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Abstract. For two DG-categories A and B we define the notion of a spherical Morita quasi-functor
A → B. We construct its associated autoequivalences: the twist T ∈ AutD(B) and the cotwist
F ∈ AutD(A). We give sufficiency criteria for a quasi-functor to be spherical and for the twists as-
sociated to a collection of spherical quasi-functors to braid. Using the framework of DG-enhanced
triangulated categories, we translate all of the above to Fourier–Mukai transforms between the de-
rived categories of algebraic varieties. This is a broad generalization of the results on spherical
objects in [ST01] and on spherical functors in [Ann07]. In fact, this paper replaces [Ann07], which
has a fatal gap in the proof of its main theorem. Though conceptually correct, the proof was impos-
sible to fix within the framework of triangulated categories.

Keywords. Algebraic geometry, derived categories, DG-categories, autoequivalences, Fourier–
Mukai transforms, spherical functors, braid group actions

1. Introduction

Let X be a smooth projective variety over an algebraically closed field k of characteris-
tic 0. Let D(X) be the bounded derived category of coherent sheaves on X. In [ST01]
Seidel and Thomas introduced the notion of a spherical object in D(X). These objects
are defined in terms of certain cohomological properties and they are mirror-symmetric
analogues of Lagrangian spheres on a symplectic manifold. Given a Lagrangian sphere
we can associate to it a symplectic automorphism called the generalized Dehn twist. Cor-
respondingly:

Theorem ([ST01]). Let E ∈ D(X). The twist functor TE is a certain functorial cone of
the natural transformation E ⊗k R HomX(E,−)

eval
−−→ IdD(X). If E is spherical, then TE

is an autoequivalence of D(X).

Moreover, in [ST01, Theorem 2.17] Seidel and Thomas give simple criteria on a set
E1, . . . , En of spherical objects inD(X) sufficient to ensure that the corresponding spher-
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ical twists T1, . . . , Tn represent the braid group Bn, in other words, that we have

TiTjTi ' TjTiTj , |i − j | = 1,
TiTj ' TjTi, |i − j | ≥ 2.

Spherical objects and twists quickly became an essential tool in studying derived
categories of algebraic varieties as well as more classical areas of algebraic geometry
[Muk87], [Bri08], [Bri09], [IU05], [BP14]. For some time now it has been understood
by specialists that the notion of a spherical object should generalize to the notion of a
spherical functor D(Z)

s
−→ D(X) where Z is some other variety. Such a functor should

produce two auto-equivalences—the twist t ∈ AutD(X) and the cotwist f ∈ AutD(Z).
More generally, there should be a notion of a spherical functor between two abstract tri-
angulated categories. Limited special cases of this appear in [Hor05], [Rou04] [Sze04],
[Tod07], [KT07], but general treatment was obstructed by well-known imperfections of
the axioms of triangulated categories such as non-functoriality of the cone construction
and non-uniqueness of the data supplied by the octahedral axiom.

In this paper, we are able, at last, to give a fully general and rigorous treatment of
spherical functors and to prove an ideal statement about their associated autoequivalences.
Due to increased prominence of spherical twist autoequivalences in studying derived cat-
egories of algebraic varieties, our results have been anticipated and made use of even
as the paper was being written. The works which already apply the results of this paper
include [Add16], [DW16], [HLS16], [BPP17], [DS15].

A previous attempt at this general treatment was made in [Ann07]. Conceptually
sound, it was brought low by the octahedral axiom. The proof of its main theorem [Ann07,
Prop.1] contained a fatal gap which is impossible to fix within the axioms of triangulated
categories. Nonetheless, it was clear that its ideas could work if we had an extra level of
control over what the octahedral axiom provides us with.

We gain this extra control by passing to differential graded (DG) categories. The ax-
ioms of triangulated categories were developed in [Ver96] to describe the derived cate-
gories of algebraic varieties, which are cohomological truncations of certain natural DG-
categories. The imperfections of these axioms can now clearly be seen as artefacts of the
truncation. Working in the original DG-category provides us with precisely the layer of
control that was missing. This allows us not only to fix the results in [Ann07], but to
significantly improve upon them. It allows us to do something more — to provide for a
collection of spherical functors, as [ST01] did for spherical objects, a set of straightfor-
ward criteria sufficient for braid relations to hold between their twists. For some years
now the first author has been well aware of what these criteria should be, but proving
them on the level of triangulated categories was hopeless.

We first state our results in the language of triangulated categories. LetA andB be two
Karoubi closed triangulated categories and let s be an exact functor A → B which has
left and right adjoints l and r . Suppose that we can construct a preferred functorial exact
triangle for each of the four adjunction units and counits involved. Use these triangles to
define the twist t of s by the exact triangle

sr
adj.counit
−−−−−→ IdB → t, (1.1)
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the dual twist t ′ of s by the exact triangle

t ′→ IdB
adj.unit
−−−−→ sl, (1.2)

the cotwist f of s by the exact triangle

f → IdA
adj.unit
−−−−→ rs, (1.3)

and the dual cotwist f ′ of s by the exact triangle

ls
adj.counit
−−−−−→ IdA→ f ′. (1.4)

Define also two natural transformations

lt[−1]
(1.1)
−−→ lsr

adj.counit
−−−−−→ r, (1.5)

r
adj.unit
−−−−→ rsl

(1.3)
−−→ f l[1]. (1.6)

Definition 1.1. The functor s is spherical if all of the following hold:

(1) t and t ′ are quasi-inverse autoequivalences of B,
(2) f and f ′ are quasi-inverse autoequivalences of A,

(3) lt[−1]
(1.5)
−−→ r is an isomorphism of functors (“the twist identifies the adjoints”),

(4) r
(1.6)
−−→ f l[1] is an isomorphism of functors (“the cotwist identifies the adjoints”).

The main obstruction is the lack of canonical functorial exact triangles (1.1)–(1.4) defin-
ing t , t ′, f and f ′. What [Ann07] tried to do was to assume that some functorial exact
triangles as above exist, define s to be spherical if (2) and (4) hold, and then prove that
for any spherical s the condition (1) also holds. In this paper, as explained in more detail
below, we assume that

• A and B admit DG-enhancements,
• s, r and l descend from DG-functors S, R and L between some enhancements of A

and B,

and prove that there is a canonical construction of the exact triangles (1.1)–(1.4) deter-
mined by a certain equivalence class of S such that any two of the conditions in Defini-
tion 1.1 imply that all four of them hold and s is spherical. This is the ideal statement
mentioned above.

Let us be more precise. Let A be a triangulated category. Traditionally, a DG-en-
hancement of A is a DG-category A together with an isomorphism H 0(A) ' A. A more
useful notion for us is that of a Morita enhancement, which is a DG-category A together
with an isomorphism Dc(A) ' A. Here Dc(A) is the full subcategory of the derived
category D(A) consisting of compact objects. A Morita equivalence is a DG-functor

A f
−→ B whose induced functor Dc(A)

L f ∗
−−→ Dc(B) is an equivalence of categories.

This is the right notion of equivalence for Morita enhancements. Thus we are led to work
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in the Morita homotopy category Mrt(DG-Cat), which is the localization of the category
DG-Cat of all DG-categories by Morita equivalences. The objects of Mrt(DG-Cat) should
be thought of as enhanced Karoubi closed triangulated categories with a fixed equivalence
class of enhancements. The morphisms in Mrt(DG-Cat) are called Morita quasi-functors.
Each Morita quasi-functor A→ B induces a genuine exact functor Dc(A)→ Dc(B).

Let A and B be Morita enhancements of triangulated categories A and B. A fun-
damental result of Toën [Toë07, Theorem 7.2] implies that the Morita quasi-functors
A → B are in 1-to-1 correspondence with the isomorphism classes in D(A-B) of the
A-B-bimodules which are B-perfect, i.e. aM ∈ Dc(B) for all a ∈ A. Given M in
DB-Perf (A-B), the derived tensor product functor

(−)
L
⊗A M : Dc(A)→ Dc(B)

is the exact functor underlying the corresponding Morita quasi-functor. Thus, we think
of DB-Perf (A-B) as a triangulated category structure on the set HomMrt(DG-Cat)(A,B)
and of morphisms in it as morphisms of Morita quasi-functors. This packages up into a
2-category structure on Mrt(DG-Cat) with a functor to the 2-category of Karoubi closed
triangulated categories. See Section 4 for a brief survey on DG-enhancements.

We now describe our results. In the body of the paper they are stated in a slightly more
flexible language of DG-bimodules. Here we state them in the language of Morita quasi-

functors, which gives a more intuitive picture. Let A S
−→ B be a Morita quasi-functor and

let A
s
−→ B be the underlying exact functor. Assume that s has left and right adjoints

B
l,r
−→ A which also descend from Morita quasi-functors. The derived A- and B-duals of

S in D(B-A) are then A-perfect and hence define Morita quasi-functors B L,R
−−→ A. In

Section 2.2 we construct derived trace and action maps

SR
tr
−→ IdB and LS

tr
−→ IdA, (1.7)

IdB
act
−→ SL and IdA

act
−→ RS, (1.8)

and prove that the exact functors underlying L and R are precisely l and r , and that the
derived trace and action maps above induce the units and counits of the adjunctions of s,
l and r . Then, working in the DG-enhancements, we construct natural exact triangles of
Morita quasi-functors

SR
tr
−→ IdB → T , (1.9)

T ′→ IdB
act
−→ SL, (1.10)

F → IdA
act
−→ RS, (1.11)

LS
tr
−→ IdA→ F ′, (1.12)

which define the twist T , the dual twist T ′, the cotwist F and the dual cotwist F ′ of S.
Thus we obtain a natural choice of functorial exact triangles (1.1)–(1.4) defining t , t ′,
f and f ′. We then prove that t ′ and f ′ are left adjoint to t and f , respectively. All the
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above constructions are readily seen to be Morita invariant, i.e. they are preserved if we
replace A or B by a Morita equivalent DG-category. Hence they only depend on Morita
equivalence classes of A and B and on S ∈ HomMrt(DG-Cat)(A,B).

The following is the main result of this paper:

Theorem 1.1 (see Theorem 5.1). Suppose any two of the following conditions hold:

(1) t is an autoequivalence of B (“the twist is an equivalence”).
(2) f is an equivalence of A (“the cotwist is an equivalence”).

(3) lt[−1]
(5.11)
−−−→ r is an isomorphism of functors (“the twist identifies the adjoints”).

(4) r
(5.12)
−−−→ f l[1] is an isomorphism of functors (“the cotwist identifies the adjoints”).

Then all four hold and S is said to be a spherical quasi-functor.

Finally, we give the braiding criteria for spherical quasi-functors. These have a natural
interpretation in geometrical context that is the subject of a future paper [AL]. An example
of these criteria being satisfied can be seen in a construction by Khovanov and Thomas
in [KT07].

Let A1, . . . , An, B be triangulated categories with Morita enhancements A1, . . . ,

An,B. Let Ai
Si
−→ B be spherical Morita quasi-functors. For any i 6= j the trace maps

SiRi
tr
−→ IdB and SjRj

tr
−→ IdB define a map

SiRiSjRj
SiRi tr⊕trSjRj
−−−−−−−−→ SiRi ⊕ SjRj . (1.13)

Next, for any i 6= j define a Morita quasi-functor Ai
Oi
−→ Ai by

Oij = Fi Cone
(
LiSjRjSi

tr◦(Li tr Si )
−−−−−−→ IdAi

)
. (1.14)

As Si is spherical, we have Ri[−1] ' FiLi , so SiRi
tr
−→ IdB and SjRj

tr
−→ IdB define (cf.

Section 6.2) a map

SiOijRi → SiRiSjRj ⊕ SjRjSiRi . (1.15)

Theorem 1.2 (Theorems 6.1–6.2). Suppose that for all i, j ∈ 1, . . . , n the following
hold:

(1) If |i − j | > 1, there exists an isomorphism

SiRiSjRj ' SjRjSiRi

which commutes with the maps (1.13).
(2) If |i − j | = 1, there exists an isomorphism

SiOijRi ' SjOjiRj

which commutes with the maps (1.15).

Then the twists T1, . . . , Tn generate a categorical action of the braid group Bn on B.
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Finally, we interpret the above in the context of algebraic geometry. Let Z and X be sep-
arated schemes of finite type over k. Let Dqc(Z) and Dqc(X) be the derived categories
of quasi-coherent sheaves, and let D(Z) and D(X) be the bounded derived categories of
coherent sheaves on Z and X. Let A and B be the standard DG-enhancements of D(Z)
and D(X). These are given by the DG-categories of h-injective complexes of sheaves
on Z and X, respectively. In Example 4.3 we prove an analogue for the bounded co-
herent derived categories of the famous result of Toën [Toë07, Theorem 8.9] for the un-
bounded quasi-coherent ones. We prove that the exact functors D(Z) → D(X) which
descend from the Morita quasi-functors A → B are precisely the Fourier–Mukai trans-
forms. Given an object E ∈ D(Z × X), the Fourier–Mukai transform 8E is a priori
a functor Dqc(Z) → Dqc(X). In Example 4.3 we identify HomMrt(DG-Cat)(A,B) with
the full subcategory of D(Z × X) consisting of the objects E such that 8E restricts to

D(Z)→ D(X). Under this identification, each Morita quasi-functor A S
−→ B goes to an

object E ∈ D(Z ×X) such that D(Z)
8E
−−→ D(X) is the exact functor s underlying S.

The above results for Morita quasi-functors can then all be interpreted for Fourier–
Mukai transforms. Let E ∈ D(Z × X) be such that 8E restricts to a functor D(Z)

s
−→

D(X) and this restriction has a left adjoint which is also a Fourier–Mukai transform. For
example, it is sufficient to assume that E is proper over Z and X and perfect over Z
and X. Our results for Morita quasi-functors provide natural constructions at the level of
Fourier–Mukai kernels of the right and left adjoints r and l and of all four adjunctions,
units and counits involved. We conjecture that these coincide with the explicit formulas
proved independently in [AL12] and [AL16]. Regardless of whether this holds or not, the
functorial exact triangles (1.1)–(1.4) defining the twists and cotwists t , t ′, f and f ′ are
well-defined and depend only on E ∈ D(Z × X). We say that E is spherical over Z if
the four conditions of Definition 1.1 are satisfied. Our main theorem then applies to show
that, in fact, it suffices to verify any two of these four conditions. The braiding criteria
above translate similarly to the language of Fourier–Mukai kernels. It is worth noting that
if we set Z = Spec k then the natural isomorphism Z × X ' X identifies D(Z × X)
with D(X) and our results immediately imply the results in [ST01].

Finally, we also describe in Section 5.2 a variation on all of the above. It uses a slightly
different enhancement framework which allows one to work with the unbounded derived
categories Dqc(Z) and Dqc(X). The penalty is a strong smoothness condition: We can
only work with E ∈ Dqc(X × Y ) such that 8E has a left adjoint which is also a Fourier–
Mukai transform and they both take compact objects to compact objects.

About the structure of this paper: In Section 2.1 we give an overview of the facts we
need on DG-categories and DG-modules over them. In Section 2.2 we define the dualiz-
ing functors for DG-modules and DG-bimodules. We then construct and study homotopy
trace and action maps and show them to be units and counits of homotopy adjunctions
between an A-B-bimodule M and its A- and B-duals MA and MB. In Section 3.1 we
give an overview of twisted complexes over a DG-category and prove explicit formulas
for taking a tensor product and for dualizing at the level of twisted complexes. Section 3.2
summarizes the facts we need about pretriangulated categories. In Section 3.3 we develop
a theory of twisted cubes, which acts as a “higher” octahedral axiom for the world of pre-
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triangulated categories. In Section 4 we explain the framework of DG-enhancements of
triangulated categories and its applications to algebraic geometry. In Section 5.1 we con-
structs twists and cotwists of a DG-bimodule, define a notion of a spherical DG-bimodule
and prove our main theorem on the level of DG-bimodules. In Section 5.2 we interpret this
for Fourier–Mukai transforms between the derived categories of algebraic varieties via the
framework introduced in Section 4. In Section 6 we state and prove braiding criteria for
spherical DG-bimodules. Finally, the Appendix contains some technical results we need in
Section 6 on constructing homotopy equivalences between twisted complexes. There the
authors have to resort to using A∞-categories, A∞-functors and the interpretation of DG
quasi-functors as strictly unital A∞-functors between the corresponding DG-categories.
It is something they quite happily avoided doing throughout the rest of the paper.

2. Preliminaries

Some proofs in this paper rely on explicit computations where matching up the signs
becomes important. As there are different sign conventions present in the literature for
the material in this section, we make our choices explicit at the cost of restating some
very well-known definitions. We aim to enable our reader to verify all the computations
which are “left to the reader”.

Notation. Throughout the paper all schemes are defined and all DG-categories are con-
sidered over the same base field we denote by k.

Let X be a scheme. We denote by Dqc(X), resp. D(X), the full subcategory of the
derived category of OX-Mod consisting of complexes with quasi-coherent, resp. bounded
and coherent, cohomology.

2.1. DG-categories, modules and bimodules

Throughout this section, k is a commutative ring.

2.1.1. DG-categories. Let E and F be complexes of k-modules. Define E ⊗ F to be the
complex of k-modules

(E ⊗ F)n =
⊕
i+j=n

Ei ⊗ Fj , d(e ⊗ f ) = de ⊗ f + (−1)deg(e)e ⊗ df. (2.1)

We have the standard sign-twisting isomorphism E ⊗ F
∼
−→ F ⊗ E given by

e ⊗ f 7→ (−1)deg(e) deg(f )f ⊗ e. (2.2)

Define Homk(E, F ) to be the complex of k-modules

Homn
k(E, F ) =

⊕
j−i=n

Homk(Ei, Fj ), df = dF ◦ f − (−1)deg(f )f ◦ dE . (2.3)

A DG-category over k is a category A whose morphism spaces HomA(a, b) are com-
plexes of k-modules and whose composition maps

HomA(b, c)⊗ HomA(a, b)→ HomA(a, c)
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are closed degree 0 maps of complexes of k-modules. The homotopy categoryH 0(A) has
the same objects as A and its morphisms spaces are 0th cohomologies of their counter-
parts in A. Let Mod-k be the DG-category of complexes of k-modules with morphism
spaces defined by (2.3) and the composition (f ◦g)(s) = f (g(s)). See [Kel94, §§1.1–1.2]
or [Toë11] for details.

Given a DG-category A denote by Aopp the opposite DG-category of A. Its objects are
the same as those of A and for all a, b ∈ Aopp we have HomAopp(a, b) = HomA(b, a).
The composition is defined by composing the sign-twisting isomorphism (2.2) with the
composition map of A. In other words, we set

β ◦Aopp α = (−1)deg(α) deg(β)α ◦A β

for all α ∈ HomAopp(a, b) and β ∈ HomAopp(b, c).
Let A and B be DG-categories. A DG-functor A → B is a k-linear functor which

preserves the grading and the differential on morphisms. Wherever the context permits we
omit “DG-” and simply say “functor”. A degree n natural transformation of DG-functors
8

t
−→ 9 is a collection

{t (a) ∈ Homn
B(8(a),9(a))}a∈A

where t (a′) ◦ 8(α) = (−1)nm9(α) ◦ t (a) for every α ∈ Homm
A(a, a

′). Define the DG-
category DGFun(A,B) as follows. Its objects are DG-functors A → B. Its morphism
complexes Hom•DGFun(A,B)(8,9) consist of all natural transformations 8

t
−→ 9 graded

by degree and with differentials defined levelwise by those of B, i.e. dt (a) = dB(t (a))
for each a ∈ A. The composition maps are also defined levelwise by those of B.

We denote by DG-Cat the category whose objects are all small DG-categories over k
and whose morphisms are DG-functors between them.

2.1.2. Closed symmetrical monoidal structure on DG-Cat. Let A and B be DG-cate-
gories. We define A ⊗k B to be the DG-category whose objects are pairs (a, b) with
a ∈ A, b ∈ B, whose morphism complexes are

HomA⊗B(a ⊗ b, a
′
⊗ b′)) = HomA(a ⊗ a

′)⊗ HomB(b ⊗ b
′)

and whose composition is defined by

(α′ ⊗ β ′) ◦ (α ⊗ β) = (−1)deg(β ′) deg(α)(α′ ◦ α)⊗ (β ′ ◦ β).

This construction is bifunctorial in A and B and defines a monoidal structure on DG-Cat
whose unit is k.

The monoidal structure (⊗k, k) is symmetric via the natural isomorphism

B ⊗k A
∼
−→ A⊗k B (2.4)

defined on objects by b⊗a 7→ a⊗b and on morphisms by β⊗α 7→ (−1)deg(α) deg(β)α⊗β.
The monoidal structure (⊗k, k) is, moreover, closed. The internal Hom is given by

DGFun(−,−). Explicitly, for any DG-categories A,B, C we have the natural isomor-
phism

DGFun(A⊗k B, C)
∼
−→ DGFun(B,DGFun(A, C)) (2.5)
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which takes any A⊗k B
8
−→ C to the functor

∀b ∈ B b 7→ 8(−⊗ b), ∀β ∈ HomB(b, b
′) β 7→ 8(Id⊗ β),

and any 8
f
−→ 9 to the natural transformation {8(−⊗ b)

f
−→ 9(−⊗ b)}b∈B. The object

set of DGFun(−,−) is the set HomDG-Cat(−,−), so the isomorphism (2.5) induces an
adjunction isomorphism between (−)⊗k A and DGFun(A,−) which makes DGFun the
internal Hom in (DG-Cat,⊗k, k).

For any DG-categories A and B we have the tautological categorical isomorphisms

(A⊗k B)opp
' Aopp

⊗k Bopp, (2.6)
DGFun(A,B)opp

' DGFun(Aopp,Bopp). (2.7)

The former isomorphism sends any pair of objects or morphisms in A⊗k B to themselves
considered as elements of Aopp

⊗k Bopp. The latter sends any functor or natural transfor-
mation in DGFun(A,B) to itself considered as an element of DGFun(Aopp,Bopp).

Finally, for any DG-categories A,B, C,D we have the simultaneous evaluation func-
tor

DGFun(A, C)⊗k DGFun(B,D)→ DGFun(A⊗k B, C ⊗k D) (2.8)

which sends any pair of functors A → C and B → D to the functor of simultaneously
evaluating them on any pair of objects or morphisms in A ⊗k B; similarly for natural
transformations of such pairs of functors. Note that there are no sign twists involved.

2.1.3. DG-modules. A (right) A-module is a functor from Aopp to Mod-k. Denote
by Mod-A the DG-category DGFun(Aopp,Mod-k). For brevity and to mimic the no-
tation used for DG-algebras, for any E,F ∈ Mod-A we write HomA(E, F ) for
HomMod-A(E, F ). The category H 0(Mod-A) admits a natural structure of triangulated
category which is defined levelwise by the usual triangulated structure on H 0(Mod-k)
[Kel94, §2.2].

For any E ∈ Mod-A and a ∈ A we write Ea for the complex of k-modules E(a).
We write v ∈ E if v ∈ Ea for some a ∈ A. The Yoneda embedding A ↪→ Mod-A is the
fully faithful functor defined on objects by

a 7→ HomA(−, a) ∀a ∈ A

and on morphisms by composition. For each a ∈ A denote by aA its image under the
Yoneda embedding; these are the representable objects of Mod-A. Note that for all
a, b ∈ A we have aAb = HomA(b, a). For any E ∈ Mod-A trivially HomA(aA, E)
= Ea . For each s ∈ Ea and α ∈ aAb we write s·α for the element (−1)deg(s) deg(α)E(α)(s)

∈ Eb. We have
(s · α) · β = s · (α ◦ β).

In other words, we can think of the data defining an A-module E as a collection of fibers
Ea ∈ C(k) for each a ∈ A with a right action of (the Hom-spaces of) A on them, such
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that aAb acts onEa and maps it toEb. Similarly, a morphism of right A-modulesE
t
−→ F

can be thought of as a collection of maps Ea
t
−→ Fa in Mod-k which commute with the

A-action: t (s · α) = t (s) · α for any s ∈ Ea and α ∈ aA.
A left A-module is a right Aopp-module, i.e. a functor A→ Mod-k. To facilitate the

treatment of bimodules, it is often useful to treat right Aopp-modules as left A-modules
and employ for them the following notation. For any F ∈ Mod-Aopp and a ∈ A we
write aF (instead of Fa) for the complex F(a). For each a ∈ A write Aa for the image
of a under the Yoneda embedding of Aopp, i.e. for the functor HomA(a,−). Set α · s =
F(α)(s) for each s ∈ aF and α ∈ Aa ; it is a left action of A on F . A morphism of
left A-modules E

t
−→ F can be thought of as a collection of maps aE

t
−→ aF which

skew-commute with the A-action: t (α · s) = (−1)deg(t) deg(α)α · t (s) for any s ∈ aE and
α ∈ aA.

2.1.4. Tensor and Hom. Let A be a DG-category and let E and F be a right and a left A-
module. Define the tensor productE⊗AF ∈Mod-k to be the quotient of

⊕
a∈A Ea⊗aF

∈Mod-k by the A-action relations

(s · α)⊗ t = s ⊗ (α · t) ∀α ∈ bAa, s ∈ Eb, t ∈ aF . (2.9)

We extend this to a functor

(−)⊗A (−) : Mod-A⊗k Mod-Aopp
→Mod-k (2.10)

by defining the tensor product λ⊗ µ of two maps E
λ
−→ E′ and F

µ
−→ F ′ as follows. The

map ⊕
a∈A

Ea ⊗ aF →
⊕
a∈A

E′a ⊗ aF
′, e ⊗ f 7→ (−1)deg(e) deg(µ)λ(e)⊗ µ(f )

preserves A-action relations and we define λ ⊗ µ to be the induced map E ⊗A F →

E′ ⊗A F ′.
Similarly, we define the functor

HomA(−,−) : Mod-A⊗k (Mod-A)opp
→Mod-k (2.11)

on objects by (E, F ) 7→ HomA(F,E) and on morphisms as follows. For any pair of

maps E
λ
−→ E′ and F ′

µ
−→ F in Mod-A we define the composition map

HomA(F,E)
λ◦(−)◦µ
−−−−−→ HomA(F

′, E′), α 7→ (−1)deg(α) deg(µ)λ ◦ α ◦ µ.

2.1.5. DG-bimodules. An A-B-bimodule is an Aopp
⊗ B-module. We write A-Mod-B

for

DGFun(A⊗ Bopp,Mod-k) ' DGFun(A,Mod-B) ' DGFun(Bopp,Mod-Aopp)

considered as the DG-category of all A-B-bimodules. Let M ∈ A-Mod-B. For any
a ∈ A, b ∈ B we write aMb forM(a, b) ∈Mod-k, write aM for the B-moduleM(a,−),
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and Mb for the Aopp-module M(−, b). The functor A → Mod-B which corresponds to
M maps a to aM . We can extend it to a functor

(−)⊗A M : Mod-A→Mod-B,

where for any E ∈ Mod-A and b ∈ B we set (E ⊗A M)b = E ⊗A Mb and have B act
via Mb. We can further extend this to a lift of the tensor bifunctor (2.10) from Mod-Aopp

to A-Mod-B in the second argument. This admits a more general description.
Let A, B and C be any DG-categories. Since C-Mod-A and C-Mod-B are equivalent

to DGFun(C,Mod-A) and DGFun(C,Mod-B), the composition functor

DGFun(Mod-A,Mod-B)⊗k DGFun(C,Mod-A) (−)◦(−)
−−−−→ DGFun(C,Mod-B)

induces via adjunction a functor

DGFun(Mod-A,Mod-B)→ DGFun(C-Mod-A, C-Mod-B) (2.12)

best described as the functor of “defining fiberwise over C”. It takes a functor Mod-A 8
−→

Mod-B and defines a functor C-Mod-A→ C-Mod-B which takes any C-A-bimodule E
to the C-B-bimodule whose fiber over each c ∈ C is8(cE), and similarly for morphisms.

We can apply a similar procedure to functors whose domain is a tensor product of
module categories via the simultaneous evaluation functor (2.8). We define the functor

(−)⊗A (−) : C-Mod-A⊗k A-Mod-B→ C-Mod-B (2.13)

as the composition

DGFun(C,Mod-A)⊗k DGFun(Bopp,Mod-Aopp)

(2.8)
��

DGFun(C ⊗k Bopp,Mod-A⊗k Mod-Aopp)

(2.10)◦(−)
��

DGFun(C ⊗k Bopp,Mod-k)

Similarly, we use the Mod-k-valued Hom functor (2.11) to define the functors

HomB(−,−) : C-Mod-B ⊗k (A-Mod-B)opp
→ C-Mod-A, (2.14)

HomA(−,−) : A-Mod-C ⊗k (A-Mod-B)opp
→ B-Mod-C. (2.15)

For any A-B-bimodule M we have the usual Tensor-Hom adjunction: for any DG-
category C,

(−)⊗A M : C-Mod-A→ C-Mod-B

is left adjoint to
HomB(M,−) : C-Mod-B→ C-Mod-A.



2588 Rina Anno, Timothy Logvinenko

Its adjunction counit

HomB(M,−)⊗A M → Id (2.16)

is given by the composition map

HomB(M,−)⊗A HomB(B,M)→ HomB(B,−),

and its adjunction unit

Id→ HomB(M, (−)⊗A M) (2.17)

is defined by

s 7→ (∀t ∈ aM, t 7→ s ⊗ t) ∀c ∈ C, a ∈ A, s ∈ c(−)a .

Similarly,
M ⊗B (−) : B-Mod-C → A-Mod-C

is left adjoint to
HomAopp(M,−) : A-Mod-C → B-Mod-C

with analogous adjunction unit

Id→ HomAopp(M,M ⊗B (−)) (2.18)

and counit

M ⊗B HomAopp(M,−)→ Id. (2.19)

2.1.6. Derived category. A moduleC ∈Mod-A is acyclic if for each a ∈ A the complex
of k-modules Ca is acyclic. A module P ∈ Mod-A is h-projective if for every acyclic
C ∈Mod-A we have HomH 0(Mod-A)(P, C) = 0. Denote by P(A) the corresponding full
subcategory of Mod-A. A morphismE→ F of A-modules is a quasi-isomorphism if for
each a ∈ A the induced morphism Ea → Fa is a quasi-isomorphism. Let M′

⊂Mod-A
be a full DG-subcategory. Then a left (resp. right) resolution of E ∈ A by E′ ∈ M′

is a quasi-isomorphism E′ → E (resp. E → E′). The derived category D(A) is the
localization of H 0(Mod-A) by the class of all quasi-isomorphisms. It can be under-
stood explicitly as follows. By definition of acyclicity, D(A) is the Verdier quotient of
H 0(Mod-A) by H 0(Ac(A)). By definition of h-projectivity, H 0(P(A)) is left orthog-
onal to H 0(Ac(A)). Since left resolutions by h-projectives exist in Mod-A, we have in
fact a semiorthogonal decomposition

H 0(Mod-A) = 〈H 0(Ac(A)), H 0(P(A))〉.

This canonically identifies D(A) = H 0(Mod-A)/H 0(Ac(A)) with H 0(P(A)). In prac-
tice, we can use for resolutions a smaller full subcategory SF(A) of semifree modules
in Mod-A. These are the modules E ∈ Mod-A which admit an exhaustive filtration
0 = F0 ⊆ F1 ⊆ · · · ⊆ E whose quotients Fi/Fi−1 are direct sums of shifts of rep-
resentable modules. Any semifree module is h-projective and any A-module can be
resolved by a semifree module [Dri04, §C.8]. When k is a field, we have a functorial
h-projective resolution of A-modules provided by the bar-resolution Ā of the diagonal
A-A-bimodule A (see e.g. [Kel94, §6.6]).
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Another way to understandD(A) is via either of the two natural model category struc-
tures induced on Mod-A from Mod-k. In particular, in the projective model category
structure on Mod-k the weak equivalences are the quasi-isomorphisms and the fibrations
are the termwise surjections of complexes. In the corresponding model category struc-
ture on Mod-A we define the equivalences and the fibrations levelwise in Mod-k, i.e. a
morphism A → B is an equivalence (resp. fibration) if for every a ∈ A the morphism
Aa → Ba is an equivalence (resp. fibration) in Mod-k [Toë07, §3]. It follows that ev-
ery A-module is fibrant, while the cofibrant modules are precisely the direct summands
of semifree modules. We denote the full subcategory of Mod-A consisting of cofibrant
objects by Int(A). It is the Karoubi completion of SF(A).

Summarizing, we have a chain of full subcategories

SF(A) ↪→ Int(A) ↪→ P(A) (2.20)

of Mod-A which after applying H 0 becomes a chain of equivalent full triangulated sub-
categories

H 0(SF(A)) ∼−→ H 0(Int(A)) ∼−→ H 0(P(A)) (2.21)

of H 0(Mod-A). The natural functor H 0(Mod-A) → D(A) induces an equivalence of
these with D(A). In the language of Section 4, SF(A), Int(A) and P(A) are quasi-
equivalent DG-enhancements of D(A).

An A-module E is quasi-representable if it is quasi-isomorphic to a representable
module. We denote by Qr(A) and Pqr(A) the corresponding full subcategories of Mod-A
and of P(A). A semifree A-module E is finitely generated if the filtration F0 ⊆ F1 ⊆

· · · ⊂ E can be taken to be finite with quotients Fi/Fi−1 finite direct sums of shifts of
representables. Denote by SFfg(A) the corresponding full subcategory of SF(A). Its ho-
motopy categoryH 0(SFfg(A)) is the triangulated hull ofH 0(A) inH 0(Mod-A), i.e. the
smallest full triangulated subcategory of H 0(Mod-A) containing H 0(A). An A-module
E is perfect if its image in D(A) lies in the full subcategory Dc(A) of compact objects,
i.e. HomD(A)(E,−) commutes with infinite direct sums. We denote the full subcategories
of perfect modules in Mod-A and P(A) by Perf (A) and PPerf (A), respectively.

In any category, an object E is a retract of an object F if there exist morphisms
E → F → E whose composition is the identity. For E,F ∈ Mod-A we say that E is a
homotopy retract of F if there exist E → F → E whose composition is homotopic to
the identity; in other words, E is a retract of F inH 0(Mod-A). In triangulated categories
the notion of a retract is the same as that of a direct summand. The category Dc(A) is the
Karoubi completion of H 0(SFfg(A)) inside D(A) [Kel94, §5]. Thus PPerf (A) coincides
with the full subcategory in Mod-A of homotopy retracts of elements of SFfg(A).

Let A and B be DG-categories and let M ∈ A-Mod-B. Let (−)
L
⊗A M , M

L
⊗B (−),

R HomB(M,−) and R HomAopp(M,−) be the derived functors corresponding to the
functors (−)⊗A M , etc.

We say that an A-B-bimodule M is

• A-perfect if Mb is a perfect Aopp-module for each b ∈ B,
• B-perfect if aM is a perfect B-module for each a ∈ A.

We similarly define the notions of A- and B- quasi-representability, h-projectivity, etc.
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Since acyclicity is defined levelwise in Mod-k, HomB(M,−) takes acyclic modules
to acyclic ones for any B-h-projective M . The same is true for M ⊗B (−), since it is

trivially true for any B-representableM . Thus to compute R HomB(M,−) andM
L
⊗B (−)

it suffices to take a B-h-projective resolution of M . Similarly, if M is A-h-projective

then (−) ⊗A M and HomAopp(M,−) compute (−)
L
⊗A M and R HomAopp(M,−). If k

is a field1 then any h-projective A-B-bimodule is both A- and B-h-projective [Kel94,
§6.1], and hence the derived functors above can be computed by taking an h-projective
resolution of M .

It follows from the above that M is

• A-perfect if and only if M
L
⊗B (−) restricts to Dc(Bopp)→ Dc(Aopp),

• B-perfect if and only if (−)
L
⊗A M restricts to Dc(A)→ Dc(B).

If k is a field we can be more precise. Let M ∈ P(A-B). The functors (−) ⊗A M and
M ⊗B (−) restrict to A→ P(B) and Bopp

→ P(Aopp), and M is

• A-perfect if and only if M ⊗B (−) restricts to a functor PPerf (Bopp)→ PPerf (Aopp),
• B-perfect if and only if (−)⊗A M restricts to a functor PPerf (A)→ PPerf (B).

2.2. Duals and adjoints

As before, let A be a DG-category. Define the diagonal A-A-bimodule A by setting
aAb = HomA(b, a) for any a, b ∈ A. Then aA and Aa are precisely the representable
modules HomA(−, a) and HomA(a,−) in Mod-A and Mod-Aopp. This coincides with
the notation introduced in §2.1.3.

The diagonal bimodule corresponds to the functor A→Mod-A which sends a to aA.
We have natural functorial isomorphisms

HomA(A,−) ' IdMod-A ' (−)⊗A A (2.22)

given for any A-module M explicitly by

M →M ⊗A A : s 7→ s ⊗ Ida, a ∈ A, s ∈Ma,

M ⊗A A→M : s ⊗ α 7→ s.α, a, b ∈ A, s ∈Mb, α ∈ bAa,

M → HomA(A,M) : s 7→ (α 7→ s.α ∀b ∈ A, α ∈ aAb), a ∈ A, s ∈Ma,

HomA(A,M)→M : α 7→ α(Ida), a ∈ A, α ∈ HomA(aA,M).

We use these isomorphisms implicitly throughout the paper.
On the other hand, HomA(−,A) is the dualizing functor

(−)A : (Mod-A)opp
→Mod-Aopp.

Explicitly, for any C ∈ Mod-A its dual module CA is the Aopp-module a 7→

HomA(C, aA). For any morphism C
α
−→ D in Mod-A the dual morphism αA is de-

1 If it is not, one should take cofibrant replacements of A and B [Toë07, Prop. 3.3].



Spherical DG-functors 2591

fined with a sign twist: for each a ∈ A define the requisite morphism HomA(D, aA)→
HomA(C, aA) by

β 7→ (−1)deg(β) deg(α)β ◦ α.

Tautologically, (−)A restricts to Id on the Yoneda embedded subcategories Aopp ↪→

(Mod-A)opp and Aopp ↪→Mod-Aopp. Therefore it induces an equivalence

SFfg(A)opp ∼
−→ SFfg(Aopp)

and a quasi-equivalence
PPerf (A)opp

→ PPerf (Aopp),

whose induced maps on morphism complexes are homotopy equivalences. By abuse of
notation, we also use (−)A for the dualizing functor for Aopp. The double dualizing func-
tor (−)AA

: Mod-A → Mod-A is isomorphic to the identity on SFfg(A) and homo-
topic to the identity on PPerf (A). An analogous claim holds for (−)AA

: Mod-Aopp
→

Mod-Aopp.
Let C ∈ Mod-B, D ∈ Mod-A and let M be an A-B-bimodule. There is a natural

map of DG k-modules

D ⊗A HomB(C,M)→ HomB(C,D ⊗A M) (2.23)

defined by setting, for any a ∈ A,

s ⊗ γ 7→ (∀t ∈ C, t 7→ s ⊗ γ (t)), s ∈ Da, γ ∈ HomB(C, aM).

This map is clearly an isomorphism when either C or D are representable. It follows that
it is an isomorphism when either C or D lies in SFfg(A), and a homotopy equivalence
when either C or D lies in PPerf (A).

If in (2.23) we set B = A and let M be the diagonal bimodule A, we obtain the
evaluation map

D ⊗A C
A ev
−→ HomA(C,D). (2.24)

It is the same map of DG k-modules as the composition map

HomA(A,D)⊗A HomA(C,A)→ HomA(C,D).

Let M be an A-B-bimodule. We define MA, the dual of M with respect to A, to
be the B-A-bimodule HomAopp(M,A). In other words, MA corresponds to the func-
tor B → Mod-A which maps b to (Mb)

A. Similarly, we define MB, the dual of M
with respect to B, to be the B-A-bimodule HomB(M,B), which corresponds to the
functor Aopp

→ Mod-Bopp which maps a to (aM)B. More generally, define the func-
tor (−)A : (A-Mod-B)opp

→ B-Mod-A fiberwise over B by the dualizing functor of
Mod-A, and define (−)B similarly. Denote by (−)Ã and (−)B̃ their derived functors
D(A-B)opp

→ D(B-A). Since (−)A is defined fiberwise over B, it sends A-h-projective
acyclic bimodules to acyclic ones. It follows that if M is A-h-projective, then MÃ

'

(M)A in D(B-A). Similarly, if M is B-h-projective, then MB̃
' (M)B in D(B-A).
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The evaluation map (2.24) induces a morphism of functors Mod-B→Mod-A,

(−)⊗B M
B
→ HomB(M,−). (2.25)

It follows from the above that for any M the map (2.25) is an isomorphism on all of
SFfg(B), and a homotopy equivalence on all of PPerf (B). On the other hand, if M is
B-h-projective and B-perfect, then for any N ∈ Mod-B the morphism (2.25) is a quasi-
isomorphism. This is because all aM lie in PPerf (B), and thus (2.25) is a homotopy equiv-
alence levelwise in Mod-k. Similarly, we obtain a morphism of functors

MA
⊗A (−)→ HomA(M,−), (2.26)

which is a quasi-isomorphism on all of Mod-Aopp whenever M is A-h-projective and
A-perfect.

Consider the map
MB
⊗A M → B

given by the Tensor-Hom adjunction counit (2.16) evaluated at the diagonal bimodule B.
Taking its right adjoint with respect toMB

⊗A(−) yields a mapM → MBB. The induced
natural transformation

Id→ (−)BB (2.27)

is a quasi-isomorphism for any B-h-projective and B-perfect M , since it is then a homo-
topy equivalence levelwise in Mod-B. We similarly define a natural transformation

Id→ (−)AA, (2.28)

which is a quasi-isomorphism for any A-h-projective and A-perfect M .
The above properties of the natural transformations (2.25)–(2.28) imply the following:

Lemma 2.1. (1) For any M ∈ DA-Perf (A-B) we have an isomorphism of functors
D(Aopp)→ D(Bopp):

MÃ L
⊗A (−) ' R HomA(M,−). (2.29)

(2) For any M ∈ DB-Perf (A-B) we have an isomorphism of functors D(B)→ D(A):

(−)
L
⊗B M

B̃ ∼
−→ R HomB(M,−). (2.30)

(3) We have an isomorphism of endofunctors of DA-Perf (A-B):

Id
∼
−→ (−)ÃÃ. (2.31)

(4) We have an isomorphism of endofunctors of DB-Perf (A-B):

Id
∼
−→ (−)B̃B̃. (2.32)

In view of Tensor-Hom adjunction we then have:
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Corollary 2.2. (1) For any M ∈ DA-Perf (A-B) the functor

(−)
L
⊗B M

Ã
: D(B)→ D(A)

is left adjoint to the functor

(−)
L
⊗A M : D(A)→ D(B).

(2) For any M ∈ DB-Perf (A-B) the functor

(−)
L
⊗B M

B̃
: D(B)→ D(A)

is right adjoint to the functor

(−)
L
⊗A M : D(A)→ D(B).

Proof. (1) By Lemma 2.1 we have the isomorphism of functors

(−)
L
⊗A M

(2.31)
−−−→ (−)

L
⊗A M

ÃÃ (2.29)
−−−→ R HomA(M

Ã,−). (2.33)

This isomorphism transforms the derived Tensor-Hom adjunction

(−)
L
⊗B M

Ã
↔ R HomA(M

Ã,−)

with its unit (2.17) and counit (2.16) into the desired adjunction

(−)
L
⊗B M

Ã
↔ (−)

L
⊗A M.

(2) Similarly, by Lemma 2.1 we have an isomorphism

(−)
L
⊗B M

B̃ (2.30)
−−−→ R HomB(M,−) (2.34)

which produces the desired adjunction out of the Tensor-Hom adjunction

(−)
L
⊗A M ↔ R HomB(M

B̃,−). ut

It is helpful to have the units and counits of the adjunctions in Cor. 2.2 written down
explicitly in terms of the maps between the corresponding bimodules:

Definition 2.3. Let M ∈ A-Mod-B. The B-trace map

MB
⊗A M

tr
−→ B (2.35)

in B-Mod-B is the counit (2.16) of the Tensor-Hom adjunction evaluated at the diagonal
bimodule B. The derived B-trace map is the induced map MB̃ L

⊗A M
tr
−→ B in D(B-B).

The A-trace map

M ⊗B M
A tr
−→ A (2.36)

and its derived version are defined similarly.
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For B- and A-perfect M the associativity of the composition map implies that the natural
transformations

(−)
L
⊗A M

L
⊗B M

Ã tr
−→ IdD(A), (−)

L
⊗B M

B̃ L
⊗A M

tr
−→ IdD(B)

coincide with the counits of the adjunctions in Cor. 2.2(1)–(2).

Definition 2.4. Let M ∈ A-Mod-B. The A-action map

A act
−→ HomB(M,M) (2.37)

in A-Mod-A is the unit (2.17) of the Tensor-Hom adjunction evaluated at A. The derived
A-action map is the induced map A act

−→ R HomB(M,M) in D(A-A). When M is B-

perfect we also use this term for the corresponding map A act
−→ M

L
⊗B MB̃ obtained via

the isomorphism (2.30).
The B-action map

B act
−→ HomAopp(M,M) (2.38)

and its derived versions are defined similarly.

For B- and A-perfect M the induced natural transformations

IdD(B)
act
−→ (−)

L
⊗B M

Ã L
⊗A M, IdD(A)

act
−→ (−)

L
⊗A M

L
⊗B M

B̃

coincide with the units the of adjunctions in Cor. 2.2(1)–(2). Showing this amounts to
checking that

(−)⊗A A Id⊗act //

'

��

(−)⊗A HomB(M,M)

(2.23)
��

(−)
(2.17) // HomB(M, (−)⊗A M)

commutes. It is a straightforward exercise we leave to the reader.
We would now like to lift these derived adjunctions to homotopy ones. That is, given

an A- and B-perfect M ∈ A-Mod-B, we would like to write down h-projective resolu-
tions of M , MÃ and MB̃ and the four maps which induce in the homotopy category the
units and counits of the two adjunctions in Cor. 2.2.

We use specific resolutions of M , MÃ and MB̃ obtained via the bar-construction
[Kel94, §6.6]. We briefly recall the essentials. Let Ā → A and B̄ → B be the bar-
resolutions of the diagonal bimodules in A-Mod-A and B-Mod-B. These are quasi-
isomorphisms with Ā and B̄ h-projective. The induced natural transformations (−)⊗A Ā
→ IdMod-A and (−)⊗B B̄→ IdMod-B are functorial h-projective resolutions for A- and
B-modules, respectively. This can be seen via the following useful fact:
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Proposition 2.5. Let A, B and C be DG-categories. Let M be an A-B-bimodule and N
be a B-C-bimodule. If either

(1) M is h-projective and N is a C-h-projective, or
(2) M is A-h-projective and N is h-projective,

then M ⊗B N is an h-projective A-C-bimodule.

Proof. Suppose M is h-projective and N is C-h-projective, and let Q be any acyclic
A-C-bimodule. By the adjunction of (−)⊗B N and HomC(N,−) we have a natural iso-
morphism

HomA-C(M ⊗B N,Q) ' HomA-B(M,HomC(N,Q)).

Observe that for any a ∈ A and b ∈ B, bN is an h-projective module and Qa is an
acyclic C-module. It follows that HomC(N,Q) is an acyclic A-B-bimodule, and hence
HomA-B(M,HomC(N,Q)) is acyclic. We have now shown that HomA-C(M ⊗B N,Q)
is acyclic for any acyclic Q, whence M ⊗B N is an h-projective A-C-bimodule.

The case ofM being A-h-projective andN being h-projective is treated similarly. ut
Similarly, for A-B-bimodules an h-projective resolution could be obtained by tensoring
with Aopp ⊗ B. However, there is another resolution more suited to our needs:

Corollary 2.6. Let M ∈ A-Mod-B. Then Ā ⊗A M ⊗B B̄ → M is an h-projective
resolution of M .

Proof. By Prop. 2.5 the bimodule Ā⊗AM is A-h-projective, and then by Prop. 2.5 again,
(Ā⊗A M)⊗B B̄ is h-projective. ut

Definition 2.7. Define P̄(A-B) to be the full subcategory of P(A-B) consisting of all
bimodules of the form Ā⊗A M ⊗B B̄ for some M ∈ A-Mod-B.

Note that by Cor. 2.6 we have a canonical identification H 0(P̄(A-B)) ' D(A-B).
Let N be any A-B-bimodule. The quasi-isomorphisms Ā→ A and B̄ → B and the

functorial isomorphisms (2.22) yield functorial quasi-isomorphisms

Ā⊗A N
∼
−→ N

∼
←− N ⊗B B̄. (2.39)

IfN is in P(A-B) then so are Ā⊗AN andN⊗BB̄, and the two quasi-isomorphisms in
(2.39) are actually homotopy equivalences. If moreover N ∈ P̄(A-B), we have canonical
homotopy inverses of (2.39),

Ā⊗A N
∼
←− N

∼
−→ N ⊗B B̄, (2.40)

induced by the comultiplication maps Ā → Ā ⊗A Ā and B̄ → B̄ ⊗B B̄ defined in
[Kel94, §6.6]. Moreover, these are genuine right inverses—the following compositions
are not merely homotopic but equal to Id:

N
(2.40)
−−−→ Ā⊗A N

(2.39)
−−−→ N, N

(2.40)
−−−→ N ⊗B B̄ (2.39)

−−−→ N.

This is our main reason for introducing P̄(A-B): it makes a number of diagrams commute
genuinely and not up to homotopy. Throughout the rest of the paper, where necessary, we
implicitly identify any N ∈ P̄(A-B) with Ā⊗A N and N ⊗B B̄ via (2.39) and (2.40).
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The dualization functors (−)A and (−)B do not restrict to functors P̄(A-B) →
P̄(B-A). We thus define:

Definition 2.8. Let M ∈ A-Mod-B. Define MhA and MhB to be the bimodules B̄ ⊗B
MA
⊗A Ā and B̄ ⊗B MB

⊗A Ā, respectively.

These are our chosen h-projective resolutions of the derived duals MÃ and MB̃. We now
proceed to define the unit and counit maps of our homotopy adjunctions.

Definition 2.9. Let M ∈ P̄(A-B). The homotopy A-trace map M ⊗B MhA tr
−→ Ā is the

composition

M ⊗B M
hA B̄→B
−−−→ M ⊗B M

A
⊗A Ā tr⊗Id

−−−→ Ā. (2.41)

Similarly, the homotopy B-trace map MhB
⊗A M

tr
−→ B̄ is the composition

MhB
⊗A M

Ā→A
−−−−→ B̄ ⊗B M

B
⊗A M

Id⊗tr
−−−→ B̄. (2.42)

Definition 2.10. Let M ∈ P̄B-Perf(A-B). The map

M ⊗B M
hB B̄→B
−−−→ M ⊗B M

B
⊗A Ā (2.25)⊗Id

−−−−−→ HomB(M,M)⊗A Ā (2.43)

is a quasi-isomorphism since (2.25) is one. Thus there exists a homotopy lift of Ā act⊗Id
−−−→

HomB(M,M) ⊗A Ā along (2.43). Choose once and for all such a lift and call it the
homotopy A-action map

Ā act
−→ M ⊗B M

hB. (2.44)

Let M ∈ P̄A-Perf(A-B). We define similarly the homotopy B-action map

B̄ act
−→ MhA

⊗A M. (2.45)

Proposition 2.11. Let A and B be DG-categories and M ∈ P̄(A-B).
If M is B-perfect then (−)⊗BMhB is homotopy right adjoint to (−)⊗AM with the

unit and the counit being the homotopy B-action and B-trace maps. That is, the compo-
sitions

MhB Id⊗act
−−−→ MhB

⊗A M ⊗B M
hB tr⊗Id
−−−→ MhB, (2.46)

M
act⊗Id
−−−→ M ⊗B M

hB
⊗A M

Id⊗tr
−−−→ M (2.47)

are homotopic to the identity maps.
IfM is A-perfect then (−)⊗BMhA is homotopy left adjoint to (−)⊗AM with the unit

and the counit being the homotopy A-action and A-trace maps. That is, the compositions

MhA act⊗Id
−−−→ MhA

⊗A M ⊗B M
hA Id⊗tr
−−−→ MhA, (2.48)

M
Id⊗act
−−−→ M ⊗B M

hA
⊗A M

tr⊗Id
−−−→ M (2.49)

are homotopic to the identity maps.
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Proof. The compositions

MB̃ Id⊗act
−−−→ MB̃ L

⊗A M ⊗B M
B̃ tr⊗Id
−−−→ MB̃,

M
act⊗Id
−−−→ M

L
⊗B M

B̃
⊗A M

Id⊗tr
−−−→ M

are equal to IdD(B-A) and IdD(A-B). This is because the derived B-action and B-trace maps

are the unit and the counit of a genuine adjunction between (−)
L
⊗B MB̃ and (−)

L
⊗AM .

By construction, the images of homotopy B-trace and B-action maps in D(B-B) are
identified with their derived counterparts by the isomorphismMB̃

' MhB. It follows that
the images of (2.46) and (2.47) inD(B-A) andD(A-B) are conjugate (and thus equal) to
IdD(B-A) and IdD(A-B). Hence (2.46) and (2.47) themselves are homotopic to IdB-Mod-A
and IdA-Mod-B.

The second assertion is proved analogously. ut

Let A, B and C be DG-categories. Let M ∈ A-Mod-B and N ∈ B-Mod-C. Consider the
composition

NC
⊗B M

B ev
−→ HomB(M,N

C) = HomB(M,HomC(N, C))
adj.
−−→
∼

HomB(M ⊗B N, C) = (M ⊗B N)
C . (2.50)

The first map is the evaluation map (2.24), it is a quasi-isomorphism if M is B-perfect
and B-h-projective. The second map is the adjunction isomorphism for (−) ⊗B N and
HomC(N,−). Similarly,

NB
⊗B M

A ev
−→ HomBopp(N,HomAopp(M,A))

adj.
−−→
∼

(M ⊗B N)
A (2.51)

is a quasi-isomorphism if N is A-perfect and A-h-projective. We thus have:

Lemma 2.12. Let A, B and C be DG-categories. Let M and N be A-B- and B-C-
bimodules.

If M is B-perfect we have an isomorphism in D(C-A):

N C̃ L
⊗B M

B̃ (2.50)
−−−→ (M

L
⊗B N)

C̃ . (2.52)

If N is B-perfect we have an isomorphism in D(C-A):

N B̃ L
⊗B M

Ã (2.51)
−−−→ (M

L
⊗B N)

Ã. (2.53)

More is true:

Lemma 2.13. Let A and B be DG-categories and M ∈ D(A-B) be A- and B-perfect.

Then B act
−→ MÃ L

⊗A M is isomorphic in D(B-B) to

(MB̃ L
⊗A M

tr
−→ B)lB̃.
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Similarly, A
act
−→ M

L
⊗B MB̃ is isomorphic in D(A-A) to

(M
L
⊗B M

Ã tr
−→ A)rÃ.

Here by (−)lB̃ we mean dualizing a B-B-bimodule as a left B-module. Similarly for
(−)rÃ, etc.

Proof. We only prove the first assertion, the second is proved similarly. Replace M by

an h-projective resolution. Then in D(B-B) the map B act
−→ MÃ L

⊗A M is isomorphic to

B act
−→ HomAopp(M,M), and MB̃ L

⊗AM
tr
−→ B is isomorphic to MB

⊗AM
tr
−→ B. It now

suffices to show that in B-Mod-B the diagram

B

act

��

act // HomAopp(M,M)

Id⊗(2.27)
��

HomAopp(M,MBB)

adjunction
��

HomBopp(B,B) tr // HomBopp(MB
⊗A M,B)

(2.54)

is commutative, since its left column is an isomorphism and its right column a quasi-
isomorphism. The diagram (2.54) commutes because both its halves can be readily seen
to compose into the element of

HomB-B(B,HomBopp(MB
⊗A M,B))

which is adjoint to the trace map MB
⊗A M

tr
−→ B in

HomB-B(M
B
⊗A M,B)

under the adjunction of MB
⊗A M ⊗B (−) and HomBopp(MB

⊗A M,−). ut

Finally, we have the following analogue of Prop. 2.5 with h-projectivity replaced by per-
fection:

Proposition 2.14. Let A, B and C be DG-categories. Let M be a perfect A-B-bimodule

and N be a C-perfect B-C-bimodule. Then M
L
⊗B N is a perfect A-C-bimodule.

Proof. Let
⊕
Qi be an infinite direct sum of A-C-bimodules. We have a chain of natural

isomorphisms:

HomD(A-C)
(
M

L
⊗B N,

⊕
Qi

)
' HomD(A-B)

(
M,R HomC

(
N,
⊕

Qi

))
, (2.55)

HomD(A-B)
(
M,R HomC

(
N,
⊕

Qi

))
' HomD(A-B)

(
M,

⊕
R HomC(N,Qi)

)
,

(2.56)
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HomD(A-B)
(
M,

⊕
R HomC(N,Qi)

)
'

⊕
HomD(A-B)(M,R HomC(N,Qi)),

(2.57)⊕
HomD(A-B)(M,R HomC(N,Qi)) '

⊕
HomD(A-C)(M

L
⊗B N,Qi). (2.58)

Here (2.55) and (2.58) are due to the adjunction of (−)
L
⊗B N and R HomC(N,−) done

over A, (2.56) is due to N being C-perfect, and (2.57) is due to M being perfect.

Thus HomD(A-C)(M
L
⊗B N,−) commutes with infinite direct sums, i.e. M

L
⊗B N is

perfect. ut

Recall that a DG-category A is called smooth if the diagonal bimodule A is a perfect
A-A-bimodule.

Corollary 2.15. Let A be a smooth DG-category and B be any DG-category. Then any
B-perfect A-B-bimodule N is perfect.

Proof. By definition, A being smooth means that A is a perfect A-A-bimodule. We then
apply Lemma 2.14 to conclude that N ' A⊗A N is perfect. ut

3. Twisted complexes and twisted cubes

3.1. Twisted complexes

The notion of a twisted complex was introduced in [BK90]. There exist at present two
different conventions for writing down twisted complexes: the original one introduced
in [BK90] and a slightly different one introduced in [BLL04] where all the objects in
a twisted complex are shifted so as to ensure that all the twisted maps have degree 1.
Abstractly, this latter convention is more natural as these shifts are precisely what one has
to do when taking the convolution of a twisted complex.

However, all the twisted complexes we work with in this paper are lifts of genuine
complexes in the homotopy category, and hence they exist naturally in the convention of
[BK90]. For this reason we are going to present the material in this section, such as the
formulas for dualizing and tensoring twisted complexes, in the notation of [BK90]. The
authors are well aware that the signs in these formulas are much simpler in the notation
of [BLL04]. However, to actually apply any formula in the [BLL04] convention to the
twisted complexes we work with throughout the paper, we would first have to shift every-
thing to make all the twisted maps have degree 1, then apply the formula, and then shift
everything back to relate the answer to what we are working with. This would introduce
back all the complicated signs, and it is therefore better to write down the formulas in the
[BK90] convention from the start.

The definitions in the published version of [BK90] contain sign errors. For the reader’s
convenience we give the corrected versions of these definitions:

Definition 3.1. Let A be a DG-category. A twisted complex over A is a collection

{(Ei)i∈Z, αij : Ei → Ej }
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where Ei are objects in A with Ei = 0 for all but a finite number of i, and αij are
morphisms in A of degree i − j + 1 satisfying the condition

(−1)jdαij +
∑
k

αkj ◦ αik = 0.

A twisted complex is called one-sided if αij = 0 for all i ≥ j .
We adopt the following convention: to write a twisted complex we write down two ex-

pressions separated by a comma. The first expression is the ith graded part of the twisted
complex. The second expression is the twisted map from ith to j th graded parts of the
twisted complex. For example, (Ei, αij ) is a twisted complex whose ith graded part is Ei
and whose twisted map from Ei to Ej is αij .

To make twisted complexes over A into a DG-category we define the Hom-complex
from a twisted complex (Ei, αij ) to a twisted complex (Fi, βij ) to be the complex of
k-modules whose degree p part is ∐

p=q+l−k

Homq

A(Ek, Fl)

with the differential defined by setting, for each γ ∈ Homq

A(Ek, Fl),

dγ = (−1)ldAγ +
∑
m∈Z

(βlm ◦ γ − (−1)q+l−kγ ◦ αmk),

where dA is the differential on morphisms in A.
The signs and indices in the definitions above are set up precisely so as to ensure that

the notion of convolution, defined below, extends naturally to a fully faithful functor from
the DG-category of twisted complexes over A to the DG-category Mod-A.

First we need to define the notion of a shift of an A-module. We do it levelwise in
Mod-k and, since we are dealing with right modules, we do not twist the A-action. That
is:

Definition 3.2. Let M be an A-module. For any n ∈ Z define the A-module M[n] by
setting

(M[n])a = Ma[n] ∀a ∈ A
and having A act via its action on M . That is, for any α ∈ aAb and any s ∈ (M[n])a we
set s ·M[n] α ∈ (M[n])b to be s ·M α.

Definition 3.3. Let A be a DG-category and let (Ei, αij ) be a twisted complex over A.
Let

⊕
i Ei[−i] be the A-module where we use the Yoneda embedding to embed each Ei

into Mod-A. The convolution of (Ei, αij ) is the A-module obtained by taking
⊕

i Ei[−i]

and endowing it with a new differential d +
∑
i,j αij , where d is the natural differential

of
⊕

i Ei[−i].
We use curly brackets to denote taking the convolution of the twisted complex, e.g.

{Ei, αij }.

The most time-consuming part of proving the results below is getting the signs to agree.
Recall the definitions of the bimodule-valued tensor product and Hom functors (2.13)–
(2.15). In particular, for any maps E

α
−→ E′ in B-Mod-A and F

β
−→ F ′ in A-Mod-C the
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product map

E ⊗A F
α⊗β
−−→ E′ ⊗ F ′

in B-Mod-C is given for every (b, c) ∈ B ⊗ Copp and a ∈ A by

e ⊗ f 7→ (−1)deg(e) deg(β)α(e)⊗ β(f ), e ∈ bEa, f ∈ aF c.

Similarly, for any mapsE′
α
−→ E in A-Mod-B and F

β
−→ F ′ in A-Mod-C the composition

map
β ◦ (−) ◦ α : HomA(E, F )→ HomA(E

′, F ′)

in B-Mod-C is given for every (b, c) ∈ B ⊗ Copp by

f 7→ (−1)deg(f ) deg(α)β ◦ f ◦ α, f ∈ HomA(Eb, Fc).

The formula for the other (“as right modules”) bimodule Hom functor (2.14) is identical.

Lemma 3.4. Let A, B and C be DG-categories and let (Ei, αij ) be a twisted complex
over A-Mod-B.

(1) Let (Fi, βij ) be a twisted complex over B-Mod-C. Then

{Ei, αij } ⊗B {Fi, βij }

'

{⊕
k+l=i

Ek ⊗B Fl,
∑
l+m=j

(−1)l(k−m+1)αkm ⊗ Idl +
∑
k+n=j

(−1)k Idk ⊗βln
}
.

(3.1)

(2) Let (Fi, βij ) be a twisted complex over C-Mod-B. Then

HomB({Ei, αij }, {Fi, βij })

'

{⊕
l−k=i

HomB(Ek, Fl),
∑
l−m=j

(−1)m(m−k)+l+1(−)◦αmk+
∑
n−k=j

(−1)(l−n+1)kβln◦(−)
}
.

(3.2)

Similarly, if (Fi, βij ) is a twisted complex over A-Mod-C then

HomA({Ei, αij }, {Fi, βij })

'

{⊕
l−k=i

HomA(Ek, Fl),
∑
l−m=j

(−1)m(m−k)+l+1(−)◦αmk+
∑
n−k=j

(−1)(l−n+1)kβln◦(−)
}
.

(3.3)

Proof. (1) An isomorphism of DG-modules is an isomorphism of the underlying graded
modules which respects the differential. As a graded A-C-bimodule, i.e. forgetting the
differential, the LHS of (3.1) is isomorphic to(⊕

k∈Z
Ek[−k]

)
⊗B

(⊕
l∈Z

Fl[−l]
)
,
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while the RHS is isomorphic to⊕
k,l∈Z

(Ek ⊗B Fl[−k − l]).

There is a tautological isomorphism between the two:

e ⊗ f 7→ (−1)k
′le ⊗ f,

a ∈ Aopp, b ∈ B, c ∈ C; k, l, k′, l′ ∈ Z; e ∈ (a(Ek)b)k′; f ∈ (b(El)c)l′ ,

which needs its sign twist to respect the B-action relations of the corresponding tensor
products. This isomorphism can be readily seen to also respect the differentials

d(e ⊗ f ) = (−1)kdEke ⊗ f +
∑
m

αkm(e)⊗ f + (−1)k+k
′
+le ⊗ dFlf

+

∑
n

(−1)k+k
′

e ⊗ βln(f ),

d(e ⊗ f ) = (−1)k+ldEke ⊗ f + (−1)k+l+k
′

e ⊗ dFlf +
∑
m

(−1)l(k−m+1)αkm(e)⊗ f

+

∑
n

(−1)k+(l−n+1)k′e ⊗ βln(f )

on the LHS and the RHS of (3.1).
(2) We only prove the first statement, the second is proved identically. As a graded

C-A-bimodule, the LHS of (3.2) is isomorphic to

HomB
(⊕

k

Ek[−k],
⊕
l

Fl[−l]
)
, (3.4)

while the RHS is isomorphic to⊕
k,l

HomB(Ek, Fl)[−(l − k)]. (3.5)

Since all the direct sums are finite, the obvious natural map from (3.5) to (3.4) is an
isomorphism of graded C-A-bimodules. It does not respect the differentials given for any
a ∈ A, c ∈ C and f ∈ Homq

B(a(Ek), c(Fl)) by

df = (−1)ldBf +
∑
m

(−1)q+l−k+1f ◦ αmk +
∑
n

βln (3.6)

on the LHS of (3.2), and by

df = (−1)l−kdBf +
∑
m

(−1)q(m−k+1)+m(m−k)+l+1f ◦ αmk +
∑
n

(−1)(l−n+1)kβln

(3.7)

on the RHS of (3.2). One can now readily check that the composition of the natural
isomorphism above with the automorphism of (3.5) which multiplies each Homq

B(Ek, Fl)
by (−1)(q−1)k respects the differentials and thus yields the desired isomorphism of DG-
bimodules. ut
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Lemma 3.5. Let A and B be DG-categories and let (Ei, αij ) be a twisted complex of
A-B-bimodules. Let E be its convolution

{
Ei, αij

}
.

(1) Then

EB
' {EB

−i, (−1)j
2
+ij+1αB(−j)(−i)}, (3.8)

EA
' {EA

−i, (−1)j
2
+ij+1αA(−j)(−i)} (3.9)

in A-Mod-B.
(2) The A-trace map E ⊗B EA tr

−→ A is isomorphic to the image in A-Mod-A of the
map(⊕
k−l=i

Ek ⊗B E
A
l ,

∑
m−l=j

(−1)l(k−m+1)αkm ⊗ Id+
∑
k−n=j

(−1)k+n
2
+nl+1Id⊗ αAnl

)
→ A (3.10)

which consists of a single degree 0 map
⊕

k Ek ⊗B E
A
k

∑
tr

−−→ A.

The A-action map A act
−→ HomB(E,E) is isomorphic to the image in A-Mod-A of

the map

A→
(⊕
l−k=i

HomB(Ek, El),
∑
l−m=j

(−1)m(m−k)+l+1(−) ◦ αmk

+

∑
n−k=j

(−1)(l−n+1)kαln ◦ (−)
)

(3.11)

which consists of a single degree 0 map A
∑

act
−−−→

⊕
k HomB(Ek, Ek).

Analogous statements hold for the B-trace and B-action maps.
(3) Suppose each Ei is h-projective and B-perfect.

The map E ⊗B EhA
tr
−→ Ā is homotopy equivalent to the image in A-Mod-A of the

map(⊕
k−l=i

Ek ⊗B E
hA
l ,

∑
m−l=j

(−1)l(k−m+1)αkm ⊗ Id+
∑
k−n=j

(−1)k+n
2
+nl+1Id⊗ αAnl

)
→ Ā (3.12)

which consists of a single degree 0 map
⊕

k Ek ⊗B E
hA
k

∑
tr

−−→ Ā.

The map Ā act
−→ E ⊗B EhB is homotopy equivalent to the image in A-Mod-A of the

map

Ā→
(⊕
k−l=i

Ek ⊗B E
hB
l ,

∑
m−l=j

(−1)−l(k−m+1)αkm ⊗ Id

+

∑
k−n=j

(−1)k+n
2
+nl+1Id⊗ αBnl

)
(3.13)

which consists of a single degree 0 map Ā
∑

act
−−−→

⊕
k Ek ⊗B E

hB
k .

Analogous statements hold for the B-trace and B-action maps when the Ei are h-
projective and A-perfect.
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Proof. (1) Both statements follow immediately from Lemma 3.4(2) by setting the twisted
complex {Fi, βij } to be the corresponding diagonal bimodule concentrated in degree 0.

(2) For the A-trace map claim, the isomorphisms (3.9) and (3.1) compose to an iso-
morphism from E ⊗B EA to the convolution of the LHS of (3.10). We claim that this
isomorphism composes with the image of (3.10) in A-Mod-A to give E ⊗B EA tr

−→ A.
When checking maps to be equal it suffices to only consider them as maps of graded mod-
ules. Thus we are reduced to checking that the trace map of a finite direct sum of graded
modules equals the sum of the trace maps of the individual modules. This is straightfor-
ward.

For the A-action map, we are similarly reduced to checking that the action map A→
HomB(E,E) is also compatible with finite direct sums.

(3) We only prove the first claim. The natural maps Ā → A and B̄ → B induce
isomorphisms in D(A-A) between E ⊗B EhA

tr
−→ Ā and E ⊗B EA tr

−→ A and also
between (3.12) and (3.10). It follows from (2) that E ⊗B EhA

tr
−→ Ā and (3.12) are

isomorphic in D(A-A). Since all the bimodules involved are h-projective, the two are
furthermore isomorphic in H 0(Mod-A), as required. ut

3.2. Pretriangulated categories

Let A and B be DG-categories. A functor A f
−→ B is a quasi-equivalence if f induces

quasi-isomorphisms on morphism complexes and H 0(A) H 0(f )
−−−→ H 0(B) is an equiva-

lence of categories.
A DG-category A is pretriangulated if H 0(A) is a triangulated subcategory of

H 0(Mod-A) under the Yoneda embedding. The pretriangulated hull Pre-Tr(A) of A
is the category of one-sided twisted complexes in A—these are the twisted complexes
(Ei, qij ) where qij = 0 if i ≥ j . The convolution functor gives a fully faithful embed-
ding Pre-Tr(A) ↪→ Mod-A whose composition with A → Pre-Tr(A) is the Yoneda
embedding and whose image in Mod-A is equivalent to SFfg(A) [Dri04, §2.4]. Hence
H 0(Pre-Tr(A)) coincides with the triangulated hull ofH 0(A) inH 0(Mod-A). Therefore
A is pretriangulated if and only if the natural embedding A ↪→ Pre-Tr(A) is a quasi-
equivalence. We say that A is strongly pretriangulated if A ↪→ Pre-Tr(A) is in fact an

equivalence; in other words, if it has a quasi-inverse Pre-Tr(A) T
−→ A. Note that in that

case the convolution functor filters through the Yoneda embedding, i.e.

Pre-Tr(A) T
−→ A ↪→Mod-A

is the convolution functor. For strongly pretriangulated categories, by abuse of notation,
we mainly use the term convolution functor to mean T .

Let A be any DG-category. It is known that Pre-Tr(A) is strongly pretriangulated
[BK90]. Also DGFun(A, C) is strongly pretriangulated for any strongly pretriangulated C
since we can define convolutions of twisted complexes levelwise in C. In particular,
Mod-A is strongly pretriangulated since Mod-k is. Finally, a full subcategory of Mod-A
(or any other strongly pretriangulated DG-category) which is itself pretriangulated, e.g.
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it descends to a triangulated subcategory of H 0(Mod-A), and closed under homotopy
equivalences, is strongly pretriangulated. Therefore P(A) and PPerf (A) are strongly pre-
triangulated and, for any other DG-category B, PA-Perf (A-B) and PB-Perf (A-B) are
also strongly pretriangulated. If A itself is pretriangulated, then Pqr(A) and PA-qr(A-B)
are strongly pretriangulated. If, on the other hand, B is pretriangulated, then PB-qr(A-B)
is strongly pretriangulated.

3.3. Twisted cubes

One of the chief technical tools we employ in this paper is the notion of a twisted cube
over a pretriangulated category. This seemingly trivial extension of the notion of a twisted
complex has some far-reaching consequences that we exploit. To the authors’ knowledge,
the material below is original to this paper.

We employ the following notation: Let I = {−1, 0}n enumerate vertices of an
n-cube.2 For ī, j̄ ∈ I with ī = (i1, . . . , in) and j̄ = (j1, . . . , jn) we write j̄ > ī if
jm ≥ im for all m and ī 6= j̄ . For any ī ∈ I we denote by |ī| its degree

∑
im.

Let C be a pretriangulated category. A twisted n-cube over C is
(1) a set {Xī}i∈I of objects of C,
(2) a set {qī j̄ }ī,j̄∈I, ī<j̄ of morphisms in C such that qī j̄ is a morphism Xī → Xj̄ of

degree |ī| − |j̄ | + 1 which satisfies the relation

(−1)|j̄ |dqī j̄ +
∑
ī<k̄<j̄

qk̄j̄qī k̄ = 0. (3.14)

The total complex tot(Xī, qī j̄ ) of a twisted n-cube (Xī, qī j̄ ) is the one-sided twisted com-
plex ( ⊕

ī∈I, |ī|=i

Xī,
∑

ī,j̄∈I, |ī|=i,|j̄ |=j

qī j̄

)
over C. Its convolution is an object of C which we call the convolution of the twisted cube
(Xī, qī j̄ ).

Lemma 3.6 (The Cube Lemma). Let X = (Xī, qī j̄ ) be a twisted n-cube indexed by I
over a pretriangulated category C. Choose 0 ≤ m ≤ n and choose any m indices in
1, . . . , n to define a splitting I = J ×K with J = {−1, 0}m, K = {−1, 0}n−m. Then:
(1) Fix k̄ ∈ K . Then

(X(ī,k̄))ī∈J and ((−1)|k̄|q(ī,k̄)(j̄ ,k̄))ī,j̄∈J

form a twisted m-cube indexed by J over C. We denote it by Y k̄ and call it a sign-
twisted subcube of X, to stress that the morphisms in Y k̄ and in X differ (possibly)
by a sign.

2 We use {−1, 0}n rather than {0, 1}n as our indexing set since we want the arrows in the cube to
go from lower to higher degree vertices, and we want the terminal end of the cube to have degree 0.
This ensures that for a 1-cube diagram, i.e. a single morphism, the corresponding twisted complex
coincides naturally with the cone of this morphism, with no shifts involved.
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(2) Fix k̄, l̄ ∈ K . For any 0 ≤ i < j ≤ m let

pk̄l̄ij =
∑

ī,j̄∈J, |ī|=i,|j̄ |=j

q(ī,k̄)(j̄ ,l̄).

The collection (pk̄l̄ij )i,j defines a morphism of twisted complexes

tot(Y k̄)→ tot(Y l̄)

of degree |k̄| − |l̄| + 1. Denote it by pk̄l̄ .
(3) The twisted complexes tot(Y k̄) and the morphisms pk̄l̄ form a twisted (n − m)-cube

over Pre-Tr(C) indexed by K . Let Z ∈ Pre-Tr(Pre-Tr(C)) be its total complex.
(4) The (double) convolution of Z is isomorphic in C to the convolution of the original

twisted cube X. In particular, it is independent of m and of the choice of I = J ×K .

Proof. A straightforward verification. ut

Given a twisted n-cube X̄ over a pretriangulated category C, its image in H 0(C) is an
ordinary n-cube shaped diagram X which commutes (up to isomorphism). Roughly, the
point of the Cube Lemma is thatX can be canonically extended inH 0(C) to an n-cubeX′

of side 2 with the following properties:3

• The vertices of X′ are convolutions of the faces of X.
• The rows and columns of X′ are exact triangles in H 0(C).
• X′ commutes (up to isomorphism).

This is best understood by looking at some examples. Let C be a pretriangulated category.

(1) A twisted 0-cube over C is a single object of C.

(2) A twisted 1-cube over C is a pair of objects A and B of C together with a closed
morphism

A
fAB
−−→ B

of degree 0. Write

a
fab
−−→ b

for its image in H 0(C). Here we denote by a, b and fab the classes of A, B and fAB
in H 0(C).

There are no non-trivial ways to split this up as a cube of cubes, so the Cube Lemma
does not tell us anything new. However, the total complex of this cube is, trivially,

A
fAB
−−→ B

deg.0

3 By an n-cube of side 2 we mean an n-dimensional cube whose sides are two edges long, i.e. its
vertices are enumerated by {−1, 0, 1}n instead of {−1, 0}n.
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and its convolution fits into a diagram

A
fAB
−−→ B →

{
A

fAB
−−→ B

deg.0

}
→ A[1] (3.15)

in C where the two new morphisms are induced by the canonical morphisms of twisted
complexes (

B
deg.0

) IdB
−−→

(
A

fAB
−−→ B

deg.0

)
, (3.16)(

A
fAB
−−→ B

deg.0

) IdA
−−→

(
A

deg.−1

)
. (3.17)

Moreover, the image of (3.15) in H 0(C) is precisely the exact triangle

a
fab
−−→ b→ Cone(fab)→ (3.18)

which was the original point of [BK90].

Note that we can also complete A
fAB
−−→ B

deg.0
to the diagram

A
fAB
−−→ B →

{
A
−fAB
−−−→ B

deg.0

}
→ A[1] (3.19)

whose image in H 0(C) is canonically isomorphic to (3.18). The two new morphisms in
(3.19) are defined exactly as in (3.16) and (3.17).

Thus, convolving a twisted 1-cube produces an exact triangle in H 0(C). In the lan-
guage above, the image of a twisted 1-cube in H 0(C) is an ordinary 1-cube and we can
canonically complete it to a 1-cube of side 2 whose single row is an exact triangle. It is
this, together with repeated application of the Cube Lemma, that produces the desired
phenomena for twisted cubes of higher dimension.

(3) A twisted 2-cube over C is a diagram

A
fAB //

fAC

��

fAD

��

B

fBD

��
C

fCD // D

(3.20)

of objects and morphisms in C, where fAB , fAC , fBD , fCD are closed maps of degree 0
and fAD is a map of degree −1 such that

−dfAD = fBDfAB + fCDfAC . (3.21)

The image of (3.20) in H 0(C) is the diagram

a
fab //

fac

��

b

fbd

��
c

fcd // d

(3.22)
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In general, fAD is not closed and thus does not define a morphism in H 0(C). However,
the condition (3.21) on fAD ensures that fbdfab + fcdfac = 0 in H 0(C), i.e. the diagram
(3.22) commutes up to the isomorphism (−1) Idd .

The Cube Lemma tells us that
(
A
−fAB
−−−→ B

deg.0

)
and

(
C

fCD
−−→ D

deg.0

)
are twisted 1-

cubes and that the maps (fAC, fAD, fBD) define a closed morphism fABCD of degree 0
between their convolutions, producing a twisted 1-cube{

A
−fAB
−−−→ B

deg.0

} fABCD
−−−−→

{
C

fCD
−−→ D

deg.0

}
. (3.23)

Using the argument in the above discussion of twisted 1-cubes we complete (3.22) to

a
fab //

fac

��

b //

fbd

��

Cone(fab) //

fabcd

��
c

fcd // d // Cone(fcd) //

(3.24)

We then check that each of the squares (including the third ‘wrap-around’ square) in this
diagram commutes (up to isomorphism). We can do this since we have constructed (3.24)
as the image in H 0(C) of an explicit diagram of twisted complexes in Pre-Tr(C) and we
can check that, in fact, that diagram itself commutes up to isomorphism.

Similarly, the Cube Lemma tells us that
(
A
−fAC
−−−→ C

deg.0

)
and

(
B

fBD
−−→ D

deg.0

)
are twisted

1-cubes and that the maps (fAB , fAD, fCD) define a closed morphism fACBD of degree 0
between their convolutions producing a twisted 1-cube{

A
−fAC
−−−→ C

deg.0

} fACBD
−−−−→

{
B

fBD
−−→ D

deg.0

}
. (3.25)

We can therefore complete (3.22) to

a
fab //

fac

��

b

fbd
��

c
fcd

//

��

d

��
Cone(fac)

facbd //

��

Cone(fbd)

��

(3.26)

and check that each of the squares in it commutes.
Finally, the Cube Lemma tells us that the convolutions of the twisted 1-cubes (3.23)

and (3.25) are both isomorphic to the convolution T of the original twisted 2-cube (3.20).



Spherical DG-functors 2609

We can therefore fit together diagrams (3.26) and (3.24) and then complete them to the
2-cube of side 2

a
fab //

fac

��

b

fbd

��

// Cone(fab)

fabcd

��

//

c
fcd

//

��

d

��

// Cone(fcd)

��

//

Cone(fac)
facbd //

��

Cone(fbd)

��

// t //

��

(3.27)

where all rows and columns are exact and where

Cone(facbd) ' t ' Cone(fabcd).

We then check as above that every square in this diagram (including the ‘wrap-around’
ones) commutes up to isomorphism.

Lemma 3.7 (The Cube Completion Lemma). Let I = {−1, 0}n and let X = (Xī, qī j̄ )
be a twisted n-cube over C indexed by I . There exists a uniquely defined “n-cube of
side 2”—a diagram Z = {Zm̄, rm̄n̄} in C indexed by M = {−1, 0, 1}n with the following
properties:

(1) Objects of Z. Let m̄ be any vertex ofM . Define the splitting I = J ×K by choosing
for J all the indices λ ∈ {1, . . . , n} where m̄λ equals 1. Let m̄′ be the restriction of m̄
to K .
The object Zm̄ is isomorphic to the convolution of the sign-twisted subcube Y m̄

′

of X
constructed by the Cube Lemma with respect to the vertex m̄ ofK . This cube consists
of all the objects Xī such that ī restricts to m̄′ in K and all the morphisms between
these vertices in X multiplied by (−1)|m̄

′
|.

Since m̄ uniquely determines the twisted cube Y m̄
′

, we also refer to this cube simply
as Y m̄.

(2) Morphisms of Z. Let l̄→ m̄→ n̄ be any row ofM , i.e. for some k ∈ {1, . . . , n} we
have {

l̄i = −1, m̄i = 0, n̄i = 1, i = k,

l̄i = m̄i = n̄i, i 6= k.

Take the sign-twisted subcube Y n̄ of X and split its index set into J ′ × K ′ where we
choose for J ′ all the indices where l̄ and m̄ equal 1, and for K ′ the single remaining
index k. Apply the Cube Lemma to Y n̄ with respect to this splitting to construct the
twisted 1-cube

{Y l̄}
α
−→
{
Y m̄
deg.0

}
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whose convolution is {Y n̄}. Then

Zl̄
rl̄m̄
−→ Zm̄

rm̄n̄
−−→ Zn̄

rn̄l̄
−→ Zl̄[1] (3.28)

is the image in C of the diagram

Y l̄
α
−→ Y m̄→

(
Y l̄

α
−→ Y m̄

deg.0

)
→ Y l̄[1] (3.29)

constructed as explained when discussing the completion for twisted 1-cubes
(cf. (3.15)).

(3) Any morphism in Z which does not occur in (3.28) for some row l̄ → m̄→ n̄ of M
is 0.

(4) Recursivity. Let I = J × K be a splitting as in the Cube Lemma and let Y be
the twisted cube of sign-twisted subcubes of X constructed by the Cube Lemma with
respect to this splitting. Then the cube ZY of side 2 in C defined by Y is naturally a
subcube of Z.

(5) Commutativity. The image of the diagram Z in H 0(C) commutes (up to isomor-
phism).

Proof. The first three properties uniquely define the diagram Z = {Zm̄, rm̄n̄}. The re-
cursivity is a straightforward verification. To prove the commutativity of Z it suffices to
prove that every 2-face of Z commutes. This reduces via the recursivity to the case of X
being a 2-cube, where it is again a straightforward verification. See the discussion of the
completion for twisted 2-cubes. ut

4. DG-enhancements

4.1. On DG-enhancements of triangulated categories

Let T be a triangulated category. An enhancement of T is a pretriangulated DG-category
A together with an exact equivalence H 0(A) ε

−→ T . Two enhancements (A, ε) and

(A′, ε′) are equivalent if there exists a quasi-equivalence A f
−→ A′. They are strongly

equivalent if f can be chosen so that ε′ ◦ H 0(f ) = ε. If we want to use DG-categories
as enhancements of triangulated ones, we are led to work in the localization of DG-Cat,
the category of all small DG-categories, by quasi-equivalences. We denote this localiza-
tion by Ho(DG-Cat). For any small DG-categories A and B denote by [A,B] the set of
morphisms between A and B in Ho(DG-Cat). The elements of [A,B] are called quasi-
functors.

Any category quasi-equivalent to a pretriangulated category is itself pretriangulated.
We denote the full subcategory of Ho(DG-Cat) consisting of classes of pretriangulated
categories by Ho(DG-Catpretr). We call the elements of Ho(DG-Catpretr) enhanced tri-
angulated categories and think of them as small triangulated categories with a fixed
quasi-equivalence class of DG-enhancements. Similarly, we can think of a quasi-functor
between two enhanced triangulated categories as an exact functor between the triangu-
lated categories and a fixed choice of an equivalence class of DG-functors between their
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enhancements which all descend to this exact functor. In this sense, exact functors and
quasi-functors are precisely analogous to morphisms between cohomologies of two com-
plexes and morphisms between their classes in the derived category.

One way to understand the morphism set [A,B] in Ho(DG-Cat) is via the model
category structure on DG-Cat constructed in [Tab05]. The weak equivalences are the
quasi-equivalences, and the fibrations are defined in such a way that every object is fibrant.
Therefore, the elements of [A,B] can be identified with the functors from a fixed cofibrant
replacement of A into B, up to homotopy. Moreover, there exists a cofibrant replacement
functor Q : DG-Cat → DG-Cat equipped with a natural transformation Q → Id such
that QA→ A is a quasi-equivalence which is the identity on the sets of objects [Toë07,
Prop. 2.3].

The set [A,B] can be naturally endowed with a structure of an element of
Ho(DG-Cat) as follows. The tensor product ⊗ = ⊗k of elements of DG-Cat can be
derived into a bifunctor

L
⊗: Ho(DG-Cat)× Ho(DG-Cat)→ Ho(DG-Cat)

giving a symmetric monoidal structure for Ho(DG-Cat). We compute A
L
⊗ B as either

QA⊗B or A⊗QB. If k is a field, every smallDG-category is k-flat and A
L
⊗B = A⊗B.

The monoidal structure defined by
L
⊗ on Ho(DG-Cat) is closed [Toë07, §4.2], i.e. for

any A and B in Ho(DG-Cat) the functor [(−) ⊗ A,B] is representable by an object of
Ho(DG-Cat), defined up to unique isomorphism. Denoted by RHom(A,B), it is con-
structed as the class in Ho(DG-Cat) of PB-qr(QA-B) [Toë07, Theorem 6.1]. These are
the h-projective QA-B-bimodules M where for all a ∈ QA the B-module aM is quasi-
isomorphic (and hence homotopic as aM is h-projective [Kel94, Lemma 6.1(c)]) to a
representable one. By [Toë07, Cor. 4.8] the isomorphism classes of H 0(PB-qr(QA-B))
are in natural bijection with the elements of [A,B]. Explicitly, any element of [A,B]
can be represented by a functor QA → B. Composing this with the Yoneda embedding
B→Mod-B defines aQA-B-bimodule which is even B-representable. Any h-projective
resolution of it defines the desired isomorphism class inH 0(PB-qr(QA-B)). Getting from
M ∈ PB-qr(QA-B) to the corresponding quasi-functor f ∈ [A,B] is more subtle, but
it is easy to pin down the underlying functor H 0(A) → H 0(B). Indeed, M defines a
functor QA→ Mod-B which maps every element of QA to something homotopic to a
representable element of Mod-B. This defines, up to isomorphism, the requisite functor
H 0(QA) ' H 0(A)→ H 0(B). Indeed, this also shows that any morphism between two
elements of H 0(PB-qr(QA-B)) induces a natural transformation between the underlying
functors of the corresponding quasi-functors in a way which is compatible with composi-
tions.

In other words, RHom(A,B) = PB-qr(QA-B)4 is, in a sense, a DG-enhancement of
the set [A,B]. Let us therefore enrich Ho(DG-Cat) to a 2-category by setting the category
of morphisms from A to B to be H 0(RHom(A,B)). By the above, each 1-morphism in

4 If k is a field, then PB-qr(QA-B) is quasi-equivalent to PB-qr(A-B) and we use the latter
instead.
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Ho(DG-Cat) corresponds naturally to a quasi-functor from A to B. By abuse of notation,
we now refer to the elements of H 0(RHom(A,B)) also as “quasi-functors”. There is a
natural functor

8 : H 0(RHom(A,B))→ Fun(H 0(A),H 0(B)) (4.1)

which sends each quasi-functor to its underlying functor. Defining8 depends on a choice
for each quasi-representable object in Mod-B of a homotopy to a representable one. A dif-
ferent choice would produce a different functor canonically isomorphic to 8. We there-
fore make a particular choice for each B and consider all functors 8 fixed. Our functors
8 package up into a 2-functor

8 : Ho(DG-Cat)→ Cat (4.2)

into a 2-category Cat whose objects are small categories, whose 1-morphisms are functors
and whose 2-morphisms are natural transformations.

By the above, if A and B lie in Ho(DG-Catpretr) then so does RHom(A,B).
Therefore, in the 2-category Ho(DG-Catpretr) the morphism categories are themselves
enhanced triangulated categories. The 2-functor 8 sends the triangulated category
H 0(RHom(A,B)) of quasi-functors to the full subcategory in Fun(H 0(A),H 0(B)) con-
sisting of exact functors. Moreover, for any morphism of quasi-functors,8 sends its cone
to a functorial cone of the underlying morphism of exact functors. This is exactly the
situation we want to be in. This paper adheres to the currently prevalent philosophy that
instead of working with triangulated categories A and B and the (non-triangulated) cat-
egory ExFun(A,B) of exact functors between them, one should work with enhance-
ments A and B of A and B in Ho(DG-Cat) (which are often unique up to isomor-
phism, cf. [LO10]), the enhanced triangulated category RHom(A,B) and the functor
H 0(RHom(A,B)) 8

−→ ExFun(A,B). For years now, this has been practiced implicitly
by all who work with Fourier–Mukai kernels of the derived functors between algebraic
varieties (cf. Examples 4.2 and 4.3 below).

4.2. Morita enhancements

The triangulated categories we want to enhance are the derived categories of quasi-
coherent sheaves and the bounded derived categories of coherent sheaves on separated
schemes of finite type over k. All these categories are Karoubi closed. It turns out that
the full subcategory of Ho(DG-Catpretr) consisting of those enhanced triangulated cate-
gories whose underlying triangulated categories are Karoubi closed admits a more natural
description.

Define a DG-category A to be kc-triangulated if it is pretriangulated and H 0(A) is
Karoubi closed.5 It follows that A is kc-triangulated if and only if the Yoneda embedding
A ↪→ PPerf (A) is a quasi-equivalence. Denote by Ho(DG-Catkctr) the full subcategory
of Ho(DG-Cat) consisting of kc-triangulated categories. The following is explained in

5 Here “kc” stands for “Karoubi closed”. These are simply called “triangulated DG-categories”
in the papers of Toën, but we feel that this does not reflect well their main difference from the
established notion of pretriangulated DG-categories.
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detail in [Toë11, §4.4]. Let A f
−→ B be a functor between DG-categories. The induced

functor f∗ : Mod-B → Mod-A preserves acyclicity. Its left adjoint f ∗ : Mod-A →
Mod-B preserves, by adjunction, h-projectivity. We say that f is a Morita equivalence

if D(B) f∗
−→ D(A) is an exact equivalence, or equivalently PPerf (A) f ∗

−→ PPerf (B) is a
quasi-equivalence. The functor

PPerf (−) : Ho(DG-Cat)→ Ho(DG-Catkctr)

is the left adjoint of the natural inclusion Ho(DG-Catkctr) ↪→ Ho(DG-Cat) [Toë11,
Prop. 6]. It follows, as explained in [Toë11, §4.4], that PPerf (−) induces an equivalence
Mrt(DG-Cat)

∼
−→ Ho(DG-Catkctr), where Mrt(DG-Cat) is the localization of DG-Cat

by Morita equivalences. We use this to identify Morita equivalence classes of small
DG-categories with the elements of Ho(DG-Catkctr). In other words, when speaking of
the class of a small DG-category A in Ho(DG-Catkctr) we mean PPerf (A).

We call the morphisms in Mrt(DG-Cat) Morita quasi-functors. By the above,
Morita quasi-functors A → B correspond to the ordinary quasi-functors PPerf (A) →
PPerf (B). It follows from [Toë07, Th. 7.2] that RHom(PPerf (A),PPerf (B)) is quasi-
equivalent to PB-Perf (A-B). This gives a more natural DG-enhancement of the set
HomMrt(DG-Cat)(A,B). In particular, we think of the elements ofDB-Perf (A-B) as Morita
quasi-functors A→ B. Note that givenM ∈ DB-Perf (A-B), the exact functor underlying
the corresponding Morita quasi-functor is (−)

L
⊗A M .

This leads to a slightly different notion of DG-enhancement. Define a Morita enhance-
ment of a small triangulated category A to be a small DG-category A together with an
isomorphism Dc(A)

∼
−→ A. Since Dc(A) = H 0(PPerf (A)), A is a Morita enhancement

of A if and only if its class in Ho(DG-Catkctr) is the usual enhancement of A. Moreover,
we can similarly use small DG-categories to enhance non-small triangulated categories
(i.e. unbounded derived categories of quasi-coherent sheaves). Define a large Morita en-
hancement of a triangulated category A to be a small DG-category A together with an
isomorphism D(A) ∼−→ A. An advantage of this Morita point of view is that we use
much smaller DG-categories to define our enhancements. In fact, the derived categories
of schemes can be Morita enhanced by DG-algebras (cf. Examples 4.2 and 4.3).

4.3. Examples

The following examples illustrate the notions introduced in the previous section and ex-
plain the framework to which the main definitions of Section 5 rightfully belong. First is
the usual framework of DG-enhancements:

Example 4.1. Let A and B be elements of Ho(DG-Cat). As described in Section 4,
RHom(A,B) is represented in Ho(DG-Cat) by the full subcategory PB-qr(A-B) of
P(A-B) consisting of B-quasi-representable bimodules. In particular, such bimodules are
B-perfect.

Let M ∈ PB-qr(A-B). The functor H 0(A) → H 0(B) defined by the corresponding
quasi-functor is the restriction of (−)

L
⊗AM fromD(A)→ D(B) toH 0(A)→ H 0(B). It
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follows from Section 2.2 that ifM is also A-perfect, then (−)
L
⊗AM , as a functorD(A)→

D(B), has left and right adjoints (−)
L
⊗B MA and (−)

L
⊗B MB. If moreover MA and

MB are A-quasi-representable, then these adjoints restrict to functors H 0(B)→ H 0(A).
In other words, MA and MB define quasi-functors B → A whose induced functors
H 0(B) → H 0(A) are left and right adjoint to the functor H 0(A) → H 0(B) defined
by M .

Next we illustrate Morita enhancements. In the two examples below we explain how
derived categories of algebraic varieties are Morita enhanced by DG-algebras and how
quasi-functors between these enhancements may be represented as DG-bimodules for
these algebras:

Example 4.2. Let X and Y be quasi-compact, quasi-separated schemes over k. By
[BvdB03, Th. 3.1.1] there exist compact generators EX and EY of Dqc(X) and Dqc(Y ).
We choose h-injective resolutions of EX and EY and define A and B to be their DG-
End-algebras. Then A and B are the standard large Morita enhancements of Dqc(X) and
Dqc(Y ), i.e. P(A) and P(B) are their standard enhancements in the usual sense.

By [Toë07, Th. 7.2] the pullback along the Yoneda embedding A ↪→Mod-A induces
an isomorphism

RHomcts(P(A),P(B))
∼
−→ RHom(A,P(B))

in Ho(DG-Cat). Here RHomcts stands for the full subcategory consisting of continu-
ous quasi-functors, i.e. the quasi-functors P(A) → P(B) whose underlying functors
D(A) → D(B) commute with infinite direct sums. The universal properties of RHom
and [Toë07, Lemma 6.2] imply that RHom(A,P(B)) is represented in Ho(DG-Cat) by
P(A-B). Explicitly, after replacing A by its cofibrant resolution any quasi-functor in
H 0(RHom(A,P(B))) can be represented by an actual functor A → P(B). Taking an
h-projective resolution of the corresponding A-B-bimodule gives the desired homotopy
class in P(A-B).

Thus every continuous quasi-functor P(A) → P(B) can be represented by an el-
ement M ∈ P(A-B). The underlying functor Dqc(X) → Dqc(Y ) is then precisely
(−)

L
⊗A M . It follows from Section 2.2 that if M is A- and B-perfect, then MA and

MB define quasi-functors P(B)→ P(A) such that (−)
L
⊗BMA and (−)

L
⊗BMB are the

left and right adjoints of (−)
L
⊗A M .

It is also shown in [Toë07, Section 8.3] that Aopp
⊗ B is the standard large

Morita enhancement of D(X ×k Y ) via a natural identification of D(X ×k Y ) with
D(A-B). Together with the above, we obtain an identification of D(X ×k Y ) with
H 0(RHomcts(P(A),P(B))) which sends each object E ∈ D(X×k Y ) to a quasi-functor
P(A) → P(B) whose underlying functor Dqc(X) → Dqc(Y ) is isomorphic to the
Fourier–Mukai transform defined by E.

Example 4.3. Let X and Y be separated schemes of finite type over k. By [Rou08,
Th. 7.39] there exist strong generators FX and FY of D(X). Choose h-injective reso-
lutions of FX and FY and let A and B be their DG-End-algebras. Then A and B are the
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standard Morita enhancements of D(X) and D(Y), i.e. PPerf (A) and PPerf (B) are their
standard enhancements in the usual sense. It was, moreover, proved in [Lun10, Th. 6.3]
that for any choice of generators FX and FY the DG-algebras A and B are smooth.

By [Toë07, Th. 7.2] the pullback along the Yoneda embedding A ↪→ PPerf (A) in-
duces an isomorphism

RHom(PPerf (A),PPerf (B)) ∼−→ RHom(A,PPerf (B))

in Ho(DG-Cat). Once again, the universal properties of RHom and [Toë07, Lemma
6.2] imply that RHom(A,PPerf (B)) is represented in Ho(DG-Cat) by PB-Perf (A-B),
the full subcategory of P(A-B) consisting of B-perfect bimodules. Explicitly, after re-
placing A by its cofibrant resolution, any quasi-functor in H 0(RHom(A,PPerf (B))) can
be represented by an actual functor A → PPerf (B). Taking any h-projective resolution
of the corresponding B-perfect A-B-bimodule, we obtain the desired homotopy class in
PB-Perf (A-B).

Thus every quasi-functor PPerf (A) → PPerf (B) can be represented by an element

M ∈ PB-Perf (A-B) and the underlying functor D(X) → D(Y) is then (−)
L
⊗A M . It

follows again from Section 2.2 that MB defines a quasi-functor PPerf (B) → PPerf (A)
whose underlying functor (−)

L
⊗B MB is the right adjoint of (−)

L
⊗A M . If M is also

A-perfect, thenMA defines a quasi-functor whose underlying functor (−)
L
⊗BMA is the

left adjoint of (−)
L
⊗A M .

It also follows from [Lun10, Prop. 6.14] that Aopp
⊗ B is the standard Morita en-

hancement of D(X × Y ). Since A is smooth, we have by Cor. 2.15 a natural inclusion
PB-Perf (A-B) ⊂ PPerf (A-B). This identifies each quasi-functor PPerf (A) → PPerf (B)
with an object E ∈ D(X × Y ) in such a way that its underlying functor D(X)→ D(Y)

corresponds to the Fourier–Mukai transform defined by E.

5. Spherical DG-functors

5.1. Spherical bimodules and spherical quasi-functors

Let A and B be small DG-categories and S ∈ D(A-B) be A- and B-perfect. Denote by R
and L the derived duals SB̃ and SÃ in D(B-A). Let

s : D(A)→ D(B)

be the exact functor (−)
L
⊗A S and

r, l : D(B)→ D(A)

be the exact functors (−)
L
⊗B SB̃ and (−)

L
⊗B SÃ. By Cor. 2.2, r and l are right and left

adjoint to s.



2616 Rina Anno, Timothy Logvinenko

As per Section 4 the objects of e.g. D(A-B) represent continuous quasi-functors
P(A) → P(B). The functors s, r and l are the exact functors underlying the quasi-
functors S, R and L. Accordingly, we introduce the following notation. Given e.g. S ∈

D(A-B) and R ∈ D(B-A), we write SR for the object R
L
⊗A S ∈ D(B-B). The exact

functor underlying the quasi-functor SR is then sr .

Definition 5.1. Define:

• The twist T of S is Cone(SR
tr
−→ B) in D(B-B).

• The dual twist T ′ of S is Cone(B act
−→ SL)[−1] in D(B-B).

• The cotwist F of S is Cone(A act
−→ RS)[−1] in D(A-A).

• The dual cotwist F ′ of S is Cone(LS
tr
−→ A) in D(A-A).

Thus we have the following natural exact triangles in D(B-B) and D(A-A):

SR
tr
−→ B→ T , (5.1)

T ′→ B act
−→ SL, (5.2)

F → A act
−→ RS, (5.3)

LS
tr
−→ A→ F ′. (5.4)

Let t, t ′ : D(B)→ D(B) and f, f ′ : D(A)→ D(A) be the corresponding exact functors.
By Cor. 2.2 the functorial exact triangles induced by (5.1)–(5.4) are

sr
adj.counit
−−−−−→ IdD(B)→ t, (5.5)

t ′→ IdD(B)
adj.unit
−−−−→ sl, (5.6)

f → IdD(A)
adj.unit
−−−−→ rs, (5.7)

ls
adj.counit
−−−−−→ IdD(A)→ f ′, (5.8)

i.e. t and f [1] are functorial cones of the counit and the unit of the adjoint pair (s, r),
while t ′[1] and f ′ are functorial cones of the unit and the counit of the adjoint pair (l, s).

Finally, consider the compositions

LT [−1]
(5.1)
−−→ LSR

tr
−→ R, (5.9)

R
act
−→ RSL

(5.3)
−−→ FL[1], (5.10)

and the induced natural transformations

lt[−1]
(5.5)
−−→ lsr

adj.counit
−−−−−→ r, (5.11)

r
adj.unit
−−−−→ rsl

(5.7)
−−→ f l[1]. (5.12)
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Definition 5.2. An object S ∈ D(A-B) is spherical if it is A- and B-perfect and the
following hold:

(1) t and t ′ are quasi-inverse autoequivalences of D(B).
(2) f and f ′ are quasi-inverse autoequivalences of D(A).
(3) lt[−1]

(5.11)
−−−→ r is an isomorphism of functors (“the twist identifies the adjoints”).

(4) r
(5.12)
−−−→ f l[1] is an isomorphism of functors (“the cotwist identifies the adjoints”).

We say that an A-B-bimodule is spherical if its image in D(A-B) is spherical.

The following is the main theorem of this section:

Theorem 5.1. Let S be an A- and B-perfect object of D(A-B). Suppose any two of the
following conditions hold:

(1) t is an autoequivalence of D(B) (“the twist is an equivalence”).
(2) f is an autoequivalence of D(A) (“the cotwist is an equivalence”).

(3) lt[−1]
(5.11)
−−−→ r is an isomorphism of functors (“the twist identifies the adjoints”).

(4) r
(5.12)
−−−→ f l[1] is an isomorphism of functors (“the cotwist identifies the adjoints”).

Then all four hold and S is spherical.

To prove this result we lift everything to the DG-enhancements P(A-A),P(B-B),
P(A-B) and P(B-A) and work with twisted complexes over them. As these
DG-categories are strongly pretriangulated, the canonical convolution functors send
twisted complexes over them to (the Yoneda embeddings of) these categories them-
selves. Given e.g. a twisted complex E0 → · · · → En over P(A-A), we write
{E0 → · · · → En} for its convolution in P(A-A).

Recall that RHomcts(P(A),P(B)) is represented in Ho(DG-CatV) by P(A-B)
(cf. Example 4.2). Similarly, Morita quasi-functors A → B, the morphisms from A
to B in Mrt(DG-Cat), are in 1-to-1 correspondence with ordinary quasi-functors
PPerf (A) → PPerf (B), and RHom(PPerf (A),PPerf (B)) is represented in Ho(DG-Cat)
by PA-Perf (A-B) (cf. Example 4.3). Define a quasi-functor P(A) → P(B) or a Morita
quasi-functor A → B to be spherical if the corresponding element of D(A-B) is
spherical.

LetM = Ā⊗A S⊗B B̄, with S viewed as the corresponding bimodule in A-Mod-B.
Then M is an h-projective resolution of S in A-Mod-B. We now make use of the homo-
topy adjunction theory set up in §2.2, and in particular of h-projective resolutions MhA

and MhB of MÃ and MB̃.
Below, we use the following shorthand: τ denotes a map which consists of applying

all possible instances of the canonical maps Ā → A, B̄ → B, e.g. MhA τ
−→ MA or

M ⊗B MhB τ
−→ M ⊗B MB.

In the diagrams below, maps of degree 0 are denoted by solid arrows and maps of
degree −1 are denoted by dashed arrows.
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By Def. 2.10 of the homotopy action maps, the following diagrams commute up to
homotopy:

B̄ act //

τ

��

MhA
⊗A M

(2.26)◦τ
��

B act // HomA(M,M)

Ā act //

τ

��

M ⊗B MhB

(2.25)◦τ
��

A act // HomB(M,M)

(5.13)

Fix θB ∈ Hom−1
B-B(B̄,HomA(M,M)) and θA ∈ Hom−1

A-A(Ā,HomB(M,M)) such that

(2.26) ◦ τ ◦ act = act ◦ τ + dθB,
(2.25) ◦ τ ◦ act = act ◦ τ + dθA,

i.e. the squares in (5.13) commute up to dθB and dθA.
To establish our homotopy adjunctions we have proved in Prop. 2.11 that the four

compositions (2.46)–(2.49) are homotopic to the identity. We can now make this more
precise: Let

χA = M
Id⊗θB
−−−→ M ⊗B HomA(M,M)

ev
−→ M ∈ Hom−1

A-B(M,M),

χB = M
θA⊗Id
−−−−→ HomB(M,M)⊗A M

ev
−→ M ∈ Hom−1

A-B(M,M),

ξA = M
hA Id⊗θB⊗Id
−−−−−−→ B̄⊗BHomA(M,M)⊗BM

A
⊗AĀ Id⊗(−◦−)⊗Id

−−−−−−−−→ MhA

∈ Hom−1
B-A(M

hA,MhA),

ξB = M
hB Id⊗θA⊗Id
−−−−−−→ B̄⊗BM

B
⊗A HomB(M,M)⊗AĀ Id⊗(−◦−)⊗Id

−−−−−−−−→ MhB

∈ Hom−1
B-A(M

hB,MhB).

The compositions (2.46)–(2.49) equal Id + dξB, Id + dχB, Id + dξA and Id + dχA,
respectively.

By construction, the homotopy action and trace maps are isomorphic in D(A-A) and
D(B-B) to their derived counterparts. Therefore

T '
{
MhB

⊗A M
tr
−→ B̄

deg.0

}
in D(B-B),

T ′ '
{
B̄

deg.0

act
−→ MhA

⊗A M
}

in D(B-B),

F '
{
Ā

deg.0

act
−→ M ⊗B M

hB} in D(A-A),

F ′ '
{
M ⊗B M

hA tr
−→ Ā

deg.0

}
in D(A-A).

Proposition 5.3. We have

T lB̃ ' T ′ in D(B-B), (F ′)rÃ ' F in D(A-A).

Consequently, t ′ is the left adjoint of t : D(B) → D(B), and f ′ is the left adjoint of
f : D(A)→ D(A).
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Proof. By definitions of T ′ and T we have exact triangles

T ′→ B act
−→ MÃ L

⊗A M, MB̃ L
⊗A M

tr
−→ B→ T

in D(B-B). Applying the functor (−)lB̃ to the latter we obtain an exact triangle

T lB̃ → B trlB̃
−−→ (MB̃ L

⊗A M)
lB̃.

Lemma 2.13 produces an isomorphism MÃ L
⊗A M

∼
−→ (MB̃ L

⊗A M)lB which makes the
diagram

B act // MÃ L
⊗A M

∼

��

B trlB̃ // (MB̃ L
⊗A M)lB

commute. Thus there exists T ′ ' T lB̃ which completes the above to an isomorphism of
exact triangles.

An identical argument produces an isomorphism (F ′)rÃ ' F in D(A-A). The final

assertion then follows since by Cor. 2.2 the functors (−)
L
⊗B T lB̃ and (−)

L
⊗A (F ′)rÃ are

left and right adjoint to t and f ′, respectively. ut

Thus, if t is an autoequivalence of D(B) then t ′ is always its quasi-inverse, and similarly
for f and f ′.

Denote by B act
−→ T T ′ and T ′T

tr
−→ B the maps in D(B-B) which the isomorphism

T ′ ' T lB̃ of Prop. 5.3 identifies with the derived action and trace maps for T . By con-
struction of the (t ′, t) adjunction these maps induce its unit and counit.

Proposition 5.4. The maps B act
−→ T T ′ and T ′T

tr
−→ B are isomorphic in D(B-B) to the

maps

B̄
deg.0
→(

MhB
⊗AM

tr⊕(act⊗Id)
−−−−−−→B̄ ⊕

(
MhA

⊗A M ⊗B M
hB
⊗A M

)
deg.0

act⊕(−Id⊗tr)
−−−−−−−→MhA

⊗AM
)
,

(5.14)(
MhB

⊗A M
tr⊕(−Id⊗act)
−−−−−−−→B̄ ⊕

(
MhB

⊗A M ⊗B M
hA
⊗A M

)
deg.0

act⊕(tr⊗Id)
−−−−−−→MhA

⊗A M
)

→ B̄
deg.0

(5.15)

of twisted complexes over B-Mod-B given, respectively, by

B̄ Id⊕act
−−−→ B̄ ⊕ (MhA

⊗A M)
Id⊕(Id⊗act⊗Id)
−−−−−−−−−→ B̄ ⊕ (MhA

⊗A M ⊗B M
hB
⊗A M),

(5.16)

B̄ −(Id⊗χB)◦act
−−−−−−−−→ MhA

⊗A M, (5.17)
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and

B̄ ⊕ (MhB
⊗A M ⊗B M

hA
⊗A M)

Id⊕(Id⊗tr⊗Id)
−−−−−−−−→ B̄ ⊕ (MB

⊗A M)
Id⊕tr
−−−→ B̄, (5.18)

MhB
⊗A M

− tr ◦(Id⊗χA)
−−−−−−−−→ B̄. (5.19)

Proof. We treat the case of the adjunction unit, the case of the counit is treated identically.
It suffices to show that (5.14) is isomorphic in D(B-B) to B act

−→ T T lB̃. The latter is
isomorphic to

B act
−→ HomlB

({
MB
⊗A M

tr
−→ B

deg.0

}
,
{
MB
⊗A M

tr
−→ B

deg.0

})
(5.20)

since
{
MB
⊗A M

tr
−→ B

deg.0

}
is a left B-h-projective bimodule homotopically equivalent

to T .
By the commutativity of (2.54), the composition of the B-action map with the quasi-

isomorphism

HomA(M,M) −→ HomA(M,M
BB)

adjunction
−−−−−→ (MB

⊗A M)
lB (5.21)

is the left dual of the B-trace map. The following is a chain of quasi-isomorphisms of
twisted complexes:

MhB
⊗A M

τ

��

0⊕(θB⊗τ)

++

tr⊕(act⊗Id) //
deg.0

B̄ ⊕ (MhA
⊗A M ⊗B MhB

⊗A M)

τ⊕(ev⊗Id)◦τ

��

−θB⊕0

++

act⊕(−Id⊗tr) // MhA
⊗A M

ev◦τ

��
MB
⊗A M

Id

��

tr⊕(act⊗Id) // B ⊕ (HomA(M,M)⊗B MB
⊗A M)

Id⊕(5.21)

��

act⊕(−Id⊗tr) // HomA(M,M)

(5.21)

��
MB
⊗A M

tr⊕(trlB⊗Id) // B ⊕ ((MB
⊗A M)lB ⊗B MB

⊗A M)
trlB⊕(−Id⊗tr) //

act⊕ev

��

(MB
⊗A M)lB

HomlB(B,MB
⊗A M))

tr◦(−)⊕(−)◦tr // HomlB(B,B)⊕ HomlB(MB
⊗A M,MB

⊗A M)
(−)◦tr⊕−tr◦(−) // HomlB(MB

⊗A M,B)

(5.22)
By Lemma 3.5(2) the map (5.20) is isomorphic to the map

B

act⊕act

��{
HomlB(B,MB

⊗A M))
tr◦(−)⊕(−)◦tr // HomlB(B,B)⊕ HomlB(MB

⊗A M,MB
⊗A M)

(−)◦tr⊕−tr◦(−) // HomlB(MB
⊗A M,B)

}
(5.23)

To show that (5.14) is isomorphic in D(B-B) to (5.23), it now suffices to show that
(5.22) ◦ (5.14) is homotopic to (5.23) ◦ τ . It is a routine check of the kind we normally
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leave to the reader, but we write it out in detail just this once to give the flavor of the
computations involved.

The composition of (5.14) with (5.22) is the map

B̄

(act◦τ)⊕α0
��

α1

,,{
HomlB(B,MB

⊗A M))
tr◦(−)⊕(−)◦tr

// HomlB(B,B)⊕ HomlB(MB
⊗A M,MB

⊗A M)
(−)◦tr⊕−tr◦(−)

// HomlB(MB
⊗A M,B)

}
(5.24)

where

α1 =
(
B̄ −θB
−−→ HomA(M,M)

(5.21)
−−−→ HomlB(M

B
⊗AM,B)

)
+
(
B̄ act
−→ MhA

⊗A M
−Id⊗χB
−−−−−→ MhA

⊗A M
(5.21)◦ev◦τ
−−−−−−→ HomlB(M

B
⊗AM,B)

)
and the composition α0 can be computed by considering the following diagram:

B̄
act //

τ

��

A

MhA
⊗AM

B

Id⊗act⊗Id //

τ

��

MhA
⊗AM⊗BMhB

⊗AM

τ

��
MA
⊗AM

ev

��

Id⊗act⊗Id //

Id⊗act⊗Id ((

MA
⊗AHomB(M,M)⊗AM

Id⊗(−)B⊗Id

��

MA
⊗AM⊗BMB

⊗AM
ev⊗Id //Id⊗ev⊗Idoo

Id⊗(2.27)⊗Id

��

HomA(M,M)⊗BMB
⊗AM

((2.27)◦(−))⊗Id

��
MA
⊗AHomB(MB,MB)⊗AM

ev◦(Id⊗(2.23))

��

MA
⊗AMBB

⊗BMB
⊗AM

ev⊗Id //Id⊗ev⊗Idoo HomB(M,MBB)⊗BMB
⊗AM

ev◦(adjunction⊗Id)

��
B

act // HomA(M,M)

(2.18)◦(−)
↓ // HomA(M,HomB(MB,MB

⊗M))
adjunction // HomlB(MB

⊗AM,MB
⊗AM))

This diagram commutes except for the sections marked (A) and (B). These commute up
to dθB and τ ⊗ dθA ⊗ Id, respectively. The upper right border of this diagram composes
to α0, while its bottom line composes to B act

−→ HomlB(MB
⊗AM,MB

⊗M)). It follows
that

α0 = act ◦ τ + d
(
β1 ◦ θB + β2 ◦ (τ ⊗ θA ⊗ Id) ◦ act

)
where β1 and β2 are the corresponding compositions of the wavy arrows in the diagram.

Thus (5.24) is the sum of (5.23) ◦ τ and the map

B̄

0⊕d(β1◦θB+β2◦(τ⊗θA⊗Id)◦act)

��

α1

,,{
HomlB(B,MB

⊗A M))
tr◦(−)⊕(−)◦tr

// HomlB(B,B)⊕ HomlB(MB
⊗A M,MB

⊗A M)
(−)◦tr⊕−tr◦(−)

// HomlB(MB
⊗A M,B)

}
(5.25)

and it remains to show that (5.25) is a boundary.
It suffices to show that

α1 = −(tr ◦ (−)) ◦
(
β1 ◦ θB + β2 ◦ (τ ⊗ θA ⊗ Id) ◦ act

)
.
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By definition of α1 and χB, this would follow from

(5.21) ◦ θB = (tr ◦ (−)) ◦ β1 ◦ θB,

(5.21) ◦ ev ◦(Id⊗ ev) ◦ (τ ⊗ θA ⊗ Id) ◦ act = (tr ◦ (−)) ◦ β2 ◦ (τ ⊗ θA ⊗ Id) ◦ act .

In fact, a stronger statement is true: (5.21) = (tr◦(−))◦β1 and (tr◦(−))◦β1◦ev◦(Id⊗ev)
= (tr ◦ (−)) ◦ β2. It is equivalent to the commutativity of the following two diagrams:

HomA(M,M)

(2.27)◦(−) **

(2.18)◦(−) // HomA(M,HomB(MB,MB
⊗M)

adjunction //

(tr◦(−))◦(−)

��

HomlB(MB
⊗AM,MB

⊗AM)

tr◦(−)

��
HomA(M,MBB)

adjunction // HomA(MB
⊗AM,B)

MA
⊗A HomB(M,M)⊗AM

Id⊗(−)B⊗Id //

Id⊗ev

��

ev

++

MA
⊗A HomB(MB,MB)⊗AM

ev // HomA(M,HomB(MB,MB)⊗AM)

(2.23)◦(−)

��
MA
⊗AM

ev

��

HomA(M,HomB(M,M)⊗AM)

ev◦(−)

ss

((−)B⊗Id)◦(−)

33

HomA(M,HomB(MB,MB
⊗M))

(tr◦(−))◦(−)

��
HomA(M,M)

(2.18)◦(−) // HomA(M,HomB(MB,MB
⊗M))

(tr◦(−))◦(−) // HomA(M,MBB)

which is readily checked. ut

Let A act
−→ FF ′ and F ′F

tr
−→ A be the maps inD(A-A)which the isomorphism (F ′)rÃ '

F of Prop. 5.3 identifies with the derived action and trace maps for F . The following
proposition is proved in the same way:

Proposition 5.5. The maps A act
−→ FF ′ and F ′F

tr
−→ A are isomorphic in D(A-A) to

the maps

Ā
deg.0
→(
M⊗BM

hA tr⊕(−Id⊗act)
−−−−−−−→ Ā⊕ (M⊗BMhA

⊗AM⊗BM
hB)

deg.0

act⊕(tr⊗Id)
−−−−−−→M⊗BM

hB
)
,

(5.26)(
M⊗BM

hA tr⊕(act⊗Id)
−−−−−−−→ Ā⊕ (M⊗BM

hB
⊗AM⊗BM

hA)
deg.0

act⊕(−Id⊗tr)
−−−−−−−→ M⊗BM

hB
)

→ Ā
deg.0

(5.27)

of twisted complexes over A-Mod-A given, respectively, by

Ā Id⊕act
−−−→ Ā⊕ (M ⊗B M

hB)
Id⊕−(Id⊗act⊗Id)
−−−−−−−−−−→ Ā⊕ (M ⊗B M

hA
⊗A M ⊗B M

hB),

(5.28)

Ā −(χA⊗Id)◦act
−−−−−−−−→ M ⊗B M

hB, (5.29)
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and

Ā⊕ (M ⊗B M
hB
⊗A M ⊗B M

hA)
Id⊕−(Id⊗tr⊗Id)
−−−−−−−−−→ Ā⊕ (M ⊗B M

hA)
Id⊕tr
−−−→ Ā,

(5.30)

M ⊗B M
hA −tr◦(χB⊗Id)
−−−−−−−→ Ā. (5.31)

Consider the twisted 2-cube over B-Mod-A

0 //

��

MhA

Id⊗act
��

MhB act⊗Id // MhA
⊗A M ⊗B MhB

(5.32)

By the Cube Lemma (Lemma 3.6) the convolutions of the rows of (5.32) fit into a
1-cube (i.e. a single morphism) whose convolution is the convolution of the total com-
plex of the 2-cube. And similarly for the convolutions of the columns of (5.32). This
is formalized in the Cube Completion Lemma (Lemma 3.7) which constructs for us the
diagram

0 //

��

MhA //

Id⊗act
��

MhA

��

[1] //

MhB
act⊗Id

//

��

MhA
⊗AM⊗BMhB //

��

{
MhB

→ MhA
⊗M⊗MhB

deg.0

}
��

[1] //

MhB //

[1]

��

{
MhA

→ MhA
⊗M⊗MhB

deg.0

}
//

[1]

��

{
MhA
⊕MhB

→ MhA
⊗M⊗MhB

deg.0

} [1] //
[1]

�� (5.33)

in B-Mod-A. The morphisms marked [1] are morphisms of degree 1 which “wrap
around” to the beginning of the corresponding row or column. We have not labeled all the
maps within twisted complexes or the morphisms between their convolutions in (5.33),
but the precise formulas can be found in Lemma 3.7.

Let now Q be the convolution of the 2-cube (5.32) shifted by one to the right, that is,

Q :=
{
MhA

⊕MhB
deg.0

−Id⊗act−act⊗Id
−−−−−−−−−→ MhA

⊗A M ⊗B M
hB}

' Cone
(
R ⊕ L

Id⊗act+act⊗Id
−−−−−−−−→ RSL

)
[−1] in D(B-A).

The diagram (5.33) descends to a commutative 3×3 diagram inD(B-A) whose rows and
columns are exact:
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0 //

��

L

(act)L
��

L

α′

��
R

R(act) // RSL
ζ //

η

��

RT ′[1]

��
R

α // FL[1] // Q[1]

(5.34)

The connecting morphisms for the exact triangles are the images of the morphisms labeled
[1] in (5.33).

Lemma 5.6. The following are equivalent:

• r
(5.12)
−−−→ f l[1] is an isomorphism (condition (4) of Theorem 5.1).

• r ⊕ l
r(unit)⊕unit
−−−−−−−→ rsl is an isomorphism.

• Q ' 0 in D(B-A).
• α is an isomorphism in D(B-A).
• α′ is an isomorphism in D(B-A).

Proof. Denote by q the functor (−)
L
⊗Q fromD(B) toD(A). The morphisms R→ RSL

and L → RSL in (5.34) induce the natural transformations r
r(unit)
−−−→ rsl and l

unit
−−→ rsl.

Hence R
α
−→ FL[1] induces the natural transformation (5.12). The functorial exact

triangle r
(5.12)
−−−→ f l[1] → q[1] induced by the bottom row of (5.34) implies that

r
(5.12)
−−−→ f l[1] is an isomorphism if and only if q is the zero functor. Similarly, the ex-

act triangle R ⊕ L
Id⊗act⊕act⊗Id
−−−−−−−−→ RSL → Q[1] implies that r ⊕ l

r(unit)⊕unit
−−−−−−−→ rsl is an

isomorphism if and only if q[1] is the zero functor.
Clearly Q ' 0 implies that q is the zero functor. On the other hand, if q is the zero

functor then it sends all representable B-modules to 0 ∈ D(A). Thus bQ is an acyclic
A-module for all b ∈ B, and hence Q is acyclic. We conclude that q is the zero functor if
and only if Q ' 0 in D(B-A).

Finally, Q ' 0 is equivalent to α (resp. α′) being an isomorphism by exactness of the
bottom row (resp. right column) of the diagram (5.34). ut

Now define

Q′ :=
{
MhB

⊗A M ⊗B M
hA −tr⊗Id−Id⊗tr
−−−−−−−−→ MhA

⊕MhB
deg.0

}
' Cone

(
LSR

Ltr⊕trR
−−−−→ L⊕ R

)
[1] in D(B-A).

Then, in a similar way, the twisted 2-cube

MhB
⊗A M ⊗B MhA tr⊗Id //

Id⊗tr
��

MhA

��
MhB // 0

(5.35)
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produces the following 3 × 3 diagram in D(B-A) whose rows and columns are exact
triangles:

Q′[−1] //

��

F ′R[−1]
β ′ //

��

L

LT [−1] //

β

��

LSR
L(tr) //

(tr)R
��

L

��
R R // 0

(5.36)

Arguing as in the proof of Lemma 5.6 we obtain:

Lemma 5.7. The following are equivalent:

• lt[−1]
(5.11)
−−−→ r is an isomorphism (condition (3) of Theorem 5.1).

• lsr
l(counit)⊕counit
−−−−−−−−−→ l ⊕ r is an isomorphism.

• Q′ ' 0 in D(B-A).
• β is an isomorphism in D(B-A).
• β ′ is an isomorphism in D(B-A).

Consider now the twisted 2-cube over Pre-Tr(B-Mod-B):

MhA
⊗AM

deg.1

Id //

1→1: Id⊗act⊗Id
��

1→1: −Id⊗χB

++

MhA
⊗AM

deg.1

1→1: Id
��(

MhB
⊗AM

deg.0

−act⊗Id
−−−−−→ MhA

⊗AM⊗BMhB
⊗AM

) 0→0: tr
1→1: −Id⊗tr

// ( B̄
deg.0

act
−→ MhA

⊗AM
)

(5.37)

A priori the total complex of a face of a twisted cube over Pre-Tr(B-Mod-B) is an object
of Pre-Tr Pre-Tr(B-Mod-B). However, there is a canonical equivalence

Pre-Tr Pre-Tr(B-Mod-B) ∼−→ Pre-Tr(B-Mod-B)

(see [BK90, §2]). We implicitly use this equivalence wherever possible.
The Cube Completion Lemma constructs from the 2-cube (5.37) a 3×3 commutative

diagram in D(B-B) whose rows and columns are exact. We now compute this diagram.
The left column of (5.37) is the image under (−) ⊗A M[−1] of the first map in the

right column of (5.33). It descends to the morphism SL[−1]
Sα′

−−→ SRT ′ in (5.34) in
D(B-B) and its convolution is isomorphic to SQ.

The bimodule B̄ is homotopy equivalent to the total complex of the right column
of (5.37): (

B̄
deg.0

) 0→0: Id⊕− act //
(
B̄ ⊕MhA

⊗A M
deg.0

act⊕Id // MhA
⊗A M

)
. (5.38)
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The total complex of the top row of (5.37) is the null-homotopic twisted complex(
MhA

⊗A M
deg.0

Id
−→ MhA

⊗AM
)
, while the total complex of the bottom row is the twisted

complex

MhB
⊗A M

tr⊕(act⊗Id)
−−−−−−−→ B̄ ⊕

(
MhA

⊗A M ⊗B M
hB
⊗A M

)
deg.0

act⊕(−Id⊗tr)
−−−−−−−→ MhA

⊗A M

(5.39)
which we have shown in Prop. 5.4 to convolve to T T ′.

By the Cube Lemma, the total complex of the whole 2-cube equals the total complex
of the 1-cube constructed from its rows. It is then clear that the total complex of (5.37) is
homotopy equivalent to (5.39):

(
MhA

⊗AM
deg.0

−Id
−→ MhA

⊗AM
) 0→0: 0⊕Id⊗act⊗Id

0→1: −Id⊗χB ,1→1: Id
//

1→1: Id⊗χB

1→0: 0⊕−Id⊗act⊗Id

++

(MhB
⊗AM

tr⊕(act⊗Id)
↓
−→ B̄⊕ (MhA

⊗AM⊗BMhB
⊗AM)

deg.0

act⊕(−Id⊗tr)
↓
−→ MhA

⊗AM)

�� ����

Id

��
(MhB

⊗AM −→
↑

tr⊕(act⊗Id)

B̄⊕ (MhA
⊗AM⊗BMhB

⊗AM)
deg.0

−→
↑

act⊕(−Id⊗tr)

MhA
⊗AM)

(5.40)

Consider the map which the Cube Lemma constructs from the total complex of the
right column of (5.37) to the total complex of the whole 2-cube. It composes with the
homotopy equivalences (5.38) and (5.40) to give the map (5.14). The latter was proven in
Prop. 5.4 to be isomorphic in D(B-B) to B act

−→ T T ′.
Putting together all of the above, we see that the diagram constructed by the Cube

Completion Lemmma from (5.37) is isomorphic in D(B-B) to

SL[−1]

S(α′)

��

SL[−1] //

��

0

��
SRT ′ //

��

T ′ //

��

T T ′

SQ // B act // T T ′

(5.41)

Similarly, the following twisted 2-cube over Pre-Tr(B-Mod-B):

(
MhB

⊗AM
tr
−→ B̄

deg.0

) −1→−1 : −Id⊗act

0→0 : act
//

−1→−1 : Id

��

−1→−1 : −Id⊗χA

++

(
MhB

⊗AM⊗BMhA
⊗AM

−tr⊗Id
−−−−→ MhA

⊗AM
deg.0

)
−1→−1 : Id⊗tr⊗Id

��
MhB

⊗AM
deg.−1

Id // MhB
⊗AM

deg.−1 (5.42)
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produces the following diagram in D(B-B) with exact rows and columns:

T ′T
tr // B

��

// SQ′

��
T ′T

��

// T

��

// SLT

S(β)

��
0 // SR[1] SR[1]

(5.43)

Similarly, we incorporate the maps A act
−→ FF ′ and F ′F

tr
−→ A into the following two

3× 3 diagrams in D(A-A) with exact rows and columns:

RS[−1]

(α)S

��

RS[−1]

��

// 0

��
FLS //

��

F

��

// FF ′

QS // A act // FF ′

(5.44)

F ′F
tr // A

��

// Q′S

��
F ′F //

��

F ′ //

��

F ′RS

(β ′)S

��
0 // LS[1] LS[1]

(5.45)

We obtain immediately:

Proposition 5.8.

(1) If the natural transformation lt[−1]
(5.11)
−−−→ r is an isomorphism (condition (3) of

Theorem 5.1) then the adjunction counits t ′t → Id and f ′f → Id are isomorphisms.

(2) If the natural transformation r
(5.12)
−−−→ f l[1] is an isomorphism (condition (4) of

Theorem 5.1) then the adjunction units Id→ t t ′ and Id→ ff ′ are isomorphisms.

Proof. We only prove the first claim. By Lemma 5.7 condition (3) of Theorem 5.1 is
equivalent to Q ' 0 in D(B-A). Therefore SQ ' 0 in D(B-B), and since the bottom

row of (5.41) is exact, B act
−→ T T ′ is an isomorphism. Thus Id

unit
−−→ t t ′ is an isomorphism.

Similarly, QS ' 0 in D(A-A), and by the exactness of the bottom row of (5.44) the map

A act
−→ FF ′ is an isomorphism. Hence Id

unit
−−→ ff ′ is also an isomorphism. ut
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Lemma 5.9. Let α, α′, β and β ′ be as in diagrams (5.34) and (5.36). Then:

(1) The composition R
(act)R
−−−→ FF ′R

Fβ ′

−−→ FL[1] is the map α.

(2) The composition LT [−1]
α′T
−−→ RT ′T

R(tr)
−−→ R is the map β.

(3) The composition L
L(act)
−−−→ LT T ′

βT ′

−−→ RT ′[1] is the map α′.

(4) The composition F ′R[−1]
F ′α
−−→ F ′FL

(tr)L
−−→ L is the map β ′.

Proof. We only prove the first claim, the other three are proved analogously. Note also
that throughout the proof we omit labeling the internal twisted maps inside twisted com-
plexes, since they are not relevant to our argument. The results we quote before stating
each twisted complex identify these maps explicitly.

By construction of (5.34) the map R
α
−→ FL[1] in D(B-A) descends from the map of

twisted complexes (
MhB

deg.0

)
act⊗Id

��(
MhA // MhA

⊗A M ⊗B MhB
deg.0

) (5.46)

By Prop. 5.5 the map R
(act)R
−−−→ FF ′R descends from the map of twisted complexes

(
MhB

deg.0

)
Id⊕(Id⊗act)

��
Id⊗(−(χA⊗Id)◦act)

$$

MhB
⊕
(
MhB
⊗AM⊗BMhB)
deg.0

Id⊕(−Id⊗act⊗Id)

��(
MhB
⊗AM⊗BMhA //

11MhB
⊕(MhB

⊗AM⊗BMhA
⊗AM⊗BMhB)

deg.0

// MhB
⊗AM⊗BMhB)

(5.47)

Finally, FF ′R
Fβ ′

−−→ FL[1] descends from the map of twisted complexes which is com-
puted as follows.

By construction of the diagram (5.36) the map F ′R
β ′

−→ L[1] descends from

(
MhB

⊗A M ⊗B MhA //

−tr⊗Id

��

MhA
deg.0

)

(
MhA
deg.−1

) (5.48)
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On the other hand, F is the convolution of
(
Ā

deg.0

act
−→ M ⊗B MhB). Thus the map FF ′R

Fβ ′

−−→ FL[1] is

{
MhB

⊗A M ⊗B M
hA Id⊗tr
−−−→ MhB

deg.0

}
⊗
{
Ā

deg.0

act
−→ M ⊗B M

hB}
(5.48)⊗Id
−−−−−→ MhA

deg.−1
⊗

{
Ā

deg.0

act
−→ M ⊗B M

hB}.
Lemma 3.4 tells us how to take tensor product of twisted complexes in a way compatible

with convolutions. It follows from it that FF ′R
Fβ ′

−−→ FL[1] descends from the map

(
MhB
⊗AM⊗BMhA

−tr⊗Id

��

//
--

MhB
⊕(MhB

⊗AM⊗BMhA
⊗AM⊗BMhB)

deg.0

//

0⊕(−tr⊗Id)

��

MhB
⊗AM⊗BMhB)

(
MhA // MhA

⊗AM⊗BMhB
deg.0

)
(5.49)

It remains to prove that the composition of (5.47) and (5.49) is homotopic to (5.46).
This is equivalent to the following diagram commuting up to homotopy:

MhB Id⊗act //

Id
((

MhB
⊗AM⊗BMhB Id⊗act⊗Id //

tr⊗Id
��

(MhB
⊗AM)⊗BMhA

⊗AM⊗BMhB

tr⊗Id
��

MhB act⊗Id // MhA
⊗AM⊗BMhB.

(5.50)

This is clear: the square in (5.50) commutes up to homotopy by the functoriality of the
tensor product, while the triangle commutes up to homotopy by Prop. 2.11. ut

Let γ : F ′L[−1] → LT ′[1] be the map induced by the following morphism of twisted
complexes: (

MhA
⊗A M ⊗B MhA

deg.0

Id⊗tr //

Id

��

MhA)

(
MhA act⊗Id // MhA

⊗A M ⊗B MhA
deg.0

) (5.51)

Lemma 5.10. The morphism (5.51) is a homotopy equivalence. Consequently, the map
γ is an isomorphism.

Proof. Consider the composition

MhA
⊗A (M ⊗B M

hA)
Id⊗tr
−−−→ MhA act⊗Id

−−−→ (MhA
⊗A M)⊗B M

hA. (5.52)
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We claim that the homotopy inverse of (5.51) is the morphism

(
MhA

−(act⊗Id)◦ξA
))

act⊗Id //

ξ2
A

,,

MhA
⊗A M ⊗B MhA

deg.0

)
Id−(5.52)

��

−ξA◦(Id⊗tr)

))(
MhA

⊗A M ⊗B MhA
deg.0 Id⊗tr

// MhA)
(5.53)

Indeed, the composition of (5.51) with (5.53) is the morphism of twisted complexes

(
MhA

⊗A M ⊗B MhA
deg.0

Id⊗tr //

Id−(5.52)

��

−ξA◦(Id⊗tr)

))

MhA)

(
MhA

⊗A M ⊗B MhA
deg.0

Id⊗tr // MhA)
which differs from the identity morphism by

(
MhA

⊗A M ⊗B MhA
deg.0

Id⊗tr //

(5.52)

��

ξA◦(Id⊗tr)

))

MhA)
Id

��(
MhA

⊗A M ⊗B MhA
deg.0

Id⊗tr // MhA)
This is null-homotopic because it is the differential of the following degree−1 morphism
of twisted complexes:

(
MhA

⊗A M ⊗B MhA
deg.0

Id⊗tr // MhA)
act⊗Id

uu
ξA

��(
MhA

⊗A M ⊗B MhA
deg.0

Id⊗tr // MhA)
Thus the composition of (5.51) with (5.53) is homotopic to Id.

The composition of (5.53) and (5.51) being homotopic to Id is proved similarly. ut

Lemma 5.11. The composition F ′L[−1]
F ′α′

−−→ F ′RT ′
β ′T ′

−−→ LT ′[1] equals the map γ .

Proof. Arguing as in Lemma 5.9 we see that F ′L[−1]
F ′α′

−−→ F ′RT ′ descends from the
twisted complex map
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(
MhA

⊗AM⊗BM
hA

deg.0

//

0⊕(Id⊗act⊗Id⊗Id)

��

MhA)
Id⊗act

��(
MhB
⊗AM⊗BM

hA //
11MhB

⊕(MhA
⊗AM⊗BM

hB
⊗AM⊗BM

hA)
deg.0

// MhA
⊗AM⊗BM

hB)
(5.54)

Once again we omit labeling the internal twisted maps inside twisted complexes since

they are not relevant to our argument. Similarly, F ′RT ′
β ′T ′

−−→ LT ′[1] descends from the
twisted complex map

(
MhB
⊗AM⊗BMhA //

tr⊗Id

��

--
MhB
⊕(MhA

⊗AM⊗BMhB
⊗AM⊗BMhA)

deg.0

//

0⊕(Id⊗Id⊗tr⊗Id)

��

MhA
⊗AM⊗BMhB)

(
MhA // MhA

⊗AM⊗BMhA
deg.0

)
(5.55)

Hence the composition F ′L[−1]
F ′α′

−−→ F ′RT ′
β ′T ′

−−→ LT ′[1] descends from(
MhA

⊗A M ⊗B MhA
deg.0

//

Id⊗((Id⊗tr)◦(act⊗Id))⊗Id

��

MhA)

(
MhA // MhA

⊗A M ⊗B MhA
deg.0

) (5.56)

By Prop. 2.11 the composition

M
act⊗Id
−−−→ M ⊗B M

hB
⊗A M

Id⊗tr
−−−→ M

is homotopic to Id, and thus (5.56) is homotopic to the map γ . ut

Lemma 5.12. The following maps are equal:

• LT [−1]
α◦β
−−→ FL[1].

• LT [−1]
(5.26)LT
−−−−−→ FF ′LT [−1]

FγT
−−−→ FLT ′T [1]

FL(5.15)
−−−−−→ FL[1].

Proof. By Lemma 5.9 the composition LT [−1]
α◦β
−−→ FL[1] equals the composition

LT [−1]
α′T
−−→ RT ′T

R(5.15)
−−−−→ R

(5.26)R
−−−−→ FF ′R

Fβ ′

−−→ FL[1]. (5.57)

By functoriality of tensor product the composition (5.57) equals the composition

LT [−1]
α′T
−−→ RT ′T

(5.26)RT ′T
−−−−−−→ FF ′RT ′T

FF ′R(5.15)
−−−−−−→ FF ′R

Fβ ′

−−→ FL[1], (5.58)
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which by functoriality of tensor product again equals the composition

LT [−1]
(5.26)LT
−−−−−→ FF ′LT [−1]

FF ′α′T
−−−−→ FF ′RT ′T

Fβ ′T ′T
−−−−→ FLT ′T [1]

FL(5.15)
−−−−−→ FL[1].

(5.59)
The claim now follows by applying Lemma 5.11 to the two maps in the middle of (5.59).

ut

Similarly, let γ ′ : RT [−1] → FR[1] be the map induced by the following morphism of
twisted complexes: (

MhB
⊗A M ⊗B MhB

deg.0

tr⊗Id //

Id

��

MhB)

(
MhB Id⊗act // MhB

⊗A M ⊗B MhB
deg.0

) (5.60)

The following two results are proved identically to Lemmas 5.10 and 5.12:

Lemma 5.13. The morphism (5.60) is a homotopy equivalence. Consequently, the map
γ ′ is an isomorphism.

Lemma 5.14. The following maps are equal:

• F ′R[−1]
α′◦β ′

−−−→ RT ′[1].

• F ′R[−1]
F ′R(5.14)
−−−−−→ F ′RT T ′[−1]

F ′γ ′T ′

−−−−→ F ′FRT ′[1]
(5.27)RT ′
−−−−−→ RT ′[1].

Thus, if the adjunction maps (5.26) and (5.15) are isomorphisms, then the composition
α ◦ β is an isomorphism, and it filters through the canonical map RSL

η
−→ FL[1].

We are now in a position to prove the main theorem. Before we begin, recall that in
a triangulated category all retracts are split. More precisely, let Z

e
−→ Y be a retract in a

triangulated category, that is, there exists Y
g
−→ Z with Z

e
−→ Y

g
−→ Z being the identity.

Then for any completion of g to an exact triangle X
f
−→ Y

g
−→ Z, X ⊕ Z

f⊕e
−−→ Y is an

isomorphism. Moreover, its inverse is of the form Y
h⊕g
−−→ X ⊕ Z for some morphism

Y
h
−→ X. This can be established using only the axioms of triangulated categories, though

for enhanced triangulated categories one can see it very explicitly on the level of twisted
complexes.

Proof of Theorem 5.1. (3)&(4) ⇒ (1)&(2): Suppose that the natural transformations

lt[−1]
(5.11)
−−−→ r and r

(5.12)
−−−→ f l[1] are functorial isomorphisms. In other words, con-

ditions (3) and (4) hold. Then by Proposition 5.8 the units and counits of both adjoint
pairs (t ′, t) and (f ′, f ) are isomorphisms. Hence (t ′, t) and (f ′, f ) are pairs of mutually
inverse equivalences, that is, conditions (1) and (2) hold.

(1)&(3) ⇒ (4), (1)&(4) ⇒ (3), (2)&(3) ⇒ (4), (2)&(4) ⇒ (3): We only prove the first
assertion, the other three are proved similarly.
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Assume that (1) and (3) hold. Condition (1) is (t ′, t) being mutually inverse equiv-
alences. In particular, the adjunction unit Id → t t ′ is an isomorphism. Therefore the

morphism B (5.14)
−−−→ T ′T , which by Prop. 5.4 induces this adjunction unit, is also an

isomorphism. On the other hand, by Lemma 5.7 condition (3) is equivalent to the map

LT
β
−→ R[1] in (5.36) being an isomorphism.

By Lemma 5.7 condition (4) is equivalent to the map L
α′

−→ RT ′[1] in (5.34) being an

isomorphism. By Lemma 5.9 the map L
α′

−→ RT ′[1] decomposes as

L
L(5.14)
−−−−→ LT T ′

βT ′

−−→ RT ′[1].

By the above, both the composants are isomorphisms. Hence L
α′

−→ RT ′[1] is also an
isomorphism, as desired.

(1)&(2)⇒ (4): Assume that (1) and (2) hold. Then Id
(5.26)
−−−→ FF ′ and T ′T

(5.15)
−−−→ Id are

isomorphisms. By Lemma 5.10 the map F ′L[−1]
γ
−→ LT ′[1] induced by (5.51) is always

an isomorphism. By Lemma 5.12 the map LT [−1]
β
−→ R

α
−→ FL[1] decomposes as

LT [−1]
(5.26)LT
−−−−−→ FF ′LT [−1]

FγT
−−−→ FLT ′T [1]

FL(5.15)
−−−−−→ FL[1]

and is therefore an isomorphism.
This isomorphism α ◦β filters through the canonical map RSL

η
−→ FL[1], thus FL[1]

is a retract of RSL. More specifically, denote by η the map FL[1]
(α◦β)−1

−−−−→ LT [−1]
β
−→

R
Ract
−−→ RSL, so that

FL[1]
η
−→ RSL

η
−→ FL[1]

is the identity map. Since all retracts in triangulated categories are split, and L
actL
−−→

RSL
η
−→ FL[1] is an exact triangle, it follows that there exists a map RSL

actL
−−→ L such

that

L⊕ FL[1]
(actL)⊕η
−−−−−→ RSL

(actL)⊕η
−−−−−→ L⊕ FL[1]

are mutually inverse isomorphisms. Similarly, since F ′F
(5.27)
−−−→ Id and Id

(5.14)
−−−→ T T ′ are

isomorphisms, Lemmas 5.13 and 5.14 imply that the map F ′R[−1]
α′◦β ′

−−−→ RT ′[1] is an

isomorphism. Let ζ be the map RT ′[1]
(α′◦β ′)−1

−−−−−→ F ′R[−1]
β ′

−→ L
actL
−−→ RSL. Then there

exists a map RSL
Ract
−−→ R such that

R ⊕ RT ′[1]
(Ract)⊕ζ
−−−−−→ RSL

(Ract)⊕ζ
−−−−−→ R ⊕ RT ′[1]

are mutually inverse isomorphisms.

Since T ′T
(5.15)
−−−→ B is an isomorphism, it follows from the exactness of rows and

columns in (5.43) that SLT [−1]
Sβ
−→ SR is an isomorphism. So is SLT [−1]

Sα◦Sβ
−−−→
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SFL[1], and hence so must also be SR
Sα
−→ SFL[1]. Then S(α◦β)−1

= (Sβ)−1
◦(Sα)−1,

and hence the following diagram commutes:

SFL[1]
Sη // SRSL

SR

Sα ∼

OO

SRact

99

Consider now the map SFL[1] → T ′[1] which is adjoint to FL[1]
ζ◦η
−−→ RT ′[1]. It

filters through

SFL[1]
S(ζ◦η)
−−−−→ SRT ′[1],

which we can rewrite as

SFL[1]
(Sα)−1

−−−−→ SR
SRact
−−−→ SRSL

Sζ
−→ SRT ′[1],

and R
Ract
−−→ RSL

ζ
−→ RT ′[1] is the zero map. We conclude that FL[1]

ζ◦η
−−→ RT ′[1] is

adjoint to the zero map, and hence itself is the zero map.
Similarly, Sα′ and Sβ ′ are isomorphisms and the following diagram commutes

SRT ′[1]
Sζ // SRSL

SL

Sα′ ∼

OO

SactL

99

It follows similarly that SL
S(Ract◦actL)
−−−−−−−→SR is the zero map, and hence so isL

Ract◦actL
−−−−−→R.

Observe now that the composition

L⊕ FL[1]
(actL)⊕η
−−−−−→ RSL

(Ract)⊕ζ
−−−−−→ R ⊕ RT ′[1]

is an isomorphism and we have shown that the compositions

L
actL
−−→ RSL

Ract
−−→ R and FL[1]

η
−→ RSL

ζ
−→ RT ′[1]

are the zero maps. It follows that the compositions

L
actL
−−→ RSL

ζ
−→ RT ′[1] and FL[1]

η
−→ RSL

Ract
−−→ R

are isomorphisms. The former composition is, by definition, the map L
α′

−→ RT ′[1]. It
follows by Lemma 5.7 that condition (4) holds, as desired. ut

5.2. Applications to algebraic geometry

In this section we interpret the results of Section 5.1 in the context of algebraic geometry.
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Let Z and X be two separated schemes of finite type over k. Recall that for any
E ∈ Dqc(Z × X) the Fourier–Mukai transform 8E is the functor Dqc(Z) → Dqc(X)

defined by

RπX∗(E
L
⊗ π∗Z(−)),

where πZ and πX are the projections from Z × X to Z and X. Note that 8E does not
a priori restrict to a functor D(Z)→ D(X).

As explained in Example 4.3, we can Morita enhance D(Z) and D(X) by smooth
DG-algebras A and B whose classes in Ho(DG-Catkctr) are the standard enhancements
ofD(Z) andD(X). Moreover,D(Z×X) is Morita enhanced by the DG-algebra Aopp

⊗B
and the following holds. Recall that Morita quasi-functors A→ B are identified naturally
with the elements of DB-Perf (A-B). Since A is smooth, we have a natural inclusion
DB-Perf (A-B) ↪→ Dc(A-B). Thus to each Morita quasi-functor A F

−→ B corresponds an
element in Dc(A-B), and so an element E ∈ D(Z × X). The Fourier–Mukai transform

8E restricts to a functor D(Z)
8E
−−→ D(X), and this functor is isomorphic to the exact

functor D(Z)→ D(X) underlying F .
Similarly, X × Z, Z × Z and X × X are Morita enhanced by Bopp

⊗ A, Aopp
⊗ A

and Bopp
⊗B with a similar correspondence between Morita quasi-functors and Fourier–

Mukai transforms. We implicitly identify X×Z with Z×X using the canonical isomor-
phism between the two. For any object E in Dc(A), Dc(B), Dc(A-B), etc. let E be the
corresponding object in D(Z), D(X), D(Z ×X), etc.

Let S̄ ∈ D(Z×X) be such that the corresponding S ∈ Dc(A-B) is A- and B-perfect.
Let L = SÃ and R = SB̃. These are A-perfect and B-perfect, respectively. Since A and
B are smooth, L and R lie in Dc(B-A) by Cor. 2.15. The corresponding objects L̄ and R̄

in D(X × Z) define the Fourier–Mukai transforms D(X)
8L̄,8R̄
−−−−→ D(Z) which are left

and right adjoint to D(Z)
8S̄
−→ D(X). The adjunction counits and units are the natural

transformations of the Fourier–Mukai transforms induced by the derived trace and action
maps

SR
tr
−→ B and LS

tr
−→ A, (5.61)

B act
−→ SL and A act

−→ RS. (5.62)

The cotwists F,F ′ ∈ D(A-A) and the twists T , T ′ ∈ D(B-B) of S were defined in
Section 5.1 as the cones and the (−1)-shifted cones of the derived trace and action maps
above. It follows from Cor. 2.15 that they are all compact objects. Hence we can define the
cotwist and the dual cotwist of S̄ to be the corresponding objects F̄ and F̄ ′ ∈ D(Z × Z)
and the twist and the dual twist of S̄ to be T̄ and T̄ ′ in D(X ×X). Finally, define

8R̄ → 8F̄8L̄[1], (5.63)
8L̄8T̄ [−1] → 8R̄ (5.64)

to be the natural transformations of Fourier–Mukai transforms which correspond to the

natural transformations lt[−1]
(5.11)
−−−→ r and r

(5.12)
−−−→ f l[1] constructed in Section 5.1.
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The algebras A and B are constructed as DG-End-algebras of h-injective strong gen-
erators FZ and FX of D(Z) and D(X). It follows from [Lun10, Th. 6.3] that choosing a
different generator F ′X of e.g. D(X) produces a Morita equivalent DG-algebra B′. More
generally, it follows that a different choice of generators F ′Z and F ′X produces Morita
equivalent DG-algebras A′, B′, A′-B′, A′-A′ and B′-B′.

All the constructions from Section 5.1 we have used so far were defined entirely in
terms of the derived duals R and L of S and the derived trace and action maps. One
can check that the derived dualizing functors and the derived trace and action maps are
preserved under Morita equivalences. Thus the objects L̄, R̄, F̄ , F̄ ′, T̄ , T̄ ′ and the natural
transformations (5.63)–(5.64) defined above depend only on S̄ ∈ D(Z × X) itself, and
not on our choice of the generators FX and FY of D(Z) and D(X).

Though we have established that the above objects and maps are well-defined and are
determined only by S̄ ∈ D(Z × X), to actually compute them in any practical scenario
would require explicit formulas for L̄, R̄ in terms of S̄ as well as explicit formulas for the
maps inD(X×X) andD(Z×Z) which correspond to the derived trace and action maps.
To this end we offer the following:

Conjecture 5.15. Let S̄ ∈ D(Z × X) be such that the corresponding S ∈ Dc(A-B) is
A- and B-perfect. Then

L̄ ' RHomZ×X(S̄, π !Z(OZ)), R̄ ' RHomZ×X(S̄, π !X(OX)),

and the maps in D(Z × Z) and D(X × X) which correspond to the derived trace and
action maps (5.61)–(5.62) are isomorphic to the explicit maps written down in [AL12]
and [AL16] which lift the adjunction counits and units of Fourier–Mukai transforms to
the level of Fourier–Mukai kernels.

Finally, we need an intrinsic condition on S̄ ∈ D(Z × X) on the algebro-geometric side
which ensures that the corresponding S ∈ Dc(A-B) is A- and B-perfect.

Lemma 5.16. Let S̄ ∈ D(Z×X). The Fourier–Mukai transform8S̄ restricts toD(Z)→
D(X) and this restriction has a left adjoint which is also a Fourier–Mukai transform if
and only if the corresponding object S ∈ Dc(A-B) is A- and B-perfect.

Proof. As explained above, S ∈ Dc(A-B) is B-perfect if and only if 8S̄ restricts to

D(Z)→ D(X). In that case Dc(A)
(−)

L
⊗AS

−−−−−→ Dc(B) corresponds to D(Z)
8S̄
−→ D(X).

Suppose now S is also A-perfect. By Cor. 2.2 the functor (−)
L
⊗B SÃ is left adjoint

to (−)
L
⊗A S. Moreover, since S is A-perfect, so is SÃ. Hence there exists an object in

D(X×Z)which defines the Fourier–Mukai transformD(X)→ D(Z)which corresponds

to (−)
L
⊗B SÃ. In particular, this Fourier–Mukai transform is left adjoint to 8S̄ .

Conversely, if there exists a Fourier–Mukai transform D(X) → D(Z) which is the

left adjoint to8S̄ , let L be the corresponding object ofDA-Perf (B-A). Then (−)
L
⊗B L is

left adjoint to (−)
L
⊗A S as functors between Dc(A) and Dc(B). But since derived tensor
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product commutes with infinite direct sums, these are, in fact, adjoint on the whole of
D(A) and D(B).

Since L is A-perfect, by Cor. 2.2 the functor (−)
L
⊗BL fromD(A) toD(B) has a right

adjoint (−)
L
⊗A LÃ. By uniqueness of adjoints we conclude that the functors (−)

L
⊗A S

and (−)
L
⊗ALÃ are isomorphic. Since L is A-perfect, so is LÃ. Hence (−)

L
⊗ALÃ takes

compact objects to compact objects, and hence so does (−)
L
⊗A S. We conclude that S is

also A-perfect, as desired. ut

Theorem 5.1 immediately implies the following:

Theorem 5.2. Let S̄ ∈ D(Z × X) be such that 8S̄ restricts to D(Z)→ D(X) and this
restriction has a left adjoint which is also a Fourier–Mukai transform.

Suppose any two of the following conditions hold:

(1) 8T̄ is an autoequivalence of D(X) (“the twist is an equivalence”).
(2) 8F̄ is an equivalence of D(Z) (“the cotwist is an equivalence”).

(3) 8R̄
(5.63)
−−−→ 8F̄8L̄[1] is an isomorphism of functors (“the twist identifies the

adjoints”).

(4) 8L̄8T̄ [−1]
(5.64)
−−−→ 8R̄ is an isomorphism of functors (“the cotwist identifies the

adjoints”).

Then all four of them hold. If that happens, we say that S̄ is spherical over Z.

We can repeat all the arguments in this section using the framework of Example 4.2 rather
than Example 4.3. Thus we would work with large Morita enhancements of Dqc(Z) and
Dqc(X), rather than Morita enhancements of D(Z) and D(X). This yields a construction
of twists and cotwists as functors Dqc(X) → Dqc(X) and Dqc(Z) → Dqc(Z) and an
analogue of Theorem 5.2. However, we would have to impose the following condition on
the objects of S̄ ∈ Dqc(Z × X) we work with: 8S̄ must have a left adjoint which is a
Fourier–Mukai transform and they must both send compact objects to compact objects.
This condition can also be stated equivalently as: 8S̄ must have left and right adjoints
which are both Fourier–Mukai transforms.

6. Braiding criteria for spherical DG-functors

Let A1, A2 and B be small DG-categories and let S1 ∈ D(A1-B) and S2 ∈ D(A2-B) be
two spherical objects. We keep all the notation conventions of Section 5. For example, Ri
denotes SB̃i , SiRi denotes Ri

L
⊗Ai

Si , Ti denotes the cone of SiRi
tr
−→ B, etc.

In particular, M = Ā1 ⊗A1 S1 ⊗B B̄ and N = Ā2 ⊗A2 S2 ⊗B B̄ are h-projective
resolutions of S1 and S2. In this section it has been possible to simplify a number of com-
putations by replacing all homotopy trace mapsMhB

⊗AM
tr
−→ B̄ andNhB

⊗AN
tr
−→ B̄ by

their compositions with B̄ τ
−→ B. To keep the notation simple, we writeMhB

⊗AM
tr
−→ B

and NhB
⊗A N

tr
−→ B for these compositions throughout.
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6.1. Commutation

By functoriality of the derived tensor product, the following diagram commutes:

S2R2
Id //

tr

��

S2R2

tr

��

S1R1S2R2

tr⊗Id
::

Id⊗tr

��

S2R2S1R1

Id⊗tr ::

tr⊗Id

��

B
Id

// B

S1R1 Id
//

tr
::

S1R1

tr
::

(6.1)

The main result of this section is:

Theorem 6.1. Suppose there exists an isomorphism

S1R1S2R2
φ
−→ S2R2S1R1

which makes the diagram (6.1) commute. Then

T1T2 ' T2T1.

Proof. By definition, T1T2 is isomorphic in D(B-B) to{
NhB
⊗A2 N

tr
−→ B

deg.0

}
⊗B

{
MhB

⊗A1 M
tr
−→ B

deg.0

}
which by Lemma 3.4 is isomorphic to the convolution of(

NhB
⊗A2 N ⊗B M

hB
⊗A1 M

α
−→ (NhB

⊗A2 N)⊕ (M
hB
⊗A1 M)

γ
−→ B

deg.0

)
(6.2)

where α = (−Id ⊗ tr) ⊕ (tr⊗ Id) and γ = tr ⊕ tr. Similarly, T2T1 is isomorphic to the
convolution of(

MhB
⊗A1 M ⊗B N

hB
⊗A2 N

β
−→ (NhB

⊗A2 N)⊕ (M
hB
⊗A1 M)

γ
−→ B

deg.0

)
(6.3)

where β = (tr⊗ Id)⊕ (−Id⊗ tr).
By Theorem A.1 of the Appendix, to show that (6.2) and (6.3) are homotopy equiv-

alent in Pre-Tr(B-Mod-B), and hence that T1T2 and T2T1 are isomorphic in D(B-B), it
suffices to exhibit

f ∈ Hom0
B-B(N

hB
⊗A2 N ⊗B M

hB
⊗A1 M,M

hB
⊗A1 M ⊗B N

hB
⊗A2 N),

s1 ∈ Hom−1
B-B

(
NhB
⊗A2 N ⊗B M

hB
⊗A1 M, (N

hB
⊗A2 N)⊕ (M

hB
⊗A1 M)

)
,

s2 ∈ Hom−2
B-B(N

hB
⊗A2 N ⊗B M

hB
⊗A1 M,B)
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such that

f is a homotopy equivalence, ds1 = α − βf , ds2 = γ s1.

Since all the source bimodules are h-projective, the Homi-spaces above are isomor-
phic to the Exti-spaces between the same objects in D(B-B).

In particular, we can lift the isomorphism

S1R1S2R2
φ
−→ S2R2S1R1

in D(B-B) to some homotopy equivalence

f ∈ Hom0
B-B(N

hB
⊗A2 N ⊗B M

hB
⊗A1 M,M

hB
⊗A1 M ⊗B N

hB
⊗A2 N).

The fact that φ makes (6.1) commute in D(B-B) implies that α − βf vanishes in

HomD(B-B)(S1R1S2R2, S1R1 ⊕ S2R2).

Hence we can find some

s1 ∈ Hom−1
B-B

(
NhB
⊗A2 N ⊗B M

hB
⊗A1 M, (M

hB
⊗A1 M)⊕ (N

hB
⊗A2 N)

)
with ds1 = α − βf . But there is no a priori reason for the class of γ s1 to vanish in
Ext−1

D(B-B)(S1R1S2R2,B), which is what we need to warrant the existence of

s2 ∈ Hom−2
B-B(N

hB
⊗A2 N ⊗B M

hB
⊗A1 M, B̄)

with ds2 = γ s1, whence as explained above the claim of this theorem would follow.
It suffices, however, to find

t1 ∈ Hom−1
B-B

(
NhB
⊗A2 N ⊗B M

hB
⊗A1 M, (M

hB
⊗A1 M)⊕ (N

hB
⊗A2 N)

)
with dt1 = 0 and γ t1 = γ s1 in Ext−1

D(B-B)(S1R1S2R2,B). For if we then replace s1 with
s1 − t1, the condition ds1 = α − βf would still hold, but the class of γ s1 would now
vanish in Ext−1

D(B-B)(S1R1S2R2,B) as required. Thus it remains to show that the class

[γ s1] in Ext−1
D(B-B)(S1R1S2R2,B) lifts with respect to

Ext−1
D(B-B)(S1R1S2R2, S1R1 ⊕ S2R2)

γ (−)
−−−→ Ext−1

D(B-B)(S1R1S2R2,B) (6.4)

to some class in Ext−1
D(B-B)(S1R1S2R2, S1R1 ⊕ S2R2).

We claim that, in fact, (6.4) is surjective. Indeed, it follows from Prop. 2.11 via the
usual adjunction-type argument that for any N1 ∈ D(A2-A1) and N2 ∈ D(B-B) the map

Ext−1
D(B-B)(S1N1R2, N2)→ Ext−1

D(B-B)(N1, R1N2S2) (6.5)

given by

α 7→ N1
actN1 act
−−−−−→ R1S1N1R2S2

R1αS2
−−−→ R1N2S2
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is a functorial isomorphism. We thus have a commutative diagram

Ext−1
D(B-B)(S1R1S2R2, S1R1 ⊕ S2R2)

(6.4) //

∼ (6.5)
��

Ext−1
D(B-B)(S1R1S2R2,B)

∼ (6.5)
��

Ext−1
D(A2-A1)

(R1S2, R1S1R1S2 ⊕ R1S2R2S2)
(R1γ S2)(−) // Ext−1

D(A2-A1)
(R1S2, R1S2)

(6.6)

The map R1γ S2 is

R1S1R1S2 ⊕ R1S2R2S2
R1 tr S2⊕R1 tr S2
−−−−−−−−−→ R1S2,

and by Prop. 2.11 the map

R1S2

1
2 actR1S2⊕

1
2R1S2 act

−−−−−−−−−−−−→ R1S1R1S2 ⊕ R1S2R2S2

is its left inverse in D(A2-A1). Therefore

Ext−1
D(A2-A1)

(R1S2, R1S1R1S2 ⊕ R1S2R2S2)
(R1γ S2)(−)
−−−−−−−→ Ext−1

D(A2-A1)
(R1S2, R1S2)

is surjective, and hence so is (6.4) as desired. ut

6.2. Braiding

Define
Oi = Fi

{
LiSjRjSi

tr ◦(Li tr Si )
−−−−−−→ Ai

deg.0

}
∈ D(Ai-Ai) (6.7)

where i, j ∈ {1, 2}, i 6= j . For spherical S1, S2 the natural map Ri[−1]
α
−→ FiLi is an

isomorphism and it identifies the map in (6.7) with the map

RiSjRjSi[−1]
Ri tr Si
−−−−→ RiSi[−1] → Fi

whose second composant comes from the exact triangle Fi → Ai → RiSi . Thus O1 and
O2 are isomorphic to the convolutions of the twisted complexes

O1 :=
((
M ⊗B N

hB
⊗A2 N ⊗B M

hB)
⊕ Ā1

deg.0

(Id⊗tr⊗Id)⊕(−act)
−−−−−−−−−−−→ M ⊗B M

hB
)
,

O2 :=
((
N ⊗B M

hB
⊗A1 M ⊗B N

hB)
⊕ Ā2

deg.0

(Id⊗tr⊗Id)⊕(−act)
−−−−−−−−−−−→ N ⊗B N

hB
)
.

There are natural maps

S1O1R1 → S1R1S2R2 ⊕ S2R2S1R1, (6.8)
S2O2R2 → S1R1S2R2 ⊕ S2R2S1R1, (6.9)

where (6.8) is the map induced by

MhB
⊗A1M⊗BN

hB
⊗A2N⊗BM

hB
⊗A1M

Id⊗Id⊗tr⊗Id⊗Id
−−−−−−−−−−−→ MhB

⊗A1M⊗BN
hB
⊗A2N,

(6.10)
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MhB
⊗A1M⊗BN

hB
⊗A2N⊗BM

hB
⊗A1M

tr⊗Id⊗Id⊗Id⊗Id
−−−−−−−−−−−→ NhB⊗A2N⊗BM

hB
⊗A1M,

(6.11)

and (6.9) is defined analogously.
The main result of this section is:

Theorem 6.2. Suppose there exists an isomorphism

S1O1R1
φ
−→ S2O2R2

which commutes with the maps (6.8) and (6.9). Then

T1T2T1 ' T2T1T2.

Proof. T1T2T1 is isomorphic by the Cube Completion Lemma 3.7 to the convolution of
the twisted cube

MhB
⊗M⊗NhB

⊗N⊗MhB
⊗M

Id⊗tr

uu
tr⊗Id

��

−Id⊗tr⊗Id

))
MhB
⊗M⊗NhB

⊗N

tr⊗Id
��

−Id⊗tr

))

NhB
⊗N⊗MhB

⊗M
−Id⊗tr

uu

tr⊗Id

))

MhB
⊗M⊗MhB

⊗M

−Id⊗tr

uu
tr⊗Id
��

NhB
⊗N

tr

))

MhB
⊗M

tr

��

MhB
⊗M

tr

uuB
deg.0

(6.12)

We now use the isomorphism (MhB
⊗M) ⊕ (MhB

⊗M)

(
1 1
1 −1

)
−−−−→ (MhB

⊗M) ⊕

(MhB
⊗M) to rewrite the total complex of (6.12) as

MhB
⊗M⊗NhB

⊗N⊗MhB
⊗M

Id⊗tr

vv

tr⊗Id

��

−Id⊗tr⊗Id

((
MhB
⊗M⊗NhB

⊗N
⊕

tr⊗Id

��

−Id⊗tr

((

−Id⊗tr

,,

NhB
⊗N⊗MhB

⊗M
⊕

−Id⊗trvv

−tr⊗Id

((

tr⊗Id

��

MhB
⊗M⊗MhB

⊗M

−2(tr⊗Id)

��
NhB
⊗N

⊕
tr

((

MhB
⊗M

⊕
tr

��

MhB
⊗M

B
deg.0

(6.13)
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Let X and Y be the full subcomplexes of (6.13) which comprise its left two columns
and its right column, respectively. Since the right column has no outgoing arrows, its
incoming arrows define a closed degree 0 morphism X

ρ
−→ Y whose total complex is

(6.13). Let

Y ′ =
(
MhB

⊗M
−

1
2 Id⊗act⊗Id
−−−−−−−−→ MhB

⊗M ⊗MhB
⊗M

deg.−2

)
.

Lemma 5.10 yields a homotopy equivalence Y
γ ′

−→ Y ′. The total complex of X
ρ
−→ Y is

then homotopy equivalent to the total complex of X
γ ′◦ρ
−−→ Y ′. Thus (6.13) is homotopy

equivalent to the twisted complex

MhB
⊗M⊗NhB

⊗N⊗MhB
⊗M

Id⊗tr

uu
tr⊗Id

��

−Id⊗tr⊗Id

))

⊕
MhB
⊗M

−
1
2 Id⊗act⊗Id

��
MhB
⊗M⊗NhB

⊗N
⊕

−Id⊗tr

))

tr⊗Id

��

NhB
⊗N⊗MhB

⊗M
⊕

−Id⊗tr

uu

tr⊗Id

��

MhB
⊗M⊗MhB

⊗M

NhB
⊗N

⊕
tr

))

MhB
⊗M

tr

��
B

deg.0
(6.14)

Now observe that MhB
⊗ O1 ⊗M[−3] is homotopy equivalent to the following initial

subcomplex of (6.14):

MhB
⊗M ⊗NhB

⊗N ⊗MhB
⊗M

−Id⊗tr⊗Id

++

⊕
MhB

⊗M

−
1
2 Id⊗act⊗Id

��
MhB

⊗M ⊗MhB
⊗M

deg.−2

(6.15)

By the same argument as above, (6.14) is homotopy equivalent to the twisted complex

MhB
⊗O1 ⊗M

α
−→ (MhB

⊗M ⊗NhB
⊗N)⊕ (NhB

⊗N ⊗MhB
⊗M)

γ
−→ (MhB

⊗M)⊕ (NhB
⊗N)

δ
−→ B

deg.0
. (6.16)

Similarly, T2T1T2 is isomorphic to the convolution of the twisted complex

NhB
⊗O2 ⊗N

α
−→ (MhB

⊗M ⊗NhB
⊗N)⊕ (NhB

⊗N ⊗MhB
⊗M)

γ
−→ (MhB

⊗M)⊕ (NhB
⊗N)

δ
−→ B

deg.0
. (6.17)
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The complexes (6.16) and (6.17) descend to the following complexes of objects in
D(B-B):

S1O1R1
(6.8)
−−→ S1R1S2R2 ⊕ S2R2S1R1

(
S1R1 tr − tr S1R1
− tr S2R2 S2R2 tr

)
−−−−−−−−−−−−−→ S1R1 ⊕ S2R2

tr⊕tr
−−→ B,

(6.18)

S2O2R2
(6.9)
−−→ S1R1S2R2 ⊕ S2R2S1R1

(
S1R1 tr − tr S1R1
− tr S2R2 S2R2 tr

)
−−−−−−−−−−−−−→ S1R1 ⊕ S2R2

tr⊕tr
−−→ B.

(6.19)

By Theorem A.1 to show that (6.16) and (6.17) are homotopy equivalent in
Pre-Tr(B-Mod-B), and hence that T1T2T1 and T2T1T2 are isomorphic in D(B-B), it suf-
fices to exhibit

f ∈ Hom0
B-B(M

hB
⊗O1⊗M,N

hB
⊗O2⊗N),

s1 ∈ Hom−1
B-B

(
MhB

⊗O1⊗M, (M
hB
⊗M ⊗NhB

⊗N)⊕ (NhB
⊗N ⊗MhB

⊗M)
)
,

s2 ∈ Hom−2
B-B

(
MhB

⊗O1⊗M, (M
hB
⊗M)⊕ (NhB

⊗N)
)
,

s3 ∈ Hom−3
B-B(M

hB
⊗O1⊗M,B)

such that

f is a homotopy equivalence, ds1 = α − βf , ds2 = γ s1, ds3 = −δs2.

As in the proof of Theorem 6.1 we can lift φ to some homotopy equivalence f , and
the existence of

s̃1 ∈ Hom−1
B-B

(
MhB

⊗O1 ⊗M, (M
hB
⊗M ⊗NhB

⊗N)⊕ (NhB
⊗N ⊗MhB

⊗M)
)

with ds̃1 = α − βf is guaranteed by the commutation of φ with (6.8)–(6.9). Since
γα = γβ = 0 we deduce that d(γ s̃1) = 0. Thus γ s̃1 defines the class [γ s̃1] ∈
Exti

D(B-B)(S1O1R1, S1R1⊕ S2R2), and since δγ = 0 the composition δ[γ s̃1] vanishes in
Exti

D(B-B)(S1O1R1,B). By Cor. 6.2 below there exists

t1 ∈ Hom−1
B-B

(
MhB

⊗O1 ⊗M, (M
hB
⊗M ⊗NhB

⊗N)⊕ (NhB
⊗N ⊗MhB

⊗M)
)

such that dt1=0 and [γ s̃1]=[γ t1] in Exti
D(B-B)(S1O1R1, S1R1⊕S2R2). Set s1= s̃1− t1.

We still have ds1 = α − βf , but the class of γ s1 in Exti
D(B-B)(S1O1R1, S1R1 ⊕ S2R2) is

zero, so there exists

s̃2 ∈ Hom−2
B-B

(
MhB

⊗O1 ⊗M, (M
hB
⊗M)⊕ (NhB

⊗N)
)

with ds̃2 = γ s1. Since δγ = 0, we have d(δs̃2) = 0. Again, by Cor. 6.2 there exists

t2 ∈ Hom−2
B-B

(
MhB

⊗O1 ⊗M, (M
hB
⊗M)⊕ (NhB

⊗N)
)
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with dt2 = 0 and [δt2] = [δs̃2]. Set s2 = s̃2− t2. We still have ds2 = γ s1, but the class of
δs2 in Exti

D(B-B)(S1O1R1,B) is zero, so there exists

s3 ∈ Hom−3
B-B(M

hB
⊗O1 ⊗M,B)

with ds3 = −δs2. ut

Lemma 6.1. There is a diagram of Ext groups in D(B-B)

Exti
D(B-B)(∗, S1R1)

η1vv

µ1

**

Exti
D(B-B)(∗,B)

κ1
66

κ2 ((

Exti
D(B-B)(∗, S1R1S2R2 ⊕ S2R2S1R1)

ν1

jj

ν2

tt

Exti
D(B-B)(∗, S2R2)

η2
hh

µ2

44

(6.20)

where ∗ can mean S1O1R1 or S2O2R2 (since they are isomorphic in the derived cate-
gory).

Moreover, ηiκi = Id and νiµi = Id, while ν2µ1 = −κ2η1, ν1µ2 = −κ1η2 and
η1ν1 = −η2ν2.

Proof. Let ν1 be the map S1R1S2R2 ⊕ S2R2S1R1
−S1R1tr⊕trS1R1
−−−−−−−−−→ S1R1. Similarly, let

ν2 be the map S1R1S2R2 ⊕ S2R2S1R1
tr S2R2⊕−S2R2 tr
−−−−−−−−−−→ S2R2. Let η1 and η2 be the trace

maps S1R1
tr
−→ B and S2R2

tr
−→ B.

Let µ1 be the composition

ExtiD(B-B)(S2O2R2, S1R1)
S2R2(−)S2R2
−−−−−−−−→ExtiD(B-B)(S2R2S2O2R2S2R2, S2R2S1R1S2R2)

S2 actO2 actR2
−−−−−−−−→ ExtiD(B-B)(S2O2R2, S2R2S1R1S2R2)

−
1
2 (tr S1R1S2R2)⊕

1
2 (S2R2S1R1 tr)

−−−−−−−−−−−−−−−−−−−−→ ExtiD(B-B)(S2O2R2, S1R1S2R2 ⊕ S2R2S1R1). (6.21)

Let κ1 be the composition

ExtiD(B-B)(S1O1R1,B)
S1R1(−)S1R1
−−−−−−−−→ ExtiD(B-B)(S1R1S1O1R1S1R1, S1R1S1R1)

S1 actO1 actR1
−−−−−−−−→ ExtiD(B-B)(S1O1R1, S1R1S1R1)

S1R1 tr
−−−−→ ExtiD(B-B)(S1O1R1, S1R1).

(6.22)

The maps µ2 and κ2 are defined analogously.
We have η1ν1 = −η2ν2 by functoriality of the tensor product. The relations ηiκi = Id

and νiµi = Id are verified directly using Prop. 2.11. Let us prove that ν2µ1 = −κ2η1.
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Consider the composition

ExtiD(B-B)(S2O2R2,B)
S2R2(−)S2R2
−−−−−−−−→ ExtiD(B-B)(S2R2S2O2R2S2R2, S2R2S2R2)

S2 actO2 actR2
−−−−−−−−→ ExtiD(B-B)(S2O2R2, S2R2S2R2)

−
1
2 (tr S2R2)⊕

1
2 (S2R2 tr)

−−−−−−−−−−−−−−→ ExtiD(B-B)(S2O2R2, S2R2 ⊕ S2R2) (6.23)

and the map

ExtiD(B-B)(S2O2R2, S1R1S2R2 ⊕ S2R2S1R1)

tr S2R2⊕S2R2 tr
−−−−−−−−−→ ExtiD(B-B)(S2O2R2, S2R2 ⊕ S2R2). (6.24)

Applying the map S1R1
tr
−→ B to every composant of (6.21) and using functoriality we

see that the square

Exti
D(B-B)(S2O2R2, S1R1)

η1 //

µ1

��

Exti
D(B-B)(S2O2R2,B)

(6.23)
��

Exti
D(B-B)(S2O2R2, S1R1S2R2 ⊕ S2R2S1R1)

(6.24) // Exti
D(B-B)(S2O2R2, S2R2 ⊕ S2R2)

commutes. By inspection, the composition of (6.23) with the map

ExtiD(B-B)(S2O2R2, S2R2 ⊕ S2R2)
Id⊕− Id
−−−−→ ExtiD(B-B)(S2O2R2, S2R2) (6.25)

is −κ2, while the composition of (6.24) with (6.25) is ν2. It follows that ν2µ1 = −κ2η1,
as desired. ut

Corollary 6.2. The sequence

ExtiD(B-B)(S1O1R1, S1R1S2R2 ⊕ S2R2S1R1)
γ
−→ ExtiD(B-B)(S1O1R1, S1R1 ⊕ S2R2)

δ
−→ ExtiD(B-B)(S1O1R1,B)

is exact in its middle term and surjective onto its last term.

Appendix. On homotopy equivalences of twisted complexes

Let C be a strongly pretriangulated DG-category. The example one wants to keep in mind
is P(A) for some DG-category A, so that H 0(C) = D(A). Let (Ei, qij ) be a twisted
complex over C. The objects Ei and the degree 0 morphisms qi(i+1) form an ordinary
differential complex over H 0(C):

· · ·
q(i−2)(i−1)
−−−−−−→ Ei−1

q(i−1)i
−−−→ Ei

qi(i+1)
−−−→ Ei+1

q(i+1)(i+2)
−−−−−−→ · · · .

Let (Ei, qij ) and (Fi, rij ) be twisted complexes over C. We would like to know when
their convolutions {Ei, qij } and {Fi, rij } are isomorphic in H 0(C). Since C was assumed
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to be strongly pretriangulated, constructing an isomorphism of {Ei, qij } and {Fi, rij } in
H 0(C) is the same thing as constructing a homotopy equivalence of (Ei, qij ) and (Fi, rij )
in Pre-Tr(C).

Suppose that the underlying differential complexes of (Ei, qij ) and (Fi, rij ) are iso-

morphic, more specifically—that we have a set of isomorphisms Ei
fi
−→ Fi in H 0(C)

which gives an isomorphism of these differential complexes. This alone does not ensure
that (Ei, qij ) and (Fi, rij ) are isomorphic in H 0(C), since the same differential complex
over H 0(C) can, in general, be lifted to several non-homotopically equivalent twisted
complexes over C. Thus the question arises: what are the sufficient conditions on fi for
us to be able to cook up a homotopy equivalence of (Ei, qij ) and (Fi, rij ) from them?

When trying to construct this homotopy equivalence even in simplest cases, one en-
counters a number of conditions which, at first glance, seem unavoidable, but in fact are
redundant:

Example A.1. Let E
q
−→ G and F

r
−→ G be twisted complexes over C. Let E

f
−→ F be a

homotopy equivalence in C such that the square

E
q //

f

��

G

Id
��

F
r // G

(A.1)

commutes in H 0(C). Since H 0(C) is triangulated, there exists an isomorphism Cone(q)
→ Cone(r) which extends this square in H 0(C) to an isomorphism of exact triangles. It

follows that we can extend E
f
−→ F andG

Id
−→ G to a homotopy equivalence in Pre-Tr(C)

of the twisted complexes E
q
−→ G and F

r
−→ G.

If we actually try and construct this homotopy equivalence, we run into the following
type of problems:

Claim. Let g ∈ Hom0
C(F,E) be a homotopy inverse of f ; in other words, there exist

h ∈ Hom−1
C (E,E) and h′ ∈ Hom−1

C (F, F ) such that gf − Id = dh and fg − Id = dh′.
Then there exist mutually inverse homotopy equivalences

E
q //

f

��

t

��

G

Id
��

F
r // G

F
r //

t ′

��
g

��

G

Id
��

E
q // G

t ∈ Hom−1
C (E,G)

t ′ ∈ Hom−1
C (F,G)

(A.2)

of E
q
−→ G and F

r
−→ G if and only if h and h′ can be chosen so that the following

equivalent conditions hold:

• r(f h− h′f ) = ds for some s ∈ Hom−2
C (E,G).

• q(gh′ − hg) = ds′ for some s′ ∈ Hom−2
C (F,G).

Proof. Straightforward verification. ut
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A priori, there is no reason to expect a class like r(f h − h′f ) in Hom−1
C (E,G) to be

null-homotopic. In fact, for general h and h′ it would not be. So this may seem like a
genuinely necessary condition.

However, it turns out that we can always choose h and h′ so that even f h− h′f and
gh′ − hg are null-homotopic. Since dq = dr = 0, it would also imply the conditions
above.

The explanation is: f h−h′f and gh′−hg are both killed by the differential, and thus
define classes ξ ∈ Hom−1

H 0(C)(E, F ) and ξ ∈ Hom−1
H 0(C)(F,E), respectively. Since f and

g are isomorphisms in H 0(C), they identify both Hom−1
H 0(C)(E, F ) and Hom−1

H 0(C)(F,E)

with Hom−1
H 0(C)(E,E). A priori, neither ξ nor ξ ′ is zero, but one can check that ξ and−ξ ′

give the same class in Hom−1
H 0(C)(E,E). We can therefore correct h ∈ Hom−1

C (E,E) by
this class and kill off both ξ and ξ ′, as required.

It is not a calculation one would want to try and write down in a larger, more compli-
cated scenario. Fortunately, there turns out to be a more conceptual argument. It requires
us to consider A∞-categories and A∞-functors—see [Kel01] and [LH03, §8] for the ba-
sics. In particular, we use the convention in [LH03, §8] for denoting A∞-functors as (ḟ, fi)
where ḟ is the object map, f1 is the morphism map and fi≥2 are the higher morphism maps.

A choice of h and h′ as above and also of j ∈ Hom−2
C (X, Y ) and j ′ ∈ Hom−2

C (Y,X)

such that f h − h′f = dj and f h − h′f = dj ′ can readily be checked to be a part of
precisely the data necessary to define a strictly unital A∞-functor

ψφ = Idx
φψ = Idy
βφ = α

αψ = β

x
•

α

""
φ

��

a
•

(ḟ,fi ) // C

y
•

β

<<ψ

TT

which sends x, y, a to E,F,G and φ,ψ, α, β to f, g, q, r . Here, the quiver on the left
defines an additive k-category whose objects are the vertices of the quiver and whose
Hom-spaces are generated by the paths in the quiver, modulo the indicated relations.
The trivial path from a vertex to itself correspond to its identity morphism. Denote this
category by B̄1; we think of it as of a DG-category concentrated in degree 0.

Conversely, any A∞-functor B̄1
(ḟ,fi )
−−−→ C as above contains the data of homotopy

equivalences (A.2). This is because (ḟ, fi) extends naturally to an A∞-functor Pre-Tr(B̄1)
(ḟ,fi )
−−−→ Pre-Tr(C). In Pre-Tr(B̄1) the twisted complexes x

α
−→ a and y

β
−→ a are isomorphic.

Specifically,

x
α //

φ

��

a

Id
��

y
β // a

y
β //

ψ

��

a

Id
��

x
α // a
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are mutually inverse isomorphisms. Their images under f1 are the morphisms

E
q //

f

��

f2(β,φ)

��

G

Id

��
F

r // G

F
r //

g

��

f2(α,ψ)

��

G

Id

��
E

q // G

in Pre-Tr(C). Since (ḟ, H 0(f1)) is an exact functor, these become mutually inverse isomor-
phisms in H 0(Pre-Tr(C)). Thus, they are the mutually inverse homotopy equivalences
(A.2) we want.

To construct a strictly unital A∞-functor B̄1
(ḟ,fi )
−−−→ C it suffices to construct a strictly

unital A∞-functor B1
(ġ,gi )
−−−→ C where B1 is the category

x
•

α

""
φ

��

a
•

y
•

β

<< βφ = α

Roughly, this is because B̄1 is the minimal A∞-structure of a certain DG-quotient of B1

whose universal properties ensure that B1
(ġ,gi )
−−−→ C filters through some B̄1

(ḟ,fi )
−−−→ C. We

will give the full argument in a greater generality later on in this section.
Thus we are reduced to constructing a strictly unital A∞-functor B1

(ġ,gi )
−−−→ C which

sends x, y, a to E,F,G and φ, α, β to f, q, r . The data of such a functor is simply the
choice of f2(β, φ) ∈ Hom−1

C (E,G) such that

q − rf = f2(β, φ).

The existence of such a class in Hom−1
C (E,G) is precisely the condition that (A.1) com-

mutes in H 0(C).
To sum up, a sufficient condition for the homotopy equivalence E

f
−→ F to induce a

homotopy equivalence

{E
q
−→ G} → {F

r
−→ G} (A.3)

is that f must commute with q and r in H 0(C). This is also precisely the condition that
a strictly unital A∞-functor B1 → C exists which sends x, y, a to E,F,G and φ, α, β to
f, q, r . All the other conditions which seemingly arise when one naively tries to construct
the homotopy equivalence (A.3) are part of the data necessary to lift this functor to a
functor B̄1 → C. The latter gets done for us automatically by the universal properties of
DG-quotients.
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The method outlined in Example A.1 can be applied in full generality to any pair of

twisted complexes (Ei, qij ), (Fi, rij ) and any set of homotopy equivalences Ei
fi
−→ Fi to

answer the question posed at the beginning of this subsection. In that generality, however,
the answer would not only look fearsome, but also quite obfuscating.

Below, we only argue in the generality we need for the proofs in Section 6.

Definition A.2. Denote by B̄n the category defined by

ψφ = Idx
φψ = Idy
βφ = α

αψ = β

γ1α = γ1β = 0
γi+1γi = 0

x
•

α

""
φ

��

a1
•

γ1
// a2
•

γ2
// · · ·

γn−2
// an−1
•

γn−1
// an•

y
•

β

<<ψ

TT

(A.4)

We consider it as a DG-category concentrated in degree 0. Denote by Bn its subcategory
defined by the same quiver but with the arrow ψ removed.

DG-quotients were introduced by Drinfeld in [Dri04] to which we refer the reader for all
the details.

Lemma A.3. Let Bfn be the full subcategory of the DG-quotient Pre-Tr(Bn)/Cone(φ)
supported at the objects of Bn. Then Bfn is isomorphic to the DG-category defined by

βφ = α

αψ = β

γ1α = γ1β = 0
γi+1γi = 0
dθx = − Idx +ψφ
dθy = Idy −φψ
dψ = 0
dξ = −φθx − θyφ

x
•

θx

��

α

""
φ

��

ξ

!!

a1
•

γ1
// a2
•

γ2
// · · ·

γn−2
// an−1
•

γn−1
// an•

y
•

θy

DD
β

==ψ

TT

(A.5)

where the dotted arrows denote morphisms of degree −1 and the dashed arrow a mor-
phism of degree −2.

Proof. In Pre-Tr(Bn) the cone of φ is the twisted complex x
φ
−→ y. As explained in

[Dri04, §3.1] the DG-quotient of Pre-Tr(Bn) by x
φ
−→ y is constructed by adding a single

endomorphism ε of x
φ
−→ y of degree −1 with dε = Id and no other relations.

As Bn is a subcategory of (A.5), every twisted complex over Bn is a twisted complex
over (A.5). Let A be the full subcategory of Pre-Tr((A.5)) consisting of all the objects in



2650 Rina Anno, Timothy Logvinenko

Pre-Tr(Bn). Define a functor from Pre-Tr(Bn)/(x
φ
−→ y) to A by sending ε to

x
φ //

θx

��

ξ

��

y

θy

��

ψ

��
x

φ // y

Define a functor in the opposite direction by sending θx , θy , ψ and ξ to the compositions

x
Id

xx
x

φ //

ε

��

y

x

Id &&

φ
// y

x

y

Id
��

x
φ //

ε

��

y

x
φ

// y

Id
��
y

y

Id
��

x
φ //

ε

��

y

x

Id &&

φ
// y

x

x
Id

xx
x

φ //

ε

��

y

x
φ

// y

Id
��
y

in Pre-Tr(Bn)/(x
φ
−→ y), respectively. One can readily check that these functors are mutu-

ally inverse. Hence Pre-Tr(Bn)/(x
φ
−→ y) is isomorphic to A, and the result follows. ut

Recall that an A∞-category is called minimal if it has m1 = 0. Let A be an A∞-category.
The minimal model of A is a minimal A∞-category A′ together with an A∞-quasi-
isomorphism A′→ A. Such a model always exists and is unique up to A∞-isomorphism
(see [LH03, §1.4.1] and [KS01, S6.4]).

Lemma A.4. There exists a strictly unital A∞-quasi-isomorphism

B̄n
(ġ,gi )
−−−→ Bfn (A.6)

which gives B̄n the structure of the minimal model of Bfn .

Proof. Recall that B̄n is an ordinary category considered as an A∞-category concen-
trated in degree 0. In particular, B̄n can be identified with its own graded homotopy cate-
gory H •(B̄n).

The category B̄n is defined by the quiver (A.4), while Lemma A.3 identifies Bfn with
the category defined by the DG-quiver (A.5). Forgetting the relations and identifying
vertices and arrows which have the same labels gives the quiver (A.4) the structure of a
subquiver of (A.5). This structure defines a map ġ from the set of objects of B̄n to the set
of objects of Bfn and a map g1 of morphism spaces of B̄n into morphism spaces of Bfn .
These are compatible with differentials, but are not compatible with compositions.

By inspection, (ġ, g1) does define an isomorphism

B̄n
∼
−→ H •(Bfn )
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of graded homotopy categories. We can therefore apply the procedure described in [KS01,
§6.4]. It can be readily checked that it constructs g≥2 which extend ġ and g1 to a strictly

unital A∞-quasi-isomorphism B̄n
(ġ,gi )
−−−→ Bfn , as required. ut

Before we proceed, we need to state the following well-known fact:

Lemma A.5. Let A be a DG-category, let m ≤ n be two integers and let Am, . . . , An be
objects of A. The one-sided twisted complexes

(Ei, qij ) ∈ Pre-Tr(A) with Ei =

{
Ai for m ≤ i ≤ n,
0 otherwise,

are in 1-to-1 correspondence with the strictly unital A∞-functors

γiγi+1 = 0 am
•

γm
// am+1
•

γm+1
// · · ·

γn−2
// an−1
•

γn−1
// an•

(ḟ,fi ) // C

with ḟ(ai) = Ai .

Proof. Mutually inverse maps between the two sets can be defined by setting

fk(γi+k−1, γi+k−2, . . . , γi) = (−1)i−1qi(i+k) ∀i ∈ {m, . . . , n} and k ∈ {1, . . . , n− i}

and vice versa. ut

Let C be a strongly pretriangulated category and let (Ai, gij ) be a one-sided twisted com-
plex over C concentrated in degrees 1, . . . , n. Let (Ei, qij ) and (Fi, rij ) be one-sided
twisted complexes over C concentrated in degrees 0, . . . , n whose twisted subcomplexes
supported in degrees 1, . . . , n are both equal to (Ai, gij ).

Let A denote the convolution of (Ai, gij ). Consider the closed degree 1 morphisms

(q0j ) and (r0j ) from E0 and F0 to (Ai, gij ) in Pre-Tr(C). Denote by E0
q0
−→ A and

F0
r0
−→ A the corresponding morphisms in C.
Recall that Bn is the category defined by

βφ = α

γ1α = γ1β = 0
γi+1γi = 0

x
•

α

""
φ

��

a1
•

γ1
// a2
•

γ2
// a3
•

γ3
// . . .

γn−2
// an−1
•

γn−1
// an•

y
•

β

<<

(A.7)

Proposition A.6. There exists a strictly unital A∞-functor

Bn
(ḟ,fi )
−−−→ C

whose restrictions to the full subcategories of Bn supported at x, a1, . . . , an and
y, a1, . . . , an correspond to the twisted complexes (Ei, qij ) and (Fi, rij ) if and only if
the following two equivalent conditions hold:
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(1) There exist f ∈ Hom0
C(E0, F0) and si ∈ Hom−kC (E0, Ak) for k ∈ {1, . . . , n} such

that
q0k − r0kf =

∑
1≤j≤k−1

qjksj + (−1)kdsk. (A.8)

(2) There exists f ∈ HomH 0(C)(E0, F0) such that

E0
q0 //

f

��

A[1]

F0

r0

==

commutes in H 0(C).
Proof. The existence of (ḟ, fi)⇔ (1). The condition that (ḟ, fi) restricts on x, a1, . . . , an
and y, a1, . . . , an to the functors corresponding to (Ei, qij ) and (Fi, rij ) determines ḟ and
all the values of fi other than

f1(φ), f2(β, φ), f3(γ1, β, φ), . . . , fn+1(γn−1, . . . , γ1, β, φ). (A.9)

One can readily verify that if we set these to f , s1, . . . , sn, then the standard relations
which (A.9) must satisfy according to the definition of an A∞-functor [Kel01, §3.4] be-
come precisely the equations (A.8), and vice versa.

(1) ⇔ (2). Let sk ∈ Hom−kC (E0, Ak) for k ∈ {1, . . . , n}. Consider the degree 0 mor-

phism E0
(sk)
−−→ (Ai, gij ) in Pre-Tr(C). It is a straightforward verification that d(sk) is the

morphism E0 → (Ai, gij ) whose component in Hom−k+1
C (E0, Ak) is precisely the RHS

of (A.9).
On the other hand, for any f ∈ Hom0

C(E0, F0) the LHS of (A.9) is the component in

Hom−k+1
C (E0, Ak) of the morphism E0

(q0j )−(r0j )f
−−−−−−−→ (Ai, gij ) in Pre-Tr(C).

We conclude that (1) is equivalent to the existence of f ∈ Hom0
C(E0, F0) and s ∈

Hom0
C(E0, A) such that q0 − r0f = ds. This is precisely the claim of (2). ut

The following is the main result of this section:

Theorem A.1. Let E0
f
−→ F0 be a homotopy equivalence satisfying the equivalent con-

ditions of Prop. A.6. Then there exists a homotopy equivalence

(Ei, qij )
(fij )
−−→ (Fi, rij )

in Pre-Tr(C).
Proof. By Prop. A.6 there exists a strictly unital A∞-functor

Bn
(ḟ,fi )
−−−→ C

with f1(φ) = f . It extends naturally to a strictly unital A∞-functor

Pre-Tr(Bn)
(ḟ,fi )
−−−→ Pre-Tr(C).
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By [Kel06, §4.3] there exists a corresponding quasi-functor

Pre-Tr(Bn)
8
−→ Pre-Tr(C)

in Ho(DG-Cat) with H8 ' H f as functors H 0(Pre-Tr(Bn)) → H 0(Pre-Tr(C)). Since
H f(φ) = f and since f is an isomorphism in H 0(C), it follows that H8(Cone(φ)) = 0.
By the universal property of DG-quotients [Dri04, Th. 1.6.2] the quasi-functor 8 lifts to
a quasi-functor

Pre-Tr(Bn)/Cone(φ)
8′

−→ Pre-Tr(C)

with8=8′Q whereQ is the quotient quasi-functor Pre-Tr(Bn)→Pre-Tr(Bn)/Cone(φ).
Denote by

Pre-Tr(Bn)/Cone(φ)
(ḟ′,f′i )
−−−→ Pre-Tr(C)

the corresponding strictly unital A∞-functor. We have (ḟ, fi) = (ḟ′, f′i)Q, and hence re-
stricting to the full subcategory Bfn of Pre-Tr(Bn)/Cone(φ) consisting of objects of Bn
we obtain a strictly unital A∞-functor

Bfn
(ḟ′,f′i )
−−−→ C.

Recall that in Lemma A.4 we have constructed a strictly unital A∞-quasi-isomor-

phism B̄n
(ġ,gi )
−−−→ Bfn which gives B̄n the structure of the minimal model of Bfn . Taking

the composition of B̄n
(ġ,gi )
−−−→ Bfn

(ḟ′,f′i )
−−−→ C we obtain the strictly unital A∞-functor de-

noted

B̄n
(ḣ,hi )
−−−→ C.

We claim that B̄n
(ḣ,hi )
−−−→ C restricts on the full subcategory Bn ↪→ B̄n to Bn

(ḟ,fi )
−−−→ C.

As (ḟ, fi) = (ḟ′, f′i)Q this reduces to the following diagram being commutative:

Bn� _

��

Q

  
B̄n

(ġ,gi ) // Bfn

(A.10)

This is a straightforward check. On the one hand, in Lemma A.3 we have constructed
an explicit isomorphism between Bfn and the category defined by (A.5). One can check

that it identifies the DG-quotient functor Bn
Q
−→ Bfn with the functor induced by the

inclusion of (A.7) into (A.5) as quivers with relations. On the other hand, in Lemma A.4
we have used the above isomorphism between Bfn and (A.5) to define ġ and g1 by the
quiver inclusion of (A.4) into (A.5) which ignores relations. However, restricted from
(A.4) to (A.7), this inclusion does respect the relations. Therefore (ġ, g1) restricted to Bn
is a genuine functor. One can check that this forces g≥3 constructed by the procedure in
[KS01, §6.4] to be zero when restricted to Bn. Thus (ġ, gi) restricted to Bn is just the
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functor (ġ, g1), i.e. the functor defined by the inclusion of (A.7) into (A.5). The claim
follows.

In Pre-Tr(B̄n) the twisted complexes x
α
−→ a1 → · · ·

γn−1
−−→ an and y

β
−→ a1 →

· · ·
γn−1
−−→ an are isomorphic, for instance the following

x
•

α //

φ
��

a1
•

γ1
//

Id
��

a2
•

γ2
//

Id
��

· · ·
γn−2
// an−1
•

γn−1
//

Id
��

an
•

Id
��

y
•

β // a1
•

γ1
// a2
•

γ2
// · · ·

γn−2
// an−1
•

γn−1
// an•

(A.11)

is an isomorphism of twisted complexes. Hence the complexes are also isomor-
phic in H 0(Pre-Tr(B̄n)), and hence their images under (ḣ, H 0(h1)) are isomorphic in
H 0(Pre-Tr(C)). But by the claim above, (ḣ, hi) and (ḟ, fi) agree on the subcategory

Pre-Tr(Bn) of Pre-Tr(B̄n). Hence (ḣ, hi) takes x
α
−→ a1 → · · ·

γn−1
−−→ an and y

β
−→ a1 →

· · ·
γn−1
−−→ an to (Ei, qij ) and (Fi, rij ). The claim of the theorem follows. ut
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