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Abstract. We show that any group G is contained in some sharply 2-transitive group G without a
non-trivial abelian normal subgroup. This answers a long-standing open question. The involutions
in the groups G that we construct have no fixed points.
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1. Introduction

The finite sharply 2-transitive groups were classified by Zassenhaus [Z] in 1936 and it
is known that any finite sharply 2-transitive group contains a non-trivial abelian normal
subgroup.

In the infinite situation no classification is known (see [MK, Problem 11.52, p. 52]).
It was a long-standing open problem whether every infinite sharply 2-transitive group
contains a non-trivial abelian normal subgroup. Tits [Ti] proved that this holds for locally
compact connected sharply 2-transitive groups. Several other papers showed that under
certain special conditions the assertion holds [BN, GMS, GlGu, M, T2, Tu, W]. The
reader may wish to consult the Appendix for more detail, and for a description of our
main results using permutation-group-theoretic language.

An equivalent formulation of the above problem is whether every near-domain is a
near-field (see [Hall, K, SSS] and the Appendix below).

We here show that this is not the case. We construct a sharply 2-transitive infinite
group without a non-trivial abelian normal subgroup. In fact, the construction is similar
in flavor to the free completion of partial generalized polgyons [T1].

Recall that a proper subgroup A of a group G is malnormal in G if A ∩ g−1Ag = 1
for all g ∈ Gr A.
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Theorem 1.1. Let G be a group with a malnormal subgroup A and an involution t ∈
G r A such that A contains no involutions. Then for any u, v ∈ G with Au 6= Av there
exist

(a) an extension G ≤ G1;
(b) a malnormal subgroup A1 of G1 such that A1 does not contain involutions and sat-

isfies A1 ∩G = A;
(c) an element f ∈ G1 such that A1f = A1u and A1tf = A1v.

Remark 1.2. It is easy to see (see §2) that in Theorem 1.1 we may assume that u = 1,
v /∈ AtA and that either (1) v−1 /∈ AvA, or (2) v is an involution. If case (1) holds we
take G1 = G ∗ 〈f 〉 to be the free product of G with an infinite cyclic group generated
by f, and A1 = 〈A, f, tf v

−1
〉. If case (2) holds we take G1 = 〈G, f | f

−1tf = s〉 an
HNN extension and A1 = 〈A, f 〉.

As a corollary to Theorem 1.1 we get the following.

Theorem 1.3. Let G be a group with a malnormal subgroup A such that A contains no
involutions. Assume further that G is not sharply 2-transitive on the set A\G of right
cosets. Then G is contained in a group G having a malnormal subgroup A such that

(1) A ∩G = A;
(2) G is sharply 2-transitive on the set X := A\G of right cosets;
(3) A contains no involutions (i.e. G is of permutational characteristic 2);
(4) G does not contain a non-trivial abelian normal subgroup;
(5) if G is infinite then G and G have the same cardinality (similarly for X and A\G).

As an immediate consequence of Theorem 1.3 we have

Theorem 1.4. Any group G is contained in a group G acting sharply 2-transitively on a
set X such that each involution in G has no fixed point in X, and such that G does not
contain a non-trivial abelian normal subgroup.

Proof. For |G| = 1, 2 this is obvious. Otherwise take A = 1 in Theorem 1.3. ut

In fact there are many other ways to obtain a group G having a malnormal subgroup A
and satisfying (2)–(4) of Theorem 1.3, e.g., takeG = 〈t〉∗A,where t is an involution, and
A a non-trivial group without involutions, and apply Theorem 1.3. (Here the free product
guarantees that A is malnormal in G.)

Theorem 1.4 shows that there exists a sharply 2-transitive group G of characteristic 2
(see Definition A.2 in the Appendix) such that G does not contain a non-trivial abelian
normal subgroup. Further, as noted in the Appendix, if G is sharply 2-transitive of char-
acteristic 3, then G contains a non-trivial abelian normal subgroup. The cases where
char(G) is distinct from 2 and 3 remain open.

Finally, we mention that the hypothesis that A does not contain involutions in Theo-
rem 1.1 is used only in the case where we takeG1 to be an HNN extension ofG, and then
it is used only in the proof of the malnormality of A1 in G1.
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2. Some preliminaries regarding Theorem 1.1

The following observations and remarks are here in order to explain to the reader the way
we intend to prove Theorem 1.1, and to explain the main division between the two cases
we deal with in §3 and §4.

In fact, Lemmas 2.1(3) and 2.2 below, together with Remark 2.3, show that we may
assume throughout this paper that Hypothesis 2.4 holds; and that hypothesis naturally
leads to the division into the two cases dealt with in §3 and §4.

Lemma 2.1. Let A be a malnormal subgroup of a group G and let g ∈ Gr A. Then

(1) CG(a) ≤ A for all a ∈ A, a 6= 1;
(2) 〈g〉 ∩ A = 1;
(3) AgA contains an involution iff g−1

∈ AgA.

Proof. (1) Let a ∈ A with a 6= 1, and let h ∈ CG(a). Then a ∈ A ∩Ah. So h ∈ A, since
A is malnormal in G.

(2) Since g ∈ CG(gk) for all integers k, part (2) follows from (1).
(3) If g−1 /∈ AgA, then clearly AgA does not contain an involution. Conversely,

assume that g−1
∈ AgA. Then g−1

= agb for some a, b ∈ A, so (ag)2 = ab−1
∈ A.

Then, by (2), either (ag)2 = 1 or ag ∈ A. But g /∈ A, so ag /∈ A, and we have (ag)2 = 1.
Hence AgA contains the involution ag. ut

We now make the following observation (and introduce the following notation):

Lemma 2.2. Let G be a group with a malnormal subgroup A and an involution t ∈
G r A. Let G1 be an extension of G such that G1 contains a malnormal subgroup A1
with A1 ∩G = A. Let r, s ∈ G be such that Ar 6= As. Then

(1) there is at most one element f ′ ∈ G1 with A1f
′
= A1r and A1tf

′
= A1s, which we

denote by f ′ = fr,s (if it exists).

The convention in (2)–(4) below is that the left side exists if and only if the right side
does, and then they are equal:

(2) fr,sg = frg,sg for any g ∈ G.
(3) tfr,s = fs,r .
(4) fa1r,a2s = fr,s for all a1, a2 ∈ A.

Proof. (1) Let f1, f2 ∈ G1 be such thatA1f1 = A1f2 = A1r andA1tf1 = A1tf2 = A1s.
Then f1f

−1
2 ∈ A1 and tf1f

−1
2 t ∈ A1. Since t ∈ G1 r A1, and since A1 is malnormal

in G1, we see that f1f
−1
2 = 1, so f1 = f2.

(2) A1fr,sg = A1rg = A1frg,sg and A1tfr,sg = A1sg = A1frg,sg . So, by (1),
frg,sg = fr,sg.

(3) A1tfr,s = A1s, and A1t tfr,s = A1fr,s = A1r . So, by (1), tfr,s = fs,r .
(4) A1fa1r,a2s = A1a1r = A1r, and A1tfa1r,a2s = A1a2s = A1s. So, by (1),

fa1r,a2s = fr,s . ut
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Remark 2.3. Let the notation be as in Theorem 1.1. Notice that if there is an f ∈ G such
that Af = Au and Atf = Av, we can just takeG1 = G and A1 = A and there is nothing
to prove in Theorem 1.1.

Hence we may assume throughout this paper that this is not the case. In view of (2)
and (4) of Lemma 2.2, fu,v = f1,vu−1u, and f1,a′va = fa−1,a′va = f1,va, for a, a′ ∈ A.
Hence we may assume that u = 1 (and hence v /∈ A) and replace v by any element of
the double coset AvA. By Lemma 2.1(3), we may assume that either v−1 /∈ AvA, or v is
an involution. Further, since f1,t = 1 and since t is an involution, we may assume that
v /∈ AtA and v−1 /∈ AtA.

Hence it suffices to prove Theorem 1.1 under the following hypothesis which we assume
for the rest of the paper.

Hypothesis 2.4. In the setting of Theorem 1.1, assume u = 1, v, v−1 /∈ AtA and either
v−1 /∈ AvA or v is an involution.

3. The case where v−1 /∈ AvA

The purpose of this section is to prove Theorem 1.1 of the introduction in the case where
v−1 /∈ AvA. We refer the reader to Hypothesis 2.4 and to its explanation in §2. Thus,
throughout this section we assume that v−1 /∈ AvA. Also, throughout this section we use
the notation and hypotheses of Theorem 1.1.

Let 〈f1〉 be an infinite cyclic group. We let

G1 = G ∗ 〈f1〉, f2 = tf1v
−1, A1 = 〈A, f1, f2〉.

In this section we will prove the following theorem.

Theorem 3.1. We have

(1) A1 = A ∗ 〈f1〉 ∗ 〈f2〉 with f1, f2 of infinite order;
(2) A1 is malnormal in G1.

Suppose Theorem 3.1 is proved. We now prove Theorem 1.1 in the case where v−1 /∈

AvA.

Proof of Theorem 1.1 in the case where v−1 /∈ AvA. Let f := f1. Then A1f = A1f1
= A1, and

A1tf = A1tf1 = A1tf1v
−1v = A1f2v = A1v.

By Theorem 3.1(2), A1 is malnormal in G1. By Theorem 3.1(1), A1 ∩G = A and f2 is
of infinite order. Since A1 = A ∗ 〈f1〉 ∗ 〈f2〉 and A does not contain involutions, A1 does
not contain involutions either. ut

Proposition 3.2. f2 is of infinite order in G1, and A1 = A ∗ 〈f1〉 ∗ 〈f2〉.
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Proof. We first show that f2 is of infinite order. Indeed let h := f n2 for some n ∈ Z, and
write h in terms of f1 and elements ofG. If n > 0, then h starts with t and ends with v−1,

while if n < 0, then h starts with v and ends with t . In particular f2 has infinite order.
Next let F := 〈f1, f2〉. Then any element of F is a product of alternating powers

of f1 and f2. As we saw in the previous paragraph, any non-zero power of f2 starts with t
or v and ends with t or v−1. Since G1 = G ∗ 〈f1〉, there will be no cancellation between
powers of f1 and powers of f2. It follows that F is a free group.

Now consider an element in A1 = 〈A,F 〉. It is an alternating product of elements
of A and elements of F . When we express it as an element of G1 = G ∗ 〈f1〉, f2 is
written as tf1v

−1 and f−1
2 is written as vf−1

1 t . Accordingly, an element 1 6= a ∈ A in
this alternating product is multiplied by 1, v−1 or t on the left, and by 1, t or v on the
right. The possibilities are:

• v−1a, ta, at , av: all are distinct from 1 since t and v are not in A.
• tat , v−1av: all are distinct from 1 since they are conjugate to a.
• tav, v−1at : all are distinct from 1 since v /∈ AtA. ut

Proposition 3.3. A1 is a malnormal subgroup of G1.

Proof. We will show that the existence of a, b ∈ A1 and g ∈ G1 r A1 such that a 6= 1
and g−1ag = b leads to a contradiction.

Let

a = a1f
ε1
δ1
a2f

ε2
δ2
· · · anf

εn
δn
an+1, a 6= 1,

b = b1f
µ1
γ1
b2f

µ2
γ2
· · · b`f

µ`
γ`
b`+1,

where ai, bj ∈ A, εi, µj = ±1, δi, γj ∈ {1, 2}, and if δi = δi−1 and εi = −εi−1 then
ai 6= 1 (i.e. there are no fi-cancellations in a), and similarly there are no fi-cancellations
in b. Write

g = g1f
λ1
1 g2f

λ2
1 · · · gmf

λm
1 gm+1 ∈ G1 r A1,

where gi ∈ G, λi = ±1, and there are no f1-cancellations in g.
Assume that m is the least possible. We have the picture as in Figure 1 below.

Case 1:m = n = 0. In this case b = g−1a1g ∈ A1∩G. By Proposition 3.2,A1∩G = A,

so b ∈ A, and we get a contradiction to the malnormality of A in G.

Case 2:m = 0 and n > 0. SinceG1 = G∗〈f1〉,we must have n = `. Consider Figure 1.
By an analysis of the normal form in the free product G ∗ 〈f1〉 we see that the only way
we can get the equality g−1

1 ag1 = b is when both ε1 = µ1 and εn = µn. We distinguish
a number of subcases:

(i) δ1 = γ1 or δn = γn.
(ii) δ1 6= γ1 and δn 6= γn.

(a) n = 1.
(b) n > 1.
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f
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Fig. 1

Subcase (i). By symmetry we may consider only the case where δ1 = γ1. In this case,
regardless of whether ε1 = 1 or −1 and whether δ1 = 1 or 2, we get g1 = a1b

−1
1 ∈ A,

a contradiction.

Subcase (iia). By symmetry we may assume that δ1 = 1 and γ1 = 2.
Suppose first that ε1 = µ1 = 1. Then from the left side of Figure 1 we get

a−1
1 g1b1t = 1, and from the right side we get a2g1b

−1
2 v = 1. This implies that t ∈ Ag1A

and v−1
∈ Ag1A. But then v−1

∈ AtA, a contradiction.
Suppose next that ε1 = µ1 = −1. Then from the left side of Figure 1 we get

a−1
1 g1b1v = 1, and from the right side we get a2g1b

−1
2 t = 1. Again this implies that

v−1
∈ AtA, a contradiction.

Subcase (iib). By symmetry, we may assume without loss of generality that

δ1 = 1 and γ1 = 2.

Suppose first that
ε1 = µ1 = 1.

We may further assume that

a−1
1 g1b1t = 1 and ε2 = µ2.

We now discuss the following cases separately:

• δ2 = γ2. In this case, regardless of the sign of ε2 = µ2 and whether δ2 = γ2 = 1 or 2,
we get a−1

2 v−1b2 = 1, which is false since v /∈ A.
• ε2 = µ2 = 1, δ2 = 1, γ2 = 2. We get a−1

2 v−1b2t = 1, contradicting v /∈ AtA.
• ε2 = µ2 = −1, δ2 = 1, γ2 = 2. We get a−1

2 v−1b2v = 1 with b2 6= 1. But this
contradicts the malnormality of A in G.
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• ε2 = µ2 = 1, δ2 = 2, γ2 = 1. We get ta−1
2 v−1b2 = 1, contrary to v−1 /∈ AtA.

• ε2 = µ2 = −1, δ2 = 2, γ2 = 1. We get v−1a−1
2 v−1b2 = 1. This implies that

v−1
∈ AvA, contrary to our hypotheses.

Suppose next that
ε1 = µ1 = −1.

We may further assume that

a−1
1 g1b1v = 1 and ε2 = µ2.

Again we discuss the following cases separately:

• δ2 = γ2. In this case, regardless of the sign of ε2 = µ2 and whether δ2 = γ2 = 1 or 2,
we get a−1

2 tb2 = 1, which is false since t /∈ A.
• ε2 = µ2 = 1, δ2 = 1, γ2 = 2. We get a−1

2 tb2t = 1, and b2 6= 1. This contradicts the
malnormality of A in G.
• ε2 = µ2 = −1, δ2 = 1, γ2 = 2. We get a−1

2 tb2v = 1, impossible, as above.
• ε2 = µ2 = 1, δ2 = 2, γ2 = 1. We get ta−1

2 tb2 = 1. This case forces a2 = b2 = 1
(because A is malnormal in G) . If n = 2 we get v−1a3g1b

−1
3 = 1. But this together

with a−1
1 g1b1v = 1 implies that v−1

∈ AvA, contrary to our hypotheses. Thus n ≥ 3.
But now we must have ε3 = µ3, and arguing exactly as in the previous cases, for all
choices of ε3 = µ3, δ3 and γ3, we get a contradiction as in one of the cases above.
• ε2 = µ2 = −1, δ2 = 2, γ2 = 1. We get v−1a−1

2 tb2 = 1, impossible, as above.

Case 3: n = 0 = ` and m > 0. Notice that in this case there will be no cancellations
in Figure 1, since otherwise we must have either g−1

1 a1g1 = 1, or g−1
m+1b

−1
1 gm+1 = 1,

which is false.

Hence we may assume that either n > 0 or ` > 0 or both. By symmetry we may
consider the following case:

Case 4: m > 0 and n > 0. Notice that fi-cancellations have to occur in the product
g−1agb−1, since it is equal to 1. Now fi-cancellations can occur only if one of the fol-
lowing occurs:

(i) The product f−λ1
1 g−1

1 a1f
ε1
δ1

equals 1, v−1, or t .

(ii) The product f εnδn an+1g1f
λ1
1 equals 1, t or v.

(iii) The product f λm1 gm+1b1f
µ1
γ1 equals 1, v−1 or t .

(iv) The product f µ`γ` b`+1g
−1
m+1f

−λm
1 equals 1, t or v.

By symmetry, we may consider only (i). If f−λ1
1 g−1

1 a1f
ε1
δ1
= 1, then g1f

λ1
1 = a1f

ε1
δ1

. Let

h := g2f
λ2
1 · · · f

λm
1 gm+1 and

a′ = a2f
ε2
δ2
· · · f

εn
δn
an+1g1f

λ1
1 = a2f

ε2
δ2
· · · f

εn
δn
an+1a1f

ε1
δ1
∈ A1.
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Notice that a′ is conjugate to a, so a′ 6= 1. Also h = f
−λ1
1 g−1

1 g, and h /∈ A1, since
f
−λ1
1 g−1

1 ∈ A1, while g /∈ A1. We get (see Figure 1) g−1ag = h−1a′h ∈ A1, contradict-
ing the minimality of m.

If f−λ1
1 g−1

1 a1f
ε1
δ1
= v−1, then g1f

λ1
1 = a1f

ε1
δ1
v. Let h := vg2f

λ2
1 · · · f

λm
1 gm+1 and

a′ = a2f
ε2
δ2
· · · f

εn
δn
an+1g1f

λ1
1 v−1

= a2f
ε2
δ2
· · · f

εn
δn
an+1a1f

ε1
δ1
∈ A1.

As above, 1 6= a′ ∈ A1, and if h ∈ A1, then g = g1f
λ1
1 v−1h = a1f

ε1
δ1
h ∈ A1, which is

false. We again get g−1ag = h−1a′h ∈ A1, which contradicts the minimality of m.
Finally, if f−λ1

1 g−1
1 a1f

ε1
δ1
= t, then g1f

λ1
1 = a1f

ε1
δ1
t . Let h := tg2f

λ2
1 · · · f

λm
1 gm+1

and
a′ = a2f

ε2
δ2
· · · f

εn
δn
an+1g1f

λ1
1 t = a2f

ε2
δ2
· · · f

εn
δn
an+1a1f

ε1
δ1
∈ A1.

As above we get 1 6= a′ ∈ A1 and h /∈ A1, and again we get the same contradiction.
Note that if ` = 0, then no cancellation of the type (iii) or (iv) above can occur. ut

Proof of Theorem 3.1. Part (1) holds by Proposition 3.2, and (2) by Proposition 3.3. ut

4. The case where v is an involution and v /∈ AtA

The purpose of this section is to prove Theorem 1.1 of the introduction in the case where
v is an involution. We refer the reader to Hypothesis 2.4 and to its explanation in §2. Thus,
throughout this section we assume that v is an involution and v /∈ AtA. Throughout this
section we use the notation and hypotheses of Theorem 1.1.

Let 〈f 〉 be an infinite cyclic group. We define an HNN extension

G1 = 〈G, f | f
−1tf = v〉, A1 = 〈A, f 〉.

In this section we will prove the following theorem.

Theorem 4.1. We have

(1) A1 = A ∗ 〈f 〉;
(2) A1 is malnormal in G1.

Suppose Theorem 4.1 is proved. We now use it to prove Theorem 1.1 in the case where v
is an involution.

Proof of Theorem 1.1 in the case where v is an involution. We have A1f = A1 and
A1tf = A1f v = A1v. By Theorem 4.1(2), A1 is malnormal in G1. By Theorem 4.1(1),
A1 ∩G = A. Also A1 does not contain involutions, since A1 = A ∗ 〈f 〉 and A does not
contain involutions. ut

Remark 4.2. Any element of G1 has the form

g = g1f
δ1g2 · · · gmf

δmgm+1,

where gi ∈ G, i = 1, . . . , m+ 1, δi = ±1, i = 1, . . . , m. According to Britton’s Lemma
we say that there are no f -cancellations in g if the equality δi = −δi−1 implies that if
δi = 1, then gi 6= 1, t, while if δi = −1, then gi 6= 1, v.
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Fig. 2

Further let g be as above, let h ∈ G1, and write

h = h1f
η1h2 · · ·hkf

ηkhk+1,

where hj ∈ G, j = 1, . . . , k+1, ηj = ±1, j = 1, . . . , k, and there are no f -cancellations
in g and h.

Then g = h if and only if m = k, δi = ηi , i = 1, . . . , m, and there are elements
w0, z1, w1, z2, w2, . . . , zm, wm, zm+1 such that for every oriented loop in Figure 2 the
product of edges is 1, that is:

(a) hi = wi−1gizi , i = 1, . . . , m+ 1;
(b) w0 = 1, zm+1 = 1;
(c) if δi = 1, then either zi = 1, wi = 1, or zi = t , wi = v;
(d) if δi = −1, then either zi = 1, wi = 1, or zi = v, wi = t.

Lemma 4.3. A1 = A ∗ 〈f 〉.

Proof. Suppose that

g1f
δ1g2 · · · gmf

δmgm+1 = h1f
δ1h2 · · ·hmf

δmhm+1,

and hi, gi ∈ A, i = 1, . . . , m + 1. By Remark 4.2, h1 = g1z1, hence, by Remark
4.2(a)–(d), since t, v /∈ A, we have z1 = 1, so h1 = g1, and then, by Remark 4.2(c)–(d),
w1 = 1.

Assume wi = 1. Then hi+1 = wigi+1zi+1 = gi+1zi+1. Since t, v /∈ A, this implies
zi+1 = 1, and then wi+1 = 1. So gi = hi for i = 1, . . . , m+1. Hence A1 = A∗〈f 〉. ut

Proposition 4.4. A1 is malnormal in G1.

Proof. We will show that the existence of a, b ∈ A1 and g ∈ G1 r A1 such that a 6= 1
and g−1ag = b leads to a contradiction. Let

a = a1f
α1a2 · · · amf

αmam+1, b = b1f
β1b2 · · · bnf

βnbn+1,

where ai, bi ∈ A, αi, βi = ±1, and if αi = −αi−1, then ai 6= 1, while if βi = −βi−1,

then bi 6= 1. Recall that by Lemma 4.3, A1 = A ∗ 〈f 〉, and therefore in the above
expressions for a and b there are no f -cancellations. We also have

g = g1f
δ1g2 · · · gkf

δkgk+1,
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where gi ∈ G, δi = ±1, and δi = −δi−1 implies that if δi = 1, then gi 6= 1, t, while if
δi = −1, then gi 6= 1, v.

We assume that k is the least possible.

Case 1: k = 0. Then g = g1, so we have

g−1
1 a1f

α1a2 · · · amf
αmam+1g1 = b1f

β1b2 · · · bnf
βnbn+1.

We conclude that n = m and αi = βi for i = 1, . . . , m. If m = n = 0, then a = a1 6= 1,
b = b1, so g−1

1 a1g1 = b1, which is impossible because A is malnormal in G.
Let m = n > 0. We obtain Figure 3 below, where

if αi = 1, then either pi = qi = 1, or pi = t, qi = v,
if αi = −1, then either pi = qi = 1, or pi = v, qi = t.

(4.1)

f α1a1

q1

b1 f α1

f αi

f αi

am

bmb2

a2

qi pm qm

f αm

p1g1 g1

f αm am+1

bm+1

pi

Fig. 3

We have p1 = a
−1
1 g1b1 /∈ A since g1 /∈ A. Now assume pi /∈ A. Then qi /∈ A by (4.1),

and by Britton’s Lemma pi+1 = a−1
i+1qibi+1 is not in A either. In particular pi, qi 6= 1

for all i ≤ m.
If m = n ≥ 2, consider Figure 4:

f α1

f α1 a2

p1 q2

f α2

p2q1

f α2

b2

Fig. 4

We now use (4.1). If α1 = 1, α2 = 1, then q1 = v, p2 = t, so v = a2tb
−1
2 ∈ AtA,

a contradiction.
If α1 = 1, α2 = −1, then a2 6= 1, q1 = v, p2 = v. Then va2v = b2, contradicting

the malnormality of A in G.
If α1 = −1, α2 = 1, then a2 6= 1, q1 = t , p2 = t, and ta2t = b2, again contradicting

the malnormality of A in G.
If α1 = −1, α2 = −1, then q1 = t , p2 = v, and v = a−1

2 tb2 ∈ AtA, a contradiction.
So we are left with the possibility m = n = 1. In Figure 3 above, after cutting and

pasting we obtain the following Figure 5:
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a2 a1

p1g1q1

b2 b1

Fig. 5

If α1 = 1, then p1 = t , q1 = v, while if α1 = −1, then p1 = v, q1 = t . In both cases
v ∈ AtA, contrary to the choice of v.

Case 2: k > 0. Consider Figure 6:

g2

f δ1

g1

gk

gk+1

b2

am

g1

g2

f δ1

gk

f δk

f βnbnb1 f β1

a1 f α1 a2

bn+1

f δk

gk+1

f αm am+1

Fig. 6

Notice that f -cancellations have to occur in the product g−1agb−1, since it is equal
to 1. Therefore, at least one of the following cases must happen:

(1) m = 0, a = a1, and f−δ1 cancels with f δ1 in f−δ1g−1
1 a1g1f

δ1;

(2) n = 0, b = b1 and f δk cancels with f−δk in f δkgk+1b1g
−1
k+1f

−δk ;

(3) m > 0, and f−δ1 cancels with f α1 in f−δ1g−1
1 a1f

α1;

(4) m > 0, and f αm cancels with f δ1 in f αmam+1g1f
δ1;

(5) n > 0, and f δk cancels with f β1 in f δkgk+1b1f
β1;

(6) n > 0, and f βn cancels with f−δk in f βnbn+1g
−1
k+1f

−δk .
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In case (1), a = a1 6= 1, so g−1
1 a1g1 = t or v. Hence a1 is conjugate to an involution,

which is impossible, as A does not contain involutions.
Similarly, in case (2) we have b = b1 6= 1, so gk+1b1g

−1
k+1 = t or v, again a contra-

diction.
In case (3) we have Figure 7 below, where p, q ∈ {1, t, v} by Britton’s Lemma. We

define
a′ = a2 · · · amf

αmam+1a1f
α1 and h = qg2 · · · gkf

δkgk+1.

g2

gk+1

a1 a2f α1

p p

f α1

bn+1f βn

f δk

g2

f δ1

g1

f δk

am+1f αmam

b2f β1

q q

gk+1

a1

bnb1

f δ1

gk

g1

gk

Fig. 7

We have h−1a′h = b, where a′ is conjugate to a. So a 6= 1 implies a′ 6= 1. Also the
f -length of h is k − 1. Notice that h = f−α1a−1

1 g, and h /∈ A1 since f−α1a−1
1 ∈ A1 and

g /∈ A1. We have obtained a contradiction to the minimality of k.
The remaining cases are handled in entirely the same way. ut

Proof of Theorem 4.1. Part (1) holds by Lemma 4.3, and (2) by Proposition 4.4. ut

5. The proof of Theorem 1.3

In this section we show how Theorem 1.3 of the introduction follows from Theorem 1.1.
Let G be a group with a malnormal subgroup A such that A contains no involutions.

Assume that G is not 2-transitive on the set of right cosets A\G. If there exists an invo-
lution t ∈ G r A, set G0 := G, A0 := A. Otherwise, let G0 := G ∗ 〈t〉, where t is an
involution, and let A0 = A. Then, by [MaKS, Corollary 4.1.5], G is malnormal in G0,

and then since A is malnormal in G, it is malnormal in G0.
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We now construct a sequence of groups Gi and of subgroups Ai ≤ Gi , i = 0, 1, . . . ,
having the following properties for all i ≥ 0:

(1) Gi ≤ Gi+1 and Ai ≤ Ai+1;

(2) Ai is malnormal in Gi and t ∈ Gi r Ai;
(3) Ai does not contain involutions;
(4) Ai+1 ∩Gi = Ai ;
(5) for each v ∈ Gi r Ai there exists fv ∈ Ai+1 such that Ai+1tfv = Ai+1v.

In order to construct Gi+1, Ai+1 from Gi, Ai we enumerate the set Gi r Ai = {vα :

α < ρ} for some ordinal ρ. For each ordinal α < ρ we construct the pair Gαi , A
α
i and the

element fvα ∈ A
α
i having the following properties:

(i) Gβi ≤ G
α
i for all ordinals β < α;

(ii) Aαi is malnormal in Gαi and t ∈ Gαi r A
α
i ;

(iii) Aαi contains no involutions;
(iv) Aαi ∩G

β
i = A

β
i for all β < α;

(v) fvα ∈ A
α
i and Aαi tfvα = A

α
i vα .

We let G0
i = Gi and A0

i = Ai . If α = β + 1, we construct (Gαi , A
α
i , fvα ) from (G

β
i , A

β
i )

as follows: If there is some f ∈ Aβi with Aβi tf = A
β
i vα we let Gαi = G

β
i , Aαi = A

β
i

and fvα = f . Otherwise apply Theorem 1.1 to Gβi , Aβi with u = 1 and v = vα to
obtain Gαi , Aαi and fvα ∈ A

α
i . Of course, by construction, Aαi contains no involutions and

Aαi ∩G
β
i = A

β
i . So (i)–(v) hold.

For a limit ordinal α we set G(α,1)i =
⋃
β<α G

β
i , A(α,1)i =

⋃
β<α A

β
i . We now show

that when α is a limit ordinal, A(α,1)i is malnormal in G(α,1)i . Notice that for each ordinal
β < α and each g ∈ Gβi r A

β
i , we have g ∈ G(α,1)i r A

(α,1)
i . Indeed, else take the

minimal γ < α such that g ∈ Aγi . Then, by definition, γ is not a limit ordinal, and
g ∈ G

γ−1
i r A

γ−1
i . So g ∈ Aγi ∩ G

γ−1
i = A

γ−1
i , a contradiction. This means that

A
(α,1)
i ∩G

β
i = A

β
i for all ordinals β < α.

Suppose now that g−1ag = b with g ∈ G(α,1)i r A
(α,1)
i and a, b ∈ A(α,1)i . Then, by

the previous paragraph, there exists β < α such that a, b ∈ Aβi and g ∈ Gβi r A
β
i , and

then we get a contradiction to the malnormality of Aβi in Gβi . Clearly A(α,1)i contains no
involutions. Next if there exists f ∈ A(α,1)i such that A(α,1)i tf = A

(α,1)
i uα then we let

Gαi = G
(α,1)
i , Aαi = A

(α,1)
i and fvα = f . Else we construct Gαi , Aαi and fvα from G

(α,1)
i ,

A
(α,1)
i using Theorem 1.1 with u = 1 and v = vα (just as in the construction above in the

case of a non-limit ordinal). Again we see that (i)–(v) hold.
Finally, set

Gi+1 =
⋃
α<ρ

Gαi , Ai+1 =
⋃
α<ρ

Aαi ,

G =
⋃
i<ω

Gi, A =
⋃
i<ω

Ai and X = A\G.
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As in the construction of G(α,1)i , A(α,1)i in the case where α is a limit ordinal, we see that
A is malnormal in G, and A ∩ Gi = Ai for each i < ω. To see that the action of G on
X is 2-transitive, just note that any v ∈ G r A is contained in some Gi so that there is
some fv ∈ Ai+1 ⊆ A with Ai+1tfv = Ai+1v. Since Ai+1 ≤ A, we see that Atfv = Av
as required. Since A is malnormal in G, the action of G on X is sharply 2-transitive. By
construction, A contains no involutions.

Finally, as is well known, if G contains a non-trivial abelian normal subgroup, then
necessarily all involutions in G commute with each other (see, e.g., [GMS, Remark 4.4]).
But, by our construction, this is not the case in G. Indeed, if G1 = G0 ∗ 〈f1〉 is a free
product, then t does not commute with f−1

1 tf1. Suppose that G1 = 〈G, f | f
−1tf = v〉

is an HNN extension. Let s ∈ G be an involution distinct from t (notice that t is not in the
center ofG sinceA is malnormal inG, so such an s exists). Then sf−1sf and f−1sf s are
in canonical form, so they are distinct, and the involutions s and f−1sf do not commute.1

This completes the proof of Theorem 1.3.

Appendix. Some background and a permutation-group-theoretic point of view

Recall that a permutation groupG on a setX is regular if it is transitive and no non-trivial
element of G fixes a point; G is a Frobenius group on X if G is transitive on X, no non-
trivial element in G fixes more than one point, and some non-trivial elements of G fix a
point; and G is sharply 2-transitive if G is transitive on X, and for any two ordered pairs
(x1, x2), (x′1, x

′

2) ∈ X × X of distinct points in X, there exists a unique element g ∈ G
such that xig = x′i , i = 1, 2.

Remarks A.1. LetG be a group and let A be a subgroup ofG. Let X := A\G be the set
of right cosets of A in G. Then the following are equivalent:

(1) A is malnormal in G.
(2) Either

(a) A = 1 and G is regular on X, or
(b) G is a Frobenius group on X (so A 6= 1).

If a sharply 2-transitive group G on X contains a non-trivial normal abelian subgroup B,
then B is necessarily regular on X and G = HB with H ∩ B = 1, where H is the
stabilizer inG of some point in X. In this case we say thatG splits, otherwise we say that
G is non-split.

The primary example of sharply 2-transitive groups are the 1-dimensional affine
groups. Given a field F, the 1-dimensional affine group over F is the group G := {x 7→
ax + b | a, b ∈ F, a 6= 0} of functions on X = F . So G is Frobenius on X.

If G is a 1-dimensional affine group over F , then G splits. Indeed, if we let B =
{x 7→ x + b | b ∈ F } and H = {ax | a ∈ F, a 6= 0}, the stabilizer of 0 in G, then B is

1 Note that we could start with a group G0 which already contains an involution that does not
commute with t . Then it would immediately follow that G does not split. We thank Uri Bader for
pointing this out.
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an abelian normal subgroup ofG andG = BH . In fact, in [K, §6] it is shown that sharply
2-transitive groups can be completely characterized by means of “1-dimensional affine”
transformations x 7→ ax + b on an algebraic structure called a near-domain defined
in [K, Definition, p. 21]. Further, the notion of a near-field is defined in [K, below the
Definition on p. 21]. And in [K, Thm. 7.1, p. 25] it is shown that the assertion that every
sharply 2-transitive group splits is equivalent to the assertion that every near-domain is a
near field (see also [Hall, Subsection 20.7, p. 382], [SSS, Chapter 3]).

However, for an infinite sharply 2-transitive group G it was a long-standing problem
whether or notG splits. It is known that a sharply 2-transitive group splits in the following
cases:

• G is locally compact connected [Ti];
• G is locally finite [W];
• G is definable in an o-minimal structure [T2];
• G is linear (with certain additional restrictions) [GlGu];
• G is locally linear (with some additional restrictions) [GMS];
• further splitting results can be found in [BN] and [SSS].

To state some additional splitting results we need to introduce some more definitions.
So let G be an infinite sharply 2-transitive group on a set X. Then G contains “many”
involutions. Let I ⊂ G be the set of involutions in G. Then I is a conjugacy class in G.
If i ∈ I has no fixed points in X we say that G is of characteristic 2 and we write
char(G) = 2. Otherwise each i ∈ I fixes a unique point. In this case the set of all
products of distinct involutions, I 2 r {1}, forms a conjugacy class in G, and a non-trivial
power of an element in I 2r{1} belongs to I 2r{1}. It follows that the elements in I 2r{1}
either have an odd prime order p, or are of infinite order. In the former case we say that
the characteristic of G is p, and in the latter case we say that the characteristic of G is 0.
Hence we have the following definition.

Definition A.2. Let G be a sharply 2-transitive group on a set X, and let I be the set of
involutions in G. Let I 2

= {ts | t, s ∈ I }. We define the characteristic of G, denoted
char(G), as follows:

• char(G) = 2 if i ∈ I has no fixed point in X;
• char(G) = 0 if each g ∈ I 2 r {1} is of infinite order;
• char(G) = p, where p is an odd prime, if the order of each g ∈ I 2 r {1} is p.

• In [K, Thm. 9.5, p. 42] and in [Tu] it was shown that if char(G) = 3, then G splits.
• In [M] it was shown that if the exponent of the point stabilizer is 3 or 6, then G splits.

Using the above terminology, we can now rephrase Theorem 1.3 as follows.

Theorem A.3. Every Frobenius or regular permutation group which is not sharply
2-transitive, and whose involutions do not have any fixed point, has a non-split sharply
2-transitive extension of characteristic 2.

Here, by an “extension” we mean an extension of both the given set and the given permu-
tation group.
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