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Abstract. We study the derived representation scheme DRepn(A) parametrizing the n-dimensional
representations of an associative algebra A over a field of characteristic zero. We show that the
homology of DRepn(A) is isomorphic to the Chevalley–Eilenberg homology of the current Lie
coalgebra gl∗n(C̄) defined over a Koszul dual coalgebra of A. This gives a conceptual explanation
to some of the main results of [BKR] and [BR1], relating them (via Koszul duality) to classical
theorems on (co)homology of current Lie algebras gln(A). We extend the above isomorphism to
representation schemes of Lie algebras: for a finite-dimensional reductive Lie algebra g, we define
the derived affine scheme DRepg(a) parametrizing the representations (in g) of a Lie algebra a; we
show that the homology of DRepg(a) is isomorphic to the Chevalley–Eilenberg homology of the
Lie coalgebra g∗(C̄), where C is a cocommutative DG coalgebra Koszul dual to the Lie algebra a.
We construct a canonical DG algebra map 8g(a) : DRepg(a)

G
→ DReph(a)

W , relating the
G-invariant part of representation homology of a Lie algebra a in g to the W -invariant part of
representation homology of a in a Cartan subalgebra of g. We call this map the derived Harish-
Chandra homomorphism as it is a natural homological extension of the classical Harish-Chandra
restriction map.

We conjecture that, for a two-dimensional abelian Lie algebra a, the derived Harish-Chandra
homomorphism is a quasi-isomorphism. We provide some evidence for this conjecture, including
proofs for gl2 and sl2 as well as for gln, sln, son and sp2n in the inductive limit as n → ∞. For
any complex reductive Lie algebra g, we compute the Euler characteristic of DRepg(a)

G in terms
of matrix integrals over G and compare it to the Euler characteristic of DReph(a)

W . This yields
an interesting combinatorial identity, which we prove for gln and sln (for all n). Our identity is
analogous to the classical Macdonald identity, and our quasi-isomorphism conjecture is analogous
to the strong Macdonald conjecture proposed in [H1, F] and proved in [FGT]. We explain this
analogy by giving a new homological interpretation of Macdonald’s conjectures in terms of derived
representation schemes, parallel to our Harish-Chandra quasi-isomorphism conjecture.
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1. Introduction

This paper is a sequel to [BKR] and [BR1] (see also [BFR]), where we study the derived
representation scheme DRepn(A) parametrizing the n-dimensional representations of an
associative algebra A over a field k of characteristic 0. This scheme is constructed in
[BKR] in an abstract way by extending the classical representation functor Repn(–) to
the category of differential graded (DG) algebras and deriving it in the sense of non-
abelian homological algebra [Q1, DS]. The derived scheme DRepn(A) is represented by
a commutative DG algebra which (to simplify the notation) we also denote by DRepn(A).
The DG algebra DRepn(A) is well defined up to homotopy; its homology H•[DRepn(A)]
is an invariant of A, which we call the (n-dimensional) representation homology.

From the very beginning, it was clear that representation homology must be somehow
related (dual) to the Chevalley–Eilenberg homology of matrix Lie algebras but the precise
form of this relation has been elusive. The first goal of the present paper is to clarify the
relation between representation homology and Lie algebra (co)homology and offer a sim-
ple explanation of the formalism developed in [BKR, BR1]. Our starting point is a basic
principle of homological algebra called Koszul duality. In concrete terms, it can be stated
as follows. Associated to a (nonunital or augmented) algebra A is a coassociative cofree
DG coalgebra BA called the bar construction [EM]. Any natural construction C(A) on
algebras can be formally dualized (by reversing the arrows) to give the corresponding
construction for coalgebras. When applied to BA, this dual coalgebra construction gives
a natural homological construction for A which we call the Koszul dual of C(A). Many
interesting complexes and homological structures related to associative algebras arise in
this way. For example, the Connes–Tsygan complex CC(A) defining the cyclic homol-
ogy of an algebra A can be identified (up to shift in degree) with the cocommutator
subspace of BA, which is the Koszul dual construction of the universal algebra trace
A � A/[A,A]. The cyclic bicomplex (originally introduced in [T] and [LQ] to explain
the periodicity properties of cyclic homology) can be interpreted as the Koszul dual of a
noncommutative de Rham complex X(A) = [· · · → A→ �1

A,\ → A→ �1
A,\ → · · · ]

called the periodic X-complex of A (see [Q3]). Another example (unrelated to cyclic
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homology) is Stasheff’s construction of the Gerstenhaber bracket on Hochschild coho-
mology HH•(A,A) of an algebra A: this bracket turns out to be the Koszul dual of the
usual Lie bracket on the space Der(A) of derivations of A (see [St]).

The main observation of the present paper is that DRepn(A) is the Koszul dual of the
classical Chevalley–Eilenberg complex C(gln(A); k) computing homology of the current
Lie algebra gln(A). Recall that, for any Lie algebra g, the Chevalley–Eilenberg complex
C(g; k) has a natural structure of a cocommutative DG coalgebra. The dual construction—
the Chevalley–Eilenberg complex Cc(G; k) of a Lie coalgebra G—has therefore the struc-
ture of a commutative DG algebra. We show (see Theorem 3.2) that, for any augmented
DG algebra A, there is a natural isomorphism of commutative DG algebras

DRepn(A) ∼= Cc(gl∗n(B̄A); k), (1.1)

where B̄A is the reduced bar construction of A and gl∗n is the Lie coalgebra (linearly)
dual to the matrix Lie algebra gln. Furthermore, under (1.1), the GLn-invariant part
of DRepn(A) (see Section 2.4.2 for a precise definition) corresponds to the relative
Chevalley–Eilenberg complex of the natural Lie coalgebra map gl∗n(BA)� gl∗n(k):

DRepn(A)
GL ∼= Cc(gl∗n(BA), gl∗n(k); k), (1.2)

which is Koszul dual to the relative Chevalley–Eilenberg complex C(gln(A), gln(k); k) of
the Lie algebra inclusion gln(k) ⊂ gln(A).

As a consequence of (1.1), the representation homology of an algebraA is isomorphic
to the Chevalley–Eilenberg homology of the matrix Lie coalgebra gl∗n(B̄A). This gives
a conceptual explanation to many results of [BKR] and [BR1]. For example, the derived
character maps Trn(A)• : HC•(A) → H•[DRepn(A)] constructed in [BKR] are Koszul
dual to the natural trace maps H•(gln(A); k)→ HC•−1(A) relating homology of matrix
Lie algebras to cyclic homology, the degree shift in cyclic homology being explained
by the fact that HC•(BA) ∼= HC•−1(A). The stabilization theorem for representation
homology proved in [BR1] is Koszul dual to the classical theorem of Tsygan [T] and
Loday–Quillen [LQ], although one result does not automatically follow from the other
(see Section 3.3).

It is important to note that, in (1.1) and (1.2), we can replace BA by any DG coal-
gebra C which is Koszul dual to the algebra A (see Section 2.3). In fact, the bar con-
struction BA is the universal Koszul dual coalgebra of A but it is often convenient to
work with other coalgebras. For example, if A is a quadratic Koszul algebra, we can re-
place BA by the coalgebra (A!)∗ (the linear dual of the graded Koszul dual algebra of A),
which is known to be a minimal model for A (see [LV]). In this case, we have natural
isomorphisms (see Section 3.4)

DRepn(A) ∼= C−•(gln(Ā!); k), DRepn(A)
GL ∼= C−•(gln(A!), gl(k); k),

where C−• denotes the (absolute and relative) cochain complexes of the Lie algebra
gln(A

!) equipped with homological grading.
Another natural way to generalize (1.1) and (1.2) is to replace gln by an arbi-

trary finite-dimensional reductive Lie algebra g. In place of the derived representation
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scheme DRepn(A), one should consider its Lie analogue: the derived scheme DRepg(a)
parametrizing the representations of a given Lie algebra a in g. By a representation of a
in g we simply mean a Lie algebra homomorphism a → g, and DRepg(a) is defined by
extending the representation functor Repg(–) to the category of DG Lie algebras DGLAk
and deriving it using a natural model structure on DGLAk . For an arbitrary g, the isomor-
phisms (1.1) and (1.2) then become (see Theorem 6.7)1

DRepg(a) ∼= Cc(g∗(C̄); k), DRepg(a)
G ∼= Cc(g∗(C), g∗; k), (1.3)

where C is a cocommutative DG coalgebra Koszul dual to the Lie algebra a.
Now, let h be a Cartan subalgebra of g, and W the corresponding Weyl group. The

natural inclusion h ↪→ g gives a morphism of Lie coalgebras g∗ � h∗, which, in turn,
extends to a map of commutative DG algebras Cc(g∗(C), g∗; k)� Cc(h∗(C), h∗; k). The
image of this last map consists of chains that are invariant under the action of W (cf.
Proposition 7.1): thus, in combination with (1.3), we get a natural map

8g(a) : DRepg(a)
G
→ Cc(h∗(C), h∗; k)W . (1.4)

More formally, 8g(a) can be defined as DRepg(a)
G
→ DReph(a)

W , which is a func-
torial derived extension of the restriction map k[Repg(a)]

G
→ k[Reph(a)]

W . In the
simplest case, when a is a one-dimensional Lie algebra, DRepg(a) ∼= k[g], and (1.4)
becomes k[g]G → k[h]W , which is the classical Harish-Chandra homomorphism2 (see
Example 7.2). In general, we will refer to (1.4) as the derived Harish-Chandra homomor-
phism. By a well-known theorem of Chevalley [C], the classical Harish-Chandra homo-
morphism is actually an isomorphism:

k[g]G
∼
→ k[h]W . (1.5)

It is therefore a natural question to ask if the map (1.4) is a quasi-isomorphism in general.
In the present paper, we address this question for finite-dimensional abelian Lie al-

gebras. Note that if a is abelian, a choice of linear basis in a identifies Repg(a) with the
commuting scheme of the reductive Lie algebra g (cf. [R]). Hence, in this case, DRepg(a)
should be thought of as the derived commuting scheme of g. We show that (1.4) cannot
be a quasi-isomorphism (for all g) if dimk(a) ≥ 3 (cf. Section 5.2); on the positive side,
we expect that the following is true (see Conjecture 8.1):

If a is abelian and dimk(a) = 2, then 8g(a) is a quasi-isomorphism. (1.6)

In the case of gln, this implies (see Conjecture 4.6)

DRepn(k[x, y])
GL ∼= k[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn]

Sn ,

1 The derived schemes DRepn(A) and DRepg(a) are examples of a general operadic construction
that we sketch in the Appendix. The isomorphisms (1.1)–(1.3) are special cases of Theorem A.4
proved in the Appendix.

2 Harish-Chandra actually defined a homomorphism D(g)G → D(h)W of rings of invariant
differential operators that reduces to k[g]G → k[h]W on the zero order differential operators
(see [HC]).
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where the polynomial ring on the right is homologically graded so that the variables
x1, . . . , xn and y1, . . . , yn have degree 0, the variables θ1, . . . , θn have degree 1, and
the differential is identically zero. The symmetric group Sn acts on this polynomial ring
diagonally by permuting the triples (xi, yi, θi).

Conjecture (1.6) can be restated in elementary terms, without using the language of
derived schemes. To this end, consider the graded commutative algebra k[g× g] ⊗

∧
g∗,

where k[g×g] is the ring of polynomial functions on g×g assigned homological degree 0,
and

∧
g∗ is the exterior algebra of the dual Lie algebra g∗ assigned homological degree 1.

The differential on k[g× g] ⊗
∧
g∗ is defined by

dϕ(ξ, η) := ϕ([ξ, η]), ∀(ξ, η) ∈ g× g, ∀ϕ ∈ g∗.

The DG algebra (k[g × g] ⊗
∧
g∗, d) represents the derived scheme DRepg(a) in the

homotopy category of commutative DG algebras, and the derived Harish-Chandra homo-
morphism 8g(a) is given in this case by the natural restriction map (see Proposition 8.2)

(k[g× g] ⊗
∧
g∗)G→ (k[h× h] ⊗

∧
h∗)W . (1.7)

Conjecture (1.6) is thus equivalent to the claim that (1.7) is a quasi-isomorphism.
Our second goal in this paper is to provide evidence for conjecture (1.6) and discuss

some of its implications. First, in the case of gln, we prove that (1.6) holds for n = 2
and n = ∞ (see Theorem 4.7 and Theorem 4.10 respectively); we also prove that the
map H•(8gln) induced by (1.4) on homology is surjective for all n (see Theorem 4.10).
Second, we show (see Theorem 8.8) that our conjecture for sln is equivalent to that for
gln (and hence holds for sl2). Using a version of stabilization theorem of [BR1], we also
verify (1.6) for the orthogonal and symplectic Lie algebras, son and sp2n, in the inductive
limit as n→∞ (see Section 8.5). Finally, we compute the weighted Euler characteristics
of both sides of (1.4) and show that (1.6) implies the following constant term identity (see
Conjecture 8.5):

(1− qt)l

(1− q)l(1− t)l
CT
{∏
α∈R

(1− qteα)(1− eα)
(1− qeα)(1− teα)

}
=

∑
w∈W

det(1− qtw)
det(1− qw) det(1− tw)

.

(1.8)

Here R is a system of roots of the Lie algebra g, l := dimk(h) is its rank and CT :
Z[Q] → Z is the constant term map defined on the group ring of the root lattice of R
(see (8.4)). The determinants on the right are taken in the natural (reflection) represen-
tation of W on h. One of our main results (Theorem 5.5) is that the identity (1.8) holds
for gln and sln for all n, in which cases it can be described in purely combinatorial terms
(see (5.2) and also Remark 3 after Theorem 5.5).

If k = C, the identity (1.8) can be written in a more symmetric, integral form:∫
G

det(1− qt Ad g)
det(1− q Ad g) det(1− t Ad g)

dg =
1
|W |

∑
w∈W

det(1− qtw)
det(1− qw) det(1− tw)

. (1.9)
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Here the integration is taken over a real compact form of the complex Lie groupG, which
is equipped with the invariant Haar measure dg normalized so that

∫
G
dg = 1. Notice

that if we specialize t = 0, (1.9) becomes the well-known identity∫
G

dg

det(1− q Ad g)
=

l∏
i=1

1
1− qdi

, (1.10)

which exhibits the equality of the Poincaré series of both sides of the Chevalley isomor-
phism (1.5). The Chevalley isomorphism (1.5) has a natural ‘odd’ analogue: the Hopf–
Koszul–Samelson isomorphism (

∧
g)G ∼=

∧
(Primg), identifying the space of invariants

in the exterior algebra of g with the exterior algebra of its subspace of primitive elements
(see, e.g., [Me, Chap. 10]). At the level of Poincaré series, the Hopf–Koszul–Samelson
isomorphism gives the identity∫

G

det(1+ q Ad g) dg =
l∏
i=1

(1+ q2di−1), (1.11)

which may be viewed as an ‘odd’ analogue of (1.10). In his original paper [M] on Mac-
donald conjectures, I. Macdonald observed that (1.11) arises as a specialization of his
constant term identity3

1
|W |

CT
{∏
n≥0

∏
α∈R

1− qneα

1− qnteα

}
=

∏
n≥0

l∏
i=1

(1− qnt)(1− qn+1tdi−1)

(1− qn+1)(1− qntdi )
, (1.12)

and he asked (cf. [M, Remark 2, p. 997]) whether (1.10) admits a (q, t)-generalization
analogous to (1.12). It seems that (1.8) is an answer to Macdonald’s question.

The above analogy raises the question if the Macdonald identity (1.12) has a homo-
logical origin similar to that of (1.8). Building on [M], Hanlon [H1, H2] (and indepedently
Feigin [F]) gave an interpretation of (1.12) in terms of cohomology of certain nilpotent
Lie algebras: they made a precise conjecture (cf. [H1, Conjecture 1.5]) on the structure
of this cohomology that entails (1.12). The Hanlon–Feigin conjecture (also known as the
strong Macdonald conjecture) was proved in full generality by Fishel, Grojnowski and
Teleman [FGT]. In the present paper, we will give a different interpretation of the Mac-
donald identity that clarifies its relation to our identity (1.8).

We begin with a general remark. Working with derived representation schemes
DRepg(a), it is natural to put on a a (homological) grading: indeed, even when Repg(a)
is trivial (for example, when the grading on a does not allow any homomorphisms a→ g
other than zero), the derived scheme DRepg(a) may have an interesting (and quite non-
trivial) structure. If a is abelian and dimk(a) = 2, putting a grading on a amounts to split-
ting it into the sum of two one-dimensional subspaces of homological degrees p and r (in
this case we will write a = ap,r to emphasize the grading). It turns out that the structure
of DRepg(ap,r) essentially depends only on the parities of p and r (see Proposition 9.6),

3 The constant term identity (1.12) as well as its generalization (the so-called inner product iden-
tity) was proved for an arbitrary root system by I. Cherednik (see [Ch] and also [Kir]).
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and therefore there are three possibilities, which we refer to as the even, mixed and odd
cases (depending on whether p and r are both even, have opposite parities or are both
odd).

In the even case, we show that conjecture (1.6) holds for ap,r if and only if it holds
for a with trivial grading (i.e., p = r = 0); thus, in this case, we expect the Harish-
Chandra homomorphism (1.4) to be a quasi-isomorphism, and the resulting constant term
identity is (1.8).

In the mixed case, the situation seems quite different: the derived Harish-Chandra ho-
momorphism is no longer a quasi-isomorphism, and we need to construct a new map. To
explain the construction we return for a moment to the general situation. Drinfeld [Dr] in-
troduced a natural functor on the category of Lie algebras that associates to a Lie algebra a
the universal invariant bilinear form

λ(a) = Sym2
k(a)/〈[x, y] · z− x · [y, z] : x, y, z ∈ a〉.

Following a suggestion of Kontsevich [K], Getzler and Kapranov [GK] defined cyclic ho-
mology for Lie algebras (and more generally, for algebras over an arbitrary cyclic operad)
as the nonabelian derived functor of the functor λ. Our starting point is a natural exten-
sion of the Drinfeld–Getzler–Kapranov construction: for an integer d ≥ 1, we consider
the functor λ(d) : DGLAk → Comk assigning to a Lie algebra a (the target of) the universal
invariant multilinear form on a of degree d (so that λ(2) = λ). We prove (see Theorem 7.3)
that, for any d , this functor has a left derived functor Lλ(d) : Ho(DGLAk)→ Ho(Comk) de-
fined on the homotopy category of DG Lie algebras, and we let HC(d)• (Lie, a) denote
the homology of Lλ(d)(a). The meaning of this construction is clarified by Theorem 7.4,
which asserts that the (reduced) cyclic homology of the universal enveloping algebra U(a)
of any Lie algebra a has a canonical Hodge-type decomposition4

HC•(Ua) =
⊕
d≥1

HC(d)• (Lie, a). (1.13)

The decomposition (1.13) may be viewed as a Koszul dual of the classical Hodge decom-
position of the cyclic homology of commutative algebras. In particular, as in the case of
commutative algebras (cf. [BV]), there are Adams operations ψp on HC•(Ua), whose
(graded) eigenspaces are precisely HC(d)• (Lie, a) (see Section 7.2.2). Next, for any ho-
mogeneous invariant polynomial on g of degree d , we construct natural trace maps (see
Section 7.3)

Tr(d)g (a) : Lλ(d)(a)→ DRepg(a)
G,

that are analogues of the derived character maps of [BKR] for Lie algebras. Letting d run
over the set {d1, . . . , dl} of fundamental degrees of g, we then define the homomorphism
of commutative DG algebras

Symk

[ l⊕
i=1

Tr(di )g (a)
]
: Symk

[ l⊕
i=1

Lλ(di )(a)
]
→ DRepg(a)

G, (1.14)

4 This provides a (partial) answer to a question of V. Ginzburg about the existence of Hodge
decomposition for cyclic homology of noncommutative algebras.
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which we call the Drinfeld trace map. In the simplest case when a is a one-dimensional
Lie algebra, the Drinfeld trace map coincides with the inverse of the Chevalley isomor-
phism (1.5) (see Example 7.10).

Returning to the derived commuting schemes, we may now state our last main re-
sult (see Theorem 9.2): for the two-dimensional abelian Lie algebra a = ap,r graded in
such a way that p and r have opposite parities, the Drinfeld trace map (1.14) is a quasi-
isomorphism, and at the level of Euler characteristics, it gives precisely the Macdonald
identity (1.12). Unfortunately, our proof of Theorem 9.2 is not entirely self-contained:
apart from results proved in this paper, it relies on one of the main theorems of [FGT].
Still, we believe that our interpretation of the Macdonald identity in terms of representa-
tion homology is, in some respects, more natural than the classical one in terms of Lie
cohomology, and at the very least, it clarifies the relation between (1.12) and (1.8). We
would also like to mention an interesting recent paper [Kh] which gives yet another homo-
logical interpretation of Macdonald’s theory in terms of representation theory of current
Lie algebras. It seems that our approach is related to that of [Kh] in a natural way (via
Koszul duality at the level of derived module categories); it would be interesting to study
this relation, especially with a view towards understanding (1.8).

Finally, we have to mention that, in the odd case (when p and r are both odd), the
structure of the derived commuting scheme DRepg(ap,r)

G remains mysterious to us. We
do not know whether there exists a numerical identity analogous to (1.8) and (1.12) in
this case.

The paper is organized as follows. Section 2 is preliminary: here, we recall basic
facts of differential homological algebra and review the construction of derived repre-
sentation schemes from [BKR] and [BR1]. In Section 3, we prove our first main result,
Theorem 3.2, which relates representation homology to Lie (co)homology, and discuss its
implications. In Section 4, we construct the derived Harish-Chandra homomorphism for
representation schemes of associative algebras and state our main conjecture for gln (see
Conjecture 4.6). The key results of this section are Theorem 4.7 (proof of Conjecture 4.6
for n = 2), Theorem 4.10 (surjectivity of the Harish-Chandra homomorphism on homol-
ogy for all n and bijectivity for n = ∞) and Theorem 4.13 (proof of the analog of Conjec-
ture 4.6 for q-polynomial algebras). Next, in Section 5, we compute Euler characteristics
and deduce our constant term identity in the case of gln (see (5.2)). The main result of
this section is Theorem 5.5, which proves the constant term identity for gln for all n. In
Section 6, we define representation homology for an arbitrary (reductive) Lie algebra g.
The main result of this section, Theorem 6.7, is a natural generalization of Theorem 3.2.
In Section 7, we construct the derived Harish-Chandra homomorphism and the Drinfeld
trace maps for representation schemes of Lie algebras. The main result is Theorem 7.4
that gives a Hodge decomposition for the cyclic homology of the universal enveloping
algebra of any DG Lie algebra. In Section 8, we consider the derived commuting variety
of a reductive Lie algebra; we state our quasi-isomorphism conjecture in full generality
(Conjecture 8.1) and deduce the corresponding constant term identity (Conjecture 8.5);
we also provide some evidence in favor of Conjecture 8.1, including its verification for
orthogonal and symplectic Lie algebras in the limit n→∞ (Theorem 8.15). In Section 9,
we explain the relation of our conjectures to the classical Macdonald conjecture [M] and
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the strong Macdonald conjecture of [H1] and [FGT]. The main result of this section is
Theorem 9.2 showing that the Drinfeld trace map is a quasi-isomorphism in the mixed
case. Finally, in the Appendix, we generalize our construction of derived representation
schemes to algebras over an arbitrary binary quadratic operad. This puts some of the main
results of present paper in a proper perspective.

2. Preliminaries

In this section, we introduce notation and recall some basic results from the literature.
In particular, we review the construction of derived representation schemes and derived
character maps from [BKR].

2.1. Notation and conventions

Throughout this paper, k denotes a base field of characteristic zero. An unadorned tensor
product ⊗ stands for the tensor product ⊗k over k. An algebra means an associative k-
algebra with 1; the category of such algebras is denoted Algk . Unless stated otherwise,
all differential graded (DG) objects are equipped with differentials of degree −1, and
the Koszul sign rule is systematically used. The homological degree of a homogeneous
element x in a graded vector space V will often be denoted by |x|. If V is a graded k-vector
space, we denote by TkV its tensor algebra and by Symk(V ) its graded symmetric algebra.
Thus, Symk(V ) = Symk(Vev) ⊗

∧
k(Vodd), where Vev and Vodd are the even and odd

components of V respectively. Symd(V ) will denote the d-th symmetric power of V .
Thus, Symd(V ) =

⊕
p+q=d Symp(Vev) ⊗

∧q(Vodd) and Symk(V ) =
⊕
∞

d=0 Symd(V ).
The graded symmetric coalgebra on V will be denoted by Symc(V ). For V,W ∈ Comk ,
we define Hom(V ,W) to be the complex whose space of p-chains is

Hom(V ,W)p :=
∏
n

Homk(Vn,Wn+p)

and the differential is given by df := dW ◦ f − (−1)pf ◦ dV , where f ∈ Hom(V ,W)p.

2.2. The bar/cobar construction

In this and the next section, we briefly recall some classical results from differential ho-
mological algebra which are needed for the present paper. An excellent modern reference
for this material is [LV].

2.2.1. DG algebras and coalgebras. Let DGAk denote the category of associative unital
DG algebras over k with differential of degree −1. Recall that A ∈ DGAk is augmented
if it is given together with a DG algebra map ε : A → k. A morphism of augmented
algebras (A, εA)→ (B, εB) is a morphism f : A→ B in DGAk satisfying εB ◦ f = εA.
We denote the category of augmented DG algebras by DGAk/k . This category is known to
be equivalent to the category DGA of nonunital DG algebras: the mutually inverse functors
are given by

B ′← [ B, DGAk/k � DGA, A 7→ Ā
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where Ā := Ker(ε) is the kernel of the augmentation map of A and B ′ := k ⊕ B is
the unitalization of B equipped with the canonical projection ε : B ′ → k. Similarly,
we define the (equivalent) categories DGCAk/k and DGCA of commutative DG algebras:
augmented and nonunital, respectively.

Let DGC (resp., DGCk) denote the category of coassociative (resp., coassociative couni-
tal) DG coalgebras over k. We shall often work with augmented coassociative counital
DG coalgebras C which are conilpotent in the sense that

C̄ =
⋃
n≥2

Ker [C
1(n)

−−→ C⊗n � C̄⊗n] (2.1)

where 1(n) denotes the n-th iteration of the comultiplication map 1C : C → C ⊗ C

and C̄ is the cokernel of the augmentation map εC : k → C. We denote the category
of such coalgebras by DGCk/k . Similarly, DGCC (resp., DGCCk) will denote the category of
cocommutative (resp., cocommutative counital) DG coalgebras over k, and DGCCk/k will
denote the category of coaugmented conilpotent cocommutative DG coalgebras over k.

2.2.2. Twisting cochains. Given an algebra R ∈ DGAk/k and a coalgebra C ∈ DGCk/k , we
define a twisting cochain τ : C → R to be a linear map of degree −1 satisfying

dRτ + τdC +mR(τ ⊗ τ)1C = 0, τ ◦ εC = 0, εR ◦ τ = 0,

where dR and dC are the differentials on R and C, andmR is the multiplication map on R.
We write Tw(C,R) for the set of all twisting cochains from C to R. It is easy to show that,
for a fixed algebra R, the functor

Tw(–, R) : DGCk/k → Sets, C 7→ Tw(C,R),

is representable; the corresponding coalgebra B(R) ∈ DGCk/k is called the bar construc-
tion ofR: it is defined as the tensor coalgebra Tk(R̄[1])with differential lifting dR andmR .
Dually, for a fixed coalgebra C, the functor

Tw(C, –) : DGAk/k → Sets, R 7→ Tw(C,R),

is corepresentable; the corresponding algebra �(C) ∈ DGAk/k is called the cobar con-
struction of C: it is defined as the tensor algebra Tk(C[−1]) with differential lifting dC
and 1C . Thus, we have canonical isomorphisms

HomDGAk/k (�(C), R) = Tw(C,R) = HomDGCk/k (C,B(R)) (2.2)

showing that � : DGCk/k � DGAk/k : B are adjoint functors.

2.2.3. Koszul–Moore equivalence. The categories DGAk and DGCAk carry natural model
structures (see [Hi]). The weak equivalences in these model categories are the quasi-
isomorphisms and the fibrations are the degreewise surjective maps. The cofibrations are
characterized in abstract terms: as morphisms satisfying the left lifting property with re-
spect to the acyclic fibrations. The model structures on DGAk and DGCAk naturally induce
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model structures on the corresponding categories of augmented algebras (cf. [DS, 3.10]).
In particular, a morphism f : A → B in DGAk/k is a weak equivalence (resp., fibration
or cofibration) iff f : A → B is a weak equivalence (resp., fibration or cofibration) in
DGAk . All objects in DGAk and DGAk/k are fibrant. The cofibrant objects in DGAk/k can
be described more explicitly than in DGAk: every cofibrant A ∈ DGAk/k is isomorphic to
a retract of �(C), where �(C) is the cobar construction of an augmented conilpotent
coassociative DG coalgebra C (see [Ke, Theorem 4.3]).

There is a dual model structure on DGCk/k , where the weak equivalences are the
morphisms f such that �(f ) is a quasi-isomorphism. A well-known result, due to
J. C. Moore, asserts that the model categories DGAk/k and DGCk/k are Quillen equivalent:
more precisely,

Theorem 2.1 ([Mo]). The pair of adjoint functors

� : DGCk/k � DGAk/k : B (2.3)

is a Quillen equivalence. In particular, the functors (2.3) induce mutually inverse equiva-
lences between the homotopy categories

L� : Ho(DGCk/k) ∼= Ho(DGAk/k) : RB.

The proof of this theorem can be found, for example, in [LV].

2.3. Koszul duality

Let C ∈ DGCk/k and letR ∈ DGAk/k . Let Mod(R) denote the category of right DG modules
overR, and dually let CoMod(C) denote the category of right DG comodules overC which
are conilpotent in a sense similar to (2.1). Given a twisting cochain τ ∈ Tw(C,R) one can
define the functors

–⊗τ C : Mod(R)� CoMod(C) : –⊗τ R

called the twisted tensor products. Specifically, if M ∈ Mod(R), then M ⊗τ C is defined
to be the DG C-comodule whose underlying graded comodule is M ⊗k C and whose
differential is given by

d = dM ⊗ Id+ Id⊗ dC + (m⊗ Id)(Id⊗ τ ⊗ Id)(Id⊗1).

Similarly, for a DG comodule N ∈ CoMod(C), one defines a DG R-module N ⊗τ R. In
the same fashion, for a DG bicomodule N ∈ Bicomod(C), one defines a DG R-bimodule
Rτ ⊗N ⊗τ R.

Next, recall that the derived category D(R) of DG modules is obtained by local-
izing Mod(R) at the class of all quasi-isomorphisms. To introduce the dual notion for
DG comodules one has to replace the quasi-isomorphisms by a more restricted class of
morphisms in CoMod(C). We call a morphism f in CoMod(C) a weak equivalence if
f ⊗τC �(C) is a quasi-isomorphism in Mod�(C), where τC : C → �(C) is the universal
twisting cochain corresponding to the identity map under (2.2). The coderived category
Dc(C) of DG comodules is then defined by localizing CoMod(C) at the class of weak
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equivalences. It is easy to check that the twisted tensor products induce a pair of adjoint
functors

–⊗τ C : D(R)� Dc(C) : –⊗τ R. (2.4)

The following theorem characterizes the class of twisting cochains for which (2.4) are
equivalences.

Theorem 2.2 (see [LV, Theorem 2.3.1]). For τ ∈ Tw(C,R), the following are equiva-
lent:

(i) the functors (2.4) are mutually inverse equivalences of categories;
(ii) the complex C ⊗τ R is acyclic;

(iii) the complex R ⊗τ C is acyclic;
(iv) the natural morphism R ⊗τ C ⊗τ R

∼
→ R is a quasi-isomorphism;

(v) the morphism �(C)
∼
→ R corresponding to τ under (2.2) is a quasi-isomorphism

in DGAk/k;
(vi) the morphism C

∼
→ B(R) corresponding to τ under (2.2) is a weak equivalence

in DGCk/k .

If conditions (i)–(vi) hold, the DG algebra R is determined by C up to isomorphism
in Ho(DGAk/k) and the DG coalgebra C is determined by R up to isomorphism in
Ho(DGCk/k).

A twisting cochain τ ∈ Tw(C,R) satisfying the conditions of Theorem 2.2 is called
acyclic. In this case, the DG coalgebra C is called Koszul dual to the DG algebra R and
R is called Koszul dual to C.

2.4. Derived representation schemes

Derived representation schemes were originally discussed in [CK] as part of a general
program of deriving Quot schemes and other moduli spaces in algebraic geometry. A dif-
ferent, more algebraic approach was developed in [BKR], where it was shown, among
other things, that the representation functor is a (left) Quillen functor on the model cate-
gory of associative DG algebras. In this section, we briefly review the basic construction
of [BKR].

2.4.1. The representation functor. For an integer n ≥ 1, let Mn(k) denote the algebra
of n × n matrices with entries in k. If B ∈ DGAk , we write Mn(B) :=Mn(k)⊗ B; this
gives a functor on the category of DG algebras: Mn(–) : DGAk → DGAk . Next, we define

n
√

– : DGAk → DGAk, A 7→ [A ∗k Mn(k)]
Mn(k), (2.5)

where A ∗k Mn(k) is the free product (coproduct) in DGAk and [. . .]Mn(k) denotes the
(graded) centralizer of Mn(k) as the subalgebra in A ∗k Mn(k).

The following proposition is a generalization (to DG algebras) of a classical result of
G. Bergman (see [BKR, Proposition 2.1]).

Proposition 2.3. The functor n
√

– is left adjoint to Mn(–).
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Now, let DGCAk be the category of commutative DG algebras. The natural inclusion func-
tor DGCAk → DGAk has an obvious left adjoint given by

(–)ab : DGAk → DGCAk, A 7→ Aab := A/〈[A,A]〉, (2.6)

where 〈[A,A]〉 is the two-sided DG ideal of A generated by the graded commutators.
Combining (2.5) and (2.6), we define

(–)n : DGAk → DGCAk, A 7→ An := (
n
√
A)ab. (2.7)

Then, as a consequence of Proposition 2.3, we get

Theorem 2.4. The functor (–)n is left adjoint to Mn(–) on the category of commutative
DG algebras. Thus, for any A ∈ DGAk , the DG algebra An (co)represents the functor of
points of the affine DG scheme

Repn(A) : DGCAk → Sets, B 7→ HomDGAk (A,Mn(B)), (2.8)

parametrizing the n-dimensional representations of A.

Theorem 2.4 implies that there is a natural bijection

HomDGAk (A,Mn(B)) ∼= HomDGCAk (An, B), (2.9)

functorial in A ∈ DGAk and B ∈ DGCAk . Accordingly, we refer to (2.7) as the functor of
n-dimensional representations, or simply the n-th representation functor on DGAk . Letting
B = An in (2.9), we have a canonical DG algebra map πn : A → Mn(An), called the
universal n-dimensional representation of A.

The algebra An has the following canonical presentation described in [BKR, Sec-
tion 2.4]. Let {eij }ni,j=1 be the basis of elementary matrices in Mn(k). For each a ∈ A,
define the ‘matrix’ elements of a in A ∗k Mn(k) by

aij :=

n∑
k=1

ekiaejk.

Then aij ∈
n
√
A for all i, j = 1, . . . , n, and we also write aij for the corresponding

elements in An.

Lemma 2.5. The algebra An is generated by the elements {aij : a ∈ A} satisfying the
relations

(a + b)ij = aij + bij , (ab)ij =

n∑
k=1

aikbkj , λij = δijλ, ∀a, b ∈ A, λ ∈ k.

The differential on An is determined by the formula d(aij ) = (da)ij . The universal
n-dimensional representation of A is given by

πn : A→Mn(An), a 7→ ‖aij‖.
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In this paper, we will work with augmented DG algebras. Note that if A is augmented,
then An has a natural augmentation εn : An → k coming from (2.7) applied to the
augmentation map of A. This defines a functor DGAk/k → DGCAk/k , which we again
denote by (–)n. On the other hand, the matrix algebra functor can be modified in the
following way:

M′
n(–) : DGCAk/k → DGAk/k, M′

n(B) := k ⊕Mn(B̄). (2.10)

With this modification, Theorem 2.4 holds for augmented DG algebras. Moreover, as a
special case of [BKR, Theorem 2.2], we have

Theorem 2.6. (a) The adjoint functors (–)n : DGAk/k � DGCAk/k : M′
n(–) form a

Quillen pair.
(b) The functor (–)n : DGAk/k → DGCAk/k has a total left derived functor defined by

L(–)n : Ho(DGAk/k)→ Ho(DGCAk/k), A 7→ (QA)n,

where QA ∼� A is any cofibrant resolution of A in DGAk/k .
(c) For any A in DGAk/k and B in DGCAk/k , there is a canonical isomorphism

HomHo(DGCAk/k)(L(A)n, B) ∼= HomHo(DGAk/k)(A,M
′
n(B)).

Definition. Given A ∈ Algk/k , we define DRepn(A) := L(QA)n, where QA ∼� A

is a cofibrant resolution of A in DGAk/k . The homology of DRepn(A) is an augmented
(graded) commutative algebra, which is independent of the choice of resolution (by The-
orem 2.6). We set

H•(A, n) := H•[DRepn(A)] (2.11)

and call (2.11) the n-dimensional representation homology of A.

By [BKR, Theorem 2.5], for any A ∈ Algk , there is a natural isomorphism of algebras

H0(A, n) ∼= An.

Hence DRepn(A) may indeed be viewed as a ‘higher’ derived version of the representa-
tion functor (2.7).

2.4.2. GL-invariants. The group GLn(k) acts naturally on An by DG algebra automor-
phisms. Precisely, each g ∈ GLn(k) defines a unique automorphism of An corresponding
under (2.9) to the composite map

A
πn
−→Mn(An)

Ad(g)
−−−→Mn(An). (2.12)

This action is natural in A and thus defines the functor

(–)GL
n : DGAk/k → DGCAk/k, A 7→ AGLn

n , (2.13)

which is a subfunctor of the representation functor (–)n. On the other hand, there is a
natural action of GLn(k) on the n-th representation homology of A, so we can form the
invariant subalgebra H•(A, n)GLn . The next theorem, which is a consequence of [BKR,
Theorem 2.6], shows that these two constructions agree.
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Theorem 2.7. (a) The functor (–)GL
n has a total left derived functor

L[(–)GL
n ] : Ho(DGAk/k)→ Ho(DGCAk/k), A 7→ (QA)GL

n .

(b) For any A ∈ DGAk/k , there is a natural isomorphism of graded algebras

H•[L(A)GL
n ]
∼= H•(A, n)GLn .

Abusing notation we will often write DRepn(A)
GL instead of L(A)GL

n for any DG alge-
bra A.

2.4.3. Trace maps. Recall that, for an augmented DG algebra R ∈ DGAk/k , we denote by
R̄ ⊂ R the kernel of the augmentation map of R. Now, we set

R\ := R̄/[R̄, R̄] ∼= R/(k + [R,R]),

where [R̄, R̄] is the subcomplex of R̄ spanned by the commutators in R̄. This defines the
functor

(–)\ : DGAk/k → Comk, R 7→ R\, (2.14)

which we call the (reduced) cyclic functor.
The next theorem, which is a well-known result due to Feigin and Tsygan, justifies

our terminology.

Theorem 2.8 ([FT1]). (a) The functor (2.14) has a total left derived functor

L(–)\ : Ho(DGAk/k)→ Ho(Comk), A 7→ (QA)\,

where QA is a(ny) cofibrant resolution of A in DGAk/k .
(b) For A ∈ Algk/k , there is a natural isomorphism of graded vector spaces

H•[L(A)\] ∼= HC•(A),

where HC•(A) denotes the (reduced) cyclic homology of A.

For a conceptual proof of Theorem 2.8 we refer to [BKR, Section 3].
Now, fix n ≥ 1 and, for R ∈ DGAk , consider the composite map

R
πn
−→Mn(Rn)

Tr
−→ Rn

where πn is the universal representation of R and Tr is the usual matrix trace. This map
factors through R\, and its image lies in RGL

n . Hence, we get a morphism of complexes

Trn(R)• : R/[R,R] → RGL
n , (2.15)

which extends by multiplicativity to a map of graded commutative algebras

Sym Trn(R)• : Sym(R/[R,R])→ RGL
n . (2.16)
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If R ∈ DGAk/k is augmented, the natural inclusion R̄ ↪→ R induces a morphism of
complexes R\ → R/[R,R]. Composed with (2.15), this defines a morphism of functors
that extends to a morphism of the derived functors from Ho(DGAk/k) to Ho(Comk):

LTrn : L(–)\→ L(–)GL
n . (2.17)

Now, for an ordinary k-algebra A ∈ Algk/k , applying (2.17) to a cofibrant resolution
R = QA ofA in DGAk/k , taking homology and using the identification of Theorem 2.8(b),
we get natural maps

Trn(A)• : HC•(A)→ H•(A, n)GLn , ∀n ≥ 0. (2.18)

In degree zero, Trn(A)0 is induced by the obvious linear map A → k[Repn(A)]
GLn de-

fined by taking characters of representations. Thus, the higher components of (2.18) may
be thought of as derived (or higher) characters of n-dimensional representations of A. For
each n ≥ 1, these characters assemble to a single homomorphism of graded commutative
algebras which we denote

Sym Trn(A)• : Sym[HC•(A)] → H•(A, n)GL.

An explicit formula evaluating Trn(A)• on cyclic chains is given in [BKR, Section 4.3].

3. Representation homology vs Lie (co)homology

The main result of this section (Theorem 3.2) identifies the representation homology of a
DG algebra A with homology of the Lie coalgebra gl∗n(C) defined over a Koszul dual DG
coalgebra C. This crucial observation is the starting point for the present paper.

3.1. Chevalley–Eilenberg complexes

First, we recall the definition of the classical Chevalley–Eilenberg complex (cf. [Q2, Ap-
pendix B]). If g is a DG Lie algebra, the Chevalley–Eilenberg complex of g with trivial
coefficients is the (coaugmented, conilpotent) cocommutative DG coalgebra

C(g; k) := (Symc(g[1]), d1 + d2),

where d1 is induced by the differential on g, and d2 is the coderivation whose corestriction
to g[1] is given by the composite map

Sym2(g[1]) ∼= k[1] ⊗ k[1] ⊗
∧2 g

µ1⊗[–,–]
−−−−−→ k[1] ⊗ g ∼= g[1].

Here, µ1 : k[1] ⊗ k[1] → k[1] is the natural map of degree −1 and [–, –] is the Lie
bracket on g. If h ⊂ g is a DG Lie subalgebra, the relative Chevalley–Eilenberg complex
C(g, h; k) is the DG coalgebra (Symc

[(g/h)[1]], d1 + d2)h, where (–)h denotes the sub-
complex of h-coinvariants in Symc

[(g/h)[1]]. We denote the homology of the complex
C(g; k) (resp., C(g, h; k)) by H•(g; k) (resp., H•(g, h; k)).
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Now, dually, if G is a DG Lie coalgebra with Lie cobracket ]–[: G →
∧2 G, the

Chevalley–Eilenberg complex of G is defined to be the (augmented) commutative DG
algebra

Cc(G; k) := (Sym(G[−1]), d1 + d2),

where d1 is induced by the differential on G, and d2|G[−1] is given by the composite map

G[−1] ∼= k[−1] ⊗G
1−1⊗]–[
−−−−−→ k[−1] ⊗ k[−1] ⊗

∧2 G ∼= Sym2(G[−1]). (3.1)

Here, 1−1 : k[−1] → k[−1] ⊗ k[−1] takes 1k[−1] to −1k[−1] ⊗ 1k[−1]. When
one has a surjection G � H of DG Lie coalgebras, the commutative DG algebra
(Sym(Ker(G→ H)[−1]), d1+d2) comes equipped with a coaction of H. The Chevalley–
Eilenberg complex Cc(G,H; k) of the pair (G,H) is the DG subalgebra of H-invariants of
(Sym(Ker(G→ H)[−1]), d1+ d2). Note that if h is a finite-dimensional DG Lie algebra
and H = h∗,

Cc(G,H; k) ∼= (Sym(Ker(G→ H)[−1]), d1 + d2)
h.

We denote the homology of the complex Cc(G; k) (resp., Cc(G,H; k)) by H•(G; k) (resp.,
H•(G,H; k)). Note that if G is concentrated in homological degree 0, then

H−1(G; k) ∼= Ker(]–[ : G→
∧2 G).

This is dual to the basic fact that H1(g; k) ∼= g/[g, g] for a Lie algebra g concentrated in
degree 0.

We note that the Chevalley–Eilenberg complex C(g; k) of a DG Lie algebra g is the
analogue of the bar construction of a DG algebra, while the Chevalley–Eilenberg complex
Cc(G; k) of a DG Lie coalgebra is the analog of the cobar construction of a DG coalgebra
(see Section 6.2). We write C(g; k) = BLie(g) and Cc(G; k) = �Lie(G) when we want
to emphasize these facts.

3.2. Derived representation schemes and homology of Lie coalgebras

For a DG coalgebra M and an augmented DG coalgebra C ∈ DGCk/k , we define an
augmented tensor product ⊗̄ by

M ⊗̄ C := k ⊕ (M � C̄),

so that M ⊗̄ C = M ⊗ C̄. The next proposition relates the (noncommutative) repre-
sentation functor n

√
– defined in (2.5) to the classical cobar construction introduced in

Section 2.2.2.

Proposition 3.1. There is a natural isomorphism of functors from DGCk/k to DGAk/k:

n
√

– ◦�(–) ∼= �(M∗
n(k) ⊗̄ –). (3.2)

In particular, for any C ∈ DGCk/k , there is a natural isomorphism of DG algebras

n
√

�(C) ∼= �(M∗
n(k) ⊗̄ C).
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Proof. Indeed, for any B ∈ DGAk/k , we have

HomDGAk/k (�(Mn(k)
∗
⊗̄ C), B) ∼= Tw(M∗

n(k) ⊗̄ C,B)

def
= MC(Hom(M∗

n(k)⊗ C̄, B̄))
∼=MC(Hom(C̄,Hom(M∗

n(k), B̄))

= Tw(C,Hom(M∗
n(k), B̄)

′) = Tw(C,M′
n(B))

∼= HomDGAk/k (�(C),M
′
n(B))

∼= HomDGAk/k (
n
√

�(C), B),

where M′
n(B) is the unitalization of the DG algebra Mn(B̄) defined in (2.10). The result

of Proposition 3.1 follows now from the Yoneda Lemma. ut

Remark. Proposition 3.1 implies an isomorphism of functors on Ho(DGAk/k):

L n
√

– ∼= � ◦M∗
n(–) ◦ B̄,

where B̄ is the reduced bar construction.

The following theorem makes precise the statement made in the Introduction that repre-
sentation homology is Koszul dual to Lie algebra homology. This is one of the key results
of the present paper. While it is an easy corollary of Proposition 3.1, we state it as a
theorem in order to highlight its importance.

Theorem 3.2. Let A ∈ DGAk/k and let C ∈ DGCk/k be a Koszul dual coalgebra of A.
Then, for any n ≥ 1, there are isomorphisms in Ho(DGCAk/k):

DRepn(A) ∼= Cc(gl∗n(C̄); k), DRepn(A)
GL ∼= Cc(gl∗n(C), gl∗n(k); k). (3.3)

Consequently,

H•(A, n) ∼= H•(gl∗n(C̄); k), H•(A, n)GL ∼= H•(gl∗n(C), gl
∗
n(k); k). (3.4)

Proof. Note that DRepn(A) ∼= �(C)n = [
n
√

�(C)]ab. By Proposition 3.1,

[
n
√

�(C)]ab ∼= �(M∗
n(k) ⊗̄ C)ab.

By Theorem 6.2 (in particular, see (6.6)),

�(Mn(k) ⊗̄ C)ab ∼= Cc(Liec(M∗
n(k) ⊗̄ C); k) = Cc(gl∗n(C̄); k).

This proves that DRepn(A) ∼= Cc(gl∗n(C̄); k). Now, the GLn(k)-invariant subalgebra of
Cc(gl∗n(C̄); k) is indeed Cc(gl∗n(C), gl∗n(k); k). This completes the proof. ut

Corollary 3.3. Let A,C be as in Theorem 3.2. Assume, in addition, that C is finite-
dimensional in each degree, and let E := C∗ be the (linear) dual DG k-algebra. Then

H•(A, n) ∼= H−•(gln(Ē); k), H•(A, n)GL ∼= H−•(gln(E), gln(k); k), (3.5)

where H−• denotes (continuous)5 Lie algebra cohomology with negative grading.

5 See Theorem 6.3 and the subsequent remarks for a precise definition.
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Proof. If C is finite-dimensional in each degree and E := C∗, then H•(gl∗n(C̄); k) ∼=
H−•(gln(E); k) by (6.8). Hence, H•(gl∗n(C), gl

∗
n(k); k)

∼= H−•(gln(E), gln(k); k). The
result is now immediate from Theorem 3.2. ut

Remark. Theorem 3.2 gives a natural interpretation to the Chevalley–Eilenberg Lie ho-
mology of the matrix Lie coalgebra gl∗n(C̄). Note that, in the first isomorphisms in (3.3)
and (3.4), gl∗n is defined over C̄ = Coker(εC), not C itself. It is natural to ask whether the
complex Cc(gl∗n(C); k) for an arbitrary (but not necessarily augmented) coalgebra C can
be identified with the DRepn of some DG algebraA. The answer is ‘yes’ : the correspond-
ing A is given by the extended cobar construction �ext(C) introduced in [AJ]. Precisely,
for any counital coalgebra C, Anel and Joyal (see [AJ, Sect. 5.3]) define �ext(C) as the
Sweedler product6 C � MC of C with the Maurer–Cartan algebra MC, which is the free
DG algebra generated by one element u of degree −1 with differential du = −u2. The
argument of Proposition 3.1 combined with results of [AJ] gives a natural isomorphism
of functors DGCk → DGAk:

n
√

– ◦�ext(–) ∼= �ext(M∗
n(k)⊗ –),

and the result of Theorem 3.2 can thus be extended to arbitrary DG coalgebras as

Cc(gl∗n(C); k) ∼= DRepn[�
ext(C)].

3.2.1. Representation homology of bimodules. In [BKR, Section 5], we defined repre-
sentation homology of a DG algebra A with coefficients in an arbitrary DG bimodule
over A. Proposition 3.4 below gives an interpretation of this construction in terms of
homology of Lie coalgebras.

Let Bimod(A) denote the category of DG bimodules over A. For a fixed n ≥ 1, the
universal representation πn : A → Mn(An) makes Mn(An) a DG A-bimodule, which
also has a natural DG An-module structure compatible with the action of A. This allows
one to define the functor

(–)ab
n : Bimod(A)→ Mod(An), M 7→ M ⊗Ae Mn(An),

which we call the van den Bergh functor (as it first appeared in [VdB]). In [BFR, Sec-
tion 5], it is shown that (–)ab

n is the abelianization of the nonadditive representation functor
(2.7) in the sense of model categories (cf. [Q1, Section II.5]), whence its notation.

The derived functor of the van den Bergh functor is computed by the formula (see
[BKR, Theorem 5.1])

L(M)ab
n = [F(R,M)]

ab
n ,

whereR
∼
−→ A is a cofibrant resolution ofA in DGAk and F(R,M) is a semifree resolution

of M in Bimod(R). This is independent of the choice of resolutions and allows one to
define the n-th representation homology of a DG bimodule M ∈ Bimod(A) by

H•(M, n) := H•[F(R,M)ab
n ].

Now, assume that A ∈ DGAk/k and let C ∈ DGCk/k be a Koszul dual coalgebra to A.

6 See Appendix, (A.3), for the definition of the Sweedler product.
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Proposition 3.4. Let M ∈ Bimod(A), and let N be a DG C-bicomodule such that there
is a quasi-isomorphism �(C)⊗τC N ⊗τC �(C)

∼
−→ M in Bimod[�(C)], where τC : C →

�(C) is the universal twisting cochain associated to C. Then there is an isomorphism

H•(M, n) ∼= H•(gl∗n(C̄); gl
∗
n(N)),

where gl∗n(N) denotes M∗
n(N) viewed as a DG Lie comodule over gl∗n(C̄) via the coad-

joint coaction.

Proof. Indeed, �(C)
∼
−→ A is a cofibrant resolution of A in DGAk/k and �(C)⊗τC N ⊗τC

�(C)
∼
−→ M is a semifree resolution M in Bimod[�(C)]. Hence,

LMab
n
∼= [�(C)⊗τC N ⊗τC �(C)]ab

n .

Since �(C) ⊗τC N ⊗τC �(C) ∼= N ⊗ �(C)e as graded �(C)-bimodules, [�(C) ⊗τC
N ⊗τC �(C)]ab

n is generated as a graded �(C)n-module by M∗
n(N). By Theorem 3.2,

�(C)n ∼= Cc(gl∗n(C̄); k). A direct computation then verifies that the differential on el-
ements of M∗

n(N) in [�(C) ⊗τC N ⊗τC �(C)]ab
n is the sum of a term induced by the

coadjoint coaction of gl∗n(C̄) on M∗
n(N) and another term induced by the differential

of N . This proves that

[�(C)⊗τC N ⊗τC �(C)]ab
n
∼= Cc(gl∗n(C̄); gl∗n(N)).

The desired result is now immediate. ut

3.3. The Tsygan–Loday–Quillen theorem for coalgebras

For a coalgebra C ∈ DGCk/k , let CC(C) denote the complex of reduced cyclic chains on C
(the definition of CC(C) is formally dual to the definition of the reduced cyclic complex
CC(A) of an augmented DG algebra A—see [L, 2.1.4 and 2.2.13]). For each n ≥ 0, there
is a generalized cotrace map (cf. [L, 2.2.10])

coTrn(C) : CC(C)→ CC[M∗
n(k) ⊗̄ C],

where M∗
n(k) :=Mn(k)

∗ is the matrix coalgebra dual to Mn(k). Furthermore, dual to
the construction of [L, 10.2.3], one has a natural morphism of complexes

θ : CC(M∗
n(C))[−1] → Cc(gl∗n(C), gl∗n(k); k),

which is induced by the projection

(α0, . . . , αn) 7→ α0 ∧ · · · ∧ αn.

Abusing notation, we denote the composite map θ ◦ coTrn(C) by coTrn(C). Note that for
any n, there is a canonical epimorphism in DGCAk/k:

µn+1,n : Cc(gl∗n+1(C), gl
∗

n+1(k); k)� Cc(gl∗n(C), gl∗n(k); k).
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Therefore, we can pass to the projective limit

Cc(gl∗∞(C), gl∗∞(k); k) := lim
←−
n

Cc(gl∗n(C), gl∗n(k); k).

It is easy to check that µn+1,n ◦ coTrn+1(C) = coTrn(C). Hence we have a morphism of
complexes

coTr∞(C) : CC(C)[−1] → Cc(gl∗∞(C), gl∗∞(k); k).
This extends by multiplicativity to a morphism of DG algebras

Sym(coTr∞) : Symk(CC(C)[−1])→ Cc(gl∗∞(C), gl∗∞(k); k). (3.6)

Now, by a result of Quillen [Q3], there is a natural isomorphism

�(C)\ ∼= CC(C)[−1],

where (–)\ is the cyclic functor defined by (2.14). On the other hand, by Theorem 3.2, we
have an isomorphism �(C)GL

n
∼= Cc(gl∗n(C), gl∗n(k); k). The following lemma is verified

by an easy computation which we leave to the reader.

Lemma 3.5. For any n ≥ 0, the following diagram commutes:

�(C)\ Quillen

∼= //

Trn
��

CC(C)[−1]

coTrn
��

�(C)GL
n Theorem 3.2

∼= // Cc(gl∗n(C), gl∗n(k); k)

As a consequence, we get an isomorphism of (topological) DG algebras

Cc(gl∗∞(C), gl∗∞(k); k) ∼= [�(C)]GL∞
∞ . (3.7)

Proposition 3.6. Under (3.7), the morphism (3.6) is identified with Sym(Tr∞) : �(C)\
→ [�(C)]

GL∞
∞ .

Proposition 3.6 combined with [BR1, Lemma 4.1] implies that the image of (3.6) is a
dense DG subalgebra of Cc(gl∗∞(C), gl∗∞(k); k), which, following [BR1], we denote by
CTr(gl∗∞(C), gl

∗
∞(k); k). The main theorem of [BR1] (precisely, [BR1, Theorem 4.4])

then implies the following result, which is a (relative variant) of the Tsygan–Loday–
Quillen theorem for coalgebras.7

Theorem 3.7. For any C ∈ DGCk/k , there are natural isomorphisms of DG algebras

Symk(CC(C)[−1]) ∼= Symk[�(C)\]
∼= CTr(gl∗∞(C), gl

∗
∞(k); k).

Remarks. 1. Theorem 3.7 can be also proven by dualizing the invariant-theoretic argu-
ments in [L, Ch. 10]. With Theorem 3.2, one can then presumably give a different proof
of [BR1, Theorem 4.4]. This, however, does not seem to answer the questions of [BR1]
regarding Koszul duality (see [BR1, Question 5.2.1]).

7 A nonrelative version of this result has been proven in [Ka] using a direct invariant-theoretic
approach.
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2. If the DG coalgebra C is bigraded (see Section 3.4 below), then the DG al-
gebra CTr(gl∗∞(C), gl

∗
∞(k); k) coincides with Cc(gl∗∞(C), gl∗∞(k); k). The bigraded dual

of Theorem 3.7 yields (see (6.9)) the Tsygan–Loday–Quillen theorem for the bigraded
DG algebra A := C∗. Hence, [BR1, Proposition 7.5] implies a version of the traditional
Tsygan–Loday–Quillen theorem.

3.4. Bigraded algebras

Recall from [BR1, Section 7] that a bigraded DGA is a DG algebra equipped with homo-
logical as well as weight (polynomial) grading that is finite-dimensional in each weight
degree.8 We remark that unlike in [BR1], we allow our DGA to have nonzero components
in negative homological degree as well. The differential is required to obey the graded
Leibniz rule with respect to the homological grading. Additionally, we require that a bi-
graded DGA be concentrated in nonnegative weight degrees and that the component in
weight degree 0 be isomorphic to k. A bigraded DGA is therefore, augmented as well.
Following [BR1, Section 7], one can verify that the category BiDGAk of bigraded DGAs
is a model category whose weak equivalences are the quasi-isomorphisms and whose fi-
brations are the surjective morphisms. The category BiDGCAk of bigraded commutative
DGAs has an analogous model structure,

Similarly, a coalgebra C ∈ DGCk/k will be called bigraded if C̄ has a homological as
well as weight grading, is concentrated in positive weight degree and is finite-dimensional
in each weight degree. Note that in this case, �(C)ab is a bigraded commutative DGA. In
the bigraded setting, we have the following result, the first part of which is Theorem 3.2
in the bigraded setting.

Theorem 3.8. Let A ∈ BiDGAk , and let C be a Koszul dual coalgebra to A. Assume that
C is bigraded, and the quasi-isomorphism �(C)

∼� A is in BiDGAk . Then:

(a) In Ho(BiDGCAk/k), there are isomorphisms

DRepn(A) ∼= Cc(gl∗n(C̄); k), DRepn(A)
GL ∼= Cc(gl∗n(C), gl∗n(k); k).

(b) If E := C∗ is bigraded dual of C, then

H•(A, n) ∼= H−•(gln(Ē); k), H•(A, n)GL ∼= H−•(gln(E), gln(k); k),

where H−• denotes the classical Lie algebra cohomology9 equipped with negative
(homological) grading.

Remark. For A ∈ BiDGAk , at least one E as in Theorem 3.8(b) exists: namely, the
bigraded dual of BA.

Proof of Theorem 3.8. The proof of Theorem 3.2 goes through word for word in the
bigraded setting: this gives (a). Part (b) follows immediately from (a) and (6.8). ut

8 Bigraded DGAs are also referred to as weight-graded DGAs or WDGAs. See [LV, Sec. 1.5.11].
9 See remarks after Theorem 6.3.
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We conclude this section with one application of Theorem 3.8. Let A = A(V,R) be a
quadratic associative algebra defined by a (finite-dimensional) quadratic data (V , R) =
{R ⊆ V ⊗ V } (see [LV, Chap. 3]). Let A! := A(s−1V ∗, s−2R⊥) denote its graded10

Koszul dual algebra. Recall that A is a Koszul algebra if (and only if) the canonical map
(A!)∗→ BA is a quasi-isomorphism (cf. [LV, Theorem 3.4.6]). Theorem 3.8 then implies

Corollary 3.9. If A is a Koszul quadratic algebra then there are natural isomorphisms

H•(A, n) ∼= H−•(gln(Ā
!); k), H•(A, n)GL ∼= H−•(gln(A

!), gln(k); k).

4. Derived Harish-Chandra homomorphism

The classical Harish-Chandra homomorphism is defined by restricting the characters of
representations (viewed as functions on a representation variety) to the subvariety of di-
agonal representations. In this section, we construct a derived version of this homomor-
phism.

4.1. Basic construction

Recall that, for a fixed DG algebra A ∈ DGAk and an integer n ≥ 1, the affine DG
scheme of n-dimensional representations of A is defined by the functor Repn(A) which
is represented by the commutative DG algebra An (see Section 2.4.1). Now, we introduce
the functor of diagonal representations

Diagn(A) : DGCAk → Sets, B 7→ HomDGAk (A,B
×n), (4.1)

where B×n denotes the (direct) product of n copies of B in the category of commutative
DG algebras. There are natural isomorphisms of sets

HomDGAk (A,B
×n) ∼= HomDGAk (A,B)

×n ∼= HomDGCAk (Aab, B)
×n

∼= HomDGCAk ((Aab)
⊗n, B),

which show that (4.1) is (co)represented by the commutative DG algebra (Aab)
⊗n, the

n-th tensor power of the abelianization of A.
Next, observe that the functor Diagn(A) comes together with a natural transformation

Diagn(A)→ Repn(A), (4.2)

defined by the algebra maps B×n ↪→ Mn(B) identifying B×n with the subalgebra of
diagonal matrices in Mn(B). By Yoneda’s Lemma, this natural transformation gives a
homomorphism of commutative DG algebras

8n(A) : An→ (Aab)
⊗n, (4.3)

10 We warn the reader that our definition of A! differs from that of [LV] by a choice of grading:
our A! equals A

¡∗
in the notation of [LV].
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which is obviously functorial in A ∈ DGAk . In terms of the generators of Lemma 2.5, the
homomorphism 8n(A) is given by

aij 7→ δijai, (4.4)

where ai = 1⊗ · · · ⊗ a ⊗ · · · ⊗ 1 is the image in (Aab)
⊗n of an element a ∈ A sitting in

the i-th tensor factor.
Now, for a commutative DG algebra B ∈ DGCAk , let Sn(B) denote the n-th symmetric

power of B, i.e. Sn(B) := [B⊗n]Sn . By definition, Sn(B) is a subalgebra of B⊗n; since
k has characteristic 0, we may identify Sn(B) with the image of the symmetrization map
Symn(B) ↪→ B⊗n.

Lemma 4.1. The map (4.3) restricts to a homomorphism of commutative DG algebras

8n(A) : A
GL
n → Sn(Aab). (4.5)

Proof. Consider the (right) action of Sn on Mn(k) by permuting the columns of matrices,
i.e., if M = ‖M1, . . . ,Mn‖ ∈Mn(k) then Mσ

:= ‖Mσ−1(1), . . . ,Mσ−1(n)‖ for σ ∈ Sn.
Define ι : Sn → GLn(k) by ι(σ ) = Iσn , where In is the identity matrix in Mn(k). Then,
for any M ∈ Mn(k), we have Mσ

= Mι(σ). Hence ι is an injective group homomor-
phism. We claim that (4.3) is an Sn-equivariant map provided Sn acts on An by restricting
the canonical GLn-action via ι. To see this recall that the GLn-action on An comes from
the adjoint action on Mn(k) (see (2.12)). Hence it suffices to check that the following
diagram commutes for all σ ∈ Sn:

Mn(An)
Id⊗8n //

Adι(σ )
��

Mn[(Aab)
⊗n
]

Id⊗σ
��

Mn(An)
Id⊗8n //Mn[(Aab)

⊗n
]

(4.6)

In terms of generators of An, the left vertical map in (4.6) is given by

Adι(σ )‖aij‖ = ι(σ )‖aij‖ι(σ )−1
= ι(σ )‖aij‖ι(σ

−1) = Iσn ‖aij‖I
σ−1

n = ‖aσ(i)σ (j)‖.

On the other hand, by (4.4), the horizontal maps are ‖aij‖ 7→ diag(a1, . . . , an). The
commutativity of (4.6) is therefore obvious. Since 8n(A) is an equivariant map, it takes
invariants to invariants. ut

The functor Sn(–)ab : DGAk → DGCAk is not a homotopy functor in the sense that it does
not preserve weak equivalences and hence does not descend to homotopy categories.
However, just as the representation functor (2.7), Sn(–)ab admits a left derived functor
that gives a functorial approximation to the induced functor at the level of homotopy
categories.

Proposition 4.2. (a) The functor Sn(–)ab has a total left derived functor given by

LSn(–)ab : Ho(DGAk)→ Ho(DGCAk), A 7→ Sn[(QA)ab],

where QA is a cofibrant resolution of A.
(b) For any A ∈ DGAk , there is a natural isomorphism of graded commutative algebras

H•[LSn(A)ab] ∼= S
n
[H•(A, 1)].
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Proof. (a) The abelianization (–)ab : DGAk → DGCAk is a left Quillen functor adjoint to
the inclusion DGCAk ↪→ DGAk . Hence it maps acyclic cofibrations in DGAk to weak equiv-
alences. On the other hand, the functor Sn commutes with taking homology (see, e.g.,
[Q2, Appendix B, Prop. 2.1]), hence it maps weak equivalences (= quasi-isomorphisms)
in DGCAk to weak equivalences. It follows that Sn(–)ab = Sn ◦ (–)ab maps acyclic cofi-
brations to weak equivalences. Hence Sn(–)ab has a total left derived functor by Brown’s
Lemma (see, e.g., [BKR, Lemma A.2]).

(b) follows from the obvious isomorphism (–)ab ∼= (–)1 and the fact that Sn ◦ H• ∼=
H• ◦ Sn. ut

Notation. We will write the derived functor LSn(–)ab as SnDRep1(–). This is justified
by Proposition 4.2: indeed, forA ∈ DGAk , we have DRep1(A)

∼= L(A)ab, so SnDRep1(A)

is to be computed by the same formula as LSn(A)ab.
Now, by Lemma 4.1, we have a natural transformation of functors 8n : (–)GL

n →

Sn(–)ab. By Theorem 2.7 and Proposition 4.2, both (–)GL
n and Sn(–)ab have left derived

functors. Hence, 8n induces a (unique) natural transformation at the level of homotopy
categories:

L8n : L(–)GL
n → LSn(–)ab. (4.7)

For a fixed A ∈ DGAk , this gives a canonical morphism in Ho(DGCAk):

8n(A) : DRepn(A)
GL
→ SnDRep1(A), (4.8)

which we call the derived Harish-Chandra homomorphism.11

Next, we introduce natural maps combining (4.8) with the trace maps constructed
in Section 2.4.3. To this end, we note that the functors (–)GL

n , Sn(–)ab and the natural
transformation 8n are well-defined on the category of augmented DG algebras (cf. The-
orem 2.6). Hence we can regard (4.7) as a morphism of functors from Ho(DGAk/k) to
Ho(DGCAk/k). Composing this morphism with the trace (2.17), we get a morphism of
functors from Ho(DGAk/k) to Ho(Comk):

LTrn : L(–)\→ LSn(–)ab. (4.9)

The next proposition shows that LTrn is essentially determined by LTr1.

Proposition 4.3. For each n ≥ 1, the morphism LTrn factors as

LTrn ∼= Sn ◦ LTr1,

where Sn is a symmetrization morphism (see (4.10))

Proof. It suffices to check this on cofibrant objects. If A ∈ DGAk/k is cofibrant, then
LTrn(A) = Trn(A), and by Lemma 2.5, the composite map Trn(A) : A\ → AGL

n →

Sn(Aab) is given by

ā 7→

n∑
i=1

aii 7→

n∑
i=1

ai,

11 This terminology will be justified in the next section where we reinterpret the construction of
8n(A) in Lie-algebraic terms.
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where a ∈ A, ā ∈ A\ and ai = 1⊗ · · · ⊗ a⊗ · · · ⊗ 1 ∈ (Aab)
⊗n (with a ∈ Aab in the i-th

position). Hence Trn(A) factors through the canonical map A\ → Aab, which is nothing
but Tr1(A). The induced map is precisely the symmetrization:

Sn : Aab → Sn(A)ab, a 7→

n∑
i=1

ai . (4.10)

This finishes the proof of Proposition 4.3. ut

For any A ∈ DGAk/k , the morphism (4.9) induces on homology natural maps

Trn(A)• : HC•(A)→ [H•(A, 1)⊗n]Sn . (4.11)

We call (4.11) the reduced trace maps. By Proposition 4.3, it suffices to compute these
maps for n = 1. We give a general formula for Tr1(A)• in our subsequent paper (see
[BF+, Theorem 4.1]).

4.2. Interpretation in terms of Lie (co)homology

We now reinterpret the derived Harish-Chandra homomorphism (4.8) in Koszul dual
terms of Lie coalgebras. Let hn(k) denote the Cartan subalgebra of gln(k), which is the
subalgebra Dn(k) of diagonal matrices in Mn(k) viewed as a Lie algebra. Dually, one
has a surjection of coalgebras M∗

n(k) � D∗n(k) where D∗n(k) denotes the k-linear dual
of Dn(k). Hence, for any C ∈ DGCk/k , one has a morphism M∗

n(C) � D∗n(C) of DG
coalgebras that induces the natural map M∗

n(k) � D∗n(k). Viewing M∗
n(C) and D∗n(C)

as DG Lie coalgebras, one obtains a morphism gl∗n(C) → h∗n(C) of DG Lie coalgebras
that induces the natural morphism gl∗n(k) → h∗n(k) of Lie coalgebras. As a result, by
functoriality, we get a morphism of commutative DG algebras

8n(C) : Cc(gl∗n(C), gl∗n(k); k)→ Cc(h∗n(C), h∗n(k); k) . (4.12)

Now, let A = �(C) be the cobar construction of C, which is a cofibrant DG al-
gebra in DGAk/k . Since hn is abelian and dim hn = n, we have canonical isomorphisms in
DGCAk/k:

Cc(h∗n(C), h∗n(k); k) ∼= [Cc(gl∗1(C̄)]
⊗n ∼= (Aab)

⊗n. (4.13)
On the other hand, by Theorem 3.2,

Cc(gl∗n(C), gl∗n(k); k) ∼= AGL
n . (4.14)

With these isomorphisms we can compare (4.12) with the Harish-Chandra homomor-
phism (4.5). The following proposition is a direct consequence of Lemma 4.1.

Proposition 4.4. With the identifications (4.13) and (4.14), the map 8n(C) agrees
with 8n(A). The image of 8n(C) is contained in Cc(h∗n(C), h∗n(k); k)Sn , where the ac-
tion of Sn on the Chevalley–Eilenberg complex comes from the natural action on hn.

In Section 7, we will construct the derived Harish-Chandra homomorphism for an arbi-
trary reductive Lie algebra g, generalizing the above construction for gln. Proposition 4.4
then shows that the Harish-Chandra homomorphism for associative algebras (when C is
cocommutative) is a special case of the one for Lie algebras.
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4.3. Symmetric algebras

In this subsection, we take A to be the symmetric algebra Sym(V ), where V is a vector
space of dimension r ≥ 1 concentrated in homological degree 0. This is a quadratic
Koszul algebra defined by the quadratic data (V , S) with S ⊂ V ⊗ V spanned by the
vectors of the form v ⊗ u− u⊗ v (cf. [LV, Example 3.2.4.2]).

4.3.1. The minimal resolution. Recall that A has a canonical (minimal) semifree reso-
lution R = �(A¡) given by the cobar construction of the Koszul dual coalgebra A¡

=

C(sV, s2S) (see [LV, Sect. 3.2.1]). The algebra R is the tensor algebra generated by the
vector space s−1 ∧(sV ), whose elements of degree k − 1 we denote by

λ(v1, . . . , vk) := s
−1(sv1 ∧ · · · ∧ svk) ∈ s

−1 ∧k(sV ). (4.15)

With this notation, the differential on R satisfies

dλ(v1, v2) = −[v1, v2], (4.16)
dλ(v1, v2, v3) = −[v1, λ(v2, v3)] − [v2, λ(v3, v1)] − [v3, λ(v1, v2)]. (4.17)

In general, we have

Lemma 4.5. The differential d on the minimal resolution R of A = Sym(V ) is defined
by

dλ(v1, . . . , vn)

=

∑
p+q=n
1≤p≤q

(−1)p
∑

σ∈Sh(p,q)

(−1)σ [λ(vσ(1), . . . , vσ(p)), λ(vσ(p+1), . . . , vσ(p+q))],

where Sh(p, q) denotes the set of (p, q)-shuffles, i.e. σ ∈Sp+q of the form σ =(i1, . . . , ip;
ip+1, . . . , ip+q) with i1 < · · · < ip and ip+1 < · · · < ip+q .

Proof. The proof is by direct computation using the definition of the differential on the
cobar construction. We leave the details of this computation to the interested reader. ut

It follows from Lemma 4.5 that Rab is isomorphic to is the graded symmetric algebra of
s−1 ∧(sV ) equipped with zero differential. Explicitly (omitting the shifts), we can write

Rab = Sym(
∧1 V ⊕

∧2 V ⊕· · ·⊕
∧r V ) = Sym(V )⊗Sym(

∧2 V ⊕· · ·⊕
∧r V ) (4.18)

with the understanding that the elements of
∧k V have (homological) degree k − 1.

4.3.2. Main conjecture for gln. For A = Sym(V ), the homomorphism (4.8) is given by

8n : DRepn(A)
GL
→ Sym[h∗n ⊗ (

∧1 V ⊕ · · · ⊕
∧r V )]Sn ,

where DRepn(A) ∼= Sym[M∗
n(k) ⊗ (

∧1 V ⊕ · · · ⊕
∧r V )] as a graded commutative

algebra. Explicitly, 8n is the restriction to DRepn(A)
GL of the map of commutative DG-

algebras taking each generator of the form eij ⊗ α to δij ei ⊗ α. Here, the eij ’s are a basis
of M∗

n(k) dual to the elementary matrices, and the ei’s form the basis of h∗n dual to the
standard basis, and α is any element in

∧1 V ⊕ · · · ⊕
∧r V .
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On the 0-th homologies, 8n induces an algebra map

H0(8n) : k[Repn(A)]
GL
→ Sym(h∗n ⊗ V )

Sn .

By [Do, Theorem 4.1] (see also [Va1, Theorem 3]), this map is known to be an isomor-
phism for all V and all n ≥ 1. It is therefore tempting to conjecture that 8n is actually a
quasi-isomorphism, i.e. induces isomorphisms on homology in all homological degrees.
This is indeed the case when dim(V ) = 1 (since Sym(V ) is a cofibrant DG algebra when
dim(V ) = 1, and hence DRepn(A) ∼= An has no higher homology). On the other hand,
by evaluating Euler characteristics, we will show in Section 5.2 that8n cannot be a quasi-
isomorphism (for all n) when dim(V ) ≥ 3. In the case dim(V ) = 2, we believe that the
conjecture is still true.

To state our conjecture in more explicit terms, we choose a basis {x, y} in V and
identify Sym(V ) = k[x, y]. Denote by θ the degree 1 element λ(x, y) ∈

∧2 V and
write xi (resp., yi , θi) for the elements ei⊗x (resp., ei⊗y, ei⊗θ ) in h∗n⊗(

∧1 V ⊕
∧2 V ).

Then Sym[h∗n ⊗ (
∧1 V ⊕

∧2 V )] ∼= k[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn], and we have

Conjecture 4.6. For any n ≥ 1, the map

8n : DRepn(k[x, y])
GL
→ k[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn]

Sn (4.19)

is a quasi-isomorphism. Consequently, there is an isomorphism of graded commutative
algebras

H•(k[x, y], n)GL ∼= k[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn]
Sn .

Remark. When dim(V ) = 2, the map H0(8n) coincides with the usual Harish-Chandra
homomorphism for gln as defined, for example, in [J]; it is therefore natural to call 8n
the derived Harish-Chandra homomorphism.

As a first evidence for Conjecture 4.6, we recall a vanishing theorem for the representation
homology of A = k[x, y] proved in [BFR, Theorem 27]: for all n ≥ 1,

Hi(k[x, y], n) = 0, ∀i > n.

This implies that Hi(k[x, y], n)GL
= 0 for i > n, and hence 8n induce isomorphisms

(which are actually the zero maps) in homological degrees i > n.
For n = 1, Conjecture 4.6 is obvious. Furthermore, we have

Theorem 4.7. Conjecture 4.6 is true for n = 2.

Proof. We will explicitly construct the inverse map to 8 at the level of homology. To
simplify notation we set A = k[x, y], and using [BKR, Theorem 2.5], identify H0(A, 2)
= A2, where A2 is the coordinate ring of the commuting scheme of 2× 2 matrices:

A2 = k[x11, x12, x21, x22, y11, y12, y21, y22]/I ,
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with I generated by the relations

x12y21 − y12x21 = 0,
x11y12 + x12y22 − y11x12 − y12x22 = 0, (4.20)
x21y11 + x22y21 − y21x11 − y22x21 = 0.

With this identification, we define an algebra homomorphism

90 : k[x1, x2, y1, y2] →M2(A2)

by
x1 7→ X, x2 7→ X∗, y1 7→ Y, y2 7→ Y ∗,

where

X :=

(
x11 x12
x21 x22

)
, X∗ :=

(
x22 −x12
−x21 x11

)
and similarly for Y and Y ∗. Note that X∗ and Y ∗ are the classical adjoints of X and Y ,
and the relations (4.20) imply that [X, Y ] = 0. It follows that the matrices X, Y,X∗, Y ∗

pairwise commute, and the map 90 is thus well-defined.
We claim that 90 restricts to an algebra isomorphism

90 : k[x1, x2, y1, y2]
S2 ∼→ A

GL2
2 , (4.21)

where AGL
2 ⊂ A2 is identified with a subalgebra of scalar matrices in M2(A2). Indeed,

the invariant subalgebra k[x1, x2, y1, y2]
S2 is generated by the five elements: x1 + x2,

y1+y2, x1x2, y1y2 and x1y1+x2y2, which are mapped by (4.21) to Tr(X), Tr(Y ), det(X),
det(Y ) and Tr(XY), respectively. It is immediate to see that H0(8) ◦ 90 = Id. On the
other hand, as mentioned above, the map H0(8) is known to be an isomorphism.12 The
map 90 is thus the inverse of H0(8), and hence an isomorphism as well. We will use the
following notation for the generators of k[x1, x2, y1, y2]

S2 :

T(x) := x1 + x2, T(y) := y1 + y2, D(x) := x1x2, D(y) := y1y2,

T(xy) := x1y1 + x2y2.

Now, it is easy to check that the graded algebra k[x1, x2, y1, y2, θ1, θ2]
S2 is generated

by its degree zero subalgebra k[x1, x2, y1, y2]
S2 and three extra elements of degree 1,

which we denote by

T(θ) := θ1 + θ2, T(xθ) := x1θ1 + x2θ2, T(yθ) := y1θ1 + y2θ2.

These elements satisfy the following relations:

T(y) · T(xθ) · T(θ)− T(x) · T(yθ) · T(θ) = 2T(xθ) · T(yθ),
(T(x)2 − 4D(x)) · T(yθ)− (2T(xy)− T(x)T(y)) · T(xθ)

= (T(x)2T(y)− 2D(x)T(y)− T(x)T(xy)) · T(θ),
(2T(xy)− T(x)T(y)) · T(yθ)− (T(y)2 − 4D(y)) · T(xθ)

= (T(y)2T(x)− 2D(y)T(x)− T(y)T(xy)) · T(θ).

12 In fact, the map H0(8) coincides with the isomorphism 1′ in [Va1, Theorem 3].
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On the other hand, by [BKR, Example 4.2], the full representation homology algebra
H•(A, 2) is generated by H0(A, 2) = A2 and three invariant elements τ, ξ, η of degree 1,
satisfying

x12η − y12ξ = (x12y11 − y12x11)τ,

x21η − y21ξ = (x21y22 − y21x22)τ,

(x11 − x22)η − (y11 − y22)ξ = (x11y22 − y11x22)τ,

ξη = y11(ξτ )− x11(ητ) = y22(ξτ )− x22(ητ).

We now extend the map (4.21) to the map

9• : k[x1, x2, y1, y2, θ1, θ2]
S2 → H•(A, 2)

by sending
T(θ) 7→ τ, T(xθ) 7→ ξ, T(yθ) 7→ η.

A straightforward (but tedious) calculation, using the above relations, shows that 9•
is a well-defined algebra map. Its image coincides with H•(A, 2)GL, since H•(A, 2) is
generated over H0(A, 2) by GL-invariant elements, and we already know that 90 is an
isomorphism onto H0(A, 2)GL. On the other hand, it is again easy to see that H•(8) ◦9•
= Id. Hence 9• is injective and is thus the inverse of H•(8). ut

4.4. Conjecture 4.6 in the limit

In this section, we prove that Conjecture 4.6 holds in the limit n→∞.

4.4.1. Supersymmetric polynomials and power sums. Let x1, . . . , xd be variables of ho-
mological degree 0. Let the symmetric group Sd act on the xi’s by permutations. Consider
the power sums Pi :=

∑d
j=1 x

i
j . It is a classical fact that the symmetric polynomials in

x1, . . . , xd can be rewritten as polynomials of degree ≤ d in the power sums Pi, i ≥ 1.
Further, equip the variables x1, . . . , xd with weight 1, making k[x1, . . . , xd ] a weight
graded (commutative) algebra. Let k[x1, . . . , xd , . . .]

S∞ := lim
←−d

k[x1, . . . , xd ]
Sd where

the projective limit is taken in the category of weight graded algebras. Then the homo-
morphism

k[q1, . . . , qd , . . .] → k[x1, . . . , xd , . . .]
S∞ , qi 7→

∞∑
j=1

xij ,

is an isomorphism.
We now generalize this classical fact. Consider the set of Nd variables {xα,i : 1 ≤

α ≤ N, 1 ≤ i ≤ d}. Assume that the variables x1,i, . . . , xm,i, 1 ≤ i ≤ d, have odd
homological degree, with the remaining variables having even homological degree. In
particular, in k[xα,i : 1 ≤ α ≤ N, 1 ≤ i ≤ d], we have x2

α,i = 0 for α ≤ m. Let Sd act
on these variables, with a permutation σ ∈ Sd taking xα,i to xα,σ (i). Let k[xα,i : α ≤ N ,
i ∈ N]S∞ := lim

←−d
k[xα,i : 1 ≤ α ≤ N, 1 ≤ i ≤ d]Sd where the projective limit is taken

in the category of bigraded DG algebras and the variables xα,i have positive weight dα .
Consider the power sums Pa :=

∑
i≥1

∏N
α=1 x

aα
α,i where a := (a1, . . . , aN ) runs over

{0, 1}m × ZN−m
≥0 .
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Proposition 4.8. Let W be the k-vector space spanned by variables {qa}, where a ∈
{0, 1}m × ZN−m

≥0 .

(i) The homomorphism of bigraded (commutative) DG algebras

SymkW → k[xα,i : 1 ≤ α ≤ N, 1 ≤ i ≤ d]Sd , qa 7→ Pa, (4.22)

restricts to an isomorphism of bigraded k-vector spaces

Sym≤dk W ∼= k[xα,i : 1 ≤ α ≤ N, 1 ≤ i ≤ d]Sd .

(ii) The homomorphisms (4.22) induce an isomorphism of bigraded (commutative) DG
algebras

SymkW
∼= k[xα,i : α ≤ N, i ∈ N]S∞ .

Proof. Clearly, (i) implies (ii). We therefore show (i). Any element of k[xα,i : 1≤α≤N ,
1 ≤ i ≤ d]Sd is a k-linear combination of orbit sums of the form

Oµ :=
∑
σ∈Sd

σ
( N∏
α=1

p∏
j=1

x
µα,j
α,j

)
where p ≤ d and no column of the N ×p-matrix µ := (µα,j )1≤α≤N, 1≤j≤p is identically
zero. If p = 1, thenOµ is precisely the power sum Pa where a = (µα,1, . . . , µα,N ). Note
that

Oµ = ±

p∏
j=1

(P(µ1,j ,...,µN,j ))+
∑
ν

cνOν

where ν runs over matrices with less than p columns (and where cν ∈ k). Hence, by in-
duction on p, we see thatOµ is represented as an element in the image of Sym≤pk W under
the homomorphism (4.22). Clearly, this representation is unique. This proves (i). ut

4.4.2. Proof of Conjecture 4.6 as n → ∞. The minimal free resolution of A = k[x, y]
is given by R = k〈x, y, θ〉 with differential dθ = [x, y]. Then Rab ∼= k[x, y, θ ] with
dθ = 0 and

Sn(Rab) ∼= k[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn]
Sn , n ≥ 1.

By Theorem 2.8, H•(R\) ∼= HC•(A); on the other hand, by [L, Theorem 3.4.12], we can
identify HC•(A) ∼= �•(A)/d�•−1(A), where �•(A) is the algebraic de Rham complex
of A. With these identifications, the reduced trace maps (4.11) are given by the following
formulas (see [BF+, Section 4.4.1])

Trn(A)0 : A→ Sn(Rab), P (x, y) 7→

n∑
i=1

P(xi, yi),

Trn(A)1 : �1(A)/dA→ Sn(Rab),

[P(x, y)dx +Q(x, y)dy] 7→

n∑
i=1

(Py(xi, yi)−Qx(xi, yi))θi .

Using these formulas, it is easy to prove the following fact.
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Lemma 4.9. The image of Trn(A)• in Sn(Rab) is spanned by the power sums

Pabc :=

n∑
i=1

xai y
b
i θ
c
i , (a, b, c) ∈ Z2

≥0 × {0, 1}.

Endow R with the structure of a bigraded DG algebra, where x, y ∈ R have weight 1
and homological degree 0 and θ ∈ R has weight 2 and homological degree 1. Note that
there is a natural (surjective) homomorphism Sn(Rab) → Sn−1(Rab) for any n ≥ 2. Let
S∞(Rab) := lim

←−n
Sn(Rab) where the projective limit is taken in the category of bigraded

commutative (DG) algebras. Using Proposition 4.8 and Lemma 4.9, we can now establish
the following result, which can be viewed as a further evidence in favor of Conjecture 4.6.

Theorem 4.10. Let 8n be the derived Harish-Chandra homomorphism for A = k[x, y]
(see (4.19)).

(i) For any n ≥ 1, the map H•(8n) is degreewise surjective.
(ii) The map H•(8∞) is an isomorphism of bigraded commutative algebras.

Proof. Note first that we have a commutative diagram

Symk(HC•(A))

Sym Trn(A)•
��

Sym Trn(A)•

&&
H•(A, n)GL

H•(8n)
// Sn(Rab)

The map 8n being surjective follows from Lemma 4.9 and Proposition 4.8(i). The
map 8∞ being an isomorphism follows from Proposition 4.8 (ii), which says that
Sym Tr∞(A)• is an isomorphism, and from [BR1, Theorem 4.4], which says that
Sym Tr∞(A)• is an isomorphism. ut

Note that part (i) of Theorem 4.10 is the surjectivity part of Conjecture 4.6; thus, to prove
Conjecture 4.6 it suffices to prove that the map H•(8n) is injective. As a corollary of
Theorem 4.10, we obtain (in the gln case) a classical result of A. Joseph [J, Theorem 2.9].

Corollary 4.11. The restriction map

Symk[gln(k)⊕ gln(k)]
GL
→ Symk[hn(k)⊕ hn(k)]

Sn ∼= k[x1, . . . , xn, y1, . . . , yn]
Sn

(4.23)
is (graded) surjective.

Proof. Note that (4.23) is precisely the composite map

k[Repn(k〈x, y〉)]
GL � k[Repn(k[x, y])]

GL H0(8n)
−−−−→ Sn(k[x, y]).

The surjectivity of (4.23) thus follows from that of H0(8n). ut

4.4.3. The case of three variables. One might expect that Conjecture 4.6 extends to poly-
nomial algebras of more than two variables. We now show that this is not the case. In
fact, Conjecture 4.6 fails already for polynomials of three variables. Let A = k[x, y, z].
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As in [BFR, Section 6.3.2], we write the minimal resolution of A in the form R =

k〈x, y, z, ξ, θ, λ, t〉, where deg x = deg y = deg z = 0, deg ξ = deg θ = deg λ = 1
and deg t = 2. The differential on R is defined by

dξ = [y, z], dθ = [z, x], dλ = [x, y], dt = [x, ξ ] + [y, θ] + [z, λ].

Again, we equip R with the structure of a bigraded DG algebra, with x, y, z having
weight 1, ξ, θ, λ having weight 2 and t having weight 3.

As in Section 4.4.2, we can define S∞(Rab) as a projective limit in the category of
bigraded commutative (DG) algebras. Note that Proposition 4.8(ii) implies that S∞(Rab)

can be naturally identified with the free bigraded commutative (DG) algebra generated by
the power sums

Pa :=
∞∑
i=1

ξ
a1
i λ

a2
i θ

a3
i t

a4
i x

a5
i y

a6
i z

a7
i , (4.24)

where the multi-index a := (a1, . . . , a7) runs over {0, 1}3 × Z4
≥0.

Now, by Theorem 2.8 and [L, Theorem 3.4.12], we can identify

H•(R\) ∼= HC•(A) ∼= �•(A)/d�•−1(A)

where �•(A) is the algebraic de Rham complex of A. This shows, in particular, that
HCi(A) vanish for i ≥ 3. Representing the cyclic classes in HC0(A), HC1(A) and
HC2(A) by differential forms

ω0 = P, ω1 = Pdx +Qdy + Rdz, ω2 = Pdx ∧ dy +Qdy ∧ dz+ Rdz ∧ dx,

we have the following formulas for the (reduced) trace maps (4.11) derived in [BF+,
Section 4.4.2]:

Tr∞(A)0[ω0] =

∞∑
i=1

P i,

Tr∞(A)1[ω1] =

∞∑
i=1

(
(P iy −Q

i
x)λi + (Q

i
z − R

i
y)ξi + (R

i
x − P

i
z )θi

)
,

Tr∞(A)2[ω2] =

∞∑
i=1

(
(P ixz +Q

i
xx + R

i
xy)θiλi + (P

i
yz +Q

i
xy + R

i
yy)λiξi

+ (P izz +Q
i
xz + R

i
yz)ξiθi

)
+

∞∑
i=1

(P iz +Q
i
x + R

i
y)ti .

Here, Px, Py, Pz, Pxy, . . . denote the derivatives of a polynomial P ∈ k[x, y, z], and P i

stand for the corresponding elements P(xi, yi, zi) ∈ S∞(Rab).
The above formulas show that the image of the map Tr∞(A)• is spanned by power

sums (4.24). However, this map is not surjective: for example, it is easy to see that no
power sum Pa with a4 ≥ 2 appears in the image of Tr∞(A)•. By [BR1, Theorem 4.4],
we conclude

Proposition 4.12. The map H•(8∞) : H•(A,∞)GL
→ S∞(Rab) is injective but not

surjective.
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Proposition 4.12 implies that if dim(V ) = 3, the derived Harish-Chandra homomorphism
8n(A) for A = Sym(V ) cannot be a quasi-isomorphism for any n. More generally, in
Section 5.2, we will show that 8n(A) is not a quasi-isomorphism when dim(V ) ≥ 3.
Thus Conjecture 4.6 does not extend to higher dimensions. There is, however, another
natural way to generalize this conjecture in which case we can actually prove that it holds.

4.5. Quantum polynomial algebras

In this section, we will show that (the analogue of) Conjecture 4.6 holds for the q-poly-
nomial algebra

Aq := k〈x, y〉/(xy − qyx), q ∈ k∗.

Precisely, we will prove

Theorem 4.13. If q ∈ k∗ is not a root of unity, the derived Harish-Chandra homomor-
phism

8n(Aq) : DRepn(Aq)
GL
→ SnDRep1(Aq)

is a quasi-isomorphism for all n ≥ 1.

We expect that the claim of Theorem 4.13 holds for an arbitrary value of q (except pos-
sibly for q = 0); however, our proof relies on the following vanishing result that requires
the restriction on q.

Lemma 4.14 ([BFR]). If q ∈ k∗ is not a root of unity, then, for all n ≥ 1,

Hi(Aq , n) = 0, i > 0.

For the proof of Lemma 4.14 we refer the reader to [BFR, Section 6.2.2].
Proof of Theorem 4.13. Let us restate the claim of the theorem in explicit terms. The
minimal cofibrant resolution of Aq is given by the free DG algebra R = C〈x, y, θ〉
with x, y of degree 0, θ of degree 1, and the differential defined by dθ = xy − qyx.
Hence, DRepn(Aq) and SnDRep1(Aq) are represented respectively by the following DG
algebras:

Bn := k[xij , yij , θij : i, j = 1, . . . , n]GL, dθij =

n∑
k=1

(xikykj − qyikxkj ), (4.25)

En := k[xi, yi, θi : i = 1, . . . , n]Sn , dθi = (1− q)xiyi . (4.26)

The derived Harish-Chandra homomorphism (4.8) is explicitly given by

8n : Bn→ En, xij 7→ δijxi, yij 7→ δijyi, θij 7→ δij θi . (4.27)

We need to show that (4.27) is a quasi-isomorphism.
First, we put an augmentation on the algebra Aq letting ε(x) = ε(y) = 0. The DG

algebra R, and hence Bn and En, then becomes augmented in a natural way, and the
map (4.27) preserves the augmentations. Next, using the notation of Section 2.4.3, we
set R\ := R̄/[R̄, R̄] and define W to be Sym(R\). Note that W is filtered by the graded
vector spaces W≤n := Sym≤n(R\), each of which carries a differential induced from R.
We may think of R\ as the space of cyclic words in letters x, y, θ ; then W≤n is spanned
by products of at most n such words.
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Now, consider the composition of morphisms of complexes

W≤n
Trn
−→ Bn

8n
−→ En. (4.28)

The first map in (4.28) is defined by the trace morphism (2.17): explicitly, it sends
a cyclic word to the corresponding trace expression (e.g., xyθ 7→

∑
i,j,k xijyjkθki). The

second map is the Harish-Chandra homomorphism (4.27).
We claim that each arrow in (4.28) is actually a quasi-isomorphism. To see this we

first show that the composition is a quasi-isomorphism. By Theorem 2.8, the homology
of R\ can be identified with the reduced cyclic homology HC•(Aq). When q is not a root
of unity, the latter is known to vanish in all positive degrees while spanned by the cyclic
words {xp} and {yp} in degree 0 (see [Wa, Théorème 2.1]), i.e.,

HC•(Aq) = HC0(Aq) ∼=
⊕
p≥1

(kxp ⊕ kyp).

This implies

H•(W≤n) = H0(W
≤n) ∼= Sym≤n[H0(R\)] ∼= Sym≤n[HC0(Aq)]

∼= k[Xp, Yp : p = 1, 2, . . .]≤n, (4.29)

where the variables Xp and Yp correspond to the cyclic words xp and yp.
Now, by Proposition 4.8(i), we can identify

En ∼= Sym≤n(R̄ab),

where Rab ∼= k[x, y, θ ] with differential dθ = (1−q)xy. In this case, H•(Rab) is concen-
trated in degree 0 and H0(Rab) is spanned (as a vector space) by the classes of xp and yp

with p ≥ 1. Hence the natural projection R\ � R̄ab induces an isomorphism of graded
vector spaces H•(R\)

∼
→ H•(R̄ab), which gives

H•(W≤n)
∼
→ H•(En). (4.30)

It is easy to see that the isomorphism (4.30) is actually induced by the composite map
(4.28); thus (4.28) is a quasi-isomorphism. Now, by [BR1, Theorem 3.1], we know that
the trace map Trn : W≤n→ RGL

n is (degreewise) surjective. Since bothW≤n and RGL
n are

nonnegatively graded, the map induced by Trn on the zero homology is also surjective:

H0(Trn) : H0(W
≤n)� H0(Bn) (4.31)

On the other hand, by Lemma 4.14, the homology ofRn is concentrated in degree 0. Since
GLn(k) is reductive, this implies

H•(Bn) ∼= H•(Rn)GL ∼= H0(Rn)
GL ∼= H0(Bn). (4.32)

Combining (4.30)–(4.32), we now see that (4.28) induces an isomorphism

H•(W≤n)� H•(Bn)→ H•(En), (4.33)

where the first arrow is also surjective. It follows that both maps in (4.33) are isomor-
phisms. In particular, 8n is a quasi-isomorphism. ut



2846 Yuri Berest et al.

Remark. Note that (4.29) gives isomorphisms

H•(Bn) ∼= H•(En) ∼= k[Xp, Yp : p = 1, 2, . . .]≤n, (4.34)

where the variables Xp and Yp have homological degree 0.

5. Euler characteristics and constant term identities

In this section, we compare the Euler characteristics of both sides of Conjecture 4.6 and
prove the resulting identities for all n. Throughout, we assume that k = C.

5.1. A constant term identity for gln

The target of the Harish-Chandra homomorphism (4.19) is the graded commutative al-
gebra En := C[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn]

Sn with xi, yi of homological degree 0
and θi of degree 1. It has an additional Z2 grading, which we call weight, such that
wt(xi) = (1, 0), wt(yi) = (0, 1), wt(θi) = (1, 1).

Let Gn(q, t, s) be the generating function

Gn(q, t, s) =
∑

dim((En)d,a,b)sdqa tb

of the dimensions of the homogeneous components (En)d,a,b of degree d and weight
(a, b).

Lemma 5.1. Gn(q, t, s) is equal to the coefficient of vn in the Taylor expansion at v = 0
of ∏

a,b≥0

1+ qa+1tb+1sv

1− qa tbv
.

Proof. A generating set is given by the Sn orbit sums of monomials θνxλyµ with expo-
nents λ,µ ∈ Zn

≥0, ν ∈ {0, 1}n. Such an orbit sum contributes q |λ|+|ν|t |µ|+|ν|s|ν| to the
generating function, where |λ| =

∑
λi . To get a basis we take the subset of such orbit

sums whose exponents obey (i) ν is a partition: νi ≥ νi+1 for all i = 1, . . . , n − 1, (ii)
λi ≥ λi+1 whenever νi = νi+1, (iii) µi ≥ µi+1 whenever νi = νi+1 = 0 and λi = λi+1
and (iv) µi > µi+1 whenever νi = νi+1 = 1 and λi = λi+1. Such data are in one-
to-one correspondence with families (mdab) of nonnegative integers labeled by triples
(d, a, b) ∈ {0, 1} × Z2

≥0 such that |m| =
∑
d,a,bmdab = n and m1ab ≤ 1: for (ν, λ, µ)

obeying (i)–(iv), mdab is the number of parts of size b of the partition (µj )j∈J where
j ∈ J iff νj = d and λj = a. This gives

∞∑
n=0

Gn(q, t, s)v
n
=

∏
a,b≥0

∞∑
m=0

qma tmbvm
∏
a,b≥0

1∑
m=0

qm(a+1)tm(b+1)smvm

=

∏
a,b≥0

1+ qa+1tb+1sv

1− qa tbv
. ut
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The (weighted) Euler characteristic ofEn is the value ofGn at s = −1, where the formula
simplifies considerably. Let us use the standard notation (v; q)∞ :=

∏
∞

j=0(1− q
jv) and

(v; q)n := (v; q)∞/(q
nv; q)∞.

Corollary 5.2. The Euler characteristic χ(En, q, t) = Gn(q, t, s = −1) is the coeffi-
cient of vn in the Taylor expansion at v = 0 of the function

1− v
(v; q)∞(v; t)∞

.

More explicitly,

χ(En, q, t) =

n∑
j=0

tj

(q; q)n−j (t; t)j
.

Proof. The first statement is immediate from Lemma 5.1; the second follows from the
well-known Rothe identity

1
(v; q)∞

=

∞∑
n=0

vn

(q; q)n
. ut

Let us compare this Euler characteristic with the Euler characteristic of the graded com-
mutative algebra Bn := RGL

n underlying the invariant part of the complex computing
representation homology. Here

Rn = C[xij , yij , θij : i, j = 1, . . . , n].

Again, we assign degree 0, 0, 1 and weight (1, 0), (0, 1) and (1, 1) to xij , yij and θij ,
respectively. The weighted Euler characteristic of Bn can be extracted from the character
valued weighted Euler characteristic

χ(Rn, q, t, u) =
∑

trace(u|(Rn)d,a,b)(−1)dqa tb, u = diag(u1, . . . , un) ∈ GLn,

of the GLn-module Rn.

Lemma 5.3.

χ(Rn, q, t, u) =
∏

1≤i,j≤n

1− qtui/uj
(1− qui/uj )(1− tui/uj )

.

Proof. We use the basis of monomials, noticing that u acts on xi,j , yi,j , θi,j by multipli-
cation by ui/uj . ut

To find the weighted Euler characteristic of Bn we need to select the coefficient of 1
in the expansion of the coefficients of the character valued Euler characteristic in Schur
polynomials. This is obtained by taking the 1/n! times the constant term of the product
with the Weyl denominator:

Corollary 5.4. Let CT : Z[u±1
1 , . . . , u±1

n ][[q, t]] → Z[[q, t]] be the constant term map.
Then

χ(Bn, q, t) =
1
n!

(1− qt)n

(1− q)n(1− t)n
CT

∏
1≤i 6=j≤n

(1− qtui/uj )(1− ui/uj )
(1− qui/uj )(1− tui/uj )

.
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Now, Conjecture 4.6 implies the equality

χ(En, q, t) = χ(Bn, q, t), (5.1)

which, using Corollaries 5.2 and 5.4, we can write as the identity

1
n!

(1− qt)n

(1− q)n(1− t)n
CT

∏
1≤i 6=j≤n

(1− qtui/uj )(1− ui/uj )
(1− qui/uj )(1− tui/uj )

=

n∑
j=0

tj

(q; q)n−j (t; t)j
.

(5.2)
The main result of this section is

Theorem 5.5. The identity (5.2) holds for all n ≥ 1.

Proof. This is an immediate consequence of Theorem 4.13. Indeed, if we forget differ-
entials, the commutative algebras Bn and En introduced in this section coincide with the
algebras (4.25) and (4.26) introduced in Section 4.5. The differentials in (4.25) and (4.26)
respect the weight gradings, and so does the Harish-Chandra homomorphism (4.27). The-
orem 4.13 thus implies the equality (5.1), which is equivalent to (5.2). ut

Remarks. 1. The last isomorphism in (4.34) allows one to compute the right-hand side of
the identity (5.2) directly, without using Lemma 5.1. Indeed, C[Xp, Yp : p = 1, 2, . . .]≤n

consists of polynomials in X1, Y1, X2, Y2, . . . of degree ≤ n. The number of monomials
of degree exactly n and of bidegree (a, b) is the coefficient of vnqa tb in the generating
function

∏
k≥1(1 − vq

k)−1(1 − vtk)−1. The number of polynomials of degree ≤ n can
be obtained by multiplying this function by 1/(1−v). The result of Corollary 5.2 follows
then easily from (4.34).

2. The identity (5.2) can be rewritten equivalently in the form∫
U(n)

det(1− qt Ad(g))
det(1− q Ad(g)) det(1− t Ad(g))

dg =
1
n!

∑
σ∈Sn

det(1− qtσ )
det(1− qσ) det(1− tσ )

,

where the integration on the left is taken with respect to the normalized Haar measure
over the n-th unitary group U(n) and the determinants on the right are taken with respect
to the natural action of Sn on Cn. In this form, the identity (5.2) extends to an arbitrary
reductive Lie algebra (see Section 8.2).

3. The left-hand side of (5.2) is the expansion at q = t = 0 of an integral over
the product of unit circles |ui | = 1 defined for |q|, |t | < 1 and can be computed by
iterated residues, with the following result: let Zn(q, t) be the left-hand side of (5.2) and
Z(v, q, t) = 1+

∑
∞

n=1 Zn(q, t)v
n the generating function. Then

Z(v, q, t) = exp
(∑

λ

v|λ|

|λ|
Wλ(q, t)

)
.

The sum is over all partitions (nonincreasing integer sequences converging to 0) λ =
(λ1 ≥ λ2 ≥ · · · ≥ 0) of positive size |λ| =

∑
λi . The coefficientWλ(q, t) is a regularized

product over the boxes (i, j) of the Young diagram

Y (λ) = {(i, j) ∈ Z2
: 1 ≤ j ≤ λi} = {(i, j) ∈ Z2

: 1 ≤ i ≤ λ′j }
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of the partition λ, with conjugate partition λ′:

Wλ(q, t) =
∏
′

(i,j)∈Y (λ)

(1− qj t i)(1− q−j+1t−i+1)

(1− qλi−j+1t
−λ′j+i)(1− q−λi+j tλ

′
j−i+1

)
.

In the regularized product
∏
′ we omit the factor 1 − q0t0 appearing at (i, j) = (1, 1).

Using the product formula of Corollary 5.2 for the generating function of the right-hand
side of (5.2) we see that the identity (5.2) is equivalent to∑

|λ|=n

Wλ(q, t) =
1− qntn

(1− qn)(1− tn)
, n = 1, 2, . . . .

This calculation is a trigonometric version of a similar calculation occurring in super-
symmetric gauge theory [N]: the Nekrasov instanton partition function of N = 2 super
Yang–Mills theory on R4 with U(N) gauge group has both an integral representation and
an expression as a sum over collections of partitions (see [N, (3.10) and (1.6)], respec-
tively). They are related by iterated residues.

5.2. Other examples

It is known that the derived Harish-Chandra homomorphism (4.8) induces an isomor-
phism on the 0-th homology for any commutative algebra.13 In Section 4.4.3, we have
shown that this isomorphism cannot be extended to higher homologies forA = k[x, y, z].
We now give a general argument showing that 8n is not a quasi-isomorphism for A =
Sym(V ) when dim(V ) ≥ 3. We will also look at the algebra of dual numbers, in which
case the analogue of Conjecture 4.6 also fails.

5.2.1. Euler characteristics for arbitrary symmetric algebras. Our aim is to prove

Proposition 5.6. The derived Harish-Chandra homomorphism

8n : DRepn(Sym(V ))GL
→ Sym(h∗n ⊗ (

∧1 V ⊕ · · · ⊕
∧r V ))Sn

is not a quasi-isomorphism when the dimension r of V is at least 3 (and when n ≥ 2).

Proof. Suppose that r := dimk(V ) = 3. Choose a basis {x, y, z} of V . Note that both
DRepn(Sym(V ))GL and Sym(h∗n ⊗ (

∧1 V ⊕
∧2 V ⊕

∧3 V ))Sn are Z3-graded, with x
having weight (1, 0, 0), y having weight (0, 1, 0) and z having weight (0, 0, 1) (these
weights uniquely determine the weight of each generator of DRepn(Sym(V )) as well as
the weight of each generator of Sym(h∗n⊗ (

∧1 V ⊕
∧2 V ⊕

∧3 V ))). Further note that by
its very construction, the derived Harish-Chandra homomorphism is weight preserving.
We then claim that

Lemma 5.7. The subcomplexes of weight (1, 1, 1) in DRepn(Sym(V ))GL and
Sym(h∗n ⊗ (

∧1 V ⊕
∧2 V ⊕

∧3 V ))Sn have different Euler characteristics.

13 This follows from a theorem of Vaccarino [Va2, Theorem 4.1], which asserts that the so-called
norm map det : Sn(A)→ AGL

n is an isomorphism for any commutative k-algebraA and any n ≥ 1.
A direct calculation shows that H0(8n) coincides with the inverse of det.
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This shows that8n cannot be a quasi-isomorphism when r = 3 and n ≥ 2. Further, when
r > 3, one can choose a basis {x1, . . . , xr} of V , and equip both DRepn(Sym(V ))GL

and Sym(h∗n ⊗ (
∧1 V ⊕ · · · ⊕

∧r V ))Sn with the Zr -grading determined by fixing the
weight of xi to be (0, . . . , 0, 1, 0, . . . , 0) (with i-th coordinate 1). Again, the derived
Harish-Chandra homomorphism is weight preserving by its very construction. Further, it
is easy to see that the subcomplexes of weight (1, 1, 1, 0, . . . , 0) in DRepn(Sym(V ))GL

and Sym(h∗n⊗(
∧1 V ⊕

∧2 V ⊕
∧3 V ⊕· · ·⊕

∧r V ))Sn are isomorphic to their counterparts
for the case when r = 3. Thus, Lemma 5.7 implies the desired proposition in general.

It remains to verify Lemma 5.7. For notational brevity, we write ζ := −λ(x, y),
η := −λ(z, x), ξ := −λ(y, z) and t := −λ(x, y, z). Then the minimal resolution
R is generated by x, y, z, ζ, η, ξ, t with dζ = [x, y], dη = [z, x], dξ = [y, z] and
dt = [ξ, x] + [η, y] + [ζ, z]. Thus, DRepn(k[x, y, z]) is generated by the variables
xij , yij , zij , ζij , ηij , ξij , tij for 1 ≤ i, j ≤ n where xij := eij ⊗x, etc. The subcomplex of
DRepn(k[x, y, z])

GL of weight (1, 1, 1) is of the form 0→ C2 → C1 → C0 → 0 where

C2 := Span{Tr(t)},
C1 := Span{Tr(ξx),Tr(ηy),Tr(ζ z),Tr(ξ)Tr(x),Tr(η)Tr(y),Tr(ζ )Tr(z)},
C0 := Span{Tr(xyz),Tr(xzy),Tr(xy)Tr(z),Tr(yz)Tr(x),

Tr(zx)Tr(y),Tr(x)Tr(y)Tr(z)}.

For n ≥ 3 the above elements are linearly independent. When n = 2, there is one relation:

Tr(xyz)+Tr(xzy)−Tr(xy)Tr(z)−Tr(yz)Tr(x)−Tr(zx)Tr(y)+Tr(x)Tr(y)Tr(z) = 0.

Hence, χ(DRepn(k[x, y, z])
GL
(1,1,1)) = 1 when n ≥ 3 and 0 for n = 2.

On the other hand, writing xi := ei ⊗ x, etc., we identify Sym(h∗n⊗ (
∧1 V ⊕

∧2 V ⊕∧3 V ))Sn with

A :=

k[x1, . . . , xn, y1, . . . , yn, z1, . . . , zn, ξ1, . . . , ξn, η1, . . . , ηn, ζ1, . . . , ζn, t1, . . . , tn]
Sn .

In homological degree 0, we have

A0(1, 1, 1) = Span
( ∑
(a,b,c)∈O

xaybzc

)
where O runs over the orbits of Sn in {1, . . . , n}3. For n ≥ 3 there are five such orbits:
those of (1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1) and (1, 2, 3). In homological degree 1,

A1(1, 1, 1) = Span
( ∑
(a,b)∈O

ξaxb,
∑

(a,b)∈O

ηayb,
∑

(a,b)∈O

ζazb

)
where O runs over the orbits of Sn in {1, . . . , n}2. There are two such orbits: those of
(1, 1) and (1, 2). Finally,

A2(1, 1, 1) = Span(t1 + · · · + tn).

Thus, the Euler characteristic of A(1, 1, 1) is 0 when n ≥ 3 (and −1 when n = 2). This
verifies Lemma 5.7, thereby completing the proof of Proposition 5.6. ut
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5.2.2. Dual numbers. Let A := C[x]/(x2), the algebra of dual numbers. In this case,
C = T c(V ) where V is a 1-dimensional vector space in homological degree 1. Explicitly,
�(C) is the free DG algebra R := C〈x, t1, t2, . . . .〉 with x having homological degree 0
and ti having homological degree i for all i ∈ N. The differential on �(C) is given by

dtp = xtp−1 − t1tp−2 + · · · + (−1)p−1tp−1x, p ≥ 1.

Note that as DG algebras, both A and R are weight graded as well, with the weight of x
being 1 and that of tp being p + 1 for all p ≥ 1. Note that the derived Harish-Chandra
homomorphism is weight preserving by its very construction. Also, all the complexes
involved have finite total dimension in each weight degree. To see that the derived Harish-
Chandra homomorphism is not a quasi-isomorphism in this case, it suffices to check that
the weighted Euler characteristics χ(DRep2(A)

GL, q) and χ((DRep1(A)
⊗2)S2 , q) differ.

Here, for V a weight graded complex of C-vector spaces that has finite total dimension in
each weight degree, we define the weighted Euler characteristic of V by

χ(V, q) :=
∑
i,j

(−1)i dimC(Vi(j))q
j

where Vi(j) is the component of Vi of weight j .
Note that

χ(S2DRep1(A), q) =
1
2 [χ(DRep1(A), q)

2
+ χ(DRep1(A), q

2)].

Since χ(DRep1(A), q) =
∏
∞

k=1(1− q
2k+2)(1− q2k+1)−1

=
∑
∞

j=0 q
j (j+1)/2,

χ(S2DRep1(A), q) = 1+ q + q2
+ q3

+ q4
+ 2q6

+ · · · . (5.3)

On the other hand (see [BR1, Section 7.6]),

χ(DRep2(A)
GL, q) =

∫
U(2)

∞∏
i=1

det(1− qi Ad(g))(−1)idg.

The above integral is taken over the unitary group U(2) ⊂ GL2(C), where the Haar
measure dg is normalized so that the volume of U(2) is 1. The determinant is taken in
the adjoint representation of GL2(C) on M2(C). The above integral can be computed
directly, giving

χ(DRep2(A)
GL, q) =

1
1− q

. (5.4)

Comparing (5.3) and (5.4), one sees that the derived Harish-Chandra homomorphism

82 : DRep2(C[x]/(x2))GL2 → S2DRep1(C[x]/(x2))

is not an isomorphism in Ho(DGCAk/k).

6. Derived representation schemes of Lie algebras

In this section, we construct a (derived) representation functor on the category of DG
Lie algebras. We prove a basic result (Theorem 6.7) relating the derived representation
functor of Lie algebra to the homology of a Lie coalgebra defined over a Koszul dual
cocommutative coalgebra.
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6.1. Classical representation schemes

Let g be a finite-dimensional Lie algebra. For any Lie algebra a, there is an affine scheme
Repg(a) parametrizing the representations of a in g. More precisely, the functor

g(–) : Comm Algk → LieAlgk, B 7→ g(B) := g⊗ B,

has a left adjoint
(–)g : LieAlgk → Comm Algk, a 7→ ag.

In particular, for a fixed Lie algebra a, the commutative algebra ag represents the functor14

Repg(a) : Comm Algk → Sets, B 7→ HomLieAlgk (a, g(B)).

By definition, ag is the coordinate ring of the affine scheme parametrizing the represen-
tations of a in g. For example, if a is the abelian two-dimensional Lie algebra over k, and
g is reductive, then Repg(a) is the classical commuting scheme of the Lie algebra g.

In this section, we extend the functor (–)g to the category DGLAk of DG Lie algebras
and derive it using the natural model structure on DGLAk . We then define the representation
homology H•(a, g) as the homology of the corresponding derived functor.

6.2. Quillen equivalences for Lie (co)algebras

We begin with a brief review of the bar/cobar formalism in the Lie setting.

6.2.1. Basic functors. Recall that DGCAk/k denotes the category of commutative DG al-
gebras augmented over k. Let DGLAk denote the category of DG Lie algebras over k. Let
DGCCk/k denote the category of DG cocommutative conilpotent coalgebras coaugmented
over k. Similarly, let DGLCk denote the category of conilpotent DG Lie coalgebras.

There is a pair of adjoint functors

�Comm : DGCCk/k � DGLAk : BLie, (6.1)

where BLie is defined by the classical Chevalley–Eilenberg complex of a DG Lie algebra
(see Section 3.1) and �Comm is the functor assigning to a cocommutative coalgebra C the
free graded Lie algebra on the vector space C̄[−1]. The differential on �Comm(C) is given
by d1 + d2, where d1 is induced by the inner differential on C, and d2 is the lift of the
linear map

k[−1] ⊗ C̄
1−1⊗1
−−−−→ k[−1] ⊗ k[−1] ⊗ Sym2(C̄) ∼=

∧2(C̄[−1]),

where 1−1 : k[−1] → k[−1] ⊗ k[−1] takes 1k[−1] to −1k[−1] ⊗ 1k[−1], and 1 is the
coproduct on C̄.

Dually, there is a pair of adjoint functors

�Lie : DGLCk � DGCAk/k : BComm, (6.2)

14 This functor in a more general operadic setting is briefly discussed in [G, Section 6].
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where �Lie is defined by the Chevalley–Eilenberg complex of a DG Lie coalgebra (see
Section 3.1), and BComm is the functor taking R ∈ DGCAk/k to the cofree DG Lie coalgebra
L(R̄[1]) equipped with (co)differential d1 + d2 where d1 is induced by the differential
on R and d2 is determined by the linear map

∧2(R̄[1]) ∼= k[1] ⊗ k[1] ⊗ Sym2(R̄)
µ1⊗µ
−−−→ k[1] ⊗ R̄ ∼= R̄[1]

(Here, µ1 identifies 1k[1] ⊗ 1k[1] with 1k[1] and µ : Sym2(R̄) → R̄ is induced by the
multiplication map on R.)

Notation. If there is no danger of confusion, we will use the notation C := BLie and
Cc := �Lie for the Chevalley–Eilenberg functors on Lie algebras and Lie coalgebras,
respectively.

6.2.2. Model structures and Quillen theorems. The following theorem collects basic
facts about the model structures and Quillen equivalences for Lie (co)algebras: part (i)
is well known (essentially due to Quillen [Q2]); for parts (ii) and (iii), see, for example,
[Hi, Theorems 3.1 and 3.2] and [SW, Corollary 4.15].

Theorem 6.1. (i) The categories DGCAk/k and DGLAk have model structures where the
weak equivalences are the quasi-isomorphisms and the fibrations are the degreewise
surjective maps.

(ii) The category DGLCk (resp., DGCCk/k) admits a model structure, where the weak
equivalences are the maps f such that �Comm(f ) (resp., �Lie(f )) is a quasi-iso-
morphism and the cofibrations are degreewise monomorphisms.

(iii) For the above model structures, the pairs of functors (6.1) and (6.2) are Quillen
equivalences.

Note that part (iii) says that the functors (6.1) and (6.2) induce derived equivalences

L�Comm : Ho(DGCCk/k)� Ho(DGLAk) : RBLie,

L�Lie : Ho(DGLCk)� Ho(DGCAk/k) : RBComm.

6.2.3. Relation to DG algebras and linear duality. We now introduce the following
functors on coalgebras: the coabelianization functor (–)ab

: DGCk/k → DGCCk/k as-
signing to a DG coalgebra C its maximal cocommutative DG subcoalgebra Cab

⊆ C

(this functor is dual to the abelianization functor (2.6)); the universal coenveloping coal-
gebra functor Uc : DGLCk → DGCk/k dual to the universal enveloping algebra functor
U : DGLAk → DGAk/k; the Lie coalgebra functor Liec : DGCk/k → DGLCk assigning to
each C the coaugmentation coideal C̄ viewed as a DG Lie coalgebra (this functor is dual
to the Lie algebra functor Lie : DGAk/k → DGLAk assigning to A ∈ DGAk/k the augmenta-
tion ideal Ā viewed as a DG Lie algebra). Their relationship to Quillen equivalences (6.1)
and (6.2) is summarized by the following theorem.
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Theorem 6.2. In each of the following diagrams the square subdiagrams obtained by
starting at any corner and mapping to the opposite corner commute (up to isomorphism).

DGCk/k
� //

(–)ab

��

DGAk/k
B

oo

Lie

��

DGCk/k
� //

U c

��

DGAk/k
B

oo

(–)ab

��
DGCCk/k
?�

in

OO

�Comm //
DGLAk

BLie

oo

U

OO

DGLCk

Liec

OO

�Lie //
DGCAk/k

BComm

oo
� ?

in

OO

(6.3)

Proof. Let C ∈ DGCCk/k . Let LV denote the free Lie algebra generated by a graded
vector space V . Since Tk(V ) ∼= U(LV ) as graded k-algebras, we have an isomorphism of
graded algebras

�(C) ∼= U[�Comm(C)].

The fact that this isomorphism commutes with differentials follows from the fact that the
coalgebra C is cocommutative. Hence, on the category of cocommutative DG coalgebras,
we have an isomorphism of functors

� ∼= U ◦�Comm. (6.4)

By adjunction, this gives an isomorphism

BLie ◦ Lie ∼= (–)ab
◦ B, (6.5)

which proves the result for the first diagram in (6.3). A similar argument shows that

(–)ab ◦� ∼= �Lie ◦ Liec, (6.6)

which by adjunction (together with (6.6)) gives an isomorphism of functors on commuta-
tive DG algebras

B ∼= Uc ◦ BComm. (6.7)

This establishes the desired result for the second diagram in (6.3). ut

The following theorem, an immediate consequence of a simple generalization of [SW,
Theorem 4.17], explains the canonical linear dualities relating Lie algebraic and coalge-
braic Quillen functors.

Theorem 6.3. (i) Let g ∈ DGLAk be finite-dimensional in each degree. There is a natural
isomorphism

�Lie(g
∗) ∼= BLie(g)

∗. (6.8)

(ii) For G ∈ DGLCk finite-dimensional in each degree, we have a natural isomorphism

BLie(G
∗) ∼= �Lie(G)

∗. (6.9)

Here, (–)∗ stands for the restricted dual on the right-hand side.
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Note that the (full) graded k-linear dual of BLie(g) is precisely the complex of Lie
cochains of g with trivial coefficients. The restricted dual BLie(g)

∗ is therefore the com-
plex of continuous Lie cochains of g with coefficients in k, where k is given the dis-
crete topology and C(g; k) is given the topology induced by the decreasing filtration
F rC(g; k) := Sym≥r(g[1]). In particular, we have H•[BLie(g)

∗
] = H−•(g; k), where

H• denotes the continuous Lie algebra cohomology. Thus, the isomorphism (6.8) ex-
plicitly relates the homological and cohomological Chevalley–Eilenberg complexes. In
several interesting cases, the complex of continuous Lie cochains of g coincides with the
complex of Lie cochains of g for degree reasons. One such case is when g is concen-
trated in degree 0. Another is when g is cohomologically graded and 2-connected (i.e.,
concentrated in cohomological degrees ≥ 2). In addition, Theorems 6.2 and 6.3 hold
in the bigraded setting in which case (–)∗ means the bigraded dual. It is natural to re-
gard BLie(g)

∗ (rather than the full homologically graded k-linear dual of BLie(g)) as the
complex of Lie cochains of g in the bigraded setting.

6.3. Derived representation schemes

6.3.1. Convolution Lie algebras. For a fixed G ∈ DGLCk and A ∈ DGCAk , we define a Lie
bracket on Hom(G, A) by

[f, g] := m ◦ (f ⊗ g) ◦ ]–[

where m : A⊗ A→ A is the multiplication map on A, and ]–[ : G→ G⊗G is the Lie
cobracket on G. For G ∈ DGLCk fixed, this gives a functor

Hom(G, –) : DGCAk → DGLAk, (6.10)

which we call a convolution functor.

6.3.2. The left adjoint functor. For arbitrary elements ξ, η in a DG Lie algebra a and for
x ∈ G, let (]x[, ξ, η) denote the image of x ⊗ ξ ⊗ η under the composite map

G⊗a⊗a
]–[
−→ G⊗G⊗a⊗a

∼=
−→ (G⊗a)⊗2 � Sym2(G⊗a)� Symk(G⊗a) (6.11)

The following proposition describes the left adjoint for the Lie convolution algebra func-
tor Hom(G, –).

Proposition 6.4. The functor (6.10) has a left adjoint (–)G : DGLAk → DGCAk , which is
given by

a 7→ aG := Symk(G⊗ a)/〈x ⊗ [ξ, η] − (]x[, ξ, η)〉,

where (]x[, ξ, η) is defined by (6.11).
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Proof. For B ∈ DGCAk consider natural maps

HomDGLAk (a,Hom(G, B)) �
� //

'

��

HomComk (a,Hom(G, B))
=
��

HomComk (G⊗ a, B)

'
��

HomDGCAk (aG, B)
� � // HomDGCAk (Symk(G⊗ a), B)

The map
HomDGAk (a,Hom(G, B)) ↪→ HomDGCAk (Symk(G⊗ a), B) (6.12)

obtained by following the upper right part of the above diagram is explicitly given by

(f : a→ Hom(G, B)) 7→ [f̂ : Symk(G⊗k a)→ B, x ⊗ ξ 7→ (−1)|x||ξ |f (ξ)(x)].

Further, by a straightforward calculation, f is a DG Lie algebra homomorphism iff
f ([ξ, η]) = [f (ξ), f (η)] iff for all ξ, η ∈ a and x ∈ G, f̂ (x ⊗ [ξ, η] − (]x[, ξ, η)) = 0.
This shows that the image of the map (6.12) is precisely HomDGCAk (aG, B). This proves
the desired proposition. ut

As a consequence of Proposition 6.4, we obtain:

Theorem 6.5. The pair of functors (–)G : DGLAk � DGCAk : Hom(G, –) is a Quillen
pair. As a result, the functor (–)G has a (total) left derived functor

L(–)G : Ho(DGLAk)→ Ho(DGCAk), a 7→ (Qa)G,

where Qa
∼
−→ a is any cofibrant resolution in DGLAk .

Proof. By Proposition 6.4 and [DS, Remark 9.8], it suffices to check that Hom(G, –)
preserves degreewise surjections and quasi-isomorphisms. This is obvious. ut

The functor Hom(G, –) can be modified naturally to give a functor on augmented com-
mutative DG algebras

Hom(G, –) : DGCAk/k → DGLAk, A 7→ Hom(G, Ā).

The left adjoint (–)G of Hom(G, –) : DGCAk/k → DGLAk is the functor assigning to each
a ∈ DGLAk the commutative DG algebra aG equipped with the canonical augmentation

ε : aG→ k

corresponding to 0 ∈ HomDGLAk (a,Hom(G, k)) under the adjunction (6.13). As in The-
orem 6.5, it is easy to verify that the pair of functors (–)G : DGLAk � DGCAk/k :

Hom(G, –) is Quillen. Hence, (–)G has a left derived functor

L(–)G : Ho(DGLAk)→ Ho(DGCAk/k),

which after applying the forgetful functor Ho(DGCAk/k) → Ho(DGCAk) coincides with
L(–)G : Ho(DGLAk)→ Ho(DGCAk).
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6.3.3. Derived representation schemes. Let g be a finite-dimensional Lie algebra over k.
Let G := g∗, the dual Lie coalgebra. Then

Hom(G, A) = Hom(g∗, A) ∼= g⊗ A =: g(A).

Thus, the commutative DG algebra ag := aG represents the functor

Repg(a) : DGCAk → Sets, A 7→ HomDGLAk (a, g(A)),

that is, there is a natural isomorphism of sets

HomDGCAk (ag, A)
∼= HomDGLAk (a, g(A)). (6.13)

As in the associative case, we now define

DRepg(–) := L(–)g : Ho(DGLAk)→ Ho(DGCAk).

We call DRepg(a) the derived representation scheme parametrizing representations of a
in g. Further, ifG is a Lie group whose Lie algebra is g,G acts (via the adjunction (6.13))
on ag by automorphisms for any a ∈ DGLAk . One can therefore form the subfunctor

(–)Gg : DGLAk → DGCAk, a 7→ aGg ,

of (–)g. An argument using Brown’s lemma similar to the proof of [BKR, Theorem 2.6]
shows that the functor (–)Gg has a total left derived functor

DRepg(–)
G
:= L(–)Gg : Ho(DGLAk)→ Ho(DGCAk).

We define the representation homologies

H•(a, g) := H•(DRepg(a)), H•(a, g)G := H•(DRepg(a)
G).

More generally, g acts (via the adjunction (6.13)) on ag by derivations. One can therefore
form the functor

(–)adg
g : DGLAk → DGCAk, a 7→ a

adg
g .

Again, an argument paralleling the proof of [BKR, Theorem 2.6] shows that the functor
(–)adg

g has a total left derived functor

DRepg(–)
adg
:= L(–)adg

g : Ho(DGLAk)→ Ho(DGCAk).

We define
H•(a, g)adg

:= H•[DRepadg
g (a)].

Note that if g is the Lie algebra of a reductive Lie group G, the functors (–)Gg and (–)adg
g

coincide. Hence, in this situation, their derived functors coincide as well.
The discussion in Section 6.3.2 points out that DRepg(a) can be viewed as an object in

Ho(DGCAk/k) (rather than Ho(DGCAk)). In the same way, DRepg(a)
adg can be viewed as an

object in Ho(DGCAk/k). Similarly, ifG is a Lie group whose Lie algebra is g, one can con-
sider DRepg(a)

G as an object in Ho(DGCAk/k). In this case, DRepg(a)
G ∼= DRepg(a)

adg.
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6.3.4. Representation homology and Lie cohomology. The following proposition leads
to the main result of this section (Theorem 6.7).

Proposition 6.6. For any G ∈ DGLCk , the following diagram commutes (up to isomor-
phism of functors):

DGCCk/k

G⊗̄–

��

�Comm //
DGLAk

BLie

oo

Hom(G,–)

��
DGLCk

�Lie //
DGCAk/k

BComm

oo

(–)G

OO

where G ⊗̄C := G⊗ C̄ for any C ∈ DGCCk/k . Thus, there is an isomorphism of functors

(–)G ◦�Comm
∼= �Lie ◦ (G ⊗̄ –) = Cc ◦ (G ⊗̄ –). (6.14)

Proof. For any C ∈ DGCCk/k and L ∈ DGLAk , let Tw(C,L) denote the set of Maurer–
Cartan elements (i.e., elements satisfying dα + 1

2 [α, α] = 0) in the DG Lie algebra
Hom(C̄, L). Similarly, for Lc ∈ DGLCk and A ∈ DGAk/k , Tw(Lc, A) will denote the set of
Maurer–Cartan elements in the DG Lie algebra Hom(Lc, Ā). Now, for any A ∈ DGCAk/k
and C ∈ DGCCk/k , we have

HomDGCAk/k (�Comm(C)G, A) ∼= HomDGLAk (�Comm(C),Hom(G, Ā))
∼= Tw(C,Hom(G, Ā)) ∼= Tw(G ⊗̄ C,A)
∼= HomDGCAk/k (C

c(G ⊗̄ C),A).

The first isomorphism above is Proposition 6.4, the second is from [Hi], the third is be-
cause the DG Lie algebras Hom(C̄,Hom(G, A)) and Hom(G ⊗̄ C, Ā) are isomorphic
by the standard Hom-tensor duality, and the fourth is from arguments similar to those
in [Hi] proving the second. (6.14) follows from this by Yoneda’s Lemma. The rest of the
proposition follows from (6.14) by adjunction. ut

Theorem 6.7. (a) Suppose that G = g∗ for some Lie algebra g. If �Comm(C)
∼
−→ a is

a quasi-isomorphism for some C ∈ DGCCk/k , then

DRepg(a) ∼= Cc(g∗(C̄); k), DRepg(a)
adg ∼= Cc(g∗(C), g∗; k).

In particular,

H•(a, g) ∼= H•(g∗(C̄); k), H•(a, g)adg ∼= H•(g∗(C), g∗; k).

(b) Suppose, in addition, that g is finite-dimensional and C is either finite-dimensional
in each degree or bigraded. Let A = C∗ (with bigraded duals being taken in the
bigraded setting). Then

DRepg(a) ∼= C(g(Ā); k)∗, DRepg(a)
adg ∼= C(g(A), g; k)∗.
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Here, (–)∗ stands for continuous or bigraded dual as the case might be.15 In partic-
ular,

H•(a, g) ∼= H−•(g(Ā); k), H•(a, g)adg ∼= H−•(g(A), g; k).

Here, “Lie cohomology” means “continuous Lie cohomology” or “Lie cohomology
in the bigraded setting” as the case might be.

Proof. That DRepg(a) ∼= Cc(g∗(C̄); k) is immediate from Proposition 6.6. The isomor-
phism DRepg(a)

adg ∼= Cc(g∗(C), g∗; k) then follows from the fact that Cc(g∗(C), g∗; k)
= Cc(g∗(C̄); k)adg. This proves (a). Part (b) follows from (a) and (6.8). ut

Remark. Recall that, by (6.4), �(C) ∼= U(�Comm(C)) for any C ∈ DGCCk/k .

Now, take g = gln(k), G = g∗ ∈ DGLCk and M = Mn(k)
∗
∈ DGCk . The following

proposition clarifies the relation between derived representation schemes of Lie algebras
and their associative counterparts.

Proposition 6.8. Let C ∈ DGCCk/k . Then there is a natural isomorphism of commutative
DG algebras

�(C)n ∼= �Comm(C)gln . (6.15)

Hence, for any DG Lie algebra a,

DRepn(U(a)) ∼= DRepgln(a). (6.16)

Proof. For any B ∈ DGCAk , we have

HomDGCAk (�(C)n, B)
∼= HomDGAk (�(C),Mn(B))

∼= HomDGAk (U(�Comm(C)),Mn(B))

∼= HomDGLAk (�Comm(C), gln(B))
∼= HomDGCAk (�Comm(C)gln , B).

The isomorphism (6.15) now follows from Yoneda’s Lemma. To prove (6.16), note that
for any a ∈ DGLAk , one can find C ∈ DGCCk/k such that �Comm(C) → a is a cofibrant
resolution in DGLAk (for example, C = BLie(a)). Then �(C) ∼= U(�Comm(C))→ U(a)
is a cofibrant resolution of U(a) in DGAk . Hence,

DRepn(U(a)) ∼= �(C)n ∼= �Comm(C)gln
∼= DRepgln(a). ut

7. Derived Harish-Chandra homomorphism and Drinfeld traces

The aim of this section is to construct the derived Harish-Chandra homomorphism and
trace maps for representation schemes of Lie algebras. Our starting point is the observa-
tion of Section 4.2 interpreting the derived HC homomorphism for associative algebras
in terms of Chevalley–Eilenberg complexes.

15 See remarks after Theorem 6.3.
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Throughout this section, g will denote a finite-dimensional reductive Lie algebra,
h ⊂ g its Cartan subalgebra and W the Weyl group of g. Recall that in this case, if V
is any k-vector space with an action of the reductive groupG whose Lie algebra is g, then
VG ∼= V adg.

7.1. The derived Harish-Chandra homomorphism

The natural inclusion h ↪→ g defines a homomorphism of Lie coalgebras g∗ � h∗ and
hence, for any C ∈ DGCCk/k , a morphism of commutative DG algebras

8g(C) : Cc(g∗(C), g∗; k)→ Cc(h∗(C), h∗; k). (7.1)

The following proposition is a generalization of Lemma 4.1.

Proposition 7.1. The image of 8g(C) lies in the DG subalgebra Cc(h∗(C), h∗; k)W of
chains that are invariant under the action of the Weyl group W of g.

Proof. As h is an abelian Lie algebra, we have an isomorphism Cc(h∗(C), h∗(k); k) ∼=
Cc(h∗(C̄); k). The map 8g(C) is thus the restriction of the natural map Cc(g∗(C); k)→
Cc(h∗(C̄); k) to Cc(g∗(C), g∗; k) ∼= Cc(g∗(C̄); k)adg ∼= Cc(g∗(C̄); k)G, where G is the
Lie group attached to g. Now, let N denote the normalizer of h in G, so that there is
a surjective group homomorphism N � W . Since W acts naturally on h∗, so does N .
Thus, N acts on h∗(C̄) as well, making h∗(C̄) a DG-Lie coalgebra with N -action. This,
in turn, induces an N -action on the commutative DG algebra Cc(h∗(C̄); k). On the other
hand, the adjoint action of G on g makes g∗(C̄) a DG Lie coalgebra with G-action (and
hence N -action). Thus, the commutative DG algebra Cc(g∗(C̄); k) acquires a G-action
(and hence an N -action). Since the map g∗ � h∗ is N -equivariant, the map g∗(C̄) �
h∗(C̄) is N -equivariant as well. Therefore, the map Cc(g∗(C̄); k) → Cc(h∗n(C̄); k) is
N -equivariant. Since any element of Cc(g∗(C), g∗(k); k) is G-invariant (and hence N -
invariant), any element in the image of 8g(C) is N -invariant (and hence W -invariant).

ut

Thus, we have a morphism of commutative DG algebras

8g(C) : Cc(g∗(C), g∗; k)→ Cc(h∗(C), h∗; k)W ,

which we call the derived Harish-Chandra homomorphism. Suppose that there exists a
quasi-isomorphism �Comm(C)

∼� a for some Lie algebra a. By Theorem 6.7, the derived
Harish-Chandra homomorphism can be viewed as a map in Ho(DGCAk/k)

8g(C) : DRepg(a)
G
→ Cc(h∗(C), h∗; k)W .

It follows that the derived Harish-Chandra homomorphism induces the map

H•(8g) : H•(a, g)G→ H•(h∗(C), h∗; k)W .

If C has zero differential, then Cc(h∗(C), h∗; k) also has zero differential, and hence in
this case, H•(8g) maps H•(a, g)G to Symk(h

∗
⊗ C̄[−1])W .
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Example 7.2. Let k = C and let a := C.x be the one-dimensional Lie algebra
with x having weight 1 and homological degree 0. The cocommutative coalgebra C :=
Symc(a[1]) =

∧c(sx) is Koszul dual to a. In this case, g∗(C) ∼= g∗.(sx) ⊕ g∗ and
Cc(g∗(C), g∗;C) = Sym(g∗)G. In this case, the derived Harish-Chandra homomorphism
becomes the Chevalley isomorphism

Sym(g∗)G
∼
→ Sym(h∗)W .

7.2. Drinfeld homology

We now proceed with constructing the analogues of the trace maps (2.18) in the case of
Lie algebras. As the first step, we introduce an appropriate version of cyclic homology
for Lie algebras that will relate to representation homology via the trace maps.

7.2.1. Drinfeld [Dr] introduced the functor

λ : DGLAk → Comk, a 7→ Sym2(a)/〈[x, y] · z− x · [y, z] : x, y, z ∈ a〉,

that assigns to a Lie algebra a (the target of) the universal invariant bilinear form on a.
As shown in [GK], this functor plays a role of the cyclic functor (2.14) on the category
of Lie algebras: its left derived Lλ exists and defines the analogue of cyclic homology for
Lie algebras (cf. [GK, Theorem (5.3)]).

More generally, extending Drinfeld’s construction, for an integer d ≥ 1, we define

λ(d) : DGLAk → Comk, a 7→ Symd(a)/[a,Symd(a)].

This functor assigns to a Lie algebra a (the target of) the universal invariant multilinear
form of degree d on a; in particular, for d = 2, we have λ(2) = λ.

Note that the symmetric invariant d-multilinear forms g × · · · × g → k are in one-
to-one correspondence with linear maps λ(d)(g) → k. To be precise, a nondegenerate
pairing

Symd(g)× Symd(g∗)→ k

induces a nondegenerate pairing

λ(d)(g)× Symd(g∗)adg
→ k.

The next theorem generalizes the result of [GK, Theorem (5.3)] in the case of the Lie
operad.

Theorem 7.3. For each d ≥ 1, the functor λ(d) has a (total) left derived functor given by

Lλ(d) : Ho(DGLAk)→ Ho(Comk), a 7→ λ(d)(L),

where L
∼
−→ a is a cofibrant resolution of a in DGLAk .

Proof. Suppose that L ∈ DGLAk is cofibrant and that f, g : L→ a are homotopic. Then,
by [BRZ, Lemma 2.1], there exists h : L→ a⊗k[t, dt] such that h(0) = f and h(1) = g.
Here, deg(t) = 0 and d(t) := dt and h(a) denotes postcomposition of h with the map
Ida ⊗ eva where eva : k[t, dt] → k is the map taking t to a and dt to 0 for any a ∈ k.
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Note that for any B ∈ DGCAk , one has natural maps in Comk

λ(d)(a⊗ B)→ λ(d)(a)⊗ B. (7.2)

One therefore has a map H : λ(d)(L)→ λ(d)(a)⊗ k[t, dt] given by the composition

λ(d)(L)
λ(d)(h)
−−−−→ λ(d)(a⊗ k[t, dt])

(7.2)
−−→ λ(d)(a)⊗ k[t, dt].

Clearly, H(0) = λ(d)(f ) and H(1) = λ(d)(g). It follows that the maps λ(d)(f ) and
λ(d)(g) are homotopic in Comk .

Now, if f : L→ L′ is a weak equivalence between cofibrant objects in DGLAk , there
exists a g : L′ → L in DGLAk such that fg and gf are homotopic to the respective
identities. It follows that λ(d)(fg) and λ(d)(gf ) are homotopic to the respective identities
as well. Hence, λ(d)(f ) is a quasi-isomorphism. In other words, the functors λ(d) take
weak equivalences between cofibrant objects to weak equivalences. The desired theorem
now follows from [DS, Proposition 9.3]. ut

We let HC(d)• (Lie, a) denote the homology H•[Lλ(d)(a)] and refer to it as Drinfeld
homology. Note that λ(1) is just the abelianization functor: a 7→ a/[a, a], and hence
HC(1)• (Lie, a)∼=H•+1(a; k) for any Lie algebra a (see, e.g., [BFR, Example 1, Sect. 2.6]).
For d = 2, HC(2)• (Lie, a) is precisely the Lie cyclic homology introduced by Getzler and
Kapranov [GK] (and denoted HA•(Lie, a) in that paper). In general, the meaning of the
homology groups HC(d)• (Lie, a) is clarified by the following theorem which is one of the
main results of this section.

Theorem 7.4. Let a ∈ DGLAk . The reduced cyclic homology of the universal enveloping
algebra U(a) of the Lie algebra a has a natural Hodge-type decomposition

HC•[U(a)] ∼=
∞⊕
d=1

HC(d)• (Lie, a). (7.3)

Proof. Let C ∈ DGCCk/k be a coalgebra Koszul dual to the Lie algebra a (for example,
C = BLie(a)). Then we have a cofibrant resolution �Comm(C)

∼
−→ a in DGLAk . For a

graded k-vector space V , there are natural isomorphisms of graded vector spaces

Tk(V )\ ∼= Tk(V )/(k + [V, Tk(V )]) ∼= Tk(V )/(k + [Lk(V ), Tk(V )]),

where Lk(V ) ⊂ Tk(V ) is the free (graded) Lie algebra generated by V . It follows that

�(C)\ ∼= �(C)/[�Comm(C),�(C)] (7.4)

as complexes of k-vector spaces. By (6.4), �(C) ∼= U(�Comm(C)). On the other hand,
since �Comm(C) is a DG Lie algebra, we have an isomorphism of DG �Comm(C)-modules

Symk[�Comm(C)]
∼
−→ Uk[�Comm(C)] (7.5)

given by the symmetrization map. Therefore, writing

Symd
[�Comm(C)]\ := Symd(�Comm(C))/[�Comm(C),Symd(�Comm(C))],
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we get the decomposition

�(C)\ ∼=

∞⊕
d=1

Symd
[�Comm(C)]\. (7.6)

Note that �(C)
∼
−→ U(a) is a cofibrant resolution in DGAk/k . By [BKR, Proposition 3.1],

H•[�(C)\] ∼= HC•(U(a)).

On the other hand,
H•[Symd(�Comm(C))\] ∼= HC(d)• (Lie, a)

since C is Koszul dual to a. This proves the desired theorem. ut

7.2.2. Lie–Hodge decomposition. Let a ∈ DGLAk and let C ∈ DGCCk/k be Koszul dual
to a. By (6.4), �(C) ∼= U(�Comm(C)). From this isomorphism, �(C) acquires the struc-
ture of a (primitively generated) cocommutative DG Hopf algebra whose DG Lie algebra
of primitives is �Comm(C). Let mp : �(C)⊗p → �(C) denote the p-fold product and let
1p : �(C)→ �(C)⊗p denote the p-fold coproduct. For each p ≥ 2, define the Adams
operation

ψp := mp ◦1
p
: �(C)→ �(C).

Note ψp ◦ ψq = ψpq . The following proposition is dual to [FT2, Props. 5.3.4–5.3.6].

Proposition 7.5. The Adams operations ψp, p ≥ 2, descend to Adams operations

ψp : �(C)\→ �(C)\, p ≥ 2.

It is verified without difficulty that on the image of Symd(�Comm(C)) in �(C) under the
symmetrization map (7.5), ψp coincides with multiplication by pd . Therefore,

Proposition 7.6. ψp acts on the direct summand Symd
[�Comm(C)]\ of (7.6) by multipli-

cation by pd .

Corollary 7.7. There are Adams operations

ψp : HC•[U(a)] → HC•[U(a)], p ≥ 2.

Further, HC(d)• (Lie, a) is precisely the (graded) eigenspace corresponding to the eigen-
value pd of ψp for each p ≥ 2.

Corollary 7.7 justifies referring to (7.3) as a Hodge decomposition. WhenC is the k-linear
dual of a smooth commutative algebra A, the decomposition (7.3) can be related to the
Hodge decomposition of the cyclic cohomology HC

•
(A) by the following proposition,

which is an immediate consequence of [FT2, Corollary 6.5.1].

Proposition 7.8. Let a ∈ DGLAk , and let C ∈ DGCCk/k be a cocommutative coalgebra
Koszul dual to a. Assume that C ∼= A∗ for some smooth commutative k-algebra A. Then

HC(d)• (Lie, a) ∼= HC
−•

(d−1)(A)[−1].
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In particular, HC(2)• (Lie, a) is isomorphic (up to a shift) to the Harrison cohomology
of A. More generally, for C ∈ DGCCk/k , one can define a Hodge decomposition for
HC•(C) dual to the decomposition defined in [L, Theorem 4.6.7]. When C = A∗, this
Hodge decomposition coincides with that on HC

−•
(A) (after the obvious identification

is made). Proposition 7.8 therefore shows that the homology of the direct summand
Symd(�Comm(C))\[1] of �(C)\[1] should be denoted by HC

(d−1)
• (C). Thus,

HC(d)• (Lie, a) ∼= HC
(d−1)
• (C)[−1]. (7.7)

If a is a finite-dimensional abelian Lie algebra, one can compute HC(d)• (Lie, a) ex-
plicitly, using the classical Hochschild–Kostant–Rosenberg Theorem. Precisely, we have
a natural isomorphism

HC(d)• (Lie, a) ∼= Symd(a)⊗
∧
•(a)/d[Symd+1(a)⊗

∧
•−1(a)], (7.8)

where d is the de Rham differential on the (algebraic) de Rham complex of the symmet-
ric algebra A = Sym(a). For the proof of (7.8) and further properties of the Lie–Hodge
decomposition (7.3) we refer the reader to [BF+]. Here, we only remark that Proposi-
tion 7.8 also holds in the bigraded setting. In that case, HC

•
(A) should be viewed as the

cohomology of the bigraded dual of the reduced cyclic chain complex of A.

7.3. Drinfeld trace maps

Let g be a finite-dimensional reductive Lie algebra over k. The adjunction (6.13) gives a
universal representation

πg : a→ g⊗ ag

for any a ∈ DGLAk . Let L
∼
−→ a be a cofibrant resolution in DGLAk . For any d ≥ 1, consider

the composite map

λ(d)(L)
λ(d)(πg)
−−−−→ λ(d)(g⊗ Lg)

(7.2)
−−→ λ(d)(g)⊗ Lg. (7.9)

Proposition 7.9. The image of the composite map (7.9) lies in λ(d)(g)⊗ L
adg
g .

Proof. Equip L with the trivial g-action. Then πg : L → g ⊗ Lg is g-equivariant. It
follows that λ(d)(πg) is g-equivariant as well. On the other hand, it is easy to verify that
the map (7.2) from λ(d)(g⊗Lg) to λ(d)(g)⊗Lg is also g-equivariant. Since g acts trivially
on λ(d)(g), the desired proposition follows. ut

One therefore obtains the maps

Trg : λ(d)(L)→ λ(d)(g)⊗ L
adg
g .

For d = 2, the vector space λ(d)(g) is one-dimensional: indeed, there is a unique (up
to a scalar factor) invariant bilinear form on g (the Cartan–Killing form). Hence, at the
level of homology, the map Trg induces a canonical trace map

Trg : HC•(Lie, a)→ H•(a, g)adg. (7.10)
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More generally, let P ∈ Symd(g∗)adg. Then one has the trace map

TrPg : λ
(d)(L)

Trg
−−→ λ(d)(g)⊗ L

adg
g

P(–)⊗Id
−−−−−→ L

adg
g .

Recall that we have the Chevalley isomorphism

Sym(g∗)adg ∼= Sym(h∗)W ∼= k[P̄1, . . . , P̄l]

where deg(P̄i) = di for 1 ≤ i ≤ l and the di are the fundamental degrees of g. Choosing
Pi ∈ Sym(g∗)adg corresponding to P̄i under Chevalley’s isomorphism, we get a family
of trace maps

Tr(di )g := TrPig : λ
(di )(L)→ L

adg
g ,

which yields a homomorphism of commutative DG algebras

Symk[Tr•(L)] : Symk

[ l⊕
i=1

λ(di )(L)
]
→ L

adg
g . (7.11)

We refer to (7.11) as the Drinfeld trace map. We shall sometimes abuse this terminology
and use it for closely related maps as well. At the level of homology, (7.11) gives

Symk[Tr•(a)] : Symk

[ l⊕
i=1

HC(di )• (Lie, a)
]
→ H•(a, g)adg. (7.12)

In particular, if L = �Comm(C), then by (7.7), the above map becomes

Symk[Tr•(a)] : Symk

[ l⊕
i=1

HC
(di−1)
• (C)[−1]

]
→ H•(a, g)adg. (7.13)

Remark. The Drinfeld trace map depends on the choice of the Pi, 1 ≤ i ≤ l. This choice
in turn depends precisely on the choice of an isomorphism Sym(h∗)W ∼= k[P̄1, . . . , P̄l].

Example 7.10. Let a := k.x be a one-dimensional Lie algebra over k with generator x
having weight 1 and homological degree 0. Note that a is a free (and therefore cofibrant)
DG Lie algebra. Since a is also abelian,

Lλ(d)(a) ∼= Symd(a) = k.xd .

In this case, aadg
g = Sym(g∗)adg and the map

λ(d)(a)→ a
adg
g ⊗ λ(d)(g)

becomes the map dual to the nondegenerate pairing

λ(d)(g)⊗ Symd(g∗)adg
→ k.

It follows that for a fixed choice of isomorphism

Sym(h∗)W ∼= k[P̄1, . . . , P̄l],
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the Drinfeld trace becomes the map

k[P̄1, . . . , P̄l] → Sym(g∗)adg, P̄i 7→ Pi,

where the variable P̄i is identified with xdi . Since Pi corresponds to P̄i under the
Chevalley restriction isomorphism, the Drinfeld trace is indeed a generalization of the
map inverse to the Chevalley restriction isomorphism. Combining this observation with
Example 7.2, we conclude that when a is a one-dimensional Lie algebra, the derived
Harish-Chandra homomorphism and the Drinfeld trace are mutually inverse (quasi-)iso-
morphisms.

8. Derived commuting schemes

In this section, we turn to our main example: the derived commuting scheme associated
to a finite-dimensional reductive Lie algebra g. Our goal is to state a general version of
Conjecture 1 for g, deduce the corresponding constant term identity and present some
evidence in favor of this conjecture. The next section will explain the relation to the
famous Macdonald conjectures proved in [Ch] and [FGT].

8.1. Main conjecture

Let a be an abelian Lie algebra of dimension r ≥ 1. In this case Ua = Sym(a) and the
graded coalgebra C := Symc(a[1]) is Koszul dual to a. Explicitly, C = k ⊕ a⊕

∧2 a⊕
· · ·⊕

∧r a, where
∧i a has homological degree i. For a reductive Lie algebra g, the derived

Harish-Chandra homomorphism (7.1) then becomes

8g : DRepg(a)
G
→ Sym[h∗ ⊗ (a⊕

∧2 a⊕ · · · ⊕
∧r a)]W ,

where
∧i a has homological degree i−1. If dim a = 2,8g induces on the 0-th homology

the map
k[Repg(a)]

G
→ Sym[h∗ ⊗ a]W ,

which is known to be an isomorphism, at least when g is complex semisimple and
Repg(a)//G is reduced (see, e.g., [Ha, Sect. 6.2]). It is therefore, reasonable to make
the following conjecture extending Conjecture 4.6.

Conjecture 8.1. Let dim(a) = 2. Then, for any reductive Lie algebra g over k,

8g : DRepg(a)
G
→ Sym(h∗ ⊕ h∗ ⊕ h∗[1])W

is a quasi-isomorphism (at least when the quotient commuting scheme Repg(a)//G is
reduced).

Remark. The scheme Repg(a) in Conjecture 8.1 is precisely the classical commuting
scheme of the Lie algebra g. It is known that the underlying variety of Repg(a) is irre-
ducible for any semisimple complex Lie algebra g (see [R]). However, the question of
whether Repg(a) (or even Repg(a)

G) is a reduced scheme remains open in general.

Conjecture 8.1 can be restated in elementary terms, without using the language of derived
representation schemes. To this end, define the DG algebra (k[g× g] ⊗

∧
g∗, d), with g∗
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being in homological degree 1 and with differential d : g∗→ k[g× g] given by

dϕ(ξ, η) := ϕ([ξ, η]), ∀ξ, η ∈ g, ϕ ∈ g∗.

The adjoint action of G on g induces the diagonal G-action on (k[g× g] ⊗
∧
g∗, d), and

this last action commutes with the differential. We may therefore consider the invariant
DG algebra (k[g× g]⊗

∧
g∗, d)G. Since the functions on g restrict to h, there is a natural

DG algebra homomorphism

8g : (k[g× g] ⊗
∧
g∗, d)→ k[h× h] ⊗

∧
h∗,

where the right-hand side has zero differential. It is easy to see that the image of
(k[g × g] ⊗

∧
g∗, d)G under 8g lies in (k[h × h] ⊗

∧
h∗)W , and we have the follow-

ing proposition.

Proposition 8.2. Conjecture 8.1 is equivalent to the following statement: the DG algebra
map

8g : (k[g× g] ⊗
∧
g∗, d)G→ (k[h× h] ⊗

∧
h∗)W (8.1)

is a quasi-isomorphism.

Proof. By Theorem 6.7, there is an isomorphism

DRepg(a)
G ∼= Cc(g∗(C), g∗; k)

where C = Symc(a[1]). Choose any basis {x, y} of a over k. Then, as graded algebras,

Cc(g∗(C), g∗; k) ∼= Sym(g∗.x ⊕ g∗.y ⊕ g∗.θ)

where g∗.x := g∗ ⊗ x, etc., and x, y have homological degree 0 and θ := s−1(sx ∧ sy)

has homological degree 1. Hence,

Cc(g∗(C), g∗; k) ∼= k[g× g] ⊗
∧
g∗.

In particular, Sym(g∗.x ⊕ g∗.y) can be identified with k[g × g]. A direct computa-
tion using (3.1) then shows that for any ϕ ∈ g∗, the differential of the generator 1

2ϕ.θ

in Cc(g∗(C), g∗; k) is equal to the function dϕ ∈ k[g × g] satisfying dϕ(ξ, η) =

ϕ([ξ, η]). This identifies Cc(g∗(C), g∗; k)with (k[g×g]⊗
∧
g∗, d)G. The identification of

Cc(h∗(C), h∗; k)with k[h×h]⊗
∧
h∗ is obvious. Since the derived Harish-Chandra homo-

morphism 8g : Cc(g∗(C), g∗; k)→ Cc(h∗(C), h∗; k)W is indeed restriction of cocycles
from g to h, it coincides with the map8g : (k[g× g]⊗

∧
g∗, d)G→ (k[h×h]⊗

∧
h∗)W

defined above. This proves the desired proposition. ut

8.2. A constant term identity

We now assume that k = C and compare the Euler characteristics of DG algebras in
Conjecture 8.1. Write a = Cx ⊕ Cy with [x, y] = 0, and denote Bg := DRepg(a).
Recall that as graded algebras,

Bg
∼= SymC(g

∗.x ⊕ g∗.y ⊕ g∗.θ) ∼= SymC(g.x ⊕ g.y ⊕ g.θ), (8.2)
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where x, y have homological degree 0 and θ has homological degree 1. The DG algebra
Bg is equipped with an additional Z2-weight grading, with the subspaces g.x and g.y
having weights (1, 0) and (0, 1), and g.θ having weight (1, 1).

Now, for h ∈ h, define χ(Bg, q, t, e
h) to be the character-valued Euler characteristic∑

a,b≥0

∑
i∈Z
(−1)i Tr(eh|(Bg)i,a,b )q

a tb,

where Va,b denotes the component of a Z2-graded vector space V of weight (a, b).

Lemma 8.3.

χ(Bg, q, t, e
h) =

(1− qt)l

(1− q)l(1− t)l
∏
α∈R

(1− qteα(h))
(1− qeα(h))(1− teα(h))

,

where l = dimC(h) is the rank of g and R is the root system associated to g.

Proof. Since g = h⊕
⊕

α∈R gα , it follows from (8.2) that

Bg
∼= Bh ⊗

⊗
α∈R

Bgα ,

where Bh := Sym(h.x⊕h.y⊕h.θ) and Bgα := Sym(gα.x⊕gα.y⊕gα.θ). Since eh acts
as the identity on h and by multiplication by eα(h) on the root space gα , we have

χ(Bh, q, t, e
h) =

(1− qt)l

(1− q)l(1− t)l
, χ(Bgα , q, t, e

h) =
(1− qteα(h))

(1− qeα(h))(1− teα(h))
.

(8.3)
The desired lemma now follows from the multiplicativity of the Euler characteristic. ut

LetQ = Q(R) be the root lattice of g, and let Z[Q] denote the group ring ofQ. For each
α ∈ R ⊂ Q(R), write eα ∈ Z[Q] for the corresponding element in Z[Q], and denote by
CT : Z[Q] → Z the map assigning to a polynomial in Z[Q] its constant term which does
not involve any eα . This constant term map naturally extends to the ring Z[Q][[q, t]] of
formal power series over Z[Q]: specifically, we define CT : Z[Q][[q, t]] → Z[[q, t]] by

CT
∑
a,b≥0

Pa,b(e
α)qa tb :=

∑
a,b≥0

CT[Pa,b(eα)]qa tb. (8.4)

As corollary of Lemma 8.3, we now get

Corollary 8.4. The weighted Euler characteristic of BGg is given by

χ(BGg , q, t) =
1
|W |

(1− qt)l

(1− q)l(1− t)l
CT
{∏
α∈R

(1− qteα)(1− eα)
(1− qeα)(1− teα)

}
.

Proof. It suffices to verify the above formula for the compact real form of the group G,
which we also denote by G. We have

χ(BGg , q, t) =

∫
G

χ(Bg, q, t,Ad g) dg,
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where dg is the Haar measure onG normalized by
∫
G
dg = 1. Now, let T be the maximal

torus ofG corresponding to R. For α ∈ R, regard eα as a character of T . Then, by Weyl’s
integration formula,∫

G

χ(Bg, q, t,Ad g) dg =
1
|W |

∫
T

χ(Bg, q, t,Ad τ)
∏
α∈R

(1− eα(τ )) dτ

where dτ is the normalized Haar measure on T . The result follows immediately from
Lemma 8.3 and the fact that

∫
T
eα(τ ) dτ = 0 for any nonzero root α. ut

Next, we look at the right-hand side of Conjecture 8.1. We write

Ag := SymC(h
∗
⊕ h∗ ⊕ h∗[1]) ∼= SymC(h.x ⊕ h.y ⊕ h.θ),

where x, y are of homological degree 0 and θ of homological degee 1. Again, the algebra
Ag has an additional Z2-grading, with h.x and h.y having weights (1, 0) and (0, 1) and
h.θ having weight (1, 1). For an element w ∈ W , let {λ1, . . . , λl} be the eigenvalues w
under the natural action of W on h. Then

χ(Ag, q, t, w) =

l∏
i=1

(1− qtλi)
(1− qλi)(1− tλi)

=
det(1− qtw)

det(1− qw) det(1− tw)
,

where ‘det’ is taken on End h. By the classical Molien formula, we get

χ(AWg , q, t) =
1
|W |

∑
w∈W

det(1− qtw)
det(1− qw) det(1− tw)

.

Conjecture 8.1 therefore implies the following constant term identity generalizing (5.2):

Conjecture 8.5. The following identity holds:

(1− qt)l

(1− q)l(1− t)l
CT
{∏
α∈R

(1− qteα)(1− eα)
(1− qeα)(1− teα)

}
=

∑
w∈W

det(1− qtw)
det(1− qw) det(1− tw)

.

Note that Conjecture 8.5 can be equivalently rewritten as∫
G

det(1− qt Ad g)
det(1− q Ad g) det(1− t Ad g)

dg =
1
|W |

∑
w∈W

det(1− qtw)
det(1− qw) det(1− tw)

. (8.5)

For t = 0, this simplifies to the well-known identity∫
G

dg

det(1− q Ad g)
=

1
|W |

∑
w∈W

1
det(1− qw)

=

l∏
i=1

1
1− qdi

, (8.6)

which is obtained by equating the Poincaré series of both sides of the Chevalley isomor-
phism

Sym(g∗)G ∼= Sym(h∗)W .
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In (8.6), the numbers di are the fundamental degrees ofW , i.e. the degrees of algebraically
independent elements generating Sym(h∗)W . If we expand both sides of (8.5) as power
series in t and compare the corresponding Taylor coefficients under tk , we get a sequence
of identities extending (8.6) for k ≥ 1. Thus, Conjecture 8.5 answers a question of I. Mac-
donald posed in [M, Remark 2, p. 997].

We now provide some evidence for Conjectures 8.1 and 8.5. We recall that we have
already proved Conjecture 8.1 for gl2 (Theorem 4.7) and Conjecture 8.5 for gln for an
arbitrary n (Theorem 5.5).

8.3. Lower order terms

First, we show that the Taylor expansion in q, t of both sides of Conjecture 8.5 agree up
to degree 2. In fact, in their normalized form (8.5) the quadratic terms are independent of
the root system.

Proposition 8.6. The first terms of both sides of (8.5) (viewed as power series in q, t)
are equal to

1+ q2
+ qt + t2 + · · · ,

where the dots stand for terms of degree at least 3 in q, t .

Proposition 8.6 follows from Lemma 8.7 below that evaluates both sides of (8.5) as in-
tegrals of the same ratio of determinants over a compact Lie group for a real irreducible
nontrivial representation (we formally think ofW as a compact Lie group of dimension 0).

Lemma 8.7. Let ρ : G→ GL(V ) be a nontrivial irreducible representation of a compact
Lie group G over R with invariant measure dg and volume |G|. Then

1
|G|

∫
G

det(1− qtρ(g))
det(1− qρ(g)) det(1− tρ(g))

dg = 1+ q2
+ qt + t2 + · · · .

Proof. For any endomorphism a of a finite-dimensional vector space,

det(1− qta)
det(1− qa) det(1− ta)

= 1+(q+t−qt) tr a+ 1
2 (q+t)

2(tr a)2+ 1
2 (q

2
+t2) tr(a2)+· · · .

If ρ is irreducible and nontrivial then its character has norm 1 and is orthogonal to the
trivial character. Thus

1
|G|

∫
G

tr ρ(g) dg = 0,
1
|G|

∫
G

|tr ρ(g)|2 dg = 1.

Now real representations have real-valued characters and the Frobenius–Schur theorem
holds:

1
|G|

∫
G

tr ρ(g2) dg = 1.

The average over the group is then

1+ 1
2 (q + t)

2
+

1
2 (q

2
+ t2)+ · · · = 1+ q2

+ qt + t2 + · · · .

This finishes the proof of the lemma and of Proposition 8.6. ut
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8.4. The case of sln

Our next result is

Theorem 8.8. For any n ≥ 2, Conjecture 8.1 for sln is equivalent to Conjecture 8.1
for gln.

Proof. Let tn denote the Cartan subalgebra of sln comprising the diagonal matrices with
trace 0. The short exact sequence of Lie algebras

0→ sln→ gln
Tr
−→ k→ 0

has a canonical splitting, giving an isomorphism of Lie algebras

gln
∼
−→ sln ⊕ k, M 7→

(
M − n−1 Tr(M)Idn,Tr(M)

)
. (8.7)

This restricts to an isomorphism of diagonal Cartan subalgebras hn ∼= tn ⊕ k, which is
equivariant under the action of the Weyl group Sn (with Sn acting trivially on k).

Let C := Symc(a[1]) where a := k.x ⊕ k.y is the two-dimensional abelian Lie
algebra. The isomorphism (8.7) induces an isomorphism gl∗n(C)

∼= sl∗n(C)⊕ C. Hence,

Cc(gl∗n(C), gl∗n(k); k) ∼= Cc(sl∗n(C), sl∗n(k); k)⊗ Cc(C̄; k). (8.8)

Similarly, the Sn-equivariant isomorphism hn ∼= tn ⊕ k yields

Cc(h∗n(C), h∗n(k); k)Sn ∼= Cc(t∗n(C), t∗n(k); k)Sn ⊗ Cc(C̄; k). (8.9)

Let 8gln (resp., 8sln ) denote the derived Harish-Chandra homomorphisms for gln
(resp., sln). Since the isomorphism hn ∼= tn ⊕ k is the restriction of gln ∼= sln ⊕ k
to hn, one has the following commutative diagram:

Cc(gl∗n(C), gl∗n(k); k)

8gln

��

∼= // Cc(sl∗n(C), sl∗n(k); k)⊗ Cc(C̄; k)

8sln⊗Id
��

Cc(h∗n(C), h∗n(k); k)Sn
∼= // Cc(t∗n(C), t∗n(k); k)Sn ⊗ Cc(C̄; k)

Hence, 8gln is a quasi-isomorphism if 8sln is. Conversely, if 8sln is not a quasi-
isomorphism, choose k to be the minimum homological degree such that Hk(8sln) is
not an isomorphism. Since Cc(C̄; k) ∼= k[x, y, θ ],

Hk(8gln)
∼= Hk(8sln)⊗ Idk[x,y] ⊕ Hk−1(8sln)⊗ Idk[x,y].θ ,

and so Hk(8gln) is not an isomorphism either. This proves the desired theorem. ut

As a consequence of (the proof of) Theorem 8.8, we have

Corollary 8.9. Conjecture 8.5 holds for sln for all n ≥ 2.

Proof. We need to show the equality of Euler characteristics:

χ(DRepsln(a)
SLn , q, t) = χ(Cc(t∗n(C), t∗n(k); k)Sn , q, t).
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In view of isomorphisms (8.8) and (8.9), we have

χ(DRepsln(a)
SLn , q, t).χ(k[x, y, θ ], q, t) = χ(Cc(gl∗n(C), gl∗n(k); k), q, t),

χ(Cc(t∗n(C), t∗n(k); k)Sn , q, t).χ(k[x, y, θ ], q, t) = χ(Cc(h∗n(C), h∗n(k); k)Sn , q, t).

Note that χ(k[x, y, θ ], q, t) = 1−qt
(1−q)(1−t) . Hence, χ(k[x, y, θ ], q, t) is an invertible

power series in q, t . The result follows now from Theorem 5.5, which says that the Euler
characteristics of Cc(gl∗n(C), gl∗n(k); k) and Cc(h∗n(C), h∗n(k); k)Sn are equal. ut

8.5. Orthogonal and symplectic Lie algebras

We now verify that Conjecture 8.1 holds in the limit n→∞ for orthogonal and symplec-
tic Lie algebras. We begin with definitions of these classical Lie algebras.

8.5.1. The orthogonal Lie algebras so2n+1. Fix a basis {e1, . . . , e2n+1} of k2n+1. Let
M2n+1 denote the matrix of the nondegenerate symmetric bilinear form Q satisfying

Q(e2i−1, e2i) = Q(e2i, e2i−1) = 1, 1 ≤ i ≤ n,
Q(e2n+1, e2n+1) = 1,

Q(ei, ej ) = 0 otherwise.

Define SO(2n+ 1) to be the group of invertible matrices of determinant 1 preserving the
bilinear form Q. In other words, SO(2n+ 1) is the group of invertible matrices P of size
2n+ 1 and determinant 1 satisfying

M2n+1 = P
tM2n+1P.

The Lie algebra so2n+1 of SO(2n+1) is therefore the Lie subalgebra of gl2n+1 comprising
those matrices X satisfying

XtM2n+1 +M2n+1X = 0.

Further, let M2n denote the matrix of the nondegenerate symmetric bilinear form Q sat-
isfying

Q(e2i−1, e2i) = Q(e2i, e2i−1) = 1, 1 ≤ i ≤ n,
Q(ei, ej ) = 0 otherwise.

The Lie algebra so2n can similarly be defined as the Lie subalgebra of gl2n comprising
those matrices X that satisfy

XtM2n +M2nX = 0.

Padding on the right and bottom with 0’s gives an embedding son ↪→ son+1 for all n. We
may therefore form the direct limits

so2∞+1 := lim
−→
n

so2n+1, so2∞ := lim
−→
n

so2n, so∞ := lim
−→
n

son.

It is easy to see that one has isomorphisms of Lie algebras so2∞+1 ∼= so∞ ∼= so2∞.
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8.5.2. Lie algebras with (anti-)involution. An (anti-)involution on a DG Lie algebra g is
a map of complexes σ : g→ g satisfying σ 2

= Id and

σ([X, Y ]) = (−1)|X||Y |[σ(Y ), σ (X)] ∀X, Y ∈ g.

Note that multiplication by −1 in an anti-involution on every Lie algebra g. For termino-
logical brevity, we refer to an anti-involution on a Lie algebra as an involution. Further, for
any involution σ on a DG Lie algebra g, the (−1)-eigenspace of σ is a DG Lie subalgebra
of g. For example, if M2n+1 is as in Section 8.5.1, then

X 7→Mt
2n+1X

tM2n+1 =M2n+1X
tM2n+1

is an involution on gl2n+1. The (−1)-eigenspace of this involution is precisely so2n+1.
Note that any involution on a DG Lie algebra L extends to an involution on its uni-

versal enveloping algebra UL. Equip Mn(k) with an involution. Recall from [BR2]
that for an involutive DG algebra A, one has the commutative DG algebra Rep∗n(A) of
functions on the DG scheme parametrizing involution preserving representations of A
to Mn(k). Let gl−n denote the (−1)-eigenspace of this involution. The following proposi-
tion is proven in [BR2].

Proposition 8.10. For any DG Lie algebra L, we have an isomorphism of commutative
DG algebras

k[Repgl−n (L)]
∼= k[Rep∗n(UL)]

where the involution on UL is the extension of the involution on L given by multiplication
by −1.

Suppose that L
∼
−→ g is a cofibrant resolution in DGLAk . Then UL ∼

−→ Ug is a cofibrant res-
olution in DGAk/k . Let σ denote the involution on UL (resp., Ug) extending multiplication
by −1 on L (resp., g). Suppose that the involution chosen on Mn(k) is trace preserving.
Let G be a Lie subgroup of GLn(k) whose Lie algebra is gl−n . For A an involutive DG
algebra, denote

A\,σ := A/(k + [A,A] + Im(1− σ)).

Then there is a natural morphism of complexes

Trn : U(L)\,σ → k[Rep∗n(UL)]G, (8.10)

induced by the trace map Trn[U(L)] : U(L)\ → (UL)GL
n (see [BR2]). This gives the

commutative diagram at the level of homology groups:

HC•(Ug)
Trn //

����

H•(Ug, n)GL

��
HD•(Ug)

Trn // H∗•(Ug, n)G

(8.11)

Here, HD•(Ug) denotes the reduced dihedral homology of Ug with respect to the involu-
tion on Ug that extends the involution on g given by multiplication by −1.
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Let a = k.x ⊕ k.y. Let A := Ua ∼= k[x, y] denote the universal enveloping algebra
of a equipped with the involution that takes x (resp., y) to −x (resp., −y). Let C :=
Symc(a[1]). Then L := �Comm(C) is a cofibrant resolution of the abelian Lie algebra a.
Explicitly, L is the free Lie algebra generated by x, y, θ with x, y in degree 0 and θ
in degree 1 satisfying dθ = [x, y]. Its universal enveloping algebra is the free algebra
R := k〈x, y, θ : dθ = [x, y]〉 resolving k[x, y]. By Proposition 8.10, we have

DRepso2n+1
(a) ∼= k[Repso2n+1

(L)] ∼= k[Rep∗2n+1(R)].

Hence, the trace maps (8.10) become

Tr2n+1 : R\,σ → k[Repso2n+1
(L)]SO2n+1 ,

which give the following maps at the level of homology groups:

Tr2n+1 : HD•(A)→ H•(a, so2n+1)
SO2n+1 .

The inclusion of Lie algebras so2n+1 ↪→ so2n+3 induces a (degreewise surjective) homo-
morphism of commutative DG algebras

µ2n+1 : k[Repso2n+3
(L)]� k[Repso2n+1

(L)].

It is easy to verify that µ2n+1 maps k[Repso2n+3
(L)]SO2n+3 to k[Repso2n+1

(L)]SO2n+1 and
that

µ2n+1 ◦ Tr2n+3 = Tr2n+1 .

Hence, one obtains a map of complexes

Tr∞ : R\,σ → k[Repso2∞+1
(L)]SO2∞+1 := lim

←−
n

k[Repso2n+1
(L)]SO2n+1 .

Here, the projective limit is taken in the category of bigraded commutative DG algebras.
By multiplicativity, one obtains a morphism of commutative DG algebras

Sym(Tr∞) : Sym(R\,σ )→ k[Repso2∞+1
(L)]SO2∞+1 .

The following result is a consequence of the stabilization theorem [BR1, Theorem 4.4]
for involutive DG algebras. We however sketch a different proof of this statement.

Proposition 8.11. Sym(Tr∞) : Sym(R\,σ ) → k[Repso2∞+1
(L)]SO2∞+1 is an isomor-

phism of bigraded commutative DG algebras.

Proof. Let E := C∗ denote the bigraded dual of C. Then the complex R\,σ , whose
homology is HD•(k[x, y]), coincides on the nose with the complex D(E)∗[−1], where
∗ denotes bigraded dual and D(E) is the complex computing the relative skew dihedral
homology of E with respect to the trivial involution. On the other hand, by Theorem 6.7,

k[Repso2n+1
(L)]SO2n+1 ∼= C(so2n+1(E), so2n+1(k); k)

∗.

Hence,
k[Repso2∞+1

(L)]SO2∞+1 ∼= C(so2∞+1(E), so2∞+1(k); k)
∗.
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Note that so2∞+1 ∼= so∞. The map Sym(Tr∞) can then be verified to be the bigraded
dual of the map

C(so∞(E), so∞(k); k)→ Sym(D(E)[1])

induced by the map of complexes denoted in [L, Section 10.2.3] by tr∗ ◦θ∗. By the relative
version of [LP, Theorem 5.5] (see also [L, Section 10.5.7]), this last map is an isomor-
phism of DG coalgebras. This proves the desired proposition. ut

On homologies, Tr∞ gives a map

Tr∞ : HD•(A)→ H•(a, so2∞+1)
SO2∞+1 := H•(k[Repso2∞+1

(L)]SO2∞+1).

By Proposition 8.11, Sym(Tr∞) gives an isomorphism on homologies

Sym(Tr∞) : Sym(HD•(A))
∼
−→ H•(a, so2∞+1)

SO2∞+1 .

We therefore need to compute the (relative) dihedral homology HD•(A). Note that it
is the space of covariants (and hence invariants) of the Z2-action on HC•(A) induced
by the chosen involution on A. On the other hand, HC0(A) ∼= A/k and HC1(A) ∼=

�1(A)/dA ∼= A.ydx, and the other reduced cyclic homologies of A vanish. Let Aodd and
Aeven denote the subspaces of A = k[x, y] spanned by all monomials of odd and even
weight respectively (for this definition, x and y are both taken to have weight 1).

Lemma 8.12. There are isomorphisms of vector spaces

HD0(A) ∼= A
ev/k, HD1(A) ∼= A

odd.ydx.

Proof. Recall from [BKR, Example 4.1] that the monomial xkyl in A/k is identified
with the cyclic chain xkyl in R\. The involution on R maps xkyl to (−1)k+lylxk ,
which coincides with (−1)k+lxkyl in R\. Hence, xkyl is a nontrivial basis element of
R/(k + [R,R] + Im(1− σ)) iff k + l is even.

Similarly, [BKR, Example 4.1] tells us that the basis element xkyldx (l ≥ 1)
of HC1(A) is identified with the cycle

∑l−1
i=0 y

l−1−ixkyiθ in R\. This cycle is
mapped by the involution on R to (−1)k+l

∑l−1
i=0 θy

ixkyl−1−i , which coincides with
(−1)k+l

∑l−1
i=0 y

l−1−ixkyiθ in R\. It follows that xkyldx is a nontrivial basis element
in HD1(A) iff k + l is even and l ≥ 1. This proves the desired lemma. ut

8.5.3. The derived Harish-Chandra homomorphism for the odd orthogonal case. Note
that for so2n+1, one can choose the Cartan subalgebra h2n+1 to be the abelian Lie subal-
gebra of so2n+1 spanned by the basis elements hi := e2i−1,2i−1 − e2i,2i, 1 ≤ i ≤ n. The
Weyl group of so2n+1 is (Z2)

n o Sn, where elements of Sn permute the hi’s and the ele-
ment γi := (1, . . . , γ, . . . , 1) of (Z2)

n with the generator γ of Z2 in the i-th coordinate
transforms hi to −hi and leaves other hj ’s unchanged.

The derived Harish-Chandra homomorphism therefore becomes a morphism of com-
mutative DG algebras

8 : k[Repso2n+1
(L)]SO2n+1 → k[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn]

(Z2)
noSn
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where elements of Sn simultaneously permute the xi’s, yi’s and θi’s, and γi multiplies the
generators xi, yi and θi by−1 and leaves the other generators unchanged. In the limit, the
derived Harish-Chandra homomorphism becomes the map

8 : k[Repso2∞+1
(L)]SO2∞+1 → k[x1, . . . ; y1, . . . ; θ1, . . .]

(Z2)
∞oS∞

where

k[x1, . . . ; y1, . . . ; θ1, . . .]
(Z2)

∞oS∞ := lim
←−
n

k[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn]
(Z2)

noSn .

Here, the limit is taken in the category of bigraded commutative algebras.
For a word w ∈ R, let |w|x (resp., |w|y, |w|θ ) denote the number of occurrences of

x (resp, y, θ) in w. Note that the homological degree of w is |w|θ . Let |w| := |w|x +
|w|y + |w|θ be the length of w and keep the notation Tr2n+1 for the composite map
R � R\,σ → k[Repso2n+1

(L)]SO2n+1 .

Lemma 8.13. (8 ◦ Tr2n+1)(w) = (1+ (−1)|w|)
∑n
i=1 x

|w|x
i y

|w|y
i θ

|w|θ
i for any w ∈ R.

In particular, if |w| is of odd length, or of homological degree ≥ 2, then (8 ◦ Tr2n+1)(w)

vanishes. Lemmas 8.12 and 8.13 enable us to explicitly compute the map

H•(8) ◦ Tr2n+1 : HD•(A)→ k[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn]
(Z2)

noSn .

Lemma 8.14. We have

(H•(8) ◦ Tr2n+1)(x
kyl) = 2

n∑
i=1

xki y
l
i for k + l even,

(H•(8) ◦ Tr2n+1)(x
kyldx) = 2l

n∑
i=1

xki y
l−1
i θi for k + l even.

Theorem 8.15. (i) 8 : k[Repso2∞+1
(L)]SO2∞+1 → k[x1, . . . ; y1, . . . ; θ1, . . .]

(Z2)
∞oS∞

is a quasi-isomorphism.
(ii) H•(8) : H•(a, so2n+1)

SO2n+1 → k[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn]
(Z2)

noSn is a
surjection.

Proof. We first prove (i). By Proposition 8.11, it suffices to prove that the composite map

Sym(R\,σ )
∼=
−→ k[Repso2∞+1

(L)]SO2∞+1 8
−→ k[x1, . . . ; y1, . . . ; θ1, . . .]

(Z2)
∞oS∞

is a quasi-isomorphism. This is equivalent to verifying that the map

Symk(HD•(A))
Sym(H•(8)◦Tr∞)
−−−−−−−−−−→ k[x1, . . . ; y1, . . . ; θ1, . . .]

(Z2)
∞oS∞

is an isomorphism. For a := (s, p, l) ∈ {0, 1} × Z2
≥0, let Pa denote the power sum∑

i≥1 x
p
i y

l
iθ
s
i . Call an element a := (s, p, l) of {0, 1} × Z2

≥0 even if s + p + l is even.
By Lemma 8.12, HD•(A) can be identified with the bigraded vector space V spanned
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by basis vectors qa for a ∈ {0, 1} × Z2
≥0 even. The basis element q(1,p,l) corresponds

to the form 1
2(l+1)x

pyl+1dx in HD1(A), and the basis element q(0,p,l) corresponds to

the form 1
2x
pyl in HD0(A). Lemma 8.14 implies that H•(8) ◦ Tr∞ maps qa to the

power sum Pa for each even a in {0, 1} × Z2
≥0. (i) therefore follows once we verify

that k[x1, . . . ; y1, . . . ; θ1, . . .]
(Z2)

∞oS∞ is isomorphic to the graded symmetric algebra
generated by the power sums Pa for a even.

To see this, note that for any n ≥ 2, the orbit sum

O(x
α1
1 . . . xαnn y

β1
1 . . . yβnn θ

γ1
1 . . . θ

γn
n ) :=

∑
σ∈(Z2)noSn

σ(x
α1
1 . . . xαnn y

β1
1 . . . yβnn θ

γ1
1 . . . θ

γn
n )

(8.12)

is nonzero iff the triples (γi, αi, βi) are even for 1 ≤ i ≤ n and (γi, αi, βi) 6= (γj , αj , βj )
whenever 1 ≤ i < j ≤ n and γi = γj = 1. Starting with this observation and proceeding
as in the proof of Proposition 4.8, one can show the following analog of Proposition 4.8
without difficulty.

Proposition 8.16. (i) The homomorphism of bigraded commutative algebras

Symk(V )→ k[x1 . . . , xn, y1, . . . , yn, θ1, . . . , θn]
(Z2)

noSn , qa 7→ Pa for a even,

induces an isomorphism of bigraded vector spaces

Sym≤nk (V ) ∼= k[x1 . . . , xn, y1, . . . , yn, θ1, . . . , θn]
(Z2)

noSn .

(ii) The homomorphism

Symk(V )→ k[x1, . . . ; y1, . . . ; θ1, . . .]
(Z2)

∞oS∞ , qa 7→ Pa,

is an isomorphism of bigraded commutative algebras.

Proposition 8.16(ii) is precisely what we needed to verify to complete the proof of (i).
Proposition 8.16(i) implies that the natural map

k[x1, . . . ; y1, . . . ; θ1, . . .]
(Z2)

∞oS∞ → k[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn]
(Z2)

noSn

is surjective. (ii) is now immediate from (i). ut

8.5.4. The even orthogonal and symplectic cases. The DG algebras on both sides of the
Harish-Chandra homomorphism in the even orthogonal case coincide in the limit with
their odd counterparts. Hence, the analog of Theorem 8.15(i) holds in the even orthogonal
case as well. The Weyl group for so2n is however (Z2)

n−1 o Sn rather than (Z2)
n o Sn.

Here, (Z2)
n−1 is the subgroup of (Z2)

n comprising those elements that flip the signs of
an even number of the Cartan basis elements hi . In this case, the map

k[x1, . . . ; y1, . . . ; θ1, . . .]
(Z2)

∞oS∞ → k[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn]
(Z2)

n−1oSn

(8.13)
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is not surjective for n ≥ 2. For example, the element x1 . . . xn of k[x1, . . . , xn, y1, . . . , yn,

θ1, . . . , θn]
(Z2)

n−1oSn is not in the image of (8.13). The argument we used to deduce
part (ii) of Theorem 8.15 from part (i) in the odd orthogonal case does not therefore work
in the even case.

Remark. Note, however, that the elements x1 . . . xn, and similarly the elements of the
form

O(x1 . . . xkyk+1 . . . yn) and O(x1 . . . xkyk+1 . . . yn−1θn),

whereO(. . . ) denotes the orbit sum as in (8.12), do not lead to trivial counterexamples to
Conjecture 8.1. In fact, these elements are the images of the following ‘Pfaffian’ cocycles
in k[Repso2n

(L)]SO2n :∑
σ

(−1)σxσ(1)σ (2) . . . xσ(2k−1)σ (2k)yσ(2k+1)σ (2k) . . . yσ(2n−1)σ (2n)

and∑
σ

(−1)σxσ(1)σ (2) . . . xσ(2k−1)σ (2k)yσ(2k+1)σ (2k) . . . yσ(2n−3)σ (2n−2)θσ(2n−1)σ (2n).

A small computation shows that the latter element is indeed a cocycle, and it cannot
be exact, since its expression contains no repeated indices, while repeated indices are
necessarily introduced by the differential (recall that the differential of θij is given by∑
k(xikykj − yikxkj )).

The case of sp2n is analogous to that of so2n+1. The only modification here is a different
involution on M2n(k): it is given by X 7→Mt

2nX
tM2n, where M2n is the matrix of the

nondegenerate skew-symmetric bilinear form Q on k2n satisfying

Q(e2i−1, e2i) = −Q(e2i, e2i−1) = 1, 1 ≤ i ≤ n,
Q(ei, ej ) = 0 otherwise.

In particular, the obvious analogues of both parts of Theorem 8.15 hold in the symplectic
case.

9. Macdonald conjectures

In this section, we explain how our Conjecture 8.1 is related to the strong Macdonald
conjecture proved in [FGT]. The key point is to consider the G-equivariant derived com-
muting scheme DRepg(a)

G of the two-dimensional abelian Lie algebra a with ‘shifted’
homological degrees. Following the conventions of [FGT], we will assume in this sec-
tion that k = C. As in the previous section, g will denote an arbitrary finite-dimensional
reductive Lie algebra with associated complex algebraic group G.

9.1. Graded commuting schemes

Let a := C.u⊕ C.v be a homologically graded Lie algebra with trivial bracket, where u
has degree−1 and v has degree−2. Let z ∈ (a[1])∗ and w ∈ (a[1])∗ denote basis vectors
dual to su ∈ a[1] and sv ∈ a[1] respectively. Thus z and w have homological degrees 0
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and 1. We equip a with a Z2-weight grading by setting the weight of u to be (1, 0) and that
of v to be (0, 1). By convention, the weight of the dual of a finite-dimensional weight-
homogeneous vector spaceW will coincide with that ofW . Also, in this section, (–)∗ will
mean bigraded dual.

Lemma 9.1. DRepg(a)
G ∼= C(g[z,w], g;C)∗.

Proof. Since a is abelian, a cofibrant resolution of a in DGLk is given by
�Comm(Symc(a[1])). Note that the bigraded dual of Symc(a[1]) is exactly C[z,w]. By
Theorem 6.7,

DRepg(a)
G ∼= Cc(g∗(Symc(a[1])), g∗;C).

The desired lemma now follows from the isomorphism (6.8). ut

We have the following restatement of the (now proven) strong Macdonald conjecture
(see [FGT, Theorem 1.5]) in terms of derived representation schemes.

Theorem 9.2. The map

Symk[Trg(a)] := Symk

[ l⊕
i=1

Tr(di )g

]
: Symk

[ l⊕
i=1

Lλ(di )(a)
]
→ DRepg(a)

G

is a quasi-isomorphism. In particular, the induced map

Symk[Trg(a)] : Symk

[ l⊕
i=1

HC(di )• (Lie, a)
]
→ H•(a, g)G (9.1)

is an isomorphism of graded algebras.
Proof. Since the bigraded dual of Symc(a[1]), namely C[z,w], is a smooth graded com-
mutative algebra, Proposition 7.8 applies. Thus, the map (9.1) becomes

Symk[Trg(a)] : Symk

[ l⊕
i=1

HC
(mi )

•−1 (C[z,w])
∗

]
→ C(g[z,w], g;C)∗, (9.2)

where mi , 1 ≤ i ≤ r , are the exponents of g. It turns out that (9.2) is precisely the map
in [Te, (3.1)]; [FGT, Theorem 1.5] states that this map is a quasi-isomorphism. ut

Corollary 9.3. H•(a, g)G is isomorphic to the symmetric algebra with one generator in
homological degree −(2m+ 1) and weight (n+ 1, m) and one generator of homological
degree −(2m+ 2) and weight (n,m+ 1) for each exponent m of g and each n ≥ 0.

Proof. Indeed, [FGT, (1.7)] shows that HC
(m)

2m+1(C[z,w]) is identified with the
(weight graded) vector space C[z].w(dw)m for each exponent m of g. The du-
als of the basis elements znw(dw)m of HC

(m)

2m+1(C[z,w]) give generators of

Symk[
⊕l

i=1 HC
(mi )

•−1 (C[z,w])∗] having homological degree −2m − 2 and weight
(n,m + 1) for each n ≥ 0 and for each exponent m of g. Similarly, [FGT, (1.7)]
shows that for each exponent m of g, HC

(m)

2m (C[z,w]) is identified with the (weight
graded) vector space C[z].dzw(dw)m−1. The duals of zndzw(dw)m−1 give generators
of Symk[

⊕l
i=1 HC

(mi )

•−1 (C[z,w])∗] having homological degree −2m − 1 and weight
(n+1, m). Theorem 9.2 (more precisely, its proof) then implies the desired corollary. ut
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9.2. Lie algebra (co)homology and parity

For a fixed pair (p, r) of integers, let ap,r := C.u⊕C.v denote the homologically graded
abelian Lie algebra, with u and v having degrees p and r respectively. We now demon-
strate that much of the behavior of DRepg(ap,r)

G depends only on the parity of p and r .

9.2.1. Functors on complexes. Let 0 be an abelian group. Let 0-Com denote the category
of 0-weight graded complexes of C-vector spaces. In other words, any V ∈ 0-Com is a
direct sum of subcomplexes,

V :=
⊕
γ∈0

Vγ .

Here, Vγ is the subcomplex of V of weight γ . Let 0-Com2 denote the category of 0-weight
graded Z2-homologically graded complexes. One has a functor

5 : 0-Com→ 0-Com2, V 7→
(⊕
n∈Z

V2n �
⊕
n∈Z

V2n+1

)
.

The functor 5 (for ‘parity’) remembers only the parity of the homological grading while
retaining the 0-weight grading. Note that the functor 5 is faithful but not full. For most
of this section, 0 = Z2. The following lemma is obvious.

Lemma 9.4. A morphism φ ∈ 0-Com is a quasi-isomorphism iff 5(φ) is a quasi-iso-
morphism in 0-Com2.

For any k ≥ 1, there is a functor

Fk : Z2-Com→ Z-Com

that assigns to a Z2-weight graded complex V =
⊕

(a,b)∈Z2 V(a,b) the Z-weight graded
complex Fk(V ) with component of weight r being Fk(V )r =

⊕
a+kb=r V(a,b). Note that

Fk only changes weights without changing the homological grading or differential.

9.2.2. As before, we equip u and v with Z2-weights (1, 0) and (0, 1) respectively. The
proof of the following lemma is essentially the same as that of Lemma 9.1.

Lemma 9.5. There is an isomorphism of DG algebras

DRepg(ap,r)
G ∼= C(g[z,w], g;C)∗,

where z has degree −(p + 1) and weight (1, 0) and w has degree −(r + 1) and weight
(0, 1).

Hence, we get

Proposition 9.6. (i) The weighted Euler characteristic of DRepg(ap,r)
G depends only

on the parities of p and r .
(ii) If either the derived Harish-Chandra map

8g : DRepg(a)
G
→ SymC(h

∗
⊗ Symc(a[1]))W
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or the Drinfeld trace map

Symk[Trg(a)] : Symk

[ l⊕
i=1

Lλ(di )(a)
]
→ DRepg(a)

G

is a quasi-isomorphism for ap,r , then it is a quasi-isomorphism for ap′,r ′ whenever
p, p′ and r, r ′ have the same parity.

Proof. Note that if p, p′ and r, r ′ have the same parity, then

5[8g(ap,r)] = 5[8g(ap′,r ′)], 5(Symk[Trg(ap,r)]) = 5(Symk[Trg(ap′,r ′)]).

The desired proposition therefore follows from Lemma 9.4. ut

Thus, when p, r are both even, we expect that the derived Harish-Chandra homomor-
phism gives the quasi-isomorphism

DRepg(ap,r)
G ∼
→ Sym(h∗[p] ⊕ h∗[r] ⊕ h∗[p + r + 1])W ,

and we get Conjectures 8.1 and 8.5.
On the other hand, when p, r are of opposite parity, by Theorem 9.2, the Drinfeld

trace map must be a quasi-isomorphism, so that the homology of DRepg(ap,r)
G is a

free graded commutative algebra, and we get the classical (q, t)-Macdonald identity (see
Section 9.3 below).

9.3. Euler characteristics

Let Bg := C(g[z,w]/g;C). It follows from Lemma 9.1 that the weighted Euler char-
acteristic of DRepg(a)

G coincides with that of its bigraded dual, namely, Badg
g =

C(g[z,w], g;C). We compute this Euler characteristic by computing the character-valued
Euler characteristic

χ(Bg, q, t, e
h) :=

∑
a,b≥0

∑
i∈Z
(−1)i Tr(eh|(Bg)a,b )q

a tb.

Lemma 9.7.

χ(Bg, q, t, e
h) =

∏
n≥0

[(
1− qn+1

1− qnt

)l ∏
α∈R

1− qn+1eα

1− qnteα

]
,

where l := dimC(h) is the rank of g.

Proof. The proof is identical to that of Lemma 8.3. ut

Note that BGg = B
adg
g , where G is the complex reductive Lie group whose Lie algebra

is g. Hence, we get

Corollary 9.8.

χ(B
adg
g , q, t) =

1
|W |

∏
n≥0

(
1− qn+1

1− qnt

)l
CT
{∏
n≥0

∏
α∈R

1− qneα

1− qnteα

}
. (9.3)
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Proof. The proof is similar to the proof of Corollary 8.4 from Lemma 8.3. ut

As a consequence, we obtain the following proposition:

Proposition 9.9. The following identity holds:

1
|W |

CT
{∏
n≥0

∏
α∈R

1− qneα

1− qnteα

}
=

∏
n≥0

l∏
i=1

(1− qnt)(1− qn+1tmi )

(1− qn+1)(1− qntmi+1)
, (9.4)

where mi := di − 1 are the exponents of the Lie algebra g.

Proof. Let l be the rank of g. The Euler characteristic of DRepg(a)
G equals that of its

homology. By Corollary 9.3, the latter Euler characteristic is equal to

∏
n≥0

l∏
i=1

1− qn+1tmi

1− qntmi+1 . (9.5)

On the other hand, by Lemma 9.1, the Euler characteristic of DRepg(a)
G is equal to that

of Badg
g . By Corollary 9.8, the Euler characteristic of Badg

g also equals the right-hand side
of (9.3). Equating the right-hand side of (9.3) with the expression (9.5) and multiplying
both sides by

∏
n≥0

( 1−qn+1

1−qnt

)l , we obtain the desired identity. ut

Remark. The left-hand side of (9.4) is exactly the expression denoted by 1
|W |
[1q1/2,t1/2 ]0

in [Kir]. Thus (9.4) is equivalent to the standard (q, t)-version of Macdonald’s constant
term identity [Kir, (2.7)], which is the special case of the inner product identity for Pλ = 1
[Kir, Theorem 2.4].

9.3.1. The q-Macdonald identity. Let V ∈ Z2-Com be such that the subcomplexes Va,b of
weight (a, b) are finite-dimensional and nonzero only for a, b ≥ 0. Recall the definition
of the functor Fk : Z2-Com→ Z-Com above. There is an equality of Euler characteristics

χ(V, q, qk) = χ(Fk(V ), q).

As a result, we get

Lemma 9.10.
χ(C(g[z]/zk, g;C), q) = χ(Badg

g , q, qk).

Proof. Consider the DG Lie algebra g∂ [z,w] := (g[z,w], ∂w = zk), which is quasi-
isomorphic to g[z]/zk . Hence, C(g∂ [z,w], g;C) is quasi-isomorphic to C(g[z]/zk, g;C).
Note that the differential on C(g∂ [z,w], g;C) is obtained by twisting that on Badg

g =

C(g[z,w], g; k) with the differential induced by ∂ . The latter differential also preserves
weights provided we apply the functor Fk to Badg

g . Hence,

χ(C(g[z]/zk, g;C), q) = χ(C(g∂ [z,w], g;C), q) = χ(Fk(Badg
g ), q) = χ(B

adg
g , q, qk).

ut

On the other hand, the identity (9.4) implies
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Lemma 9.11. The following identity holds:

1
|W |

CT
{k−1∏
j=0

∏
α∈R

(1− qj eα)
}
=

l∏
i=1

k−1∏
j=1

1− qkmi+j

1− qj
=

l∏
i=1

(
kdi − 1
k − 1

)
q

(9.6)

Proof. Setting t = qk in (9.4), we obtain (9.6). Equivalently, we can multiply both sides
of (9.6) by

∏k−1
j=1(1− q

j )l to obtain

1
|W |

k−1∏
j=1

(1− qj )l CT
{k−1∏
j=0

∏
α∈R

(1− qj eα)
}
=

l∏
i=1

k−1∏
j=1

(1− qkmi+j ) (9.7)

By Corollary 9.8 and Lemma 9.10, the left-hand side of the above identity is the Eu-
ler characteristic of C(g[z]/zk, g;C). That this Euler characteristic equals the right-hand
side of the above identity follows from [FGT, Theorem A], which explicitly computes
H•(g[z]/zk, g;C) as a free bigraded commutative algebra and specifies the weights
and homological degrees of a set of homogeneous generators. We remind the reader
that [FGT, Theorem A] is proven from [FGT, Theorem 1.5] by replacing g[z]/zk by
the quasi-isomorphic DG Lie algebra g∂ [z,w] and computing H•(g∂ [z,w], g;C) by ap-
pealing to [FGT, Theorem 1.5] (which computes H•(g[z,w], g;C)) and using a simple
spectral sequence argument. ut

Remark. Being the Euler characteristic of C(g[z]/zk, g;C), the left-hand side of (9.7)
can be rewritten as ∫

G

k−1∏
j=1

det(1− qj Ad g) dg.

The identity (9.6) is thus equivalent to∫
G

k−1∏
j=1

det(1− qj Ad g) dg =
l∏
i=1

k−1∏
j=1

(1− qkmi+j ), (9.8)

which is a version of the original Macdonald identity (see [M, Conjecture 3.1′]).

Appendix. Derived representation schemes of algebras over an operad

In this Appendix, we construct (derived) representation schemes for (DG) algebras
over an arbitrary binary quadratic operad. Our generalization covers the representation
schemes of associative algebras studied in [BKR, BR1], the representation algebras de-
fined in [Tu] as well as the representation schemes of Lie algebras introduced in Section 6.
We also construct canonical trace maps from operadic cyclic homology to representation
homology, generalizing the derived character maps of [BKR]. For cyclic operads our no-
tion of operadic cyclic homology agrees with that of [GK]. The main result of this section,
Theorem A.4, unifies Theorems 3.2 and 6.7.

Throughout this section, P will denote a finitely generated binary quadratic operad
and Q = P ! will stand for its (quadratic) Koszul dual. Unlike Getzler and Kapranov [GK]
who work with cyclic operads, which are not necessarily binary quadratic, we will work
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with binary quadratic operads, which are not necessarily cyclic. This is due to the follow-
ing fact that we need for Theorem A.4: ifA is a DG P-algebra and if B is a DG Q-algebra
then A⊗ B has a natural DG Lie algebra structure (see [LV, Prop. 7.6.5]).

A.1. Internal Hom-functor and the representation functor

Let DGPA (resp., DGQA) denote the category of DG P-algebras (resp., DG Q-algebras)
over k. If C is a DG P-coalgebra, the complex Hom(C, B̄) naturally acquires the structure
of a DG P-algebra for any B ∈ DGCAk/k . We therefore have a functor

Hom∗(C, –) : DGCAk/k → DGPA, B 7→ Hom(C, B̄),

where ∗ indicates that we form the convolution algebra with the augmentation ideal B̄.
Let A ∈ DGPA. Each generating operation m ∈ P(2) gives k-linear maps

mA : A⊗ A→ A, mC : C→ C⊗ C.

For a, b ∈ A and x ∈ C, define (mC(x), a, b) ∈ Symk(C ⊗ A) to be the image of the
element x ⊗ a ⊗ b ∈ C⊗ A⊗ A under the composite map

C⊗ A⊗ A
mC⊗Id⊗Id
−−−−−−→ C⊗ C⊗ A⊗ A

Id⊗τ23⊗Id
−−−−−−→ (C⊗ A)⊗ (C⊗ A)

can
−−� Sym2(C⊗ A) ↪→ Symk(C⊗ A).

The proof of the following proposition is a straightforward generalization of that of Propo-
sition 6.4. We therefore leave it to the interested reader.

Proposition A.1. The functor Hom∗(C, –) : DGCAk/k → DGPA has a left adjoint

Cn – : DGPAk → DGCAk/k, A 7→ Cn A := Symk(C⊗ A)/IA,C,

where IA,C is the ideal generated by the elements

x ⊗mA(a, b)− (mC(x), a, b), m ∈ P(2), x ∈ C, a, b ∈ A.

In particular, there is a natural isomorphism

HomDGPA(A,Hom∗(C, B)) ∼= HomDGCAk/k (Cn A,B). (A.1)

The category DGPA has a natural model structure where fibrations are degreewise surjec-
tions and weak equivalences are quasi-isomorphisms (see [H]). It is easy to verify that
the functor Hom∗(C, –) preserves fibrations (i.e, degreewise surjections) and acyclic fi-
brations. Hence, we have

Theorem A.2. (a) The following functors form a Quillen pair:

Cn – : DGPA � DGCAk/k : Hom∗(C, –).

(b) The functor Cn – : DGPA � DGCAk/k has a (total) left derived functor

C
L
n – : Ho(DGPA)→ Ho(DGCAk/k), A 7→ CnQA,

where QA ∼� A is any cofibrant resolution of A in DGPA.
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(c) For any A ∈ DGPA and B ∈ DGCAk/k , there is a canonical isomorphism

HomHo(DGPA)(A,Hom(C, B̄)) ∼= HomHo(DGCAk/k)(Cn A,B).

We define the derived representation scheme of A over the coalgebra C by

DRepC(A) := C
L
n A ∈ Ho(DGCAk/k)

and the representation homology of A over C by

H•(A,C) := H•[DRepC(A)].

A.2. Representation homology vs Lie homology: the operadic setting

Recall that Q denotes the Koszul dual of the operad P . The main result of this section,
Theorem A.4, identifies the representation homology H•(A,C) with the homology of the
Lie coalgebra C ⊗ C constructed over a Q-coalgebra C Koszul dual to A; this unifies
Theorems 3.2 and 6.7 in the main body of the paper. We begin by recalling some facts
on twisting chains and Koszul duality in the operadic setting. The main reference for this
material is [LV].

A.2.1. Twisting chains and Koszul duality. Let DGQC denote the category of conilpotent
DG Q-coalgebras. Let A ∈ DGPA and C ∈ DGQC. The following proposition is a special
case of [LV, Proposition 11.1.1].

Lemma A.3. (a) The complex Hom(C,A) has the natural structure of a DG Lie al-
gebra.

(b) If C is a DG P-coalgebra, the complex C ⊗ C has the natural structure of a
(conilpotent) DG Lie coalgebra.

Proof. We note that Hom(C,A) has the natural structure of an algebra over the
Hadamard product P ⊗H Q of the operads P and Q (see [LV, Section 5.1.12]). The Lie
algebra structure on Hom(C,A) comes from the morphism of operads Lie→ P ⊗H Q
in [LV, Prop. 7.6.5]. This proves (a).

On the other hand, C ⊗ C is naturally a DG coalgebra over the operad P ⊗H Q.
The DG Lie coalgebra structure on C ⊗ C then comes from the morphism of operads
Lie → P ⊗H Q in [LV, Prop. 7.6.5]. The conilpotency of C ⊗ C follows from the
conilpotency of C. This proves (b). ut

A twisting chain from C to A is a degree −1 element τ ∈ Hom(C,A) satisfying the
Maurer–Cartan equation

dτ + 1
2 [τ, τ ] = 0.

Let Tw(C,A) denote the set of all twisting chains from C to A. It can be shown (see [LV,
Prop. 11.3.1]) that, for a fixed P-algebra A, the functor

Tw(–, A) : DGQC→ Sets, C 7→ Tw(C,A),
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is representable; the corresponding coalgebra BP (A) ∈ DGQC is called the bar construc-
tion of A (see [LV, Sect. 11.2.1]). Dually, for a fixed coalgebra C, the functor

Tw(C, –) : DGPA→ Sets, A 7→ Tw(C,A),

is corepresentable; the corresponding algebra �Q(C) ∈ DGPA is called the cobar con-
struction of C (see [LV, Sect. 11.2.5]). Thus, we have canonical isomorphisms

HomDGPA(�Q(C),A) = Tw(C,A) = HomDGQC(C,BP (A)) (A.2)

showing that �Q : DGQC � DGQC : BP are adjoint functors. We say that C ∈ DGQC is
Koszul dual to A ∈ DGPA if there is a quasi-isomorphism �Q(C)

∼
−→ A in DGPA. Note

that since �Q(C) is free as a graded P-algebra (see [LV, Sect. 11.2.5]), �Q(C)
∼
−→ A

is a cofibrant resolution of A in DGPA when C is Koszul dual to A. Further, if P is a
Koszul operad, there is at least one C ∈ DGQC Koszul dual to A, namely, BP (A) (see
[LV, Sect. 11.3.3]).

A.2.2. . For C ∈ DGQC and for any DG P-coalgebra C, let Liec(C ⊗ C) denote C ⊗ C
equipped with the Lie coalgebra structure from Lemma A.3.

Theorem A.4. There is a natural isomorphism of functors from DGQC to DGCAk/k:

(Cn –) ◦�Q(–) ∼= �Lie[Liec(C⊗ –)].

As a result, if C ∈ DGQC is Koszul dual to A ∈ DGPA, there are isomorphisms in
Ho(DGCAk/k):

DRepC(A) ∼= Cc(Liec(C⊗ C); k).
Consequently,

H•(A,C) ∼= H•(Liec(C⊗ C); k).

Proof. Let C ∈ DGQC. For any B ∈ DGCAk/k , we have natural isomorphisms

HomDGCAk/k (Cn �Q(C), B) ∼= HomDGPA(�Q(C),Hom(C, B̄))
∼= Tw(C,Hom(C, B̄)) ∼= Tw(Liec(C⊗ C), B̄)
∼= HomDGCAk/k (�Lie[Liec(C⊗ C)], B).

The DG Lie algebra structure on Hom(C,Hom(C, B̄)) comes from Lemma A.3 and
the fact that Hom(C, B̄) acquires the structure of a P-algebra. The third isomor-
phism above is from the isomorphism of DG Lie algebras Hom(C,Hom(C, B̄)) ∼=
Hom(Liec(C ⊗ C), B̄) coming from hom-tensor duality (and Lemma A.3). The natural
isomorphism

Cn �Q(C) ∼= �Lie[Liec(C⊗ C)] = Cc(Liec(C⊗ C); k)

follows from the natural isomorphism

HomDGCAk/k (Cn �Q(C), B) ∼= HomDGCAk/k (�Lie[Liec(C⊗ C)], B)

by Yoneda’s Lemma. This proves the first statement of the theorem.
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If C ∈ DGQC is Koszul dual to A ∈ DGPA, then �Q(C)
∼
−→ A is a cofibrant resolution

of A. Hence, DRepC(A) ∼= C n �Q(C) ∼= Cc(Liec(C ⊗ C); k). This proves the second
assertion in the above theorem. The final statement of the theorem now follows immedi-
ately. ut

A.3. Examples

A.3.1. Derived reresentation schemes for associative algebras. When P = Q = Ass,
the operad governing associative algebras, DGPA becomes DGA, the category of nonunital
DG k-algebras. Recall that there is an equivalence of categories (see Section 2.2.1):

DGA→ DGAk/k, A 7→ A′ := k ⊕ A.

The inverse is the functor that assigns to each augmented DG algebra A its augmentation
ideal Ā. In this case, Proposition A.1 is a generalization of [Tu, Lemma 2.1] to the DG
setting. Let C be a counital DG coalgebra. Denote the composite functor

DGAk/k → DGA
Cn–
−−−→ DGCAk/k

by Cn –. For A ∈ DGAk/k , one has a natural isomorphism

Cn A ∼= (C� A)ab,

where

C� A := Tk(C⊗ A)/〈m⊗ ab − (m
(1)
⊗ a)� (m(2) ⊗ b), m⊗ 1− u(m).1〉. (A.3)

Here, u(m) ∈ k and 1(m) =
∑
m(1) ⊗ m(2) are the counit and the coproduct of C

evaluated at an element m ∈ C. This operation is introduced in [AJ, Section 3.4], where
it is called the Sweedler product.

Note that the algebra homomorphisms C � A → A correspond precisely to the left
actions C ⊗ A → A commuting with the multiplication A ⊗ A → A and the unit map
k → A on A. This clarifies the meaning of the defining relations and the notation for the
algebra C� A (cf. [Maj]).

Now, if C = M∗
n(k) is the finite-dimensional coalgebra dual to the matrix algebra

Mn(k), the functor Hom(C, –) is canonically isomorphic to Mn(–), Hence, by adjunc-
tion (see Proposition 2.3), we have a natural isomorphism

An ∼=M∗
n(k)n A.

This allows one to regard the representation functor (2.7) as a special case of the general
construction of this section. In particular, all results of Section 2.4 (along with Theo-
rem 3.2) follow from results proved in this section (e.g., Theorem 2.6 is a special case of
Theorem A.2, Theorem 3.2 is a special case of Theorem A.4, etc.)

Remark. The existence of the noncommutative ‘lifting’ C�A of CnA appears to be a
special phenomenon that occurs only in the case P = Q = Ass. In this case, the natural
morphism of operads Lie→ Ass⊗H Ass factors through the associative operad. Hence,
from the point of view of a coalgebra-algebra pair over a Koszul dual pair of operads, it
is the abelianization of the Sweedler product (rather than the Sweedler product itself) that
is the natural construction.
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A.3.2. Derived representation schemes of Lie algebras. When P = Lie, the operad
governing Lie algebras, then Q = Comm, the operad governing commutative algebras. In
this case, the constructions of this section specialize to those of Section 6. For example,
Proposition A.1 specializes to Proposition 6.4. Theorem A.4 specializes to Proposition 6.6
and Theorem 6.7, etc.

A.4. P-cyclic homology

We now construct derived trace maps relating (operadic) cyclic homology to (op-
eradic) representation homology. Our construction generalizes the construction of traces
in [BKR] as well as Drinfeld traces of Section 7.3.

A.4.1. Invariant bilinear forms. We say that a symmetric bilinear form B on a DG P-
algebra is invariant if for all m ∈ P(2),

B(m(a, b), c) = (−1)|a||m|B(a,m(b, c)) for all a, b, c ∈ A.

Let A\ denote the target of the universal invariant bilinear form on A; this is equal to the
quotient of A⊗ A by the subcomplex spanned by the images of the maps

(m⊗ Id− Id⊗m) : A⊗ A⊗ A→ A⊗ A,

where m runs over all (homogeneous) elements of P(2). If P is a cyclic binary quadratic
operad, our notion of an invariant bilinear form agrees with that of [GK] (cf. [GK,
Prop. 4.3]). In this case, A\ is denoted in [GK] by λ(A).

Dually, if C is a DG P-coalgebra, a (homogeneous) 2-tensor α is called invariant if it
is a (homogeneous) element of C ⊗ C such that for all m ∈ P(2), the composite map of
complexes

k[|α|]
α
−→ C⊗ C

m⊗Id−Id⊗m
−−−−−−−→ C⊗ C⊗ C

vanishes. We denote by C\ the subcomplex of invariant tensors on C.
The following theorem is a generalization of [GK, Theorem 5.3] to arbitrary binary

quadratic operads. Since its proof is similar to that of Theorem 7.3, we omit it in order to
avoid being repetitive.

Theorem A.5. The functor

(–)\ : DGPA→ Comk, A 7→ A\,

has a (total) left derived functor

L(–)\ : Ho(DGPA)→ Ho(Comk), A 7→ R\,

for any cofibrant resolution R
∼
−→ A in DGPA.

We denote the homology H•(LA\) by HC•(P, A) and call it the P-cyclic homology of A.
When P = Lie and A = a, this is exactly the Lie cyclic homology HC•(Lie, a) used in
Section 7 (which [GK] denotes by HA•(Lie, A)).
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A.5. Traces

Suppose that the DG P-coalgebra C is equipped with a degree 0 invariant 2-tensor

coTr : k→ C\.

Then, for any A ∈ DGPA, there is a natural morphism of DG P-algebras

πA : A→ Hom∗(C,Cn A) ↪→ Hom(C,Cn A),

where the first arrow corresponds under the adjunction (A.1) to the identity morphism on
Cn A. Denote by πA⊗A the composite map

A⊗ A
πA⊗πA
−−−−→ Hom(C,Cn A)⊗Hom(C,Cn A)

→ Hom(C⊗2, (Cn A)⊗2)→ Hom(C⊗ C,Cn A),

where the last arrow is induced by the product on Cn A. The map of complexes

A⊗ A
πA⊗A
−−−→Hom(C⊗ C,Cn A) - Hom(C\,Cn A)

induced by the inclusion C\ ↪→ C⊗ C clearly factors through A\, giving

A\→ Hom(C\,Cn A).

Composing this last map with the map Hom(C\,C n A) → Hom(k,C n A) = C n A

induced by coTr, we get
TrC : A\→ Cn A. (A.4)

We remark that, in general, TrC depends on the choice of the invariant 2-tensor coTr
on C; however, instead of making that choice, we could work with the universal invariant
2-tensor C\ ↪→ C⊗ C.

By construction, TrC gives a natural transformation of functors

(–)\→ Cn – : DGPA→ Comk. (A.5)

It therefore gives a natural transformation of derived functors

TrC : L(–)\→ C
L
n – : Ho(DGPA)→ Ho(Comk). (A.6)

Applying this to A ∈ DGPA and taking homologies, one obtains maps of graded vector
spaces

TrC : HC•(P, A)→ H•(A,C). (A.7)

We now give a few examples of the trace (A.7).
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A.5.1. Example. Let P be a cyclic binary quadratic operad. Suppose that C is a finite-
dimensional P-coalgebra in homological degree 0. Let S := C∗ and let tr : S\ → k

denote the dual of the map coTr. Let G := Aut(S, tr) denote the algebraic group of trace
preserving automorphisms of the P-algebra S (see [G, Section 6]). Suppose A is a P-
algebra concentrated in homological degree 0. In this case, CnA = k[RepP (A,S)]. The
trace (A.7) induces a trace map

TrS : A\→ k[RepP (A,S)]

on 0-th homologies. It is easy to verify that the image of TrS actually lies in
k[RepP (A, S)]

G. The map

TrS : A\→ k[RepP (A,S)]G

appears in [G, Section 6].

A.5.2. Example. Let P = Ass and let C = M∗
n(k). Let A be a unital DG k-algebra.

Then (see [GK, Section 4]) A\ ∼= A/[A,A]. Dually, since M∗
n(k) is counital, [M∗

n(k)]
\

can be identified with the cocommutator subspace of M∗
n(k). This subspace is a one-

dimensional subspace of M∗
n(k) generated by the dual of the usual trace map. Choosing

that dual as our cotrace and applying the construction in this section, one sees that the
trace map (A.7) becomes the trace map

Trn(A)• : HC•(A)→ H•(A, n)

constructed in [BKR, Section 4].

A.5.3. Example. Let P = Lie and let C = g∗ where g is a semisimple Lie algebra.
Then C\ is a one-dimensional k-vector space generated by the Killing form on g. If we
take the Killing form as our invariant 2-tensor, the trace (A.7) specializes to the canonical
trace (7.10).
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