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Abstract. In this paper, we study the relationship between the cocenter and the representation
theory of affine Hecke algebras. The approach is based on the interaction between the rigid cocenter,
an important subspace of the cocenter, and the dual object in representation theory, the rigid quotient
of the Grothendieck group of finite-dimensional representations.
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1. Introduction

Affine Hecke algebras appear naturally in the representation theory of reductive p-adic
groups as convolution algebras of compactly supported functions, such as Iwahori–Hecke
algebras [Bo], [IM], and their generalizations in the theory of types [HM], [BK], or as
endomorphism algebras of certain projective generators [Be], [Hei]. The representation
theory of affine Hecke algebras with (equal and unequal) parameters that are not roots
of unity was extensively studied [KL], [CG], [Lu1, Lu2], [BM1, BM2], [Xi1], [Op, OS1,
OS2, So], [Ree], [Kat]. The representation theory of affine Hecke algebras with parameter
equal to a root of unity plays an important role in the study of modular representations
of p-adic groups [Vi], and the simple modular representations for affine Hecke algebras
associated to general linear groups were classified in [AM]. The representations of affine
Hecke algebras of classical types at roots of unity were subsequently studied in [VV,
SVV] via the theory of canonical bases, and for G2 in [Xi2].

In this paper, we consider finite-dimensional representations of the affine Hecke al-
gebra H from the perspective of its relation to the cocenter of the algebra. The cocenter
H̄ is the quotient of the algebra by the subspace of commutators, and thus appears natu-
rally in duality (given by the trace) with the (complexification of the) Grothendieck group
R(H) of finite-dimensional H-modules.
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1.1. We explain our main results. In the body of the paper, we consider the more gen-
eral case of an affine Hecke algebra with an automorphism δ of the root system and the
δ-twisted cocenter, but, for simplicity, in the introduction, we present the results in the
untwisted case only. We also consider arbitrary (nonzero) parameters.

The affine Hecke algebra H is a deformation of the group algebra C[W̃ ] of the ex-
tended affine Weyl group W̃ . Let cl(W̃ ) denote the set of conjugacy classes in W̃ . It is
easy to see that for any two elements w,w′ in the same conjugacy class of W̃ , the images
of w and w′ in the cocenter of C[W̃ ] are the same and the set {[O]; O ∈ cl(W̃ )]} is a
basis of the cocenter of C[W̃ ]. Here [O] is the image of w in the cocenter of C[W̃ ] for
any w ∈ O.

However, forw,w′ in a conjugacy class O of W̃ , the images in H̄ of the standard basis
elements Tw and Tw′ of H are not the same in general. It is showed in [HN1] that if w and
w′ are of minimal length in O, then the images of Tw and Tw′ in H̄ are the same. We de-
note this image by TO. Moreover, the whole cocenter H̄ is spanned by {TO; O ∈ cl(W̃ )}.

Note that cl(W̃ ) is a countably infinite set and the set of irreducible representations of
H is an uncountably infinite set. To compare the cocenter with representations, we would
like to develop a reduction method from infinite sets to finite sets.

A familiar object in the literature is the elliptic quotient R̄0(H) obtained by taking the
quotient of R(H) by the span of all proper parabolically induced modules [BDK]. The
elliptic representation theory of reductive p-adic groups and associated Hecke algebras
has been an area of active research [Ar], [BDK], [Be], [Kaz1], [SS], [Ree], [OS2]. The
dual object to R̄0(H) is the elliptic cocenter H̄ell, the subspace of H̄ on which all proper
parabolically induced modules vanish. However, as shown in [BDK], the elliptic cocenter
is very complicated.

1.2. The solution we provide in this paper is another quotient of R(H) and another sub-
space of H̄, which we call the rigid quotient and rigid cocenter, respectively.

Let us first describe our motivation which leads to the definitions, and then describe
the main result and its consequences.

For simplicity, we only consider affine Hecke algebras associated to semisimple root
data in this introduction. In the beginning, we would like to get a nice finite subset
of cl(W̃ ). A natural choice is cl(W̃ )ell, the set of elliptic conjugacy classes of W̃ . The
problem is that there is no relation between the subspace spanned by {TO; O ∈ cl(W̃ )ell}

and the elliptic cocenter.
The finite subset of cl(W̃ ) we use here is cl(W̃ )0, the conjugacy classes of W̃ with

zero Newton point. We have the inclusion cl(W̃ )ell ⊂ cl(W̃ )0 ⊂ cl(W̃ ). The definition
of cl(W̃ )0 and the idea to use it in the study of affine Hecke algebras are inspired by a clas-
sical result in arithmetic geometry: Kottwitz’s classification of σ -isocrystals [Ko1, Ko2].

Here we provide more content. While this is not needed in our theory of rigid cocenter
and rigid quotient, it serves as motivation for it.

Let G be a connected reductive group split over Qp and L = W(F̄p)[1/p] be the
completion of the maximal unramified extension of Qp. Let σ be the (relative) Frobenius
morphism on G(L), and B(G) the set of σ -conjugacy classes of G(L). Kottwitz showed
that a σ -conjugacy class is determined by two invariants: the image of the Kottwitz map
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B(G) → π(G), and the Newton map from B(G) to the rational coweight lattice. A σ -
conjugacy class is called basic if its Newton point is zero. Moreover, Kottwitz shows
that any σ -conjugacy class comes from a basic σ -conjugacy class of some Levi subgroup
M(L) of G(L) via the inclusion map M → G.

In [He], the second-named author studied the natural map cl(W̃ )→ B(G). This map
is finite-to-one and it is compatible with both the Kottwitz map and the Newton map.
Thus we have a Cartesian diagram

cl(W̃ )0 //

��

B(G)basic

��
cl(W̃ ) // B(G)

where B(G)basic is the set of basic σ -conjugacy classes.
As the basic σ -conjugacy classes capture the whole of B(G) in an essential way, we

expect that cl(W̃ )0 plays an essential role in the study of H̄. This leads to the following
definition of the rigid cocenter:

H̄rigid
= span{TO; O ∈ cl(W̃ )0}.

It turns out that for generic parameters, the quotient of R(H) dual to H̄rigid is also a
natural object. Namely, R̄(H)rigid is defined as the quotient of R(H) by R(H)diff-ind, the
span of differences of central twists of parabolically induced modules (Definition 6.1).

The main result concerning the rigid cocenter is the following theorem.

Theorem 1.1. (1) The set {TO; O ∈ cl(W̃ )0} is a basis of H̄rigid for an affine Hecke
algebra H with arbitrary parameters.

(2) Suppose that the parameters of the affine Hecke algebra are admissible in the sense of
Definition 6.6. Then the trace pairing tr : H̄× R(H)→ C induces a perfect pairing

tr : H̄rigid
× R̄(H)rigid → C.

In particular, the dimension of R̄(H)rigid equals the number of classes in cl(W̃ )0.
(3) For arbitrary parameters, the trace map tr : H̄rigid

→ R(H)∗rigid is surjective.

Theorem 1.1 in particular explains where the name “rigid” for H̄rigid comes from:

• The traces of any given element in H̄rigid on parabolically induced modules are con-
stant if we deform the central characters, and the image under the trace map of H̄rigid

gives all such “rigid” linear functions on the induced modules.
• The rigid cocenter H̄rigid has a basis which is independent of the parameters of the

Hecke algebra, and thus H̄rigid is “rigid” if we deform the parameters.

As to the relation between the rigid and elliptic cocenters/quotients, clearly, H̄ell
⊂ H̄rigid

and R̄(H)rigid � R̄0(H). But as we show in the paper, the rigid cocenter, in fact, com-
bines together the elliptic cocenters of all the semisimple parts of parabolic subalgebras,
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up to a certain equivalence (see Proposition 7.5). Dually, the rigid quotient admits a sec-
tion formed by the elliptic quotients of the semisimple parts of parabolic subalgebras, up
to equivalence (Corollary 6.9). Thus the rigid cocenter/quotient allows us to study the
elliptic theory for all the parabolic subalgebras at once.

As a consequence, we obtain the basis theorem for H̄.

Theorem 1.2. The set {TO; O ∈ cl(W̃ )} is a basis of H̄ for an affine Hecke algebra H
with arbitrary parameters.

This theorem in particular shows that the cocenter of H has a description independent of
the parameters. For finite Hecke algebras, Tits’ deformation theorem says that for generic
parameters, the finite Hecke algebra is isomorphic to the group algebra. However, affine
Hecke algebras of the same type but different parameters are almost never isomorphic.
The basis theorems for H̄ and H̄rigid provide a substitute for Tits’ deformation theorem
in the affine setting.

1.3. As consequences of our approach, we obtain direct, algebraic proofs of the ana-
logues of classical results from p-adic groups: the density theorem and the trace Paley–
Wiener theorem. For p-adic groups, proofs of these results are known from [BDK] and
[Kaz2] (see also [Da] and [Fl]). For affine Hecke algebras with positive parameters, the
density theorem and trace Paley–Wiener theorem are studied in [So, Theorem 3.4] by
different methods.

We summarize our results in the next theorem.

Theorem 1.3. (1) (Density Theorem) Suppose that the parameters of the affine Hecke
algebra are admissible. Then the trace map tr : H̄→ R(H)∗ is injective.

(2) (Trace Paley–Wiener Theorem) For arbitrary parameters, the image of the trace map
tr : H̄→ R(H)∗ is the space R∗(H)good of good forms (Definition 3.5).

We would like to point out that the density theorem fails for affine Hecke algebras at some
roots of unity but the trace Paley–Wiener theorem always holds. The trace Paley–Wiener
theorem for affine Hecke algebras at roots of unity seems to be a new result and will play
a role in the modular representations of p-adic groups.

1.4. As a different application, in Section 9, we show how Theorem 1.1 can be used
to simplify the arguments of [BM1, BM2] for the preservation of unitarity under the
Borel functor for the category of smooth representations with Iwahori fixed vectors of a
semisimple p-adic group G. Let I be an Iwahori subgroup and if H ⊂ G is a closed
subgroup containing I , let H(H//I) denote the Iwahori–Hecke algebra of I -biinvariant
compactly supported functions with support inH . The Borel–Casselman correspondence
says that the functor V 7→ V I is an equivalence between the subcategory of smooth com-
plex G-representations generated by their I -fixed vectors and the category of H(G//I)-
modules. The main result of [BM1, BM2] (see also [BC]) is the following theorem con-
jectured by Borel.
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Theorem 1.4 (Barbasch–Moy preservation of unitarity). Under the functor V 7→ V I ,
the G-representation V is unitary if and only if the H(G//I)-module V I is unitary.

The classical arguments of [BM1, BM2] use two main ingredients. The first is an analogue
of Vogan’s signature character [Vo] which expresses the signature of an irreducible her-
mitian representation in terms of the K-character (K a maximal compact open subgroup)
of tempered modules. The second ingredient is a linear independence of the H(K0//I)-
characters (K0 hyperspecial) of irreducible tempered representations with “real infinites-
imal character” combined with a subtle reduction to real infinitesimal character in [BM2]
via endoscopic groups. The rigid quotient provides a simplification of the argument (with-
out the need for the reduction to real infinitesimal character) by: firstly, considering the
K-characters for all maximal parahoric subgroups, and secondly, using the fact that, by
Theorem 1.1(2), the characters of a basis of the rigid quotient (the basis can be chosen to
consist of tempered representations) are linearly independent when restricted to the union
of H(K//I)’s.

1.5. We give an outline of the paper. In Sections 2 and 3, we establish the notation and
give the basic definitions for the affine Hecke algebra (extended by outer automorphisms),
the cocenter andR(H). In Section 4, we recall in our setting the main definitions and prop-
erties of the induction and restriction functors, as introduced for p-adic groups in [BDK]
and studied further in [Da]. In Section 5, we record the main cocenter results from [HN1,
HN2] that we will use. In Sections 6 and 7, we define the rigid and elliptic cocenters
and the rigid and elliptic quotients of R(H), and prove the main results about the duality
between the rigid cocenter and rigid quotient, in particular, Theorem 1.1. Some of these
results are proven under the assumption that (PDT), the density theorem for parabolic sub-
algebras, holds. In Section 8, we prove (by induction) the basis theorem, density theorem,
and trace Paley–Wiener theorem, as enumerated in Theorems 1.2 and 1.3. In particular,
we now see that the assumption (PDT) can be removed from the previous results. We also
obtain sharp bounds for the dimension of the elliptic quotient for arbitrary parameters.
Finally, in Section 9, we give our application to the preservation of unitarity argument.

Notation. If B is a complex associative algebra, denote by B-mod the category of B-
modules, by R(B) the complexification of the Grothendieck group of finite-dimensional
modules, and by IrrB the set of isomorphism classes of simple B-modules.

2. Preliminaries

2.1. Let 8 = (X,R,X∨, R∨,5) be a reduced based root datum. In particular,

(a) X,X∨ are free abelian groups of finite rank with a perfect pairing 〈 , 〉 : X×X∨→ Z;
(b) R ⊂ X, R∨ ⊂ X∨ are the roots and coroots, respectively, in bijection α ↔ α∨;
(c) 5 ⊂ R is the set of simple roots.

Let R+ denote the positive roots defined by 5, and 5− = −5+; let R∨,+, R∨,− denote
the corresponding positive and negative coroots. For every α ∈ R, let sα ∈ GL(X) be the
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reflection sα(x) = x − 〈x, α∨〉α. Let W ⊂ GL(X) be the finite Weyl group generated by
S = {sα; α ∈ 5}.

2.2. The set of affine roots is Ra = R∨ × Z. Let ≤ be the partial order of R∨ defined
by β∨ ≤ α∨ if α∨ − β∨ is a nonnegative integer linear combination of {α∨; α ∈ 5}. Set
Rm = {γ ∈ R; γ

∨ is minimal in (R∨,≤)}. The simple affine roots are

5a = {(α, 0); α ∈ 5} ∪ {(γ ∨, 1); γ ∈ Rm}. (2.1)

Define the extended affine Weyl group by

W̃ = X oW. (2.2)

We write a typical element in W̃ as txw, x ∈ X, w ∈ W . Multiplication in W̃ is then
(txw) · (tx′w

′) = tx+w(x′)ww
′. The group W̃ acts on X by (txw) · y = x + w(y).

Define also the affine Weyl group by

W a
= QoW, (2.3)

whereQ ⊂ X is the root lattice, i.e., the Z-span of R. The groupW a is an infinite Coxeter
group generated by Sa = S ∪ {t−γ sγ ; γ ∈ Rm}. Define positive and negative affine roots
as follows:

Ra,+ = (R∨ × Z>0) ∪ (R
∨,+
× {0}),

Ra,− = (R∨ × Z<0) ∪ (R
∨,−
× {0}),

(2.4)

and the length function ` : W̃ → Z≥0 by

`(w) = #{αa ∈ Ra,+; wαa ∈ Ra,−}, w ∈ W̃ . (2.5)

Set � = {w ∈ W̃ ; `(w) = 0}. Then W̃ = W a o� and � ∼= X/Q.

2.3. Fix a set q = {q(s); s ∈ Sa} of invertible, commuting indeterminates such that
q(wsw−1) = q(s) for all w ∈ W̃ with wsw−1

∈ Sa , and let 3 = C[q(s)±1
; s ∈ Sa].

Definition 2.1 (Iwahori–Matsumoto presentation). The affine Hecke algebra H =

H(8, q) is the 3-algebra generated by {Tw; w ∈ W̃ } subject to the relations:

(1) Tw · Tw′ = Tww′ , if `(ww′) = `(w)+ `(w′);
(2) (Ts + 1)(Ts − q(s)2) = 0, s ∈ Sa .

The algebra H(8, q) admits a second presentation, due to Bernstein and Lusztig, which
we recall next. If w ∈ W a has a reduced expression w = s1 · · · sk , si ∈ Sa , set q(w) =∏

q(si). Extend this further to W̃ by setting q(u) = 1 for all u ∈ �.
Define X+ = {x ∈ X; 〈x, α∨〉 ≥ 0 for all α ∈ 5}. If x ∈ X, write x = x1 − x2 with

x1, x2 ∈ X+. Define
θx = q(tx1)

−1q(tx2)Ttx1
T −1
tx2
. (2.6)
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Then {Twθx;w ∈ W, x ∈ X} forms a 3-basis of H, and we have the relations [Lu1,
3.3(b), Lemma 3.4, Propositions 3.6, 3.7]:

θx · θx′ = θx+x′ for all x, x′ ∈ X; θ0 = 1; (2.7)

θxTs − Tsθs(x)=

{
(q(s)2 − 1) θx−θs(x)1−θ−α

if α∨ /∈ 2X∨,

((q(s)2 − 1)+ θ−α(q(s)q( s̃ )− q(s)q(̃s)−1))
θx−θs(x)
1−θ−2α

if α∨ ∈ 2X∨,
(2.8)

for s = sα ∈ S and x ∈ X. Here s̃ is defined as follows. Let S(α) ⊂ Sa be the connected
component of the Coxeter graph containing s. When α∨ ∈ 2X∨, S(α) must be of affine
type C̃l , l ≥ 1. Let s̃ be the image of s under the nontrivial graph automorphism of C̃l .

Denote A = 3[θx; x ∈ X], an abelian subalgebra of H. The center of H is Z = AW

[Lu1, Proposition 3.11], [OS1, §2.1.3]. In particular, H is finite over its center and the
simple H-modules are finite-dimensional.

The central characters are identified with elements of T/W × Spec3, where T =
HomZ[X,C×].

Remark 2.2. When q is specialized to a set {qs; s ∈ Sa} of nonzero complex numbers
(such that qwsw−1 = qs for all w ∈ W̃ with wsw−1

∈ Sa), we say that H has arbitrary
parameters.

2.4. Let J ⊂ 5 be given, and set J∨ = {α∨;α ∈ J }. Let RJ = R ∩ QJ and R∨J =
{α∨;α ∈ RJ }. Let WJ ⊂ W be the parabolic subgroup defined by the reflections in J .
Denote W̃J = X o WJ , and let qJ be the restriction of q to W̃J . Consider the based
root datum 8J = (X,RJ , X

∨, R∨J , J ) and the affine Hecke algebra HJ = H(8J , qJ ).
This algebra can be identified with the subalgebra of H(8, q) generated by Tw, w ∈ WJ ,
and θx , x ∈ X. One calls it a parabolic subalgebra of H.

Define the induction functor

iJ = H⊗HJ
− : HJ -mod→ H-mod. (2.9)

To define the “semisimple part” of H, one introduces

XJ = X/X ∩ (J
∨)⊥ and X∨J = X

∨
∩QJ∨, (2.10)

where (J∨)⊥ = {x ∈ X; 〈x, α∨〉 = 0 for all α ∈ J }. Consider the root datum 8ss
J =

(XJ , RJ , X
∨

J , R
∨

J , J ) and the affine Hecke algebra Hss
J = H(8ss

J , qJ ). For every

t ∈ T J = HomZ(X/X ∩QJ,C×), (2.11)

let χt : HJ → Hss
J be the algebra homomorphism [OS1]

χt (θxTw) = t (x)θxJ Tw, x ∈ X, w ∈ W, (2.12)

where xJ is the image of x in XJ . For every σ ∈ Hss
J -mod and every t ∈ T J , one can

therefore construct the parabolically induced module

X(J, σ, t) = iJ (σ ◦ χt ). (2.13)
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3. Clifford theory for Ho 〈δ〉

In this section, we consider the affine Hecke algebra H together with an automorphism δ

and its Clifford theory.
Even if one is only interested in the representation theory of H, automorphisms of

its parabolic subalgebras appear in the study of induction and restriction functors (see
also §4).

3.1. Suppose δ is an automorphism of 8 of finite order d. Then δ induces an automor-
phism of W̃ with δ(Sa) = Sa . If the indeterminates q satisfy q(δ(w)) = q(w) for all
w ∈ W̃ , we can define an extension of the affine Hecke algebra H by 0 = 〈δ〉:

H′ = Ho 0. (3.1)

Set W̃ ′ = W̃ o 0 and W ′ = W o 0. The center of H′ is AW ′ , so the central characters
are parameterized by points in T/W ′ × Spec3.

If J ⊂ 5, set 0J = {δi ∈ 0; δi(RJ ) = RJ }. The parabolic subalgebra is then
H′J = HJ o 0J . We denote the induction functor again by iJ : H′J -mod→ H′-mod.

If K ⊂ Sa , set 0K = {δi ∈ 0; δi(K) = K}. We denote by WK the subgroup
generated by the reflections in K , and set W ′K = WK o 0K . If WK is finite, then we call
it a parahoric subgroup.

3.2. We define the δ-commutators and cocenters. This section is analogous to [CH, Sec-
tion 3.1], where similar notions in the setting of the graded affine Hecke algebra were
considered.

Definition 3.1. If h, h′ ∈ H and i ∈ Z, define the δi-commutator of h and h′ by
[h, h′]δi = hh′ − h′δi(h). Let [H,H]δi be the submodule of H generated by all δi-
commutators.

Denote by H̄[i] the quotient of H/[H,H]δi by the image of 1 − δ. The following result
was proved in [CH] for extended graded Hecke algebras, but the proof applies to any
associative algebra extended by a finite cyclic group.

Proposition 3.2 ([CH, Proposition 3.1.1]). Set H̄′ = H′/[H′,H′]. Then:

(1) H̄′ =
⊕d−1

i=0 Hδi/([H′,H′] ∩Hδi).
(2) The map h 7→ hδi induces a linear isomorphism H̄[i]→ Hδi/([H′,H′] ∩Hδi).

3.3. We discuss Clifford theory for H′. This is standard and analogous to the graded
affine Hecke algebra case from [CH, Section 3.2], and the proofs are identical.

Let 0 = 〈δ〉. If (π,M) is a finite-dimensional H-module, let (δ
i
π, δ

i
M) denote the

H-module with the action δiπ(h)m = π(δ−i(h))m for all m ∈ M and h ∈ H. If M is a
simple module, define the inertia group 0M = {δi; M ∼= δiM}.

Fix a family of isomorphisms φδi : M →
δ−iM of H-modules for each δi ∈ 0M such

that φδki = φ
k
δi

. This is possible since 0M is cyclic.
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If U is an irreducible 0M -module, there is an action of Ho 0M on M ⊗ U :

(hδi)(m⊗ u) = hφδi (m)⊗ δ
iu. (3.2)

One can form the induced H′-module M o U = IndHo0
Ho0M (X ⊗ U).

Theorem 3.3 (cf. [RR, Appendix A]).
(1) If M is an irreducible H-module and U an irreducible 0M -module, the induced H′-

module M o U is irreducible.
(2) Every irreducible H′-module is isomorphic to an M o U.
(3) If M o U ∼= M ′ o U ′, then M,M ′ are 0-conjugate H-modules, and U ∼= U ′ as

0M -modules.

For every δ′ ∈ 0, set Irrδ
′ H = {M ∈ IrrH; δ′ ∈ 0M} and let Rδ

′

(H) denote the Z-linear
span of Irrδ

′ H. If (π,M) ∈ Irrδ
′ H, let φδ′ ∈ EndC(M) be the intertwiner as before. The

twisted trace is

trδ
′

(π) : H→ C, trδ
′

(π)(h) = tr(π(h) ◦ φδ′).

Let also tr( , ) : H′×R(H′)→ C be the trace pairing, i.e., tr(h, π) = trπ(h) for h ∈ H′
and π ∈ R(H′).
Lemma 3.4 (cf. [CH, Lemma 3.2.1]). Let M o U be an irreducible H′-module as in
Theorem 3.3. For h ∈ H and δ′ ∈ 0,

tr(hδ′,M o U) =

{
δ′(U)

∑
γ∈0/0M

trδ
′

(M)(γ−1(h)) if δ′ ∈ 0M ,
0 if δ′ /∈ 0M ,

(3.3)

where δ′(U) is the root of unity by which δ′ acts on U .

Let O be a 0-orbit on IrrH. Set 0O = 0M for any M ∈ O. This is well-defined since 0
is cyclic. Then for any irreducible 0O -module U andM ∈ O,MoU =

⊕
M ′∈OM

′
⊗U

is independent of the choice of M . We denote it by O o U . By Theorem 3.3, IrrH′ =
{O o U}, where O runs over 0-orbits on IrrH, and U runs over isomorphism classes of
irreducible representations of 0O .

Suppose that δi ∈ 0O . Let UO,i be the virtual representation of 0O whose character
is the characteristic function on δi . Then

{O o UO,i; O ∈ IrrH/0, i ∈ Z/dZ with δi ∈ 0O}

is a basis of R(H′).
Let R[i](H′) be the subspace of R(H′) spanned by O o UO,i , where O runs over

0-orbits on IrrH with δi ∈ 0O . Then

R(H′) =
d−1⊕
i=0

R[i](H′). (3.4)

By definition, R[i](H′) is a vector space with basis (Irrδ
i H)0 . The map Irrδ

i

(H) 3 M 7→
M o U0M ,i induces an isomorphism Rδ

i
(H)0,C → R[i](H′). Here Rδ

i
(H)0,C is the

0-coinvariants of Rδ
i
(H)C.

By Lemma 3.4, for 0 ≤ i, j < d with i 6= j , tr(Hδi,O o UO,j ) = 0.
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3.4. Define the trace linear map

tr : H̄′→ R(H′)∗, h 7→ (fh : R(H′)→ C, fh(π) = trπ(h)). (3.5)

This map is compatible with the decompositions from Proposition 3.2 and (3.4) as fol-
lows. Let R∗δ (H) = HomC(Rδ(H),C). The twisted trace map

trδ : H→ R∗δ (H), h 7→ (f δh : R
δ(H)→ C, f δh (π) = trδ(π)), (3.6)

descends to a linear map

trδ : H̄δ = H/[H,H]δ → R∗δ (H). (3.7)

Definition 3.5. A form f ∈ R∗δ (H) is called a trace form if f ∈ im trδ . Denote the
subspace of trace forms by R∗δ (H)tr.

A form f ∈ R∗δ (H) is called good if for every J ⊂ I such that δ(J ) = J , and every
σ ∈ Irrδ(Hss

J ), the function t 7→ f (X(J, σ, t)) is a regular function on (T J )δ . Denote the
subspace of good forms by R∗δ (H)good.

It is clear that R∗δ (H)tr ⊂ R
∗
δ (H)good.

4. Induction and restriction

In this section, we collect some known facts about induction and restriction maps.

4.1. If K ⊂ J are given subsets of 5, we denote by iJK : R(HK) → R(HJ ) and by
rJK : R(HJ ) → R(HK) the maps on complexified Grothendieck groups induced by
the induction and restriction functors respectively. When J and K are δ-invariant, we
also have the corresponding maps, denoted again by iJK and rJK , between Rδ(HK) and
Rδ(HJ ).

It is obvious that

Lemma 4.1. For L ⊂ K ⊂ J ⊂ 5, iJL = i
J
K ◦ i

K
L and rJL = r

K
L ◦ r

J
K .

The following “Mackey decomposition” is the analogue of [BDK, Lemma 5.4] and [Fl,
Lemma 2.1] (see also [Mi, Theorem 1]).

Lemma 4.2. Let δ be an automorphism of 8 of finite order. If K = δ(K) and J = δ(J ),
then

rK ◦ iJ =
∑

w∈KW J∩W δ

iKKw ◦ w ◦ r
J
Jw

(4.1)

as maps from Rδ(HJ ) to Rδ(HK), where KW J is the set of representatives of minimal
length for WK\W/WJ , Kw = K ∩ wJw−1 and Jw = J ∩ w−1Kw.
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4.2. We recall certain elements defined in [Lu1, Section 5.1]. Let F be the quotient field
of Z . For every α ∈ 5, set [Lu1, Section 3.8]

G(α) =


q(sα)

2θα − 1
θα − 1

if α∨ /∈ 2X∨,

(q(s)q( s̃ )θα − 1)(q(s)q( s̃ )−1)θα + 1)
θ2α − 1

if α∨ ∈ 2X∨.
(4.2)

Set AF = A⊗ZF . This is naturally isomorphic to the quotient field of A [Lu1, §3.12(a)].
Therefore, G(α) ∈ AF . Define the following elements in HF = H⊗Z F :

τα = (Tsα + 1)G(α)−1
− 1. (4.3)

By [Lu1, Proposition 5.2], the assignment sα 7→ τα for α ∈ 5 extends to a unique group
homomorphism W → H×F . Denote by τw the image of w ∈ W . Moreover,

f τw = τww
−1(f ) for all w ∈ W, f ∈ AF . (4.4)

The following lemma is also well known—see for example [BM3, Section 1.6], where a
similar statement was verified in the context of graded Hecke algebras.

Lemma 4.3. Suppose K, J ⊂ 5 are such that K = w(J ), where w ∈ KW J . Then
Tsατw−1 = τw−1Tsβ for every α ∈ J , where β = w(α) ∈ K.

Proof. We calculate:

Tsατw−1 = ((τ
α
+ 1)G(α)− 1)τw−1

= (τα + 1)τw−1G(β)− τw−1 by (4.4)

= (τw−1τ
β
+ τw−1)G(β)− τw−1 since τ is a homomorphism

= τw−1Tsβ . ut

Lemma 4.4. Suppose thatK, J ⊂ 5 are δ-stable subsets. Let KW J (δ) denote the subset
of δ-fixed elements in KW J . If w ∈ KW J (δ) and K = w(J ), then iK ◦w = iJ in Rδ(H).

Proof. Let (σ ◦ χt , V ) be an irreducible module in HJ -mod, let t ∈ T J , and let
(σw ◦ χw(t), V

w
= V ) ∈ HK -mod be its twist by w. We need to prove that in Rδ(H),

iK(σ
w
◦ χw(t)) = iJ (σ ◦ χt ). Since the characters of both sides are regular functions in t ,

it is sufficient to prove this for t generic. Define

φw(σ, t) : H⊗HJ
V → H⊗HK

V w, h⊗ v 7→ vτw−1 ⊗ v. (4.5)

This is a well-defined intertwining operator. To see this, notice first that since we are
assuming t is generic, τw−1 evaluated at σ ⊗ χt has no poles. Secondly, by (4.4) and
Lemma 4.3, if h′ ∈ HJ , then h′τw−1 = τw−1w(h′), and thus φw(σ, t)(hh′ ⊗ v) =
φw(σ, t)(h ⊗ (σ (h

′) ◦ χt )v). Since the action of H on the induced modules is by left
multiplication, φw is indeed an intertwiner. Finally, for generic t , φw(σ, t) is invertible,
and the inverse is φw−1(σw, w(t)). ut
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4.3. For every J ⊂ 5, let ĩJ : H′J → H′ denote the inclusion. Define r̃J : H′ → H′J as
follows. Given h ∈ H′, let ψh : H′ → H′ be the linear map given by left multiplication
by h. This can be viewed as a right H′J -module morphism. Since H′ is free of finite rank
as a right H′J -module, one can consider trψh ∈ H′J . Set r̃J (h) = trψh.

As before, for every K ⊂ J , we may also define ĩJK and r̃JK .
Suppose δ(J ) = J . Define H̄J,δ = HJ /[HJ ,HJ ]δ . Then ĩJ gives rise to a well-

defined map (not necessarily injective)

īJ : H̄J,δ → H̄δ.

Since r̃J [H,H]δ ⊂ [HJ ,HJ ]δ , r̃J descends to a well-defined map

r̄J : H̄δ → H̄J,δ

sending h + [H,H]δ to the image of r̃J (hδ)δ−1 in HJ,δ . Define the similar notions īJK
and r̄JK .

Lemma 4.5 (cf. [CH, Lemma 4.5.1]). The maps īJ and r̄J are tr( , )-adjoint to rJ and
iJ , respectively.

4.4. We introduce the following hypothesis:

(PDT) The density theorem holds for every proper parabolic subalgebra HJ , δ(J ) = J .

The following properties are dual to those of iJ and rJ .

Lemma 4.6. Suppose (PDT) holds. Then:

(i) For L ⊂ K ⊂ J , īJL = ī
J
K ◦ ī

K
L and r̄JL = r̄

K
L ◦ r̄

J
K .

(ii) If K = δ(K) and J = δ(J ), then

r̄J ◦ īK =
∑

w∈KW J (δ)

īJJw ◦ w
−1
◦ r̄KKw (4.6)

as maps from H̄K,δ → H̄J,δ , where Kw = K ∩ wJw−1 and Jw = J ∩ w−1Kw.

(iii) If w ∈ KW J (δ) and K = w(J ), then

w−1
◦ r̄K = r̄J . (4.7)

Remark 4.7. (1) We will see in Section 8 that the (PDT) hypothesis is not necessary.
(2) In general, if J , K , and w are as in Lemma 4.6(iii), then īK ◦ w 6= īJ in H̄δ . For

example, suppose δ = 1 and J = K = ∅, and take θx ∈ H̄∅. Then, for w ∈ W , we
have θx 6≡ θw(x) in H̄ in general. To see this, one can use the (one-dimensional) Steinberg
module St of H, and the fact that tr(θx,St) 6= tr(θw(x),St) in general.

4.5. To end this section, we recall the A-operators. For any J = δ(J ) ⊂ 5, set NJ =
{z ∈ JW J

; z = δ(z), J = z(J )}.
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As in [BDK, Section 5.5] (see also [Da, Section 2]), fix an order of the subsets K of
every given size, and define

A` =
∏

K=δ(K), |K|=|5|−`

(iK ◦ rK − |NK |), A = A|5| ◦ · · · ◦ A1 : R
δ(H)→ Rδ(H).

(4.8)
Let

Ā` =
∏

δ(K)=K, |K|=|5|−`

(īK ◦ r̄K − |NK |), Ā = Ā1
◦ · · · ◦ Ā|5|, (4.9)

be the adjoint operator.
The following proposition is proved in [BDK, Sections 5.4, 5.5] and [Da, Proposition

2.5(i)].

Proposition 4.8. We have A2
= aA for some a 6= 0 and

kerA =
∑

J=δ(J )(I
iJ (R

δ(HJ )).

The following proposition is dual to Proposition 4.8 and it follows by adjunction.

Proposition 4.9. Suppose (PDT) holds.

(1) Ā2
= aĀ for some a 6= 0.

(2) Set H̄ell
δ =

⋂
J=δ(J )(I ker r̄J . Then H̄ell

δ = im Ā.

5. Spanning sets of the cocenter

In this section, we recall the explicit description of the cocenter of H obtained in [HN1]
and [HN2].

5.1. We first recall some properties of the minimal length elements of conjugacy classes
of W̃ ′.

We follow [HN1]. For w,w′ ∈ W̃ ′ and s ∈ Sa , we write w
s
−→ w′ if w′ = sws and

`(w′) ≤ `(w). We write w → w′ if there is a sequence w = w0, w1, . . . , wn = w′ of
elements in W̃ such that for any k, wk−1

s
−→ wk for some s ∈ Sa .

We call w,w′ ∈ W̃ ′ elementarily strongly conjugate if `(w) = `(w′) and there exists
x ∈ W̃ ′ such that w′ = xwx−1 and `(xw) = `(x) + `(w) or `(wx−1) = `(x) + `(w).
We call w,w′ strongly conjugate if there is a sequence w = w0, w1, . . . , wn = w

′ such
that for each i, wi−1 is elementarily strongly conjugate to wi , and we write w ∼ w′ in
this case.

The following result is proved in [HN1, Theorem A].

Theorem 5.1. Let O be a conjugacy class of W̃ ′ and Omin be the set of minimal length
elements in O. Then:

(1) For any w′ ∈ O, there exists w′′ ∈ Omin such that w′→ w′′.
(2) If w′, w′′ ∈ Omin, then w′ ∼ w′′.
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5.2. By definition, if w ∼ w′, then Tw ≡ Tw′ mod [H′,H′]. Let O be a conjugacy class
of W̃ ′. Let TO be the image of Tw in H̄′, where w is a minimal length element in O. By
Theorem 5.1(2), TO is independent of the choice of w.

Moreover, we have the following result.

Theorem 5.2. The elements {TO}, where O ranges over all the conjugacy classes of W̃ ′,
span H̄′ as an 3-module.

The equal parameter case was proved in [HN1, Theorem 5.3]. The general case can be
proved in the same way and we omit the details. In [HN1, Theorem 6.7], it is proved in
the equal parameter case that {TO} is a basis of H̄′. The proof there is to use the base ring
to reduce the question to the group algebra of W̃ ′, and then to prove the density theorem
for the group algebra.

In this paper, we will prove that {TO} is a basis of H̄′ for arbitrary parameters after
establishing the trace Paley–Wiener theorem and the density theorem.

5.3. The expression for a minimal length element Tw in O is usually very complicated.
To study the induction and restriction maps on the cocenter, we also need the Bernstein–
Lusztig presentation of H̄′ established in [HN2].

5.4. Let XC = X ⊗Z C and N = |W ′|. For any w ∈ W̃ ′, we have wn = tλ for some
λ ∈ X. Let νw = λ/n and ν̄w be the unique dominant element in the W0-orbit of νw.
Then the map W̃ → XC, w 7→ ν̄w, is constant on the conjugacy classes of W̃ ′. For any
conjugacy class O, we set νO = ν̄w for any w ∈ O and call it the Newton point of O. We
set

JO = {α ∈ 5; sα(νO) = νO}. (5.1)

We say that the Newton point of O is central if JO = 5.

5.5. Let p : W̃ ′ = X oW ′ → W ′ be the projection map. We call an element w ∈ W ′

elliptic if (XC)w ⊂ (XC)W , and an element w ∈ W̃ elliptic if p(w) is elliptic in W ′.
A conjugacy class O in W̃ ′ is called elliptic if w is elliptic for some (equivalently any)
w ∈ O. By definition, if O is elliptic, then νO ∈ XWC . In other words, elliptic conjugacy
classes have central Newton point.

5.6. Let ℵ be the set of pairs (J, C), where J ⊂ S, C is an elliptic conjugacy class of
W̃J o0J and νw is dominant for some (equivalently any) w ∈ C. For any (J, C), (J ′, C′)
in ℵ, we write (J, C) ∼ (J ′, C′) if νw = νw′ for w ∈ C and w′ ∈ C′ and there exists
x ∈ WJνw

o 0Jνw such that xCx−1
= C′.

By [HN2, Lemma 5.8], the map from ℵ to the set of conjugacy classes of W̃ ′ sending
(J, C) to the unique conjugacy class O of W̃ with C ⊂ O gives a bijection from ℵ/∼ to
the set of conjugacy classes of W̃ . We denote this map by τ . The following is proved in
[HN2, Theorem B].

Theorem 5.3. Let (J, C) ∈ ℵ and O = τ(J, C). Then

TO = īJ (T
J
C ).
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Here T JC is the image of Ty in H̄′J for any minimal length element y of C (with respect to
the length function on W̃J o0J ). However, in general, y is not a minimal length element
in O (with respect to the length function on W̃ ′). The expression of īJ (T JC ) involves the
Bernstein–Lusztig presentation of H′J and H′.

5.7. As we will see later, the conjugacy classes with central Newton points play a crucial
role in this paper. Here we discuss a variation of §5.6 and Theorem 5.3.

Let O be a conjugacy class of W̃ ′ and J = JO. We may assume that O = τ(K,C).
Then it is easy to see that K ⊂ J . Let O′ be the conjugacy class of W̃ ′J o 0J such that
O′ = τJ (K,C). Then JO′ = J and T JO′ = ī

J
K(T

K
C ). Hence

TO = īK(T
K
C ) = īJ (T

J
O′).

6. Elliptic quotients and rigid quotients

In this section, we discuss two natural quotients for Rδ(H): the elliptic quotient intro-
duced in [BDK] and the rigid quotient, which we introduce below.

Unless specified otherwise, H is assumed to have arbitrary parameters.

6.1. The elliptic quotient of Rδ(H) is defined to be

R̄δ0(H) = R
δ(H)/

∑
J=δ(J )(I

iJ (R
δ(HJ )).

Now we introduce the rigid quotient.

Definition 6.1. Set

Rδ(H)diff-ind = span{iJ (σ )− iJ (σ ◦ χt ); J = δ(J ), σ ∈ Rδ(Hss
J ),

t ∈ HomZ(X ∩QR/X ∩QJ,C∗)δ} ⊂ Rδ(H), (6.1)

and define the rigid quotient of Rδ(H) to be

R̄δ(H)rigid = R
δ(H)/Rδ(H)diff-ind. (6.2)

Notice the presence of X ∩QR in the definition, rather than X. This is to account for the
fact that the root datum may not be semisimple.

In the rest of this section, we assume that the root datum 8 for H is semisimple. We
estimate the dimension of the elliptic quotient and rigid quotient of Rδ(H). By Proposi-
tion 4.9, the subspace H̄ell

δ of H̄ is the image of Ā if (PDT) holds.

Proposition 6.2. Suppose that (PDT) holds and the root datum for H is semisimple. Then
the rank of the restriction of the trace map tr : H̄ell

δ × R̄
δ
0(H)→ C equals dim R̄δ0(H). In

particular, dim R̄δ0(H) ≤ dim H̄ell
δ .

Remark 6.3. In fact, we will see in Section 8 that the (PDT) assumption can be dropped.
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Proof of Proposition 6.2. Suppose {π1, . . . , πk} is a set in Rδ(H) such that its image
in R̄δ0(H) is linearly independent. Applying the operator A, one obtains a linearly inde-
pendent set {A(π1), . . . , A(πk)} in Rδ(H). This is because A(π) ≡ aπ in R̄δ0(H), and
a 6= 0.

Since the characters of simple modules are linearly independent, so are the characters
of any linearly independent set in Rδ(H). Thus there exist h1, . . . , hk in H̄ such that the
matrix (tr(hiδ, A(πj ))i,j is invertible. By Lemma 4.5, the matrix (tr(Ā(hi)δ, πj ))i,j is
also invertible, hence {Ā(hi)} is a linearly independent set in H̄δ . Now the conclusion
follows from Proposition 4.9. ut

6.2. Let Iδ = {J ⊂ 5; J = δ(J )}. For J, J ′ ∈ Iδ , we write J ∼δ J ′ if there exists
w ∈ W δ

∩
J ′W J such that w(J ) = J ′. For each ∼δ-equivalence class in Iδ , we choose a

representative. We denote by Iδ
♠
⊂ Iδ the set of representatives. RecallNJ = {z ∈ JW J

;

z = δ(z), J = z(J )}. Then NJ acts on Rδ(Hss
J ) and on R̄δ0(H

ss
J ).

By Lemmas 4.1 and 4.2, we have

Lemma 6.4. If K = δ(K) ( 5, then

iK(R
δ(HK)diff-ind) ⊆ R

δ(H)diff-ind and rK(R
δ(H)diff-ind) ⊆ R

δ(HK)diff-ind.

The first result is an equality for the dimension of R̄δ(H)rigid.

Proposition 6.5. Suppose that the root datum for H is semisimple. Then

dim R̄δ(H)rigid =
∑
J∈Iδ

♠

dim R̄δ0(H
ss
J )

NJ .

Proof. Let m = |5| and consider first the natural projection

pm : R̄
δ(H)rigid → R̄δ0(H).

By definition,
kerpm =

∑
J=δ(J )(5

[iJ (R
δ(HJ ))],

where [iJ (Rδ(HJ ))] = iJ (R
δ(HJ ))/iJ (R

δ(HJ )) ∩ R
δ(H)diff-ind. By Lemma 4.4, we

can replace the right hand side by

kerpm =
∑
J∈Iδ

♠

[iJ (R
δ(HJ )

NJ )].

Let rss
J = χ1◦rJ : R

δ(H))→ Rδ(HJ )→ Rδ(Hss
J ). Let J1, . . . , Jk be the representatives

in Iδ
♠

of the maximal δ-stable proper subsets of 5. Then consider

pm−1 : kerpm→
k⊕
i=1

R̄0(Hss
Ji
)NJi , pm−1 =

∑
i

rss
Ji
.

By Lemma 4.2, this map is well-defined. It is also surjective, given the definition of
kerpN .
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Continue in this way and define

pm−2 : kerpm−1 →
⊕

J∈Iδ
♠
,|J |=m−2

R̄0(Hss
J )

NJ , pm−2 =
∑

J∈Iδ
♠
,|J |=m−2

rss
J ,

etc., until p0 : kerp1 → R̄0(Hss
∅
)W = {0}.

Therefore, dim R̄δ(H)rigid =
∑N
j=0 dim impj =

∑
J∈Iδ

♠

dim R̄δ0(H
ss
J )

NJ . ut

Definition 6.6. A specialization of the parameter q of H is called admissible if Lusztig’s
reduction [Lu1, Theorems 8.6, 9.3] from affine Hecke algebras to graded affine Hecke
algebras holds for all the parabolic subalgebras of H (in particular, including H itself).
For example, this is the case if q is specialized to q(α) = qL(α), where L(α) ∈ Z≥0
and q ∈ C× has infinite order, or more generally, q’s order is not small (so that both
the numerators and denominators in the first displayed equation in the proof of [Lu1,
Lemma 9.5] are nonzero).

6.3. Now we give a precise formula for the dimensions of the elliptic quotient and rigid
quotient of Rδ(H) in terms of δ-conjugacy classes of W̃ .

Let cl(W̃ , δ) be the set of δ-conjugacy classes of W̃ . Let cl(W̃ , δ)ell be the set of
elliptic δ-conjugacy classes of W̃ , and let cl(W̃ , δ)0 be the set of δ-conjugacy classes O
of W̃ such that νO = 0. Then

cl(W̃ , δ)ell ⊂ cl(W̃ , δ)0 ⊂ cl(W̃ , δ).

Let cl(W, δ)ell ⊂ cl(W, δ) denote the set of elliptic δ-conjugacy classes, respectively all
δ-conjugacy classes in W .

By [HN2, Lemma 5.8], we have∑
J⊂Iδ

♠

|cl(W̃J , δ)ell/NJ | = |cl(W̃ , δ)0|. (6.3)

For s ∈ T = HomZ(X,C∗), set Ws = {w ∈ W ; w · s = s}. We call s isolated if Ws

contains a δ-elliptic element of W . By [OS2, Theorem 3.2], Clifford–Mackey induction
gives a natural isomorphism

R̄δ0(W̃ )
∼=

⊕
s∈T/W ′ isolated

R̄δ(Ws). (6.4)

Now suppose that we are given a finite group8 of automorphisms that commutes with δ.
The action of N on8 induces actions on W̃ and on T . We denote by ZN (s) the stabilizer
of s ∈ T . Then the previous isomorphism implies

R̄δ0(W̃ )
N ∼=

⊕
s∈T/W ′N isolated

R̄δ(Ws)
ZN (s), (6.5)

and in particular, considering the dimensions of the spaces involved, one finds

|cl(W̃ , δ)ell/N | =
∑
s

|cl(Ws, δ)ell/ZN (s)|, (6.6)

where s ranges over N -orbits of isolated representatives in T/W ′.
We have the following result on the dimension of the elliptic quotient.
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Proposition 6.7. Suppose that q is specialized to an admissible parameter and the root
datum for H is semisimple. Let N be a group of automorphisms on W̃ that preserves Sa

and commutes with δ. Then:

(1) dim R̄δ0(H)
N
= |cl(W̃ , δ)ell/N |.

(2) dim R̄δ(H)Nrigid = |cl(W̃ , δ)0/N |.

Remark 6.8. In particular, the parameterization of irreducible representations of an
affine Hecke algebra with (possibly unequal) admissible parameters is the same as the
parameterization of irreducible representations of the extended affine Weyl group, once
we identify the elliptic quotient for the parabolic subalgebras of affine Hecke algebra and
the group algebra.

Proof of Proposition 6.7. Recall that the complex torus T has a polar decomposition
T = TcTu, where Tc = HomZ(X, S1) is the compact part of the torus T and Tu =
HomZ(X,R>0). For every s ∈ Tc/W ′, let Rδ(H)s denote the span of the irreducible
δ-stable H-modules whose central characters have compact part s. Clearly, we have the
decompositions

Rδ(H) =
⊕

s∈Tc/W ′

Rδ(H)s, Rδ(H)N =
⊕

s∈Tc/W ′N

Rδ(H)ZN (s)s .

Let R̄δ0(H)s denote the image of Rδ0(H) in R̄δ0(H). Then, since the action of N preserves
RδInd(H), we have

R̄δ0(H)
N
=

⊕
s∈Tc/W ′N

R̄δ0(H)
ZN (s)
s .

If s is not isolated, then R̄δ0(H)s = 0, so the decomposition becomes

R̄δ0(H)
N
=

⊕
s∈Tc/W ′N isolated

R̄δ0(H)
ZN (s)
s . (6.7)

Let Hs be the graded affine Hecke algebra constructed from H and the W -orbit of s
in [Lu1, Section 8] (see also [BM2, Section 3]). When s is isolated, the root system
corresponding to Hs is semisimple. By [Lu1, Theorems 8.3 and 9.2] and the fact that
parabolic induction commutes with the reduction to graded Hecke algebras (e.g., [BM2,
Theorem 6.2]), it follows that

R̄δ0(H)s ∼= R̄
δ
0(Hs) and R̄δ0(H)

ZN (s)
s

∼= R̄
δ
0(Hs)

ZN (s). (6.8)

By [CH, Theorems B and C] applied to the semisimple graded Hecke algebra Hs , there
exists a perfect pairing between the finite-dimensional spaces

tr : R̄δ0(Hs)× (H̄s)δ,0 → C. (6.9)

This implies that the subspace R̄δ0(Hs)
ZN (s) is in perfect duality with the space

of ZN (s)-coinvariants ((H̄s)δ,0)ZN (s). By [CH, Theorem 7.2.1], (H̄s)δ,0 has a basis
{wC; C ∈ cl(Ws, δ)ell}, where wC is a representative of C. This means that

dim R̄δ0(Hs)
ZN (s) = dim ((H̄s)δ,0)ZN (s) = |cl(Ws, δ)ell/ZN (s)|. (6.10)
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Then (6.8) gives dim R̄δ0(H)
ZN (s)
s = |cl(Ws, δ)ell/ZN (s)|, and therefore part (1) of the

proposition follows from (6.7) and (6.6).
Part (2) follows from (1) and Propositions 6.5 and 6.6. ut

6.4. In fact, the proof of Proposition 6.5 gives a section of R̄δ(H)rigid → Rδ(H). To
define it, recall the [BDK]-map defined in (4.8),

A : Rδ(H)→ Rδ(H),
which by Proposition 4.8 has

kerA = Rδ1(H), and so imA ∼= R̄
δ
0(H). (6.11)

Let AJ : Rδ(HJ )→ Rδ(HJ ) be the similar maps for the parabolic subalgebras HJ . As
a consequence of the proof of Proposition 6.5, we have

Corollary 6.9. If the root datum for H is semisimple, a section of R̄δ(H)rigid is given by⊕
J∈Iδ

♠

iJ im(AJ : R(Hss
J )→ R(Hss

J ))
NJ .

7. Duality between H̄ and R(H)

Our strategy to prove the main results is to use traces of finite-dimensional H-modules to
separate the elements {TO} that span the cocenter H̄.

7.1. Recall that R∗δ (H) = HomC(Rδ(H),C). Let (R̄δ(H)rigid)
∗ be the subspace of

R∗δ (H) consisting of linear functions on Rδ(H) that vanish on Rδ(H)diff-ind. Define

H̄rigid
= span{TO; JO = 5}.

We have the following separation theorem.

Theorem 7.1. Suppose that (PDT) holds. Then

H̄rigid
δ = {h ∈ H̄δ; trδ(h)(Rδ(H)diff-ind) = 0}.

i.e., the elements {TO}, where O ranges over the conjugacy classes in W̃ ′ with JO = 5,
span H̄rigid

δ as an 3-module.
Proof. We assume that the root datum for H is semisimple. The reduction from the re-
ductive root system to the semisimple root system will be discussed in a more general
setting in Section 8.1.

Let O be a conjugacy class with JO = 5. There exist K ( 5a such that TO = Tw
(in H̄δ) for some elliptic element w in the parahoric subgroup W ′K . Since W ′K is a finite
group,

iJ (σ ) ∼= iJ (σ ◦ χt ) as H′K -representations,

for all J = δ(J ) ⊂ 5 and t ∈ Hom(X ∩QR/X ∩QJ,C∗)δ . This means that

tr(Tw, π) = 0 for all π ∈ Rδ(H)diff-ind,

and hence TO = Tw ∈ H̄rigid
δ .
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For the converse inclusion, suppose trδ(
∑

O aOTO)(R
δ(H)diff-ind) = 0. Let J be a

minimal subset of 5 such that J = JO for some O with aO 6= 0. If J = 5, we are done.
Otherwise, suppose J ( 5. Apply iJ (σt−t ′) = iJ (σ ◦ (χt − χt ′)), where σ ∈ Rδ(HJ )

will be chosen conveniently later, to the linear combination to obtain

pJ (t, t
′) =

∑
O
aO tr(TO, iJ (σt−t ′))

=

∑
JO=J

aO tr(TO, iJ (σt−t ′))+
∑
JO 6=J

aO tr(TO, iJ (σt−t ′))

as a polynomial function in t, t ′ ∈ Hom(X ∩QR/X ∩QJ,C∗)δ .
In pJ (t, t ′), the part

∑
JO=J

is more regular in t, t ′ than
∑
JO 6=J

. Since by assumption
pJ (t, t

′) = 0 for all t, t ′, it follows that∑
JO=J

aO tr(TO, iJ (σt−t ′)) = 0.

By Theorem 5.3 and §5.7, for any O with JO = J , we have TO = īJ (T
J
O′) for some

conjugacy class O′ of W̃J o 0J with JO′ = J and O′ ⊂ O.
Set h =

∑
JO=J

aOT
J
O′ . By induction, h ∈ (H̄rigid

J,δ )NJ . Then∑
JO=J

aO tr(TO, iJ (σt−t ′)) =
∑
JO=J

aO tr(īJ (T JO′), iJ (σt−t ′)) = tr(h, rJ ◦ iJ (σt−t ′)) = 0.

(7.1)
By Lemmas 4.2 and 4.4, we have

rJ ◦ iJ =
∑
w∈NJ

w +
∑

w∈JW J (δ)\NJ

iJJw ◦ r
J
Jw
, Jw = J ∩ w

−1Jw.

Notice that the second part of the sum involves only Jw that are proper subsets of J . By
Lemma 6.4, we find that tr(h, ) vanishes on this part, and so tr(h,

∑
w∈NJ

w◦σt−t ′)) = 0.
Since t, t ′ are arbitrary, this implies that

∑
w∈NJ

tr(h,w ◦ σ) = 0 for all σ ∈ Rδ(HJ ).
Now specialize σ ∈ Rδ(HJ )

NJ and get

tr(h, σ ) = 0 for all σ ∈ Rδ(HJ )
NJ . (7.2)

The (PDT) assumption says that tr : H̄J,δ × R
δ(HJ ) → C is nondegenerate on

the left. Passing to NJ -coinvariants and NJ -invariants, respectively, it follows that tr :
(H̄J,δ)NJ ×R

δ(HJ )
NJ → C is also nondegenerate on the left. Then (7.2) gives h = 0 in

(H̄rigid
J,δ )NJ . Therefore

∑
JO=J

aOTO = 0, and this is a contradiction. ut

7.2. When the specialized parameters of the Hecke algebra are not roots of unity, the
rigid cocenter H̄rigid appears naturally in relation with K0(H), the Grothendieck group
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of finitely generated projective H-modules. Let

Rk : K0(H)→ H̄ (7.3)

be the Hattori–Stallings rank map (see for example [Da, §1.2]). If P ∈ K0(H) is a finitely
generated projective module, then P is a direct summand of Hn for some positive inte-
ger n. As such, there exists an idempotent eP ∈ Mn×n(H) such that P = HneP as left
H-modules. The rank map is defined to be the image in H̄ of the matrix trace of eP , i.e.,

Rk(P ) = Tr(eP ) mod [H,H]. (7.4)

Example 7.2. For every subset K ⊂ Sa with WK finite, let HK ⊂ H be the (finite)
parahoric Hecke algebra generated by Tsi , i ∈ K . If τ is a simple finite-dimensional
HK -module, form the ”compactly induced” module P(K, τ) = H ⊗HK

τ. When the
parameters of H are such that HK is a semisimple algebra, these modules are all finitely
generated projective.

Lemma 7.3. The image of the rank map Rk lies in H̄rigid.

Proof. Let P ∈ K0(H) be a finitely generated projective module. By Theorem 7.1, for
J ⊂ 5, (σ, Vσ ) ∈ Hss

J -mod and t ∈ Hom(X ∩QR/X ∩QJ,C∗), we need to show that
tr(Rk(P ), iJ (σt )) is independent of t , where σt = σ ◦ χt are acting on the same vector
space Vσ . By the adjunction property, tr(Rk(P ), iJ (σ ◦ χt )) = tr(r̄J (Rk(P )), σ ◦ χt ).
Let rJ : K0(H) → K0(HJ ) be the restriction map. Then r̄J (Rk(P )) = Rk(rJ (P )).
Since rJ (P ) is a finitely generated projective HJ -module, let eJP ∈ Mn×n(HJ ) be a
corresponding idempotent. Thus, we have arrived at tr(Tr(eJP ), σ ◦ χt ). This is equivalent
to computing the matrix trace of the family of idempotents σt (eJP ) ∈ EndC[Vσ ]. Now
{σt (e

J
P )} is a continuous family of idempotents, and by the rigidity of the trace of an

idempotent, Tr(σt (eJP )) is independent of t . ut

Remark 7.4. One may regard this result as the affine Hecke algebra analogue of the
“Selberg principle” of [BB] for reductive p-adic groups [Da, Theorem 1.6].

7.3. We need a decomposition of H̄rigid
δ dual to the one for R̄δ(H)rigid from Proposition

6.5 and Corollary 6.9.

Proposition 7.5. Suppose that the root datum for H is semisimple and (PDT) holds. Then

H̄rigid
δ =

⊕
J∈Iδ

♠

īJ (ĀJ ((H̄ss
J )

rigid
)NJ ).

Proof. The proof follows the lines of the proof of Proposition 6.5.
By Theorem 7.1, H̄ell

δ ⊆ H̄rigid
δ . By Proposition 4.8, Ā(H̄rigid

δ ) = H̄ell
δ . Hence Hell

δ =

Ā(Hell
δ ) ⊆ Ā(H

rigid
δ ) ⊆ Ā(Hδ) = Hell

δ . Thus

Ā(H̄rigid
δ ) = H̄ell

δ ⊂ H̄rigid
δ .
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Set p̄0 = Ā|H̄rigid
δ

. Since Ā2
= aĀ, a 6= 0, by Proposition 4.9, we have H̄rigid

δ =

Ā(H̄rigid
δ )⊕ ker p̄0.

Since Ā = a +
∑
J=δ(J )(5 c

′

J 1̄J , we have ker p̄0 ⊂
∑
J∈Iδ

♠
, J 6=5 īJ (H̄δ,J ). Recall

that H̄rigid
δ is spanned by TO, with JO = 5. From Theorem 5.3, we then see that

ker p̄0 ⊆
∑

J∈Iδ
♠
, J 6=5

īJ (H̄ss,rigid
δ,J )NJ .

Consider the projection

p̄1 : ker p̄0 →
⊕

J∈Iδ
♠
, |J |=|5|−1

īJ (ĀJ (H̄ss,rigid
δ,J )NJ ).

By Theorem 5.3, the map is well-defined, i.e., the range of p̄1 is indeed a direct sum
(rather than a sum). Moreover, p̄1 is surjective because the range of p̄1 is in H̄rigid

δ , and
it is orthogonal to H̄ell

δ . Write ker p̄0 = ker p̄1 ⊕ im p̄1 and continue as in the proof of
Proposition 6.5. ut

Now we state our main theorem.

Theorem 7.6. Suppose that the root datum for H is semisimple, (PDT) holds,1 and q is
specialized to an admissible parameter. Then:

(1) tr : H̄rigid
δ × R̄(H)δrigid → C is a perfect pairing.

(2) tr : H̄ell
δ × R̄

δ
0(H)→ C is a perfect pairing.

Proof. We show that the pairing tr is block upper triangular with respect to the decom-
position of H̄rigid

δ from Proposition 7.5 and the decomposition of R̄δ(H)rigid from Corol-
lary 6.9. For every J ∈ Iδ

♠
, denote

H̄rigid
δ [J ] = īJ (ĀJ ((H̄ss

J )
rigid

)NJ ) and R̄δ(H)rigid[J ] = iJ (AJ (R(Hss
J ))

NJ ).

Let J,K ∈ Iδ
♠

. Then, for h ∈ (H̄ss
K )

rigid and π ∈ R(Hss
J ),

tr
(
īK(ĀK(h)), iJ (AJ (π))

)
= tr

(
h,AK ◦ (rK ◦ iJ )(AJ (π))

)
by Lemma 4.5,

=

∑
w∈KW J (δ)

tr
(
h,AK ◦ (i

K
Kw
◦ w ◦ rJJw )(AJ (π))

)
by Lemma 4.2.

In particular, if J 6⊇ K (as elements of Iδ
♠

), then allKw are proper subsets ofK , and there-

fore AK kills the induced modules. This means that tr : H̄rigid
δ [K] × R̄(H)δrigid[J ] → C

is identically zero if J 6⊇ K .

1 In Section 8, the Density Theorem 8.2 is proven, based on an inductive argument, and therefore
this assumption can then be removed.
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On the other hand, if J = K , the only nonzero contribution to the trace comes from
w ∈ KWK(δ) on the right hand side, and we obtain

tr
(
īK(ĀK(h)), iK(AK(π))

)
= |NK | tr(ĀK(h), AK(π)).

This is because AK(π) is chosen to be NK -invariant.
The rank of this pairing equals the rank of trss

K : (H̄
ss,0
K,δ )NK×R̄

δ
0(H

ss
K )

NK → C, which,
by Proposition 6.2, equals dim R̄δ0(H

ss
K )

NK .
Therefore,

rank tr(H̄rigid
δ × R̄(H)δrigid) =

∑
J∈Iδ

♠

rank tr(H̄rigid
δ [J ] × R̄(H)δrigid[J ])

=

∑
J∈Iδ

♠

dim R̄δ0(H
ss
J )

NJ = dim R̄(H)δrigid. (7.5)

This implies that dim H̄rigid
δ ≥ dim R̄(H)δrigid. On the other hand, from Theorem 7.1, we

know that dim H̄rigid
δ ≤ |cl(W̃ , δ)0|. When q is admissible, dim R̄(H)δrigid = |cl(W̃ , δ)0|,

and therefore dim H̄rigid
δ = dim R̄(H)δrigid = |cl(W̃ , δ)0| in this case. This proves (1).

In light of the inequality in Proposition 6.2 (applied to each J ), (1) implies that the
equality of dimensions must hold for each J , i.e., dim H̄rigid

δ [J ] = dim R̄δ(H)rigid[J ]. In
particular, when J = 5, this is claim (2). ut

7.4. Examples. In this subsection, we illustrate the pairing between the rigid quotient and
the rigid cocenter in some concrete examples.

Example 7.7 (SL(2)). Let H be the affine Hecke algebra for the root datum of SL(2).
This is generated by T0 and T1 subject to

T 2
i = (q− 1)Ti + q, i = 0, 1.

There are three conjugacy classes of finite order in W̃ : s0 (the affine reflection), s1 (the
finite reflection), and 1. Accordingly, we have the three basis elements of H̄rigid: T0, T1,
and 1.

There are four one-dimensional modules corresponding to Ti ∈ {−1, q}. A basis of
the elliptic space R̄0(H) in the admissible case is given by the classes of St = (T0 = −1,
T1 = −1) and any one of the two modules π+ = (T0 = −1, T1 = q) or π− = (T0 = q,

T1 = −1). Choose the class of π+.
The third basis element of R̄(H)rigid is the (tempered) principal series i∅(1). The

resulting 3× 3 table is in Table 1.
The determinant of this matrix is −(q+ 1)2, and therefore the matrix is invertible for

all q 6= −1.
To get a block upper-triangular matrix, one needs to replace Ti by Ā(Ti), i = 0, 1, as

in Theorem 7.6.
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Table 1. The rigid cocenter/quotient table for SL(2)

SL(2) St π+ i∅(1)

T0 −1 −1 q− 1

T1 −1 q q− 1

1 1 1 2

Example 7.8 (PGL(2)). Let H be the affine Hecke algebra for the root datum of
PGL(2). This is generated by T0, T1, τ subject to

T 2
i = (q− 1)Ti + q, i = 0, 1, τ 2

= 1, τ · T0 = T1 · τ.

There are three conjugacy classes of finite order in W̃ : s1 (the finite reflection), τ , and 1.
Accordingly, we have the three basis elements of H̄rigid: T1, τ , and 1.

There are four one-dimensional modules corresponding to τ ∈ {1,−1} and T1 ∈

{−1, q}. A basis of the elliptic space R̄0(H) is given by the classes of St± = (T1 = −1,
τ = ±1).

The third basis element of R̄(H)rigid is the (tempered) principal series i∅(1). The
resulting 3× 3 table is in Table 2.

Table 2. The rigid cocenter/quotient table for PGL(2)

PGL(2) St− St+ i∅(1)

T1 −1 −1 q− 1

τ 1 −1 0

1 1 1 2

The determinant of this matrix is 2(q + 1), and therefore the matrix is invertible for
all q 6= −1.

Example 7.9 (Affine C2). Let H be the affine Hecke algebra attached to the affine dia-
gram of type C2 with three parameters

q0 q1+3 q2.ks (7.6)

It is generated by Ti , i = 0, 1, 2, subject to T 2
i = (qi − 1)Ti + qi and the braid

relations.
There are nine conjugacy classes of finite order in W̃ , including five elliptic classes.

Representatives for the five elliptic classes are: s1s2, (s1s2)2, s0s2, s0s1, and (s0s1)2. The
other four classes correspond to: s0, s1, s2, and 1.

A basis of the elliptic space R̄0(H) in the admissible case can be constructed by
lifting the five simple modules for the finite Hecke algebra Hf (C2, q1, q2) under the
algebra homomorphism T0 7→ −1, T1 7→ T1, T2 7→ T2. We label these five modules by
the bipartitions which parameterized the corresponding representations of the finite Weyl
group: 2× 0, 11× 0, 0× 2, 0× 11, and 1× 1. For the character table of the finite Hecke
algebra of type C2, see [GP].
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The remaining four modules needed for a basis of the rigid quotient R̄(H)rigid can
be chosen as the induced tempered modules: i{1}(St), i{2}(St), i{2}(π+), and i∅(1). Here
π+ is the one dimensional elliptic module for the Hecke algebra of SL(2) = Sp(2) as in
Table 1.

For this calculation, we computed the restrictions of the nine representations to the
maximal finite Hecke subalgebras, using the Mackey formula, and then used the character
table for the finite Hecke algebras of type C2 and A1. The resulting rigid character table
is given, because of page limitations, in (7.7) and (7.8).

Caff
2 2× 0 11× 0 0× 2 0× 11 1× 1

T1T2 q1q2 −q2 −q1 1 0

(T1T2)
2 (q1q2)

2 q2
2 q2

1 1 −2q1q2

T0T2 −q2 −q2 1 1 1− q2

T0T1 −q1 1 −q1 1 1− q1

(T0T1)
2 q2

1 1 q2
1 1 q2

1 + 1

T0 −1 −1 −1 −1 −2

T1 q1 −1 q1 −1 q1 − 1

T2 q2 q2 −1 −1 q2 − 1

1 1 1 1 1 2

(7.7)

Caff
2 i{1}(St) i{2}(St) i{2}(π

+) i∅(1)

T1T2 1− q2 1− q1 q2(q1 − 1) (q1 − 1)(q2 − 1)

(T1T2)
2 q2

2 − 2q1q2 + 1 q2
1 − 2q1q2 + 1 q2

1q
2
2 + q2

2 − 2q1q2 q2
1q

2
2 + q2

2 + q2
1 + 1− 4q1q2

T0T2 (q0 − 1)(q2 − 1) 2− q0 − q2 q0q2 + 1− 2q2 2(q0 − 1)(q2 − 1)

T0T1 1− q0 1− q1 1− q1 (q0 − 1)(q1 − 1)

(T0T1)
2 q2

0 − 2q0q1 + 1 q2
1 − 2q0q1 + 1 q2

1 − 2q0q1 + 1 q2
0q

2
1 + q2

1 + q2
0 + 1− 4q0q1

T0 2q0 − 2 q0 − 3 q0 − 3 4q0 − 4

T1 q1 − 3 2q1 − 2 2q1 − 2 4q1 − 4

T2 2q2 − 2 q2 − 3 3q2 − 1 4q2 − 4

1 4 4 4 8

(7.8)

The determinant of the 9× 9 rigid table equals

−(1+ q0)
3(1+ q1)

3(1+ q2)
3(q0 + q1)(q1 + q2)(1+ q0q1)(1+ q1q2).

This implies that the determinant of the rigid table above is nonzero if and only if all the
finite Hecke algebras are semisimple.2

2 For the semisimplity criterion for the finite Hecke algebra of type Bn, see [DJ, Theorem 5.5].
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Example 7.10 (Extended affine C2). The Hecke algebra attached to the extended affine
diagram of type C2

q2 q1+3 q2ks ''ww
(7.9)

is isomorphic to the Hecke algebra attached to the affine diagram

1 q2+3 q1ks (7.10)

so this is a particular case of the previous example with the appropriate specialization of
the parameters. More precisely, let T0, T1, T2, τ be the generators of the Hecke algebra
attached to the diagram (7.9) with relations:

T 2
0 = (q2 − 1)T0 + q2, T 2

1 = (q1 − 1)T1 + q1, T 2
2 = (q2 − 1)T2 + q2,

τ 2
= 1, τT0 = T2τ, τT1 = T1τ,

T0T1T0T1 = T1T0T1T0, T1T2T1T2 = T2T1T2T1, T0T2 = T2T0,

and let T ′0, T
′

1, T
′

2 be the generators of the Hecke algebra attached to the diagram (7.10)
with relations:

(T ′0)
2
= (q1 − 1)T ′0 + q1, (T ′1)

2
= (q2 − 1)T ′1 + q2, (T ′2)

2
= 1,

T ′0T
′

1T
′

0T
′

1 = T
′

1T
′

0T
′

1T
′

0, T ′1T
′

2T
′

1T
′

2 = T
′

2T
′

1T
′

2T
′

1, T ′0T
′

2 = T
′

2T
′

0.

The isomorphism is realized by

τ ↔ T ′0, T0 ↔ T ′0T
′

1T
′

0, T1 ↔ T ′2, T2 ↔ T ′1. (7.11)

The determinant of the rigid table equals (up to a scalar independent of q1, q2)

(1+ q1)
3(1+ q2)

5(q1 + q2)(1+ q1q2).

8. Some consequences

In this section, we prove the basis theorem, density theorem and trace Paley–Wiener the-
orem. They will be proven inductively, using Theorem 7.6.

Theorem 8.1 (Basis Theorem for arbitrary parameters). H̄′ is a free 3-module with ba-
sis {TO}, where O ranges over all the conjugacy classes of W̃ ′.

Theorem 8.2 (Density Theorem for admissible parameters). When q is specialized to an
admissible parameter, the trace map tr : H̄′→ R∗(H′)good is bijective.

The results in the previous subsections regarding R̄δ(H)rigid and H̄rigid
δ were proved un-

der the assumption that the root datum is semisimple and the parameters are admissible.
In order to apply an inductive argument using parabolic subalgebras, we need to show
that a proof in the semisimple case is sufficient to derive the general case. First we need
some elements of Clifford theory.
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8.1. Suppose that A is an associative algebra and 0 a group acting on A. Set A′ =
AoC[0]. The map aγ 7→ γ for a ∈ A and γ ∈ 0 induces a surjective linear map

τ : Ā′→ C[0] =
⊕
[γ ]∈cl(0)

Cγ. (8.1)

The fiber τ−1(γ ) is by definition the image of Aγ in Ā′. Similar to Section 3.2, we have:

Lemma 8.3. The map aγ 7→ a induces an isomorphism τ−1(γ ) ∼= Ā[γ ], where Ā[γ ] =
(A/[A,A]γ )Z0(γ ), the space of Z0(γ )-coinvariants.

Proposition 8.4. If the statement of Theorem 8.1 holds when H′ is semisimple with ad-
missible parameters, then it holds in general.

Proof. Define the linear map

π :
⊕

O∈cl(W̃ ′)

3→ H̄′, (aO) 7→
∑

aOTO.

By Theorem 5.2, this map is surjective. We need to show that also kerπ = 0. For this, it is
sufficient to show that kerπ⊗3Cq = 0 for generic parameters q. Fix now an admissible q
and specialize H′q = H′⊗3Cq . We will prove that the set {TO; O ∈ cl(W̃ ′)} is C-linearly
independent in H̄′q .

Let πq :
⊕

O∈cl(W̃ ′)C→ H̄′q denote the map induced by π after specialization.

Rewrite W̃ ′ = W̃ o 0 as W̃ ′ = W a o 0̃, where 0̃ = � o 0. For every O ∈ cl(W̃ ′),
there exists a unique [γ ] ∈ cl(0̃) such that O ∩W aγ 6= ∅. By Lemma 8.3, it is sufficient
to prove that for a fixed [γ ] ∈ cl(0̃), the set

{TO; O ∈ cl(W̃ ′), O ∩W aγ 6= ∅}

is linearly independent.
Denote 0̃ the image ofZ0(γ ) in Aut(W a, Sa), and by γ the image of γ . Moreover, set

W̃ ′ = W a o 0̃ and H̃′ = Ha oC[0̃]. Here Ha is the affine Hecke algebra corresponding
to W a . Notice that H̃′ is an affine Hecke algebra attached to a semisimple root datum
and extended by a group of automorphisms, therefore the hypothesis of the proposition
applies to it.

Let
πq :

⊕
O∈cl(W̃ ′)

C→ H̃′q , (aO) 7→
∑

aOTO,

be the cocenter map. By the assumption in the proposition, πq is bijective. Consider its
restriction to the γ -fiber:

π
q
[γ ] :

⊕
O∈cl(W̃ ′),O∩W aγ 6=∅

C→ Im(Ha,qγ → H̃′q) ∼= H[γ ]a,q , (8.2)

where the last isomorphism is by Lemma 8.3. Since πq is injective, so is πq
[γ ].
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There is a natural bijection

κγ : {O; O ∈ cl(W̃ ′),O ∩W aγ 6= ∅} → {O; O ∈ cl(W̃ ′), O ∩W aγ 6= ∅},

[wγ ] 7→ [wγ ], w ∈ W a .
(8.3)

Similar to (8.2), define

π
q
[γ ] :

⊕
O∈cl(W̃ ′),O∩W aγ 6=∅

C→ Im(Ha,qγ → H′q) ∼= H[γ ]a,q . (8.4)

We wish to show that πq
[γ ] is also injective, which would complete the proof. We have the

commutative diagram⊕
O∈cl(W̃ ′),O∩W aγ 6=∅ C

π
q
[γ ]
��

κγ //⊕
O∈cl(W̃ ′),O∩W aγ 6=∅C

π
q
[γ ]

��

H[γ ]a,q
∼= // H[γ ]a,q

(8.5)

Since πq
[γ ] is injective and κγ is bijective, it follows that πq

[γ ] is injective. ut

8.2. Proofs of Theorems 8.1 and 8.2. In light of Proposition 8.4, it is sufficient to prove
the theorems under the assumption that the root datum is semisimple. Assume that the
indeterminate q is specialized to an admissible parameter q. By induction, we may assume
that both the basis and density theorems hold for all proper parabolic subalgebras.

Suppose
∑

O aOTO ∈ ker tr. We claim that by induction,
∑

O aOTO ∈ H̄rigid
δ . In-

deed, by the proof of Theorem 7.1 and the (PDT) assumption,
∑
JO=J

aOTO = 0 for all
J ( 5. By the inductive assumption on proper parabolic subalgebras, aO = 0 for all O
with JO 6= J .

Thus
∑

O∈cl(W̃ ,δ)0 aOTO∈ker tr. Note that H̄rigid
δ is spanned by TO for O∈cl(W̃ , δ)0

and dim R̄δ0(H) = |cl(W̃ , δ)0|. By Theorem 7.6, TO for O ∈ cl(W̃ , δ)0 forms a ba-

sis of H̄rigid
δ . Hence aO = 0 for O ∈ cl(W̃ , δ). This concludes the proof when q is

admissible.
Finally, since Theorem 8.1 holds for generic parameters, it holds for the indeterminate

q as well. ut

8.3. Since H̄δ is a 3-module with basis TO, it is easy to see that the induction and
restriction maps īJ and r̄J depend algebraically on the parameters, therefore Lemma 4.6
and hence Propositions 4.9 and 6.2 hold unconditionally. Moreover, H̄ell

δ ⊂ H̄rigid
δ and

Proposition 7.5 holds without the (PDT) assumption.
We can now prove the trace Paley–Wiener theorem for arbitrary parameters.

Theorem 8.5. For arbitrary parameters, the image of the map tr : H̄′ → R(H′) is
R∗(H′)good. In other words, R∗δ (H)tr = R

∗
δ (H)good.

Proof. We first show that

tr : H̄ell
δ → R̄δ0(H)

∗ is surjective. (8.6)
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By Proposition 4.8, we may regard R̄δ0(H) as A(Rδ(H)) ⊂ Rδ(H). Under this identi-
fication, R̄δ0(H) = {σ ◦χt ; σ ∈ R̄

δ
0(H

ss), t ∈ T δ5}. On the other hand, the natural projec-
tion map H̄δ → (Hss)δ is surjective and each fiber is isomorphic to

⊕
λ∈(5∨)⊥/〈δ〉Cθλh

for some h ∈ H̄δ . Note that
⊕

λ∈(5∨)⊥/〈δ〉Cθλ is naturally isomorphic to the set of regular
functions on T δ5. Thus (8.6) follows from Proposition 6.2 and the remark above for Hss.

The rest of the argument is as in [BDK, §4]. Let f ∈ R∗δ (H)good. By (8.6), there
exists h ∈ H̄ell

δ such that f ′h = f on R̄δ0(H), where f ′h = tr(h) ∈ R∗δ (H)tr. Modifying f
to f − f ′h, we may assume that f (R̄δ0(H)) = 0.

Consider the adjoint operator

A∗ = a +
∑

J=δ(J )(5
c′J i
∗

J ◦ r
∗

J : R
∗
δ (H)→ R∗δ (H).

Then A∗(f )(Rδ(H)) = f (R̄δ0(H)) = 0. So f = −
∑
J=δ(J )(5 c

′

J /a i
∗

J ◦ r
∗

J (f ). It is
immediate that i∗J (R

∗
δ (H)good) ⊂ R∗δ (HJ )good and r∗J (R

∗
δ (HJ )tr) ⊂ R∗δ (H)tr, thus the

claim follows by induction on J . ut

8.4. We record one more finiteness result for arbitrary parameters.

Proposition 8.6. Suppose that 8 is a semisimple based root datum. Then

dim R̄δ0(H) ≤ rank H̄ell
δ = |cl(W̃ , δ)ell|.

Proof. By Proposition 6.2 and §8.3, dim R̄δ0(H) ≤ dim H̄ell
δ for arbitrary parameters.

Since (PDT) holds for admissible parameters, rank H̄ell
δ = rank H̄δ/ ker Ā is finite for

admissible parameters. Since H̄δ is a 3-module with basis TO and the map Ā depends
algebraically on the parameters, rank H̄δ/ ker Ā is semicontinuous, i.e., the rank at any
parameter is less than or equal to the rank at generic parameters. By Theorem 7.6(2) and
Proposition 6.7 (2), rank H̄ell

δ ≤ |cl(W̃ , δ)ell|.
On the other hand, by Proposition 7.5,

rank H̄rigid
δ =

∑
J∈Iδ

♠

rank (Hss
J )

0
δ
/NJ .

For each J , the NJ action depends algebraically on the parameters, hence

rank (Hss
J )

0
δ
/NJ ≤ |cl(W̃J , δ)ell/NJ |.

By §6.3,

|cl(W̃ , δ)0| = rank H̄rigid
δ =

∑
J∈Iδ

♠

rank (Hss
J )

0
δ
/NJ ≤

∑
J∈Iδ

♠

|cl(W̃J , δ)ell/NJ |

= |cl(W̃ , δ)0|.

Thus rank (Hss
J )

0
δ
/NJ = |cl(W̃J , δ)ell/NJ | for all J . In particular, we conclude that

rank H̄ell
δ = |cl(W̃ , δ)ell|. ut
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Remark 8.7. If the root datum 8 is not semisimple, apply the constructions from Sec-
tion 2.4 with J = 5. Set Z(8) = X/X ∩ Q5 and Ẑ(8) = T 5 = HomZ(Z(8),C×).
For every t ∈ Ẑ(8), let χt : H → Hss be the algebra homomorphism (2.12). These
homomorphisms define a right Ẑ(8)-action on IrrδH and on 2(H), which preserves the
elliptic parts Irrδ0 H and 2(H)0. Then Proposition 8.6 implies that the sets 2δ(H)0 and
Irrδ0(H) are finite unions of Ẑ(8)-orbits.

9. Applications to smooth representations of reductive p-adic groups

9.1. Let k be a p-adic field of characteristic 0 with ring of integers o and residue field
of cardinality q. Let G be a connected semisimple group over k, and set G = G(k).
Let G0 be the subgroup of G generated by all of the compact open subgroups. A (one-
dimensional) smooth character of G is called unramified if χ |G0 = 1. Let Xu(G) denote
the group of unramified characters of G. Let R(G) denote the Grothendieck group of
smooth C-representations of G. Let B(G) be the set of components of the Bernstein
center of G, as in [BK, §1]. Then we have a decomposition R(G) =

∏
s∈B(G) R

s(G).
If P is a (k-rational) parabolic subgroup of G with Levi decomposition P = MN , let

iM : R(M)→ R(G) and rM : R(G)→ R(M) denote the map of normalized parabolic
induction and the normalized Jacquet map, respectively (see for example [Be, Chapter III]
or [Ren, Chapter VI]).

Analogously to the Hecke algebras definition 6.1, we define the rigid quotient of
R(G).

Definition 9.1. Set

R(G)diff-ind = span{iM(σ )− iM(σ ◦ χ); P = MN a parabolic subgroup,
σ ∈ R(M), χ ∈ Xu(M)} (9.1)

and define the rigid quotient of R(G) to be

R̄(G)rigid := R(G)/R(G)diff-ind. (9.2)

If s ∈ B(G), let R̄s(G)rigid be the image of the Bernstein componentRs(G) in R̄(G)rigid.

9.2. We explain the role of the rigid cocenter in the correspondence of unitarizable rep-
resentations from the p-adic group to Iwahori–Hecke algebras. Let G satisfy the same
assumptions as in [Bo, §3].

Let I be an Iwahori subgroup ofG. Let CI (G) be the category of smoothG-represen-
tations generated by their I -fixed vectors. By a classical result of Casselman,

CI (G) = R0(G),

where R0(G) is the Bernstein component where the simple objects are subquotients of
unramified minimal principal series.

Let H = C∞c (I\G/I) be the Iwahori–Hecke algebra, i.e., the complex associative
unital algebra of compactly supported, smooth, I -biinvariant complex functions, under
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the convolution with respect to a fixed Haar measureµ onG. Normalize the Haar measure
so that µ(I) = 1. Given a representation (π, V ) ∈ CI (G), the algebra H acts on V I via

π(f )v =

∫
G

f (x)π(x)v dµ(x), f ∈ H, v ∈ V I .

Borel [Bo] showed that the functor

FI : CI (G)→ H-mod, V 7→ V I , (9.3)

is an equivalence of categories.
A smooth admissible G-representation (π, V ) is called hermitian if V has a nonde-

generate hermitian form 〈 , 〉G which isG-invariant, i.e., 〈π(g)v,w〉G = 〈v, π(g−1)w〉G
for all g ∈ G and v,w ∈ V . A hermitian representation is called (pre)unitary if the
hermitian form is positive definite.

In parallel, we have the similar definitions for H-modules. Let ∗ : H → H denote
the conjugate-linear anti-involution given by f ∗(g) = f (g−1) for f ∈ H and g ∈ G.
Then an H-invariant hermitian form on an H-module (π, V I ) has the defining property
〈π(f )v,w〉H = 〈v, π(f ∗)w〉H.

By restriction to I -fixed vectors, it is clear that if (π, V ) ∈ CI (G) is hermitian (resp.,
unitary), then (π, V I ) ∈ H-mod is hermitian (resp., unitary). It is also easy to see that if
(π, V I ) is hermitian, then (π, V ) is hermitian [BM1, (2.10)]. The difficult implication is
the following:

Theorem 9.2. Let (π, V ) ∈ CI (G) be an irreducible hermitian G-representation. If V I

is a unitary H-module, then V is a unitary G-representation.

The above theorem was proven in [BM1] under the assumption that G is split of ad-
joint type and V has “real infinitesimal character”. The latter assumption was removed
in [BM2] using a reduction to graded Hecke algebras and endoscopic groups. The as-
sumption thatG is split adjoint was removed in [BC] (where the theorem was generalized
to other Bernstein components as well), but the argument still involved the reduction to
real infinitesimal character. In the next subsection, we explain that the present result on
the rigid cocenter, Theorem 7.6(1), allows for a direct extension of the [BM1] argument
to arbitrary representations V with Iwahori fixed vectors for any semisimple connected
k-group G in the sense of [Bo]. This allows one to bypass the reduction to real infinitesi-
mal character from [BM2, BC].

9.3. Fix a basis {V̄i}1≤i≤n of R̄(H)rigid consisting of genuine finite-dimensional H-
modules. By invoking Langlands classification or Corollary 6.9, it is clear that we may
choose V̄i so that they are all tempered H-modules. Under the functor (9.3), there exist
smooth admissible G-representations Vi such that V Ii = V̄i . It is well-known that FI
induces a bijection between tempered representations in the two categories, thus Vi are
tempered G-representations.3

3 In fact, FI induces a homeomorphism between the supports of the Plancherel measures in the
two categories [BHK, Theorem B], but we will not need this more precise statement.
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Since the functor (9.3) commutes with parabolic induction [BM1, discussion around
Theorem 6.1], we immediately see that {Vi} is a basis of R̄0(G)rigid.

Let (π, V ) ∈ CI (G) be an irreducible, hermitian representation with G-invariant her-
mitian form 〈 , 〉G. Let K ⊃ I be a maximal parahoric subgroup. Following [Vo], one
defines theK-signature of V as follows. Let (σ, Uσ ) be a smooth irreducibleK-represen-
tation with an implicitly fixed positive definite K-invariant form. The K-character of V
is the formal sum

θK(V ) =
∑
σ∈K̂

mσσ, where mσ = dim HomK [Uσ , V ] <∞. (9.4)

Then the form 〈 , 〉G induces a form on the isotypic component HomK [Uσ , V ] of σ in V
(if this is nonzero), and this form has signature (pσ , qσ ). Of course, pσ + qσ = mσ . The
K-signature character of V is the formal combination

6K(V ) =
(∑
σ∈K̂

pσσ,
∑
σ∈K̂

qσσ
)
. (9.5)

Since {Vi} is a basis of R̄0(G)rigid, in particular we have the following sharpening of
[BM1, Theorem 5.3].

Lemma 9.3. For every K ⊃ I , the K-character of any irreducible representation in
CI (G) is a linear combination of θK(Vi), i = 1, . . . , n.

The same Jantzen filtration arguments as in [BM1, Section 5] lead then to a sharpened ver-
sion of [BM1, Theorem 5.3], which is the p-adic analogue of Vogan’s signature theorem
[Vo, Theorem 1.5].

Theorem 9.4 (cf. [BM1, Theorem 5.3]). Let {Vi}1≤i≤n be the fixed basis of R̄0(G)rigid

constructed above, consisting of tempered representations. Let (π, V ) be an arbitrary
irreducible Hermitian G-representation in CI (G). There exist integers ai, bi such that,
for every K ⊃ I , the K-signature character of V equals

6K(V ) =
( n∑
i=1

aiθK(Vi),

n∑
i=1

biθK(Vi)
)
. (9.6)

We emphasize that in Theorem 9.4, the integers ai, bi do not depend on the choice of K ,
but only on V .

9.4. Analogous definitions of K-character and K-signature exist for H-modules. Let
HK = C∞(I\K/I) be the subalgebra of H consisting of functions whose support is
inK . If (σ, Uσ ) is aK-type, then (σ, U Iσ ) is an HK -module. If V I is a simple H-module,
then the HK -character of V I is

θHK
(V I ) =

∑
σ∈K̂, U Iσ 6=0

mσσ, (9.7)

and the HK -signature character is

6HK
(V I ) =

( ∑
σ∈K̂, U Iσ 6=0

pσσ,
∑

σ∈K̂,U Iσ 6=0

qσσ
)
. (9.8)
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Theorem 9.4 implies that the HK -signature character of V I is

6HK
(V I ) =

( n∑
i=1

aiθHK
(V Ii ),

n∑
i=1

biθHK
(V Ii )

)
, (9.9)

with the same integers ai, bi as in Theorem 9.4.
Now we can complete the argument. Suppose that V I is unitary as an H-module.

This means that the negative part of the K-signature must be 0 for all K . From (9.9), this
means that

n∑
i=1

biθHK
(V Ii ) = 0 (9.10)

for all K . If TO is a basis element of H̄rigid as in Theorem 8.1, there exists K ⊃ I such
that TO is the delta function supported at a double coset I w̃I , w̃ ∈ K . Therefore

n∑
i=1

bi tr(TO, V Ii ) = 0

for all basis elements TO of the rigid cocenter H̄rigid. Recall that {V Ii } form a basis of
R̄(H)rigid. But then Theorem 7.6 implies that they are linearly independent over H̄rigid,
and therefore bi = 0 for all i = 1, . . . , n.

Finally, this means that the negative part of the signature 6K(V ) is 0 in Theorem 9.4,
and so V is unitary as a G-representation. This proves the implication:

if V I is a unitary H-module, then V is a unitary G-representation.

Acknowledgments. The authors thank R. Bezrukavnikov, S. Kato, R. Kottwitz, G. Lusztig, E. Op-
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