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Abstract. This paper is about the geometry of the flip-graphs associated to triangulations of sur-
faces. More precisely, we consider a topological surface with a privileged boundary curve and study
the space of its triangulations with n vertices on this curve. The surfaces we consider topologically
fill this boundary curve, so we call them filling surfaces. The associated flip-graphs are infinite
whenever the mapping class group of the surface (the group of self-homeomorphisms up to iso-
topy) is infinite, and we can obtain moduli spaces of flip-graphs by considering these graphs up to
the action of the mapping class group. This always results in finite graphs, which we call modular
flip-graphs. Our main focus is on the diameter growth of these graphs as n increases. We obtain
general estimates that hold for filling surfaces of any topological type. We find more precise es-
timates for certain families of filling surfaces and obtain asymptotic growth results for several of
them. In particular, we find the exact diameter of modular flip-graphs when the filling surface is a
cylinder with a single vertex on the non-privileged boundary curve.

Keywords. Flip-graphs, triangulations of surfaces, combinatorial moduli spaces

1. Introduction

Triangulations of surfaces are very natural objects that appear in the study of topologi-
cal, geometric, algebraic, probabilistic, and combinatorial aspects of surfaces and related
topics. We are interested in a natural structure on spaces of triangulations: flip-graphs.
Vertices of flip-graphs are triangulations, and two triangulations span an edge if they dif-
fer by a single arc (our base surface is a topological object and we consider triangulations
up to vertex-preserving isotopy). When edge lengths are all set to one, flip-graphs are
geometric objects that provide a measure for how different triangulations can be.

Flip-graphs appear in different contexts and take different forms. As flipping an arc
(replacing an arc by another one) does not change either the vertices or the topology of
the surface, flip-graphs correspond to triangulations of homeomorphic surfaces with a pre-
scribed set of vertices. Provided the surface has enough topology, flip-graphs are infinite,
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L. Pournin: LIPN, Université Paris 13, Villetaneuse, France;
e-mail: lionel.pournin@univ-paris13.fr

Mathematics Subject Classification (2010): Primary 05C12; Secondary 57M50



2698 Hugo Parlier, Lionel Pournin

and self-homeomorphisms of the surface act on this graph as isomorphisms. In fact, mod-
ulo some exceptional cases, the group of self-homeomorphisms of the surface up to iso-
topy (the mapping class group) is exactly the automorphism group of the graph [10]. The
quotient of a flip-graph via its automorphism group is finite, and thus via the Schwarz–
Milnor Lemma (see for example [1]), a flip-graph and the associated mapping class group
are quasi-isometric.

Furthermore, if one gives the triangles in a triangulation a given geometry, each trian-
gulation corresponds to a geometric structure on a surface. In this direction, Brooks and
Makover [2] defined random surfaces to be geometric surfaces coming from a random
triangulation where each triangle is an ideal hyperbolic triangle. This notion of a random
surface is a way of sampling points in Teichmüller and moduli spaces—roughly speaking,
the space of hyperbolic metrics on a given topological structure. Although in the above it
is only the vertex set of flip-graphs that appears, in the theory of decorated Teichmüller
spaces, flip-graphs play an actual role [15]. In a similar direction, Fomin, Shapiro, and
Thurston [6], and more recently Fomin and Thurston [7], have used flip-graphs and their
variants to study cluster algebras that come from the Teichmüller theory of bordered sur-
faces. For all of these reasons, flip-graphs and their relatives appear frequently and im-
portantly in the study of moduli spaces, surface topology, and mapping class groups.

In a different context, flip-graphs are important objects for the study of triangulations
of arbitrary dimension, whose vertices are placed in a Euclidean space and whose sim-
plices are embedded linearly (see [3] and references therein). In this case, flip-graphs are
always finite, and they are sometimes isomorphic to the graph of a polytope, or admit
subgraphs that have this property. Such flip-graphs emerge for instance from the study of
generalized hypergeometric functions and discriminants [9] and from the theory of clus-
ter algebras [8]. The simplest non-trivial case is that of the flip-graph of a polygon, which
turns out to be the graph of a celebrated polytope—the associahedron [11]. The study of
this graph has an interesting history of its own [19], and one of the reasons it has attracted
so much interest is that it pops up in surprisingly different contexts, including theoretical
physics and computer science (see for instance [11, 17, 18, 20]).

Associahedra appear, in particular, in the work of Sleator, Tarjan, and Thurston [17]
on the dynamic optimality conjecture. They proved the theorem below about the diameter
of these polytopes for sufficiently large n, using constructions of polyhedra in hyperbolic
3-space. Their proof, however, does not tell us how large n should be for the theorem
to hold. The second author proved this theorem whenever n > 12 using combinatorial
arguments [16]. Note that for smaller n the diameter behaves differently.

Theorem ([16, 17]). The flip-graph of a convex polygon with n vertices has diameter
2n− 10 whenever n > 12.

This theorem is in some sense our starting point. The topology of a polygon is the sim-
plest that one can imagine—it is simply the boundary circle filled by a disk. Our basic
question is the following: what happens when one replaces the disk by a surface with
more topology? These surfaces, which we call filling as they fill the boundary circle, give
rise to infinite flip-graphs as soon as the mapping class group is infinite. We are interested
in precisely these cases here. Up to homeomorphisms that preserve the circle boundary
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pointwise, we get nice finite combinatorial moduli spaces of triangulations whose geom-
etry, and in particular whose diameter, we study.

We note that the filling surfaces with finite flip-graphs are the disk, the Möbius band,
and the disk with a single puncture. In addition to the case of the disk [16, 17], the Möbius
band has been discussed in [5], and the once-punctured disk in [14].

Precise definitions and notation can be found in the next section—but in order to
state our results, we briefly describe them here. We will consider a filling surface 6 (a
topological surface with a privileged boundary curve) and denote by 6n the same surface
with n marked points on the privileged boundary. The modular flip-graph MF(6n) is
the flip-graph of 6n up to homeomorphism. For example MF(6n) is the graph of the
associahedron when 6 is a disk.

Our first result is the following upper bound for the diameter of MF(6n) which does
not asymptotically depend on the topology of the filling surface.

Theorem 1.1. For any filling surface 6 there exists a constant K6 such that

diam(MF(6n)) ≤ 4n+K6 .

A simple consequence of this result and of the monotonicity of diam(MF(6n)), proven
in Section 2.3, is that the limit

lim
n→∞

diam(MF(6n))
n

exists (and is less than or equal to 4). Again, in the case of the associahedron, this limit
is 2. It is perhaps not a priori obvious why the limit should not always be 2, independently
of the topology of 6, but this turns out not to be the case.

In order to exhibit different behaviors, we study particular examples of filling sur-
faces. Our examples are surfaces 6 with genus 0 and k + 1 boundaries, including the
privileged one, and each of the non-privileged boundaries contains a single marked or un-
marked point. We will refer to these non-privileged boundary curves with a single point
as boundary loops. Marking or not the point they contain amounts to disallowing or al-
lowing the mapping class group acting on the flip-graph to exchange them. We provide
the following upper bounds for the diameters.

Theorem 1.2. Let6 be a filling surface with k ≥ 2 marked boundary loops and no other
topology. There exists a constant Kk which only depends on k such that

diam(MF(6n)) ≤ (4− 2/k)n+Kk.

Similarly:

Theorem 1.3. Let 6 be a filling surface with k ≥ 1 unmarked boundary loops and no
other topology. There exists a constant Kk which only depends on k such that

diam(MF(6n)) ≤
(

3−
1

2k

)
n+Kk.
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The constants Kk in both these theorems are a priori unrelated. In the case of the associa-
hedron, upper bounds of the correct order (i.e. 2n) are somewhat immediate, but here the
upper bounds, although not particularly mysterious, are more involved.

Now consider the filling surface 0 with a unique boundary loop—being marked or
unmarked does not matter in this case. This surface will play a particular role in our paper
and we are able to obtain the exact diameter of its modular flip-graphs:

Theorem 1.4. The diameter of the modular flip-graphs of 0 satisfies

diam(MF(0n)) = b5n/2c − 2.

This shows that Theorem 1.3 is asymptotically sharp when k = 1. As for the associahe-
dron, the hard part is the lower bound. We note in the final section that the lower bound
from this theorem proves a general lower bound on the diameter of MF(6n), provided
6 has at least one interior marked point and any additional topology (for instance any
genus or any additional marked points or boundary loops).

Our final main result is about the filling surface with genus 0 and exactly two marked
boundary loops—we call this particular surface 5 as we give it special attention.

We prove the following.

Theorem 1.5. The diameter of MF(5n) is not less than 3n.

This result and the upper bound from Theorem 1.2 when k = 2 show that the diameter of
MF(5n) grows like 3n (with constant error term).

Our lower bounds always come from somewhat involved combinatorial arguments,
using the methods introduced in [16]. Boundary loops play an important part, since to
ensure that two triangulations are far apart, we show that moving these loops necessarily
entails a certain number of flips.

The remainder of the article is organized as follows. We begin with a section devoted
to preliminaries which include notation and basic or known results we need. As the results
may be of interest to people with different mathematical backgrounds, we spend some
time talking about the setup in order to keep the article as self-contained as possible.
The third section deals with the upper bounds, and the fourth and fifth sections with the
lower bounds. In the final section, we discuss some consequences of our results and we
conclude the article with several questions and conjectures about what the more general
picture might look like.

2. Preliminaries

In this section we describe in some detail the objects we are interested in, introduce nota-
tion and some of the tools we use. In particular, the methods from [16] are generalized to
arbitrary filling surfaces in Subsection 2.2.

2.1. Filling surfaces and flip-graphs

We consider a topological orientable surface 6 with the following three properties.
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Property 1. The surface 6 has at least one boundary curve, and we think of one of the
boundary curves as being special. We will refer to it as the privileged boundary (it has no
marked or unmarked points on it, but will be endowed with them in what follows). The
other boundary curves are non-privileged.

Property 2. All non-privileged boundary curves of 6 have at least one marked or un-
marked point on it. This is because we need to triangulate 6 and these points are neces-
sary to do so. The distinction between marked and unmarked points will become clearer
in the following, but note that if a boundary curve contains one marked point, all the other
points on this boundary are naturally marked, as their position relative to the marked point
determines a marking. Also note that most of the specific examples we study in more de-
tail have only one point on each non-privileged boundary curve. For this reason, we use
the term boundary loop for a boundary curve with a single point.

Property 3. The surface 6 is of finite type. It can have genus, marked or unmarked
points in its interior or on its non-privileged boundary curves, but only a finite number of
each. Another way of saying this is to ask that its group of self-homeomorphisms (up to
isotopy) be finitely generated (but generally not finite).

We illustrate6 in Fig. 1 with its different possible features. Note that if it has no topology,
then 6 is simply a disk.

genus

marked points

privileged boundary 

unmarked points

unmarked boundaries marked boundaries

Fig. 1. 6 and its possible features

For any positive integer n, from6 we obtain a surface6n by placing nmarked points
on the privileged boundary of 6. We are interested in triangulating 6n and studying the
geometry of the resulting flip-graph. We fix 6n, and we refer to its set of marked and
unmarked points as its vertices. An arc of 6n is an isotopy class of non-oriented simple
paths between (not necessarily distinct) vertices. A multi-arc is a collection of arcs whose
interiors can be realized disjointly (they can share vertices but cannot cross).

From arcs, one can construct a simplicial complex called the arc complex. This com-
plex is well studied in geometric topology; it is built by associating simplices to sets of
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arcs that can be realized disjointly. A triangulation of 6n is a maximal collection of arcs
that can be realized disjointly. Said differently, triangulations are maximal multi-arcs with
respect to inclusion. Although they are not necessarily “proper” triangulations in the usual
sense, they do cut the surface into a collection of triangles. Also note that a multi-arc can
always be completed to a triangulation.

For fixed 6n, the number of interior arcs of a triangulation is a fixed number. Note
that, by an Euler characteristic argument, it increases linearly in n.

We now construct the flip-graph F(6n). The vertices of F(6n) are the triangulations
of 6n, and two vertices share an edge if they coincide in all but one arc. Another way
of seeing this is that they share an edge if they are related by a single flip operation, as
shown in Fig. 2. The resulting flip-graph is sometimes finite, sometimes infinite, but it is
always locally finite and connected, as any isotopy class of arcs can be introduced into a
triangulation by a finite number of flips (see for instance [12]).

a

ba0

b0

"

a

ba0

b0

"0

Fig. 2. The flip that exchanges the arcs ε and ε′.

When 6 is a disk, F(6n) is a finite graph (it is the graph of the associahedron). An
example of an infinite flip-graph is given by the surface of genus 0 with a unique boundary
loop, and no marked or unmarked points in its interior. It is thus a cylinder with one of
the boundary curves being the privileged boundary and the other a boundary loop. This
surface, which we denote by 0 for future reference, is depicted on the left of Fig. 3. In
this figure, the marked point on the boundary loop is denoted by a0 and the privileged
boundary is shown on the outside.

a0 a¡ a+

Fig. 3. The filling surfaces 0 and 5.

A triangulation of 01 always contains two interior arcs between a0 and the other
marked point placed on the privileged boundary. Both arcs can be flipped, so F(01)

is everywhere of degree 2. Furthermore, since there are infinitely many isotopy classes
of arcs (one can think of arcs winding around the cylinder), there are infinitely many
triangulations and F(01) is infinite. Being connected, infinite, and regular of degree 2,
F(01) is isomorphic to the infinite line graph (Z with its obvious graph structure).
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In general, whenever F(6n) is infinite, there is a non-trivial natural action of the
group of self-homeomorphisms of 6n on F(6n). This is because homeomorphisms will
preserve the property of two triangulations being related by a flip, so they induce a sim-
plicial action on F(6n). It is where the importance of being a marked or an unmarked
point plays a part. We allow homeomorphisms to exchange unmarked points (but fix them
globally as a set). In contrast, they must fix all marked points individually. We denote by
Mod(6n) the group of such homeomorphisms up to isotopy. Note that once n ≥ 3, by
the action on the privileged boundary of 6, all such homeomorphisms are orientation
preserving. As we are primarily interested in large n, we do not need to worry about
orientation reversing homeomorphisms.

The combinatorial moduli spaces we are interested in are thus

MF(6n) = F(6n)/Mod(6n).

Observe that this always gives rise to connected finite graphs. To unify notation, we
denote the corresponding flip-graph by MF(6n) even if the homeomorphism group ac-
tion is trivial. We think of these graphs as discrete metric spaces where points are vertices
of the graphs and the distance is the usual graph distance with edge length 1. In particu-
lar, some of these graphs have loops (a single edge from a vertex to itself), but adding or
removing a loop gives rise to an identical metric space. For this reason, we think of these
graphs as not having any loops.

Our main focus is on the diameter of MF(6n), which we denote diam(MF(6n)).
For fixed 6, we will be interested in how this diameter grows as a function of n. In order
to exhibit distant triangulations, we will spend some time studying filling surfaces of par-
ticular topological types. One of them is 0, already described above. It has one boundary
loop (a non-privileged boundary with a single marked point). Similarly we shall con-
sider the filling surface5 shown on the right of Fig. 3. It has genus 0, exactly two marked
boundary loops (we distinguish between them) and no interior marked or unmarked point.
This surface is thus a sphere with three holes: one of them is the privileged boundary and
the other two are boundary loops, each with a single marked point. These points are re-
spectively denoted by a− and a+ in Fig 3.

2.2. Deleting a vertex on the privileged boundary

One of the main ingredients used in [16] to obtain lower bounds on flip distances is the
operation of deleting a vertex from a triangulation. Here, we will use this operation to the
same end. When n is greater than 1, vertices in the privileged boundary will be deleted
from triangulations of a given surface 6n, resulting in triangulations of 6n−1.

Consider a filling surface 6n. We label the vertices placed on the privileged boundary
from a1 to an in such a way that two vertices with consecutive indices are also consecutive
on the boundary. Furthermore, the boundary arc with vertices ap and ap+1 will be denoted
by αp, and the boundary arc with vertices an and a1 by αn.

Now consider a triangulation T of 6n. Some triangle t of T , depicted on the left of
Fig. 4, is incident to the arc αp. Assuming that n > 1, this triangle necessarily has two
other distinct edges. Denote these edges by βp and γp as shown in the figure. Deleting
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aq¯p

° p

ap

aq

®p

¯p

° p

Fig. 4. The triangle incident to αp in some triangulation of 6n (left), and what happens to it when
ap is displaced to the other vertex of αp (right).

the vertex ap consists in displacing this vertex along the boundary to the other vertex of
αp, and removing the arc βp from the resulting set of arcs. Observe in particular that the
displacement of the vertex ap removes ap from the privileged boundary and the arc αp
from the triangulation, as shown on the right of Fig. 4. Moreover, the arcs βp and γp have
then become isotopic, and the removal of βp results in a triangulation of 6n−1.

Note that the deletion operation preserves triangulation homeomorphy. Therefore,
this operation carries over to moduli of flip-graphs, and transforms any triangulation in
MF(6n) into a triangulation in MF(6n−1). The triangulation obtained by deleting the
vertex ap from T is denoted T \\p in the remainder of the paper, following [16]. This
notation will be used for triangulations in both F(6n) and MF(6n).

Consider two triangulations U and V in MF(6n) and assume that they can be ob-
tained from one another by a flip. The following proposition shows that the relation be-
tween U\\p and V \\p can be of two kinds.

Proposition 2.1. Suppose n ≥ 2. If U and V are triangulations in MF(6n) related by
a flip, then U\\p and V \\p are either identical or related by a flip.

Proof. Consider the quadrilateral whose diagonals are exchanged by the flip relating U
and V . The deletion of the vertex ap either shrinks this quadrilateral to a triangle, deforms
it to another quadrilateral, or leaves it unaffected. In the first case, U\\p and V \\p are
identical because the deletion then removes the two arcs exchanged by the flip. In the
other two cases, U\\p and V \\p can also be identical (while vertex deletion preserves
homeomorphy, it does not always preserve non-homeomorphy), but if they are not, they
differ exactly on the (possibly deformed) quadrilateral. More precisely, they can be ob-
tained from one another by the flip that exchanges the diagonals of this quadrilateral. ut

In the following, a flip between two triangulationsU and V in MF(6n) is called incident
to the arc αp when U\\p is identical to V \\p.

When 6 is a disk, the flips incident to αp are exactly the ones that affect the triangle
incident to this arc within a triangulation [16]. When 6 is not a disk, these flips are
still incident to αp, but they are not necessarily the only ones. For instance, the unique
triangulation in MF(01) and the four triangulations in MF(02) are depicted in Fig. 5.
Since MF(01) has a single element, we have:

Proposition 2.2. If T is one of the four triangulations in MF(02), then any flip per-
formed in T is incident to both α1 and α2.
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a1

a2

a1 a1

a2a2

a1 a1

a2

Fig. 5. The unique triangulation in MF(01) (left) and the four triangulations in MF(02). The
lines between the latter four triangulations depict MF(02).

Fig. 5 also shows the edges of the modular flip-graph of 02. In this flip-graph, the third
triangulation from the left is obtained from the second one by replacing any of the two
interior arcs incident to a1 by an interior arc incident to a2. Assume that the removed arc
is the one on the left. In this case, the triangle incident to α1 is not affected by the flip.
Yet, via Proposition 2.2, this flip is incident to α1.

Now assume that U and V are two arbitrary triangulations that belong to MF(6n).
Consider a sequence (Ti)0≤i≤k of triangulations in MF(6n) such that T0 = U , Tk = V ,
and Ti−1 can be transformed into Ti by a flip whenever 0 < i ≤ k. Such a sequence
will be called a path of length k from U to V , and can be alternatively thought of as
a sequence of k flips that transform U into V . According to Proposition 2.1, removing
unnecessary triangulations from the sequence (Ti\\p)0≤i≤k results in a path from U\\p

to V \\p and the number of triangulations that need be removed from the sequence is
equal to the number of flips incident to αp along (Ti)0≤i≤k . In other words:

Lemma 2.3. Let U and V be two triangulations in MF(6n). If f flips are incident to
the arc αp along a path of length k between U and V , then there exists a path of length
k − f between U\\p and V \\p.

Note that when 6 is a disk, this lemma is exactly Theorem 3 from [16]. A path between
two triangulations U and V in MF(6n) is called a geodesic if its length is minimal
among all the paths between U and V . The length of any such geodesic is equal to the
distance of U and V in MF(6n), denoted by d(U, V ).

Invoking Lemma 2.3 with a geodesic between U and V immediately yields:

Theorem 2.4. Let n > 1 and consider two triangulations U and V in MF(6n). If there
exists a geodesic between U and V along which at least f flips are incident to the arc αp,
then the following inequality holds:

d(U, V ) ≥ d(U\\p, V \\p)+ f .

In well defined situations, at least two flips are incident to a given boundary arc along any
geodesic. This may be the case when one of the triangulations at the ends of the geodesic
has a well placed ear, i.e. a triangle with two edges in the privileged boundary, as shown
on the left of Fig. 6. In the figure, these two edges are αp and αq , and the vertex they share
is aq . In this case, we will say that the triangulation has an ear at aq .
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Fig. 6. The triangulations U (left) and V (right) from the statement of Lemma 2.5. The j -th flip
along the geodesic used in the proof of this lemma is shown in the middle, where the solid edges
belong to Tj−1, and the arc introduced is dotted.

The following result, proven in [16] when 6 is a disk, holds in general:

Lemma 2.5. Consider two triangulations U and V in MF(6n). Further consider two
distinct arcs αp and αq in the privileged boundary of 6n such that aq is a vertex of αp.
If U has an ear at aq and if the triangles of V incident to αp and to αq do not have a
common edge, then for any geodesic between U and V , there exists r ∈ {p, q} such that
at least two flips along this geodesic are incident to αr .

Proof. Assume that U has an ear at aq and that the triangles of V incident to αp and to
αq do not have a common edge. In this case, U and V are as shown on the left and on the
right, respectively, of Fig. 6. Note that the vertices b and c represented in this figure can
be identical. At least one flip along any path between U and V is incident to the arc αp
because the triangles of U and of V incident to this arc are distinct.

Consider a geodesic (Ti)0≤i≤k from U to V and assume that only one of the flips
along this geodesic is incident to αp, say the j -th one. This flip must then be as shown in
the middle of Fig. 6. Not only is it incident to αp but also to αq . Moreover, the triangle t
of V incident to αp already belongs to Tj .

Now observe that the triangle of Tj incident to αq shares an edge with t . By assump-
tion, the triangle of V incident to αq does not have this property. Therefore, at least one
of the last k − j flips along (Ti)0≤i≤k must affect the triangle incident to αq . This flip is
then the second flip along the geodesic incident to αq , as desired. ut

2.3. A projection lemma

Here we briefly describe a result from [4] in our setting and its implications for our diame-
ter estimates. This lemma is about two triangulationsU and V of6n with arcs in common.
It says that these arcs must also be arcs of all the triangulations along any geodesic be-
tween U and V in the flip-graph F(6n). This generalizes Lemma 3 from [17], originally
proven in the case of a disk with marked boundary points. Formally:

Lemma 2.6 (Projection Lemma). Let U and V be two triangulations of 6n. Further
consider a geodesic (Ti)0≤i≤k from U to V in the graph F(6n). If µ is a multi-arc com-
mon to U and V , then µ is also a multi-arc of Ti whenever 0 < i < k.
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It is essential to note that the above lemma does not necessarily hold in MF(6n).
However, it clearly does hold if an arc or a multi-arc is invariant under all elements of
Mod(6n). Namely, consider an arc α parallel to the privileged boundary (by parallel we
mean that the portion of 6n bounded by this arc and by a part of the privileged boundary
is a disk). Then, as any element of Mod(6n) fixes the privileged boundary arcs individu-
ally, the arc α is also invariant. In particular, assume that α has vertices a1 and a3. By the
above, α is never removed along a geodesic between two triangulations containing this
arc. So naturally we get a geodesically convex and isometric copy of MF(6n−1) inside
MF(6n). Thus we obtain the following.

Proposition 2.7. diam(MF(6n−1)) ≤ diam(MF(6n)).

Note that, by observing that there are points of MF(6n) outside the isometric copy of
MF(6n−1), it is not too difficult to see that in fact the above inequality is strict, but we
make no use of that in the sequel.

3. Upper bounds

In this section we prove upper bounds on the diameter of modular flip-graphs depending
on the topology of the underlying surface.

3.1. A general upper bound

We begin with the following general upper bound.

Theorem 3.1. For any filling surface 6 there exists a constant K6 such that

diam(MF(6n)) ≤ 4n+K6 .

Before proving the theorem, let us give the basic idea of the proof. Consider a triangula-
tion T of 6n and a vertex a of this surface. Let us call the number of interior arcs of T
incident to a the interior degree of a in T . For large enough n the average interior degree
of the vertices of T can be arbitrarily close to 2, and thus given any two triangulations U
and V the average sum of the interior degrees tends to 4. We can then choose a vertex a
(on the privileged boundary) in such a way that its interior degree is at most 4. We perform
flips within U to obtain Ũ and flips within V to obtain Ṽ so that Ũ and Ṽ both have an
ear at a. In doing so we can now safely ignore a boundary vertex and repeat the process.

In order to quantify the number of flips each of the steps described above might cost,
we first prove the following lemma.

Lemma 3.2. For n ≥ 2, consider a vertex a on the privileged boundary of 6n and two
triangulations U and V of 6n. If the interior degrees of a in U and in V sum to at most 4,
then there exist two triangulations Ũ and Ṽ of 6n, each with an ear at a, such that

d(U, Ũ)+ d(V, Ṽ ) ≤ 4.
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Proof. We shall prove the lemma by showing that there is always a flip in either U or V
that reduces the degree of a, and thus by iteration, one must flip at most four arcs to reach
both Ũ and Ṽ . Let ε be any interior arc incident to a in either U or V .

First suppose that ε is flippable. If flipping ε reduces the degree of a, we flip it. If not,
then the flip quadrilateral of ε (shown on the left of Fig. 7) must have a boundary arc,
say α, with the vertex a at its two ends. This situation, sketched in the middle of Fig. 7,
corresponds to when the vertex labeled b′ on the left of the figure is equal to a.

a

ba0

b0

"

®

¯

a

ba0

®
¯

""0

a

b

®¯

"
"0

"0

Fig. 7. The flip dealt with in the proof of Lemma 3.2 (left), and a sketch of the surface when this
flip does not reduce the degree of a (middle and right).

As n is not less than 2, α must be an interior arc. In addition, α is twice incident to a
and is thus flippable. If flipping α reduces the degree of a, we flip α and we can proceed.
Therefore, we assume that flipping α does not decrease the degree of a. In this case, the
vertex a′ shown on the left of Fig. 7 is necessarily the same vertex as a. The arcs α, β
and ε (see Fig. 7, right) are now three interior arcs twice incident to a. Thus the interior
degree of a is at least 6, which is impossible.

"

"0

a

a0

Fig. 8. When ε is not flippable.

Finally, consider the case where ε is not flippable. This arc is then surrounded by
another arc ε′ twice incident to a, as sketched in Fig. 8. Flipping ε′ reduces the degree
of a because the flip introduces an arc incident to a′. ut

Note that Lemma 3.2 holds a fortiori when U and V belong to MF(6n). We can now
proceed with the proof of the theorem.

Proof of Theorem 3.1. Consider the surface 61 and insert points in its privileged bound-
ary to obtain 6n. The Euler characteristics of these surfaces satisfy

χ(6n) = χ(61).
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A triangulation T of 6n has n − 1 more vertices and n − 1 more triangles than a tri-
angulation T ′ of 61. It also has n − 1 more boundary arcs. By invariance of the Euler
characteristic, this means that T has exactly n − 1 more interior edges than T ′. Hence,
the number of interior edges of T is exactly

n+ E6,

where E6 is a precise constant which depends on 6 but not on n. We now focus our
attention on the interior degree of the privileged boundary vertices. The total interior
degree of all these vertices is at most 2(n+ E6).

The sum of the interior degrees of all vertices in two triangulations U and V in
MF(6n) is not greater than 4(n + E6). Thus the average sum of the interior degrees
of the privileged boundary vertices is at most

4+
4
n
E6 .

Therefore, for n > 4E6 , there exists a privileged boundary vertex a whose interior de-
grees in U and in V sum to at most 4.

We now apply the previous lemma to flip U and V a total of at most four times into
two new triangulations with ears at a. We treat the new triangulations as if they lay in
MF(6n−1) and we repeat the process inductively until n ≤ 4E6 . We end up with two
triangulations Ũ and Ṽ that only differ on a subsurface homeomorphic to 6n0 , where

n0 ≤ 4E6 .

Hence, there is a path of length at most diam(MF(6n0)) between Ũ and Ṽ . We therefore
obtain the following inequality:

d(U, V ) ≤ 4(n− 4E6)+ diam(MF(6n0)) = 4n+K6,

where K6 = diam(MF(6n0))− 16E6 does not depend on n. ut

Before looking at more precise bounds for a given surface topology, we note that, together
with the monotonicity from Proposition 2.7, we have the following:

Corollary 3.3. For any filling surface 6 the following limit exists and satisfies

lim
n→∞

diam(MF(6n))
n

≤ 4.

3.2. Upper bounds for 0

In this section we prove a much stronger and specific upper bound in the case where our
surface is 0, a cylinder with a single boundary loop.

Theorem 3.4. The diameters of the modular flip-graphs of 0 satisfy

diam(MF(0n)) ≤ 5n/2− 2.



2710 Hugo Parlier, Lionel Pournin

Proof. Let U and V be triangulations in MF(0n). Denote by a0 the unique vertex not
on the privileged boundary, and α0 the boundary loop it belongs to. The basic strategy
is to perform flips within both triangulations until all interior arcs are incident to a0 and
then find a path between the resulting triangulations.

We begin by observing that a triangulation in MF(0n) has n + 1 interior arcs. Fur-
thermore, any triangulation T of 0n has at least two distinct interior arcs incident to a0.
Indeed, α0 is incident to a triangle of T whose other two edges must have vertex a0. These
edges are also both incident to the same vertex on the privileged boundary. Hence, they
must be interior arcs of the triangulation.

Thus, n − 1 flips suffice to reach a triangulation with all arcs incident to a0 from
either U or V . Note that such a triangulation is uniquely determined by the privileged
boundary vertex of the triangle incident to α0.

We now perform the above flips within U and V to obtain two triangulations U ′

and V ′. Denote by au and av the privileged boundary vertices of the triangle incident to
α0 in U ′ and V ′, respectively. This necessitates at most 2n− 2 flips.

av

au

a0

Fig. 9. The flip used in the proof of Theorem 3.4. The arc introduced is dotted.

Now to get from U ′ to V ′, we proceed as follows. Note that, thinking of the privileged
boundary as a graph, the distance of au and av along this boundary is at most n/2. We can
perform a flip in U ′ to obtain a triangulation similar to U ′, wherein the privileged bound-
ary vertex of the triangle incident to α0 is 1 closer to av along the privileged boundary
(this is illustrated in Fig. 9). Thus, in at most n/2 flips the triangulations U ′ and V ′ can
be transformed into one another. The result follows. ut

It turns out that this straightforward upper bound is (somewhat surprisingly) optimal, as
will be shown later on. In the next subsection we provide upper bounds for an arbitrary
number of boundary loops.

3.3. Upper bounds for surfaces with multiple boundary loops

The first case we treat is that of marked boundary loops.

Theorem 3.5. Let6 be a filling surface with k ≥ 2 marked boundary loops and no other
topology. There exists a constant Kk , which only depends on k, such that

diam(MF(6n)) ≤ (4− 2/k) n+Kk.
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Proof. We begin by choosing a boundary loop α0 and its vertex which we denote a0. Note
that as before, any triangulation has at least two interior arcs incident to a0.

Given two triangulations U and V in MF(6n) we perform flips within both triangu-
lations until all interior arcs are incident to the vertex a0. This can be done with at most
2n+ 8k − 10 flips for the following reason. A straightforward Euler characteristic argu-
ment shows that any triangulation in MF(6n) has exactly n + 4k − 3 interior arcs. As
observed above, at least two of these arcs are already incident to a0, so each triangulation
is at most n+4k−5 flips away from a triangulation with all arcs incident to a0. We denote
the resulting triangulations by U ′ and V ′.

Triangulations with the above property are by no means canonical but they do have
a very nice structure. Visually, it is useful to think of the vertex a0 as the center of the
triangulation. Most arcs (at least when n is considerably larger than k) will be arcs going
from a privileged boundary vertex ap to a0, and will be the unique arcs doing so. How-
ever, some of them will have a companion arc (or several) also incident to the same two
vertices. For this to happen, as they are necessarily non-isotopic arcs, they must enclose
some topology: if they bounded a topological disk they would be isotopic, so there must
be at least one loop inside. If we consider two successive arcs like this (by successive we
mean belonging to the same triangle), they must be boundary arcs of a triangle with a
companion loop incident to a0. We shall refer to subsurfaces bounded by such two suc-
cessive arcs as a pod and its subsurface bounded by the companion loop as a pea. A pod
is depicted on the right of Fig. 10, where the pea is the striped region.

a0

api

apk0

ap1

ap2

apk0¡1

a0

Fig. 10. Peas in pods.

Observe that any pea must contain at least one of the k interior boundary loops but
could possibly contain several. Hence there are at most k peas, and as every pod is non-
empty, at most k pods. We denote the number of peas and pods by k′ and the privileged
boundary vertices incident to the pods by ap1 to apk′ clockwise, as shown on the left of
Fig. 10. Note that apj and apj+1 are possibly the same vertex.

The vertices ap1 , . . . , apk′ are separated along the privileged boundary by sequences
of vertices (possibly none) which have single arcs to a0 (see Fig. 10, left). We call these
sequences gaps. As there are n vertices on the boundary separated by at most k′ pods,
there is always a gap of size at least n/k′−1 ≥ n/k − 1, i.e., at least n/k−1 consecutive
vertices along the boundary are adjacent to a0 by a single interior arc. We consider the
largest gap in U ′ and the largest gap in V ′. The sets of vertices not found in the gaps are
both of cardinality at most n− n/k + 1.
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We will distinguish two cases. First assume that some vertex, say ag , on the privileged
boundary does not belong to either the gap of U ′ or the gap of V ′.

The strategy here is to flip U ′ and V ′ into triangulations with a single pod incident
to ag . They will thus coincide outside of the pod and it will suffice to flip inside the pod
a number of times depending only on k to relate the two triangulations. We begin by
observing that a pod can be moved to a neighboring vertex by a single flip unless another
pod obstructs its passage (see Fig. 11, left). For both triangulations we proceed in the
same way. We “condemn” the gap, and move the pods until they reach ag without passing
through the condemned gap as follows. We take one of the pods bounding the gap, say the
first one clockwise, and move it clockwise until it reaches another pod or the vertex ag .
In the former case, the two pods are transformed into a single pod by the flip portrayed on
the right of Fig. 11. We then continue to move the pod clockwise until reaching another
pod (or ag) etc. Once ag has been reached, there are no pods left between ag and the
condemned gap on one side. We do the same on the other side, moving the pods counter-
clockwise from the other end of the condemned gap to ag .

a0

api

a0

api

Fig. 11. A flip that moves a pod (left) and joins two pods (right). The arc introduced is dotted.

We now bound above the number of flips that were necessary to perform the transfor-
mation. As there were originally at most k pods, at most k − 1 flips will be necessary to
join pods. All of the other flips have reduced by 1 the distance between the pods bounding
the condemned gap, thus there were at most n− n/k such flips.

As we performed this in both triangulations, the total number of flips that have been
carried out does not exceed

(2− 2/k) n+ 2k − 2.

We now have two triangulations U ′′ and V ′′ that differ only on a single pea containing
all of the topology and where all arcs are incident to a0. In particular, we only need to
perform flips inside the pea. As a subsurface, it is homeomorphic to 61, thus

d(U ′′, V ′′) ≤ diam(MF(61)),

and this diameter is equal to some constant K ′k which only depends on k. Using these
estimates and our original estimates on the distances to U ′ and V ′ we obtain

d(U, V ) ≤ (2− 2/k)n+ 2k − 2+K ′k + 2n+ 8k − 10.

If we set Kk = K ′k + 10k − 12, this results in the desired inequality:

d(U, V ) ≤ (4− 2/k)n+Kk.
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We now review our second case. Assume that each of the vertices on the privileged
boundary belongs to the gap of U ′ or to the gap of V ′.

This is the easier case since all the privileged boundary vertices incident to pods of U ′

lie in a sector disjoint from another sector containing all the privileged boundary vertices
incident to pods of V ′. As above, we move the pods by flips. Choose a pod in U ′ at
the boundary of the gap, say the first one clockwise, and move it clockwise (i.e. without
passing through the gap) towards the other boundary using the flip shown on the left of
Fig. 11. This proceeds until U ′ is transformed into a triangulation with a single pod at the
other boundary of the gap. Let al be the vertex on the privileged boundary that is incident
to the remaining pod. We now move the pods in V ′ similarly but in the opposite direction:
we start from the last pod clockwise, move it counter-clockwise, and merge it along the
way with the other pods until we reach a vertex al with a single remaining pod. We denote
the resulting triangulations by U ′′ and V ′′. Note that, as above, there were at most 2k − 2
flips that served to join adjacent pods. All other flips brought the outermost pods 1 closer
to al . Hence, there were at most n− 1 such flips. Thus,

d(U ′, U ′′)+ d(V ′, V ′′) ≤ n− 1+ 2k − 2.

Now U ′′ and V ′′ differ in a single pea, and so as above

d(U ′′, V ′′) ≤ diam(MF(61)).

We can conclude as follows, taking the same constant Kk as previously:

d(U, V ) ≤ 3n+Kk ≤ (4− 2/k)n+Kk.

Note that the second inequality holds because k ≥ 2. ut

Observe that this implies an upper bound of the order of 3n when k = 2, that is, when
6 = 5. An adaptation of the above proof for unmarked boundary loops gives stronger
upper bounds. In particular the following is true.

Theorem 3.6. Let 6 be a filling surface with k ≥ 1 unmarked boundary loops and no
other topology. There exists a constant Kk which only depends on k such that

diam(MF(6n)) ≤
(

3−
1

2k

)
n+Kk.

Proof. Let U and V be triangulations in MF(6n). We begin by observing that every
boundary loop is close to some vertex on the privileged boundary.

More precisely, consider the graphD that is dual toU , whose vertices are the triangles
of U and whose edges connect two triangles that share an edge. Observe that D is con-
nected. Let t be the triangle of U incident to some boundary loop. Consider a triangle t ′

of U incident to the privileged boundary that is closest to t inD, and a geodesic between t
and t ′ inD. The only triangle incident to the privileged boundary along this geodesic is t ′.
Hence the length of this geodesic cannot depend on n, but only on k. For this reason, the
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vertex of t ′ on the privileged boundary is the one we call close to the boundary loop. Now
observe that flipping the arcs of U dual to the edges of our geodesic from t ′ to t will in-
troduce a triangle incident to both the boundary loop and the privileged boundary vertex
it is close to. We then say that the boundary loop is hanging off this vertex.

We carry out the above sequence of flips for every boundary loop. Note that these flips
never remove an arc incident to the privileged boundary. Hence, once a boundary loop is
hanging off a privileged boundary vertex, it will be left so by the later flips. The number
of flips needed to transform both U and V as described above does not depend on n, but
only on k. We denote the resulting triangulations by U ′ and V ′.

By construction, all the boundary loops of U ′ and V ′ hang off privileged boundary
vertices, either alone or in a bunch as depicted in Fig. 12. Observe that two boundary
curves hanging off the same vertex are necessarily separated by at least one triangle.

aj aj

Fig. 12. Boundary loops “hanging off” privileged boundary vertices.

For a moment we forget all of the triangles of U ′ and V ′ that are not incident to
a boundary loop. We consider the collection of privileged boundary vertices that have
boundary loops hanging off them in either U ′ or V ′. There are at most 2k such vertices,
and as in the previous proof we consider the gaps of successive privileged boundary ver-
tices without a boundary loop hanging off them in either triangulation. We now consider
the largest gap, whose size is at least n/(2k)− 1.

We choose one of the privileged boundary vertices contained in the gap and denote
it a0. We carry out flips within both U ′ and V ′ to increase the interior degree of a0 but
(and this is important) without flipping the edges of any triangle incident to a boundary
loop. Once this is done, all other arcs are incident to a0. The vertices in the boundary
loops are incident to a unique arc which joins them to a0, as shown in Fig. 13.

The two triangulations look very similar with the exception of the placement of the
boundary loops. They are all found in sectors (which we call pods) bounded by two arcs

a0

aj

a0

aj

Fig. 13. A pod with a unique boundary loop (left), and one with several (right).
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between a0 and some other privileged boundary vertex aj , possibly alone, possibly with
other boundary loops (see Fig. 13). As in the previous theorem, we want to put these
boundary loops in peas so that they are easy to move, but this time we use the privileged
boundary vertex a0 as a base for all the peas.

To do this, we perform flips inside each pod so that all the boundary loops inside a
given pod become enclosed in a single pea attached to a0. This may take a certain number
of flips, but an upper bound on how many is given by

diam(MF(6′2)),

where 6′ is the surface inside the pod. As 6′ has at most k interior boundary curves,
this is bounded by some function of k. Now, each boundary curve is inside some pea
belonging to a pod attached to both a0 and some other privileged boundary vertex aj .
This aj is of course the original vertex that the boundary curve was close to.

We can now begin to move the pods around. The idea is to move the pods clockwise
around a0 using the flip depicted on the left of Fig. 14.

a0

aj

a0

aj

Fig. 14. A flip that moves a pod by one vertex clockwise around a0 (left) and a flip that joins two
pods (right). In each case, the arc introduced is dotted.

We will refer to the number of boundary loops in a pea or in a pod as the pea or the
pod’s multiplicity. We begin as follows: we consider the first pod clockwise around a0 in
either triangulation. If both triangulations have such a pod, we choose the one with the
largest multiplicity. If they both have a pod of the same multiplicity, we leave them as
they are and look for the next pod clockwise in either triangulation. The selected pod is
incident to a0 and to another privileged boundary vertex aj .

If one of the triangulations has no pod incident to aj , we move the pod clockwise
within the one that does, until the next vertex incident to a pod on either triangulation is
reached. As in the proof of the previous theorem, moving a pod by one vertex requires a
single flip. This flip is depicted on the left of Fig. 14.

If however both triangulations have pods with different multiplicities incident to aj ,
we first perform flips inside the one with the larger multiplicity to split it into two pods,
each containing a pea attached to a0. We make the first pod (in the direction of our ori-
entation) with the same multiplicity as the pod of the other triangulation, and the second
with whatever multiplicity comes from the leftover boundary loops. Again, this splitting
operation requires a number of flips, but no more than

diam(MF(6′2)),
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where6′ is the surface inside the pod, as above. We then move this second pod by flips to
the next vertex clockwise incident to a pod on either triangulation. Whenever the moving
pod encounters another pod in its own triangulation, we perform a single flip to join them
as shown on the right of Fig. 14, and we iterate the process until we reach the last pod
clockwise around a0.

The two resulting triangulations have pods of the same multiplicity incident to the
same privileged boundary vertices. More precisely, these triangulations only possibly dif-
fer in the way the peas are triangulated. We therefore finally perform flips inside the peas
in order to make the two triangulations coincide. Note that the number of these flips does
not depend on n but only on k.

Let us now take a look at how many flips we have performed.
We began by tweaking both triangulations so that all boundary loops hung off privi-

leged boundary vertices. This required a number of flips that does not depend on n, but
only on k, which we call K ′k . We then increased the interior degree of a0. By an Euler
characteristic argument, this required at most 2n + 4k − 6 flips. Moving pods from one
end of the gap to the other required at most n flips from which the size of the gap must be
subtracted, thus at most n− n/(2k) flips.

In several places we had to transform two triangulations in MF(6′2) into one an-
other for some subsurface 6′ of 6. The number of flips needed to perform every such
transformation in any possible subsurface6′ is bounded above by a numberK ′′k that does
not depend on n. We had to do these transformations at most k times to attach the peas
to a0, and once every time a pod had to be split. The splitting operation was performed
at most 2k times because the number of pods in the two triangulations is bounded above
by 2k. Hence the total number of flips performed to modify triangulations in MF(6′2)
is at most 3kK ′′k . Likewise, we may have had to join pods together, requiring in total at
most 2k flips. The final flipping inside the peas was bounded above by a number K ′′′k that
does not depend on n. We therefore obtain an upper bound of(

3−
1

2k

)
n+Kk

on the diameter of MF(6n), where Kk = K ′k + 3kK ′′k +K
′′′

k + 6k − 6. ut

3.4. A few other cases

The proof of Theorem 3.5 still works when some of the boundary loops are replaced by
interior points. The only difference is that some of the peas will enclose interior points
instead of boundary loops. Hence:

Theorem 3.7. Let6 be a filling surface with l marked boundary loops, k marked interior
vertices and no other topology. If k + l ≥ 2, then there exists a constant Kk+l which only
depends on k + l such that

diam(MF(6n)) ≤
(

4−
2

k + l

)
n+Kk+l .
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Adapting the proof of Theorem 3.6 to surfaces with interior points and boundary loops is
not immediate. Indeed, a point and a boundary loop cannot be exchanged. However, if all
the boundary loops are replaced by interior vertices, a straightforward adaptation of this
proof will work. As above, the only difference is that peas will enclose vertices instead of
boundary loops, so we only give the main steps.

Theorem 3.8. Let 6 be a disk with k ≥ 2 unmarked interior vertices. There exists a
constant Kk which only depends on k such that

diam(MF(6n)) ≤
(

3−
1

2(k − 1)

)
n+Kk.

Proof. Given any two triangulations U and V , we begin by choosing any interior vertex
and perform flips to increase its incidence in both triangulations. This requires 2n flips in
total plus a constant that only depends on k. The resulting triangulations now have peas in
pods where the peas have the form of a loop surrounding a single arc between an interior
vertex and the vertex incident to all interior arcs.

As in the proof of Theorem 3.6, we consider the largest gap between two pods and
move them around in an almost identical fashion. The gap is of size at least n/(2k − 2)
as we have already used one of the interior vertices as the “center” of the triangulation.

The remaining details of the proof are identical to those in the proof of Theorem 3.6
and we leave them to the dedicated reader. ut

4. Lower bounds for 0

In this section, we prove the following lower bound on the diameter of MF(0n):

diam(MF(0n)) ≥ b5n/2c − 2. (4.1)

This will be done by exhibiting two triangulations A−n and A+n in MF(0n) whose dis-
tance is equal to the right-hand side of (4.1). These triangulations are built by modifying
the triangulation Zn of1n depicted in Fig. 15, where1n is a disk with n marked vertices
on the boundary. The interior arcs of Zn form a zigzag, i.e., a simple path that alternates
between left and right turns. This path starts at the vertex an and ends at an/2 when n is
even, and at adn/2e+1 when n is odd. When n > 3, Zn has an ear at a1 and another ear

an an¡1 adn=2e+1

adn=2ea2a1

an an¡1 an=2+1

an=2a2a1

Fig. 15. The triangulation Zn of 1n depicted when n is even (left) and odd (right).
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at abn/2c+1. When n = 3, this triangulation is made up of a single triangle which is an ear
at all three vertices. Note that Zn cannot be defined when n < 3.

Assume that n ≥ 3. A triangulationA−n of 0n can be built by considering the ear ofZn
in a1 and by “piercing” it. Formally, we place a boundary loop α0 with a vertex a0 inside
the ear and re-triangulate the pierced ear as shown in the top row of Fig. 16. Another
triangulation A+n of 0n can be built by piercing the ear of Zn at abn/2c+1, by placing the
vertex a0 on the boundary of the resulting hole, thus creating a boundary loop α0, and by
re-triangulating the pierced ear as shown in the bottom row of Fig. 16.

an an¡1 an=2+1

an=2a2a1

an an¡1 adn=2e+1

adn=2ea2a1

an an¡1 an=2+1

an=2a2a1

an an¡1

a2a1 adn=2e

adn=2e+1

Fig. 16. The triangulations A−n (top row) and A+n (bottom row) of 0n depicted when n is even
(left) and odd (right). For simplicity, the vertex a0 is unlabeled here.

In the remainder of the section, the triangulations A−n and A+n are understood as ele-
ments of MF(0n), that is, up to homeomorphism.

We will also define A−n and A+n when 1 ≤ n ≤ 2. The triangulations A−2 and A+2 are
the triangulations in MF(02) that contain a loop arc at a1 and a2, respectively, as shown
in Fig. 5. The triangulations A−1 and A+1 will both be equal to the unique triangulation in
MF(01), also shown in Fig. 5.

One of the main steps of our proof will be to show that for every n > 2,

d(A−n , A
+
n ) ≥ min

(
d(A−n−1, A

+

n−1)+ 3, d(A−n−2, A
+

n−2)+ 5
)
. (4.2)

This inequality will be obtained using well chosen vertex deletions or sequences of
them. For instance, for n ≥ 2, observe that deleting the vertex an from both A−n and A+n
results in triangulations isomorphic to A−n−1 and A+n−1. More precisely, once an has been
deleted, the other vertices need to be relabeled in order to obtain A−n−1 and A+n−1. If we
delete any aj instead of an, then the natural relabeling amounts to relabeling ai as ai−1
whenever i > j . This relabeling provides a map onto the triangulations of 0n−1. For
future reference we call any such map a vertex relabeling. We can now precisely state the
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observation we need: the triangulationsA−n \\n, resp.A+n \\n are isomorphic toA−n−1, resp.
A+n−1 via the same vertex relabeling. This can be checked using Fig. 5 when 2 ≤ n ≤ 4
and Fig. 16 when n ≥ 3. According to Theorem 2.4, it follows from this observation that
if there exists a geodesic between A−n and A+n with at least three flips incident to αn, then

d(A−n , A
+
n ) ≥ d(A

−

n−1, A
+

n−1)+ 3, (4.3)

and inequality (4.2) holds in this case. Now assume that n ≥ 3 and observe that for
any integer i with 1 ≤ i < n and any j ∈ {n − i, n − i + 1}, deleting the vertices ai
and aj from A−n and A+n results in triangulations of 0n−2 isomorphic to A−n−2 and A+n−2,
respectively. The isomorphism comes from the vertex relabeling described above. Hence,
if there exists a geodesic between A−n and A+n with at least three flips incident to αi , and
a geodesic between A−n \\i and A+n \\i with at least two flips incident to αj , then invoking
Theorem 2.4 twice yields

d(A−n , A
+
n ) ≥ d(A

−

n−2, A
+

n−2)+ 5, (4.4)

and inequality (4.2) also holds in this case. Observe that (4.3) and (4.4) follow from the
existence of particular geodesic paths. The rest of the section is devoted to proving the
existence of geodesic paths that imply at least one of these inequalities.

Since αn is not incident to the same triangle in A−n and in A+n , at least one flip is
incident to this arc along any geodesic from A−n to A+n . We will study the geodesics
between A−n and A+n depending on which arc is introduced by their first flip incident
to αn. This is the purpose of the next lemmas.

Lemma 4.1. Let n > 2. Consider a geodesic from A−n to A+n whose first flip incident to
the arc αn introduces an arc with vertices a0 and an. If αn is incident to at most two flips
along this geodesic, then α1 is incident to at least three flips along it.

Proof. Let (Ti)0≤i≤k be a geodesic from A−n to A+n . Assume that the first flip incident to
αn along (Ti)0≤i≤k is the j -th one, and that it introduces an arc with vertices a0 and an.
This flip must then be the one shown on the left of Fig. 17.

an

a2a1

an

a2a1

an

a1

¯

Fig. 17. The j -th (left), l′-th (middle), and l-th (right) flips performed along the path (Ti)0≤i≤k in
the proof of Lemma 4.1. In each case, the arc introduced is dotted.

Assume that at most one flip along (Ti)0≤i≤k other than the j -th one is incident to αn.
In this case, there must be exactly one such flip among the last k−j flips of (Ti)0≤i≤k , say
the l-th one. Moreover, this flip replaces the triangle of Tj incident to αn by the triangle
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of A+n incident to αn. There is only one way to do so, depicted on the right of Fig. 17. As
portrayed in the figure, this flip is incident to α1.

To reach a contradiction, assume that at most one flip along (Ti)0≤i≤k other than the
l-th one is incident to α1. In this case, the first flip incident to α1 along (Ti)0≤i≤k , say the
l′-th one, replaces the triangle of A−n incident to the arc α1 by the triangle of Tl−1 incident
to this arc. There is only one way to do so, depicted in the middle of Fig. 17. One can
see that the triangle of Tl′−1 incident to the boundary loop α0 cannot be identical to the
triangle of A−n incident to this arc. Hence one of the first l′ − 1 flips along (Ti)0≤i≤k , say
the j ′-th one, removes the triangle of A−n incident to α0.

As j ′ is less than l′, the arc β shown on the left of Fig. 17, belongs to both Tj ′−1
and Tj ′ . The portion of each of these triangulations bounded by the arcs αn and β belongs
to MF(02). According to Proposition 2.2, the j ′-th flip along (Ti)0≤i≤k is then incident
to αn. As the j -th and l-th flips along this path are also incident to αn, this contradicts the
assumption that αn is incident to at most two flips along (Ti)0≤i≤k . Therefore α1 must be
incident to at least three flips along this geodesic. ut

Lemma 4.2. Let n > 2. Consider a geodesic from A−n to A+n whose first flip incident
to αn introduces an arc with vertices a1 and a2. If αn is incident to at most two flips along
this geodesic, then α1 is incident to at least four flips along it.

Proof. Let (Ti)0≤i≤k be a geodesic from A−n to A+n whose first flip incident to αn, say the
j -th one, introduces an arc with vertices a1 and a2. This flip must then be the one shown
on the left of Fig. 18. Note that it is incident to α1.

an

a1 a2

an

a1 a2

Fig. 18. The j -th (left) and l-th (right) flips performed along the path (Ti)0≤i≤k in the proof of
Lemma 4.2. In each case, the arc introduced is dotted.

Assume that at most one flip along (Ti)0≤i≤k other than the j -th one is incident to αn.
In this case, there must be exactly one such flip among the last k − j flips of (Ti)0≤i≤k ,
say the l-th one. This flip replaces the triangle of Tj incident to αn by the triangle of A+n
incident to αn. There is only one way to do so, depicted on the right of Fig. 18. Note that
this flip is also incident to α1.

Finally, as the arc introduced by the j -th flip along (Ti)0≤i≤k is not removed before
the l-th flip, there must be two more flips incident to the arc α1 along this geodesic: the
flip that removes the loop arc with vertex a1 shown on the left of Fig. 18, and the flip that
introduces the loop arc with vertex a2 shown on the right of the figure. This proves that at
least four flips are incident to α1 along (Ti)0≤i≤k . ut
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The following lemma provides the existence of a particular ear in a triangulation along
some geodesics between A−n and A+n . This will result in a lower bound on the distance
of A−n and A+n via Lemma 4.4 below. The existence of such ears will also be instrumental
in Section 5 when proving lower bounds on diam(MF(5n)).

Lemma 4.3. For n ≥ 4, consider a geodesic fromA−n toA+n whose first flip incident to αn
introduces an arc with vertices a1 and ap, where 2 < p < n. Then some triangulation
along this geodesic has an ear at aq , where 2 ≤ q ≤ n and q 6= bn/2c + 1.

Proof. Let (Ti)0≤i≤k be a geodesic from A−n to A+n whose first flip incident to αn, say
the j -th one, introduces an arc with vertices a1 and ap, where 2 < p < n. This flip is
depicted in Fig. 19, separately when p ≤ dn/2e and when p > dn/2e.

an

a1

an

a1 ap

ap

Fig. 19. The j -th flip performed along the path (Ti)0≤i≤k in the proof of Lemma 4.3 when
p ≤ dn/2e (left) and when p > dn/2e (right). The arc introduced is dotted.

First assume that p is not greater than dn/2e. Consider the arc of Tj with vertices a1
and ap shown as a solid line on the left of Fig. 19. The portion of Tj bounded by this
arc and by the arcs α1, . . . , αp−1 is a triangulation of the disk 1p. If p > 3, then this
triangulation has at least two ears, and one of them is also an ear of Tj at aq where 2 ≤
q < p. If p = 3 this property still necessarily holds with q = 2 since the triangulation
of 1p induced by Tj is made up of a single triangle.

Now assume that dn/2e < p < n. Consider the arc with vertices a1 and ap introduced
by the j -th flip along (Ti)0≤i≤k and shown as a dotted line on the right of Fig. 19. The
portion of Tj bounded by this arc and by the arcs αp, . . . , αn is a triangulation of1n−p+2.
Since n−p+ 2 ≥ 3, an argument similar to the one used in the last paragraph shows that
Tj has an ear at some vertex aq where p < q ≤ n.

Hence, Tj has an ear at aq where either 2 ≤ q < p ≤ dn/2e or dn/2e < p < q ≤ n.
In particular, q is necessarily distinct from bn/2c + 1. ut

Lemma 4.3 can be combined with the following lemma to obtain inequality (4.2). Note
that arguments close to the ones used in the proof of the next lemma will serve to prove
Theorem 5.3 in Section 5.

Lemma 4.4. Let n ≥ 4. If some triangulation along a geodesic between A−n and A+n has
an ear at aq , where 2 ≤ q ≤ n and q 6= bn/2c + 1, then

d(A−n , A
+
n ) ≥ d(A

−

n−2, A
+

n−2)+ 5.
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Proof. Consider a geodesic (Ti)0≤i≤k between A−n and A+n and assume that, for some j
in {0, . . . , k}, Tj has an ear at aq , where 2 ≤ q ≤ n and q 6= bn/2c + 1.

Set r = n− q + 1. The portion of either A−n or A+n placed between the arcs αq−1, αq ,
and αr is shown on the left of Fig. 20. As Tj has an ear at aq , one can split the geodesic
(Ti)0≤i≤k at the triangulation Tj and invoke Lemma 2.5 for each of the resulting portions.
Doing so, we find that either αq−1 and αq are both incident to exactly three flips along
this geodesic, or one of these arcs is incident to at least four flips along it.

These two cases will be reviewed separately.
First assume that αs is incident to at least four flips along (Ti)0≤i≤k , where s is either

q − 1 or q. In this case, Theorem 2.4 yields

d(A−n , A
+
n ) ≥ d(A

−
n \\s, A

+
n \\s)+ 4. (4.5)

Observe that the arc αr is not incident to the same triangle in A−n \\s and in A+n \\s
(because of the placement of the boundary loop in the two triangulations). Hence, some
flip must be incident to this arc along any geodesic between A−n \\s and A+n \\s.

Invoking Theorem 2.4 again, we find

d(A−n \\s, A
+
n \\s) ≥ d(A

−
n \\s\\r, A

+
n \\s\\r)+ 1. (4.6)

As A−n \\s\\r and A+n \\s\\r are isomorphic to A−n−2 and A+n−2 by the same vertex
relabeling, the desired result is obtained by combining (4.5) and (4.6).

Now assume that αq−1 and αq are both incident to exactly three flips along (Ti)0≤i≤k .
Note that at least one of the first j flips and at least one of the last k − j flips along
(Ti)0≤i≤k are incident to either αq−1 or αq (because A−n and A+n do not have an ear
at aq , while Tj does). We can assume without loss of generality that exactly one of the
first j flips and two of the last k− j flips along (Ti)0≤i≤k are incident to αq by, if needed,
reversing the geodesic (Ti)0≤i≤k (this is possible thanks to the symmetry between A−n
and A+n ). In this case, according to Lemma 2.5, exactly two of the first j flips and exactly
one of the last k − j flips along this geodesic are incident to αq−1.

It can further be assumed without loss of generality that the j -th flip along (Ti)0≤i≤k
is the one that introduces the ear at aq . This flip is therefore incident to αq , and since
there is only one such flip along (Ti)0≤i≤j , it must be as shown on the right of Fig. 20.
Note that it is also incident to αq−1. Now consider the triangle incident to αq−1 when
this flip is performed, labeled t in the figure. This triangle must be introduced by the first
flip incident to αq−1, earlier along the geodesic. Say this flip is the l-th one along the
geodesic. It must be as shown in the middle of Fig. 20.

Consider a geodesic (T ′i )0≤i≤k′ fromA−n \\q to Tl\\q, and a geodesic (T ′′i )0≤i≤k′′ from
Tl\\q to A+n \\q. Since three flips are incident to αq along (Ti)0≤i≤k , splitting (Ti)0≤i≤k
at the triangulation Tj and invoking Theorem 2.4 for each of the resulting portions yields

k′ + k′′ ≤ d(A−n , A
+
n )− 3. (4.7)

Observe that the triangles incident to αr in A−n \\q and in Tl\\q are distinct (see
Fig. 20). Hence, at least one flip is incident to αr along (T ′i )0≤i≤k′ , and by Theorem 2.4,

k′ ≥ d(A−n \\q\\r, Tl\\q\\r)+ 1. (4.8)
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ra

qaaq¡1
qaaq¡1

qaaq¡1

ra
r+1a

q+1a aq+1 q+1a

r+1a

t

ra

Fig. 20. The portion of either T− or T+ next to the vertex aq (left), the l-th flip along the geodesic
used in the proof of Lemma 4.4 (middle), and the j -th flip along this geodesic (right). The arc
introduced by each flip is dotted.

Similarly, the triangles incident to αr in Tl\\q and in A+n \\q are distinct. Hence, at
least one flip is incident to αr along (T ′′i )0≤i≤k′′ , and by Theorem 2.4,

k′′ ≥ d(Tl\\q\\r, A
+
n \\q\\r)+ 1. (4.9)

By the triangle inequality, (4.8) and (4.9) yield

k′ + k′′ ≥ d(A−n \\q\\r, A
+
n \\q\\r)+ 2. (4.10)

Since A−n \\q\\r and A+n \\q\\r are isomorphic to A−n−2 and A+n−2 by the same vertex
relabeling, the desired inequality is obtained by combining (4.7) and (4.10). ut

We are now ready to establish the announced inequality.

Theorem 4.5. For every n > 2,

d(A−n , A
+
n ) ≥ min

(
d(A−n−1, A

+

n−1)+ 3, d(A−n−2, A
+

n−2)+ 5
)
.

Proof. Assume that n ≥ 3 and consider a geodesic (Ti)0≤i≤k from A−n to A+n . If at least
three flips are incident to αn along it, then Theorem 2.4 yields

d(A−n , A
+
n ) ≥ d(A

−

n−1, A
+

n−1)+ 3.

Indeed, as mentioned above, A−n \\n and A+n \\n are isomorphic to A−n−1 and A+n−1, re-
spectively, via the same vertex relabeling. Therefore in this case, the desired result holds.
So we can assume in the remainder of the proof that at most two flips are incident to αn
along (Ti)0≤i≤k . Further assume that the first flip incident to αn along this geodesic is the
j -th one. We review three cases, depending on which arc is introduced by this flip.

First assume that the j -th flip introduces an arc with vertices a0 and an. This flip must
be the one depicted on the left of Fig. 17. Consider a geodesic (T ′i )0≤i≤k′ from A−n \\1
to Tj\\1, and a geodesic (T ′′i )0≤i≤k′′ from Tj\\1 to A+n \\1. According to Lemma 4.1 and
Theorem 2.4, the following inequality holds:

k′ + k′′ ≤ d(A−n , A
+
n )− 3. (4.11)
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As portrayed on the left of Fig. 17, the triangles incident to αn in A−n \\1, Tj\\1,
and A+n \\1 are pairwise distinct. As a consequence, at least one flip must be incident
to αn along each of the geodesics (T ′i )0≤i≤k′ and (T ′′i )j≤i≤k′′ .

In this case, Theorem 2.4 yields

k′ ≥ d(A−n \\1\\n, Tj\\1\\n)+ 1 and k′′ ≥ d(Tj\\1\\n,A+n \\1\\n)+ 1.

By the triangle inequality, one obtains

k′ + k′′ ≥ d(A−n \\1\\n,A
+
n \\1\\n)+ 2. (4.12)

Since A−n \\1\\n and A+n \\1\\n are isomorphic to A−n−2 and A+n−2 via the same vertex
relabeling, the desired result follows from inequalities (4.11) and (4.12).

Now assume that the j -th flip introduces an arc with vertices a1 and a2. It follows
from Lemma 4.1 and Theorem 2.4 that

d(A−n , A
+
n ) ≥ d(A

−
n \\1, A

+
n \\1)+ 4. (4.13)

Observe that the arc αn−1 is not incident to the same triangle in A−n \\1 and in A+n \\1.
Therefore, there must be at least one flip incident to αn−1 along any geodesic between
these triangulations, and by Theorem 2.4,

d(A−n \\1, A
+
n \\1) ≥ d(A

−
n \\1\\n− 1, A+n \\1\\n− 1)+ 1. (4.14)

As A−n \\1\\n− 1 and A+n \\1\\n− 1 are isomorphic to A−n−2 and A+n−2 via the same
vertex relabeling, the result is obtained by combining (4.13) and (4.14).

Finally, if the j -th flip introduces an arc with vertices a1 and ap, where 2 < p < n,
then n > 3 and the result follows from Lemmas 4.3 and 4.4. ut

We can conclude the following.

Theorem 4.6. The diameter of MF(0n) is b5n/2c − 2 for all n ≥ 1.

Proof. Since 01 has a unique triangulation up to homeomorphism, MF(01) has diame-
ter 0. Moreover, as can be seen in Fig. 5, MF(02) has diameter 3. The inequality

diam(MF(0n)) ≥ b5n/2c − 2

therefore follows by induction from Theorem 4.5. Combining this inequality with the
upper bound provided by Theorem 3.4 completes the proof. ut

5. Lower bounds for 5

We now turn our attention to the triangulations of 5, the filling surface of genus 0, with
two marked boundary loops in addition to the privileged boundary, and no marked or un-
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marked point in its interior. We shall build two triangulations B−n and B+n in MF(5n)
whose flip distance is 3n+K5, where K5 does not depend on n.

First assume that n > 2. Recall that A−n has an ear at the vertex abn/2c+1 (see Fig. 16).
One can transform A−n into a triangulation that belongs to MF(5n) by placing a bound-
ary loop α+ with a vertex a+ in this ear and by re-triangulating the pierced ear around the
boundary loop as shown in the top row of Fig. 21 (where a+ is labeled with a +). The
vertex a0 and the arc α0 will be relabeled a− and α− (and marked with a − in the figure).
The resulting triangulation will be called B−n .

¡

¡¡
+

++
¡

an an¡1

a2a1

an an¡1 an=2+1

an=2a2a1

an an¡1

a2a1

an an¡1 an=2+1

an=2a2a1 adn=2e

adn=2e+1

+

adn=2e

adn=2e+1

¡

¡¡
+

++
¡

an an¡1

a2a1

an an¡1 an=2+1

an=2a2a1

an an¡1

a2a1

an an¡1 an=2+1

an=2a2a1 adn=2e

adn=2e+1

+

adn=2e

adn=2e+1

Fig. 21. The triangulations B−n (top row) and B+n (bottom row) depicted when n is even (left) and
odd (right). The vertices a− and a+ are labeled − and +, respectively.

Similarly, consider the ear of A+n at a1. One can obtain a triangulation that belongs
to MF(5n) by placing a boundary loop α+ with a vertex a+ in this ear and by re-
triangulating the pierced ear as shown in the bottom row of Fig. 21, where a+ is labeled
with a+. The resulting triangulation, wherein the vertex a0 and the boundary arc α0 have
been respectively relabeled a− and α−, will be called B+n .

When 1 ≤ n ≤ 2, B−n and B+n will be the triangulations in MF(5n) depicted in
Fig. 22. Most of the section is devoted to proving that when n ≥ 3,

d(B−n , B
+
n ) ≥ min

(
d(B−n−1, B

+

n−1)+ 3, d(B−n−2, B
+

n−2)+ 6
)
. (5.1)

The proof consists in finding a geodesic between B−n and B+n within which at least
a certain number of flips (typically three) are incident to given arcs, and invoking Theo-
rem 2.4 with well chosen vertex deletions. These deletions will be the same as in the case
of the triangulations A−n and A+n . Indeed, when n ≥ 2, the same vertex relabeling sends
B−n \\n and B+n \\n to B−n−1 and B+n−1, respectively. Moreover, if n ≥ 3 and if i and j are
two integers such that 1 ≤ i < n and j ∈ {n− i, n− i+1}, then another vertex relabeling
sends B−n \\i\\j and B+n \\i\\j to B−n−2 and B+n−2, respectively.
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a2

¡+

a2

a1

a1a1

¡ +

¡+

a1

¡ +

Fig. 22. The triangulations B−n (top row) and B+n (bottom row) depicted when n = 1 (left) and
when n = 2 (right). The vertices a− and a+ are labeled − and +, respectively.

5.1. When an ear is found along a geodesic

In this subsection, we consider the geodesics between B−n and B+n along which some
triangulation has an ear. Ears at a1 and at an are first reviewed separately. The following
lemma deals with the case of an ear at a1. Note that, by symmetry, this also settles the
case of an ear at abn/2c+1.

Lemma 5.1. Assume that n ≥ 2 and consider a geodesic (Ti)0≤i≤k between B−n and B+n .
If there exists j ∈ {0, . . . , k} such that Tj has an ear at a1, then

d(B−n , B
+
n ) ≥ d(B

−

n−1, B
+

n−1)+ 4.

Proof. Assume that Tj has an ear at a1 for some integer j ∈ {0, . . . , k}. Call this ear t ,
and let t− be the triangle incident to αn in B−n . At least two of the first j flips along
(Ti)0≤i≤k must be incident to αn. Indeed, the unique such flip would otherwise replace
the triangle t− by t . This flip would then simultaneously remove two edges of t− (see the
sketch of B−n on the left of Fig. 21), which is impossible. By symmetry, at least two of the
last k − j flips along the path (Ti)0≤i≤k must be incident to αn. Hence, there are at least
four such flips along (Ti)0≤i≤k , and Theorem 2.4 yields

d(B−n , B
+
n ) ≥ d(B

−
n \\n,B

+
n \\n)+ 4.

Since an isomorphism sends B−n \\n and B+n \\n to B−n−1 and B+n−1 via the same vertex
relabeling, the lemma is proven. ut

The next lemma deals with the case of an ear at an. By symmetry this also settles the case
of an ear at an/2 when n is even and at adn/2e+1 when n is odd.

Lemma 5.2. Assume that n ≥ 3 and consider a geodesic (Ti)0≤i≤k between B−n and B+n .
If there exists j ∈ {0, . . . , k} such that Tj has an ear at an, then

d(B−n , B
+
n ) ≥ min

(
d(B−n−1, B

+

n−1)+ 3, d(B−n−2, B
+

n−2)+ 6
)
.
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Proof. Assume that Tj has an ear at an for some j ∈ {0, . . . , k}. One can see in Fig. 21
that the triangles of B−n incident to the arcs αn−1 and αn do not have a common edge.
Therefore, it follows from Lemma 2.5 that at least two of the first j flips along (Ti)0≤i≤k
are incident to the arc αr for some r ∈ {n− 1, n}. Similarly, the triangles of B+n incident
to the arcs αn−1 and αn do not have a common edge, and according to the same lemma, at
least two of the last k− j flips along (Ti)0≤i≤k are incident to αs for some s ∈ {n− 1, n}.

Since the triangles incident to αn in B−n and in B+n are distinct from the ear at an,
at least one of the first j flips and at least one of the last k − j flips along (Ti)0≤i≤k are
incident to αn. Hence, if r or s is equal to n, then at least three flips along this geodesic are
incident to αn. In this case, the desired result follows from Theorem 2.4 because B−n \\n
and B+n \\n are isomorphic to B−n−1 and B+n−1, respectively, via the same vertex relabeling.

Now assume that r and s are both equal to n− 1. In this case, at least four flips along
the path (Ti)0≤i≤k are incident to αn−1, and Theorem 2.4 yields

d(B−n , B
+
n ) ≥ d(B

−
n \\n− 1, B+n \\n− 1)+ 4. (5.2)

Denote by t− and t+ the triangles incident to the arc α1 inB−n \\n−1 and inB+n \\n−1,
respectively. One can see using Fig. 21 that these two triangles separate the two boundary
loops in opposite ways. As shown in Fig. 23, a single flip cannot exchange t− and t+.
Hence, at least two flips are incident to α1 along any geodesic between B−n \\n − 1 and
B+n \\n− 1, and according to Theorem 2.4,

d(B−n \\n− 1, B+n \\n− 1) ≥ d(B−n \\n− 1\\1, B+n \\n− 1\\1)+ 2. (5.3)

a¡

a+

Fig. 23. No flip can replace the triangle t− (solid lines) by the triangle t+ (dotted lines) because
such a flip would simultaneously remove two edges of t−.

Since B−n \\n−1\\1 and B+n \\n−1\\1 are isomorphic to B−n−2 and B+n−2, respectively,
via the same vertex relabeling, combining (5.2) with (5.3) completes the proof. ut

When n ≥ 3, the last two lemmas can be generalized to any ear placement as follows.
Note that the proof of this theorem is similar to that of Lemma 4.4.

Theorem 5.3. Assume that n ≥ 3 and consider a geodesic (Ti)0≤i≤k between B−n
and B+n . If there exists j ∈ {0, . . . , k} such that Tj has an ear, then

d(B−n , B
+
n ) ≥ min

(
d(B−n−1, B

+

n−1)+ 3, d(B−n−2, B
+

n−2)+ 6
)
.
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Proof. Assume that Tj has an ear at aq for some j ∈ {0, . . . , k} and q ∈ {1, . . . , n}.
If q ∈ {1, n}, then the desired result follows from Lemma 5.1 or Lemma 5.2. Similarly, if
q ∈ {dn/2e, dn/2e + 1}, these two lemmas also provide the desired result because of the
symmetries of B−n and B+n . For the remainder of the proof, we may thus assume that q is
distinct from 1, dn/2e, dn/2e + 1, and n.

Denote r = n− q + 1. The portion of the triangulation B−n placed between the edges
αq−1, αq , and αr is depicted on the left of Figure 24. Note that if one splits the geodesic
(Ti)0≤i≤k at the triangulation Tj , then Lemma 2.5 can be invoked for each of the resulting
portions. Doing so, we find that either αq−1 and αq are both incident to exactly three flips
along this geodesic, or one of these arcs is incident to at least four flips along it.

ra

qaaq¡1
qaaq¡1

qaaq¡1

ra
r+1a

q+1a aq+1 q+1a

r+1a
ra

Fig. 24. The portion of the triangulation B−n placed between the arcs αq−1, αq , and αr (left), the
l-th flip along the geodesic used in the proof of Theorem 5.3 (middle), and the j -th flip along this
geodesic (right). The arc introduced by each flip is dotted.

First assume that at least four flips are incident to αs along (Ti)0≤i≤k , where s is q−1
or q. Denote by t− and t+ the triangles incident to αr inB−n \\s and inB+n \\s, respectively.
Using Fig. 21, one can see that these two triangles separate the two boundary loops in
opposite ways. As shown in Fig. 23, a single flip cannot exchange t− and t+. Hence,
at least two flips are incident to αr along any geodesic between B−n \\s and B+n \\s, and
invoking Theorem 2.4 twice yields

d(B−n , B
+
n ) ≥ d(B

−
n \\s\\r, B

+
n \\s\\r)+ 6.

Since B−n \\s\\r and B+n \\s\\r are isomorphic to B−n−2 and B+n−2, respectively, via the
same vertex relabeling, the theorem is proven in this case.

Now assume that αq−1 and αq are both incident to exactly three flips along (Ti)0≤i≤k .
Note that at least one of the first j flips and at least one of the last k − j flips along
(Ti)0≤i≤k must be incident to each of these arcs because B−n and B+n do not have an
ear at aq . Thanks to the symmetry between B−n and B+n , one can assume without loss of
generality that exactly one of the first j flips and two of the last k−j flips along (Ti)0≤i≤k
are incident to αq , by reversing (Ti)0≤i≤k if needed. Then, by Lemma 2.5, exactly two of
the first j flips and exactly one of the last k− j flips along (Ti)0≤i≤k are incident to αq−1.

Without loss of generality, we may assume that the j -th flip along (Ti)0≤i≤k intro-
duces the ear at aq . This flip is then both the first flip incident to αq and the second flip
incident to αq−1 along the geodesic. In particular, it must replace the triangle of B−n inci-
dent to αq by the ear at aq , as shown on the right of Fig. 24. Now assume that the first flip
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incident to αq−1 along (Ti)0≤i≤k is the l-th one. Since there is no other such flip among
the first j − 1 flips along the geodesic, it must be as shown in the middle of Fig. 24.

Consider a geodesic (T ′i )0≤i≤k′ from B−n \\q to Tl\\q, and a geodesic (T ′′i )0≤i≤k′′ from
Tl\\q to B+n \\q. Since three flips are incident to αq along (Ti)0≤i≤k , Theorem 2.4 yields

k′ + k′′ ≤ d(B−n , B
+
n )− 3. (5.4)

Observe that the triangles incident to αr in B−n \\q and in Tl\\q are distinct. Hence, at
least one flip is incident to αr along (T ′i )0≤i≤k′ , and by Theorem 2.4,

k′ ≥ d(B−n \\q\\r, Tl\\q\\r)+ 1. (5.5)

Now denote by t− and t+ the triangles incident to the arc αr in Tl\\q and B+n \\q,
respectively. By construction, t− and t+ separate the two boundary loops in opposite
ways. As shown in Fig. 23, a single flip cannot exchange t− and t+. Hence, at least two
flips are incident to αr along (T ′′i )j≤i≤k′′ , and Theorem 2.4 yields

k′′ ≥ d(Tl\\q\\r, B
+
n \\q\\r)+ 2. (5.6)

By the triangle inequality, (5.5) and (5.6) yield

k′ + k′′ ≥ d(B−n \\q\\r, B
+
n \\q\\r)+ 3. (5.7)

Since B−n \\q\\r and B+n \\q\\r are isomorphic to B−n−2 and B+n−2 by the same vertex
relabeling, the desired inequality is obtained by combining (5.4) and (5.7). ut

5.2. When no ear is found along a geodesic

We call a geodesic between B−n and B+n earless if none of the triangulations along this
geodesic has an ear. We will first show that under mild conditions, one always finds two
particular triangulations along any such geodesics. These triangulations are sketched in
Fig. 25. The triangulation shown in the top row will be calledC−n (p), where ap is the priv-
ileged boundary vertex of the triangle of C−n (p) incident to the boundary loop α+. Fur-
ther note that C−n (p) is sketched separately when p > dn/2e (left) and when p ≤ dn/2e
(right). The triangulation shown in the bottom row of Fig. 25, called C+n (p), has a similar
structure, but the boundary loop α− is placed in a different way.

Observe that the triangulations C−n (p) and C+n (p) do not have an ear. In fact, if at
most two flips are incident to either αn and αdn/2e along an earless geodesic between B−n
and B+n , then these two triangulations are necessarily both found along this geodesic for
appropriate values of p. In order to prove this, the following lemma is needed:

Lemma 5.4. Let n > 2. If at most two flips are incident to αn along an earless geodesic
from B−n to B+n , then the first flip incident to αn along this geodesic either introduces an
arc with vertices a− and an, or an arc with vertices a1 and a+.
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adn=2e+1

+ ¡¡
+

¡
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¡ +¡
+

¡
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adn=2ea1

adn=2ea1

adn=2ea1 ap

ap adn=2ea1

an adn=2e+1 an adn=2e+1

an adn=2e+1an ap

ap

Fig. 25. A sketch ofC−n (p) (top) andC+n (p) (bottom) when p > dn/2e (left) and when p ≤ dn/2e
(right). Not all the interior edges of these triangulations are shown. The omitted edges connect
privileged boundary vertices to a+.

an

a1

ap

an

a1

an

a1 a2

¡ ¡ ¡

Fig. 26. The j -th flip along the geodesic (Ti)0≤i≤k used in the proof of Lemma 5.4. The arc
introduced by this flip (dotted) has vertices a− and an (left), or vertices a1 and ap with 2 ≤ p < n
(middle and right).

Proof. Consider a geodesic (Ti)0≤i≤k from B−n to B+n and assume that at most two flips
are incident to αn along it. Further assume that the first flip incident to αn along this
geodesic is the j -th one. If this flip removes the loop edge of B−n at the vertex a1, then
it introduces the arc with vertices a− shown on the left of Fig. 26, and the desired result
holds. It is therefore assumed in the remainder of the proof that this flip removes the
interior arc of B−n with vertices a1 and an. The introduced arc is incident to a1 and its
other vertex is either a+ or ap where 1 < p < n. We will use an indirect argument.
Assume that the introduced arc is incident to ap where 1 < p < n. One can see in the
middle of Fig. 26 that, in this case, Tj induces a triangulation U in the portion 6 of 5n
bounded by the dotted arc and by the arcs αp, . . . , αn. This triangulation cannot be a
triangulation of a disk. Indeed, otherwise, one of the ears of U would be an ear of Tj .
This shows that the boundary loop with vertex a+ must be a boundary of 6. In this case,
the j -th flip along (Ti)0≤i≤k must be the one shown on the right of Fig. 26. Indeed, Tj
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would otherwise induce a triangulation of a disk in the portion 5n bounded by the arcs
α1, . . . , αp−1 and by the interior arc with vertices a1 and ap shown in the middle of the
figure as a solid line. This triangulation would then share one of its ears with Tj .

Now, let t− and t+ be the triangles incident to αn in Tj and B+n , respectively. As the
j -th flip along (Ti)0≤i≤k is the one shown on the right of Fig. 26, t− and t+ separate the
two boundary loops in opposite ways. As shown in Fig. 23, a single flip cannot exchange
these triangles. Hence, at least two of the last k − j flips must be incident to αn along
(Ti)0≤i≤k , and at least three such flips are found along this geodesic, a contradiction. ut

Lemma 5.5. Let n > 2. If both αn and αdn/2e are incident to at most two flips along an
earless geodesic from B−n to B+n , then there exist a geodesic (Ti)0≤i≤k and integers p−,
p+, j−, and j+ such that j− < j+, and the triangulations Tj− and Tj+ are equal to
C−n (p

−) and C+n (p
+), respectively.

Proof. Assume that αn and αdn/2e are each incident to at most two flips along an earless
geodesic (Ti)0≤i≤k from B−n to B+n . In this case, these arcs are each incident to exactly
two flips along this geodesic. Indeed, otherwise the unique such flip would remove two
arcs simultaneously, as shown in Fig. 23. Assume that the first flip incident to αn along
(Ti)0≤i≤k is the j−-th one. Denote by t− the triangle of Tj− incident to αn. From now
on, t− remains incident to αn in the triangulations along the geodesic until the second
flip incident to αn removes it. Moreover, according to Lemma 5.4, the vertices of t− are
a1, an, and either a− or a+. Thanks to the symmetries of B−n and B+n , one can assume that
this vertex is a+. Indeed, if a− is a vertex of t−, then exchanging the labels of a− and a+
and reversing the direction of the geodesic (Ti)0≤i≤k results in a geodesic from B−n to B+n
whose first flip incident to αn introduces an arc with vertices a1 and a+.

In particular, Tj− must contain all the arcs of C−n (p) shown as solid lines at the top of
Fig. 25, except possibly for the edges of the triangles incident to αdn/2e and α+. However,
since Tj− does not have an ear, all its other interior arcs must connect the privileged
boundary vertices to a+. In particular Tj− is necessarily equal to C−n (p

−), where ap− is
the privileged boundary vertex of the triangle incident to α+ in Tj− .

Now consider the triangle t+ incident to αdn/2e in Tj− , i.e., in C−n (p
−). The vertices

of t+ are adn/2e, adn/2e+1, and a+, as shown at the top of Fig. 25. This triangle must be
introduced by the first flip incident to αdn/2e along (Ti)0≤i≤k , and removed by the second
flip incident to αdn/2e along this geodesic. Say j+ is the index such that the latter flip
transforms Tj+ into Tj++1. It turns out that t− must still be a triangle of Tj+ . Indeed,
otherwise the triangle of B+n incident to αn would already be a triangle of Tj+ , which is
impossible because it intersects the interior of t+. By this argument, t− and t+ are not
affected by a flip between T −j and T +j . Therefore, along this portion of the geodesic, α−
must remain in the subsurface 6 of 5n bounded by the arcs α1 to αdn/2e−1 and by the
edges of t− and t+ not incident to an and to adn/2e+1, respectively.

Now recall that the flip that transforms Tj+ into Tj++1 replaces t+ by the triangle
incident to αdn/2e in B+n . It follows that the triangle of Tj+ incident to the boundary
loop α− must already be the same as in B+n , and its privileged boundary vertex is either
adn/2e or adn/2e+1 depending on the parity of n. By the argument in the last paragraph, this
triangle is contained in 6, and therefore must be incident to adn/2e because 6 does not
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contain adn/2e+1. In particular, Tj+ necessarily contains all the arcs of C+n (p) shown as
solid lines at the bottom of Fig. 25, except possibly for the edges of the triangles incident
to αn and α+. However, Tj+ does not have an ear, and as a consequence it coincides with
C+n (p

+), where ap+ is the privileged boundary vertex of the triangle incident to α+. ut

Lemma 5.6. Let n > 2. Consider an integer p such that 2 ≤ p ≤ n. If at most one flip
is incident to α1 along some geodesic between C+n (p) and B+n , then at least two flips are
incident to αn along this geodesic.

Proof. Consider a geodesic (Ti)0≤i≤k from B+n to C+n (p) and assume that at most one
flip along this geodesic is incident to the arc α1. In this case, there is exactly one such
flip, say the j -th one. Denote by β the interior arc of B+n with vertices a1 and an. This arc
belongs to T0, . . . , Tj−1 and it is removed by the flip that transforms Tj−1 into Tj . More
precisely, this flip replaces β by an arc with vertices a2 and a+. There are exactly two
ways to do so, shown in the middle and on the right of Fig. 27.

+ +

an an¡1

a2a1

an

a2a1

an

a2a1

+

Fig. 27. A sketch of B+n (left) and the two possibilities for the j -th flip along the geodesic
(Ti)0≤i≤k in the proof of Lemma 5.6 (middle and right), where the arc introduced is dotted.

If the j -th flip along (Ti)0≤i≤k is the one shown in the middle of Fig. 27, then at least
two flips must have been performed within the portion 6 of 5n bounded by β and αn
earlier along the path (see MF(02) in Fig. 5). By Proposition 2.2, these two flips are
incident to αn and the desired result holds.

If the j -th flip along (Ti)0≤i≤k is the one shown on the right of Fig. 27, then at least
one of the earlier flips along the path modifies the triangulation within 6. By Proposition
2.2, this flip is incident to αn. One can see on the right of Fig. 27 that the triangles incident
to α1 and αn in Tj have no common edge. However, since p is not equal to 1, the triangles
incident to these arcs in C+n (p) share an edge. Hence, at least one of the last k − j flips
along (Ti)0≤i≤k must be incident to αn, thereby proving that there are at least two such
flips along the geodesic. ut

Lemma 5.7. Let n > 2. If no flip is incident to αn along a geodesic between C−n (dn/2e)
and C+n (1), then at least two of its flips are incident to α1.

Proof. Assume that no flip is incident to αn along a geodesic between C−n (dn/2e)
and C+n (1). The triangles incident to α1 in C−n (dn/2e) and C+n (1) are depicted in Fig. 28,
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a1

a

a

a2

+

¡

Fig. 28. The triangles incident to α1 in C−n (dn/2e) (solid lines) and in C+n (1) (dotted lines), and
an edge of the triangle incident to αn in these triangulations.

in solid lines and in dotted lines, respectively. In this figure, the leftmost arc with vertices
a1 and a+ is an edge of the triangle incident to α1 in both C−n (dn/2e) and C+n (1).

By hypothesis, this arc is never removed along our geodesic. Therefore, if there is
exactly one flip incident to α1 along this geodesic, it must remove two edges of the triangle
of C−n (dn/2e) incident to α1, as can be seen in Fig. 28. As a consequence, there are at
least two flips incident to α1 along the geodesic. ut

5.3. A lower bound on the diameter of MF(5n)

Theorem 5.8. For any n > 2,

d(B−n , B
+
n ) ≥ min

(
d(B−n−1, B

+

n−1)+ 3, d(B−n−2, B
+

n−2)+ 6
)
.

Proof. Assume that n > 2. If one of the triangulations along any geodesic between B−n
and B+n has an ear, then the desired result follows from Theorem 5.3. We may thus as-
sume, for the remainder of the proof, that all the triangulations along the geodesic between
B−n and B+n are earless. Moreover, if p ∈ {n, dn/2e} and if at least three flips are incident
to αp along some geodesic between B−n and B+n , the result follows from Theorem 2.4
because B−n \\p and B+n \\p are isomorphic to B−n−1 and B+n−1, respectively, via the same
vertex relabeling. Hence, it will also be assumed that αn and αdn/2e are incident to at most
two flips along any geodesic between B−n and B+n . Under these assumptions, Lemma 5.5
provides an earless geodesic (Ti)0≤i≤k from B−n to B+n and four integers p−, p+, j−, and
j+ such that j− < j+, and Tj− and Tj+ are equal to C−n (p

−) and C+n (p
+), respectively.

First assume that p+ > 1. Observe that the triangle incident to αn in C+n (p
+) is

distinct from the triangles incident to this arc in B−n and in B+n . As no more than two flips
are incident to αn along (Ti)0≤i≤k , exactly one of the first j+ flips and exactly one of the
last k − j+ flips along this geodesic are incident to αn. In this case, Lemma 5.6 states
that at least two of the last k − j+ flips along (Ti)0≤i≤k are incident to α1. Now observe
that the triangle incident to α1 in C−n (p

−) is distinct from the triangles incident to this arc
in B−n and in C+n (p

+). Hence at least two of the first j+ flips along (Ti)0≤i≤k are incident
to α1, which proves that at least four such flips are found along this geodesic.

Theorem 2.4 then yields

d(B−n , B
+
n ) ≥ d(B

−
n \\1, B

+
n \\1)+ 4. (5.8)
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Thanks to the symmetry between B−n and B+n , the arguments in the last paragraph also
prove (5.8) when p− is distinct from dn/2e. Now assume that p− = dn/2e and p+ = 1.
We will show that (5.8) still holds in this case. According to Lemma 5.7, at least two
flips are incident to α1 in the portion of (Ti)0≤i≤k between C−n (p

−) and C+n (p
+). Now

observe that the triangles of B−n and C−n (dn/2e) incident to α1 are distinct. Hence at least
three of the first p+ flips along (Ti)0≤i≤k are incident to this arc. In addition, the triangles
of C+n (1) and B+n incident to α1 are distinct. Therefore, at least one of the last k − p+

flips along (Ti)0≤i≤k is incident to α1, which proves that there are at least four such flips
along this geodesic, and inequality (5.8) still holds in this case.

Finally, observe that there must be at least two flips incident to αn−1 along any
geodesic between B−n \\1 and B+n \\1. Indeed, the triangles incident to αn−1 in these trian-
gulations separate the two boundary loops in opposite ways and, as can be seen in Fig. 23,
a single flip cannot exchange them. Hence, at least two flips are incident to αn−1 along
any geodesic between B−n \\1 and B+n \\1, and Theorem 2.4 yields

d(B−n \\1, B
+
n \\1) ≥ d(B

−
n \\1\\n− 1, B+n \\1\\n− 1)+ 2. (5.9)

Since B−n \\1\\n− 1 and B+n \\1\\n− 1 are isomorphic to B−n−2 and to B+n−2 by the
same vertex deletion, the result is obtained by combining (5.8) and (5.9). ut

We are now able to bound the diameter of MF(5n) as follows.

Theorem 5.9. The diameter of MF(5n) is not less than 3n.

Proof. One can see in Fig. 22 that at least three of the interior arcs of A−1 have to be
removed in order to transform it into A+1 . For instance, either all the arcs incident to a−,
or all the arcs incident to a+ have to be removed. Hence

d(B−1 , B
+

1 ) ≥ 3. (5.10)

One can see in the same figure that transforming A−2 into A+2 requires removing the arcs
incident to a− and the arcs incident to a+. As there are six such arcs,

d(B−2 , B
+

2 ) ≥ 6. (5.11)

The lower bound of 3n on the diameter of MF(5n) therefore follows by induction from
Theorem 5.8 and from inequalities (5.10) and (5.11). ut

Observe that B−1 and B+1 are exactly three flips distant from each other (flipping all the
arcs incident to a− provides a geodesic). The triangulations B−2 and B+2 , however, are at
least seven flips apart because all the interior arcs of B−2 have to be removed in order to
transform it into B+2 . In particular, the bound provided by Theorem 5.9 is not sharp.

Finally, consider the triangulations shown in Fig. 29. In order to transform the triangu-
lation on the left into the other one, the three interior arcs incident to a1 must be removed
as well as the interior arc twice incident to a− and at least one of the arcs with vertices a−
and a+. Hence, these triangulations are at least five flips apart. In particular, even already
when n = 1, the triangulations B−n and B+n are not maximally distant.
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¡ +a1 a1 ¡+

Fig. 29. Two triangulations in MF(51) at least five flips apart. The vertices a− and a+ are labeled
− and +, respectively.

6. Consequences and further questions

As a first consequence of the above theorems, we prove the following.

Theorem 6.1. Let 6 be a filling surface. If 0 ⊂ 6 is an essential embedding, then

lim
n→∞

diam(MF(6n))
n

≥
5
2
.

Proof. If 0 is embedded in 6, there exists a surface 6′ (possibly empty if 0 is equal
to 6) such that gluing 6′ and 0 results in 6.

Now we take two diametrically opposite triangulationsU and V in MF(0n) and send
them to triangulations in MF(6n) by gluing a fixed triangulation of 6′ to U and to V .
Denote by U ′ and V ′ the resulting triangulations of MF(6n). We claim that

d(U ′, V ′) = d(U, V ).

That the distance of U ′ and V ′ is at most that of U and V is obvious, as any path in
MF(0n) can easily be emulated in MF(6n). To see that d(U ′, V ′) ≥ d(U, V ) we will
use Lemma 2.6. By the lemma, if two triangulations in F(6n) have an arc or a set of arcs
in common, then any geodesic between them conserves these arcs. Now, of course this
property may no longer be true when one quotients by the group of homeomorphisms, but
it turns out that it works in this particular case. Indeed, as we consider homeomorphisms
that preserve marked points, the isotopy class of a curve parallel to the privileged bound-
ary curve is preserved by any such homeomorphism. This implies that the isotopy class of
the embedding of the boundary loop of 0n is also preserved. Thus there exists a geodesic
between U ′ and V ′ such that all triangulations contain this arc. Along this geodesic, any
flip in 6′ would be superfluous. As a consequence, it lies entirely in this natural copy of
MF(0n), and we are done. ut

This theorem implies that the diameter growth rate for all filling surfaces is at least of
the order of 5n/2 except for the disk, the once-punctured disk, and possibly for the fill-
ing surfaces of positive genus without interior vertices or non-privileged boundaries. As
shown in [13], however, the growth rate is also at least of the order of 5n/2 in the latter
case, and we are left with only the disk and the once-punctured disk (whose diameter of
modular flip-graphs grows like 2n [14, 16]).

In fact, there are multiple variations and consequences either of the above results or of
the methods we use to prove them. For example, one could try to emulate these methods
for filling surfaces more complicated than 5, but the combinatorics become more and
more difficult to handle. There is reason to believe that increasing the number of marked
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boundary loops might increase the diameter of the underlying flip-graph. In the case of
unmarked boundary loops, we can also expect some form of monotonicity with respect to
the number of boundary loops. In fact, we suspect that the following is true.

Conjecture 6.2. For any ε > 0 there exists a kε such that if 6 is a surface with kε
marked boundary loops, the diameter of its flip-graphs satisfies

lim
n→∞

diam(MF(6n))
n

≥ 4− ε.

In the unmarked case, we conjecture the following.

Conjecture 6.3. For any ε > 0 there exists a kε such that if 6 is a surface with kε
unmarked boundary loops, the diameter of its flip-graphs satisfies

lim
n→∞

diam(MF(6n))
n

≥ 3− ε.

There are many other questions that we feel could be interesting. A very basic one is
to understand the growth of the diameter of the flip-graph when 6 is a torus (with a
privileged boundary curve). This problem is studied in [13] with the same methods, but
in their current state, these methods are not able to provide sharp estimates.

Other more complicated variations of the above problems include considering sur-
faces with multiple privileged boundary components and adding points to several of them,
whose number is not fixed. We suspect that one could be able to find very different diam-
eter growths by sufficiently varying the problem.

To conclude we now have examples of filling surfaces with 2n, 5
2n and 3n growth

rates. This begs the question of classifying which numbers can appear as growth rates of
these diameters. We suspect that the growth rates continue to change when the topology
changes. More precisely we conjecture the following.

Conjecture 6.4. The number of topological types of filling surfaces whose diameter of
flip-graphs has a given growth rate is finite.
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