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Abstract. We consider partially hyperbolic C1+ diffeomorphisms of compact Riemannian man-
ifolds of arbitrary dimension which admit a partially hyperbolic tangent bundle decomposition
Es ⊕ Ecu. Assuming the existence of a set of positive Lebesgue measure on which f satisfies
a weak nonuniform expansivity assumption in the centre unstable direction, we prove that there ex-
ist at most a finite number of transitive attractors each of which supports an SRB measure. As part
of our argument, we prove that each attractor admits a Gibbs–Markov–Young geometric structure
with integrable return times. We also characterize in this setting SRB measures which are liftable
to Gibbs–Markov–Young structures.
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1. Introduction

1.1. Physical measures

Let M be a compact Riemannian manifold with a normalized Riemannian volume Leb
which we will refer to as Lebesgue measure, and let f : M → M be a C1+ diffeo-
morphism of M (meaning that f is C1 with Hölder continuous derivative). For a Borel
probability measure µ on M we define the basin of µ by

Bµ :=
{
x ∈ M : lim

n→∞

1
n

n−1∑
j=0

ϕ(f j (x))→

∫
ϕ dµ for all continuous ϕ : M → R

}
.

Then Bµ is the set of points whose orbits are asymptotically uniformly distributed with
respect to µ. A priori there is no reason for the basin to be nonempty but under certain
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conditions it is possible to prove that it is and that indeed it is “large” in certain respects.
The classical Ergodic Theorem of Birkhoff implies, for example, that if µ is ergodic and
invariant then µ(Bµ) = 1. If µ is singular with respect to Lebesgue measure, which it
usually is, this does not guarantee that the basin has positive Lebesgue measure which
is, in some sense, the reference measure with respect to which we want to describe the
dynamics. This motivates the following definition. We say that µ is a physical measure if

Leb(Bµ) > 0.

There are examples of systems without physical measures (e.g. the identity map) as well
as examples of systems with an infinite number of physical measures. These examples,
however, are somewhat “pathological” and the Palis conjecture [36] says that typical
dynamical systems admit at least one and at most a finite number of physical measures
and that their basins have full Lebesgue measure in M .

A particular type of physical measures are the so-called Sinai–Ruelle–Bowen, or SRB,
measures which have the property of having nonzero Lyapunov exponents µ-almost ev-
erywhere and admitting a system of conditional measures such that the conditional mea-
sures on unstable manifolds are absolutely continuous with respect to the Lebesgue mea-
sures Lebγ on these manifolds induced by the restriction of the Riemannian structure
[14, 37, 39, 50]. The main result of this paper is to prove the existence and finiteness of
SRB physical measures in a natural and relatively general class of partially hyperbolic
diffeomorphisms. We mention that some of the specific constants in the conditions in
the following results depend on the choice of Riemannian metric, thus it is implicit in
our assumptions that it is sufficient for the conditions to be satisfied for some choice of
Riemannian metric.

Theorem A. Let f : M → M be a C1+ diffeomorphism, K ⊆ M a forward invari-
ant compact set on which f admits a Df -invariant continuous tangent bundle splitting
TKM = E

s
⊕ Ecu, and suppose there exists λ ∈ (0, 1) such that for all x ∈ K ,

‖Df |Esx‖ < λ and ‖Df |Esx‖ · ‖Df
−1
|Ecu
f (x)
‖ < λ. (1)

Suppose moreover that there exists H ⊆ K with Leb(H) > 0 and an ε > 0 such that for
all x ∈ H ,

lim inf
n→∞

1
n

n∑
j=1

log ‖Df−1
|Ecu
f j (x)
‖ < −ε. (2)

Then

(a) there exist closed invariant transitive sets �1, . . . , �` such that for Lebesgue almost
every x ∈ H we have ω(x) = �j for some 1 ≤ j ≤ `;

(b) there exist physical SRB measures µ1, . . . , µ` supported on the sets �1, . . . , �`,
whose basins have nonempty interior, such that for Lebesgue almost every x ∈ H we
have x ∈ Bµj for some 1 ≤ j ≤ `.

We refer to the second part of (1) as domination property.
This result generalizes the well-known and often cited result of [4] in which the same

conclusions are obtained under the stronger assumption that condition (2) holds with a
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lim sup instead of a lim inf. While this may seem like a technical detail, we emphasize that
the lim inf condition (2) implies that the growth only needs to be verified on a subsequence
of iterates, in contrast to the same conditions with lim sup, which needs to be verified for
all sufficiently large times. The difference between these two assumptions leads to the
failure of a key technical property which means that the techniques and methods that we
use below to deal with the weaker assumption are completely different from those used
in [4]—see further discussion in Section 2 and Remark 4.3 below.

It is, in some sense, impossible to find an example of a diffeomorphism that satisfies
our condition (2) and not the a priori stronger condition in [4], because the conclusions of
Theorem A imply that the limit in (2) exists, and therefore, a fortiori, the two conditions
are equivalent. The spirit of our result is therefore mainly of a theoretical nature, but of
course it may very well be possible to encounter a situation in which only our weaker
condition is verifiable in practice. While it is not immediately obvious how to construct
such an example, it may be instructive to remark that a robust (C1 open) class of examples
of diffeomorphisms is constructed in [4] which satisfies the conditions of that paper (and
therefore also the a priori weaker conditions of our Theorem A) which rely on the property
stated in [4, Lemma A.1] showing that typical points spend a uniformly positive frequency
of times in certain good regions B of the manifold, i.e. there exists some ε0 > 0 such that
lim inf n−1 Leb{0 ≤ i < n : f i(x) ∈ B} ≥ ε0. In principle, a situation in which this
property cannot be verified directly but can be replaced by a weaker statement of the
form lim sup n−1 Leb{0 ≤ i < n : f i(x) ∈ B} ≥ ε0, i.e. a situation in which there is an a
priori weaker control of the recurrence in B, might lead to the verification of condition (2)
and therefore to the desired conclusions on the existence and finiteness of SRB measures.

1.2. Transitivity and uniqueness of physical measures

We remark that our argument also works if we let ε = 0 in (2), in which case we get a
countable number of transitive sets and corresponding SRB measures supported on them.
On the other hand, as the ergodic basins Bµj have nonempty interior, in the special case
when f is transitive, partially hyperbolic and weakly nonuniformly expanding along Ecu

on the whole manifold M , we get the following consequence.

Corollary B. Under the assumptions of Theorem A, suppose f is transitive and Leb(H)
= 1. Then ω(x) = M for Lebesgue a.e. x, and f has a unique SRB measure with
Leb(Bµ) = 1.

We emphasize that the statement of Corollary B is nontrivial and makes full use of the
specific formulations of the results in Theorem A which derive from our construction
and proof, and in particular is not just an immediate consequence of the finiteness of er-
godic components under the additional transitivity assumption. Indeed, notice that there
are no uniqueness statements in [4] where a different strategy is used for the proof of
finiteness. The conclusions of Corollary B are obtained in [13] in the quite distinct setting
of a partially hyperbolic diffeomorphism with an invariant tangent bundle decomposition
Ecs ⊕ Eu (i.e. with uniform expansion and nonuniform contraction, see Section 2 for an
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in-depth historical literature review of the various kinds of partial hyperbolicity and corre-
sponding results) with a particularly strong form of transitivity, namely that all the leaves
of the unstable foliation are dense in M . This does not seem like a natural assumption in
our setting since we do not have an unstable foliation, but if such a condition could be
verified in a specific example, it seems likely that the conclusions would follow here also.

We note that just adding the transitivity condition to the assumptions of Theorem A,
i.e. relaxing the assumption that Leb(H) = 1 to Leb(H) > 0, is probably not sufficient to
obtain the conclusions of Corollary B. Nevertheless, if required in specific applications, it
should be possible to find some additional conditions from which the result follows with-
out the a priori assumption thatH has full measure, e.g. those used in [13] and mentioned
in the previous paragraph. Alternatively, assuming transitivity, Leb(H) > 0 and that H
contains an open set, would then make it natural to prove (or assume) that H is open and
dense, since condition (2) is invariant along orbits and it is thus natural to assume that
H is both forward and backward invariant (and, by transitivity, a forward and backward
invariant open set is also dense). In this case it should then be possible, using uniform
contraction in the direction of Es and the existence of a stable foliation, to deduce that
Leb(H) = 1 and thus obtain the conclusions.

1.3. Gibbs–Markov–Young structures

The main part of the proof of Theorem A consists in the construction of a finite collection
of nontrivial, and not at all a priori expected, geometric structures which we call Gibbs–
Markov–Young, or GMY, structures for the map f . The precise definition is rather long
and technical, and so, in order not to interrupt the flow of the presentation, we postpone it
to Section 1.5. For the formal statement of our results we just mention that such a struc-
ture consists of an induced map F = f R : 3 → 3, defined on some set 3 ⊆ M by an
inducing time function R : 3 → N. Various combinatorial and geometrical conditions
need to be satisfied, as well as some control over the return time function which is gener-
ally unbounded; we give all the precise formulations in Section 1.5. For the moment we
just remark that the required control on the return time function is referred to as “integra-
bility of the return times”. The assumptions of the following theorem are exactly those of
Theorem A, but we restate them here in order to keep the statement self-contained.

Theorem C. Let f : M → M be a C1+ diffeomorphism, K ⊆ M a forward invari-
ant compact set on which f admits a Df -invariant continuous tangent bundle splitting
TKM = E

s
⊕ Ecu, and suppose there exists λ ∈ (0, 1) such that for all x ∈ K ,

‖Df |Esx‖ < λ and ‖Df |Esx‖ · ‖Df
−1
|Ecu
f (x)
‖ < λ.

Suppose moreover that there exists H ⊆ K with Leb(H) > 0 and an ε > 0 such that for
all x ∈ H ,

lim inf
n→∞

1
n

n∑
j=1

log ‖Df−1
|Ecu
f j (x)
‖ < −ε. (3)

If there exists a closed invariant transitive set � such that ω(x) = � for every x ∈ H ,
then there exists a GMY structure 3 ⊆ � with integrable return times.
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The statement in item (a) of Theorem A, i.e. the existence of a finite number of closed
invariant transitive sets �, will be proved in Sections 3 and 4. Then Theorem C provides
a GMY structure for each of these sets. Classical results imply that the map F which
defines the GMY structure admits a unique SRB measure ν with respect to which the
return time function R is integrable, and therefore we can define a probability measure

µ =
1∫
R dν

∞∑
j=0

f
j
∗ (ν|{R>j}), (4)

which is one of the finite number of required SRB measures for f [49, Section 2]. There-
fore item (b) of Theorem A follows from (a) and Theorem C.

1.4. Positive Lyapunov exponents and liftability of measures

SRB measures associated to GMY structures through the formula (4) are, a priori, a spe-
cial kind of SRB measure. The additional structure may be useful in obtaining informa-
tion on various other properties of the dynamics and of the measure, such as for example
statistical properties of the dynamics with respect to µ, like decay of correlations, large
deviations, limit theorems, etc.; see for instance [49, 28, 34, 35, 42]. SRB measures which
can be written in the form (4) are said to be liftable (to a GMY structure). We have the
following very natural question.

Question. Is every SRB measure µ liftable?

In the setting of partially hyperbolic systems as above, we can give a full characterization
of liftable measures.

Theorem D. Let f : M → M be a C1+ diffeomorphism, K ⊆ M a forward invari-
ant compact set on which f admits a Df -invariant continuous tangent bundle splitting
TKM = E

s
⊕ Ecu, and suppose there exists λ ∈ (0, 1) such that for all x ∈ K ,

‖Df |Esx‖ < λ and ‖Df |Esx‖ · ‖Df
−1
|Ecu
f (x)
‖ < λ.

Then for any invariant probability µ supported on K the following conditions are equiv-
alent:

(a) µ is an SRB measure and there exists an ε > 0 such that for µ-a.e. x and every unit
vector v ∈ Ecux ,

lim sup
n→∞

1
n

log ‖Df n(x)v‖ > ε; (5)

(b) µ is liftable to a GMY structure on K.

We remark that the implication (b)⇒(a) follows essentially from the definition of GMY
structure, so the nontrivial part is (a)⇒(b). If we replace condition (5), which can be
described as saying that µ has positive Lyapunov exponents in the Ecu direction, by con-
dition (3), then this implication is essentially already contained in Theorem C, but we
emphasize that condition (5) is strictly weaker than (3): see for instance the example in
[2, Section 4]. We will use in an essential way the assumption of the existence of an invari-
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ant measure µ to show that (5) implies that some iterate of f satisfies (3), after which we
can apply the techniques in the proof of Theorem C to conclude the proof of Theorem D.

In view of these remarks a natural and interesting question is whether a version of
Theorem C, and therefore also of Theorem A, could be proved under an assumption
of positive Lyapunov exponents such as in (5), which is in some sense more natural,
instead of condition (3). This turns out to be a challenging question and, without the a
priori assumption of the existence of an invariant measure, we do not know how to derive
(3) from (5), even for some higher iterate of f , nor do we know how to carry out the
construction of the GMY structure directly from the assumption (5). It is interesting to
observe, however, that condition (5), unlike (3), does not depend on the choice of metric.
One possible approach to the problem may be via the following

Conjecture 1. Assume that f is partially hyperbolic and satisfies (5) along Ecu on a
set H . Then there exists a Riemannian metric on M such that f satisfies (3) on H .

If this conjecture is true, we immediately obtain the conclusions of Theorem C and there-
fore of Theorem A and of Corollary B under the a priori weaker condition of positive
Lyapunov exponents. Pushing this theme even further we mention a long-standing con-
jecture of Viana along these lines.

Conjecture (Viana conjecture, [47]). If a smooth map has only nonzero Lyapunov expo-
nents at Lebesgue almost every point, then it admits some SRB measure.

So far, apart from the one-dimensional setting, it has been extremely difficult to work
directly with Lyapunov exponents and it has been necessary to introduce stronger versions
of nonuniform contraction and expansion as in [13, 4] and the present paper. Viana’s
conjecture forms an important part of the motivation for introducing increasingly weaker
conditions such as that of Theorem A above and questions such as that in Conjecture 1
above. In this direction we also mention the remarkable recent results in [22] where quite
new techniques are introduced to construct SRB measures for some diffeomorphisms
which are nonuniformly hyperbolic but do not have a continuous dominated splitting.

1.5. Precise definition of Gibbs–Markov–Young structure

We now give the precise formal definition of the GMY structures. These geometric struc-
tures were introduced in [49] and have been applied to study the existence and properties
of physical measures in certain classes of dynamical systems.

An embedded disk γ ⊂ M is called an unstable manifold if d(f−n(x), f−n(y))→ 0
exponentially fast as n→∞ for all x, y ∈ γ ; similarly γ ⊂ M is called a stable manifold
if d(f n(x), f n(y)) → 0 exponentially fast as n → ∞. We say that 0u = {γ u} is a
continuous family of C1 unstable manifolds if there is a compact set Ks , a unit disk Du

in some Rn, and a map 8u : Ks
×Du→ M such that

• γ u = 8u({x} ×Du) is an unstable manifold;
• 8u maps Ks

×Du homeomorphically onto its image;
• x 7→ 8u|{x}×Du defines a continuous map from Ks into Emb1(Du,M).
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Here Emb1(Du,M) denotes the space of C1 embeddings ofDu intoM . Continuous fam-
ilies of C1 stable manifolds are defined similarly.

We say that a set3 ⊂ M has a hyperbolic product structure if there exist a continuous
family 0u = {γ u} of local unstable manifolds and a continuous family 0s = {γ s} of local
stable manifolds such that

• 3 = (
⋃
γ u) ∩ (

⋃
γ s);

• dim γ u + dim γ s = dimM;
• each γ s meets each γ u in exactly one point;
• stable and unstable manifolds are transversal with angles bounded away from 0.

If 3 ⊂ M has a product structure, we say that 30 ⊂ 3 is an s-subset if 30 also has a
product structure and its defining families 0s0 and 0u0 can be chosen with 0s0 ⊂ 0s and
0u0 = 0

u; u-subsets are defined analogously. For convenience we shall use the following
notation: given x ∈ 3, let γ ∗(x) denote the element of 0∗ containing x, for ∗ = s, u.
Also, for each n ≥ 1 let (f n)u denote the restriction of the map f n to γ u-disks and let
detD(f n)u be the Jacobian of D(f n)u.

We say that f admits a Gibbs–Markov–Young (GMY) structure if there exist a set 3
with hyperbolic product structure and constants C > 0 and 0 < β < 1, depending on f
and 3, satisfying the following additional properties:

(P0) Detectable: Lebγ (3) > 0 for each γ ∈ 0u.
(P1) Markov: there are pairwise disjoint s-subsets 31,32, . . . ⊂ 3 such that

(a) Lebγ ((3 \
⋃
3i) ∩ γ ) = 0 for each γ ∈ 0u;

(b) for each i ∈ N there is Ri ∈ N such that f Ri (3i) is a u-subset, and for all
x ∈ 3i ,

f Ri (γ s(x)) ⊂ γ s(f Ri (x)) and f Ri (γ u(x)) ⊃ γ u(f Ri (x)).

(P2) Contraction on stable leaves: for all γ s ∈ 0s , x, y ∈ γ s and n ≥ 1,

dist(f n(y), f n(x)) ≤ Cβn.

(P3) Backward contraction on unstable leaves: for all γ u ∈ 0u, x, y ∈ 3i ∩ γ u and
0 ≤ n < Ri ,

dist(f n(y), f n(x)) ≤ CβRi−n dist(f Ri (x), f Ri (y)).

(P4) Bounded distortion: for all γ u ∈ 0u and x, y ∈ 3i ∩ γ u,

log
detD(f Ri )u(x)
detD(f Ri )u(y)

≤ C dist(f Ri (x), f Ri (y)).

(P5) Regularity of the foliations:

(a) for all γ s ∈ 0s , x, y ∈ γ s and n ≥ 1,

log
∞∏
i=n

detDf u(f i(x))
detDf u(f i(y))

≤ Cβn;
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(b) given γ, γ ′ ∈ 0u, we define 2 : γ ∩ 3 → γ ′ ∩ 3 by taking 2(x) equal to
γ s(x) ∩ γ ′. Then 2 is absolutely continuous and

d(2∗ Lebγ )
d Lebγ ′

(x) =

∞∏
i=0

detDf u(f i(x))
detDf u(f i(2−1(x)))

.

We define a return time function R : 3 → N by R|3i = Ri and we say that the GMY
structure has integrable return times if for some (and hence all) γ ∈ 0u, we have∫

γ∩3

R d Lebγ <∞. (6)

1.6. Outline of the paper

In Section 2 we give a relatively detailed discussion of the previously existing related
results in the literature, in order in particular to clarify the position and significance of
the results presented here. We also discuss some aspects of our strategy and how it is
developed in response to a failure of previous approaches to work with our weaker as-
sumptions. In Section 3 we give an abstract criterion for verifying that at most a finite
number of transitive topological attractors exist for a given set. In Section 4 we show
that this criterion is satisfied by the set H in Theorem A, thus proving item (a) in the
theorem. It is then sufficient to restrict our attention to one of these attractors, as in the
setting of Theorem C. In Section 5 we give the full combinatorial inductive “recipe” for
the construction of the GMY structure. In Section 6 we prove that this recipe does indeed
account for the dynamics of almost every point, and in Section 7 that all the formal con-
ditions in the definition of GMY structure are satisfied, except for the integrability of the
return times which is proved in Section 8, thus completing the proof of Theorem C. Com-
bining the conclusion of Theorem C with the comments at the beginning of Section 1.4
we get item (b) of Theorem A and the “if” direction of Theorem D; the other implication
is proved in Section 9.

2. Historical background and context

2.1. Uniform hyperbolicity

The problem of the existence and finiteness of physical measures was first formulated,
and solved, by Anosov, Smale, Ruelle and Bowen [14, 15, 43, 44] in the 1970’s, in the
setting of uniformly hyperbolic diffeomorphisms f : M → M , i.e. systems which admit
a continuous invariant tangent bundle decomposition TM = Es⊕Eu such that the differ-
ential map is uniformly contracting on Es and uniformly expanding on Eu, on compact
manifolds. Their basic strategy was to choose some essentially arbitrary local unstable
manifold γ u, consider the normalized volume, or Lebesgue measure, on γ , and define the
sequence of probability measures

µn :=
1
n

n−1∑
i=0

f i∗ Lebγ . (7)
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By compactness ofM the space of probability measures is compact in the weak-star topol-
ogy, and thus there exists some probability measure µ and some subsequence nj → ∞
such that

µnj → µ

in the weak-star topology as j → ∞. It is then a relatively straightforward argument,
using the uniform expansivity and the uniform size of local unstable manifolds at every
point, to show that µ is f -invariant and satisfies one of the key properties of SRB mea-
sures which is, as mentioned above, that it admits a local “disintegration” into conditional
measures on local unstable manifolds which are absolutely continuous with respect to
Lebesgue measure on such manifolds. Together with the second key property of absolute
continuity of the stable foliation, this implies that µ is indeed an SRB measure and in
particular a physical measure.

2.2. Nonuniform and partial hyperbolicity

Since the 1970’s, ongoing research has achieved extensions of this result to increasingly
general classes of dynamical systems, but things get significantly harder as soon as the
uniform hyperbolicity conditions are relaxed in any way; progress has been slow and has
required the development of increasingly sophisticated new arguments and techniques.
There are two main natural directions in which the uniform hyperbolicity assumptions can
be relaxed: one is nonuniform hyperbolicity where the decomposition TM = Es ⊕ Eu

is only measurable and the contraction and expansion estimates are only asymptotic [11,
37]; the other is partial hyperbolicity where the tangent bundle decomposition takes the
form TM = Es ⊕ Ec ⊕ Eu, which is still assumed to be continuous, and to admit
uniform contraction and expansion estimates in Es and Eu respectively, but also includes
a “central” direction on which, in principle, very little is assumed [16, 38]. Notice that
neither of these conditions implies the other.

A vast literature exists concerning the properties of systems satisfying such weak hy-
perbolicity conditions and several papers address specifically the existence and finiteness
of SRB measures, but it turns out that both of these classes of systems, in full generality,
are extremely difficult to study. On a very heuristic level, the nonuniformly hyperbolic
setting, while maintaining the important property of absolute continuity of the stable fo-
liation, means that we lose the uniformity of several estimates including in particular the
size of the local stable manifolds, making it difficult to control the sequence (7) and to
show that the limit point µ has absolutely continuous conditional measures; on the other
hand, the partially hyperbolic setting maintains certain uniform estimates, including the
sizes of local stable and unstable manifolds, but we lose in general the absolute continuity
of the central foliation (or even the existence of that foliation).

These difficulties are clearly reflected in the way the subject has developed over the
years. A first pioneering paper is [39] in which Gibbs measures are constructed for par-
tially hyperbolic systems. Gibbs measures are in some sense analogous to SRB measures
in their intrinsic structure relative to the geometry of the invariant manifolds of the dif-
feomorphisms (in the sense that they have absolutely continuous conditional measures on
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unstable manifolds, but are not necessarily physical measures because of the possible lack
of absolute continuity or even existence of a foliation tangent to the central subbundle).
To overcome this problem, most results require the dynamics to be a combination of par-
tially hyperbolic and nonuniformly hyperbolic in the central direction. Moreover, most
of the time the dynamics is assumed to be either nonuniformly contracting in the central
direction, which for simplicity we will refer to by saying that the splitting has the form
Ecs⊕Eu, or nonuniformly expanding in the central direction, which for simplicity we will
refer to by saying that the splitting has the form Es ⊕Ecu; a mixture of both nonuniform
contraction and nonuniform expansion in the central direction would essentially present
the same difficulties as a fully nonuniformly hyperbolic system. We remark that the no-
tation Ecs and Ecu does not imply the existence of a further splitting Ecs = Es ⊕ Es

or Ecu = Eu ⊕ Eu which may or may not exist; for certain results, for example con-
cerning some geometrical properties of the systems, the existence or not of this further
splitting can be relevant, but for most of the results on the existence and finiteness of SRB
measures this turns out not to be a significant issue.

2.3. The “mostly contracting” case

In the light of the observations made above, perhaps the “easiest” of the two cases men-
tioned above is when the splitting is of the form Esc ⊕ Eu. Indeed, in this case (modulo
some not completely trivial technical difficulties), the uniform expansivity of Eu implies
uniform estimates on the growth and size of local unstable manifolds and thus makes it
possible to show that the limit measures µ obtained from a sequence as in (7) above admit
absolutely continuous conditional measures by similar arguments to the uniformly hyper-
bolic case. Moreover, the nonuniform contraction of Ecs implies, by standard theory of
nonuniform hyperbolicity, that the centre-stable foliation is absolutely continuous and we
conclude that µ is an SRB, and thus physical, measure. This strategy was implemented
to show the existence and finiteness of SRB measures in this setting in [13]. Additional
results include conditions which imply uniqueness of the SRB measure for a diffeomor-
phism and its perturbations [18, 19, 48], mixing properties of this measure [20, 21, 25],
and even differentiability with respect to perturbations [26].

2.4. The “mostly expanding” case

In the case of a decomposition of the form Es ⊕ Ecu, the absolute continuity of the
stable foliation follows immediately from the uniformity of the contraction in Es , but the
properties of the sequence of measures µn as in (7) are much more difficult to control
due to the highly irregular pattern of growth of the derivative and consequently of the
length of pieces of unstable manifolds. This means that not all points on the initial local
unstable manifold γ have neighbourhoods which grow to some sufficiently large fixed
size with bounded distortion at every iterate, which is the case when the expansion is
uniform. A key technical tool to overcome this problem is the notion of a hyperbolic
time, which was introduced in [1] and, for a given point x, is exactly the time when x has
a neighbourhood which grows to large scale with bounded distortion (see Definition 4.1
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and Lemma 4.4 below). It is also the key tool in [4] where the existence and finiteness of
SRB measures was first proved under the assumption that there exists a set H ⊆ K with
m(H) > 0 and an ε > 0 such that for all x ∈ H ,

lim sup
n→∞

1
n

n∑
j=1

log ‖Df−1
|Ecu
f j (x)
‖ < −ε. (8)

Notice that (8) is a stronger version of (2) with lim sup replacing lim inf. The key techni-
cal consequence of the difference between the two conditions is contained in Lemma 4.2
which says that under condition (2) almost every point x has an infinite sequence of hy-
perbolic times, while under (8), almost every point has an infinite sequence of hyperbolic
times and this sequence has positive density at infinity, i.e. the statement of Lemma 4.2
holds with lim inf instead of lim sup [1, 4].

The difference between these two statements is the reason why completely different
techniques are required for the proof in the present paper as compared to [4]. Indeed,
the positive density of hyperbolic times means that there is a positive density of times at
which the dynamics is essentially as in the uniformly hyperbolic case. This means that
it is actually possible to adapt, albeit in a nontrivial way, the argument mentioned above
used in the uniformly hyperbolic and mostly contracting cases.

Indeed, recalling the definition of the pushforward of a measure we have f i∗ Lebγ (A)
= Lebγ (f−i(A)) = Lebγ ({x : f i(x) ∈ A}), and so it is clear that each of the measures
f i∗ Lebγ coming into the definition of the measures µn in (7) is supported on the image
f i(γ ) of the starting chosen piece of local unstable manifold. In the case when f is
uniformly expanding along Eu we can basically divide up all of γ into pieces, each of
which grows to large scale with bounded distortion at time i, and thus f i∗(γ ) is supported
on some collection of uniformly large unstable disks. Therefore the same is true for µn,
and this is the crucial property used to show that any limiting measure µ has absolutely
continuous conditional measures.

In the nonuniformly expanding case it is not true that for every i we can divide γ into
pieces each of which grows to large scale with bounded distortion at time i. Instead this
will be true just for some points in γ , precisely those for which i is a hyperbolic time
and the images at time i of other parts of γ may be very small and/or very distorted. In
particular it is no longer the case that f i∗(γ ) is supported on a collection of uniformly
large unstable disks. Nevertheless some points do eventually have hyperbolic times, and
therefore some parts of the measures f i∗(γ ), and hence µn, are supported on some such
collection of uniformly large unstable disks. Thus it is possible to write the measures µn
as

µn = µ
′
n + µ

′′
n

where µ′n is the “good” part of the measure supported on a collection of uniformly large
unstable disks and µ′′n is the “bad” part on which we have little control. Using condition
(8) and the fact that it implies that almost every point has a positive density of hyperbolic
times, it is shown in [4] that the good part of the measure µ′n forms a proportion of the
overall measure µn that is uniformly bounded below in n and that it is therefore possible
to essentially recover a version of the original argument of Sinai, Ruelle, Bowen and show
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that there exists a limit measure µ′ which has absolutely continuous conditional measures
and is therefore an SRB measure.

In this paper, the weaker condition (2) does not imply a positive density of hyperbolic
times, and therefore is not sufficient to imply that the mass of µ′n is uniformly bounded
below. Thus any hope of adapting further the classical argument breaks down in a fun-
damental and essentially unrecoverable way. For this reason we have used a completely
different strategy via the construction of the geometric GMY structure as stated in Theo-
rem C. In certain respects there are of course still some similarities with the classical ap-
proach in the sense that the GMY structure also relies on constructing some region where
large unstable disks accumulate, and indeed the problem of the possibly low asymptotic
frequency of hyperbolic times does not disappear in this approach but is rather “trans-
lated” into the problem of integrability of the return times. It turns out that it is possible
to resolve the problem in this framework with a remarkably simple argument, given in
Section 8 below, which nevertheless relies heavily on the specific and careful set up of
the construction of the induced map.

We close this section by mentioning some other related papers in similar settings:
[3, 8, 23, 27, 29, 46]. We also remark that we have restricted our discussion to dif-
feomorphisms, but the same kind of questions, and the Palis conjecture, also apply to
endomorphisms—see for example [9, 10, 17, 24, 32, 31] for the setting of one-dimension-
al maps, [45] in two dimensions, and [5, 6, 40, 41] for the construction of SRB measures
in certain higher-dimensional settings.

3. Ergodic components

LetX be a compact metric space andµ a Borel probability measure onX. Let f : X→ X

be a measurable map, not necessarily preserving the measure µ. Given x ∈ X, the stable
set of x is

W s(x) = {y ∈ X : dist(f j (x), f j (y))→ 0 as j →∞}.

Notice that “x ∼ y if and only if y ∈ W s(x)” defines an equivalence relation on X. In
particular, we will use the transitivity of this relation. If U ⊂ X, let

W s(U) =
⋃
x∈U

W s(x).

We recall that a set U ⊆ X is invariant if f−1(U) = U . We now introduce a notion
which is key to our argument. We say that Y ⊆ X is µ-unshrinkable if it is an invariant
set with µ(Y ) > 0 and there exists a δ > 0 such that for every invariant set U ⊆ Y we
have

µ(U) > 0 ⇒ µ(W s(U)) > δ.

Proposition 3.1. Suppose Y ⊆ X is µ-unshrinkable. Then there exist a finite number of
closed invariant subsets �1, . . . , �` of X such that for µ-almost every x ∈ Y we have
ω(x) = �j for some 1 ≤ j ≤ `.
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We will split the proof of Proposition 3.1 into two lemmas. To do this we need to introduce
some additional concepts. We say that a set S is s-saturated if W s(S) = S. We say that
S is a u-ergodic component if it is invariant, s-saturated, and any subset S′ ⊂ S which is
also invariant and s-saturated satisfies µ(S) = µ(S′) or µ(S′) = 0.

Lemma 3.2. Suppose Y ⊆ X is µ-unshrinkable. Then Y is contained (µ mod 0) in the
union of a finite number of u-ergodic components.

Proof. Let Y1 = Y and let

F(Y1) := {W
s(U) : U ⊆ Y1, f

−1(U) = U, and µ(W s(U)) > 0}.

Note that F(Y1) is nonempty because W s(Y1) ∈ F(Y1). Moreover, we claim that

[W,W ′ ∈ F(Y1) and µ(W \W ′) > 0] ⇒ W \W ′ ∈ F(Y1). (9)

To see this, let U,U ′ ⊆ Y1 be invariant sets such that W = W s(U) and W ′ = W s(U ′).
We claim that

W \W ′ = W s(U \W s(U ′)). (10)

Notice that U \W s(U ′) ⊆ Y1, and also U \W s(U ′) is invariant because both U,W s(U ′)

are invariant. Therefore (10) implies (9).
To prove (10), we prove first of all that W \ W ′ ⊆ W s(U \ W s(U ′)). Suppose x ∈

W \W ′, i.e. x ∈ W s(U) and x /∈ W s(U ′). This means that there exists u ∈ U such that
x ∈ W s(u) and also that x /∈ W s(u′) for any u′ ∈ U ′, which implies that x /∈ W s(z) for
any z ∈ W s(U ′) by the transitivity of ∼ mentioned above. This proves the ⊆ inclusion.
To prove ⊇, let x ∈ W s(U \ W s(U ′)). Then clearly x ∈ W and x ∈ W s(y) for some
y ∈ U \ W s(U ′). It just remains to show that x /∈ W ′. For contradiction, suppose that
x ∈ W ′ = W s(U ′); then x ∈ W s(u′) for some u′ ∈ U ′, and so, as x ∼ y, we have
y ∈ W s(u′), which contradicts the fact that y ∈ U \W s(U ′). This completes the proof
of (10) and hence of (9).

Now consider the partial order on F(Y1) defined by strict inclusion, meaning that
W � W ′ if W ⊃ W ′ and µ(W \ W ′) > 0. We claim that for this partial order, every
totally ordered subset of F(Y1) is finite, and in particular it has a lower bound. Indeed,
for contradiction suppose that there is an infinite sequence W1 � W2 � · · · in F(Y1), i.e.
W1 ⊃ W2 ⊃ · · · with µ(Wk \Wk+1) > 0 for all k ≥ 1. Then∑

k≥1

µ(Wk \Wk+1) = µ(W1) <∞,

and therefore µ(Wk \ Wk+1) → 0 as k → ∞. Since Wk \ Wk+1 ∈ F(Y1) by (9), this
contradicts our assumptions that Y1 = Y is µ-unshrinkable. This shows that every totally
ordered subset of F(Y1) has a lower bound. Thus by Zorn’s Lemma there exists at least
one minimal element W s(U1) ∈ F(Y1), which must therefore necessarily be a u-ergodic
component.

We now let Y2 := Y1 \W
s(U1), which is again invariant. If µ(Y2) = 0 then Y = Y1

is essentially contained in W s(U1), which is a u-ergodic component, and thus we are
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done. On the other hand, if µ(Y2) > 0 we can repeat the entire argument above to obtain
a set U2 ⊆ Y2 and a u-ergodic component W s(U2). Inductively, we construct a col-
lection of disjoint u-ergodic components W s(U1), . . . ,W

s(Ur) and continue as long as
µ(Y \W s(U1) ∪ · · · ∪W

s(Ur)) > 0. But, as µ(W s(Uj )) ≥ δ for all 1 ≤ j ≤ r by the
assumption that Y is µ-unshrinkable, this process will stop and we will get the conclu-
sion. ut

Lemma 3.3. Suppose S ⊆ X is a u-ergodic component. Then there exists a closed in-
variant set � ⊆ X such that ω(x) = � for µ-almost every x ∈ S.

Proof. Given any open set B ⊂ X, let

Bω := {x ∈ S : ω(x) ∩ B 6= ∅}.

Then Bω is invariant and s-saturated, and therefore, by the assumption that S is u-ergodic,
µ(Bω) = 0 or µ(Bω) = µ(S). Now, let Z1 = X and C1 be any finite covering of X
by open balls of radius 1. By the previous considerations, for every B ∈ C1 we have
µ(Bω) = 0 or µ(Bω) = µ(S), and therefore, since we only have a finite number of
elements in C1, there exists at least one Bω ∈ C1 such that µ(Bω) = µ(S). Let

C′1 = {B ∈ C1 : µ(Bω) = 0} and Z2 = Z1 \
⋃
B∈C′1

B.

Then Z2 is a nonempty compact set and ω(x) ⊆ Z2 for µ-almost every x ∈ S. We can
therefore repeat the procedure with a finite cover C2 of Z2 by open balls of radius 1/2,
and, by induction, construct sequences C1, C2, . . . , C′1, C

′

2, . . . and Z1, Z2, . . . such that
Z1 ⊃ Z2 ⊃ · · · is a sequence of nonempty compact sets and ω(x) ⊂ Zj for almost every
x ∈ S. In particular,

ω(x) ⊆ � :=
⋂
n≥1

Zn.

It just remains to show that � ⊆ ω(x) for µ-almost every x ∈ S. Indeed, given y ∈ �
we have y ∈ Zn for every n ≥ 1, and therefore there is some B(n) ∈ Cn \ C′n such that
y ∈ B(n). Since diam(B(n))→ 0 as n→∞, this implies that

⋂
n B

(n)
= {y}. Moreover,

as B(n) ∈ Cn \ C′n, we have µ(B(n)ω ) = µ(S), and therefore ω(x)∩B(n) 6= ∅ for µ-almost
all x ∈ S. This implies that y ∈ ω(x) for µ-almost all x ∈ S, and as ω(x) is closed and
invariant, the statement follows. ut

4. Transitive attractors

Here we prove the topological part of Theorem A. Throughout this section we assume
that the assumptions of the theorem hold. Let f : M → M be a C1+ diffeomorphism,
K ⊂ M a forward invariant compact set on which f is partially hyperbolic, and H ⊆ K
a set with Leb(H) > 0 on which f is weakly nonuniformly expanding along Ecu. The
main result of this section is the following proposition.
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Proposition 4.1. There exist closed invariant sets �1, . . . , �` ⊆ K such that for
Lebesgue almost every x ∈ H we have ω(x) = �j for some 1 ≤ j ≤ `. Moreover,
each �j is transitive and contains a cu-disk 1j of radius δ1/4 on which f is weakly
nonuniformly expanding along Ecu for Leb1j -almost every point in 1j .

We first prove some preliminary lemmas. We remark that K is not assumed to contain
any open sets. We therefore fix continuous extensions of the two subbundles Es and Ecu

to some compact neighbourhood V of K , which we still denote Es and Ecu. We do not
require these extensions to be Df -invariant. Given 0 < a < 1, we define the centre-
unstable cone field Ccua = (C

cu
a (x))x∈V of width a by

Ccua (x) = {v1 + v2 ∈ E
s
x ⊕ E

cu
x : ‖v1‖ ≤ a‖v2‖}. (11)

We define the stable cone field Csa = (Csa(x))x∈V of width a in a similar way, just re-
versing the roles of the subbundles in (11). We fix a > 0 and V small enough so that the
domination condition in (1) remains valid in the two cone fields:

‖Df (x)vs‖ · ‖Df−1(f (x))vcu‖ < λ‖vs‖ · ‖vcu‖

for every vs ∈ Csa(x), v
cu
∈ Ccua (f (x)) and any point x ∈ V ∩ f−1(V ). Note that the

centre-unstable cone field is forward invariant: Df (x)Ccua (x) ⊂ Ccua (f (x)) whenever
x, f (x) ∈ V . Actually, the domination property together with the invariance of Ecu|K
implies that Df (x)Ccua (x) ⊂ C

cu
λa(f (x)) ⊂ C

cu
a (f (x)) for every x ∈ K , and this extends

to any x ∈ V ∩ f−1(V ) just by continuity.

Definition 4.1. Given 0 < σ < 1, we say that n is a σ -hyperbolic time for x ∈ K if

n∏
j=n−k+1

‖Df−1
|Ecu
f j (x)
‖ ≤ σ k for all 1 ≤ k ≤ n.

The next result gives the existence of (infinitely many) σ -hyperbolic times for points sat-
isfying the weak nonuniform expansion condition (2). For a proof see [7, Corollary 5.3].

Lemma 4.2. There are σ, θ > 0 such that if (2) holds for x ∈ K , then

lim sup
n→∞

1
n

#{1 ≤ j ≤ n : j is a σ -hyperbolic time for x} ≥ θ.

Remark 4.3. We remark that the lim sup in the conclusions of Lemma 4.2 is directly
related to the lim inf in condition (2). Replacing that lim inf with a lim sup, as in [4],
would allow us to replace the lim sup in the statement of Lemma 4.2 with a lim inf and
thus obtain positive frequency at infinity of hyperbolic times, which plays a crucial role
in the argument used in [4, Corollary 3.2] to prove the existence of SRB measures. The
fact that we do not have such a positive frequence is exactly the reason why we cannot
use those arguments here.
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Hyperbolic times are defined pointwise but, as we shall see below, some important proper-
ties can be derived for a neighbourhood of the reference point at a hyperbolic time. From
now on we fix σ and θ as in Lemma 4.2. Now observe that, by continuity of the derivative,
we can choose a > 0 and δ1 > 0 sufficiently small so that the δ1-neighbourhood of K is
contained in V and

‖Df−1(f (y))v‖ ≤ σ−1/4
‖Df−1

|Ecu
f (x)
‖ ‖v‖ (12)

for all x ∈ K , y ∈ V with dist(x, y) ≤ δ1, and v ∈ Ccua (y). From now on we fix these
values of a, δ1 so that (12) holds.

We say that an embedded C1 submanifoldD ⊂ V is a cu-disk if the tangent subspace
to D at each point x ∈ D is contained in the corresponding cone Ccua (x). Then f (D) is
also a cu-disk, if it is contained in V , by the domination property. Given any diskD ⊂ M ,
we use distD(x, y) to denote the distance between x, y ∈ D, measured along D.

Lemma 4.4. Let D be a cu-disk. There exists C1 > 1 such that if n is a σ -hyperbolic
time for x ∈ K ∩ D, then there exists a neighbourhood V +n (x) of x in D such that f n

maps V +n (x) diffeomorphically onto a cu-disk Bu2δ1
(f n(x)) of radius 2δ1 around f n(x).

Moreover, for every 1 ≤ k ≤ n and y, z ∈ V +n (x) we have

(1) distf n−k(V+n (x))(f
n−k(y), f n−k(z)) ≤ σ 3k/4 distf n(V+n (x))(f

n(y), f n(z));

(2) log
|detDf n|TyD|
|detDf n|TzD|

≤ C1 distf n(D)(f n(y), f n(z));

(3) for any Borel sets X, Y ⊂ V +n (x),

Lebf n(V+n (x))(f
n(X))

Lebf n(V+n (x))(f
n(Y ))

≤ C1
LebV+n (x)(X)

LebV+n (x)(Y )
.

The first two items are proved in [4, Lemma 2.7 & Proposition 2.8], and the third is a
standard consequence of the second. Notice that the factor σ 3/4 in the first item differs
from the factor σ 1/2 in [4, Lemma 2.7] simply because we have chosen δ1 > 0 sufficiently
small so that (12) holds, in contrast to [7, (6)] where δ1 > 0 is chosen so that a similar
conclusion holds with σ 1/2 in place of σ 1/4.

Remark 4.5. Notice that if we replace the assumption that n is a σ -hyperbolic time in
Lemma 4.4 with the assumption that n is a σα-hyperbolic time for some α > 1/4 then
the conclusions of the lemma continue to hold with σα−1/4 instead of σ 3/4 in item (1),
where the term 1/4 comes from (12).

Now we define Vn(x) ⊆ V +n (x), where f n(Vn(x)) = Buδ1
(f n(x)) is the cu-disk of ra-

dius δ1 around f n(x) contained in Bu2δ1
(f n(x)) as in Lemma 4.4. The sets Vn(x) are

called hyperbolic pre-disks and their images f n(Vn(x)) hyperbolic disks. The following
result is proved in [7, Proposition 5.5].
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Lemma 4.6. Let D be a cu-disk and U ⊆ H with LebD(U) > 0. Then there exists a
sequence of sets · · · ⊆ W2 ⊆ W1 ⊆ D and a sequence of integers n1 < n2 < · · · such
that

(1) Wk is contained in some hyperbolic pre-disk with hyperbolic time nk;
(2) Dk := f nk (Wk) is a cu-disk of radius δ1/4;

(3) lim
k→∞

LebDk (f
nk (U ∩D))

LebDk (Dk)
= 1.

Now we are in a position to prove Proposition 4.1. We define

H̃ :=
⋃
n∈Z

f n(H).

Then H̃ is clearly invariant and Leb(H̃ ) > 0.

Lemma 4.7. H̃ is Leb-unshrinkable.

Proof. It is sufficient to show that there exists δ > 0 such that for every f -invariant set
U ⊆ H̃ with Leb(U) > 0 we have Leb(W s(U)) > δ. We remark that in the proof of this
assertion, to be given in the following paragraphs, we will only use the assumption that
U is forward invariant. This allows us to assume without loss of generality that U ⊆ K .
Indeed, if U is invariant of positive Lebesgue measure, then it must intersectK in a set of
positive Lebesgue measure, and asK is forward invariant, alsoU∩K is forward invariant.
Clearly, if Leb(W s(U ∩ K)) > δ then also Leb(W s(U)) > δ. In particular, as U ⊆ K
it admits a partially hyperbolic structure, and as also U ⊆ H̃ , it is weakly nonuniformly
expanding along Ecu.

Now we show that there exists a cu-disk D ⊆ V such that LebD(U) > 0. Recall
that V is the neighbourhood of K introduced at the beginning of this section. To see this,
consider a Lebesgue density point p of U . Notice that TpM has a partially hyperbolic
splitting Esp ⊕ E

cu
p and we can consider a neighbourhood of the origin foliated by disks

parallel to the Ecu subspace whose images under the exponential map expp are cu-disks
in the manifold. Since expp is a local diffeomorphism, the preimage of U under the expo-
nential map has positive volume in TpM and full density at the origin. By Fubini, at least
one of the disks above must intersect this set in positive relative volume, and the same
must hold for its image under the exponential map.

Now let D ⊆ V be a cu-disk satisfying LebD(U) > 0, as in the previous paragraph.
Consider the sequences · · · ⊆ W2 ⊆ W1 ⊆ D and n1 < n2 < · · · given by Lemma 4.6.
By Lemma 4.6(3) the relative measure of f nk (U ∩ D) in Dk converges to 1. Since U is
forward invariant, we conclude that the relative measure of U in Dk converges to 1, and
therefore LebDk (U) → δ1/4 as k → ∞. Since U ⊆ K and all points of U have local
stable manifolds of uniform size, and since the foliation defined by these local stable
manifolds is absolutely continuous, it follows that H̃ is Leb-unshrinkable. ut

The previous result, together with Proposition 3.1, implies that there exist closed invariant
sets�1, . . . , �` such that for Lebesgue almost every x ∈ H we have ω(x) = �j for some
1 ≤ j ≤ `. This gives the first assertion of Proposition 4.1. We divide the proof of the
remaining part of Proposition 4.1 into the next two lemmas.
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Lemma 4.8. Each � = �j contains a cu-disk 1 of radius δ1/4 on which f is weakly
nonuniformly expanding along Ecu for Leb1-almost every point in 1.

Proof. Let

A(n) = {x ∈ H : dist(f k(x),�) ≤ 1/n for every k ≥ 0}.

Since the set of points x ∈ H with ω(x) = � has positive Lebesgue measure, we clearly
have Leb(A(n)) > 0 for every n ≥ 1. Then, by the same arguments used in the proof
of Lemma 4.7, with A(n) playing the role of U , there exists a cu-disk D(n) ⊆ V such
that LebD(n)(A

(n)) > 0, and corresponding sequences · · · ⊆ W
(n)
2 ⊆ W

(n)
1 ⊆ D(n),

n1 < n2 < · · · (also depending on n, but we omit the superscript here for obvious
reasons) and cu-disks D(n)k = f

nk (W
(n)
k ) such that

Leb
D
(n)
k

(A(n))→ δ1/4 as k→∞. (13)

Let p(n)k denote the centre of the disk D(n)k . Up to taking a subsequence, we may assume
that the sequence {p(n)k } converges to a point p(n) ∈ K , and up to taking a further subse-
quence, and using Ascoli–Arzelà and the fact that the disks D(n)k have tangent directions
contained in the cu-cones, we may assume that the sequence {D(n)k } converges uniformly,
as k → ∞, to some cu-disk 1(n) of radius δ1/4. Notice that each 1(n) is necessarily
contained in a neighbourhood of � of radius 1/n.

We claim tht f is weakly nonuniformly expanding alongEcu for Leb1(n) -almost every
point in1(n). To see this, recall first of all that the property of weak nonuniform expansion
is an asymptotic property, and therefore if it is satisfied by a point x then it is satisfied
by every point y ∈W s(x). Moreover, every point of 1(n) has a local stable manifold of
uniform size, and the foliation by those local stable manifolds is absolutely continuous.
Since the sequence {D(n)k } converges uniformly to 1(n), for large k, the disks D(n)k will
intersect the stable foliation through points of1(n), and therefore, by (13) and the fact that
A(n) ⊆ H , it follows that f is weakly nonuniformly expanding along Ecu for Leb1(n) -
almost every point in 1(n).

Now, arguing as above, we can consider a subsequence of 1(n)’s converging uni-
formly to some cu-disk 1 of radius δ1/4 such that f is weakly nonuniformly expanding
along Ecu for Leb1-almost every point in 1. As each 1(n) is contained in a neighbour-
hood of � of radius 1/n and � is closed, it follows that 1 ⊆ �. ut

Lemma 4.9. f |� is transitive.

Proof. Recall that by construction there exists some point (in fact a positive Lebesgue
measure set of points) in H whose ω-limit set coincides with �. The orbit of any such
point must eventually hit the stable manifold of some point in 1 ⊆ �. As points in the
same stable manifold have the same ω-limit sets, we conclude that there exists a point
of � whose orbit is dense in �. ut
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5. Construction on a reference leaf

In this section we describe an algorithm for the construction of a partition of some sub-
disk of 1 which is the basis of the construction of the GMY structure. We first fix some
1 ≤ j ≤ ` and for the rest of the paper we let � = �j and 1 = 1j be as in Propo-
sition 4.1. We also fix a constant δs > 0 so that the local stable manifolds W s

δs
(x) are

defined for all points x ∈ K . For any subdisk 1′ ⊂ 1 we define

C(1′) =
⋃
x∈1′

W s
δs
(x).

Let π denote the projection from C(1′) onto 1′ along local stable leaves. We say that a
centre-unstable disk γ u ⊂ M u-crosses C(1′) if π(γ ) = 1′ for some connected compo-
nent γ of γ u ∩ C(1′).

Remark 5.1. We will often be considering cu-disks which u-cross C(1′). By continuity
of the stable foliation, if we choose δs sufficiently small, then the diameter and Lebesgue
measure of such disks intersected with C(1′) are very close to those of 1′, respectively.
To simplify the notation and the calculations below we will ignore this difference as it has
no significant effect on the estimates.

Lemma 5.2. Given N ∈ N, there exists δ2 = δ2(N, δ1) > 0 such that if γ u ⊂ � is a
cu-disk of radius δ1/2 centred at z, then fm(γ u) contains a cu-disk of radius δ2 centred
at fm(z), for each 1 ≤ m ≤ N .

Proof. We first prove the result for j = 1. Let z be the centre of γ u. Let f (y) be a point
in ∂f (γ u)minimizing the distance from f (z) to ∂f (γ u), and let η1 be a curve of minimal
length in f (γ u) connecting f (z) to f (y). Letting η0 = f

−1(η1) and η̇1(x) be the tangent
vector to the curve η1 at the point x, we have

‖Df−1(w)η̇1(x)‖ ≤ C‖η̇1(x)‖, where C = max
x∈M
‖Df−1(x)‖ ≥ 1.

Hence,
length(η0) ≤ C length(η1).

Since η0 is a curve connecting z to y ∈ ∂γ u, we have length(η0) ≥ δ1/2, and so

length(η1) ≥ C
−1 length(η0) ≥ C

−1δ1/2.

Thus f (γ u) contains the cu-disk γ u1 of radius C−1δ1/2 around f (z).
If we now make γ u1 play the role of γ u and f 2(z) play the role of f (z), the argu-

ment above proves that f (γ u1 ) contains a cu-disk of radius C−2δ1/22 centred at f 2(z).
Inductively, we prove that fm(γ u) contains a cu-disk of radius C−mδ1/2m ≥ C−Nδ1/2N

around fm(z), for each 1 ≤ m ≤ N . We take δ2 = C
−Nδ1/2N . ut

Lemma 5.3. There are p ∈ 1 and N0 ≥ 1 such that for all δ0 > 0 sufficiently small
and each hyperbolic pre-disk Vn(x) ⊆ 1 there is 0 ≤ m ≤ N0 such that f n+m(Vn(x))
intersects W s

δs/2(p) and u-crosses C(Buδ0
(p)), where Buδ0

(p) is the ball in 1 of radius δ0
centred at p.



2930 José F. Alves et al.

Proof. First of all we observe that, as the subbundles in the dominated splitting have
angles uniformly bounded away from zero, given any ρ > 0 there is α = α(ρ) > 0, with
α → 0 as ρ → 0, for which the following holds: if x, y ∈ � satisfy dist(x, y) < ρ and
distγ u(y, ∂γ u) > δ1 for some cu-disk γ u ⊂ �, then W s

δs
(x) intersects γ u in a point z

with
distW s

δs
(x)(z, x) < α and distγ u(z, y) < δ1/2.

Take ρ > 0 small enough so that 4α < δs . Since f |� is transitive, we may choose q ∈ �
and N0 ∈ N such that both:

• W s
δs/4(q) intersects 1 in a point p with dist1(p, ∂1) > 0; and

• {f−N0(q), . . . , f−1(q), q} is ρ-dense in �.

Given a hyperbolic pre-disk Vn(x) ⊆ 1 we know by definition that f n(Vn(x)) is a cu-
disk of radius δ1 centred at y = f n(x) inside �. Consider 0 ≤ m ≤ N0 such that
dist(f−m(q), y) < ρ. Then, by the choice of ρ and α, the set W s

δs
(f−j (q)) intersects

f n(Vn(x)) in a point z with distW s
δs
(f−j (q))(z, f

−j (q)) < α < δs/4 and distf n(Vn(x))(z, y)
< δ1/2. In particular, f n(Vn(x)) contains a cu-disk γ u of radius δ1/2 centred at z. It
follows from Lemma 5.2 that fm(γ u) contains a cu-disk of radius δ2 = δ2(N0, δ1) > 0
centred at fm(z) ∈ W s(p). Moreover, as distances are not expanded under iterations of
points in the same stable manifold, we have

distW s (p)(f
m(z), p) ≤ distW s (p)(f

m(z), q)+ distW s (p)(q, p) ≤ δs/4+ δs/4,

which means that f n+m(Vn(x)) intersects W s
δs/2(p). Also, choosing δ0 > 0 sufficiently

small (depending only on δ2) we see that f n+m(Vn(x)) u-crosses C(Buδ0
(p)). ut

We now fix p ∈ 1,N0 ≥ 1 and δ0 > 0 sufficiently small so that the conclusions of
Lemma 5.3 hold. Considering the constant

K0 = max
x∈M
{‖Df−1(x)‖, ‖Df (x)‖}, (14)

we choose in particular δ0 > 0 so small that

2δ0K
N0
0 σ−N0 < δ1K

−N0
0 . (15)

Now we define
10 = B

u
δ0
(p) and C0 = C(10). (16)

We also choose δ0 > 0 so small that any cu-disk intersecting W s
3δs/4 cannot reach the

top or bottom parts of C0, i.e. the boundary points of the local stable manifolds W s
δs
(x)

through points x ∈ 10. For every n ≥ 1 we define

Hn = {x ∈ 1 ∩H : n is a hyperbolic time for x}.

It follows from Lemma 4.4 that for each x ∈ Hn ∩10 there exists a hyperbolic pre-disk
Vn(x) ⊂ 1. Then by Lemma 5.3 there are 0 ≤ m ≤ N0 and a centre-unstable disk
ωxn ⊆ 1 such that

π(f n+m(ωxn)) = 10. (17)
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We remark that condition (17) may in principle hold for several values of m. For definite-
ness, we shall always assume that m takes the smallest possible value. Notice that ωxn is
associated to x by construction, but does not necessarily contain x.

Now we describe an inductive partitioning algorithm which gives rise to a (Leb mod 0)
partition P of the cu-disk 10.

Base step. We observe that since ‖Df ‖ is uniformly bounded, for any n ≥ 1, all hyper-
bolic pre-disks Vn(x) contain a ball of some radius τn > 0 which depends only on n.
In particular, by compactness, the set Hn is covered by a finite number of hyperbolic
pre-disks Vn(x).

We fix some large n0 ∈ N and ignore any dynamics occurring up to time n0. Then
there exist `n0 and points z1, . . . , z`n0

∈ Hn0 such that

Hn0 ∩10 ⊂ Sn0 := Vn0(z1) ∪ · · · ∪ Vn0(z`n0
).

We now choose a maximal subset of points x1, . . . , xjn0
∈ {z1, . . . , z`n0

} such that the
corresponding sets ωxin0 of type (17) are pairwise disjoint and contained in 10, and let

Pn0 = {ω
x1
n0
, . . . , ω

xjn0
n0 }.

These are the elements of the partition P constructed in the n0-th step of the algorithm.
Let

1n0 = 1 \
⋃

ω∈Pn0

ω.

For each 0 ≤ i ≤ jn0 , we define the inducing time

R|
ω
xi
n0
= n0 +mi

where 0 ≤ mi ≤ N is the integer associated to ωxin0 as in (17).

Inductive step. We now assume inductively that the construction has been carried out up
to time n − 1 for some n > n0. More precisely, for each n0 ≤ k ≤ n − 1 we have a
collection of pairwise disjoint sets Pk = {ωx1

k , . . . , ω
xjk
k } which “return” at time k + m

with 0 ≤ m ≤ N , and such that for any k 6= k′, any two sets ω ∈ Pk and ω′ ∈ Pk′
are disjoint. We also have a set 1k which is the set of points which do not yet have an
associated return time. To construct all relevant objects at time n, we first observe, as
before, that there are z1, . . . , z`n ∈ Hn such that

Hn ∩1n−1 ⊂ Sn := Vn(z1) ∪ · · · ∪ Vn(z`n),

and we choose a maximal subset of points x1, . . . , xjn ∈ {z1, . . . , z`n} such that the cor-
responding sets of type (17) are pairwise disjoint and contained in 1n−1. Then we let

Pn = {ωx1
n , . . . , ω

xjn
n }.
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These are the elements of the partition P constructed in the n-th step of the algorithm. We
also define the set of points of 10 which do not belong to partition elements constructed
up to this point:

1n = 10 \
⋃

ω∈Pn0∪···∪Pn
ω.

For each 0 ≤ i ≤ jn we set
R|
ω
xi
n
= n+mi

where 0 ≤ mi ≤ N is the integer associated to ωxin0 as in (17). Note that for each n ≥ n0
one has

Hn ∩10 ⊂ Sn ∪
⋃

ω∈Pn0∪···∪Pn
ω. (18)

More specifically, we have Hn ∩1n−1 ⊂ Sn, i.e. all points in 1n−1 which have a hyper-
bolic time at time n are “covered” by Sn, while the points which have a hyperbolic time
at time n but which are already contained in previously constructed partition elements,
are trivially “covered” by the union of these partition elements. The inclusion (18) will
be crucial in the proof of Proposition 6.1 and in Section 8 to prove the integrability of the
return times. This inductive construction allows us to define the family

P =
⋃
n≥n0

Pn

of pairwise disjoint subsets of 10. In the next section we prove

Proposition 5.4. P forms a Leb mod 0 partition of 10.

The statement in Proposition 5.4 seems intuitively obvious. After all, the elements of P
are automatically disjoint by construction and almost every point x has a basis of arbitrar-
ily small neighbourhoods which in time grow to large scale and return to the base within
a finite number of iterates, and each of these returns is a candidate for the creation of an
element of P containing x. The potential problem is that each time such an opportunity
arises, the region ωx which returns either may not contain x or cannot be chosen because
it overlaps a previously constructed element of P . Thus it is theoretically conceivable a
priori that P may not have full measure in 10.

6. Partition on the reference leaf

In this section we prove Proposition 5.4. The key step is the following result.

Proposition 6.1.
∑
∞

n=n0
Leb1(Sn) <∞.

Proof of Proposition 5.4 assuming Proposition 6.1. Recall that10⊃1n0⊃1n0+1⊃· · · ,

where 1n is the set of points which do not belong to any element of the collection P
constructed up to time n. It is enough to show that

Leb1
(⋂
n

1n

)
= 0. (19)
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To prove this, notice that by Proposition 6.1, the sum of the Leb1-measures of the sets
Sn is finite. It follows from the Borel–Cantelli Lemma that Leb1-almost every x ∈ 10
belongs only to finitely many Sn’s, and therefore one can find n such that x /∈ Sj for
j ≥ n. Since Leb1-almost every x ∈ 10 has infinitely many hyperbolic times, it follows
from (18) that x ∈ ω for some ω ∈ Pn0 ∪ · · · ∪ Pn, and therefore (19) holds. ut

To prove Proposition 6.1 it will be useful to decompose Sn, which is simply the union of
all hyperbolic pre-balls Vn(zi) associated to points z1, . . . , z`n ∈ Hn ∩1n−1, into several
pieces as follows. Recall that we have points x1, . . . , xjn ∈ {z1, . . . , z`n} which give rise
to elements of Pn. We collect the corresponding hyperbolic pre-balls in the set

Vn =

jn⋃
i=1

V (xi).

The remaining pre-balls are associated to the points

Zn = {z1, . . . , z`n} \ {x1, . . . , xjn}

which do not give rise to elements of Pn because the corresponding domains ωx intersect
some previously (or currently) constructed partition element, i.e. some ω ∈ Pn0 ∪ · · · ∪

Pn ∪ {1c0}. We need to further distinguish them according to precisely which of these
regions they intersect. Thus, for any ω ∈ Pn0 ∪ · · · ∪ Pn ∪ {1c0} define

Zωn = {z ∈ Zn : ω
z
n ∩ ω 6= ∅}

and its n-satellite
Sωn =

⋃
z∈Zωn

Vn(z).

Clearly,
Sn =

⋃
ω∈Pn0∪···∪Pn∪{1

c
0}

Sωn ∪ Vn.

We can now prove two technical lemmas which will allow us to prove Proposition 6.1.

Lemma 6.2. There exists C2 > 0 such that for any n ≥ k ≥ n0 and any ω ∈ Pk we have

Leb1(Sωn ) ≤ C2 Leb1
( ⋃
z∈Zωn

ωzn

)
.

Proof. We note first of all that, from the construction above, two distinct points z1, z2
with the same hyperbolic time n can give rise to the same associated disks ωz1

n = ω
z2
n . We

prove here that the measure of the union of the hyperbolic pre-disks Vn(z) associated to
points z ∈ Zωn which give rise to the same disk ωzn is comparable to the measure of ωzn.
More precisely, we will show that for every n ≥ 1 and z1, . . . , zN ∈ Hn with ωzin = ω

z1
n

for 1 ≤ i ≤ N we have

Leb1
( N⋃
i=1

Vn(zi)
)
≤ C2 Leb1(ωz1

n ). (20)
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Notice that (20) implies the statement in the lemma. Indeed, consider a subdivision of the
set Sωn of all hyperbolic pre-disks associated to the points of Zωn into a finite number of
classes such that all hyperbolic pre-disks in each class have the same associated set ωzn.
Then apply (20) to each. This gives the statement in the lemma.

Thus we just need to prove (20). For simplicity of notation, for 1 ≤ i ≤ N , we write
Ui = Vn(zi) and Bi = f n(Vi). We define

X1 = U1 and Xi = Ui \

i−1⋃
j=1

Uj for 2 ≤ i ≤ N.

Similarly

Y1 = B1 and Yi = Bi \

i−1⋃
j=1

Bj for 2 ≤ i ≤ N.

Observe that the Xi’s are pairwise disjoint sets whose union coincides with the union of
the Ui’s, and similarly for the Yi’s and Bi’s. Recalling that ωzin = ω

z1
n for 1 ≤ i ≤ N , by

Lemma 4.4(3) we have

Leb1(Xi)
Leb1(ω

z1
n )
≤ C1

Lebf n(1)(Yi)
Lebf n(1)(f n(ω

z1
n ))

.

Hence

Leb1(U1 ∪ · · · ∪ UN )

Leb1(ω
z1
n )

=

∑N
i=1 Leb1(Xi)
Leb1(ω

z1
n )

≤ C1

∑N
i=1 Lebf n(1)(Yi)

Lebf n(1)(f n(ω
z1
n ))
= C1

Lebf n(1)(B1 ∪ · · · ∪ BN )

Lebf n(1)(f n(ω
z1
n ))

.

We just need to show that the right hand side is bounded above, and for this it is sufficient
to show that the denominator Lebf n(1)(f n(ω

z1
n )) is bounded below. This is clearly true,

because by definition of ωz1
n there exists m ≤ N0 such that f n+m(ωz1

n ) is a cu-disk of
radius δ0. ut

Remark 6.3. The argument used to prove (20) gives in particular that for each 1 ≤ i ≤ jn
we have Leb1(V (xi)) ≤ C2 Leb1(ω

xi
n ).

The next lemma shows that, for each n and m fixed, the Lebesgue measure on the disk H
of the union of candidates ωzn+m which intersect an element of a partition is proportional
to the Lebesgue measure of this element. The proportionality constant can actually be
made uniformly summable in n.

Lemma 6.4. There exists C3 > 0 such that for all n ≥ k ≥ n0 and ω ∈ Pk we have

Leb1
( ⋃
z∈Zωn

ωzn

)
≤ C3σ

n−k Leb1(ω).
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Proof. By construction, given ω ∈ Pk , there is some hyperbolic pre-disk Vk(y) such that

ω ⊂ Vk(y) ⊂ V
+

k (y)

and the images f k(Vk(y)) and f k(V +k (y)) are respectively cu-disks Buδ1
⊂ Bu2δ1

cen-
tred at f k(y). Moreover, there exists some integer 0 ≤ ` ≤ N0 such that f k+`(Vk(y))
u-crosses C0 and f k+`(ω) is the part of f k+`(Vk(y)) which projects onto 10. More-
over, f k(V +k (y)) is a δ1-neighbourhood of f k(Vk(y)), and so f k+`(V +k (y)) contains a
δ1K

−N0
0 -neighbourhood of f k+`(Vk(y)), where K0 is defined in (14). In particular,

f k+`(V +k (y)) contains a δ1K
−N0
0 -neighbourhood of ∂f k+`(ω). (21)

For any n ≥ k we let

A0
n,k = {z ∈ f

k+`(V +k (y)) : distf k+`(V+k (y))(z, ∂f
k+`(ω)) ≤ 2δ0K

N0
0 σ n−(k+N0)},

A1
n,k = {z ∈ f

k+`(ω) : distf k+`(V+k (y))(z, ∂f
k+`(ω)) ≤ 2δ1K

N0
0 σ n−(k+N0)}.

Observe that A0
n,k and A1

n,k are both annuli surrounding the boundary of f k+`(ω) in
f k+`(V +k (y)), with A0

n,k containing this boundary in its interior, whereas A1
n,k shares this

boundary with f k+`(ω) and is fully contained in f k+`(ω).
A straightforward calculation shows that there is a constant C > 0, independent of k

and n, such that
Lebf k+`(V+k (y))(A

i
n,k) ≤ Cσ

n−k, i = 0, 1. (22)

Now we see that for z ∈ Zωn we have f k+`(ωzn) contained in A0
n,k or A1

n,k , depending on
the following two possible cases:

(1) ωzn ⊆ ω. By Lemma 4.4(1) (see also Remark 5.1), for each ωzn with z ∈ Zωn we have

diamf k+`(ωzn)(f
k+`(ωzn)) ≤ diamf k+`(ωzn)(f

k+`(Vn(z))) ≤ 2δ1K
N0
0 σ n−(k+N0). (23)

Noting that as z /∈ ω and ωzn ⊆ ω, Vn(z) necessarily intersects the boundary of ω,
and so f k+`(Vn(z)) intersects ∂f k+`(ω). It follows from (23) that

f k+`(ωzn) ⊆ A
1
n,k. (24)

(2) ωzn * ω. In this case, ωzn necessarily intersects the boundary of ω because z ∈ Zωn .
Once more by Lemma 4.4(1) (see also Remark 5.1), we have

diamf k+`(ωzn)(f
k+`(ωzn)) ≤ 2δ0K

N0
0 σ n−(k+N0), (25)

where we have used the fact that ωzn is contained in some hyperbolic pre-disk Vn(z)
and the term K

N0
0 comes from the fact that ωzn may require up to N0 iterates to go

from f n(Vn(z)) to the cylinder C0, u-crossing it. Since ωzn intersects the boundary
of ω, f k+`(ωzn) intersects the boundary of f k+`(ω). Recalling that σ < 1 and (15),
it follows from (21) and (25) that

f k+`(ωzn) ⊆ A
0
n,k. (26)
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Therefore

LebV+k (y)(
⋃
z∈Zωn

ωzn)

LebV+k (y)(ω)
≤ C̃

Lebf k+`(V+k (y))(f
k+`(

⋃
z∈Zωn

ωzn))

Lebf k+`(V+k (y))(f
k+`(ω))

≤ C̃
Lebf k+`(V+k (y))(A

0
n,k)+ Lebf k+`(V+k (y))(A

1
n,k)

Lebf k+`(V+k (y))(f
k+`(ω))

,

where C̃ > 0 is a uniform constant that incorporates the distortion at the hyperbolic time k
given by Lemma 4.4 and the distortion of f ` with ` ≤ N0. If we now recall that f k+`(ω)
u-crosses C0, the result follows by (22), (24) and (26). ut

Proof of Proposition 6.1. Observe that

∞∑
n=n0

Leb1(Sn) ≤
∞∑
n=n0

Leb1(S
1c0
n )+

∞∑
k=n0

∑
ω∈Pk

∞∑
n=k

Leb1(Sωn )+
∞∑
n=n0

Leb1(Vn). (27)

We start by estimating the sum with respect to the satellites of 1c0. Notice that from
Lemma 4.4 it follows that all hyperbolic pre-disks Vn(x) have diameter ≤ 2δ1σ

n. There-
fore

S
1c0
n ⊂ {x ∈ 10 : dist(x, ∂10) < 2δ1σ

n
},

and so we can find ζ > 0 such that

Leb1(S
1c0
n ) ≤ ζσ n.

This obviously implies that the part of the sum related to 1c0 in (27) is finite.
Consider now n ≥ k ≥ n0. By Lemmas 6.2 and 6.4, for any ω ∈ Pk we have

Leb1(Sωn ) ≤ C2C3σ
n−k Leb1(ω).

It follows that

∞∑
k=n0

∑
ω∈Pk

∞∑
n=k

Leb1(Sωn ) ≤ C2C3

∞∑
k=n0

∑
ω∈Pk

∞∑
j=0

σ j Leb1(ω)

= C2C3
1

1− σ

∞∑
k=n0

∑
ω∈Pk

Leb1(ω) ≤ C2C3
1

1− σ
Leb1(1).

Finally, by Remark 6.3 we have

∞∑
n=n0

Leb1(Vn) ≤ C2

∞∑
n=n0

∑
ω∈Pn

Leb1(ω) ≤ C2 Leb1(1),

and this gives the conclusion. ut
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7. The GMY structure

We are now ready to define the GMY structure on � as at the beginning of Section 5.
Consider the centre-unstable disk 10 ⊂ 1 as in (16) and the Leb1 mod 0 partition P
of 10 defined in Section 5. We define

0s = {W s
δs
(x) : x ∈ 10}.

Moreover, we define 0u as the set of all local unstable manifolds contained in C0 which
u-cross C0. Clearly, 0u is nonempty because 10 ∈ 0

u. We need to see that the union
of the leaves in 0u is compact. This follows ideas that we have already used to prove
Proposition 4.1. By the domination property and the Ascoli–Arzelà Theorem, any limit
leaf γ∞ of leaves in 0u is still a cu-disk u-crossing C0. Thus, by definition of 0u, we have
γ∞ ∈ 0

u. We thus define our set 3 with hyperbolic product structure as the intersection
of these families of stable and unstable leaves. The cylinders {C(ω)}ω∈P then clearly
form a countable collection of s-subsets of 3 that play the role of the sets 31,32, . . .

in (P1) with the corresponding return times R(ω). It just remains to check that conditions
(P1)–(P5) hold.

7.1. Markov property and contraction on stable leaves

Condition (P1) is essentially an immediate consequence of the construction. We just need
to check that f R(ω)(C(ω)) is a u-subset for any ω ∈ P . Indeed, choosing the integer n0
in the base step of the inductive algorithm sufficiently large, and using the fact that the
local stable manifolds are uniformly contracted by forward iterations under f , we can
easily see that the “height” of f R(ω)(C(ω)) is at most δs/4. Hence, by the choice of δ0 we
have f R(ω)(C(ω)) made up of cu-unstable disks contained in C0. Moreover, as f R(ω)(ω)
u-crosses C0, the same occurs with the local unstable leaves that form C(ω), and so (P1)
holds. (P2) is clearly satisfied under our assumptions.

7.2. Backward contraction and bounded distortion

The backward contraction on unstable leaves and bounded distortion, respectively prop-
erties (P3) and (P4), follow from Lemma 4.4. Indeed, by construction, for each ω ∈ P
there is a hyperbolic pre-ball Vn(ω)(x) containing ω associated to some point x ∈ D
with σ -hyperbolic time n(ω) satisfying R(ω) − N0 ≤ n(ω) ≤ R(ω). It is sufficient to
prove (P3) and (P4) at time n = n(ω) instead of R(ω) since the two differ by a finite
and uniformly bounded number of iterations whose contribution to the estimates is also
uniformly controlled.

An immediate consequence of (12) is that if y ∈ K satisfies dist(f j (x), f j (y)) ≤ δ1
for 0 ≤ j ≤ n− 1, then n is a σ 3/4-hyperbolic time for y, i.e.

n∏
j=n−k+1

‖Df−1
|Ecu
f j (y)
‖ ≤ σ 3k/4 for all 1 ≤ k ≤ n.
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Therefore, taking δs, δ0 < δ1/2, for any γ ∈ 0u we find that n is a σ 3/4-hyperbolic time
for every point in Cω ∩ γ . The backward contraction on unstable leaves and bounded
distortion are then consequences of Lemma 4.4 (recall Remark 4.5).

7.3. Regularity of the foliations

Property (P5) is standard for uniformly hyperbolic attractors. In the rest of this section we
shall adapt classical ideas to our setting.

We begin with the statement of a useful lemma on vector bundles whose proof can be
found in [30, Theorem 6.1]. Let us recall that a metric d on E is admissible if there is a
complementary bundle E′ overX, and an isomorphism h : E⊕E′→ X×B to a product
bundle, where B is a Banach space, such that d is induced from the product metric on
X × B.

Lemma 7.1. Let p : E→ X be a vector bundle over a metric space X endowed with an
admissible metric. Let D ⊂ E be the unit ball bundle, and F : D → D a map covering
a Lipschitz homeomorphism f : X → X. Assume that there is 0 ≤ κ < 1 such that for
each x ∈ X the restriction Fx : Dx → Dx satisfies Lip(Fx) ≤ κ . Then

(1) there is a unique section σ0 : X→ D whose image is invariant under F ;
(2) if κ Lip(f )α < 1 for some 0 < α ≤ 1, then σ0 is Hölder continuous with exponent α.

Proposition 7.2. Let f : M → M be a C1 diffeomorphism and � ⊂ M a compact
invariant set with a dominated splitting T�M = Ecs ⊕ Ecu. Then the fiber bundles Ecs

and Ecu are Hölder continuous on �.

Proof. We consider only the centre-unstable bundle as the other one is similar. For each
x ∈ � let Lx be the space of bounded linear maps from Ecux to Ecsx and let L1

x denote
the unit ball around 0 ∈ Lx . We define 0x : L1

x → L1
f (x) as the graph transform induced

by Df (x):
0x(µx) = (Df |Ecsx ) · µx · (Df

−1
|Ecu
f (x)
).

Consider the vector bundle L over � whose fiber over each x ∈ � is Lx , and let L1 be its
unit ball bundle. Then 0 : L1

→ L1 is a bundle map covering f |� with

Lip(0x) ≤ ‖Df |Ecsx ‖ · ‖Df
−1
|Ecu
f (x)
‖ ≤ λ < 1.

Let c be a Lipschitz constant for f |�, and choose 0 < α ≤ 1 so small that λcα < 1.
By Lemma 7.1 there exists a unique section σ0 : M → L1 whose image is invariant
under 0 and which satisfies the Hölder condition with exponent α. This unique section is
necessarily the null section. ut

The next result gives precisely (P5)(a).

Corollary 7.3. There are C > 0 and 0 < β < 1 such that for all y ∈ γ s(x) and n ≥ 0,

log
∞∏
i=n

detDf u(f i(x))
detDf u(f i(y))

≤ Cβn.
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Proof. As we are assuming thatDf is Hölder continuous, it follows from Proposition 7.2
that log |detDf u| is Hölder continuous. The conclusion is then an immediate conse-
quence of the uniform contraction on stable leaves. ut

To prove (P5)(b) we introduce some useful notions. We say that φ : N → P , where N
and P are submanifolds of M , is absolutely continuous if it is an injective map for which
there exists J : N → R such that

LebP (φ(A)) =
∫
A

J d LebN .

J is called the Jacobian of φ. Property (P5)(b) can be restated in the following terms:

Proposition 7.4. Given γ, γ ′ ∈ 0u, define φ : γ ′ → γ by φ(x) = γ s(x) ∩ γ . Then φ is
absolutely continuous and the Jacobian of φ is given by

J (x) =

∞∏
i=0

detDf u(f i(x))
detDf u(f i(φ(x)))

.

One can easily deduce from Corollary 7.3 that this infinite product converges uniformly.
The remainder of this section is devoted to the proof of Proposition 7.4. We start with
a general result about the convergence of Jacobians whose proof is given in [33, Theo-
rem 3.3].

Lemma 7.5. Let N and P be manifolds, P with finite volume, and for each n ≥ 1, let
φn : N → P be an absolutely continuous map with Jacobian Jn. Assume that

(1) φn converges uniformly to an injective continuous map φ : N → P ;
(2) Jn converges uniformly to an integrable function J : N → R.

Then φ is absolutely continuous with Jacobian J .

For the sake of completeness, we observe that there is a slight difference in our definition
of absolute continuity. In contrast to [33], and for reasons that will become clear below,
we do not impose the continuity of the maps φn. However, the proof of [33, Theorem 3.3]
uses only the continuity of the limit function φ, and so it still works in our case.

Consider now γ, γ ′ ∈ 0u and φ : γ ′→ γ as in Proposition 7.4. The proof of the next
lemma is given in [33, Lemma 3.4] for uniformly hyperbolic diffeomorphisms. Neverthe-
less, one can easily see that it is obtained as a consequence of [33, Lemma 3.8] whose
proof uses only the existence of a dominated splitting.

Lemma 7.6. For each n ≥ 1, there is an absolutely continuous πn : f n(γ ) → f n(γ ′)

with Jacobian Gn satisfying

(1) lim
n→∞

sup
x∈γ

distf n(γ ′)
(
πn(f

n(x)), f n(φ(x))
)
= 0;

(2) lim
n→∞

sup
x∈f n(γ )

|1−Gn(x)| = 0.
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We consider the sequence of consecutive return times for points in 3,

r1 = R and rn+1 = rn + R ◦ f
rn for n ≥ 1.

Notice that these return time functions are defined Lebγ -almost everywhere on each
γ ∈ 0u and are piecewise constant.

Remark 7.7. Using the sequence of return times one can easily construct a se-
quence (Qn)n of Lebγ mod 0 partitions by s-subsets of 3 with rn constant on each
element of Qn, for which (P1)–(P5) hold when we take rn playing the role of R and
the elements of Qn playing the role of the s-subsets. Moreover, the constants C > 0 and
0 < β < 1 can be chosen not depending on n.

We define, for each n ≥ 1, the map φn : γ → γ ′ as

φn = f
−rnπrnf

rn . (28)

It is straightforward to check that φn is absolutely continuous with Jacobian

Jn(x) =
|det (Df rn)u(x)|
|det (Df rn)u(φn(x))|

·Grn(f
rn(x)). (29)

Observe that these functions are defined Lebγ -almost everywhere. So, we may find a
Borel set A ⊂ γ with full Lebγ -measure on which they are all defined. We extend φn
to γ simply by considering φn(x) = φ(x) and Jn(x) = J (x) for all n ≥ 1 and x ∈ γ \A.
Since A has zero Lebγ -measure, Jn is still the Jacobian of φn.

Proposition 7.4 is now a consequence of Lemma 7.5 together with the next one.

Lemma 7.8. (φn)n converges uniformly to φ, and (Jn)n converges uniformly to J .

Proof. It is sufficient to prove the convergence of each sequence restricted to A described
above. In particular, the expressions of φn and Jn are given by (28) and (29) respectively.

Let us first prove the case of (φn)n. Using the backward contraction on unstable leaves
given by (P3) and recalling Remark 7.7, we may write, for each x ∈ γ ,

distγ ′(φn(x), φ(x)) = distγ ′
(
f−rnπrnf

rn(x), f−rnf rnφ(x)
)

≤ Cβrn distf rn (γ ′)
(
πrnf

rn(x), f rnφ(x)
)
.

Since rn → ∞ as n → ∞ and distf rn (γ ′)(πrnf
rn(x), f rnφ(x)) is bounded, by

Lemma 7.6, we have the uniform convergence of φn to φ.
Let us now deal with the case of the Jacobians (Jn)n. By (29), we have

Jn(x) =
|det (Df rn)u(x)|
|det (Df rn)u(φ(x))|

·
|det (Df rn)u(φ(x))|
|det (Df rn)u(φn(x))|

·Grn(f
rn(x)).

Using the chain rule and Corollary 7.3, it easily follows that the first term in the product
above converges uniformly to J (x). Moreover, by Lemma 7.6, the third term converges
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uniformly to 1. It remains to see that the middle term also converges uniformly to 1.
Recalling Remark 7.7, by bounded distortion we have

|det (Df rn)u(φ(x))|
|det (Df rn)u(φn(x))|

≤ exp
(
C distf rn (γ ′)(f rn(φ(x)), f rn(φn(x)))η

)
= exp

(
C distf rn (γ ′)(f rn(φ(x)), πrn(f

rn(x)))η
)
.

Similarly we obtain

|det (Df rn)u(φ(x))|
|det (Df rn)u(φn(x))|

≥ exp
(
−C distf rn (γ ′)(f rn(φ(x)), πrn(f

rn(x)))η
)
.

The conclusion then follows from Lemma 7.6. ut

8. Integrability of the return time

In the previous sections we have constructed a GMY structure on �. To complete the
proof of Theorem C it just remains to show that this GMY structure has integrable return
times as in (6). Recall first that the existence of a GMY structure implies the existence
of an induced map F : 3 → 3 with an invariant probability measure ν (see remarks
following Theorem C). This measure can be disintegrated into a family of conditional
measures on the unstable leaves {γ u} with conditional measures which are equivalent
to Lebesgue measure with densities bounded by uniform constants above and below [49,
Lemma 2]. We fix one such unstable leaf γ ∈ 0u and let ν̄ denote the conditional measure
associated to ν and equivalent to Lebesgue measure. The integrability of the return times
with respect to Lebesgue measure as in (6) therefore follows immediately from the next
result.

Proposition 8.1. The inducing time function R is ν̄-integrable.
Proof. We first introduce some notation. For x ∈ 1 we consider the orbit x, f (x), . . . ,
f n−1(x) of the point x under iteration by f for some large value of n. In particular x may
undergo several full returns to 1 before time n. Then we define the following quantities:

H (n)(x) := number of hyperbolic times for x before time n,

S(n)(x) := number of times x belongs to a satellite before time n,

R(n)(x) := number of returns of x before time n.

Each time x has a hyperbolic time, it either has a return within some finite and uniformly
bounded number of iterations, or by definition it belongs to a satellite. Therefore there
exists some constant κ > 0 independent of x and n such that

R(n)(x)+ S(n)(x) ≥ κH (n)(x).

Notice that x may belong to a satellite or have a return without it having a hyperbolic
time itself, since it may belong to a hyperbolic pre-disk of some other point y which has
a hyperbolic time. Dividing the above inequality through by n we get

R(n)(x)

n
+
S(n)(x)

n
≥
κH (n)(x)

n
.
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Recalling that the hyperbolic times have uniformly positive asymptotic frequency, we see
that there exists a constant θ > 0 such thatH (n)(x)/n ≥ θ for all n sufficiently large, and
therefore rearranging the left hand side above gives

R(n)(x)

n

(
1+

S(n)(x)

R(n)(x)

)
≥ κθ > 0.

Moreover S(n)(x)/R(n)(x) converges by Birkhoff’s Ergodic Theorem to precisely the av-
erage number of times,

∫
S dν, that typical points belong to satellites before they return,

and from Proposition 6.1 it follows that
∫
S dν <∞. Therefore, we have

R(n)(x)

n
≥ κ ′ > 0 (30)

for all sufficiently large n where κ ′ can be chosen arbitrarily close to κθ/(1 +
∫
S dν̄),

which is independent of x and n. To conclude the proof notice that n/R(n)(x) is the av-
erage return time over the first n iterations, and thus converges to

∫
R̄ dν̄ by Birkhoff’s

Ergodic Theorem. This holds even if we do not assume a priori that R̄ is integrable, since it
is a positive function and thus

∫
R̄ dν̄ is always well defined and lack of integrability nec-

essarily implies
∫
R̄ dν̄ = ∞. Thus, assuming towards a contradiction that

∫
R̄ dν̄ = ∞

gives n/R(n)(x) →
∫
R̄ dν̄ = ∞, and therefore R(n)(x)/n → 0. This contradicts (30),

and therefore we have
∫
R̄ dν̄ <∞ as required. ut

9. Liftability

In this section we complete the proof of Theorem D. The “if” part of this result is well
known and we refer to it in the comments preceding Theorem D. We therefore just need
to show that every SRB measure with positive Lyapunov exponents in theEcu direction is
liftable. To achieve this, first of all let � denote the support of the given SRB measure µ.
Then� is invariant under f , and thus under any positive iterate of f . We will show in the
following proposition that there exists some N ≥ 1 such that fN on � is nonuniformly
expanding, and thus weakly nonuniformly expanding, along Ecu. We can then apply the
conclusions of Theorem C to obtain a GMY structure for fN with integrable return time
function R. This easily gives a corresponding GMY structure for f with return time
function NR, which is therefore still integrable and, as explained above, gives rise to an
SRB measure. By uniqueness of SRB measures it follows that this measure coincides
with µ, thus proving that µ is liftable.

Proposition 9.1. There exists N ≥ 1 such that fN is nonuniformly expanding along Ecu

on a set of positive Lebesgue measure.

Proof. We prove first of all that there exists N ≥ 1 such that∫
log ‖(DfN |Ecux )

−1
‖ dµ < 0. (31)

Indeed, by assumption all Lyapunov exponents of f along Ecu are positive and therefore
all Lyapunov exponents of f−1 along Ecu are negative. Thus, considering the cocycle
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(x, v) 7→ (f−1(x),Df−1(x)v), Oseledets’ Theorem implies that there exists λ such that

lim
n→∞

1
n

log ‖Df−1
|Ecu
f−n+1(x)

· · ·Df−1
|Ecux ‖ = λ < 0 (32)

where λ is the largest Lyapunov exponent of f−1 [12, Addendum 4]. By the chain rule
and the inverse function theorem, we have

Df−1
|Ecu
f−n+1(x)

· · ·Df−1
|Ecux = (Df

n
|Ecu
f−n(x)

)−1. (33)

Since the sequence
φn = log ‖(Df n|Ecu

f−n(x)
)−1
‖

satisfies φn+m ≤ φn + φm ◦ f
−n, using the invariance of µ with respect to f−1 and

Kingmann’s Subadditive Ergodic Theorem we have, for µ-almost every x,

lim
n→∞

1
n

log ‖(Df n|Ecu
f−n(x)

)−1
‖ = inf

n≥1

1
n

∫
log ‖(Df n|Ecu

f−n(x)
)−1
‖ dµ,

which, together with (32) and (33), gives (31).
Notice that µ may not be ergodic for fN , but it can have at most N ergodic compo-

nents. Indeed, notice first of all that any subset C which is fN -invariant and has positive
measure, satisfiesµ(C) ≥ 1/N : Assume for contradiction thatµ(C) < 1/N and consider
the set

⋃N−1
j=0 f

−j (C). We have

0 < µ
(N−1⋃
j=0

f−j (C)
)
≤

N−1∑
j=0

µ(f−j (C)) < 1.

This gives a contradiction, because the set is f -invariant andµ is ergodic. Now, if (fN , µ)
is not ergodic, then we decompose M into a union of two fN -invariant disjoint sets of
positive measure. If the restriction of µ to one of these sets is not ergodic, then we iterate
this process. Note that this must stop after a finite number of steps with at mostN disjoint
subsets, since fN -invariant sets of positive measure have their measure bounded from
below by 1/N .

Thus, (fN , µ) has at most N ergodic components. By (31), at least one of these
components, whose support we denote by 6, satisfies

∫
6

log ‖(DfN |Ecux )
−1
‖ dµ < 0.

Hence, by Birkhoff’s Ergodic Theorem, for µ-almost every x ∈ 6,

lim
n→∞

1
n

n−1∑
j=0

log ‖(DfN |Ecu
fNj (x)

)−1
‖ =

∫
6

log ‖(DfN |Ecux )
−1
‖ dµ < 0.

This proves that fN is nonuniformly expanding along Ecu for µ-almost every point in6.
Since µ is an SRB measure, conditional measures of µ on local unstable manifolds are
absolutely continuous with respect to Lebesgue measure. In particular there is some local
unstable manifold γ u on which we have nonuniform expansion for a set of points of pos-
itive Lebγ u -measure. Considering the union of the local stable manifolds through these
points and the absolute continuity of the stable foliation, we get the result. ut
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[9] Araújo, V., Luzzatto, S., Viana, M.: Invariant measures for interval maps with critical points
and singularities. Adv. Math. 221, 1428–1444 (2009) Zbl 1184.37032 MR 2522425

[10] Avila, A., Lyubich, M., de Melo, W.: Regular or stochastic dynamics in real analytic families
of unimodal maps. Invent. Math. 154, 451–550 (2003) Zbl 1050.37018 MR 2018784

[11] Barreira, L., Pesin, Ya.: Nonuniform Hyperbolicity. Encyclopedia Math. Appl. 115, Cam-
bridge Univ. Press (2007) Zbl 1144.37002 MR 2348606

[12] Bochi, J.: The multiplicative ergodic theorem of Oseledets. http://www.mat.puc-rio.br/˜jairo/
docs/oseledets.pdf

[13] Bonatti, C., Viana, M.: SRB measures for partially hyperbolic systems whose central direction
is mostly contracting. Israel J. Math. 115, 157–193 (2000) Zbl 0996.37033 MR 1749677

[14] Bowen, R.: Equilibrium States and Ergodic Theory of Anosov Diffeomorphisms. Lecture
Notes in Math. 470, Springer (1975) Zbl 1172.37001 MR 2423393

[15] Bowen, R., Ruelle, D.: The ergodic theory of Axiom A flows. Invent. Math. 29, 181–202
(1975) Zbl 0311.58010 MR 0380889

[16] Brin, M. I., Pesin, Ya. B.: Partially hyperbolic dynamical systems. Uspekhi Mat. Nauk 28,
no. 3, 169–170 (1973) (in Russian) Zbl 0285.58010 MR 0391178

[17] Bruin, H., Luzzatto, S., van Strien, S.: Decay of correlations in one-dimensional dynamics.
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Math., Eur. Math. Soc., Zürich (2004) Zbl 1098.37024 MR 2068774

[39] Pesin, Ya., Sinai, Ya.: Gibbs measures for partially hyperbolic attractors. Ergodic Theory Dy-
nam. Systems 2, 417–438 (1982) Zbl 0519.58035 MR 0721733

[40] Pinheiro, V.: Sinai–Ruelle–Bowen measures for weakly expanding maps. Nonlinearity 19,
1185–1200 (2006) Zbl 1100.37014 MR 2222364

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1145.37021&format=complete
http://www.ams.org/mathscinet-getitem?mr=2366230
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1186.37041&format=complete
http://www.ams.org/mathscinet-getitem?mr=1919371
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1115.37023&format=complete
http://www.ams.org/mathscinet-getitem?mr=2041259
http://front.math.ucdavis.edu/1405.6194
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1098.37020&format=complete
http://www.ams.org/mathscinet-getitem?mr=2158399
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1130.37362&format=complete
http://www.ams.org/mathscinet-getitem?mr=2285510
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0964.37020&format=complete
http://www.ams.org/mathscinet-getitem?mr=1782146
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1059.37021&format=complete
http://www.ams.org/mathscinet-getitem?mr=2031432
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1073.37030&format=complete
http://www.ams.org/mathscinet-getitem?mr=2045641
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1134.60323&format=complete
http://www.ams.org/mathscinet-getitem?mr=2172207
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:108.37019&format=complete
http://www.ams.org/mathscinet-getitem?mr=2247431
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0215.53001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0271991
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1138.37013&format=complete
http://www.ams.org/mathscinet-getitem?mr=2342693
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1160.37356&format=complete
http://www.ams.org/mathscinet-getitem?mr=1935840
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0616.28007&format=complete
http://www.ams.org/mathscinet-getitem?mr=0889254
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1084.37024&format=complete
http://www.ams.org/mathscinet-getitem?mr=2175992
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1151.37031&format=complete
http://www.ams.org/mathscinet-getitem?mr=2434305
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1143.37016&format=complete
http://www.ams.org/mathscinet-getitem?mr=2145722
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0383.58011&format=complete
http://www.ams.org/mathscinet-getitem?mr=0466791
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1098.37024&format=complete
http://www.ams.org/mathscinet-getitem?mr=2068774
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0519.58035&format=complete
http://www.ams.org/mathscinet-getitem?mr=0721733
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1100.37014&format=complete
http://www.ams.org/mathscinet-getitem?mr=2222364
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