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Abstract. For a non-uniform lattice in SL(2,R), we consider excursions of a random geodesic in
cusp neighborhoods of the quotient finite area hyperbolic surface or orbifold. We prove a strong
law for a certain partial sum involving these excursions. This generalizes a theorem of Diamond
and Vaaler [9] for continued fractions. In the Teichmüller setting, we consider invariant measures
for the SL(2,R) action on the moduli spaces of quadratic differentials. By the work of Eskin and
Mirzakhani [12], these measures are supported on affine invariant submanifolds of a stratum of
quadratic differentials. For a Teichmüller geodesic random with respect to an SL(2,R)-invariant
measure, we study its excursions in thin parts of the associated submanifold. Under a regularity
hypothesis for the invariant measure, we prove similar strong laws for certain partial sums involving
these excursions. The limits in these laws are related to the volume asymptotic of the thin parts. By
Siegel–Veech theory, these are given by Siegel–Veech constants. As a direct consequence, we show
that the word metric of mapping classes that approximate a Teichmüller geodesic ray that is random
with respect to the Masur–Veech measure, grows faster than T log T .

Keywords. Teichmüller theory, moduli of Riemann surfaces

1. Introduction

This paper provides a specific analogy between non-uniform lattices in SL(2,R) and
mapping class groups. The analogy is established from the point of view of cusp excur-
sions of random geodesics. For non-uniform lattices in SL(2,R), we consider excursions
of a random geodesic in horoball neighborhoods of the cusps of the quotient hyperbolic
surface. For an SL(2,R) orbit closure in a stratum of a moduli space of quadratic differ-
entials we consider excursions of random Teichmüller geodesics in a thin part of the orbit
closure.

1.1. Non-uniform lattices in SL(2,R)

Let 0 be a non-uniform lattice in SL(2,R). The quotient X = 0\H2 is a complete finite
area surface/orbifold with finitely many cusps c1, . . . , cJ . Let Xcusps ⊂ X be the union
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of disjoint horoball neighborhoods of the cusps. The set Xcusps lifts to a countable col-
lection H of disjoint horoballs in H2. The complement X \Xcusps is a compact set Xthick

called the thick part of X. The lift X̃thick, which we call the thick part in H2, is the com-
plement of the union of horoballs in H.

The Liouville measure is a natural SL(2,R)-invariant measure on the unit tangent
bundle T 1H2. In the upper half-plane model it is given by

d` =
dx dy dθ

2πy2 .

The hyperbolic geodesic flow on T 1X is given by the action of the diagonal subgroup.
The measure d` descends to a flow-invariant measure on T 1X. We will continue to call it
Liouville measure. The conditional measure on the unit tangent circle at any point is the
pullback via the visual map of the standard Lebesgue measure on ∂H2

= S1.
Since the number of horoballs is countable, d`-almost every geodesic ray is recur-

rent to Xthick. By the ergodicity of the geodesic flow and the fellow traveling property of
hyperbolic geodesics, Leb-almost every geodesic ray from a fixed base-point x0 ∈ X ven-
tures into Xcusps infinitely often. In particular, a geodesic ray γ in H2 whose endpoint r
in S1 is Leb-typical enters and leaves infinitely many horoballs. By analyzing the col-
lection H, Sullivan [28] showed that the lim sup of the maximum depth that γ achieves
in Xcusps is asymptotically (1/2) log T , where T is the time along γ . It is convenient to
assume x0 ∈ Xthick, which can be achieved by making Xcusps smaller if necessary.

To set up notation, let γ (x0, r) be the geodesic ray from x0 to r ∈ S1. We denote
by γT (x0, r) the point on γ at distance T from x0. When the context is clear we will use
just γ and γT . Let π : H2

→ X̃thick be the closest point projection. Let N = N(T ) be
the number of horoballs that γ intersects up to γT . We enumerate this collection Hγ,T of
horoballs as {H1, . . . , HN } in the order of increasing time. For all k < N , γ enters and
exitsHk;HN may be an exception if γT ∈ HN . Let dthick be the path metric on X̃thick. For
a horoball H that γ enters and exits, the complete excursion E(γ,H) is defined as the
dthick-distance between the entry and exit points. If γT ∈ HN then the partial excursion
E(γ,HN ) is the dthick-distance between the entry point for HN and π(γT ).

The total excursion E(γ, T ) till time T , as defined in [15], is

E(γ, T ) =
∑
k≤N

E(γ,Hk).

Along Leb-typical geodesic rays, [15, Proposition 5.4] shows that E(γ, T )/T →∞. We
prove here:

Theorem 1.2. For Lebesgue almost every r in S1,

lim
T→∞

E(γ, T )−maxk≤N E(γ,Hk)
T log T

=
2
π

`(T 1Xcusp)

`(T 1X)
.



Excursions along random geodesics for moduli spaces of quadratic differentials 3055

Continued fractions. Let r ∈ [0, 1]. The continued fraction expansion is given by writ-
ing r as

r =
1

a1 +
1

a2 +
1
+ · · ·

,

where each ai is in N. When r is irrational the expansion is infinite. We denote r as
[a1, a2, . . . ].

Theorem 1.3 (Diamond–Vaaler [9]). For Leb-almost every r ∈ [0, 1],

lim
n→∞

∑n
i=1 ai −maxi≤n ai

n log n
=

1
log 2

.

We will derive Theorem 1.3 from Theorem 1.2 in the special case when X is the modular
surface SL(2,Z)\H2. Excursions of geodesic rays into the maximal cusp neighborhood
in X are related to coefficients in the continued fraction expansion of the point at infinity.
Diamond–Vaaler used techniques specific to the symbolic dynamics (Gauss map) in the
theory of continued fractions. Theorem 1.2 relies on more general features, viz. asymp-
totic for `(Xcusps) and exponential mixing of the geodesic flow. These features hold for
the Teichmüller geodesic flow in the analogous setting of quadratic differentials (Theo-
rem 1.9).

Word metric along random geodesics. As a direct implication of Theorem 1.2, we ana-
lyze how the word metric grows along random geodesics.

For distinct points x, y ∈ H2 let γ (x, y) be the hyperbolic geodesic between them.
The projected path is defined by p(x, y) = π(γ (x, y)). Let L(x, y) be the dthick-length of
p(x, y), where dthick is the path metric on the thick part. The quantityL(x0, γT )−E(γ, T )

is the time spent by γ in the interior of Xthick. By the ergodicity of the geodesic flow,
L(x0, γT ) − E(γ, T ) grows linearly in T . Hence, a direct consequence of Theorem 1.2
is:

Theorem 1.4. For Leb-almost every r ∈ S1,

lim
T→∞

L(x0, γT )−maxk≤N E(γ,Hk)
T log T

=
2
π

`(T 1Xcusp)

`(T 1X)
.

By [15, Lemma 5.1], the projected path p(x0, γT ) is a quasi-geodesic in (X̃thick, dthick).
A closer look at the proof of [15, Lemma 5.1] shows that L(x0, γT )−dthick(x0, γT ) grows
at most linearly in N . In Lemma 3.8, we show that N grows linearly in T . As a direct
consequence of these linear bounds and Theorem 1.4 we get:

Theorem 1.5. For Leb-almost every r ∈ S1,

lim
T→∞

dthick(x0, γT )−maxk≤N E(γ,Hk)
T log T

=
2
π

`(T 1Xcusp)

`(T 1X)
.
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A base-point x0 ∈ H2 is said to be generic if the stabilizer of x0 in 0 is trivial. The 0-orbit
of x0 is called a lattice. When x0 is generic, each lattice point corresponds to a unique
group element. Each point γT has at least one closest lattice point which we denote by
hT x0. In fact, this closest point is unique for almost all points along γ .

The group 0 is finitely generated. A finite choice of generators for 0 defines a proper
word metric d0 on 0. Different choices of generators produce quasi-isometric metrics.
Let d0(1, hT ) be the word length where hT x0 is the lattice point closest to γT .

The group 0 acts cocompactly on X̃thick, so by the Švarc–Milnor lemma, (0, d0) is
quasi-isometric to (X̃thick, dthick). Thus, as a direct consequence of Theorem 1.5 we get:

Theorem 1.6. There exists a constantM1 > 0 that depends on the word metric such that
for Leb-almost every r ∈ S1,

M1T log T < d0(1, hT )

for T sufficiently large depending on r .

In fact, if the contribution from the largest excursion is removed, then the word met-
ric grows like T log T up to uniform multiplicative and additive constants. Theorem 1.6
should be thought of as a refinement of [15, Proposition 5.6] which states that along a
Leb-generic geodesic ray, d0(1, hT )/T →∞ as T →∞.

1.7. Moduli spaces of quadratic differentials

Let S be a hyperbolic surface of finite type. S is non-sporadic if it is not a sphere with
at most four punctures or boundary components, or a torus with at most one puncture or
boundary component. In the sporadic examples, the Teichmüller space is either trivial or
isometric to H2 and the mapping class group is a non-uniform lattice in SL(2,R). This
reduces us to the previous case.

The Teichmüller space T (S) is the space of marked conformal structures on S, or
alternatively, marked hyperbolic metrics on S. The mapping class group Mod(S) is the
group of orientation preserving diffeomorphisms of S modulo isotopy. Mod(S) acts on
T (S) by changing the marking. The quotient M(S) = Mod(S)\T (S) is the moduli space
of Riemann surfaces.

The Teichmüller metric is given by

dT (X, Y ) =
1
2 inf
f

logK(f ),

where the infimum is over all quasi-conformal maps f : X→ Y , and K(f ) is the quasi-
conformal constant of f . The group Mod(S) acts by isometries of dT . Thus, the metric
descends to a metric on M(S). The thin part of T (S) consists of hyperbolic surfaces
that contain a simple closed curve with small hyperbolic length. The thin part of T (S) is
obviously Mod(S)-invariant. The quotient Mod(S)\T (S) ⊂M(S) is the thin part of the
moduli space of Riemann surfaces.

For a Riemann surface X, let Q(X) be the set of meromorphic quadratic differentials
on X with simple poles at the punctures. If (k1, . . . , kr) are the multiplicities of the zeros
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then k1+· · ·+kr = 2g−2+n, where n is the number of punctures. A quadratic differen-
tial is equivalent to a half-translation structure on S, i.e. it defines charts from S to C with
transition functions of the form±z+c. The resulting flat metric has a cone singularity with
angle (k + 2)π at a k-order zero (or with k = −1 for a simple pole). A quadratic differ-
ential is unit area if the corresponding singular flat metric has area 1. The space Q of unit
area quadratic differentials can be identified with the unit cotangent bundle to T (S) [16].
The space Q is stratified by the multiplicity of its zeros; we denote the stratum with mul-
tiplicities α = (k1, . . . , kr) by Q(α). Each stratum is Mod(S)-invariant. We will continue
to denote the moduli space by Q(α).

The periods/holonomies of a fixed basis for the homology of S relative to the singular-
ities give local co-ordinates on Q(α). The natural volume form µhol in these co-ordinates,
called the Masur–Veech measure, can be thought of as an analog of the Liouville measure.
It is invariant under Mod(S)-action and descends to a finite measure on the moduli space
(see [21], [29]).

The affine action of SL(2,R) on C = R2 preserves the transitions z→ ±z + c. This
defines an SL(2,R) action on each stratum Q(α). The action of the diagonal part defines
the Teichmüller geodesic flow. The compact part SO(2,R) leaves the underlying confor-
mal structure unchanged. This gives an isometric embedding H2

= SL(2,R)/SO(2,R)
→ T (S). These are called Teichmüller discs and they foliate T (S). We denote by
SL(2,R)(q) the orbit and by D(q) the Teichmüller disc.

In the flat metric defined by q, a saddle connection is a geodesic segment in the
q-metric that connects a pair of (same or distinct) singularities. For ε > 0, the ε-thin
part Q(α)ε is the set of q ∈ Q(α) such that some saddle connection has q-length squared
less than ε.

The points q ′ in SL(2,R)(q) for which a particular saddle connection β has q ′-length
squared shorter than ε projects to a horoballH in D(q). The point at infinity forH is given
by the direction in which β is vertical. For saddle connections that are parallel for q, the
ratios of their holonomies are constant on SL(2,R)(q). Thus, in a collection of parallel
saddle connections, the shortest holonomy will be used to define the horoball.

For a µhol-typical q, the horoballs in D(q) do not form a packing; their interiors have
intersections. Every point X ∈ D(q) is contained in at most finitely many horoballs.
But there need not be an upper bound over D(q) for this number. This makes it hard
to estimate the dthick-distance between the entry and exit points of a geodesic in Q(α)ε ,
which would have been a natural analog for an excursion in this context. Instead, we
consider excursions in individual horoballs.

The excursions in horoballs in D(q) of a geodesic γ till time T are defined as follows.
For a horoballH that γ enters and exits, the complete excursionE(γ,H) is defined as the
distance along ∂H between the entry and exit points. If γT ∈ H then the partial excursion
E(γ,H) is defined as the distance along ∂H between the entry point of γ and πH (γT )
where πH : H → ∂H is the closest point projection. Let H1, . . . , HN(T ) denote all the
horoballs that γ intersects till time T . The total excursion E(γ, T ) is defined as

E(γ, T ) =
∑

k≤N(T )

E(γ,Hk).
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When horoballs have disjoint interiors, these definitions coincide with the definitions in
Section 1.1. With intersections, the excursions E(γ,Hk) can be simultaneous and there
can be several partial excursions when γT is in the thin part.

The main theorem we prove is:

Theorem 1.8. There exists a constant c(α)>0 such that for µhol-almost every q∈Q(α),
the Teichmüller geodesic ray γ that q determines satisfies

lim
T→∞

E(γ, T )−maxk≤N(T ) E(γ,Hk)
T log T

= 2εc(α).

The constant c(α) is the Siegel–Veech constant associated to Q(α) (see Section 4.5 for
the definition).

Theorem 1.8 is a special case of a more general theorem, viz. Theorem 1.9
for SL(2,R)-invariant measures and SL(2,R)-invariant loci of saddle connection
holonomies.

SL(2,R) orbit closures and invariant measures. Recently, Eskin and Mirzakhani [12,
Theorem 1.4] showed that ergodic SL(2,R)-invariant probability measures are of
Lebesgue class and supported on invariant complex submanifolds in Q(α). These mani-
folds are affine in the sense that they are given by linear equations in the holonomy co-
ordinates. Furthermore, Eskin, Mirzakhani and Mohammadi [13, Theorem 2.1] showed
that all SL(2,R) orbit closures are affine invariant submanifolds. See [12, Section 1] for
more details. More recently, Filip [14] showed that these submanifolds are algebraic sub-
varieties.

Let µ be an ergodic SL(2,R)-invariant probability measure supported on an affine
invariant submanifold N . For ε > 0, the ε-thin part Nε is the subset of q ∈ N such that
some saddle connection has q-length squared less than ε. Saddle connections β1, β2 are
N -parallel if they are parallel for an open set of quadratic differentials in N . We assume
that µ satisfies the following regularity condition. For ε, κ > 0, let Nε,κ be the subset
of q ∈ N that have at least one saddle connection β1 with `2

q(β1) ≤ ε and a saddle
connection β2 not N -parallel to β1 with `2

q(β2) ≤ κ . We assume that there exists m1 > 0
such that for ε, κ small enough

µ(Nε,κ) ≤ m1εκ.

For µhol, [23, Section 10, Claim (7)] proves the regularity above. A weaker regularity for
any SL(2,R)-invariant measure is proved in [4, Theorem 1.2].

SL(2,R)-invariant loci. For q ∈ N , let V (q) ∈ R2
\ {(0, 0)} be an assignment of a non-

empty subset (with multiplicity) of holonomies of saddle connections on q. We require
that the assignment varies linearly under the SL(2,R) action, i.e. V (gq) = gV (q) for
all g ∈ SL(2,R). Such a V will be called an SL(2,R)-invariant locus. Let c(V, µ) be
the Siegel–Veech constant associated to V and µ (see Section 4.5 for the definition). We
assume V satisfies c(V, µ) > 0.
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For R ≥ 1, the ε/R-thin part of N corresponding to V is the subset of q ∈ N
for which some saddle connection with holonomy in V (q) has q-length squared less
than ε/R. We denote this set by N (V )ε/R . The regularity condition and the Siegel–Veech
formula (4.6) can be used to prove the volume asymptotic

lim
R→∞

µ(N (V )ε/R)
πε/R

= c(V, µ).

See [11, Section 7] for the main ideas.
Here, for µ-almost every q ∈ N , we consider excursions of the Teichmüller geodesic

ray determined by q in horoballs in D(q) for saddle connections with holonomy in V . Let
EV (γ, T ) be the sum till time T of excursions of γ in horoballs for saddle connections
with holonomy in V . LetNV be the number of such excursions of γ till time T . We prove:

Theorem 1.9. Let µ be a regular SL(2,R)-invariant measure supported on an affine
invariant submanifold N . For µ-almost every q ∈ N , the Teichmüller geodesic ray γ
that q determines satisfies

lim
T→∞

EV (γ, T )−maxk≤NV E(γ,Hk)
T log T

= 2εc(V, µ),

where c(V, µ) is the Siegel–Veech constant associated to V and µ.

Theorem 1.8 is a special case of Theorem 1.9 when N = Q(α), µ = µhol and V is the
SL(2,R)-invariant locus of holonomies of all saddle connections.

Configurations with cylinders. For the analog of Theorem 1.6, we state a special case of
Theorem 1.9. For completeness we give some background.

For a connected component of Q(α), a configuration C of saddle connections is a
geometric type of maximal collections of homologous saddle connections on a transla-
tion or half-translation surface in it. Here, the homology is the appropriate relative ho-
mology (see [24] for details). The homology condition implies that the saddle connec-
tions in a configuration are parallel. For holomorphic 1-forms their holonomies coincide.
For quadratic differentials their holonomies can take two values which differ by a factor
of 2. The saddle connections with the smaller holonomy will be called the small saddle
connections in C. It was shown in [11] and [24] that in a µhol-typical degeneration all
saddle connections in some configuration shrink to length zero. A configuration C gives
an SL(2,R)-invariant locus VC for Q(α). It follows that c(V, µhol) > 0.

A special subset of configurations corresponds to metric cylinders. A metric cylinder
is an embedded cylinder that is a union of freely homotopic closed trajectories of q such
that the boundary components are a concatenation of saddle connections. If some of the
saddle connections in a configuration C bound a metric cylinder, we call C a configuration
with cylinders. Masur and Zorich [24] showed that each boundary component of such
cylinders has exactly one or two saddle connections in C. The q-length of the core curve
is equal to the boundary saddle connection or twice the length of one of the boundary
saddle connections depending on the case.
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Given C, the C-thin part of SL(2,R)(q) consists of all points for which the length
squared of the small saddle connections in C is less than ε. Its projection to D(q) is a
horoball. The point at infinity for the horoball is the direction in which the saddle connec-
tions in C are vertical.

If ε is sufficiently small compared to the q-area of a cylinder then the core curve is
also short in the hyperbolic metric. For 0 < σ < 1 small enough depending on the orbit
closure, we can specialize further to configurations with cylinders in which some cylinder
has area at least σ . Such a restriction gives a horoball “packing”: any point in D(q) is con-
tained in at most 3g−3+n horoballs. By construction, the packing is Mod(S)-equivariant.
Masur [22] showed that in each Teichmüller disc the packing satisfies Sullivan’s criteria
and used it to prove the lower bound in the log law: a Leb-typical geodesic ray in ev-
ery Teichmüller disc is recurrent to the thick part with lim sup of the maximum depth
in T (S)ε asymptotically of size (1/2) log T .

Let V be the subset of holonomies of saddle connections forming configurations with
cylinders such that some cylinder has area at least σ . It follows from the Siegel–Veech
machinery and [22, Proposition 2.5] that if σ is small enough depending on Q(α) then
ccylσ > 0, where ccylσ is the Siegel–Veech constant for Q(α) for configurations with
cylinders such that some cylinder is of area at least σ . For translation surfaces, there are
finer results due to Vorobets, for example [30, Theorem 1.8]. For a geodesic γ ∈ Q(α), let
Ecylσ (γ, T ) be the sum till time T of excursions of γ in horoballs for such configurations.
Let Ncylσ (T ) be the number of such excursions till time T . As a special case of Theorem
1.9 we have

Theorem 1.10. For µhol-almost every q ∈ Q(α), the Teichmüller geodesic γ that q de-
termines satisfies

lim
T→∞

Ecylσ (γ, T )−maxk≤Ncylσ
E(γ,Hk)

T log T
= 2εccylσ (α),

where ccylσ (α) is the Seigel-Veech constant for Q(α) for configurations with cylinders
such that some cylinder is of area at least σ .

Using Theorem 1.10 for the principal stratum, we can prove a lower bound on word-
metric growth along typical Teichmüller geodesics. Along a Teichmüller geodesic, the
twisting in the core curve of a metric cylinder is, up to a uniform multiplicative constant,
A/ε times the excursion, where A is the q-area of the cylinder [15, Proposition 2.7].
By Mumford compactness, the closure of M(S) \M(S)ε is compact. Hence, by the
Švarc–Milnor lemma, Mod(S) is quasi-isometric to the thick part T (S) \ T (S)ε . With a
base-point X0 in the thick part, the orbit Mod(S)X0 will be called a Teichmüller lattice.
If γ is recurrent to the thick part then along recurrence times γT , there is a lattice point
hTX0 closest to γT . The distance between γT and hTX0 is bounded by the diameter
of M(S) \M(S)ε . Because of compactness, this diameter is finite. As shown in [15,
Proposition 3.11], along a recurrent Teichmüller geodesic γ the total excursionE(γ, T ) in
the Masur collection gives a coarse lower bound on the word metric of the approximating
group elements hT , i.e. there exist constants a1, a2 > 0 such that

dMod(S)(1, hT ) ≥ a1E(γ, T )− a2.
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Thus, as a direct consequence of Theorem 1.10 in the principal stratum we get

Theorem 1.11. There exists a constant M2 > 0 depending on the word metric such that
for almost every q ∈ Q(X0) the approximating group elements hT along the Teichmüller
geodesic γ that q determines satisfy

M2T log T < dMod(S)(1, hT )

for all T sufficiently large depending on q.

Suppose q1, q2 have the same uniquely ergodic measured foliation as their vertical foli-
ation. For such quadratic differentials, Masur [20, Theorem 2] showed that the geodesic
rays that they determine are positively asymptotic. For any base-point X0 ∈ T (S), a
µhol-typical q ∈ Q(X0) has a uniquely ergodic vertical foliation. Thus, Theorem 1.11
implies

Theorem 1.12. LetX0 ∈ T (S) be a base-point. There is a constantM3 > 0 such that for
Leb-almost every q ∈ Q(X0) the approximating group elements hT along the Teichmüller
geodesic γ that q determines satisfy

M3T log T < dMod(S)(1, hT )

for all T sufficiently large depending on q.

Strategy of proof

The main idea is to approximate the sum of excursions till T by an integral over time of a
function defined over T 1Xcusps or N (V )ε . This function is not L1. Analyzing the largest
excursion, we prove that if it exceeds T (log T )c for some 1 > c > 1/2, then it is the
unique excursion that exceeds this threshold. This follows from a Borel–Cantelli argu-
ment which requires quasi-independence of excursions. We use mixing of the geodesic
flow to establish quasi-independence (Proposition 3.2). By removing the largest excur-
sion from the sum we get a quantity that can be approximated by a suitable T -dependent
truncation of the above function. This truncation is L1. The leading term of its L1-norm
is a constant times log T . The constant is in terms of the proportional volume of the cusp
neighborhoods. To deduce the main theorems, we apply an effective ergodic theorem to
the truncation. This shows that the integral over [0, T ] of the truncation is equal to T
times the L1-norm of the truncation with an error term which is o(T log T ). To prove the
effective ergodic theorem (Theorem 2.4), we use a decay of correlations for the geodesic
flow. This decay of correlations is independently due to Moore and Ratner [26], [27] in
the context of non-uniform lattices. For quadratic differentials, the decay is due to Avila–
Resende [5] for the Masur–Veech measure, and Avila–Gouëzel [2] for general SL(2,R)-
invariant measures.

In the setting of quadratic differentials, matters are complicated by the fact that a
half-translation surface can have several non-parallel short saddle connections. While
this number is finite for any given half-translation surface, there is no upper bound for



3062 Vaibhav Gadre

it over the SL(2,R) orbit closure. This means that a Teichmüller geodesic can do several
excursions simultaneously and typically it does so. We impose a regularity condition on
the SL(2,R)-invariant measure, namely quasi-independence for two non-parallel saddle
connections to be simultaneously short. To prove that the truncation is L1, the main tech-
nical work leverages two facts: the above quasi-independence and a bound due to Eskin
and Masur [10] for the number of short saddle connections in terms of length of shortest
saddle connection. We also show that the leading term of its L1-norm is asymptotically a
constant times log T . The constant is related to the asymptotic of volumes of thin parts.
By Siegel–Veech theory, these are the associated Siegel–Veech constants.

2. Ergodic theory

This section develops the ergodic-theoretic tools which will be used later. In particular, the
main goal is to derive the effective ergodic theorem (Theorem 2.4) which gives a uniform
rate of convergence in the ergodic theorem simultaneously for a sequence of non-negative
functions that satisfy a certain decay of correlations.

Let (X,B, `) be a probability measure space. Let gt be a measure preserving flow
on X such that gt is exponentially mixing. More precisely, we assume that an appropriate
subspace of L2(X) satisfies the following decay of correlations: if f1 and f2 are functions
in the subspace then

∫
X
f1 d` =

∫
X
f2 d` = 0 and there exist constants K, ρ > 0 such

that ∣∣∣∣∫
X

f1(gsx)f2(gtx) d`

∣∣∣∣ ≤ K|t − s|e−ρ|t−s|‖f1‖L2‖f2‖L2 . (2.1)

For f ∈ L1(X), let I (f ) =
∫
X
f d`. We denote by L the subspace in L2(X) of

functions f such that the decay of correlations (2.1) is satisfied when f1 and f2 are both
set to f − I (f ).

Lemma 2.2. Any function f ∈ L with I (f ) = 0 satisfies∫
X

(∫ T

0
f (gtx) dt

)2

d` ≤ 2KT ‖f ‖2
L2 . (2.3)

Proof. Observe that∫
X

(∫ T

0
f (gtx) dt

)2

d` =

∫
X

(∫ T

0

∫ T

0
f (gsx)f (gtx) ds dt

)
d`

=

∫ T

0

∫ T

0

(∫
X

f (gsx)f (gtx)d`

)
ds dt

≤

∫ T

0

∫ T

0
K|t − s|e−ρ|t−s|‖f ‖2

L2 ds dt

where we have used (2.1) in the last inequality. A direct computation shows∫ T

0

∫ T

0
K|t − s|e−ρ|t−s|‖f ‖2

L2 ds dt = K‖f ‖
2
L2

(
T

ρ2 (1+ e
−ρT )+

2
ρ3 (−1+ e−ρT )

)
≤ 2KT ‖f ‖2

L2 . ut
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Suppose n : R→ N is a function that is constant on each interval [2k, 2k+1).

Theorem 2.4. For any c > 1/2, m > 1 and any sequence of non-negative functions
fj ∈ L, almost every x satisfies

1
m
T ‖fn‖L1 − T

1/2(log T )c(‖fn‖2L2 − ‖fn‖
2
L1)

1/2

≤

∫ T

0
fn(gtx) dt ≤ mT ‖fn‖L1 + T

1/2(log T )c(‖fn‖2L2 − ‖fn‖
2
L1)

1/2

for all T large enough depending on x and m and where n = n(T ).

Proof. Given f ∈ L define
F(x) = f (x)− I (f ).

Then I (F ) = 0 and so by Lemma 2.2,∫
X

(∫ T

0
F(gtx) dt

)2

d` ≤ 2KT ‖F‖2
L2

for all T . By Chebyshev’s inequality, for any positive function r(T , F ) we have

`

({
x :

(∫ T

0
F(gtx) dt

)2

≥ r(T , F )

})
≤

2KT ‖F‖2
L2

r(T , F )
. (2.5)

Let c > 1/2 and set r(T , F ) = T (log T )2c‖F‖2
L2 in (2.5). Then we get

`

({
x :

(∫ T

0
F(gtx) dt

)2

≥ T (log T )2c‖F‖2
L2

)}
≤

2K
(log T )2c

. (2.6)

Starting from our sequence fj , let Fj be the sequence of functions given by

Fj (x) = fj (x)− I (fj ).

The estimate (2.6) above is satisfied by all functions Fj and in particular by Fn where
n = n(T ). Fix r = 1/a for some positive integer a > 1. Observe that for Tk = 2rk ,

∞∑
k=1

2K
(log Tk)2c

=

∞∑
k=1

2K
(rk)2c

<∞.

Hence by the Borel–Cantelli lemma, almost every x satisfies(∫ Tk

0
Fn(gtx) dt

)2

≤ Tk(log Tk)2c‖Fn‖2L2 (2.7)

for all k large enough depending on x and a. Similarly, if we set r(T , F ) =
(T /2r)(log(T /2r))2c‖F‖2

L2 and shift n(T ) to n(T /2), the same reasoning by using the
Borel–Cantelli lemma implies that almost every x satisfies(∫ Tk+1

0
Fn(gtx) dt

)2

≤ Tk(log Tk)2c‖Fn‖2L2 (2.8)
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for all k large enough depending on x and a. Hence a full measure set of x satisfies both
(2.7) and (2.8). Noting that Fn(gtx) = fn(gtx)− I (fn) and ‖Fn‖2L2 = ‖fn‖

2
L2 − I (fn)

2,
we can rewrite the above estimates as∣∣∣∣∫ Tk

0
fn(gtx) dt − TkI (fn)

∣∣∣∣ ≤ T 1/2
k (log Tk)c(‖fn‖L2 − I (fn)

2)1/2,∣∣∣∣∫ Tk+1

0
fn(gtx) dt − Tk+1I (fn)

∣∣∣∣ ≤ T 1/2
k (log Tk)c(‖fn‖L2 − I (fn)

2)1/2.

Over the intermediate times Tk < T < Tk+1 the number n does not vary. So the func-
tion fn being considered remains the same. Now we use the assumption that fn is a
non-negative function to get an estimate as above for the intermediate times. Since fn is
non-negative, the time integral of fn is non-decreasing. In particular,∫ Tk

0
fn(gtx) dt ≤

∫ T

0
fn(gtx) dt ≤

∫ Tk+1

0
fn(gtx) dt.

Observe that

TkI (fn)− T
1/2
k (log Tk)c(‖fn‖2L2 − I (fn)

2)1/2

≥
1
2r
T I (fn)− T

1/2(log T )c(‖fn‖2L2 − I (fn)
2)1/2 (2.9)

and

Tk+1I (fn)+ T
1/2
k (log Tk)c(‖fn‖2L2 − I (fn)

2)1/2

≤ 2rT I (fn)+ T 1/2(log T )c(‖fn‖2L2 − I (fn)
2)1/2. (2.10)

Finally, note I (fn) = ‖fn‖L1 . The left hand side of (2.9) is the lower bound in (2.7) and
the left hand side in (2.10) is the upper bound in (2.8). Thus we get

1
2r
T I (fn)− T

1/2(log T )c(‖fn‖2L2 − ‖fn‖
2
L1)

1/2

≤

∫ T

0
fn(gtx) dt ≤ 2rT I (fn)+ T 1/2(log T )c(‖fn‖2L2 − ‖fn‖

2
L1)

1/2.

The theorem follows by choosing a so large that r = 1/a satisfies 2r < m. ut

We also prove a variant of Lemma 2.2 which we will need later for quasi-independence
of excursions.

Lemma 2.11. For any S1 < S2 < T and every non-negative function f ∈ L,∫
X

(∫ S2

S1

f (gsx) ds

∫ T

S2

f (gtx) dt

)
d`

< (S2 − S1)(T − S2)‖f ‖
2
L1 +

5K
ρ
(‖f ‖2

L2 − I (f )
2) (2.12)

where K, c are the constants in the decay of correlations (2.1).
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Proof. For any f ∈ L, define

F(x) = f (x)− I (f ).

Then I (F ) = 0 and so F satisfies the decay of correlations (2.1). Note that∫
X

F(gsx)F (gtx) d` =

∫
X

f (gsx)f (gtx) d`− I (f )
2

and ‖F‖2
L2 = ‖f ‖

2
L2 − I (f )

2. It follows that∣∣∣∣∫
X

f (gsx)f (gtx) d`− I (f )
2
∣∣∣∣ ≤ K|t − s|e−ρ|t−s|(‖f ‖2L2 − I (f )

2),

which implies∣∣∣∣∫
X

f (gsx)f (gtx) d`

∣∣∣∣ ≤ I (f )2 +K|t − s|e−ρ|t−s|(‖f ‖2L2 − I (f )
2).

For non-negative functions f this implies∫
X

(∫ S2

S1

f (gsx) ds

∫ T

S2

f (gtx) dt

)
d` =

∫ T

S2

∫ S2

S1

(∫
X

f (gsx)f (gtx) d`

)
ds dt

≤

∫ T

S2

∫ S2

S1

[I (f )2 +K|t − s|e−ρ|t−s|(‖f ‖2
L2 − I (f )

2)] ds dt

< (S2 − S1)(T − S2)I (f )
2
+

5K
ρ
(‖f ‖2

L2 − I (f )
2)

where the last inequality follows from a direct computation. ut

3. Partial sums of excursions for non-uniform lattices in SL(2,R)

The Liouville measure ` on T 1H2 is invariant under the SL(2,R) action and descends to
a flow-invariant measure on T 1X = 0\T 1H2. To get a probability measure ` on T 1X we
normalize by passing to

d`→
1

2π |χ(X)|
d`,

where χ(X) is the Euler characteristic of X. For notational simplicity we continue to call
the probability measure d`.

The geodesic flow on T 1X is given by the action of the diagonal subgroup of
SL(2,R). It is ergodic with respect to `. In fact, it is known to be exponentially mixing.
As shown in [26], SO(2,R)-invariant L2-functions on T 1X satisfy the following decay of
correlations for the diagonal flow: There exist constants K, ρ > 0 such that for any pair
f1, f2 of SO(2,R)-invariant L2-functions on T 1X with

∫
T 1X f1 d` =

∫
T 1X f2 d` = 0,∣∣∣∣∫

T 1X
f1(x)f2(gtx) d`

∣∣∣∣ ≤ Kte−ρt‖f1‖L2‖f2‖L2 . (3.1)
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See also [27, Theorem 2], [25, Corollary 2.1]. In particular, the lifts to T 1X of L2-
functions on X are SO(2,R)-invariant by default, so the above decay of correlations
applies to them.

For R ≥ 1, let YR be the subset of the horoballs H consisting of those points which
are at least logR away from the boundary of the horoballs in the hyperbolic metric, i.e.

YR :=
⋃
H∈H
{x ∈ H : d(x, ∂H) ≥ logR}.

Let XR ⊂ X be the quotient of 0\YR . In particular, X1 = Xcusp. We will write T 1Y for
the restriction of the unit tangent bundle to any subset Y ⊂ X. An elementary calculation
shows that

`(T 1XR) =
1
R

`(T 1Xcusp)

`(T 1X)
=
CX

R

where to simplify notation, henceforth we set `(T 1Xcusp)/`(T
1X) to be CX. Let χR be

the characteristic function of T 1XR and let

φR = χR/2 − χR.

Note that

‖φR‖L1 = CX/R and ‖φR‖L2 =

√
CX/
√
R.

During an excursion of size at leastR, a geodesic γ must cross T 1XR/2\T
1XR twice dur-

ing a complete excursion and at least once during a partial excursion. By basic hyperbolic
geometry, the geodesic spends time greater than log 2 each time it crosses T 1XR/2\T

1XR .
The next proposition allows us to show that along Leb-almost every geodesic ray, for

all times T large enough there is at most a single “large” excursion. The proposition is a
continuous time refinement of [9, Lemma 2.1] and the proof uses Lemma 2.11.

Proposition 3.2. For any c > 1/2 and for `-almost every v ∈ T 1X there exists T (v)
such that for all T > T (v),

E(γ,Hi) ≥ T (log T )c

for at most a single Hi ∈ Hγ,T , where γ is the geodesic ray with v(γ0) = v.

For the rest of the discussion, let Tn = 2n. Proposition 3.2 follows from

Proposition 3.3. For any c > 1/2 and for `-almost every v ∈ T 1X there exists a non-
negative integer n(v) such that for all n > n(v),

E(γ,Hi) ≥ Tn−1(log Tn−1)
c

for at most a single Hi ∈ Hγ,Tn , where γ is the geodesic ray with v(γ0) = v.
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Proof. Let λ = log Tn−1+c log log Tn−1. By basic hyperbolic geometry, the time it takes
a geodesic to go from the boundary of a horoball to XR where R = Tn−1(log Tn−1)

c

is bounded between λ and log(Tn−1(log Tn−1)
c
+

√
T 2
n−1(log Tn−1)2c − 1) < λ + log 2.

Similarly, let λ′ = λ − log 2. Then λ′ is a lower bound on the time it takes a geodesic to
go from the boundary of a horoball to XR/2 where R = Tn−1(log Tn−1)

c.
For positive integers j ≤ bTn/λc, let Sj = jλ. Let

Vn,k =

{
v ∈ T 1X :

∫ Sk+2+λ
′

Sk

φR(v(γs)) ds > log 2 and
∫ Tn

Sk+2+λ′
φR(v(γt )) dt > log 2

}
.

By applying Chebyshev’s inequality to the estimate in Lemma 2.11 for the function φR
we get

`(Vn,k) ≤
(Sk+2 + λ

′
− SK)(Tn − Sk+2 − λ

′)

(log 2)2
C2
X

R2 +
1

(log 2)2
5KCX
ρR

[
1−

CX

R

]
<

6λC2
X

(log 2)2Tn−1(log Tn−1)2c
+

5KCX
ρ(log 2)2Tn−1(log Tn−1)c

.

In the last inequality we have used Tn − Sk+2 − λ
′ < Tn = 2Tn−1.

Let W be the set of v ∈ T 1X such that the corresponding geodesic γ has two ex-
cursions E(γ,Hi) and E(γ,Hj ) till time Tn satisfying E(γ,Hi) ≥ Tn−1(log Tn−1)

c and
E(γ,Hj ) ≥ Tn−1(log Tn−1)

c. Let S be the time at which the first big excursion E(γ,Hi)
begins. Let k be such that Sk ≤ S < Sk+1. Because of our choice of λ the first excursion
E(γ,Hi)must end after Sk+2. Thus, the second big excursion E(γ,Hj ) also has to begin
after Sk+2. Because of the choice of λ′ the geodesic cannot cross T 1XR/2 \ T

1XR during
E(γ,Hj ) before Sk+2 + λ

′. Thus, v ∈ Vn,k . Let

Vn =

bTn/λc−2⋃
k=0

Vn,k.

Using the upper bound on `(Vn,k) we get

`(Vn) ≤

bTn/λc∑
k=1

`(Vn,k) <
6TnC2

X

(log 2)2Tn−1(log Tn−1)2c
+

5KTnCX
ρ(log 2)2λTn−1(log Tn−1)c

<
b1Tn

Tn−1(log Tn−1)2c
+

b2Tn

Tn−1(log Tn−1)1+c

≤
2b1

(log Tn−1)2c
+

2b2

(log Tn−1)1+c

for some constants b1, b2 > 0. Since c > 1/2 it follows that
∑
n `(Vn) < ∞. Proposi-

tion 3.3 then follows by the Borel–Cantelli lemma. ut

Proof of Proposition 3.2. Let n be such that Tn−1<T ≤Tn. Since E(γ,H)≥T (log T )c

implies E(γ,H) > Tn−1(log Tn−1)
c, Proposition 3.2 follows from Proposition 3.3. ut
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Remark 3.4. It is important to observe that Proposition 3.3 holds under the weaker con-
dition that there is a constant A > 1 such that for R sufficiently large

1/(AR) < `(T 1XR) < A/R.

This observation will be of relevance for a similar proposition in the setting of quadratic
differentials.

Recall that x0 is a base-point and T 1
x0
X can be identified with S1.

Corollary 3.5. For any c > 1/2 and Leb-almost every r ∈ S1 there is T (r) such that if
T > T (r) then

E(γ,Hi) ≥ T (log T )c

for at most a single Hi ∈ Hγ,T , where γ is the geodesic ray from x0 to r .

Proof. It follows from Proposition 3.2 that the conclusion is true for generic base-points.
Suppose γ0 and γ1 are geodesic rays from distinct base-points x0 and x1 converging to
the same point r at infinity and letH be a horoball. Let πH be the closest point projection
to H and let a = d∂H (πHx0, πHx1). Then we have the crude bound

E(γ0, H)− 2ae−τ − 2 ≤ E(γ1, H) ≤ E(γ,H)+ 2ae−τ + 2,

where τ is the minimum of d(x0, H) and d(x1, H). So for H that is far enough the
excursions by γ0 and γ1 are the same up to a uniform additive constant. This implies the
corollary. ut

Define the function ψ : X→ R by

ψ(x) =

{
0 if x ∈ Xthick,

(2/π)ed(x,∂Xthick) otherwise.

Let 9 : T 1X → R be the lift of ψ to T 1X. By definition, the function 9 is SO(2,R)-
invariant.

Suppose a geodesic ray γ has a complete excursion in a horoball H entering and
exiting H at times T1 and T2 respectively. We relate the time integral of 9 between T1
and T2 to E(γ,H).

Conjugating if necessary, we may assume thatH is the horoball {z : Im(z) ≥ 1} in the
upper half-space model. The function ψ then takes the form ψ(z) = (2/π)Im(z) on H
and 0 otherwise. Conjugating further by z 7→ z + a for some a ∈ R we may assume
that γ is the geodesic with endpoints {A,−A} ∈ R for some A ≥ 1. We parameterize γ
with unit speed from A to −A. Then, as complex numbers, γ (T1) =

√
A2 − 1 + i and

γ (T2) = −
√
A2 − 1 + i. Note that E(γ,H) = 2

√
A2 − 1. Let θ0 = Arg(γ (T1)). Then

Arg(γ (T2)) = π − θ0. By elementary integration, it follows that∫ T2

T1

9(v(γt )) dt =

∫ π−θ0

θ0

2A
π
dθ =

2A
π
(π − 2θ0) = 2A−

4Aθ0

π
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Since sin θ0 = 1/A, it follows that

E(γ,H)− 2 <
∫ T2

T1

9(v(γt )) dt < E(γ,H)+ 2, (3.6)

i.e. for complete excursions the time integral of 9 is E(γ,H) up to a uniform additive
error.

To analyze a partial excursion, we parameterize γ by Aeiθ between θ0 and π − θ0.
Suppose θ ∈ (θ0, π − θ0). Then the partial excursion till Aeiθ is given by

E(γ,H) = A(cos θ0 − cos θ).

On the other hand, the time integral is given by∫
9(v(γt )) dt =

2A
π
(θ − θ0),

where T3 < T are the times such that γT3 = Ae
iθ0 and γT = Aeiθ . The difference of the

right hand sides above is symmetric about π/2 so we may restrict to (θ0, π/2]. Then the
difference has a crude upper bound given by

A

(
2
π
(θ − θ0)− (cos θ0 − cos θ)

)
≤

2A
π
θ ≤ A sin θ.

Note that 9(v(γθ )) = (2/π)Im(Aeiθ ) = (2/π)A sin θ . It follows that for a partial excur-
sion

E(γ,H)−
π

2
9(v(γT )) <

∫ T

T3

9(v(γt )) dt < E(γ,H)+
π

2
9(v(γT )), (3.7)

where T3 < T is the time at which the excursion begins.
Recall that χR is the characteristic function of T 1XR . We define truncations of 9 by

9R(v) = 9(v)(χ1(v)− χR(v)),

where χ1 is the characteristic function of T 1X1 = T
1Xcusp. Note that while 9 is not L1,

the truncations 9R satisfy

‖9R‖L1 =
2CX
π

logR and ‖9R‖L2 =
2
√
CX

π

√
R.

Inequalities (3.6) and (3.7) show that partial sum of excursions (minus the largest excur-
sion), i.e. the numerator in Theorem 1.2, is estimated by the time integral of a suitable
truncation of 9 up to an additive error that is linear in the number N of excursions. The
next lemma shows that N grows linearly in T .

Lemma 3.8. There is a constant η > 0 such that for Leb-almost every r ∈ S1,

lim
T→∞

N

T
= η.

Proof of Lemma 3.8. One can follow an approach similar to Schmidt’s theorem in the
theory of Diophantine approximation [1, Theorem 1.1 with k = 1]. For completeness, we
give a weaker but more direct proof below.
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For v ∈ T 1(X \ Xthick), let γ be the geodesic such that v(γ0) = v, i.e. the geodesic
whose unit tangent vector at t = 0 is v. For almost every v, the geodesic γ intersects
∂Xthick both in the forward and backward directions. Let Tb < 0 and Tf > 0 be the
first instances of these intersections, i.e. the first instances backward and forward along γ
when it intersects the boundary of the horoball containing π(v). Set

ξ(v) =
1

Tf − Tb
.

This defines a non-negative function ξ : T 1(X \ Xthick) → R≥0 which we extend by
setting it zero outside. It is straightforward to see that for almost every r ∈ S1,∫ T

0
ξ(v(γt )) dt = N.

We claim that ξ ∈ L1(T 1X). Let Rk = 1+ 1/2k and consider T 1XRk \ T
1XRk−1 . Since

log(1 + 1/2k) = 1/2k − 1/22k+1
+ higher order terms, there exists a constant b3 > 0

such that
`(T 1XRk−1 \ T

1XRk ) < b3/2k

for all k large enough. By basic hyperbolic geometry, for any v ∈ T 1XRk \ T
1XRk−1 ,

ξ(v) ≤
1

2 log(1+ 1/2k +
√
(1+ 1/2k)2 − 1)

<
1

2 log(1+
√

1/2k + 1/2k)
< b42k/2

for some constant b4 > 0 and all k large enough. This gives the bound∫
T 1XRk \T

1XRk−1

ξ d` <
b3b4

2k/2
,

which proves that ξ ∈ L1. The lemma follows by applying the ergodic theorem to ξ . ut

Proof of Theorem 1.2. While not necessary, for notational simplicity we set the constants
c > 1/2 in Proposition 3.2 and in Theorem 2.4 to be equal. Consider the sequence of
functions 92k . For T such that 2k ≤ T < 2k+1 we set n(T ) = bk+ c log2 kc where b c is
the greatest integer function. By Theorem 2.4 applied to the sequence of functions 92n ,
we know that for any c > 1/2 and m > 1, `-almost every v = v(γ0) ∈ T

1X satisfies the
lower bound

1
m
T ‖92n‖L1 − T

1/2(log T )c(‖92n‖
2
L2 − ‖92n‖

2
L1)

1/2
≤

∫ T

0
92n(v(γt )) dt

and the upper bound∫ T

0
92n(v(γt )) dt ≤ mT ‖92n‖L1 + T

1/2(log T )c(‖92n‖
2
L2 − ‖92n‖

2
L1)

1/2
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for all T large enough depending on v and m. Let r = T (log T )c/2n. Then 1 < r < 3.
Substituting the L1- and L2-norms of 92n in T 1/2(log T )c(‖92n‖

2
L2 − ‖92n‖

2
L1)

1/2, we
get the upper bound

T 1/2(log T )c
(

4CX
rπ2 T (log T )c −

4C2
X

π2 (log T + c log log T − log r)2
)1/2

≤
2
√
CX

π
√
r
T (log T )3c/2.

Thus the preceding pair of inequalities become

2CX
mπ

T (log T +c log log T − log r)−
2
√
CX

π
√
r
T (log T )3c/2 ≤

∫ T

0
92n(v(γt )) dt, (3.9)∫ T

0
92n(v(γt )) dt ≤

2mCX
π

T (log T+c log log T−log r)+
2
√
CX

π
√
r
T (log T )3c/2. (3.10)

We choose c < 2/3. Let Um be the full measure set in T 1X satisfying (3.9) and (3.10).
Consider the countable intersection

U =
⋂
a∈N

U1+1/a .

Then U has full measure and for v in U the constraint c < 2/3 implies

lim
T→∞

1
T log T

∫ T

0
92n(v(γt )) dt =

2CX
π
. (3.11)

By the same reasoning as in the proof of Corollary 3.5 the above limit is true for any
base-point x0 and for Leb-almost every r ∈ S1.

It remains to relate the time integral of 92n to partial sums of excursions. Enumerate
the horoballs in Hγ,T as H1, . . . , HN in the order of increasing time. For a complete ex-
cursion E(γ,Hi) satisfying E(γ,Hi) ≤ T (log T )c, the difference between E(γ,Hi) and
the time integral of92n between the entry and exit points forHi is at most 2 by (3.6). This
implies that the additive error contributed by complete excursions less than the threshold
is bounded above by 2N .

If E(γ,Hi) > T (log T )c then by Corollary 3.5 it is the unique excursion that exceeds
the threshold. Let T1 < T2 be the entry and exit times for Hi . In this case, note that∫ T2

T1

92n(v(γt )) dt < 2T (log T )c.

If there is a partial excursion then let T3 < T be the time at which γ enters HN . If the
partial excursion exceeds the threshold then notice that∫ T

T3

92n(v(γt )) dt < 2T (log T )c.

Otherwise, by (3.7) the difference between the time integral and the partial excursion
is at most (π/2)9(v(γT )), which in turn is bounded above by T (log T )c.
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Using the estimates above and also (3.6) and (3.7) we get∫ T

0
92n(v(γt )) dt − 2N − 4T (log T )c < E(γ, T )− max

1≤k≤N
E(γ,Hk)

<

∫ T

0
92n(v(γt )) dt + 2N + 4T (log T )c. (3.12)

Theorem 1.2 then follows from putting together (3.11), (3.12) and Lemma 3.8. ut

Proof of the Diamond–Vaaler Theorem 1.3. For the modular surface X = SL(2,Z)\H2

the lift to H2 of the largest embedded cusp neighborhood in X is the well-known Ford
packing: in the upper half-space model, we get horoballs resting at rational points, the Eu-
clidean radius of the horoball with the point at infinity p/q in reduced form being 1/(2q2).

With the cusp neighborhood fixed as above, Theorem 1.2 for X states that for any
base-point x0 and for Leb-almost every r ∈ S1,

lim
T→∞

E(γ, T )−maxk≤N E(γ,Hk)
T log T

=
6
π2 , (3.13)

where γ is the geodesic ray from x0 to r . To derive the Diamond–Vaaler result (Theorem
1.3) from the above limit, we relate excursions to continued fraction coefficients of r , and
time T along the geodesic to the number n of continued fraction coefficients.

In the upper half-space model, for r ∈ [0, 1] irrational, let [a1, a2, . . . ] be the infinite
continued fraction expansion of r . Let pn/qn = [a1, . . . , an] be the n-th convergent of r
and let H ′n be the horoball with pn/qn as the point at infinity. We first consider vertical
geodesics: for r ∈ [0, 1] let γ ′ be the vertical geodesic ray from (r, i) ∈ H2 to (r, 0) ∈
S1
= R ∪∞.
The ray γ ′ has excursions in horoballs that are given by rational approximations of r

satisfying |r − p/q| ≤ 1/(2q2). By a classical theorem for continued fractions, such
rationals are a subset of the convergents pn/qn. If an ≥ 2 then an − 1 < E(γ ′, H ′n) <

an+1. However, if an = 1 then γ ′ may or may not intersectH ′n and we setE(γ ′, H ′n) = 0
if it does not. In any case, excursions of γ ′ are equal to the coefficients up to a uniform
additive error, and hence we get

n∑
k=1

E(γ ′, H ′k)− n ≤

n∑
k=1

ak ≤

n∑
k=1

E(γ ′, H ′k)+ n. (3.14)

By classical theory of continued fractions [8, Proposition 4.8.2(4)], for Leb-almost
every r ,

lim
n→∞

log qn
n
=

π2

12 log 2
.

Since pn/qn→ r , the same limit is true for (logpn)/n. Up to a transposition of columns,
the matrix Qn with columns [pn−1, qn−1]

t and [pn, qn]t is in SL(2,Z). The hyperbolic
translation length of the matrix up to a uniform additive error is 2 log(trace). By the
above discussion, log(trace) is log qn up to a uniform additive error. So let 2 log qn = Tn.
Recall that Qn acts on the upper half-plane by Möbius transformations. Geometrically
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Qn(r, i) is the orbit point closest to γ ′Tn with the distance between them bounded above
by the diameter of Xthick, i.e. uniformly bounded from above. This implies that along the
sequence of times 2 log qn = Tn the limit n/Tn is (6 log 2)/π2. It should be pointed out
that the number N of horoballs that γ ′ actually intersects till Tn is less than or equal to n,
and in fact N/Tn will have a different limit as Tn→∞.

The geodesic ray γ from x0 to r and the vertical ray γ ′ are asymptotic. Set

a = max
H∈H

d∂H (πHx0, πH (r, i))

where πH is the closest point projection to H . Then we have the crude bound

E(γ,H)− 2ae−τ − 2 < E(γ ′, H) < E(γ,H)+ 2ae−τ + 2

where τ is the minimum of d(x0, H) and d((r, i),H). Let d be the distance between
horocycles with r at infinity that pass through x0 and (r, i) respectively. Then depending
on the case we get the crude bound

E(γ, Tn ± d)− 2(a + 1)(n+ 2η(Tn + d))

≤

∑
k≤n

E(γ ′, H ′k) ≤ E(γ, Tn ± d)+ 2(a + 1)(n+ 2η(Tn + d)).

The estimate above implies that

lim
n→∞

∑
k≤n E(γ

′, H ′k)−maxk≤n E(γ ′, H ′k)

T log T

= lim
Tn→∞

E(γ, Tn ± d)−maxk≤N E(γ,Hk)
Tn log Tn

=
6
π2

where the second equality follows from the fact that passing to Tn instead of Tn ± d in
the numerator introduces an additive error of at most ed . Finally, note that ak − 1 ≤
E(γ ′, H ′k) ≤ ak + 1, and so for Leb-almost every r ∈ [0, 1],

lim
n→∞

∑n
k=1 ak −maxk≤n ak

n log n

= lim
n→∞

∑
k≤n E(γ

′, H ′k)−maxk≤n E(γ ′, H ′k)

Tn log Tn

Tn log Tn
n log n

=
6
π2

π2

6 log 2
=

1
log 2

,

finishing the proof of Theorem 1.3. ut

4. Partial sums along random Teichmüller geodesics in a stratum of quadratic
differentials

4.1. Preliminaries from Teichmüller theory

Let S be a hyperbolic surface of finite type, i.e. a surface of finite area which may have
boundary components or punctures. We say such a surface S is sporadic if it is a sphere
with at most four punctures or boundary components, or a torus with at most one puncture
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or boundary component. We shall be primarily interested in non-sporadic surfaces, as in
the sporadic cases the Teichmüller spaces are either trivial, or isometric to H2, which
reduces us to the case of a non-uniform lattice in SL(2,R).

Let S be a non-sporadic surface which has no boundary components, but may have
punctures. The Teichmüller space T (S) is the space of marked conformal structures on S.
Alternatively, by uniformization, it is the space of marked hyperbolic metrics on S. We
shall consider T (S) together with the Teichmüller metric

dT (X, Y ) =
1
2 inf
f

logK(f )

where the infimum is taken over all quasiconformal maps f : X → Y , and K(f ) is
the quasiconformal constant for the map f . The mapping class group Mod(S) acts by
isometries on T (S). Let T (S)ε be the thin part of the Teichmüller space, i.e. all sur-
faces which contain a curve of hyperbolic length at most ε. Let M(S) be the moduli
space Mod(S)\T (S). The thin part T (S) is Mod(S)-invariant. The thin part M(S)ε of
the moduli space is the quotient Mod(S)\T (S)ε .

Let Q(X) be the unit area meromorphic quadratic differentials onX with simple poles
at all the punctures of X. If (k1, . . . , kr) are the multiplicities of the zeros of a quadratic
differential q then k1 + · · · + kr = 4g − 4 + 2m where m is the number of punctures
of X. By contour integration, a quadratic differential q defines a half-translation structure
on S, i.e. it defines charts from S to C with transition functions of the form z 7→ ±z+ c.
The resulting flat metric has a cone singularity with cone angle (k + 2)π at a zero of q
of order k (or with k = −1 at a simple pole). A quadratic differential is unit area if the
corresponding flat metric has unit area. The space Q of unit area quadratic differentials
can be identified with the unit cotangent bundle to T (S) [16]. We let π : Q → T (S)
be the projection which sends a quadratic differential to its underlying Riemann surface.
The space Q is stratified by the multiplicities of the zeros: we denote the strata with
multiplicities α = (k1, . . . , kr) by Q(α). For each stratum, the number of connected
components is bounded [18], [7]. To simplify notation, we continue to write Q(α) for a
connected component of Q(α).

For any q ∈ Q(α) there is a canonical ramified double cover such that the lift of q
is the square of a holomorphic 1-form ω and (X, q) is a quotient of the double cover
with respect to hyper-elliptic involution. Fixing a basis for the anti-invariant (with re-
spect to hyper-elliptic involution) part of the homology of the double cover relative to
the singularities, the holonomies (periods) given by integrating ω over the basis define
local co-ordinates on Q(α). The natural volume form in these co-ordinates defines the
Masur–Veech measure. Alternatively, it is known as the holonomy measure. We shall de-
note it by µhol. The measure µhol is Mod(S)-invariant. So it descends to a measure on
Mod(S)\Q(α), the corresponding stratum of the moduli space of quadratic differentials.
We continue to denote it by Q(α). The µhol-volume of Q(α) is finite [21], [29].

The affine action of SL(2,R) on the charts of C = R2 preserves the glueing by
half-translations. This defines an action of SL(2,R) on Q(α). The orbits SL(2,R)(q)
foliate Q(α). The compact part SO(2,R) acts by rotations of R2. Hence, it preserves
the conformal structure. The action of the diagonal subgroup defines the Teichmüller
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geodesic flow. It shrinks the leaves of the vertical foliation for q and stretches the leaves
of the horizontal foliation for q by the same factor. It follows from the definition that µhol
is SL(2,R)-invariant.

Since SO(2,R) preserves the conformal structure, we get an isometrically embedded
H2
= SL(2,R)/SO(2,R) in T (S). This is called a Teichmüller disc, and we will denote

the Teichmüller disc determined by q as D(q). The Teichmüller metric restricted to D(q)
is isometric to that of the hyperbolic plane of constant curvature −4.

In the flat metric defined by a quadratic differential q, a saddle connection is a
geodesic segment that connects a pair of (same or distinct) singularities of q. The ε-thin
part Q(α)ε of Q(α) is the subset of q such that `2

q(β) ≤ ε for some saddle connection β.
The points q ′ in SL(2,R)(q) where `2

q ′
(β) ≤ ε project to a horoball in D(q). The

point at infinity of the horoball is given by the direction in which β is vertical. When
two saddle connections β1 and β2 are parallel, the proportion [`q ′(β1) : `q ′(β2)] as a
function of q ′ is constant. Hence, the horoball is determined by the saddle connection
with the shortest holonomy in a collection of parallel saddle connections. Typically, the
intersection Q(α)ε ∩ D(q) is a complicated collection of horoballs in D(q) with their
interiors having intersections. Every point in D(q) is contained in at most finitely many
horoballs. But there need not be a uniform upper bound over D(q) for this number. This
makes it hard to estimate the dthick-distance between the entry and exit points of a geodesic
in Q(α)ε ∩D(q), which would have been a natural analog of an excursion in this context.
Instead, we consider excursions in individual horoballs.

The excursions in horoballs in D(q) of a geodesic γ till time T are defined as follows.
For a horoballH that γ enters and exits, the complete excursionE(γ,H) is defined as the
distance along ∂H between the entry and exit points. If γT ∈ H then the partial excursion
E(γ,H) is defined as the distance along ∂H between the entry point of γ and πH (γT )
where πH : H → ∂H is the closest point projection. Let H1, . . . , HN(T ) denote all the
horoballs that γ intersects till time T . The total excursion E(γ, T ) is defined as

E(γ, T ) =
∑

k≤N(T )

E(γ,Hk).

When horoballs have disjoint interiors, these definitions coincide with the definitions in
Section 1.1. With intersections, the excursions E(γ,Hk) can be simultaneous and there
can be several partial excursions when γT is in the thin part.

4.2. SL(2,R) orbit closures and invariant measures

Recently, Eskin and Mirzakhani [12, Theorem 1.4] showed that ergodic SL(2,R)-invari-
ant probability measures are of Lebesgue class and are supported on invariant complex
submanifolds in Q(α). These manifolds are affine in the sense that in the holonomy co-
ordinates on Q(α) they are cut out by linear equations. Going further, Eskin, Mirzakhani
and Mohammadi [13, Theorem 2.1] showed that all SL(2,R) orbit closures are affine
invariant submanifolds. See [12, Section 1] for more details. More recently, Filip [14]
showed that these submanifolds are in fact algebraic subvarieties.
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4.3. Thin parts and regularity for invariant measures

Let µ be an ergodic SL(2,R)-invariant probability supported on an affine invariant sub-
manifold N ⊂ Q(α). For ε > 0, we define the ε-thin part of N as follows:

Nε = {q ∈ N : `2
q(β) ≤ ε for some saddle connection β}.

Saddle connections β1, β2 are N -parallel if they are parallel for an open subset of
quadratic differentials in N [31, Definition 4.6].

Regularity. For ε, κ > 0 small enough, let Nε,κ be the subset of q ∈ N such that there is
a pair of saddle connections β1, β2 not N -parallel such that `2

q(β1) ≤ ε and `2
q(β2) ≤ κ .

The measureµ is said to be regular if there exists a constantm1 > 0 such that for ε, κ > 0
small enough we have

µ(Nε,κ) ≤ m1εκ. (4.4)

Masur and Smillie [23, Section 10, Claim (7)] showed that the holonomy measure µhol is
regular. Avila, Matheus and Yoccoz [4, Theorem 1.2] proved a weaker version of regular-
ity for any SL(2,R)-invariant measure.

4.5. SL(2,R)-invariant loci, Siegel–Veech transform and volume asymptotic

For q ∈ N , let V (q) ⊂ R2
\ {(0, 0)} be an assignment of a non-empty subset of

holonomies of saddle connections on q. We require that the assignment varies linearly
under the SL(2,R) action, i.e. V (gq) = gV (q) for all g ∈ SL(2,R). As observed in
[10], such an assignment satisfies conditions (B) and Cµ mentioned in that paper for any
SL(2,R)-invariant measure µ. Such a V will be called an SL(2,R)-invariant locus.

Let f be a smooth function on R2 with compact support. The Siegel–Veech transform
associated to an SL(2,R)-invariant locus V is defined as

f̂ (q) =
∑
v∈V (q)

f (v).

Veech showed that f ∈ L1(N , µ) and proved the Siegel–Veech formula∫
N
f̂ dµ = c(V, µ)

∫
R2
f dx dy (4.6)

where the constant c(V, µ) does not depend on f . The constant c(V, µ) is called the
Siegel–Veech constant associated to V and µ. We assume that the assignment V is such
that c(V, µ) > 0.

ForR ≥ 1, the ε/R-thin part of N corresponding to V is the set of q with some saddle
connection with holonomy in V having q-length squared less than ε/R. We denote this
set by N (V )ε/R .

Let fε/R be the characteristic function of the ball B((0, 0),
√
ε/R). While fε/R is not

smooth, the Siegel–Veech formula extends to such characteristic functions. The regularity
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condition (4.4) and the Siegel–Veech formula (4.6) applied to fε/R can be used to prove
the volume asymptotic

lim
R→∞

µ(N (V )ε/R)
πε/R

= c(V, µ). (4.7)

See [11, Section 7] for the main ideas.

4.8. Exponential mixing of Teichmüller flow:

It is known that the Teichmüller flow is exponentially mixing. For the Masur–Veech mea-
sure, the decay of correlations (3.1) for SO(2,R)-invariant L2-functions is due to Avila–
Gouëzel–Yoccoz [3] for holomorphic 1-forms and due to Avila–Resende [5] for quadratic
differentials. For general SL(2,R)-invariant measures this is due to Avila–Gouëzel [2].
Since the functions we consider are pullbacks from Teichmüller discs, they are SO(2,R)-
invariant. Hence, the decay of correlations applies to them.

5. Proofs of Theorem 1.9

5.1. The simplest case

We first prove Theorem 1.9 in the case when V (q) is the set of holonomies of all saddle
connections on q. This allows us to convey the key ideas while getting into fewer sub-
tleties. We denote the corresponding Siegel–Veech constant simply by c(µ).

Let q ∈ Nε . Consider short saddle connections in q. If some saddle connections are
parallel we choose the one with the smallest holonomy. Suppose that the lengths of these
short saddle connections are `2

q(β1) = ε/R1, . . . , `
2
q(βk) = ε/Rk with R1 ≥ · · · ≥

Rk ≥ 1. We define

9(q) =
2
π
R1 and 9(q) =

2
π
(R1 + · · · + Rk).

Obviously 9(q) ≥ 9(q) for all q. At first glance, the function 9 above is similar to
the function 9 defined in the context of non-uniform lattices. However, here there can
be simultaneous excursions. Hence, the sum over all excursions between successive entry
and exit times T1 < T2 for Nε can satisfy∑

H :γ [T1,T2]∩H 6=∅

E(γ,H)�

∫ T2

T 1
9(v(γt )) dt.

This discrepancy is rectified by using the larger function 9. The key point is to estimate
the difference in the L1- and L2-norms of the truncations of 9 and 9 in terms of the
depth in Nε of the truncations. This will enable us to show that the above discrepancy
does not happen too often.

For times T when γT is in the thick part, it would be interesting to relate the integral
over time of9 to dthick(γ0, γT ). In analogy with the observations preceding Theorem 1.5,
we expect their ratio to be asymptotic to a constant M > 0 that depends only on N .
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Let χR denote the characteristic function of Nε/R and define the truncation

9R = (χ1 − χR)9.

Lemma 5.2.

lim
R→∞

‖9R‖L1

logR
= 2εc(µ), lim

R→∞

‖9R‖L2
√
R
= 2
√
εc(µ)
√
π

.

Proof. It follows from (4.7) that for any A > 1 there is R0 such that for all R > R0,

1
A

πεc(µ)

R
< µ(Nε/R) < A

πεc(µ)

R
.

Fix r > 0 and for any positive integer k consider Nε/2(k−1)r \Nε/2kr . If k is large enough
that 2(k−1)r > R0 then the measure of the above set satisfies

πεc(µ)

2kr
2r − A2

A
< µ(Nε/2(k−1)r \Nε/2kr ) <

πεc(µ)

2kr
2rA2

− 1
A

.

Given r , we choose A close to 1 such that

2r − 1
2r

<
2r − A2

A
<

2rA2
− 1

A
< 2r(2r − 1). (5.3)

Let n be the largest integer such that 2nr ≤ R. The L1-norm of 9R can be estimated by

2
π

n∑
k=1

2(k−1)rµ(Nε/2(k−1)r \Nε/2kr ) < ‖9R‖L1 <
2
π

n+1∑
k=1

2krµ(Nε/2(k−1)r \Nε/2kr ).

Let n0 be the smallest integer such that 2n0r ≥ R0. We assume that R � R0. The sum-
mation in the lower bound on the left satisfies

n∑
k=0

2(k−1)rµ(Nε/2(k−1)r \Nε/2kr ) >

n0−1∑
k=1

2(k−1)rµ(Nε/2(k−1)r \Nε/2kr )

+

n∑
k=n0

2(k−1)r πεc(µ)

2kr
2r − 1

2r
.

The right hand side of the above inequality simplifies to

n0−1∑
k=1

2(k−1)rµ(Nε/2(k−1)r \Nε/2kr )+
(n− n0)πεc(µ)

2r
2r − 1

2r
.

As R becomes large, the second term dominates and since (n−n0)/logR→ 1/(r log 2),
the above expression simplifies to

2
22r log 2

2r − 1
r

εc(µ) < lim
R→∞

‖9R‖L1

logR
,
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which as r → 0 implies

2εc(µ) ≤ lim
R→∞

‖9R‖L1

logR
.

Similarly the summation for the upper bound on ‖9R‖L1 gives

2
2r log 2

2r − 1
r

εc(µ) > lim
R→∞

‖9R‖L1

logR
,

which as r → 0 implies

2εc(µ) ≥ lim
R→∞

‖9R‖L1

logR
,

proving the lemma for the L1-norm.
In a similar way, the square of the L2-norm of 9R can be estimated by

4
π2

n∑
k=1

22(k−1)rµ(Nε/2(k−1)r \Nε/2kr ) < ‖9R‖
2
L2 <

4
π2

n+1∑
k=1

22krµ(Nε/2(k−1)r \Nε/2kr ).

The summation in the lower bound satisfies

n∑
k=1

22(k−1)rµ(Nε/2(k−1)r \Nε/2kr ) >

n0−1∑
k=1

22(k−1)rµ(Nε/2(k−1)r \Nε/2kr )

+

n∑
k=n0

22(k−1)r πεc(µ)

2kr
2r − 1

2r
.

The right hand side above is equal to

n0−1∑
k=1

22(k−1)rµ(Nε/2(k−1)r \Nε/2kr )+
2(n+1)r

− 2n0r

2r − 1
πεc(µ)

22r
2r − 1

2r
,

which is greater than

n0−1∑
k=1

22(k−1)rµ(Nε/2(k−1)r \Nε/2kr )+
πεc(µ)R

23r −
2n0rπεc(µ)

23r .

As R becomes large, the term containing R dominates, and letting r → 0 we get the
lower bound

2
√
εc(µ)
√
π
≤ lim
R→∞

‖9R‖L2
√
R

.
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Similarly the summation in the upper bound satisfies

n+1∑
k=1

2krµ(Nε/2(k−1)r \Nε/2kr ) <

n0−1∑
k=1

22krµ(Nε/2(k−1)r \Nε/2kr )

+

n+1∑
k=n0

22kr πεc(µ)

2(k−1)r 2r(2r − 1)

<

n0−1∑
k=1

22krµ(Nε/2(k−1)r \Nε/2kr )+ 24rRπεc(µ).

As R becomes large, the term containing R dominates, and letting r → 0 we get the
upper bound

2
√
εc(µ)
√
π
≥ lim
R→∞

‖9R‖L2
√
R

,

finishing the proof for the L2-norm. ut

The next lemma will need the regularity in (4.4) of µ and the following theorem of Eskin
and Masur: For any stratum Q(α) and any 0 < δ < 1 there exist constants m2(α, δ) > 0
such that the number s(q, κ) of saddle connections shorter than κ < 1 is bounded above
by

s(q, κ) ≤ m2

(
κ

`q(β)

)1+δ

(5.4)

where β is the shortest saddle connection for q. It should be noted that while Eskin and
Masur state the theorem for strata of holomorphic 1-forms, it is also true for strata of
quadratic differentials by passing to the canonical double cover.

Fix the constant δ in the Eskin–Masur theorem and choose a > 1 such that a <
2/(1 + δ). Let N ′ ⊂ Nε/R \ Nε/Ra be the subset of quadratic differentials such that
apart from the shortest saddle connection, all other short saddle connections satisfy `2

q(βi)

≥ ε/R. We define 9 ′ : N ′→ R≥0 by

9 ′(q) =
2
π
(R2 + · · · + Rj ).

We define a slightly more complicated truncation

9R = 9(χ1 − χR)+9
′.

In this particular case of Theorem 1.9, the extra term 9 ′ allows us to keep track of excur-
sions that are concurrent with the largest excursion if it exceeds T (log T )c.

Lemma 5.5. There exists a constant B > 0 such that for R large enough,

‖9R‖L1 ≤ ‖9R‖L1 + B.

The L2-norms satisfy
‖9R‖L2 ≤ ‖9R‖L2 + o(

√
R).
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Proof. Consider the subset Nk,j of Nε/2k−1 \Nε/2k of those q such that the length of the
second shortest saddle connection β2 (not N -parallel to β1) satisfies ε/2j−1

≥ `2
q(β2) >

ε/2j where j ≤ k. By regularity (4.4),

µ(Nk,j ) ≤
m1ε

2

2k−12j−1 .

For a quadratic differential q in Nk,j , using the bound (5.4) on the number of short saddle
connections we get the pointwise bound

9R(q)−9R(q) <

j∑
i=1

2im2

(
2k

2i−1

)(1+δ)/2

< 2m22k(1+δ)/2
j∑
i=1

2(i−1)(1−δ)/2 < m32k(1+δ)/22j (1−δ)/2

for some constant m3 > 0. Thus∫
Nk,j

(9R −9R) dµ < m32k(1+δ)/22j (1−δ)/2
m1ε

2

2k−12j−1 =
4m1m3ε

2

2k(1−δ)/22j (1+δ)/2
.

Summing over j from 1 to k (when 2k−1 > R it suffices to sum till the smallest k′ such
that 2k

′

> R, in which case the sum would be even smaller), we get∫
N
ε/2k−1\Nε/2k

(9R −9R) dµ <
m4

2k(1−δ)/2

for some constant m4 > 0. Let na be the smallest integer such that 2na ≥ Ra . The bound
for the integral established above implies that

‖9R‖L1 − ‖9R‖L1 <

na∑
k=1

m4

2k(1−δ)/2
.

The sum on the right hand side is bounded from above independently of na , which proves
the lemma for L1-norms.

The same pointwise bound above implies∫
Nk,j

9
2
R dµ

<

∫
Nk,j

92
R dµ+ 2m32k(1+δ)/22j (1−δ)/2

∫
Nk,j

9R dµ+m
2
32k(1+δ)2j (1−δ)µ(Nk,j )

<

∫
Nk,j

92
R dµ+ 2m32k(1+δ)/22j (1−δ)/2

2km1ε
2

2k−12j−1 +m
2
32k(1+δ)2j (1−δ)

m1ε
2

2k−12j−1

=

∫
Nk,j

92
R dµ+

1
2j (1+δ)/2

8m1m3ε
22k(1+δ)/2 +

1
2jδ

4m1m
2
3ε

22kδ.
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Summing over j from 1 to k we get∫
N
ε/2k−1\Nε/2k

9
2
R dµ <

∫
N
ε/2k−1\Nε/2k

92
R dµ+m52k(1+δ)/2 +m62kδ

for some constants m5, m6 > 0. Summing over k from 1 to na we get

‖9R‖
2
L2 < ‖9R‖

2
L2 +

m7

2
2na(1+δ)/2 +

m8

2
2naδ < ‖9R‖2L2 +m7R

a(1+δ)/2
+m8R

aδ

for some constants m7, m8 > 0. Recall that we chose a > 1 to satisfy a(1 + δ) < 2,
which implies aδ < a(1 + δ)/2 < 1. Thus, the corresponding terms on the right hand
side are o(R), from which the lemma follows for L2-norms. ut

We will justify the choice of the cutoff Ra used for truncation by the following sharper
lemma. The lemma is a special case of a continuous time version of the analog of the
Borel–Bernstein theorem [17, Theorem 30], [1].

Lemma 5.6. For any 1/2 < c < 1 and µ-almost every q ∈ N there is T0 depending
on q such that for all T > T0, all excursions E(γ,H) till time T satisfy

E(γ,H) < T (log T )2c.

Proof. We recall some notation. For R ≥ 1, we denote by φR the characteristic function
of N2ε/R \ Nε/R . Choose A close to 1 so that estimate (5.3) is satisfied with r = 1, i.e.
A > 1 is chosen close enough to 1 such that

1
2
<

2− A2

A
<

2A2
− 1
A

< 2.

The given choice of A implies that for all R large enough

‖φR‖L1 <
2πεc(µ)

R
and hence ‖φR‖2L2 <

2πεc(µ)
R

.

Define n : R → N so that for T satisfying 2k ≤ T < 2k+1, n(T ) is the largest integer
such that 2n ≤ k2c2k , i.e. n = bk+2c log kc. Choose a constant c1 > 1/2 for Theorem 2.4
to satisfy c1 < c. Fix m > 1. The upper bound in Theorem 2.4 implies that for µ-almost
every q,∫ T

0
φ2n(v(γt )) dt ≤ mT ‖φ2n‖L1 + T

1/2(log T )c1(‖φ2n‖
2
L2 − ‖φ2n‖

2
L1)

1/2

for all T large enough depending on q andm, and with n(T ) defined as above. By passing
to a larger T if necessary, we can ensure that the upper bounds above are also satisfied
by ‖φ2n‖L1 and ‖φ2n‖

2
L2 . This gives the upper bound∫ T

0
φ2n(v(γt )) dt ≤ mT

2πεc(µ)
2n

+ T 1/2(log T )c1

(
2πεc(µ)

2n

)1/2

<
B1

(log T )2c
+

B2

(log T )c−c1
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for some constants B1, B2 > 0. Notice that if T is large enough, the right hand side is
less than log 2. But if an excursion till time satisfies E(γ,H) ≥ T (log T )2c then γ must
spend time at least log 2 in Nε/2n−1 \Nε/2n , which proves the lemma. ut

Proof of Theorem 1.9 when V is all saddle connection holonomies. Fix c satisfying
1/2 < c < 1. Observe that Proposition 3.2 holds in this setting. That is, along µ-typical
geodesics there is at most a single excursion larger than T (log T )c till time T for T large
enough. In fact, as noted in Remark 3.4, the proof of Proposition 3.3 does not need the
precise asymptotic for µ(Nε/R) as R→∞, just that µ(Nε/R) decays as 1/R up to some
multiplicative constant.

If 2k ≤ T < 2k+1, then let n = n(T ) = bk + c log2 kc. Replicating the exact
argument in the proof of Theorem 1.2, we use Lemma 5.1 to conclude that for µ-almost
every q ∈ N ,

lim
T→∞

1
T log T

∫ T

0
92n(v(γt )) dt = 2εc(µ)

where γ is the Teichmüller geodesic ray with v(γ0) = q. Lemma 5.5 implies that the
above limit holds when 92n is replaced by 92n . By Lemma 5.6, for T large enough the
largest excursion till time T is smaller than T (log T )2c < T a . Hence, up to an additive
error whose dependence on T will be described below,

E(γ, T )−max
k≤N

E(γ,Hk) �

∫ T

0
92n(v(γt )) dt.

The additive error is bounded above by the sum of the additive errors arising from indi-
vidual excursions. First, we analyze the partial excursions (if they exist).

The partial excursions correspond to configurations of saddle connections that are
short in qT = v(γT ). If the qT -length squared of the small saddle connection in such
a configuration is ε/R then by (3.7), the additive error for the associated partial excur-
sion is at most R. Let β1 be the shortest saddle connection in qT . Let β2 be the second
shortest non-parallel saddle connection. Lemma 5.6 implies that if T is large enough then
`2
qT
(β1) ≥ ε/(T (log T )2c). Proposition 3.2 implies that `2

qT
(β2) ≥ ε/(T (log T )c). Let n

be the smallest positive integer such that 2n ≥ T (log T )2c. Let m be the smallest positive
integer such that 2m ≥ T (log T )c. The Eskin–Masur bound (5.4) implies that the total
additive error is bounded above by

m−1∑
k=0

2k+1m2

(
2n/2

2k/2

)1+δ

=

m−1∑
k=0

2m22k(1−δ)/22n(1+δ)/2 ≤ B32m(1−δ)/22n(1+δ)/2

≤ 4B3T
(1−δ)/2(log T )c(1−δ)/2T (1+δ)/2(log T )2c(1+δ)/2

= 4B3T (log T )c(3+δ)/2

for some constant B3 > 0. For this bound to be of a lower order, c must satisfy c <
2/(3+ δ). Note that 2/(3+ δ) > 1/2. So the condition can be satisfied.

By (3.6), the additive error from an individual complete excursion is uniform. This
means that the additive error from all complete excursions is at most linear in the num-
ber N of horoballs that γ intersects till time T . We claim that N grows linearly in T . Let
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ST be the saddle connections for q whose length squared gets shorter than ε in time less
than T along the Teichmüller geodesic ray determined by q. Then the necessary condi-
tions on the (x, y)-coordinates of the holonomy vectors of the saddle connections in ST
are |xy| ≤ ε2/2, y ≤ eT and x < ε. By [1, Theorem 1.6] the number of such vectors for
µ-almost every q is linear in T , thus proving the claim. ut

5.7. The general case

Let V be an SL(2,R)-invariant locus. Suppose that for q there are j short saddle connec-
tions no two of which are N -parallel with holonomy in V (q). Index the saddle connec-
tions β1, . . . , βj in the order of increasing q-lengths and let `2

q(β1) = ε/R1, . . . , `
2
q(βj )

= ε/Rj . We define the functions

9V (q) =
2
π
R1 and 9

V
(q) =

2
π
(R1 + · · · + Rj ).

We can define truncations of these functions in an analogous way using the characteristic
function of N (V )ε/R . However, the shortest saddle connection β for q may not have
holonomy in V (q) and be shorter than β1 as above. Hence, some care is required in
defining the truncations. The crucial point is that in light of Lemma 5.6, we can impose
a lower bound on the length of β in defining the truncations. As in the previous case, we
use a sloppier lower bound than what Lemma 5.6 implies. This simplifies the expressions
in the estimates.

Let a > 1 be such that a < 2/(1 + δ). In particular, aδ < 1. Let N (R, a) ⊂
N (V )ε \ N (V )ε/R be the subset of those q such that the shortest saddle connection β
satisfies `2

q(β) ≥ ε/R
a . Let χR,a denote the characteristic function of N (R, a).

Let N ′(V ) ⊂ N (V )ε/R \ N (V )ε/Ra be the subset of quadratic differentials such
that `2

q(β) ≥ ε/R
a and apart from β1 all other short saddle connections with holonomy

in V (q) satisfy `2
q(βi) ≥ ε/R. Let (9V )′ : N ′(V )→ R be defined as

(9V )′(q) =
2
π
(R2 + · · · + Rj ).

We define 9VR = 9V χR,a and 9VR = 9
V
χR,a + (9

V )′. Again, the extra term (9V )′,
analogous to 9 ′ earlier, allows us to track excursions for saddle connections in V that
happen during the largest excursion with holonomy in V , should it exceed T (log T )c.

For 2k ≤ R we have the estimate

µ(N (V )ε/2k−1 \N (V )ε/2k )− µ
(
N (R, a) ∩N (V )ε/2k−1 \N (V )ε/2k

)
≤

m1ε
2

2k−1Ra
.

This means here each term in the summations for lower and upper bound for L1-norm in
Lemma 5.2 changes by at most 2km1ε

2/(2k−1Ra) = 2m1ε
2/Ra . Hence the summations

change by at most 2nm1ε
2/Ra < m6(logR)/R for some constant m6 > 0. This implies

lim
R→∞

‖9VR ‖L1

logR
= 2εc(V, µ).
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Similarly each term in the summations for lower and upper bound for L2-norms changes
by at most 22km1ε

2/(2k−1Ra) = m1ε
22k+1/Ra , and hence the summations change by at

most 4m1ε
22n/Ra < m7/R

a−1 for some constant m7 > 0. This implies

lim
R→∞

‖9VR ‖L2
√
R
= 2
√
εc(V, µ)
√
π

.

Lemma 5.8. There exists a constant BV such that for R large enough,

‖9
V

R‖L1 ≤ ‖9
V
R ‖L1 + BV .

The L2-norms satisfy

‖9
V

R‖L2 ≤ ‖9
V
R ‖L2 + o(

√
R).

Proof. Consider N (R, a) ∩ N (V )ε/2k−1 \ N (V )ε/2k and let N V
k,j be its subset con-

sisting of those q for which (among the collection of non-parallel saddle connections
with holonomies in V (q)) the second shortest saddle connection β2 satisfies ε/2j−1

≥

`2
q(β2) > ε/2j where j ≤ k.

We further partition N V
k,j into two sets, N V

k,j (1)∪N
V
k,j (2), depending on whether the

shortest saddle connection for q has holonomy in V (q) or not, i.e. N V
k,j (1) is the subset

of q for which β1 is the shortest saddle connection, and N V
k,j (2) is when it is not. On

N V
k,j (1) the integral ∫

N V
k,j (1)

(9
V

R −9
V
R ) dµ

is bounded from above just as in Lemma 5.5.
Let na be the smallest integer such that 2na ≥ Ra . For q ∈ N V

k,j (2) suppose that the
shortest saddle connection β satisfies ε/2p−1 > `2

q(β) ≥ ε/2
p where 2k ≤ 2p ≤ 2na .

The measure of the subset of such q is bounded above by

m1ε
2

2p−12k−1 .

The number of short saddle connections whose q-length squared is at least ε/2i−1 is
bounded above by

m2

(
2p

2i−1

)(1+δ)/2
.

This gives the pointwise bound

9
V

R (q)−9
V
R (q) <

j∑
i=1

2im2

(
2p

2i−1

)(1+δ)/2
= 2m22p(1+δ)/2

j∑
i=1

2(i−1)(1−δ)/2

< m92p(1+δ)/22j (1−δ)/2
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for some constant m9 > 0, implying that∫
N V
k,j (2)

(9
V

R −9
V
R ) dµ <

na∑
p=k

m92p(1+δ)/22j (1−δ)/2
m1ε

2

2p−12k−1 <
m10

2k

for some constantm10 > 0. Thus adding up the upper bounds for the integrals on N V
k,j (1)

and N V
k,j (2) we get

∫
N V
k,j

(9
V

R −9
V
R ) dµ <

4m1m3ε
2

2k(1−δ)/22j (1+δ)/2
+
m10

2k

Summing over j from 1 to k we get∫
N (R,a)∩N (V )

ε/2k−1\N (V )
ε/2k

(9
V

R −9
V
R ) dµ <

m11

2k(1−δ)/2
+
m10k

2k

for some constant m11 > 0. Summing over k from 1 to na observe that the sum of the
right hand side is bounded independently of n, which proves the lemma for L1-norms.

The pointwise bound also implies∫
N V
k,j (2)
[(9

V

R )
2
− (9VR )

2
] dµ <

na∑
p=k

2m92p(1+δ)/22j (1−δ)/2
2km1ε

2

2p−12k−1

+

na∑
p=k

m2
92p(1+δ)2j (1−δ)

m1ε
2

2p−12k−1

<
m12

2k
+
m132naδ

2kδ

for some constantsm12, m13 > 0. The corresponding upper bound for N V
k,j (1) is identical

to that in Lemma 5.5 and is of the form∫
N V
k,j (1)
[(9

V

R )
2
− (9VR )

2
] dµ <

m142k(1+δ)/2

2j (1+δ)/2
+
m152kδ

2jδ

for some constants m14, m15 > 0. Adding up the bounds for N V
k,j (1) and N V

k,j (2) and
summing over j from 1 to k we get∫

N (R,a)∩N (V )
ε/2k−1\N (V )

ε/2k

[(9
V

R )
2
− (9VR )

2
] dµ

<
m12k

2k
+
m13k2naδ

2kδ
+m142k(1+δ)/2 +m152kδ,
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and when 2k−1 > R,∫
N ′(V )∩N (V )

ε/2k−1\N (V )
ε/2k

[(9
V

R )
2
− (9VR )

2
] dµ

<
m12k

2k
+
m13k2naδ

2kδ
+m142k(1+δ)/2 +m152kδ.

Summing over k from 1 to na we get

‖9
V

R‖
2
L2−‖9

V
R ‖

2
L2 <

m16

2
2naδ+

m17

2
2na(1+δ)/2+m18 < m16R

aδ
+m17R

a(1+δ)/2
+m18

for some constants m15, m16, m17, m18 > 0. The condition on a implies that the right
hand side is o(R). Thus the lemma follows for L2-norms. ut

Proof of Theorem 1.9. Fix c satisfying 1/2 < c < 1. As in the earlier case when V is all
saddle holonomies, Proposition 3.2 holds for N (V ) for the same reason. It asserts that for
µ-almost every q, the Teichmüller geodesic ray corresponding to q has at most a single
excursion (in horoballs given by saddle connections with holonomies in V ) till T that is
larger than T (log T )c for all T large enough depending on q. Moreover, by Lemma 5.6
the largest excursion till time T cannot exceed T (log T )2c.

The latter fact implies that up to additive error our truncation 9V2n satisfies∫ T

0
9
V

2n(v(γt )) dt � E(γ, T )− max
k≤NV

E(γ,Hk)

where the additive error is of order lower than T log T for the same reason as earlier.
Theorem 2.4 and Lemma 5.8 conclude the proof of Theorem 1.9 in the general case, the
precise argument a replica of earlier proofs. ut
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