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Abstract. We prove that the moduli space of stable logarithmic maps with fixed numerical invari-
ants, from logarithmic curves to a fixed projective target logarithmic scheme with fine and saturated
logarithmic structure, is a proper algebraic stack. This was previously known only with further re-
strictions on the logarithmic structure of the target.
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1. Introduction

We work over C. All logarithmic structures are assumed fine and saturated, and Log
denotes the algebraic stack parameterizing fine and saturated logarithmic structures as in
[Ols03].
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1.1. Statement of result

We are given a proper, fine and saturated logarithmic schemeX = (X,M)with projective
underlying scheme X. In [GS13, Che14, AC14] a stack M0(X) of stable logarithmic
maps of numerical type 0 is described. The purpose of this paper is to complete the proof
of the following theorem:

Theorem 1.1.1. The stack M0(X) is a proper Deligne–Mumford stack. The map
M0(X) → M0(X) to the stack of stable maps of X with the underlying numerical
data 0 = (g, n, β) is representable.

This result was proven in [GS13, Theorems 0.1 and 0.2] under the assumption that the
sheaf of groups Mgp associated to the characteristic monoid M = M/O∗X is globally
generated. It was also proven in [AC14, Theorem 3.15] under the stronger assumption that
M itself is globally generated. Many cases of interest are covered by the results in [GS13,
AC14], but significantly the case of a toroidal embedding with self-intersections is not. In
the cited papers it was hoped that the result would hold in general, which Theorem 1.1.1
provides.

The following key properties, which are part of Theorem 1.1.1, were shown in [GS13,
Theorem 0.1] for Zariski logarithmic structuresX and in [AC14, Theorem 3.15] when the
characteristic monoid M is globally generated; the general case is proved in [Wis16b].

Theorem 1.1.2 ([Wis16b]). (1) M0(X) is algebraic and locally of finite type over C.
(2) The map M0(X)→M0(X) is representable by algebraic spaces.

To complete a proof of Theorem 1.1.1, it remains to show that for general X,

(1) the stack M0(X) is of finite type (Proposition 1.5.7);
(2) M0(X) is separated and satisfies the weak valuative criterion for properness (Propo-

sition 1.4.3).

The two statements above are proven in this paper by reducing to the case where the
characteristic monoid M is globally generated. This case was shown in [AC14, Corol-
lary 3.11], by further reducing to the rank one case treated in [Che14].

Remark 1.1.3. In [AC14, GS13] it is shown that the map M0(X) →M0(X) is finite
under the assumptions made in those papers. This is shown in general in [Wis16a]. It
follows from this statement that the stack M0(X) is also projective, being finite over
M0(X), which is known to be projective.

1.2. Method

The main problem is boundedness, namely statement (1) listed above. The problem
eluded standard approaches of étale descent. Instead we use a form of nonflat logarithmic
étale descent.

Our strategy is to use the “virtual birational invariance” of the moduli spaces, proven
in [AW13] when the scheme X is logarithmically smooth. Specifically, we construct a
proper and logarithmically étale morphism Y → X such that the characteristic sheaf MY

is globally generated (Proposition 1.3.1). We then show that the map of moduli spaces
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M(Y ) → M(X) is surjective (Proposition 1.4.2). We further show that for each nu-
merical datum 0 on X there is a finite collection of numerical data 0i on Y such that∐

M0i (Y )→M0(X) is surjective (Proposition 1.5.7). Since M0i (Y ) is proper, it fol-
lows that M0(X) is bounded, as required.

We now proceed to describe the steps in more detail.

1.3. The Artin fan of X

Olsson [Ols03] associates to the logarithmic structureX a canonical morphismX→ Log
to the stack of logarithmic structures. Under mild assumptions on X there is an initial
factorization of this map through a strict, representable, étale map X → Log. Following
[AW13] we call X the Artin fan of X.

The construction of X has its origin in unpublished notes on gluing Gromov–Witten
invariants by Q. Chen and by M. Gross. It is closely related to what is known as the Kato
fan F(X) of X [Kat94, Sections 9 and 10], and to the associated generalized polyhedral
cone complex 6(X) defined in [Thu07, ACP15]. A more complete picture of the rela-
tionship between these objects, as well as with Berkovich spaces, is given in [Uli17]. The
simplest cases of Artin fans were used previously in [ACFW13, ACW10, CMW12].

We have not attempted to give a definitive treatment of the theory of Artin fans here,
as the precise outlines of the theory remain murky to us. One of the most troublesome
issues is the failure of naturality of the morphism from a scheme to its Artin fan (see Ex-
ample 3.3.1). Absent the more complete foundations we hope to be able to present in the
future, the reader may consult [AW13] or [ACM+16] for further details about Artin fans.

Artin fans are used in the following statement, which is our key reduction step.

Proposition 1.3.1. There exists a representable, projective, birational, and logarithmi-
cally étale morphism Y → X such that the sheaf of characteristic monoids MY is glob-
ally generated. Writing Y = X ×X Y , we have a projective and logarithmically étale
morphism Y → X such that the characteristic sheaf MY is globally generated.

See Corollary 4.6.4.

1.4. Moduli of prestable maps

Following [AW13, Section 3], we define a moduli stack M(X ) of prestable maps with
target X , a stack M(Y) of prestable maps with target Y , and a stack M′(Y → X ) of
prestable maps which are relatively stable for Y → X . All three are shown in [AW13,
Propositions 3.2 and 1.6.2] to be logarithmically étale over the stack M of prestable
curves. There is a tautological diagram of stacks

M(Y ) //

��

M(X)

��

M′(Y → X ) //

��

M(X )

M(Y)

(1.4.1)
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with strict vertical arrows and cartesian square. The morphism M′(Y → X ) → M(X )
is birational [AW13, Proposition 5.2.1]. We prove in Corollary 4.7.4 that it satisfies the
valuative criterion for properness and is surjective. This gives in particular the following.

Proposition 1.4.2. The morphism M(Y )→M(X) is proper and surjective.

A direct argument then shows the following (Section 4.8):

Proposition 1.4.3. M(X) is separated and satisfies the weak valuative criterion for
properness.

1.5. Numerical data

If M(Y ) were of finite type we would now be done. As it is anyway a disjoint union of
connected components of finite type, it will be sufficient to show that finitely many of
those components map to each connected component of M(X). To do this, we identify
numerical data on M(X) that admit finitely many lifts to M(Y ) with each lift corre-
sponding to a component of M(Y ). These numerical data include the genus, the number
of marked points, the homology class of the curve, and contact information associated to
each marked point. These are encoded in terms of logarithmic points:

1.5.1. Moduli of logarithmic points. The logarithmic numerical data of X are, by def-
inition, the connected components of the logarithmic evaluation stack ∧NX parameter-
izing standard logarithmic points in X. The evaluation stack ∧PX for an arbitrary sharp
monoid P is constructed and described explicitly in [ACGM10]; see also [Wis16b, Corol-
lary 1.1.3], [Gil12, Section 3.2]. Our use of this stack is limited to the case ∧NX, which
we denote simply by ∧X.

The formation of ∧X is covariantly functorial in X, so the morphism Y → X induces
a morphism ∧Y → ∧X.

Proposition 1.5.2. The morphism ∧Y → ∧X is of finite type, and each connected com-
ponent of ∧X is of finite type. In particular, the preimage of such a connected component
has finitely many connected components.

See Section 5.2.

1.5.3. Contact orders. Given a stable log map f : C → X over S, restricting to the i-th
marking 6i ⊂ C, we obtain a family of log points f |6i : 6i → X, hence the evaluation
morphism evi : S → ∧X. When S is connected, we label the i-th marking by the unique
connected component of ∧X containing the image evi(S). We denote this marking ci and
call it the logarithmic numerical datum or contact order of the i-th marking.

Remark 1.5.4. With the notion of the Artin fan X of X in hand, one could redefine
contact orders as connected components of ∧X instead. This has the advantage of being
more combinatorial, while also being invariant under logarithmic modifications, as the
proof of Corollary 5.2.9 demonstrates.
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1.5.5. Degrees. To bound βY we have

Proposition 1.5.6. Let f : C → Y be a stable logarithmic map whose stabilization
f ′ : C′ → X has discrete data 0. Let L be a relatively ample line bundle for Y/X , and
denote byLY its pullback to Y . Then degC(f

∗LY ) is constant on M0(X), and determined
combinatorially by 0.

See Proposition 5.3.1. By a standard argument, given 0 there are only finitely many pos-
sibilities for βY with image class β and fixed βY · c1(LY ) (Proposition 5.3.2). Together
with Propositions 1.4.2 and 1.5.2 this implies:

Proposition 1.5.7. For each numerical datum 0 on X there is a finite collection of nu-
merical data 0i on Y such that

∐
M0i (Y )→M0(X) is surjective.

These propositions together provide our main theorem.

Proof of Theorem 1.1.1. By Proposition 1.3.1 we knoww that MY is globally generated,
so each M0i (Y ) is proper by either [AC14, Proposition 5.8] or [GS13, Theorem 0.2]. We
rely on the properties enumerated in Section 1.1. The stack M0(X) is algebraic, locally
of finite type over C, and separated. Since the image of a proper algebraic stack in a
separated algebraic stack is proper, Proposition 1.5.7 implies that M0(X) is proper. The
map M0(X)→M0(X) is representable by Theorem 1.1.2. ut

2. The stack M0(X)

Let X be a logarithmic scheme that is projective over C and let S be another logarithmic
scheme over C. A prestable logarithmic map over S with target X consists of a logarith-
mic curve C → S in the sense of [Kat00, Ols07], along with a logarithmic morphism
C → X. It is customary to indicate such a map by C → X, suppressing the remaining
data from the notation. A prestable logarithmic map C → X is stable if the map C → X

of underlying schemes is Kontsevich stable.
There are at least three distinct ways to create a groupoid of stable or prestable log-

arithmic maps. First, note that given a prestable logarithmic map C → X over S, its
pullback along a logarithmic morphism S′ → S is a logarithmic map C′ → X over S′.
This defines a groupoid over the category of logarithmic schemes, which we denote tem-
porarily by L(X). Second, one can consider only strict arrows S′ → S, namely arrows
obtained by pullback along S′→ S. This forms a groupoid over the category of schemes,
by sending a prestable logarithmic map C → X over S to the scheme S. We denote this
groupoid temporarily by Lstr(X). A key result is the following:

Theorem 2.1 (See [GS13, Theorem 2.4], [Che14, Theorem 2.1.10], [Wis16b, Corol-
lary 1.1.2]). The groupoid Lstr(X) is an algebraic stack, locally of finite type over C.

The stack Lstr(X) has a canonical logarithmic structure, since an object C → X over
S = (S,MS) defines a logarithmic structure on S.
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The stack Lstr(X) is rather large, because it includes all possible choices of loga-
rithmic structures S on S, and fails to be proper. A better behaved substack of minimal
prestable logarithmic maps is defined in [Che14, AC14] when the characteristic sheafMX

is globally generated, in [GS13] whenX is a Zariski logarithmic scheme, and in [Wis16b]
in general. It is denoted M(X). It obtains a canonical logarithmic structure by restriction
from Lstr(X), and we denote by M(X) this stack with its logarithmic structure; in partic-
ular M(X) can be viewed as a groupoid over the category of logarithmic schemes. It has
the following key properties:

Theorem 2.2 ([Wis16b, Corollary 1.1.2]). (1) The stack M(X) is an open substack
of Lstr(X). In particular it is algebraic and locally of finite type over C.
(2) We have an isomorphism M(X) ' L(X) of groupoids over the category of logarith-

mic schemes.
(3) The morphism M(X)→M(X) is representable by algebraic spaces.

This immediately implies Theorem 1.1.2.
The second statement justifies naming M(X) the logarithmic stack of prestable loga-

rithmic maps. Concretely it says that every prestable logarithmic map C → X over a log-
arithmic scheme S is canonically the pullback along a logarithmic morphism S → Smin

of a minimal prestable logarithmic map Cmin
→ Xmin over Smin, and the underlying map

of schemes S → Smin is the identity. The first statement then tells us that the groupoid of
prestable logarithmic maps with target X is a logarithmic algebraic stack.

For a prestable map f : C → X over S, we denote by g the arithmetic genus of the
fibers of C → S, by β the curve class f ∗[C], and by ci , i = 1, . . . , n, the logarithmic
numerical data (or contact orders) of C → X at the n marked points, introduced in
Section 1.5.3. These data are locally constant, so M(X) breaks into open and closed
substacks: M(X) =

∐
0M0(X), with 0 = (g, {ci}, β).

To each prestable logarithmic map C → X we have an associated map C → X of
underlying schemes, giving a morphism M(X) → M(X). This restricts to morphisms
M0(X)→M0(X), where 0 = (g, n, β).

Finally, we denote by M(X) the open substack of stable logarithmic maps, which
again decomposes as M(X) =

∐
0M0(X). By definition, the morphism M(X) →

M(X) restricts to M(X) → M(X), and this again decomposes into morphisms
M0(X)→M0(X).

3. Artin fans

We extend the construction of [AW13] to logarithmic schemes which are not logarithmi-
cally smooth.

3.1. The category of Artin fans

An Artin cone is a logarithmic algebraic stack isomorphic to the quotient of an affine toric
variety by its dense torus. An Artin fan is a logarithmic algebraic stack that has a cover
by strict, representable, étale maps from Artin cones. An Artin fan whose tautological
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morphism to Log (which is necessarily étale) is representable will be said to have faithful
monodromy. Logarithmic morphisms between Artin fans are always logarithmically étale
(see [AMW14, Lemma A.7]).

It was shown in [AW13, Section 2.2] that a logarithmically smooth scheme X admits
an initial factorization of the map X → Log through a representable, étale morphism
X → Log. This stack X is called the Artin fan ofX. In fact, any logarithmic scheme with
locally connected logarithmic strata admits an Artin fan, as Proposition 3.2.1 will show
below.

By construction, the Artin fan of a logarithmic scheme always has faithful mon-
odromy. However, logarithmic modifications (Definition 4.1) of Artin fans with faithful
monodromy do not necessarily have faithful monodromy. For this reason, we do not im-
pose a requirement of faithful monodromy in our definition.

If σ is a fine, saturated, sharp monoid (i.e., a rational polyhedral cone) then define Aσ

to be the Artin cone [V/T ] where V is the affine toric variety associated to σ , and T is
its dense torus. By [Ols03, Proposition 5.17], Aσ represents the functor

X 7→ Hom(σ∨, 0(X,MX))

on logarithmic schemes. We write A for the Artin cone AN.
Olsson showed that Log has an étale cover by Artin cones [Ols03, Corollary 5.25,

Remark 5.26].1 It was shown furthermore in [AW13, Corollary 2.4.3] that Artin cones
have no nontrivial representable étale covers. This implies that every strict étale map of
Artin cones is an open embedding Aτ ⊂ Aσ associated to an inclusion of a face τ ⊂ σ .
As a fiber product of Artin fans is an Artin fan, we conclude that all Artin fans can
be constructed by gluing Artin cones along inclusions of faces. More precisely, every
Artin fan is a colimit of a diagram in which all morphisms are inclusions of faces. Note
that automorphisms are considered inclusions of faces here, so that Artin fans can be
constructed by gluing Artin cones to themselves in nontrivial ways.

Thus Artin fans are essentially combinatorial objects. In the next section, we give an
intuitive guide to the relationship between geometry and combinatorics. A precise formu-
lation of the combinatorial nature of Artin fans is given in [CCUW17, Theorem 6.12].

3.1.1. Intuitive picture: the generalized cone complex of an Artin fan. Since Artin fans
are 0-dimensional Artin stacks, they are hard to picture. Their relationship with fans (of
toric geometry) and cone complexes (of toroidal geometry) [KKMS73] may be helpful.
Here we try only to give enough of an idea to motivate the arguments that follow. For a
more detailed discussion, see [ACM+16] or [CCUW17] (which are inspired by [GS13,
Appendix B] and [Uli17]).

Given a fine, saturated sharp monoid σ , it is natural to depict it as a lattice inside the
real cone

σR := conv(σ ) ⊂ σ gp
⊗Z R.

For instance N is depicted as the lattice of nonnegative integers inside R≥0.

1 Note that op. cit. uses different notation: SP = Aσ where σ = P∨.
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To σ we associated an Artin cone Aσ . We can recover σ by the formula σ =
Hom(N, σ ) = Hom(A,Aσ ). Since an Artin fan X is obtained by gluing Artin cones Aσ

through open embeddings corresponding to face maps Aτ → Aσ , it is natural to use the
piecewise linear topological space 6X , obtained by gluing the cones σR, as a concrete
avatar of X . Note that6X includes not only the cones σR, but also their lattices σ , as part
of its structure. When X = [X/T ], the quotient of the toric variety X of a fan 6 by its
torus T , then 6X is simply the fan 6.

When self-gluing maps are allowed, one does not quite get a complex, but rather a
generalized cone complex [ACP15], or a cone stack [CCUW17]. The generalized cone
complex does not faithfully depict all the subtleties of an Artin fan: see Examples 3.2.7
and 3.3.1. Nevertheless, the cone complex continues to provide valuable intuition when
working with Artin fans.

3.2. The Artin fan of a logarithmic scheme

Proposition 3.2.1. Let X be a logarithmic algebraic stack2 whose logarithmic strata are
locally connected in the smooth topology. Then there is an initial factorization of the
map X → Log through an étale morphism X → Log that is representable by algebraic
spaces.

Proof. Consider the category U′ of all representable, smooth, and strict morphisms of
logarithmic algebraic stacks U → X with morphisms given by representable, smooth,
and strict morphisms of logarithmic algebraic spaces over X. Let U ⊂ U′ be the subcat-
egory consisting of objects U → X such that the initial factorization U → U → Log
of the tautological morphism U → Log through an étale morphism U → Log that is
representable by algebraic spaces exists. We aim to show U = U′.

We observe first that U is closed under colimits taken in U′. Consider a collection
{φij : Ui → Uj }i,j∈3 of arrows in U with 3 a partially ordered set. Assume the col-
imit φ : U = lim

−→
Ui → X exists in U′. We claim that the colimit φ : U → X in fact

lies in U. To see this, let Ui → Log be the initial factorization of Ui → Log. The mor-
phisms φij induce morphismsψij : Ui → Uj . Let U be the colimit of {ψij } in the category
of étale sheaves over Log. We use the symbol U also to refer to the espace étalé of this
sheaf, which is an algebraic stack with an étale projection to Log that is representable by
algebraic spaces (see [Mil80, Theorem V.1.5] for a construction of the espace étalé.) Fur-
thermore, the morphism U → Log serves as the initial representable, étale factorization
of U → Log by the universal property of the colimit.

It is therefore sufficient to show that any geometric point x of X has a neighborhood
in the smooth topology for which the desired factorization exists. Passing to a smooth-
topology neighborhood of x we may assume that x is a member of the closed stratum

2 In this paper we will only have use for the case where X is a scheme, but we anticipate it will
sometimes be useful to speak of the ‘Artin fan of an Artin fan’—that is, the universal factoriza-
tion of the structural morphism X → Log through a representable étale morphism. The need for
such constructions seems to arise because of the failure of naturality of the construction in this
proposition (see Example 3.3.1).
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of X, that the closed stratum of X is connected, that the closed stratum is contained in the
closure of every connected component of every stratum, and that

0(X,MX)→ 0(x,MX) (3.2.2)

is bijective. We write σ = 0(X,MX)
∨. We will show that in this situation Aσ , with the

map f : X → Aσ associated to the bijection σ∨ → 0(X,MX), satisfies the required
universal property.

Consider a map g : X→ X where X → Log is étale and representable by algebraic
spaces. We wish to construct a unique map s : Aσ → X making the diagram

X
g
//

f

��

X

��

Aσ

s

==

// Log

(3.2.3)

commute. Set X ′ = X ×Log Aσ . We observe first that diagram (3.2.3) has a unique lift
when X is replaced by x: by [AW13, Corollary 2.2.8], the map

0(Aσ ,X )→ 0(x,X )

is a bijection. This provides the map s and proves that it is unique; all that is left is to
verify that diagram (3.2.3) commutes, i.e., sf = g.

Consider both sf and g as sections ofZ = X ×LogX. By construction, sf and g agree
at x. Because Z is pulled back from the étale map X → Log, it is locally constant on
logarithmic strata. It follows that the locus where sf and g agree is a union of connected
components of strata. By assumption, the closed stratum of X is connected, so sf and g
agree on the closed stratum of X . But Z is also étale overX, and in particular unramified,
so the locus in X where sf and g agree is open. Thus sf and g agree on an open union of
strata that contains x—that is, they agree on all of X. ut

We recall the following proposition from [AW13, Proposition 2.3.11]:

Proposition 3.2.4. Let X be an Artin fan and let f : Aσ → X be a morphism of Artin
fans. Then there is a factorization of f through a strict morphism Aτ → X , which is
minimal with respect to open embeddings. The morphism Aτ → X is unique, up to an
X -isomorphism which is not necessarily unique. That is, if there is another such factor-
ization through Aτ ′ then there is an isomorphism between Aτ and Aτ ′ over X , as shown
in the commutative diagram

Aτ ′

��

Aτ

∼

==

// X

(3.2.5)
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Proof. It is shown in [AW13, Proposition 2.3.11] that the triple (Aτ , p, s), where Aσ
s
−→

Aτ
p
−→ X is a factorization of Aσ → X through a strict morphism p, is unique up to

unique isomorphism. It follows, therefore, that the pair (Aτ , p) is unique up to isomor-
phism (and the isomorphisms are in bijection with the choices of s : Aσ → Aτ lifting
Aσ → X along p). ut

Remark 3.2.6. In the theory of Kato fans [Kat94, Sections 9 and 10], namely when self-
gluing is not allowed, the lift in diagram (3.2.5) is unique. In view of [AW13, Proposi-
tion 2.3.11], this is because when X is a Kato fan, once Aτ → X has been specified,
there is a unique lift of Aσ → X to Aτ .

Example 3.2.7. We give an example involving a cone glued to itself in which the map
Aτ → X in the proposition is not unique. Let A[2] be the image in Log of the étale map
A2
→ Log. If we regard A2 as the moduli space of logarithmic structures with a global

chart by N2 then we may interpret A[2] as the moduli space of logarithmic structures that
admit a chart by N2 étale-locally. This arises as the Artin fan of the punctured Whitney
umbrella (see Example 3.3.1).

The diagonal gives a nonstrict map A → A2, which is the minimal factorization of
the composition A → A2

→ A[2]. We note that there are two ways to complete the
following diagram:

A2

��

A2

==

// A[2]

One may take the diagonal arrow to be either of the two automorphisms of A2. Note that
the generalized cone complex of A[2] is simply the quotient cone (R≥0)

2/(Z/2Z), and
the diagram corresponds to the involution of the cone (R≥0)

2.
However, these automorphisms induce distinct commutative squares

A 1 //

1
��

A2

��

A2

==

// A[2]

because to specify such a square involves the choice of an automorphism of the composi-

tion A 1
−→ A2

→ A[2].

3.3. A substitute for functoriality of Artin fans

While Artin fans are functorial with respect to strict morphism of logarithmic schemes,
they are not functorial with respect to general logarithmic morphisms. In this section we
adapt the construction of Section 3.2 to achieve a weak form of functoriality that will be
suitable for our application in Proposition 4.7.2.
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Example 3.3.1. We show that our construction of the morphism from a logarithmic
scheme to its Artin fan cannot be natural. This example is recounted in greater detail
in [ACM+16].

We work over an algebraically closed field of characteristic other than 2. The punc-
tured Whitney umbrella X is the quotient of Y = Gm × A2 by the involution exchanging
(t, x, y) and (−t, y, x). We equip Y with the logarithmic structure pulled back from A2,
which descends to a logarithmic structure on X. The Artin fan of Y is Y = A2 and the
Artin fan of X is X = A[2] (see Example 3.2.7 for the notation).

Let Ỹ be the blowup of Y along Gm×{0} and let X̃ be the corresponding blowup ofX.
The Artin fan of Ỹ is the blowup Ỹ of A2 at its origin, or, more explicitly, the quotient
of the blowup of A2 by its dense torus. The Artin fan of X̃ is the quotient X̃ of Ỹ by
the involution exchanging the coordinates as a representable, étale algebraic stack over
Log. Even though the involution stabilizes the exceptional divisor of Ỹ , the corresponding
divisor of the quotient has no additional stabilizer because the map from the Artin fan to
Log must be representable. This is the reason functoriality fails.

One can now show that there is no dashed arrow completing the diagram below and
making it commute:

X̃ //

��

X̃

��

X // X

Indeed, there is a loop in the exceptional divisor of X̃ that projects to a loop in X around
which the characteristic monoid of the logarithmic structure of X has monodromy. Its
image in X is therefore gives a nontrivial element of the stabilizer of the closed point
of X . However, the logarithmic structure of X̃ does not have monodromy around this
loop since it has rank 1 and the characteristic monoid of a rank 1 logarithmic structure
cannot have monodromy. Therefore this loop projects to the trivial automorphism in the
stabilizer group of X̃ .

Let X be a scheme equipped with a morphism of logarithmic structures M ′X → MX.
Let Log11 be the universal example of an algebraic stack with these data [Ols05, Theo-
rem 2.4], so that there is a tautological map X→ Log11 . We show that there is an initial
factorization of this map through a representable étale map X → Log11 :

Proposition 3.3.2. LetX be an algebraic stack equipped with a morphism of logarithmic
structures such that the logarithmic strata3 are locally connected in the smooth topology.
The corresponding map X → Log11 admits an initial factorization through a repre-
sentable étale map X → Log11 .

Proof. The structure of the proof is essentially the same as that of Proposition 3.2.1, so
we omit some details.

3 By the logarithmic strata we mean the strata in the coarsest stratification over which the char-
acteristic monoids of both logarithmic structures are locally constant.
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We begin by noting that the collection of all smooth Y → X such that Y → Log11

has an initial factorization through a representable, étale map Y → Log11 is closed under
colimits. As the universal property characterizing this factorization respects colimits, it
will be sufficient to work smooth-locally in X. We may therefore assume that there is a
closed geometric point x of X for which the maps

0(X,MX)→ 0(x,MX), 0(X,M ′X)→ 0(x,M ′X)

are bijections. Set σ = 0(X,MX)
∨ and τ = 0(X,M ′X)

∨. The map σ → τ induces a
map ϕ : Aσ → Aτ and moreover gives a map Aσ → Log11 . In order to emphasize the
map to Log11 , we write Aσ→τ ' Aσ here.

Lemma 3.3.3. The map Aσ→τ → Log11 is étale and representable, and the collection
of all such maps is an étale cover of Log11 .
Proof. To see that Aσ→τ → Log11 representable, we interpret a map S → Log11 as
a morphism of logarithmic structures M ′S → MS on S. The lifts to a map S → Aσ→τ

correspond to commutative diagrams
τ∨ //

��

M ′S

��

σ∨ // MS

(3.3.4)

that lift locally to charts. These are clearly indexed by a set (with no nontrivial automor-
phisms).

The morphism is étale if and only if it is locally of finite presentation and formally
étale. It is locally of finite presentation because both source and target are locally of finite
presentation over C. To verify the infinitesimal lifting property, consider a diagram

S //

��

Aσ→τ

��

S′ //

<<

Log11

(3.3.5)

in which S′ is an infinitesimal extension of S. The map S′ → Log11 gives a morphism
of logarithmic structures M ′

S′
→ MS′ on S′. The commutativity of the square induces a

commutative square (3.3.4) where the vertical arrow on the right is the restriction of the
map of characteristic monoidsM ′

S′
→ MS′ to S and the horizontal arrows are charts. But S

and S′ have identitical étale sites and under this identification MS = MS′ and M ′S = M
′

S′
.

With these substitutions, (3.3.4) can be lifted, étale-locally, to a chart because the maps
MS → MS andM ′S → M ′S are surjections of étale sheaves. This gives the diagonal arrow
lifting (3.3.5) and shows it is unique.

The assertion that the Aσ→τ cover Log11 translates into the following familiar facts:
• the characteristic monoid of a fine, saturated logarithmic structure possesses a chart

locally, and
• a morphism of fine, saturated logarithmic structures with charts by σ∨ and τ∨ may be

induced locally from a morphism σ → τ . ut
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Returning to the proof of Proposition 3.3.2, our reduction guarantees that we have a
morphism X → Aσ→τ over Log11 . To see that Aσ→τ is the initial factorization of
X → Log11 through a strict, étale, representable morphism we repeat the argument of
Proposition 3.2.1. We consider a commutative diagram

X //

��

X

��

Aσ→τ

::

// Log11

in which X is strict, étale, and representable over Log11 . Replacing X with
X ×Log

11 Aσ→τ , we immediately reduce to the case where there is a map X → Aσ→τ

that is compatible with the rest of the diagram, and the problem is to show there is ex-
actly one section of this map making the rest of the diagram commute. By assumption,
a unique section exists at the geometric point x of Aσ→τ . By [AW13, Corollary 2.2.8]
such a section extends uniquely to a section over Aσ→τ ' Aσ . This completes the proof
of Proposition 3.3.2. ut

Corollary 3.3.6. Let Y → X be a morphism of logarithmic schemes. Suppose that X is
the Artin fan of X and Y is the Artin fan of Y relative to Log11 . Then there is a canonical
morphism Y → X making the diagram below commute:

Y //

��

Y

��

X // X

4. Subdivisions

The goal of this section is to show that essentially any logarithmic scheme has a projective
logarithmic modification with globally generated characteristic monoid (Theorem 4.6.2).
We begin by defining our terms.

Definition 4.1. (1) A logarithmic alteration of logarithmic Artin stacks is a proper, sur-
jective, logarithmically étale morphism.

(2) A logarithmic modification of a logarithmically smooth Artin stack is a proper, bira-
tional, logarithmically étale morphism.

(3) More generally, a logarithmic alteration Y → X of logarithmic Artin stacks is said
to be a logarithmic modification if there is a logarithmic modification Y → X of
logarithmically smooth Artin stacks and a morphismX→ X such that Y = Y×X X,
the product taken in the category of fs logarithmic stacks.

As the pullback of a logarithmic modification in the sense of (2) to a logarithmically
smooth base is a logarithmic modification in the sense of (2), Definitions 4.1(2) and 4.1(3)
are consistent.
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Remark 4.2. F. Kato has given a different definition of logarithmic modifications [Kat99,
Definition 3.14]. It is immediate that representable logarithmic modifications in our sense
are logarithmic modifications in Kato’s sense, but we do not know if the converse holds.
It follows from [AW13, Corollary 2.6.6] and Proposition 4.3.2 below that the definitions
coincide for representable logarithmic modifications of logarithmically smooth schemes.

Examples of logarithmic modifications appear in Sections 4.4 and 4.5 below.
The pullback of a logarithmic alteration is a logarithmic alteration, and the pullback

of a logarithmic modification is a logarithmic modification. A representable logarithmic
modification of logarithmically smooth Artin stacks is a modification in the usual sense,
but in general logarithmic modifications need not be representable: they include certain
root stack constructions.

4.3. Subdivisions of Artin fans

In [Kat94] Kato described certain logarithmic modifications in terms of subdivisions of
Kato fans, in analogy to subdivisions of fans of toric varieties, and we borrow the same
analogy and define subdivisions of Artin fans.

By definition an Artin fan X is covered by strict étale maps Aσ → X . An inclusion
of faces σ ⊂ τ induces a strict open embedding Aσ ⊂ Aτ , and the assignment σ 7→ Aσ

respects intersections of faces. Therefore, given a fan in the sense of [Ful98, Section 1.4]
or [CLS11, Definition 3.1.2], we may define an Artin fan A6 by gluing together the Aσ

for σ ∈ 6 according to the way they intersect inside of 6. This permits us to give

Definition 4.3.1. A subdivision of an Artin fan X is a morphism of Artin fans Y → X
whose base change via any map Aσ → X is isomorphic to A6 for some subdivision 6
of σ .

Since the morphisms ϕ : Aσ → X cover X , we may construct a map Y → X by
constructing compatible maps Yϕ → Aσ . The meaning of compatibility here is that
the Yϕ should be stable under pullback via face maps Aτ → Aσ . We use this idea to
construct several refinements of X .

A subdivision of Artin fans corresponds to a subdivision of generalized cone com-
plexes, so while Artin fans (or Kato fans) and their subdivisions can be hard to visualize,
when one passes to generalized cone complexes one can actually draw a picture.

Proposition 4.3.2. A representable, birational morphism of Artin fans is proper if and
only if it is a subdivision.

Proof. Let Y → X be a proper, birational and representable morphism of connected
Artin fans. Since the statement is local on X , replacing X by an étale local chart, we
may assume that X = Aσ . We then have a strict global quotient morphism Aσ → Aσ ,
where Aσ is the affine toric variety associated to σ with the maximal torus T . We obtain
a T -equivariant morphism

h : Yσ := Y ×X Aσ → Aσ .
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Since Y → X is birational, it is an isomorphism over the generic point, which pulls back
to the dense torus in Aσ . This implies that Yσ is toric as well. By the T -equivariance and
properness of h, we deduce that Yσ is the toric variety obtained from a subdivision of σ .
This finishes the proof. ut

4.4. Star subdivision

Let σ be a fine, saturated, sharp monoid and x ∈ σ an element. For each face τ of σ not
containing x, let τ ′ be the saturated submonoid of σ generated by τ and x. The τ ′ and all
of their faces constitute a fan, called the star subdivision of σ , and denoted x · σ .

This construction is functorial with respect to inclusion of faces containing x. That is,
if σ ⊂ τ is the inclusion of a face containing x, then x · σ is canonically a subfan of x · τ .

We will generalize star subdivision to Artin fans by attempting to glue together star
subdivisions of Artin cones. If Aσ → X is an étale chart and x ∈ σ is an element at which
we would like to subdivide, we must require that the resulting subdivision be compatible
with different choices of chart Aσ → X . This translates into the condition that x be
stable under monodromy. In order to state things in a way that is intrinsic to Artin fans,
we replace vectors x ∈ σ with an equivalent notion in the language of Artin fans.

As introduced in the opening paragraphs of Section 3.1, we write A = AN. The
following definition is adapted from [Wło03, Section 5.3].

Definition 4.4.1. Let X be an Artin fan. We will call a morphism x : A → X of Artin
fans a vector of X . We call a vector x of X stable if, whenever Aσ → X is strict, there
is at most one vector of Aσ whose image is isomorphic to x.

Thus a vector of X is simply a lattice point of the generalized cone complex 6X . The
following are two examples of vectors which are not stable.

Example 4.4.2. Consider the Artin fan X associated to a surface with logarithmic struc-
ture given by an irreducible nodal curve with one node. The generalized cone complex
is obtained by taking (R≥0)

2 and gluing together its two rays. The images of the vectors
(1, 0) and (0, 1) are the same, so the factorization N→ N2

→ 6X is not unique. In fact
a vector is stable if and only if it is not an image of (a, 0) (or (0, a)) for positive a.

Example 4.4.3. Consider the Artin fan A[2] of the punctured Whitney umbrella (Ex-
ample 3.3.1). The generalized cone complex is (R≥0)

2/(Z/2Z), so a vector is stable if
and only if it is the image of a diagonal vector (a, a) ∈ N2.

Assuming x is stable, we construct the star subdivision X ′ as follows: for any map
ϕ : Aσ → X , let

X ′ϕ =
{
Aσ if x does not lift to Aσ ,
Ax·σ if x lifts to Aσ ,

where Ax·σ denotes the star subdivision of Aσ with respect to the unique lift of x to Aσ .
Since x is stable, this construction is compatible with strict X -morphisms Aτ → Aσ ,
hence glues to give a global construction.
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Proposition 4.4.4. Star subdivision is projective.

Proof. Let φx : X ′ → X be a star subdivision given by a stable vector x : A → X .
Note that φx is representable and birational. It suffices to produce a φx-ample line bundle
over X ′. Let E ⊂ X ′ be the exceptional divisor. Since x is stable, such E is a well-
defined prime divisor over X ′. We first notice that E is Q-Cartier. This could be checked
locally via the toric geometry over each chart [CLS11, 11.1.6(b)]. LetL be the line bundle
associated to −k · E for some sufficiently divisible positive integer k. By [Gro61, 4.6.4],
to see that L is φx-ample, it suffices to check the statement locally over X . By taking
base change to a covering of X , we may assume that X = Aσ . Note that Aσ is given
by the global quotient of the affine toric variety Aσ by its maximal torus. The ampleness
follows from the fact that star subdivisions induce equivariant projective modifications of
toric varieties in which the Cartier divisor −kE is ample. ut

4.5. Barycentric subdivision

For a fine, saturated, sharp monoid σ , let B(σ) be the barycentric subdivision of σ (see,
e.g., [KKMS73, Example II.2.1], [CLS11, Exercise 11.1.10]). The fan B(σ) is automati-
cally simplicial. We obtain a map AB(σ) → Aσ that is stable under base change via face
maps, by definition. By descent we obtain a map B(X )→ X that we call the barycentric
subdivision of X .

Proposition 4.5.1. The barycentric subdivision of a quasicompact Artin fan is a projec-
tive morphism.

Proof. We describe the barycentric subdivision as a sequence of star subdivisions as fol-
lows. The barycenter bσ of a cone σ is the sum of generators of its 1-dimensional faces.
To obtain the barycentric subdivision, one first star subdivides, in arbitrary order, at the
barycenters of cones of maximal dimension n, then at the barycenters of the original cones
of dimension n− 1, etc.

We claim that these barycenters are stable. First, if b is the image of the barycenter bτ
of an n-dimensional cone τ in X then b is stable: indeed, if Aσ → X were another strict
étale map to which b lifts then σ would be isomorphic to τ and the barycenter is stable
under isomorphism, by construction. The barycenter of an n − 1-dimensional cone τ is
stable in the resulting subdivision, since a factorization A→ Aσ → X either has σ = τ ,
in which case the factorization is unique as above, or σ = 〈τ, bσ̃ 〉, the cone generated by τ
and the barycenter of an n-dimensional cone σ̃ , which is stable. So two such factorizations
can differ only by an automorphism of 〈τ, bσ̃ 〉; but such an automorphism must fix bσ̃
because it is stable. Therefore two factorizations differ by an automorphism of τ , and once
again they coincide since bτ is invariant under automorphisms of τ . Inductively, after star
subdividing at all barycenters of m-cones for m > k, any factorization A → Aσ → X
of bτ has σ = 〈τ, b1, . . . , bl〉 with b1, . . . , bl stable. Once again two such factorizations
can differ only by an automorphism of τ and again they coincide since bτ is invariant,
hence bτ is stable.

Since the barycentric subdivision may be achieved as the composite of star subdivi-
sions, it is projective. ut
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4.6. Resolution

The following lemma is essentially a restatement of [AT13, Lemma 2.4.6(1)]:

Lemma 4.6.1. Let X be an Artin fan and BX its barycentric subdivision. Every vector
x : A→ BX is stable.

Proof. Suppose we have a strict map Aσ → BX and two maps x, y : A → Aσ that
have isomorphic images in BX . Let τ be the minimal face of σ containing x. Then sym-
metrically we also have a minimal face τ ′ of σ containing y with τ ∼= τ ′. We thus have
a pair of maps Aτ ⇒ Aσ that compose to the same map A→ BX according to the two
faces τ and τ ′ of σ . But recall that σ is simplicial, say of dimension d, and corresponds to
a flag of d faces of a monoid ω, for some strict Aω → X . A face τ ⊂ σ is characterized
uniquely by the dimensions of the faces in the corresponding subflag of ω. A fortiori, the
two inclusions τ ⊂ σ must coincide. ut

The following theorem follows the argument of [AT13, Proposition 2.4.1]. Step 3 is based
on [AMR99, Lemma 8.7].

Theorem 4.6.2. Any quasi-compact Artin fan X has a projective subdivision Y → X
admitting a strict map Y → An, for some integer n.

Proof. Step 1. Let X be an Artin fan. Consider the barycentric subdivision, BX → X , a
projective morphism by Proposition 4.5.1. By Lemma 4.6.1, every vector of BX is stable.

Step 2. Since every vector in BX is stable, we can resolve singularities by the same
procedure used to resolve singularities in toric and toroidal geometry (see e.g. [KKMS73,
Theorem 11*, p. 94]). Indeed, if Aσ → X is any strict map, then any element of σ
corresponds to a stable vector of X , hence can be used as the center of a star subdivision.
We can apply the familiar procedure to resolve toric singularities individually for each
map Aσ → X . With further star subdivision we maintain the property that every vector
is stable. After a finite number of subdivisions, we obtain a subdivision Y → X where Y
is smooth (and in particular simplicial) with the property that every vector y : A→ Y is
stable. Since the procedure involves only star subdivisions, it is projective.

Step 3. For each ray x : A → Y , we construct a map Y → A. If Aσ → Y (where
σ is necessarily isomorphic to Nr , so Aσ ' Ar ) is a strict, étale map through which x
factors, then x factors as the inclusion of a ray of σ . This factorization A → Aσ → Y
is unique since all vectors of Y are stable (as a consequence of Steps 1 and 2). We have
a canonical projection σ = Nr → N onto this ray inducing a map Aσ → A. This
projection is compatible with restriction to an open subset of Ar through which x also
factors. It restricts to the projection to the generic point of A on any open set of Ar not
containing x.

If Aσ → Y is a chart through which x does not factor, then we take Aσ → A to be
the projection to the generic point. As the choice of lift of x is unique when it exists, these
definitions are unambiguous and hence glue to give a map Y → A.

Repeating this construction for every ray of Y we get a map Y → An where n is the
number of rays of Y . We verify that it is strict: On a chart Ar

→ Y , the map Ar
⊂ An
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is, by construction, the identity on the r factors in the domain, and the projection to the
generic point at the remaining factors. In particular, it is an open embedding and hence
strict. ut

Remark 4.6.3. When the Artin fan X has a cover by open Artin subcones, the argu-
ment of [AMR99, Lemma 8.7] can be used to show that the resulting strict morphism
Y → An is an open embedding. If X has faithful monodromy, then the proof of The-
orem 4.6.2 shows that the barycentric subdivision of X has an open cover by subcones.
Combining this with the previous observation, we observe that if X is an Artin fan with-
out monodromy then applying Theorem 4.6.2 after barycentric subdivision yields an open
substack of An. This is illustrated in Figures 1 and 2. One barycentric subdivision suffices
for our theorem, but in Figure 1 a second barycentric subdivision is needed to embed the
complex as a fan.

Fig. 1. Two barycentric subdivisions of the
Artin fan of a logarithmic curve with a sin-
gle node, illustrated using generalized cone
complexes (Example 4.4.2).

Fig. 2. Barycentric subdivision of A[2], the
Artin fan of the Whitney umbrella, illus-
trated using generalized cone complexes
(Example 4.4.3).

With notation as in the statement and proof of the theorem, consider the set S′ ⊂ S

consisting of all strict maps A→ Y such that the composite A→ X is not strict. These
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correspond to the exceptional divisors of Y → X : each of the generators of AS′ pulls
back to a line bundle and section (Li, σi) on Y vanishing along an exceptional divisor of
the projective morphism Y → X .

Corollary 4.6.4. Let X be a noetherian logarithmic stack whose logarithmic strata are
locally connected in the smooth topology. Then there is a logarithmic modification 9 :
Y → X with relatively ample line bundle L, as well as line bundles and sections (Li, si)
on Y vanishing along substacks Ei ⊂ Y , having the following properties:

(i) The morphism 9 is projective, logarithmically étale, and surjective.
(ii) 9 is an isomorphism away from the locus

⋃
i Ei .

(iii) We have L =
⊗
L
⊗mi
i with mi negative.

(iv) Y has Deligne–Faltings logarithmic structure.
(v) IfX is logarithmically smooth, then the underlying structure Y is smooth in the usual

sense.

Proof. Let X be the Artin fan of X, let Y be given by Theorem 4.6.2 and take Y =
Y ×X X. By the theorem, this gives 1, 4, and 5 immediately. For the Li , si , and Ei we
simply pull back Li , σi , and Ei from Y . This gives 2. Recall that the exceptional divisor
of any star subdivision is anti-ample. Since the composition of projective morphisms is
projective, there is a linear combination, with positive coefficients, of the pullbacks of
these divisors which is anti-ample for Y → X . Since every divisor (si) corresponding to
an element of S′ appears in such an exceptional divisor, there exist negative integers mi
such that L =

⊗
L⊗mii is relatively ample for Y → X . Then 3 is obtained by taking L

to be the pullback of L. ut

4.7. Stable maps into subdivisions

Let X be an Artin fan. Recall from Section 1.4 that M(X ) is the moduli stack parame-
terizing prestable logarithmic maps to X and M′(Y → X ) parameterizes prestable maps
which are relatively stable for Y → X . An object of M′(Y → X )(S) is a diagram

C //

��

Y

��

C // X

(4.7.1)

of prestable logarithmic maps over S where C → C is a logarithmic modification and
the automorphism group of this diagram relative to the bottom arrow C → X is finite.
In other words, the map C → Y ×X C is stable and C → C is a contraction of rational
components. The morphism M′(Y → X ) → M(X ) under consideration sends a dia-
gram (4.7.1) to C → X . See [AW13, Sections 3 and 4], where this morphism is shown to
be birational, for a more thorough discussion.
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Proposition 4.7.2. Let Y → X be a modification of Artin fans. Any diagram

M′(Y → X )

��

S′

∃!

11

∃

// S //M(X )

admits a unique lift after passing to a (not necessarily representable) logarithmic modifi-
cation S′→ S.
Proof. The map S → M(X ) corresponds to a logarithmic curve C over S and a map
C → X . Applying Corollary 3.3.6 to the map C → S × X we obtain a diagram of Artin
fans

Y

��

C //

��

X

S

(4.7.3)

where S is the Artin fan of S and C is the relative Artin fan of C over S × X . Take
C = C×X Y , with the fiber product formed in the category of fine, saturated, logarithmic
algebraic stacks; this is the pullback of a subdivision of X , hence is a subdivision of C, and
in particular has connected fibers over C. After a logarithmic modification of S, we can
assume that S is smooth (Theorem 4.6.2), C → S is equidimensional [AK00, Lemmas 4.1
and 4.3], and therefore C is flat over S [AK00, Remark 4.6]. By [AK00, Proposition 5.1]
we can ensure as well that the fibers of C → S are reduced by replacing the integral
lattice of S with a finite index sublattice.4

Now let C = C×C C. We show that C is a logarithmic curve [ACG+13, Defini-
tion 4.5] over S. We must verify the following properties:
(1) C is logarithmically smooth over S: It is the composition of a logarithmically étale

map C → C (the base change of the logarithmically étale map Y → X ) and a
logarithmically smooth map C → S.

(2) C → S has connected fibers: Since C has connected fibers over S, it is sufficient to
show that C → C has connected fibers. This follows by strict base change from the
connectedness of the fibers of C → C.

(3) C → S is integral in the logarithmic sense: Since C → C and S → S are strict, this
is immediate from the flatness of the map C → S.

(4) C → S has reduced, 1-dimensional fibers: The map C → C×S S is smooth of
relative dimension 1 and C → S has reduced 0-dimensional fibers.

(5) C is proper over S: The map C → C is proper (it is a subdivision), so C → C is
proper, and C → S is proper by hypothesis.

4 Note that this corresponds to a root stack construction, so that S′ → S is not necessarily
representable.
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Therefore C lifts C → X to a diagram (4.7.1). It is the base change of a subdivision, so
it is a logarithmic modification. Furthermore, any component of C contracted in C is sta-
bilized by the map to Y . Therefore this diagram lifts C → X to a point of M′(Y → X ).

We verify that this lift is unique. Suppose that C′ is another lift. By the universal
property of fiber product, we obtain a map f : C′ → C = C×X Y . By the definition
of M′(Y → X ), this map is stable. On the other hand, the map C′ → C is a logarith-
mic modification of logarithmic curves, hence is a contraction of semistable components.
Thus, C′ → C is stable and a contraction of semistable components, hence is an isomor-
phism. ut

Corollary 4.7.4. Assume that Y is a subdivision of an Artin fan X . Then the morphism

M′(Y → X )→M(X )

is birational and satisfies the valuative criterion for properness.

Proof. Birationality was proved in [AW13, Proposition 5.2.1]. The valuative criterion is
immediate from Proposition 4.7.2. ut

4.8. The valuative criterion

Proof of Proposition 1.4.3. Let R be a discrete valuation ring and K be the fraction field
of R. Consider an object f : SpecK →M(X), which we would like to extend, possibly
after base change, to a unique object SpecR → M(X). The object f corresponds to a
logarithmic structure MS on S = SpecK , and a logarithmic morphism f : S →M(X),
where S := (SpecK,MS).

Choose a projective subdivision Y → X as in Theorem 4.6.2, and let Y = X×X Y .
Consider the composition f : S →M(X ) of f with M(X)→M(X ), and the cartesian
diagram (1.4.1). By Proposition 4.7.2 there is a logarithmic modification S′ → S and a
unique lift of f to f′ : S′ → M′(Y → X ), giving rise to a unique lift f ′ : S′ →M(Y ).
As S′ is of finite type, it has a K-point, at least after replacing K by a finite extension.
We let S′′ be this point, with the logarithmic structure restricted from S′. By the valuative
criterion of M(Y ) [AC14, Corollary 3.11], after replacingR andK with a finite extension
we have a logarithmic scheme T ′′ = (SpecR,MT ′′) extending S′′, and a unique extension
f̃ ′ : T ′′ →M(Y ) of f ′ : S′ →M(Y ). Composing with M(Y )→M(X) we obtain an
arrow f̃ : T ′′→M(X):

S′′

f

''

f ′
//

��

M(Y )

��

T ′′

f̃

//

f̃ ′

77

M(X)

(4.8.1)

It still remains to show that two extensions f̃1, f̃2 : T = SpecR →M(X) extend-
ing f must agree. It is sufficient to verify this after a finite base change. We give T the
logarithmic structure MT pulled back from the map (f̃1, f̃2) : T → M(X) ×M(X).
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According to Proposition 4.7.2, there is a logarithmic modification T ′ → T after which
there is a unique lift of T ′ → M(Y ) of the composition T ′ → T → M(X). Now,
T ′ → T is surjective and proper, so after a finite base change, it admits a section. There-
fore f̃1 and f̃2 both lift to M(Y ), hence coincide because M(Y ) is proper. ut

5. Boundedness of numerical data

In this section we will identify locally constant numerical data 0 on M(X) such that
each M0(X) is of finite type. In addition to the genus g of the source curve, the number
n of marked points, and the homology class β of the curve’s image in X, we also have
evaluation maps

M(X)→ ∧X→ ∧X

associated to each marking (Section 1.5.3). The choice of a connected component of ∧X
for each marked point gives one more locally constant datum. Let 0 = (g, n, β, ϕ) where
ϕ ∈ π0(∧X )n. We write M0(X) for the open and closed substack of M(X) with these
numerical data.

Select a logarithmic modification Y → X, obtained by base change from a subdivi-
sion of Artin fans Y → X , as in Corollary 4.6.4. The irreducible components Ei of the
exceptional locus of Y → X are nonsingular divisors which are unions of logarithmic
strata. We denote their preimages on Y by Ei and the corresponding line bundles by Li .

Write M0(Y ) for the open and closed substack of M(Y ) lying above M0(X). The
following proposition, whose proof occupies the rest of this section, will complete the
proof of our main theorem:

Proposition 5.1. The algebraic stack M0(Y ) is of finite type.

Recall that if the genus g, the number of markings n, the degree with respect to some
ample line bundle on Y , and a component of ∧Y for each marked point are fixed in 4,
then M4(Y ) is of finite type ([GS13, Theorem 3.12] or [AC14, Corollary 3.13]). We will
show that M0(Y ) is a union of only finitely many M4(Y ). Obviously, once 0 is fixed,
g and n are fixed. The first step of our argument will be to show that the components of
∧Y map bijectively to the components of ∧X , so that once a component of ∧X is fixed
in 0 there is a unique component of ∧Y lying above it. Finally, we will show that the
degree in Y is bounded by the choice of 0.

5.2. Boundedness of contact orders

Recall that a family of logarithmic points parameterized by a logarithmic scheme
(X,MX) is simply a line bundle L on X. Equivalently, a family of logarithmic points
parameterized by X may be viewed as an augmentation MX → M ′X of the logarithmic
structure of X with M ′X = MX × N. A logarithmic point of (Y,MY ) parameterized by
(X,MX) is a logarithmic morphism (X,M ′X)→ (Y,MY ), where (X,M ′X) is a family of
logarithmic points parameterized by (X,MX).
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Proposition 5.2.1. (1) Suppose that the following diagram of logarithmic algebraic
stacks is cartesian:

Y ′ //

��

Y

��

X′ // X

Then the diagram below is cartesian as well:

∧Y ′ //

��

∧Y

��

∧X′ // ∧X

(2) Suppose X′→ X is strict. Then the diagram

∧X′ //

��

∧X

��

X′ // X

is cartesian as well.

Proof. The first statement is immediate from the modular description of the stack of
logarithmic points. The second follows from the first. ut

We evaluate ∧Aσ for a fine, saturated, sharp monoid σ . Our calculation is analo-
gous to [Gil12, Section 3.2], which treats affine toric varieties. Consider a map f :
(X,M ′X)→ Aσ . This corresponds to a homomorphism of monoids,

σ∨→ 0(X,MX)× Hom(X,N). (5.2.2)

The map σ∨ → Hom(X,N) may be viewed as a locally constant function ϕ : X → σ .
For each ϕ ∈ σ we therefore obtain an open and closed substack ∧ϕAσ . The element ϕ
is called the contact order.

Consider the closed substack BGm ⊂ A. The stack BGm is the stack of log points
over log schemes with the universal family BGm → BGm [ACGM10, Section 2.3]. By
the definition of Aσ , the morphism id × ϕ : σ∨ → σ∨ × N defines a morphism of
logarithmic stacks h : Aσ × BGm → Aσ , which is a logarithmic point in Aσ over
Aσ × BGm. This defines a tautological morphism

Aσ × BGm → ∧ϕAσ . (5.2.3)

Conversely, consider any logarithmic point f : (X,M ′X) → Aσ with contact order
ϕ : X → σ . We obtain a morphism X → BGm induced by the family of logarithmic
points over X. On the other hand, f induces the composition σ∨ → M ′X ' N×MX →

MX, hence a morphism X→ Aσ . This gives a morphism h̃ : X→ Aσ × BGm such that
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the logarithmic point f is the pullback of h via h̃. In particular, the tautological morphism
Aσ × BGm → ∧ϕAσ is surjective. This defines another morphism

∧ϕAσ → Aσ × BGm. (5.2.4)

One checks that (5.2.3) and (5.2.4) are inverse to each other. We have just proved the
following proposition:

Proposition 5.2.5. For any ϕ ∈ σ , the stack ∧ϕAσ is isomorphic to Aσ × BGm. In
particular, it is irreducible and of finite type.

Corollary 5.2.6. The connected components of ∧Aσ are in bijection with the elements
of σ .

Corollary 5.2.7. If X is an Artin fan then the connected components of ∧X are in bijec-
tion with the isomorphism classes of maps A→ X .
Proof. We may present X as a colimit of a diagram of strict maps among the Aσ . Since
π0(−), ∧(−), and Hom(A,−) all respect strict colimits of Artin fans, the problem re-
duces to the case X = Aσ . In that case we only need to recall that Hom(A,Aσ ) = σ ,
functorially in σ . ut

Corollary 5.2.8. If σ → τ is a morphism of fine, saturated, sharp monoids and ϕ ∈ σ
has image ψ ∈ τ then the induced map ∧ϕAσ → ∧ψAτ is of finite type.
Proof. The statement follows from the identifications ∧ϕAσ ' Aσ ×BGm and ∧ψAτ '

Aτ × BGm and the fact that Aσ → Aτ is of finite type. ut

Corollary 5.2.9. Let Y → X be a subdivision. Then the induced map ∧Y → ∧X is of
finite type.
Proof. A subdivision induces a bijection

Hom(A,Y)→ Hom(A,X )

on the sets of connected components of ∧Y and ∧X . To show the map is of finite type,
it is sufficient to work étale-locally in X . We may therefore assume X = Aτ . The subdi-
vision Y of Aτ has an open cover by finitely many Aσ . This reduces our task to showing
that the maps ∧ϕAσ → ∧ϕAτ are of finite type, as we did in the previous corollary. ut

Corollary 5.2.10. Suppose that X is a quasicompact Artin fan. Then each connected
component of ∧X is of finite type.
Proof. Suppose that ϕ ∈ Hom(A,X ) corresponds to a connected component ∧ϕX
of ∧X . Then ∧ϕX is covered by the maps ∧ψAσ → ∧ϕX as ψ ranges over lifts
A ψ
−→ Aσ of ϕ along strict, étale maps Aσ → X . But X has a cover by finitely many

strict, étale maps Aσ → X , so∧ϕX has a cover by finitely many strict, étale maps∧ψAσ ,
hence is of finite type. ut

Proof of Proposition 1.5.2. As X → X is of finite type and, by Corollary 5.2.10, each
connected component of ∧X is of finite type, it follows from Proposition 5.2.1 that each
connected component of ∧X is of finite type. Likewise, ∧Y → ∧X is of finite type by
Corollary 5.2.9, so ∧Y → ∧X is of finite type, again by Proposition 5.2.1. ut
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5.3. Boundedness of the curve classes

Let f : C → Y be an object of M0(Y ). Denote by cj (Ei) the contact order of the
j -th marking with the exceptional divisor Ei as in Corollary 4.6.4. These numbers are
uniquely determined by the induced maps to ∧Y , hence by 0.

The following is a restatement of Proposition 1.5.6. Recall that L is a relatively ample
line bundle for Y over X and that L '

⊗
L
⊗mi
i for negative integers mi .

Proposition 5.3.1. Let f : C → Y be a point of M(Y ). The values cj (Ei) determine
degC(L).

Proof. We have

degC(L) =
∑
i

mi degC(Ei) =
∑
i

mi degC(Ei).

This quantity is locally constant on M(Y), which is logarithmically smooth [AW13,
Proposition 1.6.1]. We can therefore replace C with a deformation that is smooth and in-
tersects the Ei properly. In this case degC(Ei) =

∑
j cj (Ei), so degC(L) =

∑
i,j micj (Ei)

is determined by the cj (Ei), as required. ut

Proposition 5.3.2. Fix an ample line bundle M on X and f : C → Y a point of M(Y ).
Denote the projection from Y to X by π . Then L⊗ π∗M is ample on Y and

deg(f ∗(L⊗ π∗M)) = deg(f ∗π∗M)+
∑
i,j

micj (Ei).

In particular, the degree of f with respect ot L⊗ π∗M is determined combinatorially by
the image of (C, f ) in M(X).

Proof. We have

deg(f ∗L⊗ f ∗π∗M) = deg(f ∗π∗M)+ deg(f ∗L),

and deg(f ∗L) was computed in the last proposition. ut

We conclude that 0 bounds the degree of f : C → Y as well as its contact orders along
the logarithmic divisors. Therefore M0(Y ) is of finite type. This completes the proof of
Proposition 5.1.

As the map M0(Y )→M0(X) is proper, we deduce that M0(X) is of finite type as
well.
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