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Abstract. Let X = G/B be the full flag variety associated to a symmetrizable Kac—-Moody
group G. Let T be the maximal torus of G. The T-equivariant K -theory of X has a certain natural
basis defined as the dual of the structure sheaves of the finite-dimensional Schubert varieties. We
show that under this basis, the structure constants are polynomials with nonnegative coefficients.
This result in the finite case was obtained by Anderson—Griffeth—Miller (following a conjecture by
Graham-Kumar).
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1. Introduction

Let G be any symmetrizable Kac-Moody group over C completed along the negative
roots and let G™" C G be the ‘minimal’ Kac—Moody group. Let B be the standard (posi-
tive) Borel subgroup, B~ the standard negative Borel subgroup, H = BN B~ the standard
maximal torus and W the Weyl group. Let X = G/B be the ‘thick’ flag variety (intro-
duced by Kashiwara) which contains the standard KM flag ind-variety X = G™"/B. Let
T be the quotient torus H/Z(G™™), where Z(G™™) is the center of G™". Then the action
of H on X (and X) descends to an action of 7. We denote the representation ring of T
by R(T). For any w € W, we have the Schubert cell C,, := BwB/B C X, the Schubert
variety X,, := C, C X, the opposite Schubert cell C* := B~wB/B C X, and the
opposite Schubert variety X* := C* C X. When G is a (finite-dimensional) semisimple
group, it is referred to as the finite case.

Let K;) P(X) be the T-equivariant topological K-group of the ind-variety X. Let
{¥"}ew be the ‘basis’ of K tTo P(X) given by Kostant—Kumar (Definition 3.2).

Express the product in topological K -theory K ? P(X):

Yoyt =" py,y" forp¥, e R(T). e))
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Then the following result is our main theorem (Theorem 4.13). This was conjectured
by Graham—Kumar [GK, Conjecture 3.1] in the finite case and proved in this case by
Anderson—Griffeth—Miller [AGM, Corollary 5.2].

Theorem 1.1. Foranyu,v,w € W,

e R [ RN i V)

where {a1, ..., } are the simple roots, i.e., (—1){Tt@+Ew) Py, is a polynomial in
the variables x1 = e~ %! — 1, ..., x, = e~ — 1 with nonnegative integral coefficients.

By a result of Kostant—Kumar [KK, Proposition 3.25],
K'P(X) >~ Z®r(ry KpF(X), )

where Z is considered as an R(T)-module via the evaluation at 1 and K'P(X) is the
topological (nonequivariant) K-group of X. Thus, as an immediate consequence of the
above theorem (by evaluating at 1), we obtain the following result (Corollary 4.14). It was
conjectured by A. S. Buch in the finite case and proved in this case by Brion [B].

Corollary 1.2. Foranyu,v,w € W,

(_1)€(u)+ﬁ(v)+2(w) a;v c Z+,

,U

where al’, are the structure constants of the product in K'°P(X) with respect to the basis

Y =1Q Y.

Further, Theorem 1.1 also gives the positivity for the multiplicative structure constants in
the Schubert basis for the 7-equivariant cohomology H; (X, C) with complex coefficients
as described below.

The representation ring R(7') has a decreasing filtration {R(7),},>0, where

R(T)n :={f € R(T) : mult; (f) = n},

where mult; ( f) denotes the multiplicity of the zero of f at 1.
We first recall the following result from [KK, §§2.28-2.30 and Theorem 3.13].

Theorem 1.3. There exists a decreasing filtration {Fy}n>0 of the ring K ;’ P(X) compat-
ible with the filtration of R(T) such that there is a ring isomorphism of the associated
graded ring,

B :C®zer(Ky (X)) ~ Hi(X, C).

Moreover, for any w € W we have ¥ € Fy(y) and under this isomorphism,
B™) =&v,

where YV denotes the element " (mod Fewy+1) in grg(w)(KtTOp(X)) and &V is the
(equivariant) Schubert basis of H;f (X,C) as in [K, Theorem 11.3.9].
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Express the product in H; (X):

8.8V =) hYE" forhy, e S,

w

where t is the Lie algebra of T and &, ,, is a homogeneous polynomial of degree £(u) +
£(v) — £(w). Combining Theorems 1.1 and 1.3, we obtain the following result proved by
Graham [Gr].

Theorem 1.4. Foranyu,v,w € W,
hy y € Zylay, ..., o],

ie., hﬁ’v is a homogeneous polynomial in {«y, . .., a,} of degree £(u) + £(v) — £(w) with
nonnegative integral coefficients.

We can further specialize the above theorem to obtain the positivity for the multiplicative
structure constants b, in the standard Schubert basis {¢"}, cw, obtained from special-
izing € at 0, for the singular (nonequivariant) cohomology H*(X, C), because of the
following result:

H*(X,C) ~ CQsu+) Hj(X,C), 3)

where C is considered as an S(t*)-module via evaluation at 0 [K, Proposition 11.3.7]. We
get the following corollary due to Kumar—Nori [KuN] from Theorem 1.4 by evaluating
at 0.

Corollary 1.5. Foranyu,v,w € W,
bllf,v € Z+.

The proof of Theorem 1.1 relies heavily on algebro-geometric techniques. We realize
the structure constants p,;’, from (1) as the coproduct structure constants in the structure

sheaf basis {0, }wew of the T-equivariant K-group KOT (X) of finitely supported T'-
equivariant coherent sheaves on X (Proposition 4.1). Let K g (X) denote the Grothendieck
group of T-equivariant coherent &'z-modules S. Then there is a ‘natural’ pairing (see §3)

(,): KX ® Kl (X) - R(T),

coming from the 7' -equivariant Euler—Poincaré characteristic. For any character e’ of H,
let L(2) be the G-equivariant line bundle on X associated to the character e of H (§2).
Define the T-equivariant coherent sheaf £ := e™” L(p)wx« on X, where

wxu = éaxtg;)(ﬁxu, ﬁ)‘() ® L(—2p)

is the dualizing sheaf of X*. We show that the basis {[£"]} is dual to the basis {[Ox,, [}wew
under the above pairing (Proposition 3.6).

Following [AGM], we define the ‘mixing group’ I' in Definition 4.6 and prove its
connectedness (Lemma 4.8). Then, we prove our main technical result (Theorem 4.10)
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on vanishing of some Tor sheaves as well as some cohomology vanishing. The proofs of
its two parts are given in Sections 5 and 9 respectively.

From the connectedness of I" and Theorem 4.10, we get Corollary 4.11. This corollary
allows us to easily obtain our main theorem (Theorem 1.1).

The rest of the paper is devoted to proving Theorem 4.10.

In Section 5, we prove various local Ext and Tor vanishing results crucially using the
‘Acyclicity Lemma’ of Peskine—Szpiro (Corollary 5.3). The following is one of the main
results of this section (Propositions 5.1 and 5.4).

Proposition 1.6. Foranyu,w € W,
gxté (Oxu, Ox,) =0 forall j # £(u).
X

Thus,
ﬂorf’?(é", Ox,) =0 for all j > 0.

This proposition allows us to prove the (a) part of Theorem 4.10.

We also prove the following local Tor vanishing result (Lemma 5.5 and Corollary
5.7), which is a certain cohomological analogue of the proper intersection property of X*
with X,,.

Lemma 1.7. Foranyu,w € W,
oy Oy .
ﬂorj (Oxu, Ox,) = ﬂorj (Oyxuv, Ox,) =0 forall j > 0.

In Section 6 we show that the Richardson varieties XY, := X,, N XV C X are irreducible,
normal and Cohen—Macaulay, for short CM (Proposition 6.6). Then, we construct a desin-
gularization Z, of X (Theorem 6.8). In this section, we prove that various maps appear-
ing in the big diagram in Section 7 are smooth or flat morphisms. Though not used in the
paper, we determine the dualizing sheaf of the Richardson varieties X}, (Lemma 6.14).

In Section 7, we introduce the crucial irreducible scheme Z and its desingularization
f: Z — Z. We also introduce a divisor dZ of Z and show that Z and 9 Z are CM
(Propositions 7.4 and 7.8 respectively). We further show that Z is irreducible and normal
(Lemma 7.5). We show, in fact, that Z has rational singularities (Proposition 7.7), which
is crucially used in the proof of Theorem 8.5.

In Section 8, we use the relative Kawamata—Viehweg vanishing theorem (Theo-
rem 8.3) to obtain two crucial vanishing results on the higher direct images of the du-
alizing sheaf of Z twisted by 9Z under # and f, where 92 = f~'9Z and 7 : Z->T
is the map from the big diagram in Section 7 (Proposition 8.4 and Theorem 8.5 respec-
tively). This sets the stage for the proof of our main technical Theorem 4.10(b), which is
achieved in Section 9.

Finally, we have included an appendix by M. Kashiwara where he determines the
dualizing sheaf of X".

An informed reader will notice many ideas taken from very interesting papers [B] and
[AGM] by Brion and Anderson—Griffeth—Miller respectively. However, there are several
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technical difficulties to deal with arising from the infinite-dimensional set-up, which has
required various different formulations and more involved proofs. Some of the major
differences are:

(1) In the finite case one just works with the opposite Schubert varieties X* and their
very explicit BSDH desingularizations. In our general symmetrizable Kac—Moody set-up,
we need to consider the Richardson varieties X}, and their desingularizations Z% . Our
desingularization Z¥ is not as explicit as the BSDH desingularization. Then, we need to
draw upon the result due to Kumar-Schwede [KuS] that X% has Kawamata log terminal
singularities (in particular, rational singularities) and use this result (together with a result
due to Elkik) to prove that Z has rational singularities (Proposition 7.7).

(2) Instead of considering just one flag variety in the finite case, we need to consider
the ‘thick’ flag variety and the standard ind flag variety and the pairing between them.
Moreover, the identification of the basis of K % (X) dual to the basis of KOT (X) given by
the structure sheaf of the Schubert varieties X, is more delicate.

(3) In the finite case one uses Kleiman’s transversality result for the flag variety X. In
our infinite case, to circumvent the absence of Kleiman’s transversality result, we needed
to prove various local Ext and Tor vanishing results.

We feel that some of the local Ext and Tor vanishing results and the results on the
geometry of Richardson varieties (including the construction of their desingularizations)
proved in this paper are of independent interest.

2. Notation

We take the base field to be the field C of complex numbers. By a variety, we mean an
algebraic variety over C, which is reduced but not necessarily irreducible. For a scheme X
and a closed subscheme Y, Ox (—Y) denotes the ideal sheaf of Y in X.

Let G be any symmetrizable Kac—-Moody group over C completed along the negative
roots (as opposed to completed along the positive roots as in [K, Chap. 6]), and let G™"
G be the ‘minimal’ Kac—Moody group as in [K, §7.4]. Let B be the standard (positive)
Borel subgroup, B~ the standard negative Borel subgroup, H = B N B~ the standard
maximal torus and W the Weyl group [K, Chap. 6]. Let

X =G/B
be the ‘thick’ flag variety which contains the standard KM flag ind-variety
X = G™n/B.

If G is not of finite type, then X is an infinite-dimensional nonquasi-compact scheme
[Ka, §4] and X is an ind-projective variety [K, §7.1]. The group G™" (in particular, the
maximal torus H) acts on X and X. Let T be the quotient H/Z(G™"), where Z(G™™") is
the center of G™™, (Recall that, by [K, Lemma 6.2.9(c)], Z(G™") = {h € H : ¢% (h) = 1
for all the simple roots «;}.) Then the action of H on X (and X) descends to an action
of T.
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For any w € W, we have the Schubert cell
Cy:=BwB/B CX,

the Schubert variety

the opposite Schubert cell
C":=B wB/BC X,

and the opposite Schubert variety
X¥:.=CvC X,

all endowed with the reduced subscheme structures. Then, X,, is a (finite-dimensional)
irreducible projective subvariety of X and X" is a finite-codimensional irreducible sub-
scheme of X ([K, §7.1] and [Ka, §4]). For any integral weight A (i.e., any character et
of H), we have a G-equivariant line bundle £(1) on X associated to the character e
of H. Explicitly, the character e=* of H extends uniquely to a character (still denoted
by e™*) of B since H ~ B/U, where U is the unipotent radical of B. Now, let £L(}) be
the line bundle over X = G/B associated to the principal B-bundle G — G/B via the

one-dimensional representation of B given by the character e~ .

We denote the representation ring of 7 by R(T).

Let {1, ..., -} C h* be the set of simple roots, {o)', ..., )} C b the set of simple
coroots and {s1, ..., s,} C W the corresponding simple reflections, where ) := Lie H.

Let p € h* be any integral weight satisfying
ple)y=1 foralll <i<r

When G is a finite-dimensional semisimple group, p is unique, but for a general Kac—
Moody group G, it may not be unique.
For any v < w € W, consider the Richardson variety

X' :=X"NX, CX

and its boundary

ax?

w

= (X)) N Xy,

both endowed with the reduced subvariety structures, where d X := X\ C". We also set
09Xy = Xy\Cy. (By [KuS, Proposition 5.3], X? and 9X,,, endowed with the scheme-
theoretic intersection structure, are Frobenius split in char. p > 0; in particular, they are
reduced. More generally, any scheme-theoretic intersection X,,, N --- N X, N X" N
-+ N X" is reduced by loc. cit.)
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3. Identification of the dual of the structure sheaf basis

Definition 3.1. For a quasi-compact scheme Y, an Oy-module S is called coherent if it
is finitely presented as an Oy-module and any Oy-submodule of finite type admits a finite
presentation.

A subset S C W is called an ideal if x € S and y < x imply y € S. An O3-module
§ is called coherent if Sy s is a coherent &, s-module for any finite ideal S C W, where

V'S is the quasi-compact open subset of X defined by

vS=|JwU B/B,

wes

where U™ is the unipotent part of B~. Let K g()_( ) denote the Grothendieck group of T-
equivariant coherent &'5-modules S. Observe that since the coherence condition on S is
imposed only for Sy s for finite ideals S C W, K %()_( ) can be thought of as the inverse
limit of K (T)(VS ), as S varies over the finite ideals of W [KS, §2].

Similarly, define I(OT (X) := Limit,,_, o I(OT (X,), where {X,,},>1 is the filtration of X
giving the ind-projective variety structure (i.e., X,, = Ul(w)srz BwB/B) and KOT (X,) is
the Grothendieck group of T-equivariant coherent sheaves on the projective variety X,.

We also define

KpP(X) == Inv.It. K77 (X)),
n—oo

where K ;) P(X,) is the T-equivariant topological K -group of the projective variety X,,.
Let x : K ;’ p(X,l) — K ;) p(Xn) be the involution induced from the operation which

takes a T-equivariant vector bundle to its dual. This of course induces the involution * on
top

K. (X).
T

We recall the ‘basis’ {¢/* },ew of K ;) P(X) given by Kostant—Kumar. (Actually, our " =

wfl, where T is the original ‘basis’ given in [KK, §3].)

*T
Definition 3.2. For w € W, fix a reduced decomposition o = (s;,,...,s;,) for w
(ie., w = sj,...s;, is a reduced decomposition) and let Oy : Zyn — X, be the

Bott—Samelson—-Demazure—Hansen (for short BSDH) desingularization [K, §7.1]. By
[KK, Proposition 3.35], Kg(Zm) — K?p(Zm) is an isomorphism, where K%(Zm) is
the Grothendieck group associated to the semigroup of T -equivariant algebraic vector
bundles on Z,,. (Observe that the action of H on Z,, descends to an action of T'.)
For any ¥ € K tTO P(X) and w € W, define the ‘virtual’ Euler—Poincaré characteristic
by
X1 (Xw, ¥) := X1 (Zwo, 055 (¥)) € R(T).

By [KK, Proposition 3.36], x7(X, ¥) is well defined, i.e., it does not depend upon the
particular choice of the reduced decomposition tv of w.
Now, define y* € K ;’ P(X) as the unique element satisfying

A (X, ¥¥) =8y forallv e W. )
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Such a ¥ exists and is unique [KK, Proposition 3.39]. Moreover, {¢*},cw is a ‘ba-
sis’ in the sense that any element of K ;) P(X) is uniquely written as a linear combination
of {¢"}wew with possibly infinitely many nonzero coefficients [KK, Proposition 2.20
and Remark 3.14]. Conversely, an arbitrary linear combination of ¥% is an element
of KyP(X).

Forany w e W,
[0x,] € K§ (X).
Lemma 3.3. {[Ox, 1}wew forms a basis of KOT (X) as an R(T)-module.
Proof. Apply [CG, §5.2.14 and Theorem 5.4.17]. O

For u € W, by [KS, §2], Oxu is a coherent &'3-module. In particular, 5 is a coherent
O%-module.

Consider the quasi-compact open subset V¥ := ulU~B/B C X. The following lemma
is due to Kashiwara—Shimozono [KS, Lemma 8.1].

Lemma 3.4. Any T-equivariant coherent sheaf S on V" admits a free resolution in
COhT(ﬁVu).'

0> 8, QQ0yu — -+ —> 851 Q Oypu —> Sy Oyu — S — 0,

where Sy, are finite-dimensional T-modules and Cohy (Oy«) denotes the abelian category
of T-equivariant coherent Oy«-modules. m}

Define a pairing

(.): KYX) @ KJ (X) = R(T),  (S].1 Z(—l) xr (X, For, XS, F)),

if S is a T-equivariant coherent sheaf on X and F is a T-equivariant coherent sheaf on
X supported in X, (for some n), where x7 denotes the T-equivariant Euler—Poincaré
characteristic.

Lemma 3.5. The above pairing is well defined.

Proof. By Lemma 3.4, for any u € W, there exists N (u) (depending upon S) such that

gorjfﬁ)-‘ (S, F) =0forall j > N(u) in the open set V*. Now, let j > maxgu)<n N (1),
where F has support in X,,. Then

6’_
FJor, *(S,F)=0 on [J V*
L(u)<n
and hence forjﬁX(S, F) = 0 on X, since BuB/B C uB~B/B and hence supp F C
X C U((u)<n VM‘

Of course, for any j > 0, ﬂor T (S, F) is a sheaf supported on X, and itis Ox,-co-
herent on the open set X, N V” of X, for any u € W. Thus, yor X(S F) is an
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Ox,-coherent sheaf, and hence

xr (X, For ¥ (8. F)) = xr(Xa. Jor] (S, F))
is well defined. This proves the lemma. O
By [KS, proof of Proposition 3.4], forany u € W,
@@xtg},((ﬁxu, O3) =0, Yk # ). (5)

Define the sheaf
wxu = gxtg;’(ﬁxu, 03) ® L(—2p), (©6)

which, by the analogy with the Cohen—Macaulay (for short CM) schemes of finite type,
will be called the dualizing sheaf of X".
Now, set the T-equivariant sheaf on X,

5= e P L(p)oxe = € PL(=p)Exiyy (O, O%).

By Theorem 10.4 below, £“ is the ideal sheaf of d X* in X“.
By Lemma 3.4, for any v € W, Oxuqyv admits a resolution

0_)fn_)..._)f0—>ﬁxuﬂvv—>0

by free Oyv»-modules of finite rank. Thus, the sheaf éaxtﬁj('_’)(ﬁxu, O%) restricted to V¥ is
X
given by the £(u)-th cohomology of the sheaf sequence

0« L%”omﬁg(]:n, 0%) < L%”omﬁx(]:n_l, O3) < -+ < jfomﬁg(fo, Oz) < 0.

In particular, éaxté(f')(ﬁxu, O%) restricted to V'V is Oyv-coherent, and hence so is £ as
X
an O'3-module. Hence,
‘ _
[éaxt@S;)(ﬁXu, O3)] € K%(X).

Proposition 3.6. For anyu,w € W,

([£“1, [0, 1) = Su,w-

Proof.! By definition,

(61, [0x,1) = 3 (=1 xr (X, Tor ¥ (", Ox,)),

where n is taken such that n > ¢(w). Thus, by (subsequent) Proposition 5.4,

(6“1, [0x,1) = x1(Xn, §" ®g, Ox,). (N

' We thank the referee for this shorter proof than our original proof.
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By Theorem 10.4 and Corollary 5.7, we have the sheaf exact sequence
0— & Qo Ox, — Oxu ®py Ox, — Oyxu ®oy Ox, — 0.

Thus,
X1 (Xn, 6" ®g, Ox,) = x1(Xn, Oxu) — x1(Xn, O3x1nx,,), (8)

since Oy =y Oz = Oynz. By Proposition 6.6, when nonempty, X% is an irreducible
variety and hence (9X") N Xy = (J,>,~, X}, is connected (if nonempty) since w € X7,
forallu <v < w.Ifu £ w, then X% is empty, and hence by (7)—(8),

("1, [0x,]) = 0.
So, assume that # < w. In this case, X7 is nonempty. Moreover, by [KuS, Corollary 3.2],
H'(Xy, Oxy) =0, Vi>0.
Also, by Corollary 5.7,
H (X, Opxnnx,) =0, Vi >0.

Thus, foru < w,
xr(Xn, Oxu) =1, )
and for u < w,
Xt (Xn, Opxnnx,) = 1. (10)

Hence, by (7)-(8),
("1, [Ox,1) =0 foru < w.

Finally, ([§"], [0k, 1) = 1. This proves the proposition. O
4. Geometric identification of the 7-equivariant K -theory structure constants and
statements of the main results

Express the product in topological K -theory K tTO P(X):
VARV :Zp:j),vww fOI‘p:j)’U € R(T).
w

(For fixed u, v € W, infinitely many p,’,, could be nonzero.)
Also, express the coproduct in KOT (X):

AdlOx, 1= gl 10x,1®10%,].

where A : X — X x X is the diagonal map.

Proposition 4.1. Forallu,v,w € W,

woo_ W
pu,v_qu,v'
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Proof. For w € W, fix a reduced decomposition wv = (s;;,...,s;,) for w and let
0 = 6w : Zw — Xy be the BSDH desingularization as in Definition 3.2. By [KK,
Proposition 3.39] (where 7 is the T-equivariant Euler—Poincaré characteristic),

xr @ ) = (3 pio @) = pl,. an

On the other hand,

O (" Y") =AW R YY) = AL O x ) (Y R YY)
= AR (0" Y O™ YY), (12)
where Ay : Zyw — Zyw X Zy is the diagonal map.
In the following proof, for any morphism f of schemes, we abbreviate Rf by f.
Letm : Zyy — ptandlet Ay, [O7z,] = Zu’nsm 4y v027,1R[07,] for some unique

QL‘}? o € R(T), where u < to means that u is a subword of tv. (This decomposition is due
to the fact that [0z, ]y <w is an R(T')-basis of

KL (Zw) = K} (Zw) = K7P (Zn),

where K OT (Zyv) is the Grothendieck group associated to the semigroup of T-equivariant
coherent sheaves on Zy,. (For the latter isomorphism, see [KK, Proposition 3.35].) Then

xr @@ - Y?)) = m (AL O Y ®O* YY) by (12)
= (7 X T)1(Awx (Al (0* Y BO*YY)))
= (m x T ((0*Y" BO*Y") - (Aw«[O2,1)) by the projection formula

= (7 x n);((@*w“ 2 6%y - (Z v (07,18 [ﬁzn])) for some §°, € R(T)
u,n

=Y R xr O Y (O Dxr O Y - [02,) = Y 4, (13)
u,v n(u)=u
n(o)=v

where the last equality follows since

xr @ Y" - [0z, 1) = 8u, s (14)

where p(u) denotes the Weyl group element u if the standard map Z,, — G/B has
image precisely equal to X,,. To prove (14), use [KK, Propositions 3.36, 3.39] and [K,
proof of Corollary 8.1.10]. (Actually, we need the extension of [KK, Proposition 3.36]
for nonreduced words v, but the proof of this extension is identical.)

From the identity

AwilOz,1= D GR,[02,1R1[02,],

u,0<to
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we get
AO[O7,]1 = (0 x )1 Awul Oz, 1 = D 47 002,18 6[07,]
u,n
= D> Y anlox, 1Ry, (15)
ULVI=W p(u)=u
u(v)=v]
by [K, Theorem 8.2.2(c)]. Moreover, since
AO[O2,]= AclOx, 1= g, [0x, 1810x, 1. (16)
we get (equating (15) and (16)), for any u1, vi < w,
Gy = D Ao (17)
n(u)=uy
n(v)=v;
Combining (11), (13) and (17), we get p,/, = g, This proves the proposition. O

Lemma 4.2 (due to M. Kashiwara). The R(T)-span of {[§"]1}uew inside K g()_( ) (where
we allow an arbitrary infinite sum, which makes sense as an element of K g (X)) coincides
with K9.(X).

Proof. To prove this, write [§"] as a linear combination of [@x»] by Theorem 10.4. Then

it is an upper triangular R(7')-matrix with diagonal terms equal to 1. By [KS, §2], [Oxv]
is a ‘basis’ of K%(X). This proves the lemma. ]

By Proposition 3.6, {[§"]},ew are independent over R(T) even allowing infinite sums.
Now, express the product in K g (X):

[£“]-[£"1=)_dy [§"] ford), € R(T).

Let A : X — X x X be the diagonal map. Then
(€] [6"] = A*([§" m&")).
Lemma4.3. Forallu,v,w e W,

woo_ gw
pu,v_du,v'

Proof. Forany w € W,
(A*([8" & &), [Ox,])

(6" ®E"], AxlOx, 1)
= (18" =", " plt /[0, 1@ (6,1} by Proposition 4.1

u' v
= pu by Proposition 3.6.
On the other hand,

(A™([6" ®E"). [Ox,]) = (€] [£"]. [OX,))
=d,’, by Proposition 3.6 again. O
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Fix alarge N and let
P= @YY (=dimT).
Forany j = (ji, ..., jr) € [N]", where [N] ={0, 1, ..., N}, set
P =PVt x ... x PN,
We fix an identification T ~ (C*)" throughout the paper satisfying the condition

that for any positive root «, the character e* (under the identification) is given by
z[lll @ .zﬁl’(a) for some dij(a) > 0, where (z1,...,z,) are the standard coordinates
on (C*)" . One such identification T =~ (C*)" is given by ¢ > (%! (¢), ..., €% (t)). This
will be our default choice.

Let E(T)p := (CN*1\ {0})" be the total space of the standard principal T-bundle
E(T)p — P. We can view E(T)p — P as a finite-dimensional approximation of the
classifying bundle for T. Let mx : Xp := E(T)p xT X — TP be the fibration with fiber
X = G/B associated to the principal T-bundle E(T)p — P, where we twist the standard
action of T on X via

rOx=1"x. (18)

For any T-subscheme Y C X, we denote Yp := E(T)p xT'Yy c Xp.
The following theorem follows easily by using [CG, §5.2.14] together with [CG, The-
orem 5.4.17] applied to the vector bundles (BwB/B)p — P.

Theorem 4.4. Ky(Xp) := Limit,_, o Ko((X,)p) is a free module over the ring Ko(P) =
KO(P) with basis {[Ox,)pl}wew, where Kq (resp. K 0y denotes the Grothendieck group
associated to the semigroup of coherent sheaves (resp. locally free sheaves). Thus,
Ko(Xp) has a Z-basis

(X ((Opi]) - [Ox,)p BjeINT, wews
where we view [Opj| as an element of Ko(P) = KO(P). O
Let Y := X x X. The diagonal map A : X — Y gives rise to the embedding
A:Xp— Yp=EM)p x' Y~ Xp xp Xp.
Thus, we get (denoting the projection Yp — P by mry)
AulOx, )] = Z cu Dy (Op)) - [O(x,xx,)p] € Ko(Yp) (19)

u,veW
JEINT
for some ¢, (j) € Z. Let
Pj =P/t x - x P,
AP = (P11 P2 x oo x PIy U U (P! x - oo x Pt x PIrhy,
where we interpret P~! = @. It is easy to see that, under the standard pairing on K°(P),
([Opil. [OB, (—0Py)]) = &j - (20)

Alternatively, it is a special case of [GK, Proposition 2.1 and §6.1].
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Let Y = X x X and K°(¥p) denote the Grothendieck group associated to the semi-
group of coherent &y -modules S, i.e., those &y -modules S such that S‘(Vs, XV52)p isa

coherent ﬁ(vsl XVSZ)P-module for all finite ideals Sy, S C W. Also, let ﬁ(,o X p) be the
line bundle on Yp defined as

E(T)p xT e (L(—p) B L(—p)) — Vp,

where the action of T on the line bundle e 2 (L(—p) K L(—p)) over Y is also twisted
the same way as in (18).

Lemma 4.5. With the notation as above,
cw () = (T2[0p;(—0P] - [€* WEV], AulO(x,,)p)),
where 7y : Yp — P is the projection, the coherent sheaf 57%/5” on Yp is defined as

Lip® p) ® Ext " (O pxnxxny,. Oy,
P

and the pairing (, ) : K%(Yp) ® Ko(Yp) — Z is similar to the pairing defined earlier.
Specifically,

. _ Oy
(IS1, [FD) = Y (=) x(Yp, Jor, *(S, F)),

where x is the Euler—Poincaré characteristic.

Proof. We have

(O, (—0P)] - [E" ®EV], AlO(x,,),])
= (7105, (0P (£ BE") D" €l @) T (O DIOix, xx,0, )
u' v'ew,
JelNy
=cy,(j) by Proposition 3.6 and the identity (20). o
Definition 4.6 (Mixing group). Let T act on B via the inverse conjugation, i.e.,
t-b=t""bt, teT,beB.
Consider the ind-group scheme (over P)

Bp = E(T)p x! B — P.

Note that Bp is not a principal B-bundle since there is no right action of B on Bp.
Let 'y be the group of global sections of the bundle Bp under pointwise multiplication.
(Recall that I'g can be identified with the set of regular maps f : E(T)p — B such that
fle-t)=t"1. f(e)foralle € E(T)pandt € T.) Since GL(N + 1)" acts canonically
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on Bp compatible with its action on P = (PNY, it also acts on [y via pull-back. Let '
be the semidirect product I'g x GL(N + 1)":

1-Tyg—Tp—GLN+1)" — 1.

Then I'p acts on Xp with orbits precisely equal to {(BwB/B)p}wew, Where the action
of the subgroup I'y is via the standard action of B on X. This follows from the following
lemma.

Lemma 4.7. For any e € P and any b in the fiber of Bp over e, there exists a section
y € g such that y (e) = b.

Proof. For a character A of T, let /(1) be the line bundle on IP associated to the principal
T-bundle E(T)p — P via A. For any positive real root «, let U, C U be the corre-
sponding one-parameter subgroup [K, §6.1.5(a)], where U is the unipotent radical of B.
Then Bp contains the subbundle H x & (—«). By the assumption on the identification
T ~ (C*)", each O(—a) is globally generated. Thus, I'g(e) D H x U,. Since 'y is a
group and by [K, Definition 6.2.7] the group U is generated by the subgroups {U, }, where
« runs over the positive real roots, we get the lemma. O

Lemma 4.8. I' is connected.

Proof. Tt suffices to show that I'g is connected. But I'g ~ H x ['(E(T)p x! U), where
T (E(T)p xT U) denotes the group of sections of the bundle E(T)p x! U — P. Thus,
it suffices to show that the group of sections I'(E(T)p xT U) is connected. Using the
T -equivariant contraction of U (in the analytic topology) given in [K, proof of Proposi-
tion 7.4.17], it is easy to see that the group of sections is contractible. In particular, it is
connected. O

Similarly, we define ['g« p by replacing B by B x B and T by the diagonal AT C T x T
and we abbreviate it by I". Observe that Lemmas 4.7 and 4.8 remain true (by the same
proof) for I'p replaced by I'. (For the proof of Lemma 4.7, observe that the weights of
Uy x Upg under the AT-action are «, B. Similarly, for the proof of Lemma 4.8, observe
that U x U is contractible under a 7 x T (in particular, AT )-equivariant contraction.)

Proposition 4.9. For any coherent sheaf S on P, and any u,v € W,
7 [S]- (£ mEY] = [(S) ®py (" BE")] € K (Tp),
where we abbreviate wy by w and n*(S) 1= Oy, ® ¢, S. In particular,

7O, (—B] - [§" WE'] = [ (O, (—0P)) By (€ HEV)].
Proof. By definition,

—~— . 05 —
7S] [§“®WEV] =) (=D [Tor; T (x*(S), E WE)],

i=0

Thus, it suffices to prove that

O —
For, F(n*S,E¥REY) =0, Vi>0.
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Since the question is local in the base, we can assume that I?]p >~ P x Y. Observe that,
locally on the base,

TS~ SMO; and £ NEY = OpR (' REY),

where § X 0 means S ®c Oy etc. Now, the result follows, since for algebras R and S
over a field k and an R-module M and an S-module N,

Torf™S(M®S,RRN) =0 foralli > 0. O

The following is our main technical result. The proof of its two parts are given in Sec-
tions 5 and 9 respectively.

Theorem 4.10. For generaly € I' = T'pyp, anyu,v, w € W, and j € [N],

Oy — -
(a) ﬂori p (n*(ﬁpj (—0P)) ® (" WEY), v A O(x,)p) = 0 for alli > 0, where we view
any element y € T' as an automorphism of the scheme Yp.
(b) Assume that ¢, (j) # 0, where ¢, (j) is defined by the identity (19). Then

u,v
HP (Y, 7(0p,(—0P)) ® (6 M EY) ® vAuO(x,)p) =0

forall p # |j| + €(w) — (£(u) + €(v)), where |j| := 3 ;_; ji-

Since I' is connected, we get the following result as an immediate corollary of Lemma 4.5,
Proposition 4.9 and Theorem 4.10.

Corollary 4.11. (—1)f@=tw=t@Hilew () e 7.,

Recall the definition of the structure constants p}f’v € R(T) for the product in K ;? P (X)
from the beginning of this section. The following lemma follows easily from Proposi-
tion 4.1, identity (19) and [GK, Lemma 6.2] (see also [AGM, §3]).

Lemma 4.12. For any u,v,w € W, we can choose large enough N (depending upon
u, v, w) and write (by [GK, Proposition 2.2(c) and Theorem 5.1] valid in the Kac—Moody
case as well)

Py= Y Pl = D e = 1 @1

JelNT

for some unique p,;,(j) € Z, where j = (ji, ..., jr). Then

pY LG = (=Dl (). (22)

As an immediate consequence of Corollary 4.11 and Lemma 4.12, we get the following
main theorem of this paper, which was conjectured by Graham—Kumar [GK, Conjec-
ture 3.1] in the finite case and proved in this case by Anderson—Griffeth—-Miller [AGM,
Corollary 5.2].
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Theorem 4.13. For any u, v, w € W, and any symmetrizable Kac—Moody group G, the
structure constants in K ;) P (X) satisfy

(G DR A [ RN S ) § (23)
O

Recall [KK, Proposition 3.25] that
K'P(X) = Z ®rry KpP (X), (24)

where Z is considered as an R(7)-module via evaluation at 1. Express the product in
K'"P(X) in the ‘basis’ {¢" := 1 @ ¥"}ycw:

VSRRV Za,’ﬁvw(’f fora,, € Z.
w
Then, by the isomorphism (24),

a;‘fv = plu”’v(l).

Thus, from Theorem 4.13, we immediately obtain the following result which was conjec-
tured by A. S. Buch in the finite case and proved in this case by Brion [B].

Corollary 4.14. Foranyu,v,w € W,

(_1)l(u)+€(v)+€(w) a;ﬁv c Z+.

Remark 4.15. We conjecture” that the analogue of Theorem 4.13 is true for the ‘basis’ £*
replaced by the structure sheaf ‘basis’ {¢p"* = [Oxu]},ew of K g (X). In the finite case, this
was conjectured by Griffeth—-Ram [GR] and proved in this case by Anderson—Griffeth—
Miller [AGM, Corollary 5.3]. A

For the affine Kac—-Moody group G = SLy associated to SLy, and its standard
maximal parahoric subgroup P, let X := G/P be the corresponding infinite Grassman-
nian. Then KO()E') has the structure sheaf ‘basis’ {[Ox«]},ew,;w, over Z, where W is
the (affine) Weyl group of G and W, = Sy is the Weyl group of SLy. Write, for any
u,ve W/w,,

[Oxu] - [Oxv] = Z b, ,[Ox»]  for some unique integers b, .
weW /W,

Now, the Lam—Schilling—Shimozono conjecture [LSS, Conjectures 7.20(2) and 7.21(3)]

is the following:
(_1)Z(M)+e(v)+f(w) b’lj)’v c Z+

if u, v, w are the minimal representatives in their cosets.

2 This conjecture has now been proved by Baldwin—Kumar [BaK].
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5. Study of some &xt and Jor functors and proof of Theorem 4.10(a)
Proposition 5.1. Forany j € Z and u, w € W, as T-equivariant sheaves,
O% 1ou —p -
ﬁorj (&", 0x,) ~e " L(—p) Qo (gxtﬁX (Ox«, Ox,)).
In particular, gxtéi (Oxu, Ox,) =0 forall j > L(u).
X
Proof. By definition,
£ = e P L(—p) Ext, (Oxu, O).
X
By Lemma 3.4, Oxuqy» admits a T-equivariant resolution (for any v € W)

Sn_
0> F 25 o 2 Fy o Oxunye — 0 25)

by T-equivariant free &'y»-modules of finite rank.
Since M; = é”xtjﬁ_ (Oxu, O3) = 0forall j # £(u) (see (5)), the dual complex
X

6*7 8*
0 Ff < Fr <o Fiyy < <= Fg <0 (26)

gives rise to the resolution
0 «— My = Ker(Sz‘(u)/Im 8Z(u)—l <« Ker(Sz‘(H) <« ]—'Z(u)_l o Fp <0,

where F}" := Somg,, (Fi, Oyv).

We next claim that Ker 8}* is a direct summand &'y v-submodule of ]-"]* forall j > €(u):

We prove this by downward induction on j. Since (26) has cohomology only in de-
gree £(u), if n > £(u) we have Imd>_, = F and hence Ker§;_, is a direct summand
Oyv-submodule of F¥_,. Thus, Kerd_, is a direct summand of 7, if n —2 > £(u).
Continuing, we see that Ker 82‘(‘4) is a direct summand Oyv-submodule of F, Z‘(u).

Thus, we get a projective resolution

0— Peuy = -+ = P1 = Py — Mywy) — 0,

where Py := Ker 82‘(14) and P; := ]-'Z‘(u)ﬂ. for 1 <i < £(u). Hence, restricted to the open

subset V'V, ﬂor*ﬁ X, 0 x,,) 1s the homology of the complex
0— (e7”L(=p) Pew) ®6y0 Ox,, — -+ — (e PL(=p) Po) ®p,» Ox, — 0.
Now, we show that the j-th homology of the complex

C: 0— 'P[(u) ®ﬁvv ﬁxw - ... =Py ®ﬁvv ﬁxw -0

is isomorphic to é"xtg'f)_j(ﬁxu, Ox,):
X



Positivity in 7T-equivariant K -theory of flag varieties associated to Kac—-Moody groups 2487

Since
Pi Qv Ox, ~ %On’lﬁvv (Feu)—i» Ox,) foralli > 1,

we get

H(C) = Ext T (Oxu, O,)  forall j = 2. @7

Moreover, since Py is a direct summand of F Z‘(u), we get

HAC) = Ext ! (O, Ox,). (28)
Now,

H(C) =Py ®gy, Ox,/IM(Pi ®p,, Ox,) = éxty) (Oxu, Ox,),  (29)

since Ker 8;(:4) is a direct summand of }"Z‘(u), and Ker 5;(,4) 4 =Im BE‘(M) is a direct sum-

mand of ]—'2‘(“)“.

Finally, )
Ext) (Oxe, Ox,) =0 forall j > E(u). 30)

To prove this, observe that, for j > £(u),

*

j
0 — Keré; — F; — Imé; = Kerdj,; — 0
is a split exact sequence since Ker 8;.‘ 41 1s projective. Thus,
0— KerS;-‘ ®pyw Ox, — ]-'J* Qg Ox, — (Iméj”.‘) ®p,s Ox, — 0

is exact. Moreover, Im 8;‘ —> ]-'j* T is a direct summand and hence

Ims]* ®ﬁvv ﬁXw — -F;:_] ®ﬁvv ﬁXw-

From this (30) follows.
Combining (27)-(30), we get the proposition. O

The following is a minor generalization of the ‘acyclicity lemma’ of Peskine—Szpiro [PS,
Lemme 1.8].

Lemma 5.2. Let R be a local noetherian CM domain and let
0O—->F,—>F,_1—>--—>F—>0 (%)

be a complex of finitely generated free R-modules. Fix a positive integer d > 0. Assume:

(a) some irreducible component Z of the support of M := @izl H;(F,) has codimen-
sion > d in Spec R, and
(b) F; =0 foralli > d.

Then H;(Fy) =0 foralli > 0.
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Proof. Assume, if possible, that M # 0. Let I C R be the annihilator of M and let p be
the (minimal) prime ideal containing I corresponding to Z. Then

M ®r Ry #0, 31
depth(M ®g Ry) = 0. (32)
Next observe that
depth(Fyx ®g Rp) = depth Ry, := depth'J Ry

codim(pRy) since Ry is CM
= codim(p) > d.

Now, by applying the acyclicity lemma of Peskine—Szpiro [PS, Lemme 1.8] to the
complex Fy, ®g Ry and using the identities (31), (32), we get a contradiction.
Thus, M = 0, proving the lemma. O

Corollary 5.3. Let Y be an irreducible CM variety and d > 0 a positive integer. Let

n—1 0
0gnd—gte...l g0 o
be a complex of locally free Oy-modules of finite rank satisfying:

o The support of the sheaf @; _; I 1(G*) has an irreducible component of codimension
> d inY.
e I (G*) =0forall j > d.

Then 77 (G*) = 0 forall j < d as well.

Proof. We first claim by downward induction that Ker 8/ is a direct summand of G/ for
any j > d. The proof is similar to that given in the proof of Proposition 5.1. Thus,
H*(G*) ~ H*(F*), where

Fi=¢ foralli <d, F¢=Kers?, F =0 fori>d.

Hence, we can assume that G' = 0 for all i > d. Now, we apply the last lemma to get the
result. O

Proposition 5.4. For anyu,w € W,
gngx(ﬁxu, Ox,)=0 forall j < t(u).

Thus,
ﬁor]@‘ &",0x,)=0 forall j >0.

Proof. We can of course replace X by VV (for v € W). Consider a locally Oyv-free
resolution of finite rank

0-).;;1—)./_'.”_]—)~"—)f0—)ﬁxumvv—)0.
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Then, restricted to the open set V'V, é"xt;}_ (Oxu, Ox,) is the j-th cohomology of the
X
complex

0 « Homg (Fn, Ox,) < -+ < Homg, (Fo, Ox,) < 0.
Since F;j is O';-free,
Homg (Fj, Ox,) = Homg, (Fj®p, Ox,, Ox,).
Now, the first part of the proposition follows from Corollary 5.3 applied to d = £(u)

and from Proposition 5.1, by observing that the sheaf ﬁxt{ﬁj{(ﬁxu, Ox,) has support
in X" N Xy, Xy is an irreducible CM variety [K, Theorem 8.2.2(c)], and for u < w,
codimy, (X* N X,,) = £(u) [K, Lemma 7.3.10].

The second assertion follows from the first and Proposition 5.1. O
As a consequence of Proposition 5.4, we prove Theorem 4.10(a).

Proof of Theorem 4.10(a). Since the assertion is local in P, we can assume that Yp ~
P x Y. Thus,

ﬂ*ﬁpj(—aﬂ”j) ~ ﬁpj(—apj) X 05, (33)
EREV=OpR(E"REY), (34
ﬁ(xwxxw)]?’ = ﬁﬂ) X (ﬁxw X ﬁxw)' (35)

We assert that for any Oy, ),-module S (where (Yy,)p 1= (Xy X Xy)p),

7 —
Tor; "F (n*(Op;(—0P)) ® (E* KEY), S)
Oy . _—
=~ Jor; """ (ﬁm»p R0y, (7*0p(~0P) ® (" B EY)), 8). (36)

To prove (36), from Proposition 5.4 and the isomorphisms (33)—(35), it suffices to observe
the following (where we take R = ﬁyp, S=0y,: M= n*(ﬁpj(—an)) ® (sTETEv)
and N = S).

Let R, S be commutative rings with ring homomorphism R — S, M an R-module
and N an S-module. Then N ®g (S ® g M) =~ N ®pr M. This gives rise to the following
isomorphism provided TorJR (S,M)=0forall j > 0:

Tor® (M, N) ~ Tor$ (S @& M. N). 37)
Clearly,

O — _
90"1' Yw)p (ﬁ(yw)ﬂm ®ﬁ}_’]p (n*ﬁpj(—apj) ® (%‘M X EU))’ V*A*ﬁ(xw)ﬂl’>
Oy, _ — N
~ For, " (" a(Oorare ®0y, (07O, (—0Py) ® (€7 WEM)), A,
By Lemma 4.7, the closures of I'-orbits in (Yy)p are precisely (X, X

x,y < w. By Proposition 5.4 and the isomorphism (37) (applied to R
Ox,,M =&"and N = Oy ), we get

ﬁ(xm)-

Tor{* (6x, ®g, €. 0x,) =0, Vx<w, j=1. (38)
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Further, by the identities (33)~(35) and (38), F = 0y,,), ® ¢ (7" 0, (—0P)@(E“ K EY))
is homologically transverse to the I"-orbit closure§ in (Yy,)p. Thus, applying [AGM, The-
orem 2.3] (with their G =T, X = (Yy)p, £ = AxO(x,,)p, and their F as the above F)
(a result originally due to Sierra [Si, Theorem 1.2]) we get the following identity:

O, — ~ .
FTor; "* (ﬁ(ym R0y, (7708 (—0P) ® (" W EY)), y*A*ﬁ(Xw)P) =0 foralli > 0.
(39

(Observe that even though I' is infinite-dimensional, its action on (Yy,)p factors through
the action of a finite-dimensional quotient group I" of I".)
Observe that y (A(Xy)p) C (Yy)p, and thus by (36) and (39), we get

Tor e (*(Op, (—3P)) ® (E" K EY), 1 AxOix,),) =0 foralli > 0.
This proves Theorem 4.10(a). O
Lemma 5.5. Foranyu,w € W,
yorjﬁx(ﬁxu, Ox,) =0 forall j>0.

Proof. We can of course replace X by the open set V? (for v € W) and consider the free
resolution by &'yv-modules of finite rank:

Sn—1 8o
0— Fy —> Fuo1 = ==+ — Fog = Oxunyv — 0.

Since the assertion of the lemma is local in X, we can (and do) replace V¥ by suitable
smaller open subsets in the following. By downward induction, we show that D; := Im §;
is a direct summand of F; for all i > £(u). Of course, the assertion holds for i = n. By
induction, assume that D; is a direct summand (where i > £(u)). Thus,

di
0—>Dil_,_1—>]:i—>"'—>f0—>ﬁxumvv—>0 )
is a locally free resolution, where DI.J:H is any Oyv-submodule of F;i; such that

Diy1 @ D,JZH = Fit1.
Consider the short exact sequence

0 DL, 5 F - Fi/si(DE) — 0. )
This gives rise to the exact sequence
0 — Hom g, (Fi/8i(Dis.p). Ovv) — Homg,, (Fi, Oyv)
o
— Homg,,(Dh,, Oyv) — éxty , (Fi /8:(D} ), Oyv) — 0,

where the last zero is due to the fact that F; is Oyv-free.
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From the resolution (C;) and the identity (5) (since i > £(u) by assumption), we see
that the above map &7 is surjective. Hence,

éxty  (Fi/8i(Di)), Ove) =0
and so
éxty (Fi/8i(Diy 1), Diyy) =0,

since Dij:q—l is a locally free Oyv-module.
Thus, the short exact sequence (C3) splits locally. In particular, D; = Imé; is a direct
summand locally. This completes the induction and hence we get a locally free resolution

0 = Dy = Few—1 = -+ — Fo = Oxunyr — 0. (€3)
In particular,
ﬂor]fﬁ’?(ﬁxu, Ox,) =0 forall j > £(u).

Of course, ﬂor.ﬁx (Oxu, Ox,), restricted to V¥, is the j-th homology of the chain com-
plex (of finitely generated locally free O, nyv-modules)

0— D/f(u) ®ayv Ox vy = Feuy—1 ®6yw Oxynvy = - = Fo Qg Ox,nve — 0.
(Cs)

Clearly, the support of the homology @iz | 74 (C4) is contained in X“ N X,,. As observed
in the proof of Proposition 5.4, X* N X,, is of codimension £(u) in X,,.
Thus, by Lemma 5.2 with d = £(u),

HG(Cq) =0 foralli > 0. O

Remark 5.6. As pointed out by the referee, the above lemma can also be deduced from
Proposition 5.4 by using Theorem 10.4 and the long exact sequence for Jor.

As a consequence of Lemma 5.5, we get the following generalization.

Corollary 5.7. For any finite union Y = Uf;l XV of opposite Schubert varieties, and
anyw € W,

(@) Jor! ¥ (Oy, Ox,) =0 forall j > 0.

(b) HI(X,, Oynx,) = 0 for all j > 0, where n is any positive integer such that
Xn D Xy

In particular, the lemma applies to Y = 0 X".

Proof. (a) We use double induction on the number of components k of ¥ and the dimen-
sion of Y N X4, (i.e., the largest dimension of the irreducible components of ¥ N X,; we
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declare the dimension of the empty space to be —1). If Y has one component, i.e., k = 1,
then (a) follows from Lemma 5.5. If dim(Y N X,,) = —1 (i.e., Y N Xy, is empty), then
clearly

For{¥(6y. 6x,) =0 forall j >0, (40)

So, assume that k > 2 and Y N X, is nonempty. We can assume that vy is not larger than
any v; for i > 2 (for otherwise we can drop X! from the union without changing Y).
Let Y1 := X" and Y, := |J;~, X". Then, if Y1 N X,, is nonempty, Y1 N X,, = X
properly contains Y1 N Y> N X, since v; € X fj} but v; ¢ Y N Xy. In particular, X 5}
being irreducible (see Proposition 6.6 below),

dim(Y N Xy,) > dim(Y; N Xy,) > dim(Y] N Y2 N Xy,). 41
The short exact sequence of sheaves
Oy — Oy, & Oy, — Oy,ny, > 0
yields the long exact sequence

0

X
e ﬂoerrl

O 05
(Oviny,, Ox,) — Jor; X0y, Ox,) — For; X(Oy, ® Oy,, Ox,)
ﬁ_
— ﬁorj *(Oyv,nyy, Ox,) = -+ . (42)
Now, since Y has k — 1 components, induction on the number of components gives

%rfi(ﬁyl ® Oy,. Ox,) =0 forall j > 0. (43)

Since the scheme-theoretic intersection Y1 N Y5 is reduced (see §2) and it is a finite union
of X*’s with dim(Y N X,,) > dim(¥Y1 N Y2 N X,,) (by (41)), by induction we get

Tor! ¥ (Oy,y,. Ox,) =0 forall j > 0. (44)

So, from (43)—(44) and the exact sequence (42), we get (a).

(b) We use the same induction as in (a). For k = 1, i.e., ¥ N X,, = Xy, the result is
a particular case of [KuS, Corollary 3.2]. Now, take any ¥ = Ule XV and let Y, Y, be
as in (a). By (a), we have the sheaf exact sequence

0—— Oy ®ﬁ)_( ﬁxw — (ﬁy1 D ﬁyz) ®ﬁ)_( ﬁxw — ﬁYlﬂYz ®ﬁ)_( ﬁxw —0
I | |
0 — Oynx,, —— (Oy,nx,, ® Ov,nx,,)) — Ov;nvonx, ——— 0

The corresponding long exact cohomology sequence gives

o= HITYX,, Oy,nx, ® Ov,nx,) — H' 7' (Xy, Ov,nvsnx,) — HY (X0, Ovnx,,)
— H'(Xy, Oy,nx, ® Ovynx,) — - -
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By induction,
H’ (Xu, Oyinx,, ® Ovnx,) =0, ¥j >0,  H/7'(Xu Oviopnx,) =0, Vj> 1.
Thus, from the above long exact sequence,

H/(X,, Oyrx,) =0, Vj> 1.

Write Y1 N Y, = Ule X" _ Hence, Y1 NY,N Xy = Ule X,!. Thus, if nonempty,
Y1 NY, N X, is connected as each X Z,’ contains w. This shows that

H(X,, Oy,nx, ® Ovynx,) — H(Xn, Ov,nvanx,)

is surjective, which gives the vanishing of H!(X,,, Oyn x,,). This proves (b). ]

As a consequence of Lemma 5.5, we get the following.

Lemma 5.8. Foranyu,w € W and any j > 0,
Extly (Oxunx,. Ox,) =0 for j # L(u). 45)

Moreover, ) .
Exty, (Oxv, 0%) ®py O, = Exty (Oxunx,. Ox,,). (46)

Proof. Again we can replace X by VV (for v € W). Consider an &yv-locally free resolu-
tion (cf. the proof of Lemma 5.5, specifically (C3)) (possibly restricted to an open cover
of V)

0— Fey = -+ = Fo— Oxunyv — 0.

By Lemma 5.5, the following is a locally free Oy, nyv-module resolution:

00— ]:g(u) ®@‘)Vu ﬁXwﬂV” — .= F ®ﬁvv ﬁxwmvv — Oxunyv ®ﬁvv ﬁxwmvv — 0.
47)

Observe that Oxunyv ®g,,, Ox,nvv = Oxunx,nvv, being the definition of the scheme-

theoretic intersection. Thus, e?xtjﬁxw (Oxunx,,, Ox, ), restricted to the open set X, N VY,
is the j-th cohomology of the cochain complex

0 « Homgy . (Few) @y Ox,nve, Ox,nve) < -+
« Homgy . (Fo ey, Ox,nvy, Ox,nvv) < 0.

Since &x té}(w (Oxunx,, Ox, ) has supportin X*NX,, and X*NX,, has codimension £(u)

in X,, (see the proof of Proposition 5.4), by Lemma 5.2 we get é”xtégx (Oxunx,, Ox,)
= 0 for any j # €(u). This proves (45).
For any i,

Homg, . (Fi®e,, Ox,nvv, Ox,nvv) = Homg,, (Fi, Ove)®g,, Ox,nve.  (43)
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Further, by the identity (5),

0« &Ext " (Oxunye, Ovv) < Homg,, (Few), Oyv) < -
<« Homg,, (Fo, Oyv) <0

is a locally free Oyv-module resolution of zg’xtgvug (Oxunyv, Oyv). Hence, by the resolu-
tion (47) and the isomorphism (48), we get

. A .
gx’g;:, !(Oxunx,, Ox,) = Jor; X(Cg)ﬂeﬁ(g)(ﬁxu, 03),0x,) forall j>0. (49)

Thus,
gxtggi (Oxunx,. Ox,) ~ é"xtfﬁ(;)(ﬁxu, 03) ®a, Ox,.
This proves (46), by using the identity (5) and (45). m]

Lemma5.9. Foranyv < wandu € W,

Tor{ ¥ (Oxunx, . Ox,) =0 foralli > 0.

Proof. We can replace X by V¢ (for € W). Take an O-locally free resolution (see
(C3) in the proof of Lemma 5.5)

0—)./—"@(,4) — --'—>.7:1 —).7:0—) ﬁxu — 0.
By Lemma 5.5,
0 — Few g7 Ox, =+ — Fo Qpy Ox, — Oxunx, — 0 (S

is an Oy -locally free resolution of Ox«nyx, . Thus, by base extension [L, Chap. XVI, §3],
9oriﬁx"’ (Oxunx,,, Ox,) is the i-th homology of the complex

0 — Few ®@’)-( Ox, — - — Fo ®ﬁf( Ox, — 0.

From the exactness of (S;) for w replaced by v, we get the lemma. O

6. Desingularization of Richardson varieties and flatness for the I"-action

Let S C W be a finite ideal and, as in Definition 3.1, let V* be the corresponding B~ -
stable open subset | J,, g (w B~ - x,) of X, where x, is the base point 1.B of X. Itis a
B~ -stable subset, since by [KS, §2],

vS = U B wx,.
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Lemma 6.1. For any v € W and any finite ideal S C W containing v, there exists a
closed normal subgroup N of B~ of finite codimension such that the quotient Y (S) :=
NG\X"(S) acquires a canonical structure of a B™-scheme of finite type over the base
field C under the left multiplication action of B~ on YV(S), so that the quotient q :
XY(8) — Y¥(S) is a principal Ng -bundle, where X" (S) := X" N V5. Of course, the
map q is B~ -equivariant.

Proof. For any u € W, the subgroup U, := U~ NuU ~u~! acts freely and transitively
on C* via left multiplication, since C* = (U‘ﬂuU‘u‘l)uB/B. Thus, Ug = ﬂues U,
acts freely on VS, Clearly, wB™ - x,, for any w € S, is stable under U g5 and further each
orbit of Uy in the open subset wB™ - x,, of X is closed in wB™ - x, (use [K, Lemma
6.1.3]). Thus, each orbit of Uy is closed in their union VS, In fact, U ¢ acts properly
on V5. Hence, U ¢ acts freely and properly on XV(S). Take any closed normal subgroup
Ng of B~ of finite codimension contained in Ug . Then YV(S) := N \X"(S) acquires
a canonical structure of a B~ -scheme of finite type over C under the left multiplication
action of B~ on Y"(S), so that the quotient map ¢ : X"(S) — YU(S) is a principal
N -bundle. O

Remark 6.2. (a) The above lemma allows us to define various local properties of X". In
particular, a point x € XV is called normal (resp. CM) if the corresponding point in the
quotient YV(S) has that property, where S is a finite ideal such that x € X"(S). Clearly,
the property does not depend upon the choice of S and Ny .

(b) It is possible that the scheme YV(S) is not separated. However, as observed by
M. Kashiwara, we can choose our closed normal subgroup N of B~ of finite codimen-
sion contained in Uy appropriately so that YV (S) is indeed separated. In fact, we give the
following more general result due to him.

Letk be a field and let {S) },ca be a filtrant projective system of quasi-compact k-schemes
locally of finite type over k . Assume that f3 , : S, — S, is an affine morphism. Set
S =Inv.lt., S, andlet p, : S — S, be the canonical projection.

Lemma 6.3 (due to M. Kashiwara). If S is separated, then S, is separated for some ).

Proof. Take a smallest element A, € A. It is enough to show that for a pair of affine open
subsets U, V,, of S, U, NV, — U, x Vj is a closed embedding for some A, where

Uy = £, (U,) and Vy = £, (Vo).
Note that U, N Vj, is quasi-compact and of finite type over k. Set U = p;ol(Uo) and

V = p;nl (V,). Since S is separated, UNV — U x V is a closed embedding. In particular,
U NV is affine.

We have a projective system of schemes {U; NV, },ea and {U,},cp, and a projective
system of morphisms {U; NV, — Uj}iea- Since Inv.1t., (U, NV,) =~ UNV is affine, the
morphism Inv.It., (Uy N'Vy) — Inv.It., (U,) is an affine morphism. Hence, Uy, NV, —
U,., is an affine morphism for some A; by [GD, Théoreme 8.10.5]. Hence, U;, N Vj,
is affine. Now, by the assumption, Os(U) ® Os(V) — Os(U N V) is surjective. Since
U, NV, = U, is of finite type, U NV — U is of finite type. Hence, Os(U N V) is an
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Os(U)-algebra of finite type. Since Os(U)® Os(V) ~ Dir.lt.; (Os(U) ® s, (V,.)), there
exists Ao — A such that O5(U) ® ﬁgkz(sz) — Os(U N V) is surjective. This means
that U NV — U x Vj, is a closed embedding. Now, consider the projective system

UAQVA—> U)L X VA2~

Its projective limit with respect to A is isomorphic to U NV — U x Vy,, which is a closed
embedding. Hence, again by loc. cit., Uy N V,,; — U, x V), is a closed embedding for
some A3 — Az. Then Uy, N Vi, — Uy, x Vy, is a closed embedding. m]

Theorem 6.4. For any v € W and any finite ideal S C W containing v, there exists a
smooth irreducible B~ -scheme Z"(S) and a projective B~ -equivariant morphism

g ZU(S) - XV(S)
satisfying the following conditions:

(a) The restriction (Jrg)_l(C V) — CV is an isomorphism.

(b) 9ZY(S) = (JTg)_1 (0XV(S)) is a divisor with simple normal crossings, where X" (S)
=X"NVSand 3XV(S) := 3XV) N V5.

(Here smoothness of Z"(S) means that there exists a closed subgroup N¢ of B~ of finite

codimension which acts freely and properly on ZV(S), such that the quotient is a smooth
scheme of finite type over C.)

Proof. Observe that the action of B~ on Y?(S) factors through the action of the finite-
dimensional algebraic group B~ /Ny, where Y(S) is as defined in Lemma 6.1. Now,
take a B~ -equivariant desingularization 6 : Z'(S) — YV(S) such that @ is a projective
morphism, G_I(NS_\C”) — Ng\C" is an isomorphism and 9_1(NS_\(8X“(S))) is a
divisor with simple normal crossings [Ko, §3.3)° (see also [Bi], [RY]). Now, taking the
fiber product ZV(S) = ZV(S) xyv(s) XV (S) clearly proves the theorem. ]

For w € W, take the ideal S, = {# < w}. Then, by [K, Lemma 7.1.22(b)],
X'Sw)NXy =X},
Lemma 6.5. The map
pw U™ X Zy— X, (8,2 g 0u(2),

is a smooth morphism, where 6, : Z,, — X,, is the B-equivariant BSDH desingu-
larization corresponding to a fixed reduced decomposition w = s;, ...s;, (see proof of
Proposition 4.1).

Proof. Consider the map

fw:GxBZy = X, gzl g6y (2).

3 1 thank Zinovy Reichstein for this reference.
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Because of G-equivariance, it is a locally trivial fibration. Moreover, it has smooth fibers
of finite type over C (isomorphic to Z, -1 for the decomposition w!
To see this, let Z {U be the fiber product

= Si, -- .Sil)I

y/—

Then we have the fiber diagram
Gx8z, ——Gxb z,
IQUJ D l_l’w
G——X

In particular, the fibers of fi,, are isomorphic to the fibers of [i,,. Now, it is easy to see
that the map

Z/

w1

- Gx% 7, Z—10,@E) i)

gives an isomorphism of Z,,-1 with the fiber of fi,, over 1, wherei : Z! | — Z,, is the

isomorphism induced by the map (py, ..., p1) — (pf], ey pn’l).
In particular, fi, is a smooth morphism, and hence so is its restriction to the open
subset U™ x Z,,. ]

Proposition 6.6. For any symmetrizable Kac—Moody group G and any v < w € W, the
Richardson variety X, := X, N XV C X is irreducible, normal and CM (and of course
of finite type over C since so is Xy,). Moreover, C,, N CV is an open dense subset of X,

Proof. Consider the multiplication map
pL:GxBXw—>}_(, [g,x] — gx.

Then, p being G-equivariant, it is a fibration. Consider the pull-back fibration

Fr et 4G xBx,

ook

XVe———X

where i is the inclusion map.
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Also, consider the projection map
7:6Gx8X,—> X, [g x]+ gB.

Let 7 be the restriction ## := 7 oi : FY — X. Observe that since i is B~ -equivariant (and
W is G-equivariant), iis B~ -equivariant, and hence so is 7. In particular, 7 is a fibration
over the open cell B"B/B C X. Moreover, since 7 is B~ -equivariant (in particular,
U~ -equivariant) and U~ acts transitively on B~ B/B with trivial isotropy, 7 is a trivial
fibration restricted to B~ B/B.

Now, by [KS, Propositions 3.2, 3.4], X" is normal and CM (and of course irre-
ducible). Also, X,,-1 is normal, irreducible and CM [K, Theorem 8.2.2]. Thus, i be-
ing a fibration with fiber X, -1 (as can be seen by considering the embedding X, -1 <
G x5B )N(w, gB — |g, g*]], where )?w is the inverse image of X,, in G), F is irre-
ducible, normal and CM, and hence so is its open subset 7 ~! (B~ B/B). But 7 is a trivial
fibration restricted to B~ B/ B with fiber over 1 - B equal to X, = X,, N X". Thus, X}, is
irreducible, normal and CM under the scheme-theoretic intersection. Moreover, since X,
is Frobenius split in char. p > 0 [KuS, Proposition 5.3], we conclude that it is reduced.

Clearly, C,, N C" is an open subset of X},. So, to prove that C,, NC" is dense in X, it
suffices to show that it is nonempty, which follows from [K, proof of Lemma 7.3.10]. O

Remark 6.7. By the same proof as above, applying Corollary 10.5, we see that X, N9 X"
is CM.

Theorem 6.8. For any v < w, consider the fiber product
Z'(Sw) Xx Zy,
where Z,, is the BSDH (B-equivariant) desingularization of X, (corresponding to a
fixed reduced decomposition w = s;, ...s;, of w) and ngw 1 ZV(Syw) = XU(Sy) is a
B~ -equivariant desingularization of X"(Sy) as in Theorem 6.4. Then Z°(Sy) X5 Zy
is a smooth projective irreducible T -variety (of finite type over C) with a canonical T -
equivariant morphism
Ty ZY(Sw) X5 Zuy — X,

Moreover, ), is a T-equivariant desingularization which is an isomorphism restricted to
the inverse image of the dense open subset C¥ N Cy, of X},. From now on, we abbreviate

Zy =7"Sy) X5 Zy.
Proof. Consider the commutative diagram

Z(Syw) X5 Zy — X"(Sw) x5z Xuw

N XU(Sw) N Xy

X
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where the horizontal map is the fiber product of the two desingularizations, and 7, is the
horizontal map under the above identification of XV (S,,) x 3y X, with X! . Clearly, ,
T -equivariant and it is an isomorphism restricted to the inverse image of the dense open
subset C¥ N Cy, of X} In particular, i) is birational.

Define E7, as the fiber product

El —"" s ZV(Sy)

U™ X Zy —2 o X

where ji,, is as in Lemma 6.5. Since ji,, is a smooth morphism by Lemma 6.5, so is /1%
But ZV(Sy) is a smooth scheme and hence so is E;,. Now, since both U™ x Z;, and
Z"(Sy) are U~ -schemes (with U~ acting on U~ x Z,, via left multiplication on the first
factor) and the morphisms 7y and w,, are U™ -equivariant, E}, is a U~ -scheme (and f,,
is U ™ -equivariant). Consider the composite morphism

" U™ X Zy 25U,

where 1 is the projection on the first factor. It is U ~-equivariant with respect to left
multiplication on U . Let F be the fiber of 711 o f} over 1. Define the isomorphism

E”<—U x FF

N A

0(g.x)=g-x, 07'(y)= ((m o ), (Tio faN™'y).
Since E} is a smooth scheme, so is IF. But
F=2,.

Now, gw is a projective morphism onto XV (S,,), and hence gw is a projective mor-
phism considered as a map ZV(S,) — VSuw (since XV(Sy) C VSv is closed). Also, U
has its image inside V5, since BuB/B C uB~B/B forany u € W.

Thus, f,) is a projective morphism, and hence

(7N x Zy) = 7Y,

is a projective variety.

Now, as observed by D. Anderson and independently by M. Kashiwara, Z!, is irre-
ducible:

Since ZV(Sy) — XV(Sy) is a proper desingularization, all its fibers are connected,
and hence so are all the nonempty fibers of f,). Now, ,u;l(Im ng’w) = U~ x Y, where
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Y C Z, is the closed subvariety defined as the inverse image of the Richardson vari-
ety X}, under the BSDH desingularization 8,, : Z,, — X,,. Since X}, is irreducible, 6, is
proper, and all the fibers of 8,, are connected, ¥ = 6,; 1 (X)) is connected and hence so is
o, (Im gw). Since the pull-back of a proper morphism is proper [H, Chap. II, Corollary
4.8], the surjective morphism f,) : E;) — U~ x Y is proper. Now, as U~ x Y is con-
nected and all the fibers of f,) over U™ x Y are nonempty and connected, we see that E,
is connected, and hence so is F. Thus, [ being smooth, it is irreducible. This proves the
theorem. O

The action of B on Z,, factors through the action of a finite-dimensional quotient group
B = By, containing the maximal torus H. Let U be the image of U in B.

Lemma 6.9. For any u < w, the map 1 : U x Zy, = Zy is a smooth morphism, and
hence so is B x ZY, — Z,,, where (b,z) — b -m(z) forb € B and z € Z,. (Here
w1 Z4 — Zy, is the canonical projection map.)

Proof. First of all, the map
WGP 248y > X, (.2l gmé (2),

being G-equivariant, is a locally trivial fibration. (It is trivial over the open subset U™
Cc X))
We next claim that the following diagram is a Cartesian diagram:

U x Z4 ——— U x Z“(Sy)

I O lﬁ’ )

Ty ——— 3 X
where w(u,z) =u -m(z) and (' (u,z) = u - ngw (z). Define
0:Ux Zy, — (UxZ"(Sw) Xz Zw, (u,2) = ((u, 71(2)), u - 72(2)),
where my : Zl) — Z,, and my : Z4 — Z"(S,,) are the canonical morphisms. Also define
0" (U x Z"(Sw) X5 Zw — U x Zy,  ((u,21),22) — (u, (z1, u'2)).

Clearly 6 and 0’ are inverses to each other and hence 6 is an isomorphism. Thus, (D) is a
Cartesian diagram.
Now, consider the pull-back diagram:

E—2 G x8 Z%S,)
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Since pu’ is a locally trivial fibration, so is the map B. Moreover, since (D) is a Carte-
sian diagram, a1 (U x Z*(S,)) ~ U x Zy, and By sz« = p. Thus, the differential of u
is surjective at the Zariski tangent spaces.

Since the morphism w : U x Z} — Z,, factors through a finite-dimensional quotient
iU x Z4 — Z,, the differential of [t continues to be surjective at the Zariski tangent
spaces. Since U, Z% and Z,, are smooth varieties, we see that [t : U x Zh — Zyisa
smooth morphism [H, Chap. III, Proposition 10.4].

To prove that the map B x Z“ — Z,, is a smooth morphism, it suffices to observe
that H x Zy — Zy, (h,z) — h -z ,is a smooth morphism. This proves the lemma. O

Lemma 6.10. The map B x X!t — Xy, (b, x) — b-x, is a flat morphism for any u < w.

Proof. The map
w:GxY X“S,) - X, [g.x]r g-x,

being G-equivariant, is a fibration. In particular, it is a flat map, and hence its restriction
(to an open subset) i/ : B x X"“(S,) — X is a flat map. Now, WX, = B x Xu.
Thus, u' : B x X4 — X, is a flat map. Now, since B x X} — B x X} is a locally
trivial fibration (in particular, faithfully flat), the map BxX ¥ — Xy is flat [M, Chap. 3,
§7]. This proves the lemma. O

The canonical action of I' = I'gy g on (Z 5))[@ descends to an action of a finite-dimensional
quotient group I' = T'y,;:

I - =TI, —»GLWN+1)",
where (Zi)]p and I" are as in Section 4. In fact, we can (and do) take
=Ty xGL(N+1)",

where T is the group of global sections of the bundle E(T)p xT B> — P, where B = B,,
is defined just above Lemma 6.9.

Lemma 6.11. Foranyj= (ji,..., jr) € [N] andu,v < w, the map
i T ox (Z%Y)5 — (Z2)p

is a smooth morphism, where Z,;* .= Z} x Z, under the diagonal action of T, (Z;");
is the inverse image of Pj under the map E(T)p xT Z40 — P, andm(y,x) =y -m(x).
(Here my @ (Zy")j — (Zi)[@ is the map induced from the canonical projection p
Z4 % ZV — Z2))

Proof. Consider the following commutative diagram, where both the right horizontal
maps are fibrations with leftmost spaces as fibers:

Tp x Zv —— T x (Z%?); — GL(N + 1)’ x P

L

Z— s (Z2)p——— P =PV
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Here m’ is the restriction of 7, and m” is the restriction of the standard map
GL(N +1)" x P — P induced from the action of GL(N + 1) on PV . Thus, m’ takes (y, z)
to ¥ (%) - p(z), where * is the base point in P. Clearly, m” is a smooth morphism since it is
GL(N + 1)"-equivariant and GL(N + 1)" acts transitively on . We next claim that m” is
a smooth morphism: By the analogue of Lemma 4.7 for I'p replaced by I' = '« p (see
the remark following Lemma 4.8), it suffices to show that

B*x 7% — 72
is a smooth morphism, which follows from Lemma 6.9 asserting that B x Zh — Zy is

a smooth morphism. Since m’ and m” are smooth morphisms, so is 7z by [H, Chap. III,
Proposition 10.4]. O

Lemma 6.12. Let u,v < w. Th_e map m : I x (Xuv)j — (Xg))]p is flat, where m is
defined similarly to the map m : T" x (Z},;")j — (Zi)]}) in Lemma 6.11.
Similarly, its restrictionm’ : T x (X)) — (X%))[p is flat, where X'V := X4 x X2,

(X)) = (OX™Y) N (X)) U (X o,
(X Z;")g]pj is the inverse image of 0Pj under the standard quotient map E(T)p <xT x uv
— P, and 0 X"V := ((0X") x XV) U (X" x (aX")).

Proof. Consider the following diagram where both the right horizontal maps are locally
trivial fibrations with leftmost spaces as fibers:

Fp x X4V —— T x (X4V)j — GL(N + 1)" x P

X2 ——— (X2 )p——— P =PV

Since the two horizontal maps are fibrations and m” is a smooth morphism (see proof
of Lemma 6.11), to prove that m is flat, it suffices to show that m’ : Ty x XY — Xi is
a flat morphism. By the analogue of Lemma 4.7 for I', it suffices to show that

(B%) x X — Xi

is a flat morphism, which follows from Lemma 6.10.

Observe first that, by the same proof as that of Lemma 6.10, the morphism
B% x ((3X*V) ﬂXg)) — Xg) is flat. Now, to prove that the map I" x (X)) — (Xl%))[p
is flat, observe that (by the same proof as that of the first part) it is flat when restricted
to the components 'y := T' x ((dX*?) N X2)jand I, := T x (X1Y)ap; and also to
I'y N T'y. Thus, it is flat on 'y U I'p, since for an affine scheme Y = Y U Y;, with closed
subschemes Y1, Y2, and a morphism f : ¥ — X of schemes, the sequence

0 — k[Y] = k[Y1]® k[Y2] = k[Y1NY] — 0

is exact as a sequence of k[ X ]-modules. ]

The following two lemmas are not used in the paper. However, we have included them
for their potential usefulness. The first is used in the proof of the second.
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Lemma 6.13. Foranyu < w,
Oxu(=3X") ®¢g, Ox,(—0Xy) = Oxu (—((0X1) U(X" N0Xy))),
where recall that 9 X! := (0 X")NX,, taken as the scheme-theoretic intersection inside X.
Proof. First of all,
0 — Oxu(-3X") ®g, Ox, — Ox«®g, Ox, = Oxy — Oyxu — 0

is exact since (by Corollary 5.7)

Tor ¥ (Gyxu. Ox,) = 0. (50)

Thus,
Oxu(—=0X") ®¢, Ox, =~ Oxy(—0X,). (51)

Similarly,

0— Oxu(—0X") ®ﬁ).( Ox,(—0Xy) = Oxu (—0X") ®@’)—( Ox,
— Oxu(—30X") ®¢g, Osx,, > 0 (52)

is exact since o
ﬂorl ¥(Oxu(—0X"), Oyx,) = 0. (53)

To prove (53), observe that, by a proof similar to that of Corollary 5.7,

For! ¥ (Oxs, O3x,) =0 and  Tor! *(Gyxe, O3x,) =0, forall j > 0. (54)

Now, (51), (52) and (54) together prove the lemma. ]
Lemma 6.14. Let u < w. As T-equivariant sheaves,

wxu ~ Oxu (—((0X5) U (X" N3IXy))),
where X* N 3(Xy,) is taken as the scheme-theoretic intersection inside X.

Proof. Since X} is CM by Proposition 6.6 (in particular, so is X,,) and the codimension
of X} in X, is £(u), the dualizing sheaf satisfies

wxy = Exty!) (Oxy. 0x,) (55)
(see [E, Theorem 21.15]). By the same proof as that of Lemma 5.8,
éaﬂg;i (Oxu, wx,,) =~ éaxfg;)(ﬁm, 03) ®oy wx,,- (56)
By [GK, Proposition 2.2], as T-equivariant sheaves,
wa = e_pl:(_lo) ® ﬁxw(_BXW)' (57)

(Even though in [GK] we assume that G is of finite type, the same proof works for a
general Kac—-Moody group.) Thus, the lemma follows by combining the isomorphisms
(55)—(57) with Theorem 10.4 (due to Kashiwara) and Lemma 6.13. ]
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7. Z has rational singularities

Recall the definition of I’ and PPj and the embedding A from Section 4. Fix u,v < w
and j. Also recall the definition of the quotient group I' = I', of I" and the map m from
Lemma 6.11 and the map m from Lemma 6.12.

In the following commutative diagram, Z is defined as the fiber product (T x (Z%V) i)
X (22)p A((Zy)p), and Z is defined as the fiber product (I" x (X5 X (X2)p A((Xw)p).

In particular, both Z, Z are schemes of finite type over C. The map f is the restriction of
¢ to Z (via i) with image inside Z. The maps 7 and 7 are obtained from the projections
to the I"'-factor via the maps i and i respectively.

- i -
2:7 —>(smooth) A((%w)l?)
i O
u,vy, i 2
I x (Zw )‘I (smooth) (Zw)P
f 0 B
a u,vy, m 2
P x (X5 g~ Xue
i O
Z ——— A(Xu)P)

(flat)

Lemma 7.1. Pic(D) is trivial.

Proof. First of all, by the definition given above Lemma 6.11, T is the semidirect product
of GL(N + 1)" with Ty = T(E(T)p xT B%) ~ H? x T(E(T)p xT U?).

Since U? is T-isomorphic to its Lie algebra, I'(E(T)p xT U?) is an affine space.
Thus, as a variety, I' (which is isomorphic to GL(N 4+ 1) x H2 x T'(E(T)p xI U?)) is
an open subset of an affine space AV . In particular, any prime divisor of I" extends to a
prime divisor of A", and thus its ideal is principal. Hence, Pic(I") = {1}. ]

The following result is a slight variant of [FP, Lemma, p. 108].

Lemma 7.2. Let f : W — X be a flat morphism from a pure-dimensional CM scheme W
of finite type over C to a CM irreducible variety X, and let Y be a closed CM subscheme
of X of pure codimension d. Set Z := f~Y(Y). If codimz(W) > d, then equality holds
and Z is CM.

Proof (due to N. Mohan Kumar). The assertion and the assumptions of the lemma are
clearly local, so we have a local map A — B of local rings with B flat over A. If
P C A is a prime ideal of codimension d with PB of pure codimension d, we only
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need to check that B/P B is CM. But A/P is CM, so we can pick a regular sequence
{ai,...,aq} mod P. By flatness of f, it remains a regular sequence in B/ P B. O

We also need the original [FP, Lemma, p. 108].

Lemma 7.3. Let f : W — X be a morphism from a pure-dimensional CM scheme W of
finite type over C to a smooth irreducible variety X, and let Y be a closed CM subscheme
of X of pure codimension d. Set Z = f~1(Y). If codimz(W) > d, then equality holds
and Z is CM.

Proposition 7.4. The schemes Z and Z are irreducible and the map f : Z > Zisa
proper birational map. Thus, Z is a desingularization of Z. Moreover, Z is CM with

dim(2) = |j| + €(w) — £(u) — £(v) + dim(T"), (58)

where |j| = Zi ji fOrj = (jlv V.IV)

Proof. We first show that Z and Z are pure-dimensional.

Since m is a smooth (in particular, flat) morphism, Im 7 is an open subset of (Zi)p
[H Chap. III, Exercise 9.1]. Moreover, clearly Imm O (Cj, 2)p, thus Im7u intersects
A((Zy)p). Applying [H, Chap. III, Corollary 9.6] first to the morphism 7 : T x (Z% Y)j

— Ims and then to its restriction i to Z, we see that Z is pure-dimensional. Moreover,

dim(2) = dim(T) + [j| + dim(Z%") — dim((Z2)p) + dim(A((Z)p))
= dim(") + [j| + £(w) — L(u) — £(v). (59)

By the same argument, we see that Z is also pure-dimensional.

We now show that Z is irreducible:

The smooth morphlsm mo T ox (Zy"y — (Z2 p is T- -equivariant with respect to
the left multiplication of I" on the first factor of I x (Z3;?); and the standard action of r
on (Z2 )p. Since (C;;, 2 )p is a single I-orbit (by the analogue of Lemma 4.7 for B replaced
by B x B), rh_l((C 5))[@) — (Ci)[p is a locally trivial fibration in the analytic topology.
Further, since the fundamental group m((Ci)P) = {1}, and of course ! ((Ci)[@) is
irreducible (in particular, connected), from the long exact homotopy sequence for the
fibration i~ ((C2)p) — (C2)p we find that all its fibers are connected. Thus, the open
subset Z N~ «c i)[@) is connected as the fibers and the base are connected. Hence, it is

irreducible (being smooth). Consider the closure Z=Znm! ((C2)p). Then Z) isan
irreducible component of Z.If possible, let 2, be another irreducible component of Z.
Then i(22) C A((Zy \ Cw)p). Since dim(A((Zy, \ Cyy)p)) < dim(A((Z,)p)) and each
fiber of ,tll A is of dimension at most that of any fiber of [, we get dim(ég) < dim(él ).

This is a contradiction since Z is of pure dimension. Thus, Z = 2,;1, and hence Z is
irreducible.

The proof of the irreducibility of Z is similar. The only extra observation we need
is that Z N 14~1_1((C2 )p) maps surjectively onto Z N m_l((Ci)p) under f; in particular,
ZNn m_l((C )p) is irreducible.
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The map f is clearly proper. Moreover, it is an isomorphism when restricted to the
(nonempty) open subset

Z0(F x (€N Cy) x (CY N Cy)))

onto its image (which is an open subset of Z). (Here we have identified the inverse image
(nl’fj)_l(C“ N Cy,) inside Z¥ with C* N Cy, under the map m;—see Theorem 6.8.)
The identity (58) follows from (59) since dim(Z) = dim(Z). Thus,

codimz (T x X"y = codimg (., 1. ((Xi)lp) = L(w).

Finally, Z is CM by Proposition 6.6 and Lemmas 6.12 and 7.2. This completes the
proof of the proposition. O

Lemma 7.5. The scheme Z is normal, irreducible and CM.

Proof. By Proposition 7.4, Z is irreducible and CM.
As in the proof of Lemma 6.10, the map

to:GxY XS — X, [g,x]+>g-x,

being G-equivariant, is a locally trivial fibration, where S/, := {v € W : £(v) < £(u)+1}.
Moreover, its fibers are clearly isomorphic to F* := ngv:é(v)g@(u)ﬂ Bv U~ /U
Now, since X* is normal [KS, Proposition 3.2] and any B~ -orbit in X “(S,’l) is of codi-
mension < 1 in X%, X ”(S,;) is smooth, and similarly so is F“. (Here the smoothness of
F" means that there exists a closed normal subgroup B; of B of finite codimension such
that B; acts freely and properly on F* and the quotient B{\F* is a smooth scheme of
finite type over C—see Lemma 6.1.) Thus, 1, is a smooth morphism, and hence so is its
restriction to the open subset B x X" (S!) — X.Let jto(w) : B x (X*(S,) N Xy) — Xy
be the restriction of the latter to the inverse image of X,,. The map w,(w) clearly fac-
tors through a smooth morphism fi,(w) : B x (X"(S)) N Xy) — Xy, where Bisa
finite-dimensional quotient group of B. Hence, ji,(w)~'(X2) = B x (X“(S,) N X2) is
a smooth variety, where X := X,, \ X, and %, is the singular locus of X,.

Following the same argument as in the proof of Lemma 6.12, we see that the restric-
tion of the map m : I' x (X4Y); — (XZ)ptom : T x ((X“(S}) x XU(5))) N X2);
— (X2)p is a smooth morphism (with open image Y), and hence so is its restricton
m: I/I_/l_l(A((Xw)[p)) — A((Xw)lp). (Observe that Y does intersect A((Xw)ﬁ»), for other-
wise (T - A((X,)p)) NY = @, which would imply that (C2)p N'Y = f, a contradiction.)
Thus, m~'(A((X9)p)) is a smooth variety, which is open in Z = m ™' (A((X,,)p)). Let
us denote the complement of T' x ((X“(S)) x XV(S,)) N Xlzv)j inT x (X%V)j by F and
denote m ' (A((Zy)p)) by F'. Then F’ is of codimension > 2 in i~ (A((X,)p)), and
hence in Z. Clearly, F is of codimension > 2 in I x (X3;")j. Also, if F is nonempty,
the restriction of the map m to F is again flat (by the same proof as that of Lemma 6.12)
with image an open subset of (X lZU)P intersecting A((Xw)p). Thus, the codimension of
F N Zin Z is > 2. This shows that the complement of the smooth locus of Z in Z is of
codimension > 2. Moreover, Z is CM by Proposition 7.4. Thus, by Serre’s criterion [H,
Chap. II, Theorem 8.22(A)], Z is normal. O
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The following lemma and Proposition 7.7 are taken from our recent joint work with
S. Baldwin [BaK]. Proposition 7.7 is used to give a shorter proof (than our original proof)
of Theorem 8.5(b).

Lemma 7.6. Let G be a group acting on a set X and let Y C X. Consider the action
mapm : G x Y — X. For x € X denote the orbit of x by O(x) and the stabilizer by
Stab(x). Then Stab(x) acts on the fiber m~(x), and Stab(x)\m~'(x) ~ O(x)N Y.

Proof. It is easy to check that
m~'(x)={(g.h 'x) :he G, h " 'x €Y, g € Stab(x) - h}.

Thus, Stab(x) acts on m~!(x) by left multiplication on the left component. Since ev-
ery element of O(x) N'Y is of the form h~'x for some & € G, the second projection
m~'(x) — O(x) NY is surjective. This map clearly factors through the quotient to
give a map Stab(x)\m~'(x) — O(x) NY. To show that this induced map is injective,
note first that each class has a representative of the form (h, h~'x). Now, if (&1, hf]x)
and (h;, hz_lx) satisfy hl_lx = hz_lx then hzhl_lx = x, ie., hzhl_1 € Stab(x), i.e.,
hy € Stab(x) - hy, i.e., (h1, hy'x) and (ha, h; 'x) belong to the same class. O

Proposition 7.7. The scheme Z has rational singularities.

Proof. Since p is flat and A((Xy)p) has rational singularities [K, Theorem 8.2.2(c)],
by [El, Théoreme 5] it is sufficient to show that the fibers of p are disjoint unions of
irreducible varieties with rational singularities.

Let x € A((Cy/)p), where w’ < w. Then, by Lemmas 7.6 and 4.7 (for Tzx ), we
have Stab(x)\p "1 (x) >~ (X“NCy x X' N Cy)j, where Stab(x) is taken with respect to
the action of I" on (Xg))[p. By [Se, Proposition 3, §2.5], the quotient map I' — Stab(x)\I"
is locally trivial in the étale topology.

Consider the pull-back diagram

wlx) c T x (X145

| |

Stab(x)\u ' (x) S (Stab(n)\I) x (XL);

Since the right vertical map is a locally trivial fibration in the étale topology, the left verti-
cal map is too. Now, Stab(x)\ " (x) ~ (X*NCp x X' N C,y);j has rational singularities
by [KuS, Theorem 3.1]. Further, Stab(x) being smooth and u_l (x) —> Stab(x)\y,_1 (x)
being locally trivial in the étale topology, we conclude that 1z~ !(x) is a disjoint union of
irreducible varieties with rational singularities by [KM, Corollary 5.11]. O

Proposition 7.8. The scheme 0 Z is pure of codimension 1 in Z and it is CM, where the
closed subscheme 0 Z of Z is defined as

02 := (T x d((XY5")) X (x2), AXu)p),

p

where 0((X3;V);j) is defined in Lemma 6.12.
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Proof. By Lemma 6.12, the map I" x (XL LN (Xi)]p is a flat morphism. Moreover,
d((X%:")j) is pure of codimension 1 in (X!:");. Further, Imm’ = Imm if 9P # . If
0P; = 0, then

m > (U ) (U a))u(( U a)( U o)),

u—u'<f<w v<6’'<w u<6<w v=>v <0/ <w

In particular, if nonempty, Imm’ is open in (X 3))[@ (since m’ is flat) and intersects
A((Xy)p). Thus, by [H, Chap. III, Corollary 9.6], each fiber of m’ (if nonempty) is pure
of dimension

dim(I") + dim((X ;")) — dim((Xi)]p) —1.

Again applying [H, Chap. III, Corollary 9.6], we find that 0 Z is pure of dimension
dim(T) + dim((X%");) — dim((X2)p) — 1 + dim(A((X,,)p)).

Hence, by the identity (58), 0 Z is pure of codimension 1 in Z. Further, both ((d X*)NX4,)
x XU and X% x ((dX")N X,,) are CM by Proposition 6.6 and Remark 6.7, and so is their
intersection. Moreover, their intersection is of pure codimension 1 in both of them. Hence,
their union is CM (e.g. by [K, Theorem A.36]), and hence so is ((dX*") N Xi)j. Also,
(X Z;v)a]pj and the intersection

(AX™Y) N X3)5 N (X Y)ap; = (AX™Y) N X3)ap,

are CM since 0IPj is CM. Thus, their union 9((X};")j) is CM since the intersection
((0X™?) N X3)ap; is CM of pure codimension 1 in both ((9X**) N X7); and (X%)ap;.
Thus, 3 Z is CM by Lemma 7.2 applied to the morphism I' x (X)) — (X%U)]p. m]

As a consequence of Proposition 7.8 and Lemma 7.3, we get the following.

Corollary 7.9. Assume that ¢, (j) # O, where ¢, (j) is defined by the identity (19).
Then, for general y € T, the fiber Ny, := 7~ (y) C Z is CM of pure dimension, where
the morphism w : Z — T is defined at the beginning of this section. In fact, for any

y € T such that N, is pure of dimension
dim(N,) = dim(2) — dim(I") = [j| + £(w) — £(u) — £(v), (60)

N, is CM (and this condition is satisfied for general y).

Similarly, if |j| + €(w) — €(u) — £(v) > O, then for general y € T, the fiber M, =
71~ Y (y) C 82 is CM of pure codimension 1 in Ny, where 11 is the restriction of the map
w10 dZ.If |j| + €(w) — £(u) — £(v) = O, then for general y € T, the fiber M, is empty.

In particular, for general y € T,

gmiﬁNV (On,(—My), wn,) =0  foralli >0,

where Oy, (—My) denotes the ideal sheaf of My, in Ny, and wy,, is the dualizing sheaf
of Ny.
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Proof. We first show that 7 is a surjective morphism under the assumption that ¢,/ (j)
# 0. By the definition,

Imm ={y e [: y(X4");) N A(Xyw)p) # 0} ©61)

Since T is connected by Lemma 4.8, by the expression of ch, »() as in Lemma 4.5,

Y (X)) NA(Xw)p) # P forany y € I'. But y (X*")j) N A((Xw)p) = ¥ (X5")) N
A((Xw)p) forany y € . Thus, 7 is surjective.

By Lemmas 7.3 and 7.5 applied to the morphism 7 : Z — T, we see that if N, is
pure and

codimz(N,) = dim(I"), (62)

then N, is CM.

Now the condition (62) is satisfied for y in a dense open subset of I" by [S, Chap. I,
§6.3, Theorem 1.25]. Thus, N, is CM for general y.

Similarly, we prove that M, is CM for general y:

We first show that 7y : 92 — T is surjective if |j| + £(w) — £(u) — £(v) > 0. For
if 711 were not surjective, its image would be a proper closed subset of I, since 7 is a
projective morphism. Hence, for general y € T, M, =§,ie., N, C Z2\oZ.But Z\02Z
is an affine scheme, and N, is a projective scheme of positive dimension (because of
the assumption |j| 4+ £(w) — £(u) — €(v) > 0). This is a contradiction, and hence 7| is
surjective. Thus, if |j| + £(w) — £(u) — £(v) > 0, we deduce that for general y € I, by
[S, Chap. 1, §6.3, Theorem 1.25] applied to the irreducible components of 9 Z, M,, is pure
and

codimy z(M,,) = dim(T"). (63)

Now, by the same argument as above, for general y € T, M, is CM. Moreover,
since 0 Z is of pure codimension 1 in Z, we conclude (by (62)—(63)) that M,, is of pure
codimension 1 in N, (for general y).

If |j| + €(w) — €(u) — £(v) = 0, then dim(0 2) < dim(T). So, in this case, Im7; is a
proper closed subset of T

Since (for general y) M,, is of pure codimension 1 in N,, and both are CM,

g’xriﬁNy (On,(—M,), wy,) =0 foralli > 0.
To prove this, use the long exact &xt sequence associated to the sheaf exact sequence
0— On,(=My) — Oy, — Oy, — 0

and the result that
gxthV (ﬁMy»wN},) =0 wunless i=1

(see [, Proposition 11.33 and Corollary 11.43]). O
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8. Study of R” f.(w (3 2))

From now on we assume that ¢, (j) # 0, where ¢, (j) is defined by the identity (19).
We follow the notation from the big diagram in Section 7.

Lemma 8.1. The line bundle L(p)|x« has a section with zero set precisely dX". In par-
ticular,

L(p)|xu ~ ZbiX,- for some b; > 0,
i

where the X; are the irreducible components of (0X") N Xy,.

Proof. Consider the Borel-Weil isomorphism x : L(p)" N HOY(X, L(p)) given by
x(f)(gB) =lg, f(gep)], where e, is a highest weight vector of the irreducible highest
weight G™"-module L (p) with highest weight p, and L(p)" is the restricted dual of L(p)
[K, §8.1.21]. Then it is easy to see (using [K, Lemma 8.3.3]) that the section X(e;';p)|xu
has zero set exactly 0 X", where ¢, is the extremal weight vector of L(p) with weight
up and ejp € L(p)" is the linear form which takes value 1 on e,, and 0 on any weight
vector of L(p) of weight different from up. This proves the lemma. O

A Q-Cartier Q-divisor D on an irreducible projective variety X is called nef (resp. big)
if D has nonnegative intersection with every irreducible curve in X (resp. we have
dim(H(X, Ox(mD))) > em9™X) for some ¢ > 0 and m > 1). If D is ample, it is
nef and big [KM, Proposition 2.61].

Let 7 : X — Y be a proper morphism between schemes and let D be a Q-Cartier
Q-divisor on X. Assume that X is irreducible. Then D is said to be -nef (resp. w-big) if
D has nonnegative intersection with every irreducible curve in X contracted by 7 (resp.
rank 7, Ox(mD) > cm" for some ¢ > 0 and m > 1, where n is the dimension of a
general fiber of ).

Proposition 8.2. There exists a nef and big line bundle M on (Z};V); with a section with
support precisely equal to d((Z};");), where 0((Z,;");) is, by definition, the inverse image
of 3((X3;");) under the canonical map (Z};"); — (X;V)j induced by the T -equivariant
map wp¥ o ZwY = Zi x 720 — XU = Xi x Xy, and 9((X;V);) is defined in
Lemma 6.12. Moreover, M can be chosen to be the pull-back of an ample line bundle M’
on (Xi;Y)j.

Proof. Take an ample line bundle H on Pj with a section with support precisely equal
to dPj. Also, let Lzu«v(p K p) be the pull-back of the line bundle L(p) ® L(p) on X x X
via the standard morphism

ZLY 5 X x X.
Since e“p””ﬁzy(,o R p) is a T-equivariant line bundle, we get the line bundle
E(—,o X —p) = E(T)j xT (e“"”’”pﬁzz;u(p X p)) — (Zy;")j over the base space (Z;;");.
Now, consider the line bundle (for some large enough N > 0)

M:=L(—pR—p) @™ (HY),
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where w : E(T)j xT Zy¥ — IPj is the canonical projection. Take the section 6 of
L(—p & —p) given by [e. 2] > [e. Lupsup ® (X(€],) B X(€5,)) ()] for e € E(T)j and
z € ZY, where 1,,4,, denotes the constant section of the trivial line bundle over Z%"
with the H-action on the fiber given by the H-weight up + vp, and x X yx is the pull-back
of the Borel-Weil isomorphism x ® x : L(p)" ® L(p)" ~ H%(X?, L(p) R L(p)) to Z"
(see proof of Lemma 8.1). Also, take any section o of #" with zero set precisely dP;,
and let & be its pull-back to (Z!:V);. Then the zero set of the tensor product of 6 and & is
precisely 9((Z;;");) (see proof of Lemma 8.1).

The line bundle M is the pull-back of the line bundle M’ := £/'(—p®—p) Qnf (HM)
on E(T); x ry »>V via the standard morphism

ED;x" zy" - EM); x" Xy,
where 7 is the projection E(T);j x X%V — Pj and L' (—p R —p) is the line bundle
E(T); x" (T (L(p) ® L(p)) 1)

Then, by [KM, Proposition 1.45 and Theorems 1.37 and 1.42], M’ is ample on (Xi;");
for large enough N. Since the pull-back of an ample line bundle via a birational morphism
is nef and big [D, §1.29], M is nef and big. This proves the proposition. O

We recall the following ‘relative Kawamata—Viehweg vanishing theorem’ valid for proper
morphisms [D, Exercise 2, p. 217]; replace Debarre’s D by D’ and take D' := L — D/N.

Theorem 8.3. Let 7 : Z — T be a proper surjective morphism of irreducible varieties
with Z a smooth variety. Let L be a line bundle on Z such that LN (= D) is 7 -nef and
7 -big for a simple normal crossing divisor

D=Za,~Di, where 0 < a; < N foralli.
i

Then RP7,(L ® wz) = 0 forall p > 0. O
Proposition 8.4. For the morphism 7 : Z — T (see the big diagram in Section 7),
RP#(wz(0Z2)) =0 forall p >0,

where 02 := (O 2) (82 being defined in Proposition 7.8 taken here with the reduced
scheme structure) and 5 (82;) denotes the sheaf Fom 0 (ﬁé(—aé), ®z).

(Observe that [ being a desingularization of a normal scheme Z and 0 Z being re-
duced, 3Z is a reduced scheme.)

Proof. Fix a nef and big line bundle M on (Z},"); with its divisor Zle b; Z; (with
b; > 0) supported precisely in d((Z;;");j), which is the pull-back of an ample line
bundle M’ on (X%"); (Proposition 8.2). Choose an integer N > b; for all i. Consider the

line bundle £ on the smooth scheme zZ corresponding to the reduced divisor 3 Z (observe
that 0 Z is a divisor of Z, i.e., a pure scheme of codimension 1 in Z, since it is the zero
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set of a line bundle on Z by using the definition of 9 Z) and let D be the following divisor
on Z: _
D=3 (N-b)Z,
i

where . _ -
Zi =[x Z;) X(22)p A((Zw)p)-

Qbserve t{lat each Z,- is a smooth irreducible divisor of Z , and moreover for any collection
VAT Ziq, 1<ij<--- f iq < d, the intersection ﬂ(lﬂzl Zip (if nonempty) is smooth
of pure codimension ¢ in Z. (To prove this, use Theorem 6.4 and follow the proofs of
Theorem 6.8, Lemmas 6.9 and 6.11 and Proposition 7.4.) In particular, Z;’s are distinct.

It is easy to see that ~ _
2= 7.

and hence it is a simple normal crossing divisor. Then
EN(_D) = ﬁj (Z b; Z,) ~ j* <ﬁf‘><(fo,’”)j <Z b; (f X Z[))).
i

Moreover, since ) b; Z; is a nef divisor on (Z%"); and iis injective, LV (= D) is 7 -nef
[D, §1.6].

Observe further that, by definition, the line bundle LN (—D) on Z is the pull-back of
the line bundle S := i*(e ® M) on Z via f, where € is the trivial line bundle on I.
Now, M’ being an ample line bundle on (X w s S is -big. But, f being birational, the
general fibers of 7 have the same dimension as the general fibers of 7 (use [S, Chap. I,
§6.3, Theorem 1.25]). Hence, LY (— D) is 7-big.

The map f is surjective since it is proper and birational by Proposition 7.4. Also, the
map 7 is surjective since so is 7 (see the proof of Corollary 7.9). Thus, by Theorem 8.3,
the proposition follows. O

Theorem 8.5. For the morphism f : Z — Z,
@) R? fu(w3(32)) =0 forall p >0, and
(b) filwz(32)) = wz(32).
Proof. The map f is surjective as observed above. With the notation of the proof of
Proposition 8.4, £V (—D) is 77-nef and 7-big. Since the fibers of f are contained in the
fibers of 7, LN (= D) is f-nef. Moreover, since f is birational, clearly LN(=D)is f-big.
Now, applying Theorem 8.3 to the morphism f : Z — Z, we get (a).
(b) First, we claim
ﬁg(aé) ~ %omﬁg(f*ﬁz(—az), 03), (64)

where ﬁg(&ZN) = jfomﬁg(ﬁg(ﬂ’)g), 0 3). To see this, first note that by [Stacks, Tag

01HJ, Lemma 25.4.7], since f “19z) = 3 Z is the scheme-theoretic inverse image, the
natural morphism _
f (Oz(-02)) — 05(-02)
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is surjective. As f is a desingularization (Proposition 7.4), the kernel of this morphism is
supported on a proper closed subset of Z and hence is a torsion sheaf. This implies that the
dual map 03(32) — Hom 03 (f*(0z(-02)), 0'3) is an isomorphism, proving (64).
To complete the proof of (b), we compute
f@0302)) = fulwz ® Homg . (f*0z(-02),03)) by (64)
= fidtomg ([FOz(-32),03)
= Homg,(Oz(—032), frwz) by adjunction [H, Chap. II, §5]
= Jtomy, (Oz(—02),wz) by Proposition 7.7 and [KM, Theorem 5.10]
=wz(02). ]

As an immediate consequence of Proposition 8.4, Theorem 8.5 and the Grothendieck
spectral sequence [J, Part I, Proposition 4.1], we get the following:

Corollary 8.6. Letw : Z — T be the morphism as in the big diagram in Section 7. Then

RPr(wz(3Z2)) =0 forall p> 0.

9. Proof of Theorem 4.10(b)
By using Kashiwara’s result £ = O'xu(—dX") (Theorem 10.4) and the vanishing
O ~ _
Tor, "F (VuAsO(x,)ps Oyxvvy) =0  for general y € T
J

(which can be proved by an argument similar to the proof of Theorem 4.10(a) using
Corollary 5.7), Theorem 4.10(b) is clearly equivalent to the following vanishing:

Theorem 9.1. Assume that ¢, (j) # 0. For general y € T,
HP (X" Ny A((Xu)p), O(=My)) =0 for all p # |j| + €(w) — £(u) — £(v),
where M, := M, is the subscheme (3(Xjf””)) Ny A((Xw)p) and (as earlier)
8(Xjf"”) = (@X" x X")j U (X" x 8X")j U (X" x X")ap;,

and ﬁ(—My) denotes the ideal sheafofMy in XJ'."U Ny A((Xw)p).

Proof. By Lemma 7.5 and Proposition 7.8, Z and 02 are CM and 9 Z is pure of codi-
mension 1 in Z. Thus, we get the vanishing (see the proof of Corollary 7.9)

gﬂiﬁz(ﬁz(—az),wz) =0 foralli>1. (65)
Also, by Corollary 7.9, for general y € T,

gxrfﬁﬁy (ﬁﬁy(—My), wg)=0 foralli>0,

where N, := N,-1 is the subscheme (X;”U) Ny A(Xw)p).



2514 Shrawan Kumar

Hence, by the Serre duality [H, Chap. III, Theorem 7.6] applied to N,, and the local-
to-global Ext spectral sequence [Go, Chap. II, Théoreme 7.3.3]) the theorem is equivalent
to the vanishing (for general y € I')

HP(N,, jfomﬁﬁy (O, (-M,), a)Ny)) =0 forallp>0, (66)

since (for general y € I') ]\_/y is CM and dim(Ny) = |j| + £(w) — £(u) — £(v) (Corol-
lary 7.9). )
For general y € T,

®z(0Z)|5-10-1) X @ HAZNa ) = oy, (M), (67)

Ty~
where wg, (My) = JHom oy, “ N, (—My), 1) Ny)' To prove the above, observe first that
by [S, Chap. I, §6.3, Theorem 1.25] and [H, Chap. III, Exercise 10.9] applied to 7, there
exists an open nonempty subset I', C T such that 7 : 7 ~1(T',) — T, is a flat morphism.
(By the proof of Corollary 7.9, 7 is surjective.) Now, since T, is smooth and Z and 8 Z
are CM, and the assertion is local in T, it suffices to observe (see [I, Corollary 11.35])
that for a nonzero function @ on I',, there is an isomorphism of sheaves of & z,-modules

§/6 -8 = Homg,, (O2(=02)/0 - Oz(—02), wz,),

where Zy denotes the zero scheme of § in Z and S := H#om g, (0z(—032), wz). Choos-
ing 6 to be in a local coordinate system, we can continue and get (67).

Now, the vanishing of R, (wz(02)) for p > 0 (Corollary 8.6) implies the follow-
ing vanishing, for general y € I':

HP(N,, oy, (M,)) =0 forall p> 0. (68)

To prove this, since Z and 32 are CM, I, is smooth and 7 : 7~ 1(T,) — T, is flat,
observe that wz (9 2) is flat over the base [',:

To show this, let A = ﬁl:o’ B = ﬁnfl(ﬁ,)’ and M = wz(02)|,-1,)- By taking
stalks, we immediately reduce to showing that for an embedding of local rings A C B
such that A is regular and B is flat over A, the module M is flat over A. Now, to prove
this, let {x1, ..., x4} be a minimal set of generators of the maximal ideal of A. Let K, =
Ko(x1,...,x4) be the Koszul complex of the x;’s over A. Then, recall that a finitely
generated B-module N is flat over A iff K, ® 4 N is exact except at the extreme right, i.e.,
Hi(K. ®4 N) =0fori < d [E, Theorem 6.8 and Corollary 17.5]. Thus, by hypothesis,
K.®4 B is exact except at the extreme right, and hence the x;’s form a B-regular sequence
by [E, Theorem 17.6]. Now, since 0z and &y z are CM and 0 Z is pure of codimension 1
in Z, we see that 0z (—0d2) is a CM O'z-module. Thus, by [I, Proposition 11.33], M is a
CM B-module of dimension equal to dim(B). Therefore, by [I, Exercise 11.36], the x;’s
form a regular sequence on the B-module M. Hence, (K, ®4 B) @ p M >~ K, @4 M is
exact except at the extreme right by [E, Corollary 17.5]. This proves that M is flat over A,
as desired.

Hence, (68) folows from the semicontinuity theorem ([H, Chap. III, Theorem 12.8
and Corollary 12.9] or [Ke, Theorem 13.1]).
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Thus, (66) (which is nothing but (68)) is established. Hence, the theorem follows, and
thus Theorem 4.10(b) is established. O

10. Appendix (by Masaki Kashiwara): Determination of the dualizing sheaf of X"

Letv € W. Set ¢V :=L_Jyew,z(y)§,3(v)_|r1 CY,where CY := B"yB/B C X. (By definition,
¢ only depends upon £(v).) Then € is an open subset of X. Moreover, X" N € is a
smooth scheme, since XV is normal [KS, Proposition 3.2] and any B~ -orbit in X" N ¢V
is of codimension < 1. Recall from Section 3 the definition of

5 = e P L(p)ox: = e PL(=p)Extyy (Oxv, O).

Since Oxv is a CM ring [KS, Proposition 3.4], we see that £V is a CM Oxv»-module. Also,
since XU N €V is a smooth scheme, £V |gv is an invertible Oxv |gv-module.

Forany y € W, leti, : {pt} — X be the morphism given by pt — yx,. Then (as
H-modules)
i;L(A) ~ C_,; for any character A of H. (69)

Let7r; : X — X; be the projection, where X, =G / P;, P; being the minimal standard
parabolic subgroup containing the simple root ¢; for 1 <i <r.

Lemma 10.1. On some B~ -stable neighborhood of C, we have a B~ -equivariant iso-
morphism £V >~ Oxv.

Proof. Since £V|gv is an invertible B~ -equivariant Oxv|gv-module, it is enough to
show that i¥é" ~ C as H-modules. This follows from i} (é’xtg;)(ﬁxu, 0%))
det(Tyx, X/ Tyx, XV) 2 Cp_yp and i¥ L(—p) = C,, by (69). O

12

Set Ay :={y € W :y > vand £(y) = £(v) + 1}. The above lemma implies that, as
B~ -equivariant 0'z-modules,

£V gr ~ ﬁxv<z myxy)

YEAyY

(70)

Q:l/
for some m, € Z. Recall that 0X" = [ J,c 4, X7

Lemma 10.2. We have £V|gv >~ Oxv(—0X")|gv, where Oxv(—0X") C Oxv is the ideal
sheaf of the reduced subscheme 0 X" of X".

Proof. The proof is similar to the one of Lemma 10.1. For y € A,, y is a smooth point
of XV (since XV N €V is smooth). Hence,

i (x5 (Oxv, O)) = det(Tyy, X/ Tyx, X")

~ det(Tyx{,)_(/Tyx{)Xy) ® det(TnyXU/Tyngy)@)(_l)
>~ Cpoyp ® det(Tyy, XU/ Tyr, X)),
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Thus, i’;é” ~ (Tyon”/Tyony)‘X’(_l) as H-modules by (69). On the other hand,

i;<ﬁxv(z szZ>) > (Tyx, X'/ Tyx, X*)®™  as H-modules.

Z€EAyY

Hence, by (70), we have m, = —1. Note that T,, X"/ Ty, X” is not a trivial H-module
by the next lemma. O

Lemma 10.3. Letv,y € W satisfy v < y and £(y) = £(v) + 1. Then
Ty, X"/ Tyx,X¥ = Cpg
1

as H-modules, where B is the positive real root such that yv™' = sg.

Proof. We use induction on £(y). Take a simple reflection s; such that ys; < y.

(i) If vs; > v, then y = vs;. Thus, Ty, X"/ Ty, X7 =~ Tyxgni_lrr,- (yx,), and hence
Tyonv/T,VXoXy = (C*yai = (Cvai = (C,B_

@ii) If vs; < v, then m; : XY — X; is a local embedding at yx, since C” U C”
is open in XV, m;|cvucy 1S an injective map onto an open subset of m;(X"V), and
7i(XY) = m;(X%) is normal (since X" — m;(X'%) is a P!-fibration and X'
is normal by [KS, Proposition 3.2]). Moreover, 7;(X") is smooth at 7;(yx,) since
the B~ -orbit of m;(yx,) is of codimension 1 in 7;(X"). Hence, Ty, X"/ Ty, X7 =~
T, (yxp) (0 (X)) Ty (yx) (i (X)) 22 Ty, X P51/ Ty 2, XV, By the induction hypoth-
esis, this is isomorphic to Cg. O

Let j : €¥ < X be the open embedding.

Theorem 10.4. For any v € W, we have a B™ -equivariant isomorphism
EV >~ Oxv(—0X").

Hence, the dualizing sheaf wxv of XV is T -equivariantly isomorphic to

(Cp ® E(—,O) ® ﬁxv(—axv).

Proof. We have a commutative diagram with exact rows

0—) ﬁxu(—aX”) ﬁxv ﬁBX“ O
| | |
0 —— juj ' Oxv(—3X") —— jsj ' Oxo —— jij ' Osxe

where the middle vertical arrow is an isomorphism because XV is normal and XV \ €V is
of codimension > 2 in X7, and the right vertical arrow is a monomorphism because the
closure of dX¥ N €V coincides with dXV. Hence, j,j ! Oxv(—3X") =~ Oxv(—3X"). On
the other hand, since £V is a CM Oxv-module, we have

Ve oY o T Oxe (—0XY) x Oxo(—0XY),

where the second isomorphism is due to Lemma 10.2. O
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Corollary 10.5. Oxv(—03X?) is a CM Oxv-module and Oyxv is a CM ring.

Proof. Since &£V is a CM Oxv-module, so is Oxv(—3 X") by the above theorem.
Applying the functor #om g, (+, Ox) to the exact sequence

0— ﬁxv(—axl}) — ﬁxv —> ﬁaxv — 0,

we obtain éoxtg}_( (Oyxv, Oz) = 0fork # £(v), £(v) + 1. We also have an exact sequence
0— gxtg;)(ﬁaxv, O3) — é”xté;(;)(ﬁxv, 0%).

Since 9 X" has codimension £(v) + 1, we have é”xt;/(?)(ﬁaxu, O%) = 0. Hence, Oyxv is
X
a CM ring. O
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