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Abstract. Let X = G/B be the full flag variety associated to a symmetrizable Kac–Moody
group G. Let T be the maximal torus of G. The T -equivariant K-theory of X has a certain natural
basis defined as the dual of the structure sheaves of the finite-dimensional Schubert varieties. We
show that under this basis, the structure constants are polynomials with nonnegative coefficients.
This result in the finite case was obtained by Anderson–Griffeth–Miller (following a conjecture by
Graham–Kumar).
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1. Introduction

Let G be any symmetrizable Kac–Moody group over C completed along the negative
roots and letGmin

⊂ G be the ‘minimal’ Kac–Moody group. Let B be the standard (posi-
tive) Borel subgroup,B− the standard negative Borel subgroup,H = B∩B− the standard
maximal torus and W the Weyl group. Let X̄ = G/B be the ‘thick’ flag variety (intro-
duced by Kashiwara) which contains the standard KM flag ind-variety X = Gmin/B. Let
T be the quotient torusH/Z(Gmin), whereZ(Gmin) is the center ofGmin. Then the action
of H on X̄ (and X) descends to an action of T . We denote the representation ring of T
by R(T ). For any w ∈ W , we have the Schubert cell Cw := BwB/B ⊂ X, the Schubert
variety Xw := Cw ⊂ X, the opposite Schubert cell Cw := B−wB/B ⊂ X̄, and the
opposite Schubert variety Xw := Cw ⊂ X̄. When G is a (finite-dimensional) semisimple
group, it is referred to as the finite case.

Let K top
T (X) be the T -equivariant topological K-group of the ind-variety X. Let

{ψw}w∈W be the ‘basis’ of K top
T (X) given by Kostant–Kumar (Definition 3.2).

Express the product in topological K-theory K top
T (X):

ψu · ψv =
∑
w

pwu,vψ
w for pwu,v ∈ R(T ). (1)
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Then the following result is our main theorem (Theorem 4.13). This was conjectured
by Graham–Kumar [GK, Conjecture 3.1] in the finite case and proved in this case by
Anderson–Griffeth–Miller [AGM, Corollary 5.2].

Theorem 1.1. For any u, v,w ∈ W ,

(−1)`(u)+`(v)+`(w) pwu,v ∈ Z+[(e−α1 − 1), . . . , (e−αr − 1)],

where {α1, . . . , αr} are the simple roots, i.e., (−1)`(u)+`(v)+`(w) pwu,v is a polynomial in
the variables x1 = e

−α1 − 1, . . . , xr = e−αr − 1 with nonnegative integral coefficients.

By a result of Kostant–Kumar [KK, Proposition 3.25],

K top(X) ' Z⊗R(T ) K
top
T (X), (2)

where Z is considered as an R(T )-module via the evaluation at 1 and K top(X) is the
topological (nonequivariant) K-group of X. Thus, as an immediate consequence of the
above theorem (by evaluating at 1), we obtain the following result (Corollary 4.14). It was
conjectured by A. S. Buch in the finite case and proved in this case by Brion [B].

Corollary 1.2. For any u, v,w ∈ W ,

(−1)`(u)+`(v)+`(w) awu,v ∈ Z+,

where awu,v are the structure constants of the product in K top(X) with respect to the basis
ψwo := 1⊗ ψw.

Further, Theorem 1.1 also gives the positivity for the multiplicative structure constants in
the Schubert basis for the T -equivariant cohomologyH ∗T (X,C)with complex coefficients
as described below.

The representation ring R(T ) has a decreasing filtration {R(T )n}n≥0, where

R(T )n := {f ∈ R(T ) : mult1(f ) ≥ n},

where mult1(f ) denotes the multiplicity of the zero of f at 1.
We first recall the following result from [KK, §§2.28–2.30 and Theorem 3.13].

Theorem 1.3. There exists a decreasing filtration {Fn}n≥0 of the ring K top
T (X) compat-

ible with the filtration of R(T ) such that there is a ring isomorphism of the associated
graded ring,

β : C⊗Z gr(K top
T (X)) ' H ∗T (X,C).

Moreover, for any w ∈ W we have ψw ∈ F`(w) and under this isomorphism,

β(ψw) = ε̂w,

where ψw denotes the element ψw (mod F`(w)+1) in gr`(w)(K
top
T (X)) and ε̂w is the

(equivariant) Schubert basis of H ∗T (X,C) as in [K, Theorem 11.3.9].
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Express the product in H ∗T (X):

ε̂u · ε̂v =
∑
w

hwu,v ε̂
w for hwu,v ∈ S(t

∗),

where t is the Lie algebra of T and hwu,v is a homogeneous polynomial of degree `(u) +
`(v)− `(w). Combining Theorems 1.1 and 1.3, we obtain the following result proved by
Graham [Gr].

Theorem 1.4. For any u, v,w ∈ W ,

hwu,v ∈ Z+[α1, . . . , αr ],

i.e., hwu,v is a homogeneous polynomial in {α1, . . . , αr} of degree `(u)+ `(v)− `(w) with
nonnegative integral coefficients.

We can further specialize the above theorem to obtain the positivity for the multiplicative
structure constants bwu,v in the standard Schubert basis {εw}w∈W , obtained from special-
izing ε̂w at 0, for the singular (nonequivariant) cohomology H ∗(X,C), because of the
following result:

H ∗(X,C) ' C⊗S(t∗) H ∗T (X,C), (3)

where C is considered as an S(t∗)-module via evaluation at 0 [K, Proposition 11.3.7]. We
get the following corollary due to Kumar–Nori [KuN] from Theorem 1.4 by evaluating
at 0.

Corollary 1.5. For any u, v,w ∈ W ,

bwu,v ∈ Z+.

The proof of Theorem 1.1 relies heavily on algebro-geometric techniques. We realize
the structure constants pwu,v from (1) as the coproduct structure constants in the structure
sheaf basis {OXw }w∈W of the T -equivariant K-group KT

0 (X) of finitely supported T -
equivariant coherent sheaves onX (Proposition 4.1). LetK0

T (X̄) denote the Grothendieck
group of T -equivariant coherent OX̄-modules S. Then there is a ‘natural’ pairing (see §3)

〈 , 〉 : K0
T (X̄)⊗K

T
0 (X)→ R(T ),

coming from the T -equivariant Euler–Poincaré characteristic. For any character eλ of H ,
let L(λ) be theG-equivariant line bundle on X̄ associated to the character e−λ of H (§2).
Define the T -equivariant coherent sheaf ξu := e−ρL(ρ)ωXu on X̄, where

ωXu := Ext`(u)OX̄
(OXu ,OX̄)⊗ L(−2ρ)

is the dualizing sheaf ofXu. We show that the basis {[ξw]} is dual to the basis {[OXw ]}w∈W
under the above pairing (Proposition 3.6).

Following [AGM], we define the ‘mixing group’ 0 in Definition 4.6 and prove its
connectedness (Lemma 4.8). Then, we prove our main technical result (Theorem 4.10)
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on vanishing of some Tor sheaves as well as some cohomology vanishing. The proofs of
its two parts are given in Sections 5 and 9 respectively.

From the connectedness of 0 and Theorem 4.10, we get Corollary 4.11. This corollary
allows us to easily obtain our main theorem (Theorem 1.1).

The rest of the paper is devoted to proving Theorem 4.10.
In Section 5, we prove various local Ext and Tor vanishing results crucially using the

‘Acyclicity Lemma’ of Peskine–Szpiro (Corollary 5.3). The following is one of the main
results of this section (Propositions 5.1 and 5.4).

Proposition 1.6. For any u,w ∈ W ,

Ext
j

OX̄
(OXu ,OXw ) = 0 for all j 6= `(u).

Thus,
Tor

OX̄
j (ξu,OXw ) = 0 for all j > 0.

This proposition allows us to prove the (a) part of Theorem 4.10.
We also prove the following local Tor vanishing result (Lemma 5.5 and Corollary

5.7), which is a certain cohomological analogue of the proper intersection property of Xu

with Xw.

Lemma 1.7. For any u,w ∈ W ,

Tor
OX̄
j (OXu ,OXw ) = Tor

OX̄
j (O∂Xu ,OXw ) = 0 for all j > 0.

In Section 6 we show that the Richardson varieties Xvw := Xw ∩X
v
⊂ X̄ are irreducible,

normal and Cohen–Macaulay, for short CM (Proposition 6.6). Then, we construct a desin-
gularization Zvw ofXvw (Theorem 6.8). In this section, we prove that various maps appear-
ing in the big diagram in Section 7 are smooth or flat morphisms. Though not used in the
paper, we determine the dualizing sheaf of the Richardson varieties Xvw (Lemma 6.14).

In Section 7, we introduce the crucial irreducible scheme Z and its desingularization
f : Z̃ → Z. We also introduce a divisor ∂Z of Z and show that Z and ∂Z are CM
(Propositions 7.4 and 7.8 respectively). We further show that Z is irreducible and normal
(Lemma 7.5). We show, in fact, that Z has rational singularities (Proposition 7.7), which
is crucially used in the proof of Theorem 8.5.

In Section 8, we use the relative Kawamata–Viehweg vanishing theorem (Theo-
rem 8.3) to obtain two crucial vanishing results on the higher direct images of the du-
alizing sheaf of Z̃ twisted by ∂Z̃ under π̃ and f , where ∂Z̃ := f−1∂Z and π̃ : Z̃ → 0̄

is the map from the big diagram in Section 7 (Proposition 8.4 and Theorem 8.5 respec-
tively). This sets the stage for the proof of our main technical Theorem 4.10(b), which is
achieved in Section 9.

Finally, we have included an appendix by M. Kashiwara where he determines the
dualizing sheaf of Xu.

An informed reader will notice many ideas taken from very interesting papers [B] and
[AGM] by Brion and Anderson–Griffeth–Miller respectively. However, there are several
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technical difficulties to deal with arising from the infinite-dimensional set-up, which has
required various different formulations and more involved proofs. Some of the major
differences are:

(1) In the finite case one just works with the opposite Schubert varieties Xu and their
very explicit BSDH desingularizations. In our general symmetrizable Kac–Moody set-up,
we need to consider the Richardson varieties Xuw and their desingularizations Zuw. Our
desingularization Zuw is not as explicit as the BSDH desingularization. Then, we need to
draw upon the result due to Kumar–Schwede [KuS] that Xuw has Kawamata log terminal
singularities (in particular, rational singularities) and use this result (together with a result
due to Elkik) to prove that Z has rational singularities (Proposition 7.7).

(2) Instead of considering just one flag variety in the finite case, we need to consider
the ‘thick’ flag variety and the standard ind flag variety and the pairing between them.
Moreover, the identification of the basis of K0

T (X̄) dual to the basis of KT
0 (X) given by

the structure sheaf of the Schubert varieties Xw is more delicate.

(3) In the finite case one uses Kleiman’s transversality result for the flag variety X. In
our infinite case, to circumvent the absence of Kleiman’s transversality result, we needed
to prove various local Ext and Tor vanishing results.

We feel that some of the local Ext and Tor vanishing results and the results on the
geometry of Richardson varieties (including the construction of their desingularizations)
proved in this paper are of independent interest.

2. Notation

We take the base field to be the field C of complex numbers. By a variety, we mean an
algebraic variety over C, which is reduced but not necessarily irreducible. For a schemeX
and a closed subscheme Y , OX(−Y ) denotes the ideal sheaf of Y in X.

LetG be any symmetrizable Kac–Moody group over C completed along the negative
roots (as opposed to completed along the positive roots as in [K, Chap. 6]), and letGmin

⊂

G be the ‘minimal’ Kac–Moody group as in [K, §7.4]. Let B be the standard (positive)
Borel subgroup, B− the standard negative Borel subgroup, H = B ∩ B− the standard
maximal torus and W the Weyl group [K, Chap. 6]. Let

X̄ = G/B

be the ‘thick’ flag variety which contains the standard KM flag ind-variety

X = Gmin/B.

If G is not of finite type, then X̄ is an infinite-dimensional nonquasi-compact scheme
[Ka, §4] and X is an ind-projective variety [K, §7.1]. The group Gmin (in particular, the
maximal torusH ) acts on X̄ and X. Let T be the quotientH/Z(Gmin), where Z(Gmin) is
the center ofGmin. (Recall that, by [K, Lemma 6.2.9(c)],Z(Gmin) = {h ∈ H : eαi (h) = 1
for all the simple roots αi}.) Then the action of H on X̄ (and X) descends to an action
of T .
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For any w ∈ W , we have the Schubert cell

Cw := BwB/B ⊂ X,

the Schubert variety

Xw := Cw ⊂ X,

the opposite Schubert cell

Cw := B−wB/B ⊂ X̄,

and the opposite Schubert variety

Xw := Cw ⊂ X̄,

all endowed with the reduced subscheme structures. Then, Xw is a (finite-dimensional)
irreducible projective subvariety of X and Xw is a finite-codimensional irreducible sub-
scheme of X̄ ([K, §7.1] and [Ka, §4]). For any integral weight λ (i.e., any character eλ

of H ), we have a G-equivariant line bundle L(λ) on X̄ associated to the character e−λ

of H . Explicitly, the character e−λ of H extends uniquely to a character (still denoted
by e−λ) of B since H ' B/U , where U is the unipotent radical of B. Now, let L(λ) be
the line bundle over X̄ = G/B associated to the principal B-bundle G → G/B via the
one-dimensional representation of B given by the character e−λ .

We denote the representation ring of T by R(T ).
Let {α1, . . . , αr} ⊂ h∗ be the set of simple roots, {α∨1 , . . . , α

∨
r } ⊂ h the set of simple

coroots and {s1, . . . , sr} ⊂ W the corresponding simple reflections, where h := LieH .
Let ρ ∈ h∗ be any integral weight satisfying

ρ(α∨i ) = 1 for all 1 ≤ i ≤ r.

WhenG is a finite-dimensional semisimple group, ρ is unique, but for a general Kac–
Moody group G, it may not be unique.

For any v ≤ w ∈ W , consider the Richardson variety

Xvw := X
v
∩Xw ⊂ X

and its boundary

∂Xvw := (∂X
v) ∩Xw,

both endowed with the reduced subvariety structures, where ∂Xv := Xv\Cv . We also set
∂Xw := Xw\Cw. (By [KuS, Proposition 5.3], Xvw and ∂Xvw, endowed with the scheme-
theoretic intersection structure, are Frobenius split in char. p > 0; in particular, they are
reduced. More generally, any scheme-theoretic intersection Xw1 ∩ · · · ∩ Xwm ∩ X

v1 ∩

· · · ∩Xvn is reduced by loc. cit.)
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3. Identification of the dual of the structure sheaf basis

Definition 3.1. For a quasi-compact scheme Y , an OY -module S is called coherent if it
is finitely presented as an OY -module and any OY -submodule of finite type admits a finite
presentation.

A subset S ⊂ W is called an ideal if x ∈ S and y ≤ x imply y ∈ S. An OX̄-module
S is called coherent if S|V S is a coherent OV S -module for any finite ideal S ⊂ W , where
V S is the quasi-compact open subset of X̄ defined by

V S =
⋃
w∈S

wU−B/B,

where U− is the unipotent part of B−. Let K0
T (X̄) denote the Grothendieck group of T -

equivariant coherent OX̄-modules S. Observe that since the coherence condition on S is
imposed only for S|V S for finite ideals S ⊂ W , K0

T (X̄) can be thought of as the inverse
limit of K0

T (V
S), as S varies over the finite ideals of W [KS, §2].

Similarly, defineKT
0 (X) := Limitn→∞KT

0 (Xn), where {Xn}n≥1 is the filtration of X
giving the ind-projective variety structure (i.e., Xn =

⋃
`(w)≤n BwB/B) and KT

0 (Xn) is
the Grothendieck group of T -equivariant coherent sheaves on the projective variety Xn.

We also define
K

top
T (X) := Inv.lt.

n→∞
K

top
T (Xn),

where K top
T (Xn) is the T -equivariant topological K-group of the projective variety Xn.

Let ∗ : K top
T (Xn) → K

top
T (Xn) be the involution induced from the operation which

takes a T -equivariant vector bundle to its dual. This of course induces the involution ∗ on
K

top
T (X).

We recall the ‘basis’ {ψw}w∈W ofK top
T (X) given by Kostant–Kumar. (Actually, ourψw =

∗τw
−1

, where τw is the original ‘basis’ given in [KK, §3].)

Definition 3.2. For w ∈ W , fix a reduced decomposition w = (si1 , . . . , sin) for w
(i.e., w = si1 . . . sin is a reduced decomposition) and let θw : Zw → Xw be the
Bott–Samelson–Demazure–Hansen (for short BSDH) desingularization [K, §7.1]. By
[KK, Proposition 3.35], K0

T (Zw) → K
top
T (Zw) is an isomorphism, where K0

T (Zw) is
the Grothendieck group associated to the semigroup of T -equivariant algebraic vector
bundles on Zw. (Observe that the action of H on Zw descends to an action of T .)

For any ψ ∈ K top
T (X) and w ∈ W , define the ‘virtual’ Euler–Poincaré characteristic

by
χ̃T (Xw, ψ) := χT (Zw, θ

∗
w(ψ)) ∈ R(T ).

By [KK, Proposition 3.36], χ̃T (Xw, ψ) is well defined, i.e., it does not depend upon the
particular choice of the reduced decomposition w of w.

Now, define ψw ∈ K top
T (X) as the unique element satisfying

χ̃T (Xv, ψ
w) = δv,w for all v ∈ W. (4)
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Such a ψw exists and is unique [KK, Proposition 3.39]. Moreover, {ψw}w∈W is a ‘ba-
sis’ in the sense that any element of K top

T (X) is uniquely written as a linear combination
of {ψw}w∈W with possibly infinitely many nonzero coefficients [KK, Proposition 2.20
and Remark 3.14]. Conversely, an arbitrary linear combination of ψw is an element
of K top

T (X).

For any w ∈ W ,
[OXw ] ∈ K

T
0 (X).

Lemma 3.3. {[OXw ]}w∈W forms a basis of KT
0 (X) as an R(T )-module.

Proof. Apply [CG, §5.2.14 and Theorem 5.4.17]. ut

For u ∈ W , by [KS, §2], OXu is a coherent OX̄-module. In particular, OX̄ is a coherent
OX̄-module.

Consider the quasi-compact open subset V u := uU−B/B ⊂ X̄. The following lemma
is due to Kashiwara–Shimozono [KS, Lemma 8.1].

Lemma 3.4. Any T -equivariant coherent sheaf S on V u admits a free resolution in
CohT (OV u):

0→ Sn ⊗ OV u → · · · → S1 ⊗ OV u → S0 ⊗ OV u → S → 0,

where Sk are finite-dimensional T -modules and CohT (OV u) denotes the abelian category
of T -equivariant coherent OV u -modules. ut

Define a pairing

〈 , 〉 : K0
T (X̄)⊗K

T
0 (X)→ R(T ), 〈[S], [F]〉 =

∑
i

(−1)iχT (Xn,Tor
OX̄
i (S,F)),

if S is a T -equivariant coherent sheaf on X̄ and F is a T -equivariant coherent sheaf on
X supported in Xn (for some n), where χT denotes the T -equivariant Euler–Poincaré
characteristic.

Lemma 3.5. The above pairing is well defined.

Proof. By Lemma 3.4, for any u ∈ W , there exists N(u) (depending upon S) such that
Tor

OX̄
j (S,F) = 0 for all j > N(u) in the open set V u. Now, let j > max`(u)≤nN(u),

where F has support in Xn. Then

Tor
OX̄
j (S,F) = 0 on

⋃
`(u)≤n

V u,

and hence Tor
OX̄
j (S,F) = 0 on X̄, since BuB/B ⊂ uB−B/B and hence supp F ⊂

Xn ⊂
⋃
`(u)≤n V

u.

Of course, for any j ≥ 0, Tor
OX̄
j (S,F) is a sheaf supported on Xn and it is OXn -co-

herent on the open set Xn ∩ V u of Xn for any u ∈ W . Thus, Tor
OX̄
j (S,F) is an
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OXn -coherent sheaf, and hence

χT (X̄,Tor
OX̄
j (S,F)) = χT (Xn,Tor

OX̄
j (S,F))

is well defined. This proves the lemma. ut

By [KS, proof of Proposition 3.4], for any u ∈ W ,

ExtkOX̄
(OXu ,OX̄) = 0, ∀k 6= `(u). (5)

Define the sheaf
ωXu := Ext`(u)OX̄

(OXu ,OX̄)⊗ L(−2ρ), (6)

which, by the analogy with the Cohen–Macaulay (for short CM) schemes of finite type,
will be called the dualizing sheaf of Xu.

Now, set the T -equivariant sheaf on X̄,

ξu := e−ρL(ρ)ωXu = e−ρL(−ρ)Ext`(u)OX̄
(OXu ,OX̄).

By Theorem 10.4 below, ξu is the ideal sheaf of ∂Xu in Xu.
By Lemma 3.4, for any v ∈ W , OXu∩V v admits a resolution

0→ Fn→ · · · → F0 → OXu∩V v → 0

by free OV v -modules of finite rank. Thus, the sheaf Ext`(u)OX̄
(OXu ,OX̄) restricted to V v is

given by the `(u)-th cohomology of the sheaf sequence

0←HomOX̄
(Fn,OX̄)←HomOX̄

(Fn−1,OX̄)← · · · ←HomOX̄
(F0,OX̄)← 0.

In particular, Ext`(u)OX̄
(OXu ,OX̄) restricted to V v is OV v -coherent, and hence so is ξu as

an OX̄-module. Hence,
[Ext`(u)OX̄

(OXu ,OX̄)] ∈ K
0
T (X̄).

Proposition 3.6. For any u,w ∈ W ,

〈[ξu], [OXw ]〉 = δu,w.

Proof.1 By definition,

〈[ξu], [OXw ]〉 =
∑
i

(−1)iχT (Xn,Tor
OX̄
i (ξu,OXw )),

where n is taken such that n ≥ `(w). Thus, by (subsequent) Proposition 5.4,

〈[ξu], [OXw ]〉 = χT (Xn, ξ
u
⊗OX̄

OXw ). (7)

1 We thank the referee for this shorter proof than our original proof.
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By Theorem 10.4 and Corollary 5.7, we have the sheaf exact sequence

0→ ξu ⊗OX̄
OXw → OXu ⊗OX̄

OXw → O∂Xu ⊗OX̄
OXw → 0.

Thus,
χT (Xn, ξ

u
⊗OX̄

OXw ) = χT (Xn,OXuw )− χT (Xn,O(∂Xu)∩Xw ), (8)

since OY ⊗OX̄
OZ = OY∩Z. By Proposition 6.6, when nonempty, Xuw is an irreducible

variety and hence (∂Xu)∩Xw =
⋃
w≥v>uX

v
w is connected (if nonempty) since w ∈ Xvw

for all u < v ≤ w. If u 6≤ w, then Xuw is empty, and hence by (7)–(8),

〈[ξu], [OXw ]〉 = 0.

So, assume that u ≤ w. In this case, Xuw is nonempty. Moreover, by [KuS, Corollary 3.2],

H i(Xn,OXuw ) = 0, ∀i > 0.

Also, by Corollary 5.7,

H i(Xn,O(∂Xu)∩Xw ) = 0, ∀i > 0.

Thus, for u ≤ w,
χT (Xn,OXuw ) = 1, (9)

and for u < w,
χT (Xn,O(∂Xu)∩Xw ) = 1. (10)

Hence, by (7)–(8),
〈[ξu], [OXw ]〉 = 0 for u < w.

Finally, 〈[ξw], [OXw ]〉 = 1. This proves the proposition. ut

4. Geometric identification of the T -equivariant K-theory structure constants and
statements of the main results

Express the product in topological K-theory K top
T (X):

ψu · ψv =
∑
w

pwu,vψ
w for pwu,v ∈ R(T ).

(For fixed u, v ∈ W , infinitely many pwu,v could be nonzero.)
Also, express the coproduct in KT

0 (X):

1∗[OXw ] =
∑
u,v

qwu,v[OXu ] ⊗ [OXv ],

where 1 : X→ X ×X is the diagonal map.

Proposition 4.1. For all u, v,w ∈ W ,

pwu,v = q
w
u,v.
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Proof. For w ∈ W , fix a reduced decomposition w = (si1 , . . . , sin) for w and let
θ = θw : Zw → Xw be the BSDH desingularization as in Definition 3.2. By [KK,
Proposition 3.39] (where χT is the T -equivariant Euler–Poincaré characteristic),

χT (θ
∗(ψu · ψv)) = χT

(∑
w1

pw1
u,vθ
∗(ψw1)

)
= pwu,v. (11)

On the other hand,

θ∗(ψu · ψv) = θ∗1∗(ψu � ψv) = 1∗w(θ × θ)
∗(ψu � ψv)

= 1∗w(θ
∗ψu � θ∗ψv), (12)

where 1w : Zw→ Zw × Zw is the diagonal map.
In the following proof, for any morphism f of schemes, we abbreviate Rf∗ by f!.
Let π : Zw→ pt and let 1w∗[OZw ] =

∑
u,v≤w q̂

w
u,v[OZu ]� [OZv ] for some unique

q̂wu,v ∈ R(T ), where u ≤ w means that u is a subword of w. (This decomposition is due
to the fact that [OZu ]u≤w is an R(T )-basis of

KT
0 (Zw) ' K

0
T (Zw) ' K

top
T (Zw),

where KT
0 (Zw) is the Grothendieck group associated to the semigroup of T -equivariant

coherent sheaves on Zw. (For the latter isomorphism, see [KK, Proposition 3.35].) Then

χT (θ
∗(ψu · ψv)) = π!

(
1∗w(θ

∗ψu � θ∗ψv)
)

by (12)

= (π × π)!
(
1w∗(1

∗
w(θ
∗ψu � θ∗ψv))

)
= (π × π)!

(
(θ∗ψu � θ∗ψv) · (1w∗[OZw ])

)
by the projection formula

= (π × π)!

(
(θ∗ψu � θ∗ψv) ·

(∑
u,v

q̂wu,v[OZu ] � [OZv ]

))
for some q̂wu,v ∈ R(T )

=

∑
u,v

q̂wu,vχT (θ
∗ψu · [OZu ])χT (θ

∗ψv · [OZv ]) =
∑

µ(u)=u
µ(v)=v

q̂wu,v, (13)

where the last equality follows since

χT (θ
∗ψu · [OZu ]) = δu,µ(u), (14)

where µ(u) denotes the Weyl group element u if the standard map Zu → G/B has
image precisely equal to Xu. To prove (14), use [KK, Propositions 3.36, 3.39] and [K,
proof of Corollary 8.1.10]. (Actually, we need the extension of [KK, Proposition 3.36]
for nonreduced words v, but the proof of this extension is identical.)

From the identity

1w∗[OZw ] =

∑
u,v≤w

q̂wu,v[OZu ] � [OZv ],
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we get

1∗θ![OZw ] = (θ × θ)!1w∗[OZw ] =

∑
u,v

q̂wu,vθ![OZu ] � θ![OZv ]

=

∑
u1,v1≤w

∑
µ(u)=u1
µ(v)=v1

q̂wu,v[OXu1
] � [OXv1 ], (15)

by [K, Theorem 8.2.2(c)]. Moreover, since

1∗ θ![OZw ] = 1∗ [OXw ] =
∑

qwu1,v1
[OXu1

] � [OXv1 ], (16)

we get (equating (15) and (16)), for any u1, v1 ≤ w,

qwu1,v1
=

∑
µ(u)=u1
µ(v)=v1

q̂wu,v. (17)

Combining (11), (13) and (17), we get pwu,v = q
w
u,v . This proves the proposition. ut

Lemma 4.2 (due to M. Kashiwara). The R(T )-span of {[ξu]}u∈W insideK0
T (X̄) (where

we allow an arbitrary infinite sum, which makes sense as an element ofK0
T (X̄)) coincides

with K0
T (X̄).

Proof. To prove this, write [ξu] as a linear combination of [OXv ] by Theorem 10.4. Then
it is an upper triangular R(T )-matrix with diagonal terms equal to 1. By [KS, §2], [OXv ]
is a ‘basis’ of K0

T (X̄). This proves the lemma. ut

By Proposition 3.6, {[ξu]}u∈W are independent over R(T ) even allowing infinite sums.
Now, express the product in K0

T (X̄):

[ξu] · [ξv] =
∑
w

dwu,v[ξ
w
] for dwu,v ∈ R(T ).

Let 1̄ : X̄→ X̄ × X̄ be the diagonal map. Then

[ξu] · [ξv] = 1̄∗([ξu � ξv]).

Lemma 4.3. For all u, v,w ∈ W ,

pwu,v = d
w
u,v.

Proof. For any w ∈ W ,

〈1̄∗([ξu � ξv]), [OXw ]〉 = 〈[ξ
u � ξv],1∗[OXw ]〉

=

〈
[ξu � ξv],

∑
u′,v′

pwu′,v′ [OXu′ ] ⊗ [OXv′ ]
〉

by Proposition 4.1

= pwu,v by Proposition 3.6.

On the other hand,

〈1̄∗([ξu � ξv]), [OXw ]〉 = 〈[ξ
u
] · [ξv], [OXw ]〉

= dwu,v by Proposition 3.6 again. ut
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Fix a large N and let
P = (PN )r (r = dim T ).

For any j = (j1, . . . , jr) ∈ [N ]
r , where [N ] = {0, 1, . . . , N}, set

Pj
= PN−j1 × · · · × PN−jr .

We fix an identification T ' (C∗)r throughout the paper satisfying the condition
that for any positive root α, the character eα (under the identification) is given by
z
d1(α)
1 . . . z

dr (α)
r for some di(α) ≥ 0, where (z1, . . . , zr) are the standard coordinates

on (C∗)r . One such identification T ' (C∗)r is given by t 7→ (eα1(t), . . . , eαr (t)). This
will be our default choice.

Let E(T )P := (CN+1
\ {0})r be the total space of the standard principal T -bundle

E(T )P → P. We can view E(T )P → P as a finite-dimensional approximation of the
classifying bundle for T . Let πX : XP := E(T )P ×T X → P be the fibration with fiber
X = G/B associated to the principal T -bundle E(T )P→ P, where we twist the standard
action of T on X via

t � x = t−1x. (18)

For any T -subscheme Y ⊂ X, we denote YP := E(T )P ×T Y ⊂ XP.
The following theorem follows easily by using [CG, §5.2.14] together with [CG, The-

orem 5.4.17] applied to the vector bundles (BwB/B)P→ P.

Theorem 4.4. K0(XP) := Limitn→∞K0((Xn)P) is a free module over the ringK0(P) =
K0(P) with basis {[O(Xw)P ]}w∈W , where K0 (resp. K0) denotes the Grothendieck group
associated to the semigroup of coherent sheaves (resp. locally free sheaves). Thus,
K0(XP) has a Z-basis

{π∗X([OPj ]) · [O(Xw)P ]}j∈[N ]r , w∈W ,

where we view [OPj ] as an element of K0(P) = K0(P). ut

Let Y := X ×X. The diagonal map 1 : X→ Y gives rise to the embedding

1̃ : XP→ YP = E(T )P ×
T Y ' XP ×P XP.

Thus, we get (denoting the projection YP→ P by πY )

1̃∗[O(Xw)P ] =
∑
u,v∈W
j∈[N ]r

cwu,v(j)π
∗

Y ([OPj ]) · [O(Xu×Xv)P ] ∈ K0(YP) (19)

for some cwu,v(j) ∈ Z. Let

Pj = Pj1 × · · · × Pjr ,

∂Pj = (Pj1−1
× Pj2 × · · · × Pjr ) ∪ · · · ∪ (Pj1 × · · · × Pjr−1 × Pjr−1),

where we interpret P−1
= ∅. It is easy to see that, under the standard pairing on K0(P),

〈[OPj ], [OPj′ (−∂Pj′)]〉 = δj,j′ . (20)

Alternatively, it is a special case of [GK, Proposition 2.1 and §6.1].
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Let Ȳ = X̄ × X̄ and K0(ȲP) denote the Grothendieck group associated to the semi-
group of coherent OȲP -modules S, i.e., those OȲP -modules S such that S

|(V S1×V S2 )P
is a

coherent O(V S1×V S2 )P
-module for all finite ideals S1, S2 ⊂ W . Also, let L̂(ρ � ρ) be the

line bundle on ȲP defined as

E(T )P ×
T e−2ρ(L(−ρ) � L(−ρ))→ ȲP,

where the action of T on the line bundle e−2ρ(L(−ρ) � L(−ρ)) over Ȳ is also twisted
the same way as in (18).

Lemma 4.5. With the notation as above,

cwu,v(j) = 〈π
∗

Ȳ
[OPj(−∂Pj)] · [˜ξu � ξv], 1̃∗[O(Xw)P ]〉,

where πȲ : ȲP→ P is the projection, the coherent sheaf ˜ξu � ξv on ȲP is defined as

L̂(ρ � ρ)⊗ Ext`(u)+`(v)OȲP
(O(Xu×Xv)P ,OȲP),

and the pairing 〈 , 〉 : K0(ȲP) ⊗ K0(YP) → Z is similar to the pairing defined earlier.
Specifically,

〈[S], [F]〉 =
∑
i

(−1)i χ(ȲP,Tor
OȲP
i (S,F)),

where χ is the Euler–Poincaré characteristic.

Proof. We have

〈π∗
Ȳ
[OPj(−∂Pj)] · [˜ξu � ξv], 1̃∗[O(Xw)P ]〉

=

〈
π∗
Ȳ
[OPj(−∂Pj)] · [˜ξu � ξv],

∑
u′,v′∈W,
j′∈[N ]r

cwu′,v′(j
′) π∗Y ([OPj′ ])[O(Xu′×Xv′ )P ]

〉
= cwu,v(j) by Proposition 3.6 and the identity (20). ut

Definition 4.6 (Mixing group). Let T act on B via the inverse conjugation, i.e.,

t · b = t−1bt, t ∈ T , b ∈ B.

Consider the ind-group scheme (over P)

BP = E(T )P ×
T B → P.

Note that BP is not a principal B-bundle since there is no right action of B on BP.
Let 00 be the group of global sections of the bundle BP under pointwise multiplication.
(Recall that 00 can be identified with the set of regular maps f : E(T )P → B such that
f (e · t) = t−1

· f (e) for all e ∈ E(T )P and t ∈ T .) Since GL(N + 1)r acts canonically
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on BP compatible with its action on P = (PN )r , it also acts on 00 via pull-back. Let 0B
be the semidirect product 00 o GL(N + 1)r :

1→ 00 → 0B → GL(N + 1)r → 1.

Then 0B acts on XP with orbits precisely equal to {(BwB/B)P}w∈W , where the action
of the subgroup 00 is via the standard action of B on X. This follows from the following
lemma.

Lemma 4.7. For any ē ∈ P and any b in the fiber of BP over ē, there exists a section
γ ∈ 00 such that γ (ē) = b.

Proof. For a character λ of T , let O(λ) be the line bundle on P associated to the principal
T -bundle E(T )P → P via λ. For any positive real root α, let Uα ⊂ U be the corre-
sponding one-parameter subgroup [K, §6.1.5(a)], where U is the unipotent radical of B.
Then BP contains the subbundle H × O(−α). By the assumption on the identification
T ' (C∗)r , each O(−α) is globally generated. Thus, 00(ē) ⊃ H × Uα . Since 00 is a
group and by [K, Definition 6.2.7] the groupU is generated by the subgroups {Uα}, where
α runs over the positive real roots, we get the lemma. ut

Lemma 4.8. 0B is connected.

Proof. It suffices to show that 00 is connected. But 00 ' H × 0(E(T )P ×T U), where
0(E(T )P ×T U) denotes the group of sections of the bundle E(T )P ×T U → P. Thus,
it suffices to show that the group of sections 0(E(T )P ×T U) is connected. Using the
T -equivariant contraction of U (in the analytic topology) given in [K, proof of Proposi-
tion 7.4.17], it is easy to see that the group of sections is contractible. In particular, it is
connected. ut

Similarly, we define 0B×B by replacing B by B×B and T by the diagonal1T ⊂ T ×T
and we abbreviate it by 0. Observe that Lemmas 4.7 and 4.8 remain true (by the same
proof) for 0B replaced by 0. (For the proof of Lemma 4.7, observe that the weights of
Uα × Uβ under the 1T -action are α, β. Similarly, for the proof of Lemma 4.8, observe
that U × U is contractible under a T × T (in particular, 1T )-equivariant contraction.)

Proposition 4.9. For any coherent sheaf S on P, and any u, v ∈ W ,

π∗[S] · [˜ξu � ξv] = [π∗(S)⊗OȲP
( ˜ξu � ξv)] ∈ K0(ȲP),

where we abbreviate πȲ by π and π∗(S) := OȲP ⊗OP S. In particular,

π∗[OPj(−∂Pj)] · [˜ξu � ξv] = [π∗(OPj(−∂Pj))⊗OȲP
( ˜ξu � ξv)].

Proof. By definition,

π∗[S] · [˜ξu � ξv] =
∑
i≥0

(−1)i[Tor
OȲP
i (π∗(S), ˜ξu � ξv)].

Thus, it suffices to prove that

Tor
OȲP
i (π∗S, ˜ξu � ξv) = 0, ∀i > 0.
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Since the question is local in the base, we can assume that ȲP ∼= P × Ȳ . Observe that,
locally on the base,

π∗S ' S � OȲ and ˜ξu � ξv = OP � (ξu � ξv),

where S � OȲ means S ⊗C OȲ etc. Now, the result follows, since for algebras R and S
over a field k and an R-module M and an S-module N ,

TorR�S
i (M � S,R �N) = 0 for all i > 0. ut

The following is our main technical result. The proof of its two parts are given in Sec-
tions 5 and 9 respectively.

Theorem 4.10. For general γ ∈ 0 = 0B×B , any u, v,w ∈ W , and j ∈ [N ]r ,

(a) Tor
OȲP
i (π∗(OPj(−∂Pj))⊗( ˜ξu � ξv), γ∗1̃∗O(Xw)P) = 0 for all i > 0, where we view

any element γ ∈ 0 as an automorphism of the scheme ȲP.
(b) Assume that cwu,v(j) 6= 0, where cwu,v(j) is defined by the identity (19). Then

Hp
(
ȲP, π

∗(OPj(−∂Pj))⊗ ( ˜ξu � ξv)⊗ γ∗1̃∗O(Xw)P
)
= 0

for all p 6= |j| + `(w)− (`(u)+ `(v)), where |j| :=
∑r
i=1 ji .

Since 0 is connected, we get the following result as an immediate corollary of Lemma 4.5,
Proposition 4.9 and Theorem 4.10.

Corollary 4.11. (−1)`(w)−`(u)−`(v)+|j|cwu,v(j) ∈ Z+.

Recall the definition of the structure constants pwu,v ∈ R(T ) for the product in K top
T (X)

from the beginning of this section. The following lemma follows easily from Proposi-
tion 4.1, identity (19) and [GK, Lemma 6.2] (see also [AGM, §3]).

Lemma 4.12. For any u, v,w ∈ W , we can choose large enough N (depending upon
u, v,w) and write (by [GK, Proposition 2.2(c) and Theorem 5.1] valid in the Kac–Moody
case as well)

pwu,v =
∑

j∈[N ]r
pwu,v(j)(e

−α1 − 1)j1 . . . (e−αr − 1)jr (21)

for some unique pwu,v(j) ∈ Z, where j = (j1, . . . , jr). Then

pwu,v(j) = (−1)|j|cwu,v(j). (22)

As an immediate consequence of Corollary 4.11 and Lemma 4.12, we get the following
main theorem of this paper, which was conjectured by Graham–Kumar [GK, Conjec-
ture 3.1] in the finite case and proved in this case by Anderson–Griffeth–Miller [AGM,
Corollary 5.2].
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Theorem 4.13. For any u, v,w ∈ W , and any symmetrizable Kac–Moody group G, the
structure constants in K top

T (X) satisfy

(−1)`(u)+`(v)+`(w) pwu,v ∈ Z+[(e−α1 − 1), . . . , (e−αr − 1)]. (23)
ut

Recall [KK, Proposition 3.25] that

K top(X) ' Z⊗R(T ) K
top
T (X), (24)

where Z is considered as an R(T )-module via evaluation at 1. Express the product in
K top(X) in the ‘basis’ {ψuo := 1⊗ ψu}u∈W :

ψuo · ψ
v
o =

∑
w

awu,vψ
w
o for awu,v ∈ Z.

Then, by the isomorphism (24),

awu,v = p
w
u,v(1).

Thus, from Theorem 4.13, we immediately obtain the following result which was conjec-
tured by A. S. Buch in the finite case and proved in this case by Brion [B].

Corollary 4.14. For any u, v,w ∈ W ,

(−1)`(u)+`(v)+`(w) awu,v ∈ Z+.

Remark 4.15. We conjecture2 that the analogue of Theorem 4.13 is true for the ‘basis’ ξu

replaced by the structure sheaf ‘basis’ {φu = [OXu ]}u∈W ofK0
T (X̄). In the finite case, this

was conjectured by Griffeth–Ram [GR] and proved in this case by Anderson–Griffeth–
Miller [AGM, Corollary 5.3].

For the affine Kac–Moody group G = ŜLN associated to SLN , and its standard
maximal parahoric subgroup P , let X̄ := G/P be the corresponding infinite Grassman-
nian. Then K0(X̄ ) has the structure sheaf ‘basis’ {[OXu ]}u∈W/Wo over Z, where W is
the (affine) Weyl group of G and Wo = SN is the Weyl group of SLN . Write, for any
u, v ∈ W/Wo,

[OXu ] · [OXv ] =
∑

w∈W/Wo

bwu,v[OXw ] for some unique integers bwu,v.

Now, the Lam–Schilling–Shimozono conjecture [LSS, Conjectures 7.20(2) and 7.21(3)]
is the following:

(−1)`(u)+`(v)+`(w) bwu,v ∈ Z+

if u, v,w are the minimal representatives in their cosets.

2 This conjecture has now been proved by Baldwin–Kumar [BaK].
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5. Study of some Ext and Tor functors and proof of Theorem 4.10(a)

Proposition 5.1. For any j ∈ Z and u,w ∈ W , as T -equivariant sheaves,

Tor
OX̄
j (ξu,OXw ) ' e

−ρL(−ρ)⊗OX̄
(Ext

`(u)−j

OX̄
(OXu ,OXw )).

In particular, Ext
j

OX̄
(OXu ,OXw ) = 0 for all j > `(u).

Proof. By definition,

ξu = e−ρL(−ρ)Ext`(u)OX̄
(OXu ,OX̄).

By Lemma 3.4, OXu∩V v admits a T -equivariant resolution (for any v ∈ W )

0→ Fn
δn−1
−−→ · · ·

δ0
−→ F0 → OXu∩V v → 0 (25)

by T -equivariant free OV v -modules of finite rank.
Since Mj := Ext

j

OX̄
(OXu ,OX̄) = 0 for all j 6= `(u) (see (5)), the dual complex

0← F∗n
δ∗
n−1
←−− F∗n−1 ← · · · ← F∗`(u)← · · ·

δ∗0
←− F∗0 ← 0 (26)

gives rise to the resolution

0←M`(u) := Ker δ∗`(u)/Im δ∗`(u)−1 ← Ker δ∗`(u)← F∗`(u)−1 ← · · · ← F∗0 ← 0,

where F∗i :=HomOV v (Fi,OV v ).
We next claim that Ker δ∗j is a direct summand OV v -submodule of F∗j for all j ≥ `(u):
We prove this by downward induction on j . Since (26) has cohomology only in de-

gree `(u), if n > `(u) we have Im δ∗n−1 = F∗n and hence Ker δ∗n−1 is a direct summand
OV v -submodule of F∗n−1. Thus, Ker δ∗n−2 is a direct summand of F∗n−2 if n − 2 ≥ `(u).
Continuing, we see that Ker δ∗`(u) is a direct summand OV v -submodule of F∗`(u).

Thus, we get a projective resolution

0→ P`(u)→ · · · → P1 → P0 →M`(u)→ 0,

where P0 := Ker δ∗`(u) and Pi := F∗`(u)−i for 1 ≤ i ≤ `(u). Hence, restricted to the open

subset V v , Tor
OX̄
∗ (ξu,OXw ) is the homology of the complex

0→ (e−ρL(−ρ)P`(u))⊗OV v OXw → · · · → (e−ρL(−ρ)P0)⊗OV v OXw → 0.

Now, we show that the j -th homology of the complex

C : 0→ P`(u) ⊗OV v OXw → · · · → P0 ⊗OV v OXw → 0

is isomorphic to Ext
`(u)−j

OX̄
(OXu ,OXw ):
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Since
Pi ⊗OV v OXw 'HomOV v (F`(u)−i,OXw ) for all i ≥ 1,

we get
Hj (C) ' Ext

`(u)−j

OV v
(OXu ,OXw ) for all j ≥ 2. (27)

Moreover, since P0 is a direct summand of F∗`(u), we get

H1(C) ' Ext`(u)−1
OV v

(OXu ,OXw ). (28)

Now,

H0(C) = P0 ⊗OV v OXw/ Im(P1 ⊗OV v OXw ) ' Ext`(u)OV v
(OXu ,OXw ), (29)

since Ker δ∗`(u) is a direct summand of F∗`(u), and Ker δ∗`(u)+1 = Im δ∗`(u) is a direct sum-
mand of F∗`(u)+1.

Finally,
Ext

j

OV v
(OXu ,OXw ) = 0 for all j > `(u). (30)

To prove this, observe that, for j > `(u),

0→ Ker δ∗j → F∗j
δ∗j
−→ Im δ∗j = Ker δ∗j+1 → 0

is a split exact sequence since Ker δ∗j+1 is projective. Thus,

0→ Ker δ∗j ⊗OV v OXw → F∗j ⊗OV v OXw → (Im δ∗j )⊗OV v OXw → 0

is exact. Moreover, Im δ∗j ↪→ F∗j+1 is a direct summand and hence

Im δ∗j ⊗OV v OXw ↪→ F∗j+1 ⊗OV v OXw .

From this (30) follows.
Combining (27)–(30), we get the proposition. ut

The following is a minor generalization of the ‘acyclicity lemma’ of Peskine–Szpiro [PS,
Lemme 1.8].

Lemma 5.2. Let R be a local noetherian CM domain and let

0→ Fn→ Fn−1 → · · · → F0 → 0 (∗)

be a complex of finitely generated free R-modules. Fix a positive integer d > 0. Assume:

(a) some irreducible component Z of the support of M :=
⊕

i≥1Hi(F∗) has codimen-
sion ≥ d in SpecR, and

(b) Fi = 0 for all i > d.

Then Hi(F∗) = 0 for all i > 0.
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Proof. Assume, if possible, that M 6= 0. Let I ⊂ R be the annihilator of M and let p be
the (minimal) prime ideal containing I corresponding to Z. Then

M ⊗R Rp 6= 0, (31)
depth(M ⊗R Rp) = 0. (32)

Next observe that

depth(F∗ ⊗R Rp) = depthRp := depthp Rp

= codim(pRp) since Rp is CM
= codim(p) ≥ d.

Now, by applying the acyclicity lemma of Peskine–Szpiro [PS, Lemme 1.8] to the
complex F∗ ⊗R Rp and using the identities (31), (32), we get a contradiction.

Thus, M = 0, proving the lemma. ut

Corollary 5.3. Let Y be an irreducible CM variety and d > 0 a positive integer. Let

0← Gn δn−1
←−− Gn−1

← · · ·
δ0
←− G0

← 0

be a complex of locally free OY -modules of finite rank satisfying:

• The support of the sheaf
⊕

i<d H i(G∗) has an irreducible component of codimension
≥ d in Y .
• H j (G∗) = 0 for all j > d.

Then H j (G∗) = 0 for all j < d as well.

Proof. We first claim by downward induction that Ker δj is a direct summand of Gj for
any j ≥ d . The proof is similar to that given in the proof of Proposition 5.1. Thus,
H ∗(G∗) ' H ∗(F∗), where

F i
= Gi for all i < d, Fd

= Ker δd , F i
= 0 for i > d.

Hence, we can assume that Gi = 0 for all i > d. Now, we apply the last lemma to get the
result. ut

Proposition 5.4. For any u,w ∈ W ,

Ext
j

OX̄
(OXu ,OXw ) = 0 for all j < `(u).

Thus,
Tor

OX̄
j (ξu,OXw ) = 0 for all j > 0.

Proof. We can of course replace X̄ by V v (for v ∈ W ). Consider a locally OV v -free
resolution of finite rank

0→ Fn→ Fn−1 → · · · → F0 → OXu∩V v → 0.
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Then, restricted to the open set V v , Ext
j

OX̄
(OXu ,OXw ) is the j -th cohomology of the

complex

0←HomOX̄
(Fn,OXw )← · · · ←HomOX̄

(F0,OXw )← 0.

Since Fj is OX̄-free,

HomOX̄
(Fj ,OXw ) 'HomOXw (Fj ⊗OX̄

OXw ,OXw ).

Now, the first part of the proposition follows from Corollary 5.3 applied to d = `(u)
and from Proposition 5.1, by observing that the sheaf Ext

j

OX̄
(OXu ,OXw ) has support

in Xu ∩ Xw, Xw is an irreducible CM variety [K, Theorem 8.2.2(c)], and for u ≤ w,
codimXw (X

u
∩Xw) = `(u) [K, Lemma 7.3.10].

The second assertion follows from the first and Proposition 5.1. ut

As a consequence of Proposition 5.4, we prove Theorem 4.10(a).

Proof of Theorem 4.10(a). Since the assertion is local in P, we can assume that ȲP '
P× Ȳ . Thus,

π∗OPj(−∂Pj) ' OPj(−∂Pj) � OȲ , (33)

˜ξu � ξv ∼= OP � (ξu � ξv), (34)
O(Xw×Xw)P ' OP � (OXw � OXw ). (35)

We assert that for any O(Yw)P -module S (where (Yw)P := (Xw ×Xw)P),

Tor
OȲP
i

(
π∗(OPj(−∂Pj))⊗ ( ˜ξu � ξv),S

)
' Tor

O(Yw)P
i

(
O(Yw)P ⊗OȲP

(
π∗OPj(−∂Pj)⊗ ( ˜ξu � ξv)

)
,S
)
. (36)

To prove (36), from Proposition 5.4 and the isomorphisms (33)–(35), it suffices to observe
the following (where we take R = OȲP , S = O(Yw)P ,M = π

∗(OPj(−∂Pj)) ⊗ ( ˜ξu � ξv)

and N = S).
Let R, S be commutative rings with ring homomorphism R → S, M an R-module

and N an S-module. Then N ⊗S (S ⊗R M) ' N ⊗R M. This gives rise to the following
isomorphism provided TorRj (S,M) = 0 for all j > 0:

TorRi (M,N) ' TorSi (S ⊗R M,N). (37)

Clearly,

Tor
O(Yw)P
i

(
O(Yw)P ⊗OȲP

(
π∗OPj(−∂Pj)⊗ ( ˜ξu � ξv)

)
, γ∗1̃∗O(Xw)P

)
' Tor

O(Yw)P
i

(
(γ−1)∗

(
O(Yw)P ⊗OȲP

(π∗OPj(−∂Pj)⊗ ( ˜ξu � ξv))
)
, 1̃∗O(Xw)P

)
.

By Lemma 4.7, the closures of 0-orbits in (Yw)P are precisely (Xx × Xy)P for
x, y ≤ w. By Proposition 5.4 and the isomorphism (37) (applied to R = OX̄, S =
OXw ,M = ξ

u and N = OXx ), we get

Tor
OXw
j (OXw ⊗OX̄

ξu,OXx ) = 0, ∀x ≤ w, j ≥ 1. (38)
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Further, by the identities (33)–(35) and (38),F :=O(Yw)P⊗OȲP
(π∗OPj(−∂Pj)⊗( ˜ξu � ξv))

is homologically transverse to the 0-orbit closures in (Yw)P. Thus, applying [AGM, The-
orem 2.3] (with their G = 0, X = (Yw)P, E = 1̃∗O(Xw)P , and their F as the above F)
(a result originally due to Sierra [Si, Theorem 1.2]) we get the following identity:

Tor
O(Yw)P
i

(
O(Yw)P⊗OȲP

(
π∗OPj(−∂Pj)⊗ ( ˜ξu � ξv)

)
, γ∗1̃∗O(Xw)P

)
= 0 for all i > 0.

(39)

(Observe that even though 0 is infinite-dimensional, its action on (Yw)P factors through
the action of a finite-dimensional quotient group 0̄ of 0.)

Observe that γ (1̃(Xw)P) ⊂ (Yw)P, and thus by (36) and (39), we get

Tor
OȲP
i

(
π∗(OPj(−∂Pj))⊗ ( ˜ξu � ξv), γ∗1̃∗O(Xw)P

)
= 0 for all i > 0.

This proves Theorem 4.10(a). ut

Lemma 5.5. For any u,w ∈ W ,

Tor
OX̄
j (OXu ,OXw ) = 0 for all j > 0.

Proof. We can of course replace X̄ by the open set V v (for v ∈ W ) and consider the free
resolution by OV v -modules of finite rank:

0→ Fn
δn−1
−−→ Fn−1 → · · ·

δ0
−→ F0 → OXu∩V v → 0.

Since the assertion of the lemma is local in X̄, we can (and do) replace V v by suitable
smaller open subsets in the following. By downward induction, we show that Di := Im δi
is a direct summand of Fi for all i ≥ `(u). Of course, the assertion holds for i = n. By
induction, assume that Di+1 is a direct summand (where i ≥ `(u)). Thus,

0→ D⊥i+1
δi
−→ Fi → · · · → F0 → OXu∩V v → 0 (C1)

is a locally free resolution, where D⊥i+1 is any OV v -submodule of Fi+1 such that
Di+1 ⊕D⊥i+1 = Fi+1.

Consider the short exact sequence

0→ D⊥i+1
δi
−→ Fi → Fi/δi(D⊥i+1)→ 0. (C2)

This gives rise to the exact sequence

0→HomOV v (Fi/δi(D
⊥

i+1),OV v )→HomOV v (Fi,OV v )
δ∗i
−→HomOV v (D

⊥

i+1,OV v )→ Ext1OV v (Fi/δi(D
⊥

i+1),OV v )→ 0,

where the last zero is due to the fact that Fi is OV v -free.
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From the resolution (C1) and the identity (5) (since i ≥ `(u) by assumption), we see
that the above map δ∗i is surjective. Hence,

Ext1OV v (Fi/δi(D
⊥

i+1),OV v ) = 0

and so
Ext1OV v (Fi/δi(D

⊥

i+1),D
⊥

i+1) = 0,

since D⊥i+1 is a locally free OV v -module.
Thus, the short exact sequence (C2) splits locally. In particular, Di = Im δi is a direct

summand locally. This completes the induction and hence we get a locally free resolution

0→ D⊥`(u)→ F`(u)−1 → · · · → F0 → OXu∩V v → 0. (C3)

In particular,

Tor
OX̄
j (OXu ,OXw ) = 0 for all j > `(u).

Of course, Tor
OX̄
j (OXu ,OXw ), restricted to V v , is the j -th homology of the chain com-

plex (of finitely generated locally free OXw∩V v -modules)

0→ D⊥`(u) ⊗OV v OXw∩V v → F`(u)−1 ⊗OV v OXw∩V v → · · · → F0 ⊗OV v OXw∩V v → 0.
(C4)

Clearly, the support of the homology
⊕

i≥1 Hi(C4) is contained inXu∩Xw. As observed
in the proof of Proposition 5.4, Xu ∩Xw is of codimension `(u) in Xw.

Thus, by Lemma 5.2 with d = `(u),

Hi(C4) = 0 for all i > 0. ut

Remark 5.6. As pointed out by the referee, the above lemma can also be deduced from
Proposition 5.4 by using Theorem 10.4 and the long exact sequence for Tor .

As a consequence of Lemma 5.5, we get the following generalization.

Corollary 5.7. For any finite union Y =
⋃k
i=1 X

vi of opposite Schubert varieties, and
any w ∈ W ,

(a) Tor
OX̄
j (OY ,OXw ) = 0 for all j > 0.

(b) H j (Xn,OY∩Xw ) = 0 for all j > 0, where n is any positive integer such that
Xn ⊃ Xw.

In particular, the lemma applies to Y = ∂Xu.

Proof. (a) We use double induction on the number of components k of Y and the dimen-
sion of Y ∩Xw (i.e., the largest dimension of the irreducible components of Y ∩Xw; we



2492 Shrawan Kumar

declare the dimension of the empty space to be −1). If Y has one component, i.e., k = 1,
then (a) follows from Lemma 5.5. If dim(Y ∩ Xw) = −1 (i.e., Y ∩ Xw is empty), then
clearly

Tor
OX̄
j (OY ,OXw ) = 0 for all j ≥ 0. (40)

So, assume that k ≥ 2 and Y ∩Xw is nonempty. We can assume that v1 is not larger than
any vi for i ≥ 2 (for otherwise we can drop Xv1 from the union without changing Y ).
Let Y1 := Xv1 and Y2 :=

⋃
i≥2 X

vi . Then, if Y1 ∩ Xw is nonempty, Y1 ∩ Xw = X
v1
w

properly contains Y1 ∩ Y2 ∩ Xw, since v1 ∈ X
v1
w but v1 /∈ Y2 ∩ Xw. In particular, Xv1

w

being irreducible (see Proposition 6.6 below),

dim(Y ∩Xw) ≥ dim(Y1 ∩Xw) > dim(Y1 ∩ Y2 ∩Xw). (41)

The short exact sequence of sheaves

OY → OY1 ⊕ OY2 → OY1∩Y2 → 0

yields the long exact sequence

· · · → Tor
OX̄
j+1(OY1∩Y2 ,OXw )→ Tor

OX̄
j (OY ,OXw )→ Tor

OX̄
j (OY1 ⊕ OY2 ,OXw )

→ Tor
OX̄
j (OY1∩Y2 ,OXw )→ · · · . (42)

Now, since Y2 has k − 1 components, induction on the number of components gives

Tor
OX̄
j (OY1 ⊕ OY2 ,OXw ) = 0 for all j > 0. (43)

Since the scheme-theoretic intersection Y1 ∩ Y2 is reduced (see §2) and it is a finite union
of Xu’s with dim(Y ∩Xw) > dim(Y1 ∩ Y2 ∩Xw) (by (41)), by induction we get

Tor
OX̄
j (OY1∩Y2 ,OXw ) = 0 for all j > 0. (44)

So, from (43)–(44) and the exact sequence (42), we get (a).

(b) We use the same induction as in (a). For k = 1, i.e., Y ∩ Xw = X
v1
w , the result is

a particular case of [KuS, Corollary 3.2]. Now, take any Y =
⋃k
i=1 X

vi and let Y1, Y2 be
as in (a). By (a), we have the sheaf exact sequence

0 // OY ⊗OX̄
OXw

o

��

// (OY1 ⊕ OY2)⊗OX̄
OXw

o

��

// OY1∩Y2 ⊗OX̄
OXw

o

��

// 0

0 // OY∩Xw
// (OY1∩Xw ⊕ OY2∩Xw )

// OY1∩Y2∩Xw
// 0

The corresponding long exact cohomology sequence gives

· · · → H j−1(Xn,OY1∩Xw ⊕ OY2∩Xw )→ H j−1(Xn,OY1∩Y2∩Xw )→ H j (Xn,OY∩Xw )

→ H j (Xn,OY1∩Xw ⊕ OY2∩Xw )→ · · · .
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By induction,

H j (Xn,OY1∩Xw ⊕ OY2∩Xw ) = 0, ∀j > 0, H j−1(Xn,OY1∩Y2∩Xw ) = 0, ∀j > 1.

Thus, from the above long exact sequence,

H j (Xn,OY∩Xw ) = 0, ∀j > 1.

Write Y1 ∩ Y2 =
⋃d
l=1 X

ul . Hence, Y1 ∩ Y2 ∩ Xw =
⋃d
l=1 X

ul
w . Thus, if nonempty,

Y1 ∩ Y2 ∩Xw is connected as each X
uj
w contains w. This shows that

H 0(Xn,OY1∩Xw ⊕ OY2∩Xw )→ H 0(Xn,OY1∩Y2∩Xw )

is surjective, which gives the vanishing of H 1(Xn,OY∩Xw ). This proves (b). ut

As a consequence of Lemma 5.5, we get the following.

Lemma 5.8. For any u,w ∈ W and any j ≥ 0,

Ext
j

OXw
(OXu∩Xw ,OXw ) = 0 for j 6= `(u). (45)

Moreover,
Ext

j

OX̄
(OXu ,OX̄)⊗OX̄

OXw ' Ext
j

OXw
(OXu∩Xw ,OXw ). (46)

Proof. Again we can replace X̄ by V v (for v ∈ W ). Consider an OV v -locally free resolu-
tion (cf. the proof of Lemma 5.5, specifically (C3)) (possibly restricted to an open cover
of V v)

0→ F`(u)→ · · · → F0 → OXu∩V v → 0.

By Lemma 5.5, the following is a locally free OXw∩V v -module resolution:

0→ F`(u) ⊗OV v OXw∩V v → · · · → F0 ⊗OV v OXw∩V v → OXu∩V v ⊗OV v OXw∩V v → 0.
(47)

Observe that OXu∩V v ⊗OV v OXw∩V v ' OXu∩Xw∩V v , being the definition of the scheme-
theoretic intersection. Thus, Ext

j

OXw
(OXu∩Xw ,OXw ), restricted to the open set Xw ∩ V v ,

is the j -th cohomology of the cochain complex

0←HomOXw∩V v
(F`(u) ⊗OV v OXw∩V v ,OXw∩V v )← · · ·

←HomOXw∩V v
(F0 ⊗OV v OXw∩V v ,OXw∩V v )← 0.

Since Ext
j

OXw
(OXu∩Xw ,OXw ) has support inXu∩Xw andXu∩Xw has codimension `(u)

in Xw (see the proof of Proposition 5.4), by Lemma 5.2 we get Ext
j

OXw
(OXu∩Xw ,OXw )

= 0 for any j 6= `(u). This proves (45).
For any i,

HomOXw∩V v
(Fi⊗OV v OXw∩V v ,OXw∩V v ) 'HomOV v (Fi,OV v )⊗OV v OXw∩V v . (48)
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Further, by the identity (5),

0← Ext`(u)OV v
(OXu∩V v ,OV v )←HomOV v (F`(u),OV v )← · · ·

←HomOV v (F0,OV v )← 0

is a locally free OV v -module resolution of Ext`(u)OV v
(OXu∩V v ,OV v ). Hence, by the resolu-

tion (47) and the isomorphism (48), we get

Ext
`(u)−j

OXw
(OXu∩Xw ,OXw ) ' Tor

OX̄
j (Ext`(u)OX̄

(OXu ,OX̄),OXw ) for all j ≥ 0. (49)

Thus,
Ext`(u)OXw

(OXu∩Xw ,OXw ) ' Ext`(u)OX̄
(OXu ,OX̄)⊗OX̄

OXw .

This proves (46), by using the identity (5) and (45). ut

Lemma 5.9. For any v ≤ w and u ∈ W ,

Tor
OXw
i (OXu∩Xw ,OXv ) = 0 for all i > 0.

Proof. We can replace X̄ by V θ (for θ ∈ W ). Take an OX̄-locally free resolution (see
(C3) in the proof of Lemma 5.5)

0→ F`(u)→ · · · → F1 → F0 → OXu → 0.

By Lemma 5.5,

0→ F`(u) ⊗OX̄
OXw → · · · → F0 ⊗OX̄

OXw → OXu∩Xw → 0 (S1)

is an OXw -locally free resolution of OXu∩Xw . Thus, by base extension [L, Chap. XVI, §3],
Tor

OXw
i (OXu∩Xw ,OXv ) is the i-th homology of the complex

0→ F`(u) ⊗OX̄
OXv → · · · → F0 ⊗OX̄

OXv → 0.

From the exactness of (S1) for w replaced by v, we get the lemma. ut

6. Desingularization of Richardson varieties and flatness for the 0-action

Let S ⊂ W be a finite ideal and, as in Definition 3.1, let V s be the corresponding B−-
stable open subset

⋃
w∈S (w B− · xo) of X̄, where xo is the base point 1.B of X̄. It is a

B−-stable subset, since by [KS, §2],

V S =
⋃
w∈S

B−wxo.
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Lemma 6.1. For any v ∈ W and any finite ideal S ⊂ W containing v, there exists a
closed normal subgroup N−S of B− of finite codimension such that the quotient Y v(S) :=
N−S \X

v(S) acquires a canonical structure of a B−-scheme of finite type over the base
field C under the left multiplication action of B− on Y v(S), so that the quotient q :
Xv(S) → Y v(S) is a principal N−S -bundle, where Xv(S) := Xv ∩ V S . Of course, the
map q is B−-equivariant.

Proof. For any u ∈ W , the subgroup U−u := U
−
∩ uU−u−1 acts freely and transitively

onCu via left multiplication, sinceCu = (U−∩uU−u−1)uB/B. Thus,U−S :=
⋂
u∈S U

−
u

acts freely on V S . Clearly, wB− · xo, for any w ∈ S, is stable under U−S , and further each
orbit of U−S in the open subset wB− · xo of X̄ is closed in wB− · xo (use [K, Lemma
6.1.3]). Thus, each orbit of U−S is closed in their union V S . In fact, U−S acts properly
on V S . Hence, U−S acts freely and properly on Xv(S). Take any closed normal subgroup
N−S of B− of finite codimension contained in U−S . Then Y v(S) := N−S \X

v(S) acquires
a canonical structure of a B−-scheme of finite type over C under the left multiplication
action of B− on Y v(S), so that the quotient map q : Xv(S) → Y v(S) is a principal
N−S -bundle. ut

Remark 6.2. (a) The above lemma allows us to define various local properties of Xv . In
particular, a point x ∈ Xv is called normal (resp. CM) if the corresponding point in the
quotient Y v(S) has that property, where S is a finite ideal such that x ∈ Xv(S). Clearly,
the property does not depend upon the choice of S and N−S .

(b) It is possible that the scheme Y v(S) is not separated. However, as observed by
M. Kashiwara, we can choose our closed normal subgroup N−S of B− of finite codimen-
sion contained in U−S appropriately so that Y v(S) is indeed separated. In fact, we give the
following more general result due to him.

Let k be a field and let {Sλ}λ∈3 be a filtrant projective system of quasi-compact k-schemes
locally of finite type over k . Assume that fλ,µ : Sµ → Sλ is an affine morphism. Set
S = Inv.lt.λ Sλ and let pλ : S → Sλ be the canonical projection.

Lemma 6.3 (due to M. Kashiwara). If S is separated, then Sλ is separated for some λ.

Proof. Take a smallest element λo ∈ 3. It is enough to show that for a pair of affine open
subsets Uo, Vo of Sλo , Uλ ∩ Vλ → Uλ × Vλ is a closed embedding for some λ, where
Uλ := f

−1
λo,λ

(Uo) and Vλ := f−1
λo,λ

(Vo).
Note that Uλ ∩ Vλ is quasi-compact and of finite type over k. Set U = p−1

λo
(Uo) and

V = p−1
λo
(Vo). Since S is separated,U∩V → U×V is a closed embedding. In particular,

U ∩ V is affine.
We have a projective system of schemes {Uλ ∩Vλ}λ∈3 and {Uλ}λ∈3, and a projective

system of morphisms {Uλ∩Vλ→ Uλ}λ∈3. Since Inv.lt.λ (Uλ∩Vλ) ' U∩V is affine, the
morphism Inv.lt.λ (Uλ∩Vλ)→ Inv.lt.λ (Uλ) is an affine morphism. Hence, Uλ1 ∩Vλ1 →

Uλ1 is an affine morphism for some λ1 by [GD, Théorème 8.10.5]. Hence, Uλ1 ∩ Vλ1

is affine. Now, by the assumption, OS(U) ⊗ OS(V ) → OS(U ∩ V ) is surjective. Since
Uo ∩ Vo → Uo is of finite type, U ∩ V → U is of finite type. Hence, OS(U ∩ V ) is an
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OS(U)-algebra of finite type. Since OS(U)⊗OS(V ) ' Dir.lt.λ(OS(U)⊗OSλ(Vλ)), there
exists λ2 → λ1 such that OS(U) ⊗ OSλ2

(Vλ2) → OS(U ∩ V ) is surjective. This means
that U ∩ V → U × Vλ2 is a closed embedding. Now, consider the projective system

Uλ ∩ Vλ→ Uλ × Vλ2 .

Its projective limit with respect to λ is isomorphic to U ∩V → U×Vλ2 ,which is a closed
embedding. Hence, again by loc. cit., Uλ ∩ Vλ3 → Uλ3 × Vλ2 is a closed embedding for
some λ3 → λ2. Then Uλ3 ∩ Vλ3 → Uλ3 × Vλ3 is a closed embedding. ut

Theorem 6.4. For any v ∈ W and any finite ideal S ⊂ W containing v, there exists a
smooth irreducible B−-scheme Zv(S) and a projective B−-equivariant morphism

πvS : Z
v(S)→ Xv(S)

satisfying the following conditions:

(a) The restriction (πvS )
−1(Cv)→ Cv is an isomorphism.

(b) ∂Zv(S) := (πvS )
−1(∂Xv(S)) is a divisor with simple normal crossings, where Xv(S)

:= Xv ∩ V S and ∂Xv(S) := (∂Xv) ∩ V S .

(Here smoothness of Zv(S) means that there exists a closed subgroup N−S of B− of finite
codimension which acts freely and properly on Zv(S), such that the quotient is a smooth
scheme of finite type over C.)

Proof. Observe that the action of B− on Y v(S) factors through the action of the finite-
dimensional algebraic group B−/N−S , where Y v(S) is as defined in Lemma 6.1. Now,
take a B−-equivariant desingularization θ : Z̄v(S) → Y v(S) such that θ is a projective
morphism, θ−1(N−S \C

v) → N−S \C
v is an isomorphism and θ−1(N−S \(∂X

v(S))) is a
divisor with simple normal crossings [Ko, §3.3]3 (see also [Bi], [RY]). Now, taking the
fiber product Zv(S) = Z̄v(S)×Y v(S) Xv(S) clearly proves the theorem. ut

For w ∈ W , take the ideal Sw = {u ≤ w}. Then, by [K, Lemma 7.1.22(b)],

Xv(Sw) ∩Xw = X
v
w.

Lemma 6.5. The map

µw : U
−
× Zw → X̄, (g, z) 7→ g · θw(z),

is a smooth morphism, where θw : Zw → Xw is the B-equivariant BSDH desingu-
larization corresponding to a fixed reduced decomposition w = si1 . . . sin (see proof of
Proposition 4.1).

Proof. Consider the map

µ̄w : G×
B Zw → X̄, [g, z] 7→ gθw(z).

3 I thank Zinovy Reichstein for this reference.
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Because of G-equivariance, it is a locally trivial fibration. Moreover, it has smooth fibers
of finite type over C (isomorphic to Zw−1 for the decomposition w−1

= sin . . . si1 ):
To see this, let Z′w be the fiber product

Z′w

θ ′w

��

// Zw

θw

��

�

G // X̄

Then we have the fiber diagram

G×B Z′w

µ̂w

��

// G×B Zw

µ̄w

��

�

G // X̄

In particular, the fibers of µ̄w are isomorphic to the fibers of µ̂w. Now, it is easy to see
that the map

Z′
w−1 → G×B Z′w, z′ 7→ [θ ′

w−1(z
′), i(z′)],

gives an isomorphism of Zw−1 with the fiber of µ̂w over 1, where i : Z′
w−1 → Z′w is the

isomorphism induced by the map (pn, . . . , p1) 7→ (p−1
1 , . . . , p−1

n ).

In particular, µ̄w is a smooth morphism, and hence so is its restriction to the open
subset U− × Zw. ut

Proposition 6.6. For any symmetrizable Kac–Moody group G and any v ≤ w ∈ W , the
Richardson variety Xvw := Xw ∩ X

v
⊂ X̄ is irreducible, normal and CM (and of course

of finite type over C since so is Xw). Moreover, Cw ∩ Cv is an open dense subset of Xvw.

Proof. Consider the multiplication map

µ : G×B Xw → X̄, [g, x] 7→ gx.

Then, µ being G-equivariant, it is a fibration. Consider the pull-back fibration

F vw
� � î //

µ̂

��

G×B Xw

µ

��

Xv
� � i // X̄

where i is the inclusion map.
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Also, consider the projection map

π : G×B Xw → X̄, [g, x] 7→ gB.

Let π̂ be the restriction π̂ := π ◦ î : F vw → X̄. Observe that since i is B−-equivariant (and
µ is G-equivariant), î is B−-equivariant, and hence so is π̂ . In particular, π̂ is a fibration
over the open cell B−B/B ⊂ X̄. Moreover, since π̂ is B−-equivariant (in particular,
U−-equivariant) and U− acts transitively on B−B/B with trivial isotropy, π̂ is a trivial
fibration restricted to B−B/B.

Now, by [KS, Propositions 3.2, 3.4], Xv is normal and CM (and of course irre-
ducible). Also, Xw−1 is normal, irreducible and CM [K, Theorem 8.2.2]. Thus, µ̂ be-
ing a fibration with fiber Xw−1 (as can be seen by considering the embedding Xw−1 ↪→

G ×B X̃w, gB 7→ [g, g
−1
], where X̃w is the inverse image of Xw in G), F vw is irre-

ducible, normal and CM, and hence so is its open subset π̂−1(B−B/B). But π̂ is a trivial
fibration restricted to B−B/B with fiber over 1 ·B equal to Xvw = Xw ∩X

v . Thus, Xvw is
irreducible, normal and CM under the scheme-theoretic intersection. Moreover, sinceXvw
is Frobenius split in char. p > 0 [KuS, Proposition 5.3], we conclude that it is reduced.

Clearly, Cw∩Cv is an open subset ofXvw. So, to prove that Cw∩Cv is dense inXvw, it
suffices to show that it is nonempty, which follows from [K, proof of Lemma 7.3.10]. ut

Remark 6.7. By the same proof as above, applying Corollary 10.5, we see thatXw∩∂Xv

is CM.

Theorem 6.8. For any v ≤ w, consider the fiber product

Zv(Sw)×X̄ Zw,

where Zw is the BSDH (B-equivariant) desingularization of Xw (corresponding to a
fixed reduced decomposition w = si1 . . . sin of w) and πvSw : Z

v(Sw) → Xv(Sw) is a
B−-equivariant desingularization of Xv(Sw) as in Theorem 6.4. Then Zv(Sw) ×X̄ Zw
is a smooth projective irreducible T -variety (of finite type over C) with a canonical T -
equivariant morphism

πvw : Z
v(Sw)×X̄ Zw → Xvw.

Moreover, πvw is a T -equivariant desingularization which is an isomorphism restricted to
the inverse image of the dense open subset Cv ∩ Cw of Xvw. From now on, we abbreviate

Zvw := Z
v(Sw)×X̄ Zw.

Proof. Consider the commutative diagram

Zv(Sw)×X̄ Zw
//

πvw

""

Xv(Sw)×X̄ Xw

Xv(Sw) ∩Xw

Xvw
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where the horizontal map is the fiber product of the two desingularizations, and πvw is the
horizontal map under the above identification of Xv(Sw)×X̄ Xw with Xvw. Clearly, πvw is
T -equivariant and it is an isomorphism restricted to the inverse image of the dense open
subset Cv ∩ Cw of Xvw. In particular, πvw is birational.

Define Evw as the fiber product

Evw

f vw

��

µ̂vw // Zv(Sw)

πvSw

��

�

U− × Zw
µw // X̄

where µw is as in Lemma 6.5. Since µw is a smooth morphism by Lemma 6.5, so is µ̂vw.
But Zv(Sw) is a smooth scheme and hence so is Evw. Now, since both U− × Zw and
Zv(Sw) are U−-schemes (with U− acting on U−×Zw via left multiplication on the first
factor) and the morphisms πvSw and µw are U−-equivariant, Evw is a U−-scheme (and f vw
is U−-equivariant). Consider the composite morphism

Evw
f vw
−→ U− × Zw

π1
−→ U−,

where π1 is the projection on the first factor. It is U−-equivariant with respect to left
multiplication on U−. Let F be the fiber of π1 ◦ f

v
w over 1. Define the isomorphism

Evw

π1◦f
v
w !!

U− × F∼

θ
oo

π̄1{{

U−

θ(g, x) = g · x, θ−1(y) =
(
(π1 ◦ f

v
w)(y), (π1 ◦ f

v
w(y))

−1y
)
.

Since Evw is a smooth scheme, so is F. But

F = Zvw.

Now, πvSw is a projective morphism onto Xv(Sw), and hence πvSw is a projective mor-
phism considered as a map Zv(Sw) → V Sw (since Xv(Sw) ⊂ V Sw is closed). Also, µw
has its image inside V Sw , since BuB/B ⊂ uB−B/B for any u ∈ W .

Thus, f vw is a projective morphism, and hence

(f vw)
−1(1× Zw) = Zvw

is a projective variety.
Now, as observed by D. Anderson and independently by M. Kashiwara, Zvw is irre-

ducible:
Since Zv(Sw) → Xv(Sw) is a proper desingularization, all its fibers are connected,

and hence so are all the nonempty fibers of f vw. Now, µ−1
w (ImπvSw ) = U− × Y, where
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Y ⊂ Zw is the closed subvariety defined as the inverse image of the Richardson vari-
etyXvw under the BSDH desingularization θw : Zw → Xw. SinceXvw is irreducible, θw is
proper, and all the fibers of θw are connected, Y = θ−1

w (Xvw) is connected and hence so is
µ−1
w (ImπvSw ). Since the pull-back of a proper morphism is proper [H, Chap. II, Corollary

4.8], the surjective morphism f vw : E
v
w → U− × Y is proper. Now, as U− × Y is con-

nected and all the fibers of f vw over U−×Y are nonempty and connected, we see that Evw
is connected, and hence so is F. Thus, F being smooth, it is irreducible. This proves the
theorem. ut

The action of B on Zw factors through the action of a finite-dimensional quotient group
B̄ = Bw containing the maximal torus H . Let Ū be the image of U in B̄.

Lemma 6.9. For any u ≤ w, the map µ̄ : Ū × Zuw → Zw is a smooth morphism, and
hence so is B̄ × Zuw → Zw, where (b, z) 7→ b · π2(z) for b ∈ B̄ and z ∈ Zuw. (Here
π2 : Z

u
w → Zw is the canonical projection map.)

Proof. First of all, the map

µ′ : G×B
−

Zu(Sw)→ X̄, [g, z] 7→ gπuSw (z),

being G-equivariant, is a locally trivial fibration. (It is trivial over the open subset U−

⊂ X̄.)
We next claim that the following diagram is a Cartesian diagram:

U × Zuw

µ

��

// U × Zu(Sw)

µ̂′

��

�

Zw // X̄

(D)

where µ(u, z) = u · π2(z) and µ̂′(u, z) = u · πuSw (z). Define

θ : U × Zuw → (U × Zu(Sw))×X̄ Zw, (u, z) 7→ ((u, π1(z)), u · π2(z)),

where π2 : Z
u
w → Zw and π1 : Z

u
w → Zu(Sw) are the canonical morphisms. Also define

θ ′ : (U × Zu(Sw))×X̄ Zw → U × Zuw, ((u, z1), z2) 7→ (u, (z1, u
−1z2)).

Clearly θ and θ ′ are inverses to each other and hence θ is an isomorphism. Thus, (D) is a
Cartesian diagram.

Now, consider the pull-back diagram:

E

β

��

α // G×B
−

Zu(Sw)

µ′

��

�

Zw // X̄
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Since µ′ is a locally trivial fibration, so is the map β. Moreover, since (D) is a Carte-
sian diagram, α−1(U ×Zu(Sw)) ' U ×Z

u
w and β|U×Zuw = µ. Thus, the differential of µ

is surjective at the Zariski tangent spaces.
Since the morphism µ : U ×Zuw → Zw factors through a finite-dimensional quotient

µ̄ : Ū × Zuw → Zw, the differential of µ̄ continues to be surjective at the Zariski tangent
spaces. Since Ū , Zuw and Zw are smooth varieties, we see that µ̄ : Ū × Zuw → Zw is a
smooth morphism [H, Chap. III, Proposition 10.4].

To prove that the map B̄ × Zuw → Zw is a smooth morphism, it suffices to observe
that H ×Zw → Zw, (h, z) 7→ h · z , is a smooth morphism. This proves the lemma. ut

Lemma 6.10. The map B̄×Xuw → Xw, (b, x) 7→ b ·x, is a flat morphism for any u ≤ w.

Proof. The map
µ : G×U

−

Xu(Sw)→ X̄, [g, x] 7→ g · x,

being G-equivariant, is a fibration. In particular, it is a flat map, and hence its restriction
(to an open subset) µ′ : B × Xu(Sw) → X̄ is a flat map. Now, µ′−1

(Xw) = B × Xuw.
Thus, µ′ : B × Xuw → Xw is a flat map. Now, since B × Xuw → B̄ × Xuw is a locally
trivial fibration (in particular, faithfully flat), the map B̄ ×Xuw → Xw is flat [M, Chap. 3,
§7]. This proves the lemma. ut

The canonical action of0 = 0B×B on (Z2
w)P descends to an action of a finite-dimensional

quotient group 0̄ = 0w:

0 � 0̄ = 0w � GL(N + 1)r ,

where (Z2
w)P and 0 are as in Section 4. In fact, we can (and do) take

0̄ = 0̄0 o GL(N + 1)r ,

where 0̄0 is the group of global sections of the bundleE(T )P×T B̄2
→ P, where B̄ = Bw

is defined just above Lemma 6.9.

Lemma 6.11. For any j = (j1, . . . , jr) ∈ [N ]
r and u, v ≤ w, the map

m̃ : 0̄ × (Zu,vw )j → (Z2
w)P

is a smooth morphism, where Zu,vw := Z
u
w × Z

v
w under the diagonal action of T , (Zu,vw )j

is the inverse image of Pj under the map E(T )P×T Zu,vw → P, and m̃(γ, x) = γ ·π2(x).
(Here π2 : (Z

u,v
w )j → (Z2

w)P is the map induced from the canonical projection p :
Zuw × Z

v
w → Z2

w.)

Proof. Consider the following commutative diagram, where both the right horizontal
maps are fibrations with leftmost spaces as fibers:

0̄0 × Z
u,v
w

m′

��

// 0̄ × (Zu,vw )j

m̃

��

// GL(N + 1)r × Pj

m′′

��

Z2
w

// (Z2
w)P // P = (PN )r



2502 Shrawan Kumar

Here m′ is the restriction of m̃, and m′′ is the restriction of the standard map
GL(N+1)r×P→ P induced from the action of GL(N+1) on PN . Thus,m′ takes (γ, z)
to γ (∗) ·p(z), where ∗ is the base point in P. Clearly,m′′ is a smooth morphism since it is
GL(N + 1)r -equivariant and GL(N + 1)r acts transitively on P. We next claim that m′ is
a smooth morphism: By the analogue of Lemma 4.7 for 0B replaced by 0 = 0B×B (see
the remark following Lemma 4.8), it suffices to show that

B̄2
× Zu,vw → Z2

w

is a smooth morphism, which follows from Lemma 6.9 asserting that B̄ × Zuw → Zw is
a smooth morphism. Since m′ and m′′ are smooth morphisms, so is m̃ by [H, Chap. III,
Proposition 10.4]. ut

Lemma 6.12. Let u, v ≤ w. The map m : 0̄ × (Xu,vw )j → (X2
w)P is flat, where m is

defined similarly to the map m̃ : 0̄ × (Zu,vw )j → (Z2
w)P in Lemma 6.11.

Similarly, its restrictionm′ : 0̄×∂((Xu,vw )j)→(X2
w)P is flat, whereXu,vw :=X

u
w×X

u
w,

∂((Xu,vw )j) := ((∂X
u,v) ∩ (X2

w))j ∪ (X
u,v
w )∂Pj ,

(Xu,vw )∂Pj is the inverse image of ∂Pj under the standard quotient map E(T )P ×T Xu,vw
→ P, and ∂Xu,v := ((∂Xu)×Xv) ∪ (Xu × (∂Xv)).

Proof. Consider the following diagram where both the right horizontal maps are locally
trivial fibrations with leftmost spaces as fibers:

0̄0 ×X
u,v
w

m̂′

��

// 0̄ × (Xu,vw )j

m

��

// GL(N + 1)r × Pj

m′′

��

X2
w

// (X2
w)P // P = (PN )r

Since the two horizontal maps are fibrations and m′′ is a smooth morphism (see proof
of Lemma 6.11), to prove that m is flat, it suffices to show that m̂′ : 0̄0 × X

u,v
w → X2

w is
a flat morphism. By the analogue of Lemma 4.7 for 0, it suffices to show that

(B̄2)×Xu,vw → X2
w

is a flat morphism, which follows from Lemma 6.10.
Observe first that, by the same proof as that of Lemma 6.10, the morphism

B̄2
× ((∂Xu,v)∩X2

w)→ X2
w is flat. Now, to prove that the map 0̄×∂((Xu,vw )j)→ (X2

w)P
is flat, observe that (by the same proof as that of the first part) it is flat when restricted
to the components 01 := 0̄ × ((∂Xu,v) ∩ X2

w)j and 02 := 0̄ × (Xu,vw )∂Pj and also to
01 ∩ 02. Thus, it is flat on 01 ∪ 02, since for an affine scheme Y = Y1 ∪ Y2, with closed
subschemes Y1, Y2, and a morphism f : Y → X of schemes, the sequence

0→ k[Y ] → k[Y1] ⊕ k[Y2] → k[Y1 ∩ Y2] → 0

is exact as a sequence of k[X]-modules. ut

The following two lemmas are not used in the paper. However, we have included them
for their potential usefulness. The first is used in the proof of the second.
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Lemma 6.13. For any u ≤ w,

OXu(−∂X
u)⊗OX̄

OXw (−∂Xw) ' OXuw
(
−((∂Xuw) ∪ (X

u
∩ ∂Xw))

)
,

where recall that ∂Xuw := (∂X
u)∩Xw taken as the scheme-theoretic intersection inside X̄.

Proof. First of all,

0→ OXu(−∂X
u)⊗OX̄

OXw → OXu ⊗OX̄
OXw = OXuw → O∂Xuw → 0

is exact since (by Corollary 5.7)

Tor
OX̄
1 (O∂Xu ,OXw ) = 0. (50)

Thus,
OXu(−∂X

u)⊗OX̄
OXw ' OXuw (−∂X

u
w). (51)

Similarly,

0→ OXu(−∂X
u)⊗OX̄

OXw (−∂Xw)→ OXu(−∂X
u)⊗OX̄

OXw

→ OXu(−∂X
u)⊗OX̄

O∂Xw → 0 (52)

is exact since
Tor

OX̄
1 (OXu(−∂X

u),O∂Xw ) = 0. (53)

To prove (53), observe that, by a proof similar to that of Corollary 5.7,

Tor
OX̄
j (OXu ,O∂Xw ) = 0 and Tor

OX̄
j (O∂Xu ,O∂Xw ) = 0, for all j > 0. (54)

Now, (51), (52) and (54) together prove the lemma. ut

Lemma 6.14. Let u ≤ w. As T -equivariant sheaves,

ωXuw ' OXuw
(
−((∂Xuw) ∪ (X

u
∩ ∂Xw))

)
,

where Xu ∩ ∂(Xw) is taken as the scheme-theoretic intersection inside X̄.

Proof. Since Xuw is CM by Proposition 6.6 (in particular, so is Xw) and the codimension
of Xuw in Xw is `(u), the dualizing sheaf satisfies

ωXuw ' Ext`(u)OXw
(OXuw , ωXw ) (55)

(see [E, Theorem 21.15]). By the same proof as that of Lemma 5.8,

Ext`(u)OXw
(OXuw , ωXw ) ' Ext`(u)OX̄

(OXu ,OX̄)⊗OX̄
ωXw . (56)

By [GK, Proposition 2.2], as T -equivariant sheaves,

ωXw ' e
−ρL(−ρ)⊗ OXw (−∂Xw). (57)

(Even though in [GK] we assume that G is of finite type, the same proof works for a
general Kac–Moody group.) Thus, the lemma follows by combining the isomorphisms
(55)–(57) with Theorem 10.4 (due to Kashiwara) and Lemma 6.13. ut
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7. Z has rational singularities

Recall the definition of P and Pj and the embedding 1̃ from Section 4. Fix u, v ≤ w

and j. Also recall the definition of the quotient group 0̄ = 0w of 0 and the map m̃ from
Lemma 6.11 and the map m from Lemma 6.12.

In the following commutative diagram, Z̃ is defined as the fiber product (0̄× (Zu,vw )j)

×(Z2
w)P

1̃((Zw)P), and Z is defined as the fiber product (0̄× (Xu,vw )j)×(X2
w)P

1̃((Xw)P).

In particular, both Z, Z̃ are schemes of finite type over C. The map f is the restriction of
θ to Z̃ (via ĩ) with image inside Z . The maps π̃ and π are obtained from the projections
to the 0̄-factor via the maps ĩ and i respectively.

Z̃ 1̃((Zw)P)

�

0̄ × (Zu,vw )j (Z2
w)P

0̄

0̄ × (Xu,vw )j (X2
w)P

�

Z 1̃((Xw)P)

π̃

f

ĩ

(smooth)

µ̃

θ

(smooth)
m̃

β

(flat)
m

π

(flat)

µ

i

Lemma 7.1. Pic(0̄) is trivial.

Proof. First of all, by the definition given above Lemma 6.11, 0̄ is the semidirect product
of GL(N + 1)r with 0̄0 = 0(E(T )P ×T B̄2) ' H 2

× 0(E(T )P ×T Ū2).
Since Ū2 is T -isomorphic to its Lie algebra, 0(E(T )P ×T Ū2) is an affine space.

Thus, as a variety, 0̄ (which is isomorphic to GL(N + 1)r ×H 2
× 0(E(T )P ×T Ū2)) is

an open subset of an affine space AN . In particular, any prime divisor of 0̄ extends to a
prime divisor of AN , and thus its ideal is principal. Hence, Pic(0̄) = {1}. ut

The following result is a slight variant of [FP, Lemma, p. 108].

Lemma 7.2. Let f : W → X be a flat morphism from a pure-dimensional CM schemeW
of finite type over C to a CM irreducible variety X, and let Y be a closed CM subscheme
of X of pure codimension d. Set Z := f−1(Y ). If codimZ(W) ≥ d, then equality holds
and Z is CM.

Proof (due to N. Mohan Kumar). The assertion and the assumptions of the lemma are
clearly local, so we have a local map A → B of local rings with B flat over A. If
P ⊂ A is a prime ideal of codimension d with PB of pure codimension d , we only
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need to check that B/PB is CM. But A/P is CM, so we can pick a regular sequence
{a1, . . . , ad} mod P . By flatness of f , it remains a regular sequence in B/PB. ut

We also need the original [FP, Lemma, p. 108].

Lemma 7.3. Let f : W → X be a morphism from a pure-dimensional CM scheme W of
finite type over C to a smooth irreducible variety X, and let Y be a closed CM subscheme
of X of pure codimension d. Set Z := f−1(Y ). If codimZ(W) ≥ d , then equality holds
and Z is CM.

Proposition 7.4. The schemes Z and Z̃ are irreducible and the map f : Z̃ → Z is a
proper birational map. Thus, Z̃ is a desingularization of Z . Moreover, Z is CM with

dim(Z) = |j| + `(w)− `(u)− `(v)+ dim(0̄), (58)

where |j| :=
∑
i ji for j = (j1, . . . , jr).

Proof. We first show that Z̃ and Z are pure-dimensional.
Since m̃ is a smooth (in particular, flat) morphism, Im m̃ is an open subset of (Z2

w)P
[H, Chap. III, Exercise 9.1]. Moreover, clearly Im m̃ ⊃ (C2

w)P, thus Im m̃ intersects
1̃((Zw)P). Applying [H, Chap. III, Corollary 9.6] first to the morphism m̃ : 0̄ × (Zu,vw )j
→ Im m̃ and then to its restriction µ̃ to Z̃ , we see that Z̃ is pure-dimensional. Moreover,

dim(Z̃) = dim(0̄)+ |j| + dim(Zu,vw )− dim((Z2
w)P)+ dim(1̃((Zw)P))

= dim(0̄)+ |j| + `(w)− `(u)− `(v). (59)

By the same argument, we see that Z is also pure-dimensional.
We now show that Z̃ is irreducible:
The smooth morphism m̃ : 0̄ × (Zu,vw )j → (Z2

w)P is 0̄-equivariant with respect to
the left multiplication of 0̄ on the first factor of 0̄ × (Zu,vw )j and the standard action of 0̄
on (Z2

w)P. Since (C2
w)P is a single 0̄-orbit (by the analogue of Lemma 4.7 for B replaced

by B × B), m̃−1((C2
w)P) → (C2

w)P is a locally trivial fibration in the analytic topology.
Further, since the fundamental group π1((C

2
w)P) = {1}, and of course m̃−1((C2

w)P) is
irreducible (in particular, connected), from the long exact homotopy sequence for the
fibration m̃−1((C2

w)P)→ (C2
w)P we find that all its fibers are connected. Thus, the open

subset Z̃ ∩ m̃−1((C2
w)P) is connected as the fibers and the base are connected. Hence, it is

irreducible (being smooth). Consider the closure Z̃1 := Z̃ ∩ m̃−1((C2
w)P). Then Z̃1 is an

irreducible component of Z̃ . If possible, let Z̃2 be another irreducible component of Z̃ .
Then µ̃(Z̃2) ⊂ 1̃((Zw \Cw)P). Since dim(1̃((Zw \Cw)P)) < dim(1̃((Zw)P)) and each
fiber of µ̃

|Z̃2
is of dimension at most that of any fiber of µ̃, we get dim(Z̃2) < dim(Z̃1).

This is a contradiction since Z̃ is of pure dimension. Thus, Z̃ = Z̃1, and hence Z̃ is
irreducible.

The proof of the irreducibility of Z is similar. The only extra observation we need
is that Z̃ ∩ m̃−1((C2

w)P) maps surjectively onto Z ∩m−1((C2
w)P) under f ; in particular,

Z ∩m−1((C2
w)P) is irreducible.
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The map f is clearly proper. Moreover, it is an isomorphism when restricted to the
(nonempty) open subset

Z̃ ∩
(
0̄ × ((Cu ∩ Cw)× (C

v
∩ Cw))j

)
onto its image (which is an open subset of Z). (Here we have identified the inverse image
(πuw)

−1(Cu ∩ Cw) inside Zuw with Cu ∩ Cw under the map πuw—see Theorem 6.8.)
The identity (58) follows from (59) since dim(Z) = dim(Z̃). Thus,

codimZ (0̄ × (X
u,v
w )j) = codim1̃((Xw)P)

((X2
w)P) = `(w).

Finally, Z is CM by Proposition 6.6 and Lemmas 6.12 and 7.2. This completes the
proof of the proposition. ut

Lemma 7.5. The scheme Z is normal, irreducible and CM.

Proof. By Proposition 7.4, Z is irreducible and CM.
As in the proof of Lemma 6.10, the map

µo : G×
U− Xu(S′u)→ X̄, [g, x] 7→ g · x,

beingG-equivariant, is a locally trivial fibration, where S′u := {v ∈ W : `(v) ≤ `(u)+1}.
Moreover, its fibers are clearly isomorphic to F u :=

⋃
u≤v: `(v)≤`(u)+1 Bv

−1U−/U−.
Now, since Xu is normal [KS, Proposition 3.2] and any B−-orbit in Xu(S′u) is of codi-
mension ≤ 1 in Xu, Xu(S′u) is smooth, and similarly so is F u. (Here the smoothness of
F u means that there exists a closed normal subgroup B1 of B of finite codimension such
that B1 acts freely and properly on F u and the quotient B1\F

u is a smooth scheme of
finite type over C—see Lemma 6.1.) Thus, µo is a smooth morphism, and hence so is its
restriction to the open subset B×Xu(S′u)→ X̄. Let µo(w) : B× (Xu(S′u)∩Xw)→ Xw
be the restriction of the latter to the inverse image of Xw. The map µo(w) clearly fac-
tors through a smooth morphism µ̄o(w) : B̄ × (X

u(S′u) ∩ Xw) → Xw, where B̄ is a
finite-dimensional quotient group of B. Hence, µ̄o(w)−1(Xow) = B̄ × (X

u(S′u) ∩ X
o
w) is

a smooth variety, where Xow := Xw \6w and 6w is the singular locus of Xw.
Following the same argument as in the proof of Lemma 6.12, we see that the restric-

tion of the map m : 0̄ × (Xu,vw )j → (X2
w)P to m̄ : 0̄ × ((Xu(S′u) × X

v(S′v)) ∩ X
2
w)j

→ (X2
w)P is a smooth morphism (with open image Y ), and hence so is its restricton

m̂ : m̄−1(1̃((Xw)P))→ 1̃((Xw)P). (Observe that Y does intersect 1̃((Xw)P), for other-
wise (0̄ · 1̃((Xw)P))∩ Y = ∅, which would imply that (C2

w)P ∩ Y = ∅, a contradiction.)
Thus, m̂−1(1̃((Xow)P)) is a smooth variety, which is open in Z = m−1(1̃((Xw)P)). Let
us denote the complement of 0̄ × ((Xu(S′u)× X

v(S′v)) ∩ X
2
w)j in 0̄ × (Xu,vw )j by F and

denote m̂−1(1̃((6w)P)) by F ′. Then F ′ is of codimension ≥ 2 in m̄−1(1̃((Xw)P)), and
hence in Z . Clearly, F is of codimension ≥ 2 in 0̄ × (Xu,vw )j. Also, if F is nonempty,
the restriction of the map m to F is again flat (by the same proof as that of Lemma 6.12)
with image an open subset of (X2

w)P intersecting 1̃((Xw)P). Thus, the codimension of
F ∩ Z in Z is ≥ 2. This shows that the complement of the smooth locus of Z in Z is of
codimension ≥ 2. Moreover, Z is CM by Proposition 7.4. Thus, by Serre’s criterion [H,
Chap. II, Theorem 8.22(A)], Z is normal. ut
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The following lemma and Proposition 7.7 are taken from our recent joint work with
S. Baldwin [BaK]. Proposition 7.7 is used to give a shorter proof (than our original proof)
of Theorem 8.5(b).

Lemma 7.6. Let G be a group acting on a set X and let Y ⊂ X. Consider the action
map m : G × Y → X. For x ∈ X denote the orbit of x by O(x) and the stabilizer by
Stab(x). Then Stab(x) acts on the fiber m−1(x), and Stab(x)\m−1(x) ' O(x) ∩ Y .

Proof. It is easy to check that

m−1(x) = {(g, h−1x) : h ∈ G, h−1x ∈ Y, g ∈ Stab(x) · h}.

Thus, Stab(x) acts on m−1(x) by left multiplication on the left component. Since ev-
ery element of O(x) ∩ Y is of the form h−1x for some h ∈ G, the second projection
m−1(x) → O(x) ∩ Y is surjective. This map clearly factors through the quotient to
give a map Stab(x)\m−1(x) → O(x) ∩ Y . To show that this induced map is injective,
note first that each class has a representative of the form (h, h−1x). Now, if (h1, h

−1
1 x)

and (h2, h
−1
2 x) satisfy h−1

1 x = h−1
2 x then h2h

−1
1 x = x, i.e., h2h

−1
1 ∈ Stab(x), i.e.,

h2 ∈ Stab(x) · h1, i.e., (h1, h
−1
1 x) and (h2, h

−1
2 x) belong to the same class. ut

Proposition 7.7. The scheme Z has rational singularities.

Proof. Since µ is flat and 1̃((Xw)P) has rational singularities [K, Theorem 8.2.2(c)],
by [El, Théorème 5] it is sufficient to show that the fibers of µ are disjoint unions of
irreducible varieties with rational singularities.

Let x ∈ 1̃((Cw′)P), where w′ ≤ w. Then, by Lemmas 7.6 and 4.7 (for 0B×B ), we
have Stab(x)\µ−1(x) ' (Xu ∩Cw′ ×X

v
∩Cw′)j, where Stab(x) is taken with respect to

the action of 0̄ on (X2
w)P. By [Se, Proposition 3, §2.5], the quotient map 0̄→ Stab(x)\0̄

is locally trivial in the étale topology.
Consider the pull-back diagram

µ−1(x)

��

⊆ 0̄ × (Xu,vw )j

��

Stab(x)\µ−1(x) ⊆ (Stab(x)\0̄)× (Xu,vw )j

Since the right vertical map is a locally trivial fibration in the étale topology, the left verti-
cal map is too. Now, Stab(x)\µ−1(x) ' (Xu∩Cw′×X

v
∩Cw′)j has rational singularities

by [KuS, Theorem 3.1]. Further, Stab(x) being smooth and µ−1(x) → Stab(x)\µ−1(x)

being locally trivial in the étale topology, we conclude that µ−1(x) is a disjoint union of
irreducible varieties with rational singularities by [KM, Corollary 5.11]. ut

Proposition 7.8. The scheme ∂Z is pure of codimension 1 in Z and it is CM, where the
closed subscheme ∂Z of Z is defined as

∂Z := (0̄ × ∂((Xu,vw )j))×(X2
w)P

1̃((Xw)P),

where ∂((Xu,vw )j) is defined in Lemma 6.12.
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Proof. By Lemma 6.12, the map 0̄×∂((Xu,vw )j)
m′

−→ (X2
w)P is a flat morphism. Moreover,

∂((Xu,vw )j) is pure of codimension 1 in (Xu,vw )j. Further, Imm′ = Imm if ∂Pj 6= ∅. If
∂Pj = ∅, then

Imm′ ⊃
((( ⋃

u→u′≤θ≤w

Cθ

)
×

( ⋃
v≤θ ′≤w

Cθ ′
))
∪

(( ⋃
u≤θ≤w

Cθ

)
×

( ⋃
v→v′≤θ ′≤w

Cθ ′
)))

P
.

In particular, if nonempty, Imm′ is open in (X2
w)P (since m′ is flat) and intersects

1̃((Xw)P). Thus, by [H, Chap. III, Corollary 9.6], each fiber of m′ (if nonempty) is pure
of dimension

dim(0̄)+ dim((Xu,vw )j)− dim((X2
w)P)− 1.

Again applying [H, Chap. III, Corollary 9.6], we find that ∂Z is pure of dimension

dim(0̄)+ dim((Xu,vw )j)− dim((X2
w)P)− 1+ dim(1̃((Xw)P)).

Hence, by the identity (58), ∂Z is pure of codimension 1 in Z . Further, both ((∂Xu)∩Xw)
×Xvw andXuw× ((∂X

v)∩Xw) are CM by Proposition 6.6 and Remark 6.7, and so is their
intersection. Moreover, their intersection is of pure codimension 1 in both of them. Hence,
their union is CM (e.g. by [K, Theorem A.36]), and hence so is ((∂Xu,v) ∩ X2

w)j. Also,
(Xu,vw )∂Pj and the intersection

((∂Xu,v) ∩X2
w)j ∩ (X

u,v
w )∂Pj = ((∂X

u,v) ∩X2
w)∂Pj

are CM since ∂Pj is CM. Thus, their union ∂((Xu,vw )j) is CM since the intersection
((∂Xu,v) ∩X2

w)∂Pj is CM of pure codimension 1 in both ((∂Xu,v) ∩X2
w)j and (Xu,vw )∂Pj .

Thus, ∂Z is CM by Lemma 7.2 applied to the morphism 0̄ × ∂((Xu,vw )j)→ (X2
w)P. ut

As a consequence of Proposition 7.8 and Lemma 7.3, we get the following.

Corollary 7.9. Assume that cwu,v(j) 6= 0, where cwu,v(j) is defined by the identity (19).
Then, for general γ ∈ 0̄, the fiber Nγ := π−1(γ ) ⊂ Z is CM of pure dimension, where
the morphism π : Z → 0̄ is defined at the beginning of this section. In fact, for any
γ ∈ 0̄ such that Nγ is pure of dimension

dim(Nγ ) = dim(Z)− dim(0̄) = |j| + `(w)− `(u)− `(v), (60)

Nγ is CM (and this condition is satisfied for general γ ).
Similarly, if |j| + `(w) − `(u) − `(v) > 0, then for general γ ∈ 0̄, the fiber Mγ :=

π1
−1(γ ) ⊂ ∂Z is CM of pure codimension 1 inNγ , where π1 is the restriction of the map

π to ∂Z . If |j| + `(w)− `(u)− `(v) = 0, then for general γ ∈ 0̄, the fiber Mγ is empty.
In particular, for general γ ∈ 0̄,

Ext iONγ
(ONγ (−Mγ ), ωNγ ) = 0 for all i > 0,

where ONγ (−Mγ ) denotes the ideal sheaf of Mγ in Nγ , and ωNγ is the dualizing sheaf
of Nγ .
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Proof. We first show that π is a surjective morphism under the assumption that cwu,v(j)
6= 0. By the definition,

Imπ = {γ ∈ 0̄ : γ ((Xu,vw )j) ∩ 1̃((Xw)P) 6= ∅}. (61)

Since 0̄ is connected by Lemma 4.8, by the expression of cwu,v(j) as in Lemma 4.5,
γ ((Xu,v)j)∩ 1̃((Xw)P) 6= ∅ for any γ ∈ 0̄. But γ ((Xu,v)j)∩ 1̃((Xw)P) = γ ((Xu,vw )j)∩

1̃((Xw)P) for any γ ∈ 0̄. Thus, π is surjective.
By Lemmas 7.3 and 7.5 applied to the morphism π : Z → 0̄, we see that if Nγ is

pure and

codimZ (Nγ ) = dim(0̄), (62)

then Nγ is CM.
Now the condition (62) is satisfied for γ in a dense open subset of 0̄ by [S, Chap. I,

§6.3, Theorem 1.25]. Thus, Nγ is CM for general γ .
Similarly, we prove that Mγ is CM for general γ :
We first show that π1 : ∂Z → 0̄ is surjective if |j| + `(w) − `(u) − `(v) > 0. For

if π1 were not surjective, its image would be a proper closed subset of 0̄, since π1 is a
projective morphism. Hence, for general γ ∈ 0̄, Mγ = ∅, i.e., Nγ ⊂ Z\∂Z . But Z\∂Z
is an affine scheme, and Nγ is a projective scheme of positive dimension (because of
the assumption |j| + `(w) − `(u) − `(v) > 0). This is a contradiction, and hence π1 is
surjective. Thus, if |j| + `(w) − `(u) − `(v) > 0, we deduce that for general γ ∈ 0̄, by
[S, Chap. I, §6.3, Theorem 1.25] applied to the irreducible components of ∂Z ,Mγ is pure
and

codim∂Z (Mγ ) = dim(0̄). (63)

Now, by the same argument as above, for general γ ∈ 0̄, Mγ is CM. Moreover,
since ∂Z is of pure codimension 1 in Z , we conclude (by (62)–(63)) that Mγ is of pure
codimension 1 in Nγ (for general γ ).

If |j| + `(w)− `(u)− `(v) = 0, then dim(∂Z) < dim(0̄). So, in this case, Imπ1 is a
proper closed subset of 0̄.

Since (for general γ ) Mγ is of pure codimension 1 in Nγ and both are CM,

Ext iONγ
(ONγ (−Mγ ), ωNγ ) = 0 for all i > 0.

To prove this, use the long exact Ext sequence associated to the sheaf exact sequence

0→ ONγ (−Mγ )→ ONγ → OMγ → 0

and the result that

Ext iONγ
(OMγ , ωNγ ) = 0 unless i = 1

(see [I, Proposition 11.33 and Corollary 11.43]). ut
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8. Study of Rpf∗(ωZ̃ (∂Z̃))

From now on we assume that cwu,v(j) 6= 0, where cwu,v(j) is defined by the identity (19).
We follow the notation from the big diagram in Section 7.

Lemma 8.1. The line bundle L(ρ)|Xu has a section with zero set precisely ∂Xu. In par-
ticular,

L(ρ)|Xuw ∼
∑
i

biXi for some bi > 0,

where the Xi are the irreducible components of (∂Xu) ∩Xw.

Proof. Consider the Borel–Weil isomorphism χ : L(ρ)∨
∼
−→ H 0(X̄,L(ρ)) given by

χ(f )(gB) = [g, f (geρ)], where eρ is a highest weight vector of the irreducible highest
weightGmin-moduleL(ρ)with highest weight ρ, andL(ρ)∨ is the restricted dual ofL(ρ)
[K, §8.1.21]. Then it is easy to see (using [K, Lemma 8.3.3]) that the section χ(e∗uρ)|Xu
has zero set exactly ∂Xu, where euρ is the extremal weight vector of L(ρ) with weight
uρ and e∗uρ ∈ L(ρ)

∨ is the linear form which takes value 1 on euρ and 0 on any weight
vector of L(ρ) of weight different from uρ. This proves the lemma. ut

A Q-Cartier Q-divisor D on an irreducible projective variety X is called nef (resp. big)
if D has nonnegative intersection with every irreducible curve in X (resp. we have
dim(H 0(X,OX(mD))) > cmdim(X) for some c > 0 and m � 1). If D is ample, it is
nef and big [KM, Proposition 2.61].

Let π : X → Y be a proper morphism between schemes and let D be a Q-Cartier
Q-divisor on X. Assume that X is irreducible. Then D is said to be π -nef (resp. π -big) if
D has nonnegative intersection with every irreducible curve in X contracted by π (resp.
rankπ∗OX(mD) > cmn for some c > 0 and m � 1, where n is the dimension of a
general fiber of π ).

Proposition 8.2. There exists a nef and big line bundle M on (Zu,vw )j with a section with
support precisely equal to ∂((Zu,vw )j), where ∂((Zu,vw )j) is, by definition, the inverse image
of ∂((Xu,vw )j) under the canonical map (Zu,vw )j → (Xu,vw )j induced by the T -equivariant
map πu,vw : Zu,vw := Zuw × Z

v
w → Xu,vw := Xuw × X

v
w, and ∂((Xu,vw )j) is defined in

Lemma 6.12. Moreover, M can be chosen to be the pull-back of an ample line bundle M′

on (Xu,vw )j.

Proof. Take an ample line bundle H on Pj with a section with support precisely equal
to ∂Pj. Also, let LZu,vw (ρ � ρ) be the pull-back of the line bundle L(ρ) � L(ρ) on X̄ × X̄
via the standard morphism

Zu,vw → X̄ × X̄.

Since euρ+vρLZu,vw (ρ � ρ) is a T -equivariant line bundle, we get the line bundle
L̃(−ρ �−ρ) := E(T )j×

T (euρ+vρLZu,vw (ρ �ρ))→ (Zu,vw )j over the base space (Zu,vw )j.
Now, consider the line bundle (for some large enough N > 0)

M := L̃(−ρ �−ρ)⊗ π∗(HN ),
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where π : E(T )j ×T Zu,vw → Pj is the canonical projection. Take the section θ of
L̃(−ρ � −ρ) given by [e, z] 7→ [e, 1uρ+vρ ⊗ (χ̄(e∗uρ) � χ̄(e

∗
vρ))(z)] for e ∈ E(T )j and

z ∈ Zu,vw , where 1uρ+vρ denotes the constant section of the trivial line bundle over Zu,vw
with theH -action on the fiber given by theH -weight uρ + vρ, and χ̄ � χ̄ is the pull-back
of the Borel–Weil isomorphism χ �χ : L(ρ)∨⊗L(ρ)∨ ' H 0(X̄2,L(ρ)�L(ρ)) to Zu,vw
(see proof of Lemma 8.1). Also, take any section σ of HN with zero set precisely ∂Pj,
and let σ̂ be its pull-back to (Zu,vw )j. Then the zero set of the tensor product of θ and σ̂ is
precisely ∂((Zu,vw )j) (see proof of Lemma 8.1).

The line bundle M is the pull-back of the line bundle M′
:= L̃′(−ρ�−ρ)⊗π∗1 (H

N )

on E(T )j ×T Xu,vw via the standard morphism

E(T )j ×
T Zu,vw → E(T )j ×

T Xu,vw ,

where π1 is the projection E(T )j ×T Xu,vw → Pj and L̃′(−ρ �−ρ) is the line bundle

E(T )j ×
T
(
euρ+vρ(L(ρ) � L(ρ))|Xu,vw

)
.

Then, by [KM, Proposition 1.45 and Theorems 1.37 and 1.42], M′ is ample on (Xu,vw )j
for large enoughN . Since the pull-back of an ample line bundle via a birational morphism
is nef and big [D, §1.29], M is nef and big. This proves the proposition. ut

We recall the following ‘relative Kawamata–Viehweg vanishing theorem’ valid for proper
morphisms [D, Exercise 2, p. 217]; replace Debarre’sD byD′ and takeD′ := L−D/N .

Theorem 8.3. Let π̃ : Z̃ → 0̄ be a proper surjective morphism of irreducible varieties
with Z̃ a smooth variety. Let L be a line bundle on Z̃ such that LN (−D) is π̃ -nef and
π̃ -big for a simple normal crossing divisor

D =
∑
i

aiDi, where 0 < ai < N for all i.

Then Rpπ̃∗(L⊗ ωZ̃) = 0 for all p > 0. ut

Proposition 8.4. For the morphism π̃ : Z̃ → 0̄ (see the big diagram in Section 7),

Rpπ̃∗(ωZ̃ (∂Z̃)) = 0 for all p > 0,

where ∂Z̃ := f−1(∂Z) (∂Z being defined in Proposition 7.8 taken here with the reduced
scheme structure) and ωZ̃ (∂Z̃) denotes the sheaf HomOZ̃

(OZ̃ (−∂Z̃), ωZ̃ ).
(Observe that f being a desingularization of a normal scheme Z and ∂Z being re-

duced, ∂Z̃ is a reduced scheme.)

Proof. Fix a nef and big line bundle M on (Zu,vw )j with its divisor
∑d
i=1 biZi (with

bi > 0) supported precisely in ∂((Zu,vw )j), which is the pull-back of an ample line
bundle M′ on (Xu,vw )j (Proposition 8.2). Choose an integer N > bi for all i. Consider the
line bundle L on the smooth scheme Z̃ corresponding to the reduced divisor ∂Z̃ (observe
that ∂Z̃ is a divisor of Z̃ , i.e., a pure scheme of codimension 1 in Z̃ , since it is the zero
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set of a line bundle on Z̃ by using the definition of ∂Z) and letD be the following divisor
on Z̃:

D =
∑
i

(N − bi)Z̃i,

where
Z̃i := (0̄ × Zi)×(Z2

w)P
1̃((Zw)P).

Observe that each Z̃i is a smooth irreducible divisor of Z̃ , and moreover for any collection
Z̃i1 , . . . , Z̃iq , 1 ≤ i1 < · · · < iq ≤ d, the intersection

⋂q

p=1 Z̃ip (if nonempty) is smooth

of pure codimension q in Z̃ . (To prove this, use Theorem 6.4 and follow the proofs of
Theorem 6.8, Lemmas 6.9 and 6.11 and Proposition 7.4.) In particular, Z̃i’s are distinct.
It is easy to see that

∂Z̃ =
∑

Z̃i,

and hence it is a simple normal crossing divisor. Then

LN (−D) = OZ̃

(∑
i

biZ̃i

)
' ĩ∗

(
O0̄×(Zu,vw )j

(∑
bi(0̄ × Zi)

))
.

Moreover, since
∑
biZi is a nef divisor on (Zu,vw )j and ĩ is injective, LN (−D) is π̃ -nef

[D, §1.6].
Observe further that, by definition, the line bundle LN (−D) on Z̃ is the pull-back of

the line bundle S := i∗(ε � M′) on Z via f , where ε is the trivial line bundle on 0̄.
Now, M′ being an ample line bundle on (Xu,vw )j, S is π -big. But, f being birational, the
general fibers of π̃ have the same dimension as the general fibers of π (use [S, Chap. I,
§6.3, Theorem 1.25]). Hence, LN (−D) is π̃ -big.

The map f is surjective since it is proper and birational by Proposition 7.4. Also, the
map π̃ is surjective since so is π (see the proof of Corollary 7.9). Thus, by Theorem 8.3,
the proposition follows. ut

Theorem 8.5. For the morphism f : Z̃ → Z ,

(a) Rpf∗(ωZ̃ (∂Z̃)) = 0 for all p > 0, and
(b) f∗(ωZ̃ (∂Z̃)) = ωZ (∂Z).
Proof. The map f is surjective as observed above. With the notation of the proof of
Proposition 8.4, LN (−D) is π̃ -nef and π̃ -big. Since the fibers of f are contained in the
fibers of π̃ , LN (−D) is f -nef. Moreover, since f is birational, clearly LN (−D) is f -big.
Now, applying Theorem 8.3 to the morphism f : Z̃ → Z , we get (a).

(b) First, we claim

OZ̃ (∂Z̃) 'HomOZ̃
(f ∗OZ (−∂Z),OZ̃ ), (64)

where OZ̃ (∂Z̃) :=HomOZ̃
(OZ̃ (−∂Z̃),OZ̃ ). To see this, first note that by [Stacks, Tag

01HJ, Lemma 25.4.7], since f−1(∂Z) = ∂Z̃ is the scheme-theoretic inverse image, the
natural morphism

f ∗(OZ (−∂Z))→ OZ̃ (−∂Z̃)
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is surjective. As f is a desingularization (Proposition 7.4), the kernel of this morphism is
supported on a proper closed subset of Z̃ and hence is a torsion sheaf. This implies that the
dual map OZ̃ (∂Z̃)→HomOZ̃

(f ∗(OZ (−∂Z)),OZ̃ ) is an isomorphism, proving (64).
To complete the proof of (b), we compute

f∗(ωZ̃ (∂Z̃)) = f∗(ωZ̃ ⊗HomOZ̃
(f ∗OZ (−∂Z),OZ̃ )) by (64)

= f∗HomOZ̃
(f ∗OZ (−∂Z), ωZ̃ )

=HomOZ (OZ (−∂Z), f∗ωZ̃ ) by adjunction [H, Chap. II, §5]
=HomOZ (OZ (−∂Z), ωZ ) by Proposition 7.7 and [KM, Theorem 5.10]
= ωZ (∂Z). ut

As an immediate consequence of Proposition 8.4, Theorem 8.5 and the Grothendieck
spectral sequence [J, Part I, Proposition 4.1], we get the following:

Corollary 8.6. Let π : Z → 0̄ be the morphism as in the big diagram in Section 7. Then

Rpπ∗(ωZ (∂Z)) = 0 for all p > 0.

9. Proof of Theorem 4.10(b)

By using Kashiwara’s result ξu = OXu(−∂Xu) (Theorem 10.4) and the vanishing

Tor
OȲP
1 (γ∗1̃∗O(Xw)P ,O∂(Xu,vj )) = 0 for general γ ∈ 0̄

(which can be proved by an argument similar to the proof of Theorem 4.10(a) using
Corollary 5.7), Theorem 4.10(b) is clearly equivalent to the following vanishing:

Theorem 9.1. Assume that cwu,v(j) 6= 0. For general γ ∈ 0̄,

Hp
(
X
u,v
j ∩ γ 1̃((Xw)P),O(−M̄γ )

)
= 0 for all p 6= |j| + `(w)− `(u)− `(v),

where M̄γ := Mγ−1 is the subscheme (∂(Xu,vj )) ∩ γ 1̃((Xw)P) and (as earlier)

∂(X
u,v
j ) := (∂Xu ×Xv)j ∪ (X

u
× ∂Xv)j ∪ (X

u
×Xv)∂Pj ,

and O(−M̄γ ) denotes the ideal sheaf of M̄γ in Xu,vj ∩ γ 1̃((Xw)P).

Proof. By Lemma 7.5 and Proposition 7.8, Z and ∂Z are CM and ∂Z is pure of codi-
mension 1 in Z . Thus, we get the vanishing (see the proof of Corollary 7.9)

Ext iOZ
(OZ (−∂Z), ωZ ) = 0 for all i ≥ 1. (65)

Also, by Corollary 7.9, for general γ ∈ 0̄,

Ext iON̄γ
(ON̄γ (−M̄γ ), ωN̄γ ) = 0 for all i > 0,

where N̄γ := Nγ−1 is the subscheme (Xu,vj ) ∩ γ 1̃((Xw)P).
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Hence, by the Serre duality [H, Chap. III, Theorem 7.6] applied to N̄γ and the local-
to-global Ext spectral sequence [Go, Chap. II, Théorème 7.3.3]) the theorem is equivalent
to the vanishing (for general γ ∈ 0̄)

Hp
(
N̄γ ,HomON̄γ

(ON̄γ (−M̄γ ), ωN̄γ )
)
= 0 for all p > 0, (66)

since (for general γ ∈ 0̄) N̄γ is CM and dim(N̄γ ) = |j| + `(w) − `(u) − `(v) (Corol-
lary 7.9).

For general γ ∈ 0̄,

ωZ (∂Z)|π−1(γ−1) ' ωπ−1(γ−1)(∂Z ∩ π−1(γ−1)) = ωN̄γ (M̄γ ), (67)

where ωN̄γ (M̄γ ) := HomON̄γ
(ON̄γ (−M̄γ ), ωN̄γ ). To prove the above, observe first that

by [S, Chap. I, §6.3, Theorem 1.25] and [H, Chap. III, Exercise 10.9] applied to π , there
exists an open nonempty subset 0̄o ⊂ 0̄ such that π : π−1(0̄o)→ 0̄o is a flat morphism.
(By the proof of Corollary 7.9, π is surjective.) Now, since 0̄o is smooth and Z and ∂Z
are CM, and the assertion is local in 0̄, it suffices to observe (see [I, Corollary 11.35])
that for a nonzero function θ on 0̄o, there is an isomorphism of sheaves of OZθ -modules

S/θ · S 'HomOZθ

(
OZ (−∂Z)/θ · OZ (−∂Z), ωZθ

)
,

where Zθ denotes the zero scheme of θ in Z and S :=HomOZ (OZ (−∂Z), ωZ ). Choos-
ing θ to be in a local coordinate system, we can continue and get (67).

Now, the vanishing of Rpπ∗(ωZ (∂Z)) for p > 0 (Corollary 8.6) implies the follow-
ing vanishing, for general γ ∈ 0̄:

Hp(N̄γ , ωN̄γ (M̄γ )) = 0 for all p > 0. (68)

To prove this, since Z and ∂Z are CM, 0̄o is smooth and π : π−1(0̄o) → 0̄o is flat,
observe that ωZ (∂Z) is flat over the base 0̄o:

To show this, let A = O0̄o , B = Oπ−1(0̄o)
, and M = ωZ (∂Z)|π−1(0̄o)

. By taking
stalks, we immediately reduce to showing that for an embedding of local rings A ⊂ B

such that A is regular and B is flat over A, the module M is flat over A. Now, to prove
this, let {x1, . . . , xd} be a minimal set of generators of the maximal ideal of A. Let K• =
K•(x1, . . . , xd) be the Koszul complex of the xi’s over A. Then, recall that a finitely
generated B-moduleN is flat over A iffK•⊗AN is exact except at the extreme right, i.e.,
H i(K• ⊗A N) = 0 for i < d [E, Theorem 6.8 and Corollary 17.5]. Thus, by hypothesis,
K•⊗AB is exact except at the extreme right, and hence the xi’s form aB-regular sequence
by [E, Theorem 17.6]. Now, since OZ and O∂Z are CM and ∂Z is pure of codimension 1
in Z , we see that OZ (−∂Z) is a CM OZ -module. Thus, by [I, Proposition 11.33],M is a
CM B-module of dimension equal to dim(B). Therefore, by [I, Exercise 11.36], the xi’s
form a regular sequence on the B-module M . Hence, (K• ⊗A B)⊗B M ' K• ⊗A M is
exact except at the extreme right by [E, Corollary 17.5]. This proves thatM is flat over A,
as desired.

Hence, (68) folows from the semicontinuity theorem ([H, Chap. III, Theorem 12.8
and Corollary 12.9] or [Ke, Theorem 13.1]).
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Thus, (66) (which is nothing but (68)) is established. Hence, the theorem follows, and
thus Theorem 4.10(b) is established. ut

10. Appendix (by Masaki Kashiwara): Determination of the dualizing sheaf of Xv

Let v ∈ W . Set Cv :=
⋃
y∈W, `(y)≤`(v)+1 C

y , where Cy := B−yB/B ⊂ X̄. (By definition,
Cv only depends upon `(v).) Then Cv is an open subset of X̄. Moreover, Xv ∩ Cv is a
smooth scheme, since Xv is normal [KS, Proposition 3.2] and any B−-orbit in Xv ∩ Cv

is of codimension ≤ 1. Recall from Section 3 the definition of

ξv := e−ρL(ρ)ωXv = e−ρL(−ρ)Ext`(v)OX̄
(OXv ,OX̄).

Since OXv is a CM ring [KS, Proposition 3.4], we see that ξv is a CM OXv -module. Also,
since Xv ∩ Cv is a smooth scheme, ξv|Cv is an invertible OXv |Cv -module.

For any y ∈ W , let iy : {pt} → X̄ be the morphism given by pt 7→ yxo. Then (as
H -modules)

i∗yL(λ) ' C−yλ for any character λ of H . (69)

Let πi : X̄ → X̄i be the projection, where X̄i := G/Pi , Pi being the minimal standard
parabolic subgroup containing the simple root αi for 1 ≤ i ≤ r .

Lemma 10.1. On some B−-stable neighborhood of Cv , we have a B−-equivariant iso-
morphism ξv ' OXv .

Proof. Since ξv|Cv is an invertible B−-equivariant OXv |Cv -module, it is enough to
show that i∗v ξ

v
' C as H -modules. This follows from i∗v (Ext

`(v)

OX̄
(OXv ,OX̄)) '

det(TvxoX̄/TvxoX
v) ' Cρ−vρ and i∗vL(−ρ) ' Cvρ by (69). ut

Set Av := {y ∈ W : y > v and `(y) = `(v) + 1}. The above lemma implies that, as
B−-equivariant OX̄-modules,

ξv|Cv ' OXv
(∑
y∈Av

myX
y
)∣∣∣

Cv
(70)

for some my ∈ Z. Recall that ∂Xv =
⋃
y∈Av

Xy .

Lemma 10.2. We have ξv|Cv ' OXv (−∂Xv)|Cv , where OXv (−∂Xv) ⊂ OXv is the ideal
sheaf of the reduced subscheme ∂Xv of Xv .

Proof. The proof is similar to the one of Lemma 10.1. For y ∈ Av , y is a smooth point
of Xv (since Xv ∩ Cv is smooth). Hence,

i∗y
(
Ext`(v)OX̄

(OXv ,OX̄)) ' det(TyxoX̄/TyxoX
v)

' det(TyxoX̄/TyxoX
y)⊗ det(TyxoX

v/TyxoX
y)⊗(−1)

' Cρ−yρ ⊗ det(TyxoX
v/TyxoX

y)⊗(−1).
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Thus, i∗yξ
v
' (TyxoX

v/TyxoX
y)⊗(−1) as H -modules by (69). On the other hand,

i∗y

(
OXv

(∑
z∈Av

mzX
z
))
' (TyxoX

v/TyxoX
y)⊗my as H -modules.

Hence, by (70), we have my = −1. Note that TyxoX
v/TyxoX

y is not a trivial H -module
by the next lemma. ut

Lemma 10.3. Let v, y ∈ W satisfy v < y and `(y) = `(v)+ 1. Then

TyxoX
v/TyxoX

y
' Cβ

as H -modules, where β is the positive real root such that yv−1
= sβ .

Proof. We use induction on `(y). Take a simple reflection si such that ysi < y.
(i) If vsi > v, then y = vsi . Thus, TyxoX

v/TyxoX
y
' Tyxoπ

−1
i πi(yxo), and hence

TyxoX
v/TyxoX

y
' C−yαi ' Cvαi = Cβ .

(ii) If vsi < v, then πi : Xv → X̄i is a local embedding at yxo since Cv ∪ Cy

is open in Xv , πi |Cv∪Cy is an injective map onto an open subset of πi(Xv), and
πi(X

v) = πi(X
vsi ) is normal (since Xvsi → πi(X

vsi ) is a P1-fibration and Xvsi

is normal by [KS, Proposition 3.2]). Moreover, πi(Xv) is smooth at πi(yxo) since
the B−-orbit of πi(yxo) is of codimension 1 in πi(Xv). Hence, TyxoX

v/TyxoX
y
'

Tπi (yxo)(πi(X
v))/Tπi (yxo)(πi(X

y)) ' TysixoX
vsi/TysixoX

ysi . By the induction hypoth-
esis, this is isomorphic to Cβ . ut

Let j : Cv ↪→ X̄ be the open embedding.

Theorem 10.4. For any v ∈ W , we have a B−-equivariant isomorphism

ξv ' OXv (−∂X
v).

Hence, the dualizing sheaf ωXv of Xv is T -equivariantly isomorphic to

Cρ ⊗ L(−ρ)⊗ OXv (−∂X
v).

Proof. We have a commutative diagram with exact rows

0 // OXv (−∂Xv)

��

// OXv

o
��

// O∂Xv
��

��

// 0

0 // j∗j
−1OXv (−∂Xv) // j∗j

−1OXv // j∗j
−1O∂Xv

where the middle vertical arrow is an isomorphism because Xv is normal and Xv \ Cv is
of codimension ≥ 2 in Xv , and the right vertical arrow is a monomorphism because the
closure of ∂Xv ∩ Cv coincides with ∂Xv . Hence, j∗j−1OXv (−∂Xv) ' OXv (−∂Xv). On
the other hand, since ξv is a CM OXv -module, we have

ξv ' j∗j
−1ξv ' j∗j

−1OXv (−∂X
v) ' OXv (−∂X

v),

where the second isomorphism is due to Lemma 10.2. ut
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Corollary 10.5. OXv (−∂Xv) is a CM OXv -module and O∂Xv is a CM ring.

Proof. Since ξv is a CM OXv -module, so is OXv (−∂Xv) by the above theorem.
Applying the functor HomOX̄

( • ,OX̄) to the exact sequence

0→ OXv (−∂X
v)→ OXv → O∂Xv → 0,

we obtain ExtkOX̄
(O∂Xv ,OX̄) = 0 for k 6= `(v), `(v)+1. We also have an exact sequence

0→ Ext`(v)OX̄
(O∂Xv ,OX̄)→ Ext`(v)OX̄

(OXv ,OX̄).

Since ∂Xv has codimension `(v) + 1, we have Ext`(v)OX̄
(O∂Xv ,OX̄) = 0. Hence, O∂Xv is

a CM ring. ut
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[S] Shafarevich, I. R.: Basic Algebraic Geometry 1. 3rd ed., Springer (2013)
[Si] Sierra, S.: A general homological Kleiman–Bertini theorem. Algebra Number Theory 3,

597–609 (2009) Znl 1180.14048 MR 2578891
[Stacks] The Stacks Project. http://stacks.math.columbia.edu/

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0997.14004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1896397
http://www.ams.org/mathscinet-getitem?mr=2578891
http://stacks.math.columbia.edu/

	Introduction
	Notation
	Identification of the dual of the structure sheaf basis
	Geometric identification of the T-equivariant K-theory structure constants and statements of the main results
	Study of some Ext and Tor functors and proof of Theorem 4.10(a)
	Desingularization of Richardson varieties and flatness for the -action
	Z has rational singularities
	Study of Rpf_*(_())
	Proof of Theorem 4.10(b)
	Appendix (by Masaki Kashiwara): Determination of the dualizing sheaf of Xv
	References

