dxdω). It follows that

‖rχ(rχ |v)‖H . ‖v‖H, v ∈ H.

Thus ‖rχ‖H . 1 uniformly in χ , which implies r ∈ H which is false. Therefore the
evolution is not uniformly bounded on E , nor on E0. It is however bounded on En for all
n 6= 0.

12.2. Separable comparison dynamics

Let `± := �±n. We set

h±∞ := −`
2
± − ∂

2
x +

1r

λ2(r2 + a2)
P +1rm

2, k±∞ := `±,

where

P := −
λ2

sin2 θ
∂2
ϕ −

1
sin θ

∂θ sin θ 1θ∂θ .

For n = 0, P might have a zero eigenvalue and the natural energy spaces associated
to h0 and h±∞ may be different in the massless case. We will therefore consider the case
n = 0 only in the massive case. Let Ėn±∞, Ḣ n

±∞ be the homogeneous energy spaces and
operators associated to (h±∞, k±∞) according to Sect. 3.

Theorem 12.2. There exists a0 > 0 such that for all |a| < a0 and n ∈ Z \ {0} the
following holds:

– The wave operators
W± = s- lim

t→∞
eitḢ

n

i±e
−itḢ n

±∞ (12.5)

exist as bounded operators W± ∈ B(Ėn±∞; Ėn).
– The inverse wave operators

�± = s- lim
t→∞

eitḢ
n
±∞ i±e

−itḢ n

(12.6)

exist as bounded operators �± ∈ B(Ėn; Ėn±∞).
(12.5) and (12.6) also hold for n = 0 if m > 0.
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12.3. Asymptotic profiles

We now introduce the Hamiltonians Ḣr , Ḣl which describe the simplest possible asymp-
totic comparison dynamics. Let

hnr/l = −∂
2
x − `

2
+/−, kr/ l = `+/−,

acting on Hn defined in (12.1).
We associate to these operators the natural homogeneous energy spaces Ėnr/l and

Hamiltonians Ḣ n
r/l . Note that the solution of

(∂2
t − 2i`±∂t − ∂2

x − `
2
±)u = 0,

u|t=0 = u0,

∂tu|t=0 = u1

(12.7)

can be computed explicitly. Indeed, if u is the solution of (12.7), then v = e−i`±tu fulfills
(∂2
t − ∂

2
x )v = 0,

v|t=0 = u0,

∂tv|t=0 = u1 − i`±u0.

(12.8)

Thus for smooth data the explicit solution of (12.7) is given by

u0(t, x, ω) =
ei`±t

2

(
u0(x + t, ω)+ u0(x − t, ω)+

ˆ x+t

x−t

(u1(τ, ω)− i`±u0(τ, ω)) dτ

)
.

Let us denote the cut-offs i+/− by ir/ l .

The spaces il Ėnl and ir Ėnr are not included in Ėn and the group e−itḢ
n
r/l does not

improve regularity. There is therefore no chance that the limits

W+u = lim
t→∞

eitḢ
n

ir/ le
−itḢ n

r/lu

exist for all u ∈ Ėnr/l . We will first show the existence of the limits on smaller spaces
and then extend the wave operators by continuity. Let {λq : q ∈ N} = σ(P ) and Zq =
1{λq }(P )H. Then

D(h0) = D(h0,s) =

{
u ∈ H :

∑
q∈N
‖h
s,q

0 1{λq }(P )u‖
2 <∞

}
,

where hs,q0 is the restriction of h0,s to L2(R)⊗ Zq . Let

Wq := (L
2(R)⊗ Zq)⊕ (L2(R)⊗ Zq), Eq,nr/ l := Enr/l ∩Wq ,

Efin,n
r/ l :=

{
u ∈ Enr/l : ∃Q > 0, u ∈

⊕
q≤Q

Eq,nr/ l
}
.
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Theorem 12.3. There exists a0 > 0 such that for all |a| < a0 and n ∈ Z \ {0} the
following holds:

(i) For all u ∈ Efin,n
r/ l the limits

Wr/ lu = lim
t→∞

eitḢ
n

i2r/ le
−itḢ n

r/lu

exist in Ėn. The operators Wr/ l extend to bounded operators Wr/ l ∈ B(Ėnr/l; Ė
n).

(ii) The inverse wave operators

�r/ l = s- lim
t→∞

e
itḢ n

r/l i2r/ le
−itḢ n

exist in B(Ėn; Ėnr/l).

Statements (i) and (ii) also hold for n = 0 if m > 0.

13. Proof of the main theorems for the De Sitter–Kerr spacetime

We want to apply the geometric setting developed in Sect. 9. To do so, we have to reduce
the setting to `+ = 0 by a change of coordinates. We introduce the new coordinate

ϕ̃ = ϕ −
a

r2
+ + a

2
t,

the other coordinates remain unchanged. We will denote ϕ̃ again by ϕ in the following.
In the new coordinates, (11.7) reads((
∂t −

a

r2
+ + a

2
∂ϕ

)2

− 2
a(1r − (r

2
+ a2)1θ )

σ 2 ∂ϕ

(
∂t −

a

r2
+ + a

2
∂ϕ

)
−
1r − a

2 sin2 θ 1θ

sin2 θ σ 2
∂2
ϕ −

√
1r1θ

λσ
∂r1r∂r

√
1r1θ

λσ

−

√
1r1θ

λ sin θ σ
∂θ sin θ 1θ∂θ

√
1r1θ

λσ
+
ρ21r1θ

λ2σ 2 m2
)
ψ = 0, (13.1)

i.e.(
∂2
t − 2

(
a

r2
+ + a

2
+
a(1r − (r

2
+ a2)1θ )

σ 2

)
∂ϕ∂t

+

(
a2

(r2
+ + a

2)2
+ 2

a2(1r − (r
2
+ a2)1θ )

σ 2(r2
+ + a

2)
−
1r − a

2 sin2 θ 1θ

sin2 θ σ 2

)
∂2
ϕ

−

√
1r1θ

λσ
∂r1r∂r

√
1r1θ

λσ
−

√
1r1θ

λ sin θ σ
∂θ sin θ 1θ∂θ

√
1r1θ

λσ
+
ρ21r1θ

λ2σ 2 m2
)
ψ = 0.

(13.2)
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Set

k :=

(
a

r2
+ + a

2
+
a(1r − (r

2
+ a2)1θ )

σ 2

)
Dϕ,

h :=

(
a2

(r2
+ + a

2)2
+ 2

a2(1r − (r
2
+ a2)1θ )

σ 2(r2
+ + a

2)
−
1r − a

2 sin2 θ 1θ

sin2 θ σ 2

)
∂2
ϕ

−

√
1r1θ

λσ
∂r1r∂r

√
1r1θ

λσ
−

√
1r1θ

λ sin θ σ
∂θ sin θ 1θ∂θ

√
1r1θ

λσ
+
ρ21r1θ

λ2σ 2 m2.

Noting that the coordinate change ϕ 7→ ϕ̃ corresponds to the unitary transform e−it�+Dϕ ,
and using Subsect. 3.5.3, we see that it is sufficient to show the corresponding theorems
of Sect. 12 for the operators h, k. We set h0 := h+ k

2. A tedious calculation gives

h0 = −
ρ41r1θ

σ 4 sin2 θ
∂2
ϕ −

√
1r1θ

λσ
∂r1r∂r

√
1r1θ

λσ

−

√
1r1θ

λ sin θ σ
∂θ sin θ 1θ∂θ

√
1r1θ

λσ
+
ρ21r1θ

λ2σ 2 m2. (13.3)

We set

hn0 :=
(ρ4
− σ 2)1r1θ

σ 4 sin2 θ
n2

−

√
1r1θ

λσ
∂r1r∂r

√
1r1θ

λσ
+

√
1r1θ

λσ
P

√
1r1θ

λσ
+
ρ21r1θ

λ2σ 2 m2, (13.4)

kn :=

(
a

r2
+ + a

2
+
a(1r − (r

2
+ a2)1θ )

σ 2

)
n. (13.5)

In the following we will drop the index n which is implicit in the operators.

13.1. Verification of the geometric hypotheses

Let us recall that

P = −
λ2

sin2 θ
∂2
ϕ −

1
sin θ

∂θ sin θ 1θ∂θ .

With this choice of P , (G1) is clearly fulfilled. We now set

h0,s := −

√
1r

λ(r2 + a2)
∂r1r∂r

√
1r

λ(r2 + a2)
+

√
1r

λ(r2 + a2)
P

√
1r

λ(r2 + a2)
+1rm

2.

Recall that q(r) =
√
(r+ − r)(r − r−). We write 1r = q2(r)P2(r), where P2 is a poly-

nomial of degree 2. It is easy to see that (G2) is fulfilled with

α±1 = α
±

3 :=

√
P2(r±)

λ(r2
± + a

2)
, α±2 :=

√
P2(r±), α±4 := m

2

√
P2(r±)

(r2
± + a

2)λ2
.
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We also set

ks,v := k
n
s :=

(
a

r2
+ + a

2
−

a

r2 + a2

)
n,

k−s,v :=
an

(r2
+ + a

2)(r2
− + a

2)
(r− − r+)(r− + r+),

ks,r = k−s,r = 0.

With these choices (G3) is clearly fulfilled. (G4) follows from (13.4). Let

g1 :=

√
1r1θ

λσ
∈ T 1, g0 :=

√
1r

λ(r2 + a2)
∈ T 1,

p1 :=

√
1r1θ

σ
∈ T 1, p0 :=

√
1r

r2 + a2 ∈ T
1.

We have

g1 − g0 ∈ T
3, p1 − p0 ∈ T

3.

An elementary calculation gives

grr = (g0 − g1)(g0 + g1)1r ∈ T
5,

gr = i((∂rg1)g1 − (∂rg0)g0)1r ∈ T
3,

gθθ = (p0 − p1)(p0 + p1) ∈ T
3,

gθ = i((∂θp1)p1 − (∂θp0)p0) ∈ T
2,

f = ((∂rg0)
2
− (∂rg1)

2)1r + ((∂θp0)
2
− (∂θp1)

2)+
m21rρ

21θ

λ2σ 2 −1rm
2

+

(
ρ41r1θ

σ 4 sin2 θ
−

1r

(r2 + a2)2 sin2 θ

)
n2
∈ T 2,

gϕϕ = gϕ = 0.

Note that because of the diagonalization with respect toDϕ , we can put gϕϕ and gϕ into f .
We also have

kp,v =

(
a1r

σ 2 +
a3 sin2 θ 1r

(r2 + a2)σ 2

)
n ∈ T 2, kp,r = 0.

It follows that hypothesis (G6) is fulfilled.
Let us now check (G5). We consider the case n = 0 only if m > 0. Also (G5) will

only be satisfied if |a| < a1 for some a1 independent of n. We first show that (G5) is
fulfilled for hn0,s . We have

hn0,s = α1(Dr1rDr + P + (r
2
+ a2)2m2)α1 & α1(Drq

2Dr + P + 1)α1
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with α1 =
√
1r

λ(r2+a2)
because P & 1 for n 6= 0 and we suppose m > 0 for n = 0. Let now

h̃n0 =
ρ41r1θ

σ 21θ sin2 θ
n2
−

√
1r

λ(r2 + a2)
∂r1r∂r

√
1r

λ(r2 + a2)

−

√
1r

λ(r2 + a2) sin θ
∂θ sin θ 1θ∂θ

√
1r

λ(r2 + a2)
+
ρ21rm

21θ

λ2σ 2

& α1(Drq
2Dr + P + 1)α1.

We then compute

hn0 − h̃
n
0 = −

(
1
σ
−

1
(r2 + a2)

√
1θ

)√
1r1θ

λ
∂r1r∂r

√
1r1θ

λσ

−

√
1r

λ(r2 + a2)
∂r1r∂r

√
1r1θ

λ

(
1
σ
−

1
(r2 + a2)

√
1θ

)
−

(
1
σ
−

1
(r2 + a2)

√
1θ

)√
1r1θ

λ sin θ
∂θ sin θ 1θ∂θ

√
1r1θ

λσ

−

√
1r

(r2 + a2)λ sin θ
∂θ sin θ 1θ∂θ

√
1r

λ

(
1
σ
−

1
(r2 + a2)

√
1θ

)
.

We compute(
1
σ
−

1
(r2 + a2)

√
1θ

)
=

a21r sin2 θ

σ 2(r2 + a2)21θ

(
1
σ
+

1
(r2 + a2)1θ

)−1

=: a2ga .

We have ga ∈ T 2 uniformly in a, meaning that

∀α, β ∈ N, |∂αr ∂
β
ωga| ≤ Cαβq(r)

2−2α

with Cα,β independent of a. We then compute

−a2ga

√
1r1θ

λ
∂r1r∂r

√
1r1θ

λσ
= −a2

√
1r1θ

λσ
∂r g̃a1r∂r

√
1r1θ

λσ

+ a2g̃′a

√
1r1θ

λσ
1r∂r

√
1r1θ

λσ

& −a2hn0 − a
2h̃n0,

where g̃a = gaσ ∈ T
2 uniformly in a. Using similar arguments for the other terms we

find
hn0 − h̃

n
0 & −a2hn0 − a

2h̃n0,

and thus for a small enough (independently of n),

hn0 & h̃n0 & α1(Drq
2Dr + P + 1)α1. (13.6)

This is (G5) for hn0 .
Let us now check (G7). Recall that ` = k−s,v . We construct h+, h̃− and k± as in

Subsect. 2.1. We have

h+ = h0 − k
2
+, k2

+ ≤ C+a
2n2(r+ − r)(r − r−).
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Observing that P ≥ n2/sin2 θ we obtain, using (13.6),

hn0 & α1(Drq
2Dr + P + 1)α1 + n

2(r+ − r)(r − r−).

Thus there exists a2 > 0 (independent of n) such that for all |a| < a2 and n ∈ Z we have

h+, h̃− & α1(r)(Drq
2(r)Dr + P + 1)α1(r).

In particular (G5) is fulfilled for h+, h̃− if a is small enough. Thus (G7) is fulfilled.
In the following we assume |a| < a0, where a0 is such that all the geometric hypothe-

ses are fulfilled for all n ∈ Z \ {0} (m = 0) resp. all n ∈ Z (m > 0) if |a| < a0.

13.2. Proof of Thm. 12.1

Thm. 12.1 will follow from Thm. 7.1, provided we show that the set S of singular points
is empty. We recall that the sets S, T , T± were defined in Subsect. 6.1 and that we showed
in Prop. 6.10 that S ⊂ T ∪ T− ∪ T+. Therefore Thm. 12.1 will follow from

Proposition 13.1. (i) There exists a1 > 0 such that for |a| < a1 and n 6= 0

σC
pp(Ḣ ) = T = ∅.

(ii) T± = ∅ for n 6= 0.

Proof. (i) essentially follows from the work of Dyatlov [11]. Let us first prove that
σC(Ḣ ) = ∅. By [11, Thm. 4] we have ρ(h, k) ∩ {Im z > 0} = ∅ for a > 0 sufficiently
small. Then we apply Prop. 3.15.

Let us now prove that T = ∅, i.e. r(z) := w−εp−1(z)w−ε has no real poles. We
replace the weight w−ε by cosh(εx)−1 which is equivalent and holomorphic in a neigh-
borhood of the real axis. We will denote this new weight again by w−ε . We know that
r(z) has a meromorphic extension to {Im z > −δε} for some δε > 0. We still call this
meromorphic extension r(z). Let

p̃(z) = p̃(z, x, ∂x) := w
εp(z)wε .

This is an elliptic second order operator with analytic coefficients. We clearly have

r(z) ◦ p̃(z) = p̃(z) ◦ r(z) = 1, (13.7)

first for Im z sufficiently large and then in {Im z > −δε} by meromorphic extension. Let
Kz(x, x

′) be the distribution kernel of r(z). We have

p̃(z)(x, ∂x)Kz(x, x
′) = δ(x, x′), z ∈ �,

p̃(z)t (x′, ∂x′)Kz(x, x
′) = δ(x, x′), z ∈ �,

where p̃(z)t is the transpose of p̃(z), and is also elliptic with analytic coefficients. By the
Morrey–Nirenberg theorem [24, Thm. 7.5.1], p̃(z) and p̃(z)t are analytic hypoelliptic,
which implies that Kz(x, x′) is analytic in x, x′ outside the diagonal for {Im z > −δε}.
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Recall from [11] that there exists δr > 0 such that for all η ∈ C∞0 (]r− + δr , r+ − δr [)
and some δ0 > 0, ηp−1(z)η has no poles in {Im z > −δ0}. Let now z0 ∈ {Im z > −δ0}

be a possible pole of r(z). We write

r(z) =

N∑
j=1

Pj (z− z0)
−j
+H(z),

where the Pj are finite rank operators and H(z) is holomorphic close to z0 and PN 6= 0.
We want to show that all the Pj are zero. Clearly it is sufficient to show that PN = 0.

We have
PN =

1
2iπ

‰
γ

(z− z0)
N−1r(z) dz,

which shows that the kernel PN (x, x′) of PN is analytic outside the diagonal. But as
ηp(z)−1η has no poles, we necessarily have PN (x, x′) = 0 for distinct x, x′ ∈ supp η. By
analytic continuation we therefore have PN (x, x′) = 0 for x 6= x′. We then have

p̃(z0)PN =
1

2iπ

‰
γ

p̃(z0)(z− z0)
N−1r(z) dz

=
1

2iπ

‰
γ

(z− z0)
N−1(p̃(z0)− p̃(z))r(z) dz

+
1

2iπ

‰
γ

(z− z0)
N−1p̃(z)r(z) dz.

As p̃(z)− p̃(z0) = (z− z0)T (z) with T (z) holomorphic close to z0, the first term is zero;
the second is zero because p̃(z)r(z) = 1. It follows that p̃(z0)PN = 0.

Let us show that this implies PN = 0. Let u ∈ L2(R × S2) with compact support.
As the distribution kernel of PN is supported on the diagonal, v = PNu also has compact
support and p̃(z0)v = 0. Again by analytic hypoellipticity of p̃(z0), v is analytic with
compact support, thus v = 0. By a density argument PN = 0. This completes the proof
of (i).

Let us now prove (ii). By [18, Prop. 9.3] we know that T±∩R\{0} = ∅. By Corollary
6.12 it is sufficient to show that 0 is not a resonance of w−εp−1

± (z)w
−ε . We treat the +

case, the − case being analogous. Suppose that 0 is a resonance. First note that p+(0) is
an elliptic operator with p+(0) & n2w−2. In particular wεp+(0)wεv = 0 implies v = 0.
Let r(z) = w−εp−1

+ (z)w
−ε . Suppose that r(z) has a pole at z = 0:

r(z) =

N∑
j=1

Pj

zj
+H(z), PN 6= 0.

Here the Pj are of finite rank and H(z) is holomorphic. Let u ∈ H with PNu 6= 0. Then

zNu =

N∑
j=1

zN−jwεp+(z)w
εPju+ z

Nwεp+(z)w
εH(z)u.

In the limit z→ 0 we obtain wεp+(0)wεPNu = 0 and so PNu = 0, a contradiction. ut
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13.3. Proof of Thm. 12.2

We will apply the results of Sect. 10. First note that in our new setting (i.e. after rotation)
we have to consider

h−∞ := −`
2
− ∂2

x +
1r

r2 + a2P +
1rm

2

λ2(r2 + a2)
,

k−∞ := `,

h+∞ := −∂
2
x +

1r

r2 + a2P +
1rm

2

λ2(r2 + a2)
,

k+∞ := 0,

` :=

(
a

r2
+ + a

2
−

a

r2
− + a

2

)
n.

We associate to these operators the operators H±∞, Ḣ±∞ and spaces E±∞, Ė±∞ as in
Sect. 3. Let T±∞ be the set of singular points of Ḣ±∞.

Lemma 13.2. For n 6= 0 we have T±∞ = ∅.

Proof. As Ḣ±∞ is selfadjoint, we can use the Kato theory of H -smoothness. The proof
for the absence of real resonances is analogous to the proof of Prop. 13.1(ii); we omit the
details. ut

13.4. Proof of Thm. 12.2

We first consider the case n 6= 0. By Prop. 13.1 we know that σC
pp(Ḣ ) = S = T±∞ = ∅.

Thus 1 = 1R(Ḣ ) is an admissible energy cut-off. Using in addition the fact that e−itḢ ,
e−itḢ±∞ are uniformly bounded, we deduce the theorem from Thm. 10.5. For n = 0 all
operators are selfadjoint. This case follows from [21]; we omit the details. ut

13.5. Proof of Thm. 12.3

We first write the comparison dynamics which we obtain after rotation:

hr = −∂
2
x , hl = −∂

2
x − `

2, kr = 0, kl = `.

We associate to these operators the natural homogeneous energy spaces Ėr/ l . Let

Ḣr =

(
0 1

hr 2kr

)
, Ḣl =

(
0 1

hl 2kl

)
.

We now further analyze the energy spaces. Note that

Ėl = 8(`)(H 1(R);L2(S2))⊕ L2(R× S2)), Ėr = H 1(R;L2(S2))⊕ L2(R× S2).
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We will need the following subspaces:

ĖLl =
{
(u0, u1) ∈ Ėl : u1 − i`u0 ∈ L

1(R;L2(S2)),ˆ
(u1 − i`u0)(x, ω) dx = 0 a.e. in ω

}
,

ĖLr =
{
(u0, u1) ∈ Ėr : u1 ∈ L

1(R;L2(S2)),

ˆ
u1(x, ω) dx = 0 a.e. in ω

}
.

We define the spaces of incoming/outgoing initial data:

Ė in
l = {u ∈ ĖLl : u1 = ∂xu0 + i`u0},

Ėout
l = {u ∈ ĖLl : u1 = −∂xu0 + i`u0},

Ė in
r = {u ∈ ĖLr : u1 = ∂xu0},

Ėout
r = {u ∈ ĖLr : u1 = −∂xu0}.

If (u0, u1) ∈ Ė in
l , then the solution of (12.7) is given by

u0(t, x, ω) = e
i`tu0(x + t, ω),

which is clearly incoming.

Lemma 13.3. We have

ĖLl = Ė in
l ⊕ Ėout

l , ĖLr = Ė in
r ⊕ Ėout

r .

Proof. We only show the lemma for ĖLl , ĖLr being the special case ` = 0. For u =
(u0, u1) ∈ ĖLl we define

uin
0 =

1
2

ˆ
∞

x

(−∂xu0 − (u1 − i`u0))(τ, ω) dτ,

uin
1 =

1
2 (u1 − i`u0 + ∂xu0)+

i`

2

ˆ
∞

x

(−∂xu0 − (u1 − i`u0))(τ, ω) dτ,

uout
0 =

1
2

ˆ x

−∞

(∂xu0 − (u1 − i`u0))(τ, ω) dτ,

uout
1 =

1
2 (u1 − i`u0 − ∂xu0)+

i`

2

ˆ x

−∞

(∂xu0 − (u1 − i`u0))(τ, ω) dτ,

uin/out
= (u

in/out
0 , u

in/out
1 ).

(13.8)

It is easy to check that
u = uin

+ uout, uint/out
∈ Ė in/out

` ,

which shows that Ė in
` + Ėout

` = Ė`. Next if v ∈ Ė in
` ∩ Ėout

` we have ∂xv0 = 0, v0 ∈ L
2,

hence v0 = 0, hence v1 = 0. ut

Remark 13.4. If (u0, u1) ∈ ĖLl or (u0, u1) ∈ ĖLr and supp u0, supp u1 ⊂ ]R1, R2[ × S2,
then

supp uin
0,1 ⊂ ]−∞, R2[ × S2, supp uout

0,1 ⊂ ]R1,∞[ × S2. (13.9)
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The spaces Eqr/l, E
fin
r/ l are defined as before but starting with slightly modified operators

(due to rotation). Let

Dfin
r/ l = C

∞

0 (R× S2)× C∞0 (R× S2) ∩ Efin
r/ l ∩ Ė

L
r/l .

Lemma 13.5. Dfin
r/ l is dense in Efin

r/ l .

Proof. We prove the lemma in two steps. First, C∞0 (R × S2) × C∞0 (R × S2) ∩ Efin
r/ l is

dense in Efin
r/ l . This follows easily from the usual regularization procedures.

Secondly,C∞0 (R×S
2)×C∞0 (R×S

2)∩Efin
r/ l∩Ė

L
r/l is dense inC∞0 (R×S

2)×C∞0 (R×S
2)

∩ Efin
r/ l . We can clearly replace Efin

r/ l by Eqr/l in this statement. We only treat the l-case. Let

u = (u0, u1) ∈ C
∞

0 (R× S2)× C∞0 (R× S2) ∩ Eql .

We will consider u as a function of x alone. We set

v = 8(−`)u.

Let ψ ∈ C∞0 (R), ψ ≥ 0, ψ = 1 in a neighborhood of zero and
´
ψ(x)dx = 1. We set

vn0 = v0, vn1 = v1 − n
−1ψ(n−1x)

ˆ
v1(x) dx,

so that
´
vn1 (x) dx = 0. We then estimate

‖v1 − v
n
1‖L2 ≤ n

−1/2
‖v1‖L1‖n

−1/2ψ(n−1
·)‖L2 ≤ Cn

−1/2
‖v1‖L1 → 0,

which completes the proof. ut

We need an additional fact:

Lemma 13.6. There exists C > 0 such that

‖ir/ lu‖Ėr/ l ≤ C‖u‖Ė , u ∈ Ė .

Proof. We have

‖iru‖
2
Ėr
= ‖iru1‖

2
H + (irh+∞iru0|u0)

. ‖u1 − ku0‖
2
H + (ir(h+∞ + k

2)iru0 | u0)

. ‖u1 − ku0‖
2
H + (h0u0|u0) = ‖u‖

2
Ė .

Now recall that

h̃−∞ = −∂
2
x +

1r

r2 + a2P +m
21r .
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We then estimate

‖ilu‖
2
Ėl
= ‖il(u1 − `u0)‖

2
+ (il h̃−∞ilu0|u0)

. ‖il(u1 − ku0)‖
2
H + (il(h̃−∞ + (k − `)

2)ilu0 | u0)

. ‖u1 − ku0‖
2
H + (h0u0|u0) = ‖u‖

2
Ė . ut

Proof of Thm. 12.3. We first show for u ∈ Efin
r/ l the existence of the limit

W̃r/ lu = lim
t→∞

eitḢ±∞ ir/ le
−itḢr/ lu

in Ė±∞. Let u ∈
⊕
|q|≤Q Eq . Using the estimate

‖eitḢ±∞ ir/ le
−itḢr/ lu‖Ė±∞ ≤ C(Q)‖u‖Ėr/ l

as well as the spherical symmetry of the problem, it is sufficient to show for all |q| ≤ Q
the existence of the limit

lim
t→∞

eitḢ
q
±∞ ir/ le

−itḢ
q
r/luq ,

where uq ∈ Eq and Ḣ q
±∞ resp. Ḣ q

r/l are the restrictions of Ḣ±∞ resp. Ḣ l
r/ l to Ėqr/l . The

existence of this limit follows from standard arguments using the exponential decay of1r
at ±∞. Using Thm. 12.2 we obtain the existence of the limit

lim
t→∞

eitḢ i2r/ le
−itḢr/ lu = Wr/ lu.

We now want to show that there exists C > 0 such that for all u ∈ Efin
r/ l ,

‖Wr/ lu‖Ė ≤ C‖u‖Ėr/ l . (13.10)

We first considerWl . By Lemma 13.5 we can suppose (u0, u1)∈Dfin
l . Let supp u0, supp u1

⊂ ]R1, R2[. We decompose (u0, u1) into incoming and outgoing solutions according to
the discussion at the beginning of this subsection:

u0 = u
in
0,l + u

out
0,l , u1 = u

in
1,l + u

out
1,l .

By Remark 13.4 we have

supp uin
0,l, supp uin

1,l ⊂ ]−∞, R2[ × S2, supp uout
0,l , supp uout

1,l ⊂ ]R1,∞[ × S2.

Let uin
l = (u

in
0,l, u

in
1,l) and uout

l = (u
out
0,l , u

out
1,l ). We have Wlu

out
l = 0, because i2l e

−itḢluout
l

= 0 for t sufficiently large. We have

supp e−itḢluin
l ⊂ (]−∞, R2 − t[ × S2)× (]−∞, R2 − t[ × S2).
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We then estimate for t large

‖eitḢ i2l e
−itḢluin

‖Ė . ‖i2l e
−itḢluin

‖Ė

. ‖uin
‖

2
Ėl
+

((
1r

r2 + a2P +1rm
2
)
(e−itḢluin)0

∣∣∣∣ (e−itḢluin)0

)
. ‖uin

‖
2
Ėl
+ e−κ−t (Q+ 1)‖uin

‖
2
H

→ ‖uin
‖

2
Ėl
, t →∞.

It follows that ‖Wlu‖Ė ≤ C‖u‖Ėl , which is the required estimate. The proof for Wr

is analogous. Part (ii) is shown in the same way. The required estimate follows from
Lemma 13.6. ut

Acknowledgments. We thank J.-F. Bony for fruitful discussions and the referees for many valuable
comments and suggestions which allowed us to improve the readability of the paper. This work was
partially supported by the ANR project AARG. DH thanks the MSRI in Berkeley for hospitality
during his stay in the fall of 2013.

References

[1] Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr
spacetime. Ann. of Math. 182, 787–853 (2015) Zbl 06514748 MR 3418531

[2] Bachelot, A.: Asymptotic completeness for the Klein–Gordon equation on the Schwarzschild
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[18] Georgescu, V., Gérard, C., Häfner, D.: Resolvent and propagation estimates for Klein–Gordon
equations with non-positive energy. J. Spectr. Theory 5, 113–192 (2015) Zbl 1326.35212
MR 3340178

[19] Gohberg, I., Leiterer, J.: Holomorphic Operator Functions of One Variable and Applications.
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