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Abstract. Let G be a simple simply-connected group over an algebraically closed field k, and
X a smooth connected projective curve over k. In this paper we develop the theory of geometric
Eisenstein series on the moduli stack Bung of G-torsors on X in the setting of the quantum geometric
Langlands program (for étale Q-sheaves) in analogy with [3]. We calculate the intersection
cohomology sheaf on the version of Drinfeld compactification in our twisted setting. In the case of
G = SL, we derive some results about the Fourier coefficients of our Eisenstein series. For G = SLy
and X = P! we also construct the corresponding theta-sheaves and prove their Hecke property.
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1. Introduction

1.0.1. In this paper we develop an analog of the theory of geometric Eisenstein series
from [3] for the twisted geometric Langlands correspondence. Here ‘twisted’ refers to the
quantum Langlands correspondence (as outlined in [12, 13, 26, 14]) with the quantum
parameter being a root of unity. In the case of a split torus the corresponding geometric
setting was proposed in [18].

The conjectural extension of the Langlands program for metaplectic groups was pro-
posed by M. Weissman [29, 30] (see also [15, 16]). In his approach the metaplectic group
is a central extension of a reductive group by a finite cyclic group coming from Brylinski—
Deligne theory [5]. Our approach is a geometrization of this evolving program.

For motivations, take k = IF,. Let X be a smooth projective curve over k, and G a split
reductive group. Let A be the adeles ring of F = k(X), and O C A the integer adeles. Let
n > 1 withn | g — 1. A Brylinski-Deligne extension of G by K, gives rise to an extension
1 = upk) — G —> GA) —> 1 together with its splittings over G(F) and G (O). Pick
an injective character ¢ : w, (k) — @z The global nonramified Langlands program for
G aims to find the spectral decomposition of the space Functg: (G(F )\G /G(0)) of Q-

valued functions that change by ¢ under the action of 1, (k).

A fundamental tool for this program is the theory of Eisenstein series. Let M C
P C G be a Levi subgroup of a parabolic subgroup of G. By restriction this yields the
metaplectic extensions M (resp., f’) of M(A) (resp., P(A)). One gets the diagram of
projections

M(F\M/M(O) & P(F)\P/P(0) > G(F)\G/G(0).

For a compactly supported function f € Functg (M(F )\M /M (0O)) the associated Eisen-
stein series (up to a normalization factor) is p;q* f.

We study a geometric analog of this construction. We work with étale Qg-sheaves to
keep a close relation with the more classical Langlands program for the corresponding
metaplectic groups.

1.0.2. Let k be an algebraically closed field, and G a simple, simply-connected group
over k. In this case there is a canonical Brylinski—-Deligne extension of G by K; (the
others are obtained from it up to isomorphism as its multiples).

Let X be a smooth projective connected curve over k. Let Bung be the stack of
G-torsors on X. Pick n > 1. We introduce some u y-gerb Bung — Bung with N = Zim;
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it comes from the canonical Brylinski-Deligne extension of G by K». Here h is the dual
Coxeter number for G. We pick an injective character ¢ : uy(k) — Qz and consider
the derived category D, (Iiﬁ/n(;) of étale @g sheaves on B-Il-;l(;, on which puy (k) acts by
¢. To these metaplectic data there corresponds a dual group Gy defined in [9]. The cat-
egory Rep(Gn) of finite-dimensional representations of G, acts on D;(Bung) by Hecke
functors. The twisted geometric Langlands problem in this case is to construct Hecke
eigen-sheaves in D; (Bung) (or even a spectral decomposition thereof).

__Let P C G be a parabolic subgroup, and M its Levi factor. We similarly get a jy-gerb
Buny, — Buny, and the derived category D, (Bunys). As in [9], one has the correspond-
ing Levi subgroup M, C G,,and Rep(Mn) acts on D, (P:I\JEIM) by Hecke functors.

The Eisenstein series from Section 1.0.1 admits an immediate geometrization

Eis' : D (Buny) — D¢ (Bung).

However, Eis’ does not commute with the Verdier duality and may be improved by replac-
ing Bun p by the relative Drinfeld compactification Bun 5 along the fibres of the projection
Bunp — Bung as in [3].

We define the corresponding compactified Eisenstein series functor Eis : D, (BunM)
— D¢ (BunG) and study its properties. It is defined using a twisted version IC; of the
IC-sheaf of Bun p. One of our main results is the description of IC; generalizing [2]. As
in [3], we show that Eis commutes with the Hecke functors with respect to the embedding
M, C G,.

We formulate a conjectural functional equation of Eis. We also show as in [3] that the
formation of Eisenstein series is transitive for the diagram 77 C M C G, where T is a
maximal torus of M.

In the case of G = SL, we get a partial description of the Fourier coefficients of Eis,
expressed in terms of a sheaf that appeared in the book [1] on factorizable sheaves (and
also in [12, 23]). The relation so obtained between these Fourier coefficients and quantum
groups seems a promising phenomenon that has to be better understood.

As an application, we get an important formula for the first Whittaker coefficient of
our Eisenstein series for metaplectic extensions of SL; (Corollary 7.7). It turns out to be
an ¢-adic analog of the space of conformal blocks in the Wess—Zumino—Witten model
studied in [1]. It also could be seen as a generalization of the notion of central value of an
abelian L-function (Remark 7.8). ~

Among other results, we construct new automorphic sheaves on Bung in the case
of G = SL, and X = P! corresponding to the trivial Gp-local system and a principal
SL, — G, of Arthur. We call them theta-sheaves as they generalize the theta-sheaves
studied in [21].

2. Main results

2.0.1. Notation. We work over an algebraically closed field k. Let G be a simple al-
gebraic group over k. We assume it is simply-connected (hopefully, the non-simply-
connected case could also be done using [27]). Let T C B C G be a maximal torus
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and a Borel subgroup. Let g be the Lie algebra of G. Write A for the coweight lattice
of T, and A for the weight lattice. Let AT be the set of dominant coweights, and At
the dominant weights. Write h for the dual Coxeter number of G. Write W for the Weyl
group of (G, T) and let wq be the longest element in W. Let J denote the set of vertices
of the Dynkin diagram of G. For i € J write «; (resp., &;) for the simple coroot (resp.,
simple root) of G corresponding to i.

We ignore the Tate twists everywhere (they are easy to recover if necessary).

Let X be a smooth projective connected curve. Let Bung be the stack of G-torsors
on X. Let F = k(X). For x € X we let D, denote the formal neighbourhood of x in X,
and D} the punctured formal neighbourhood of x € X. A trivial G-torsor on a base is
denoted g:%

Let:: A ® A — Z be the unique symmetric bilinear W-invariant form such that
t(o, ) = 2 for a short coroot «. The induced map ¢ : A — A is also denoted by .
If o is a simple coroot then ((«) = %L(Q’, a)d. Our convention is that a super line is a
7./27-graded line.

Recall the groupoid °(T") defined in [18, Section 3.2.1]. Its objects are pairs: a sym-
metric bilinear form ¥ : A ® A — Z and a central super extension 1 — k* — A —
A — 1 such that its commutator is (y1, y2)c = (—1)<1:¥2)_ This means that for every
y € A we are given a super line €7, and for y1, y» € A a Z/2Z-graded isomorphism

AR ®6V2 N 6J/1+J/2 (1)

such that ¢ is associative and ¢¥1:72 = (= 1)¥V1:72)¢72:Y16 Here o : €/ Q€2 S engen
is the super commutativity constraint. Then £°(T') is a Picard groupoid with respect to the
tensor product of central extensions.

We have a canonical object (¢, ]\CE‘H) € E%(T) corresponding to a canonical extension
of G by K> in the sense of [5, Theorem 4.7]. It is equipped with a W-equivariant structure.
We pick once and for all a square root €y of Q.

Recall the Picard groupoid P?(X, A) of #-data from [18, Section 4.2.1]. Its objects
are triples 0 = (k, A, ¢), where k : A ® A — Z is a symmetric bilinear form, A is a rule
that assigns to each y € A a super line bundle AY on X, and c is a rule that assigns to
each pair y1, y» € A an isomorphism ¢”1:72 : A\V1 @ A¥2 = AV1H72 @ Q¥(1:72) on X. They
are subject to the conditions from loc.cit. In particular, the parity of A is k (y, y) mod 2.

Denote by 04" e PY(X, A) the image of (i, A under the functor &5(T) —
P9 (X, A) of [18, Lemma 4.1]. That is, 6% = (¢, A, 'c), where AV = €270 g ¢v,
and

1Y g a2 St g i)

is the evident product obtained from (1).

For an algebraic stack S locally of finite type write D(S) for the category introduced in
[17, Remark 3.21] and denoted D..(S, Q) there. It should be thought of as the unbounded
derived category of constructible Q;-sheaves on S.

If V. - S and V¥ — § are dual rank r vector bundles on a base stack S,
we normalize the Fourier transform Foury : Db(V) - Db (V*) by Foury (K) =
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(pvsin(E*Ly ® py K)[r], where py, py« are the projections, and & : V x V* — Al
is the pairing.

If S is a stack and L is a super line bundle on § purely of parity zero, we will use the
stack of n-th roots of L. Its T-point is amap T — S, a super line bundle U on T purely

of parity zero, and a Z/27Z-graded isomorphism U" S Ly

2.0.2. If M C G is a Levi subgroup, denote by Buny, the stack of M-torsors on X.
For u € m1(M), we denote by Bun’;,l the connected component of Buny, classifying
M-torsors of degree —u. This notation agrees with [3], but does not agree with [18].
Write Pic(Buny) for the Picard groupoid of super line bundles on Buny. If 6 = (k, A, ¢)
is an object of PY(X, A) we also denote by A the super line bundle on Bun7 obtained
from @ via the functor P? (X, A) — Pic(Buny) defined in [18, Section 4.2.1, (18)].

The group T acts on Buny by 2-automorphisms, so if ¥ € Buny then T acts naturally
on the fibre at J of each line bundle on Buny. According to our convention, for F € Bun’;
with ;v € A the group T acts on Ay by —« (1).

2.0.3. Let £ be the line bundle on Bung with fibre detR['(X, g) ! @ det R['(X, g® O)
at 3 € Bung. This notation agrees with that of [9]. Pick n invertible in k. Pick a line
bundle £, on Bung equipped with L%i’ = L, where L. is a generator of Pic(Bung) =7,

Let lgvunG’ ¢, be the stack of n-th roots of £.. Let E D pupk) —> (@zﬁ be an injec-
tive character. We are interested in the derived category D 7 (lg?fna c.) of Q¢-sheaves on

EE’IG £.»on which p, (k) acts by ¢.

Assume that N = 2/n is invertible in k. Write BunG for the gerb of N-th roots of £
over BunG Pick an injective character ¢ : uy(k) — @e such that ¢|,,x) = ¢. Denote
by D, (Bung) the derived category of Qg sheaves on BunG on which u N(k) acts by ¢.
We have a natural map « BunG’L — Bung, and o* : D, (Bun(;) — Ds; (BunG ) is
an equivalence.

Let én be the n-th dual group of G over @[ defined in [9, Theorem 2.9]. By construc-
tion, it is equipped with the Borel subgroup B, corresponding to B C G.

Let L7 be the restriction of £ under the natural map Buny — Bung. For L e
and F € Buny denote by Lg‘t the line bundle on X obtained from JF via the extension of

scalars & : T — Gm. Given X e [\ let R)v‘ be the line bundle on Buny defined in [18,
5.2.6, Example (2)]. The fibre of R* at 7 € Buny is

detRI'(X, o 5) ® detRT'(X, L5 )®detRF(X )72

One has L;l > R0 R, the product being taken over the positive roots of G. Set
K =—7 5-02(¢ ®a), the sum over the positive roots of G. This is a symmetric bilinear
formk : A ® A — Z. By [9, Lemma 2.1], we have k = —2ht.

Define 6K = (i, A, ¢) by 6Kl = (9an)=2h ¢ PO(X, A), where “Kil’ refers to
the Killing form on A. The corresponding line bundle A on Bunr identifies canonically
with L.
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Let BunT be the gerb of N-th roots of Lr. Let D¢ (BunT) be the derived category of
Qg sheaves on BunT on which uy (k) acts by ¢, and similarly for G. Let

Af ={ueA|k(u,v)e NZforallve A} ={u e A|i(u,v) enZforallv e A}.

Set T* = Gy, @ AR
In Section 3.1 we define a uy x py-gerb Bung — Bunp together with a diagram

Bung a Bunj X Bung .

We also define the perverse sheaf IC; on Buny. It gives rise to the Eisenstein series
functor Eis : D, (Buny) — D; (Bung) given by

Eis(K) = (7" K ® IC;)[—dim Bunr]
The analog of [3, Theorem 2.1.2] in our setting is as follows.

Theorem 2.1. (i) The functor D, (IéTfnT) — D(Buny), K = q*K ® IC;[—dim Bunr],
is exact for the perverse t-structures and commutes with the Verdier duality.
(ii) The functor Eis commutes with the Verdier duality.

Write 77 for the Langlands dual to 7% over Q. Recall that T%C B, C G, is canonically
included as a maximal torus. Set A»+ = A* N A™; these are dominant weights of Gy.
For v € A% denote by V" the irreducible representation of G, with highest weight v.
For ;€ A" write V¥ (i) C V" for the subspace on which T* acts by u.

In Section 3.2 we define the action of the category of representations ReELG ) by
Hecke functors on D, (Bung) Forv e A%t we get the Hecke functor H" D;(Bung) —
D, (BunG x X).

The action of Rep(Tt) on D, (BunT) by Hecke functors i is de defined in Section 3.2.1.
Forv € A* we get the Hecke functor H, : Dy (BunT) — D¢ (BunT x X). The following
is an analog of [3, Theorem 2.1.5] in our setting.

Theorem 2.2. Foreachv € A** and K € D, (]§I1?1T) one has a functorial isomorphism

HUEis(K) — @ (Eis RidH}(K) @ V' (W),
et

where Eis X id : D, (ﬁlr xX) — D¢ (P:;nG X X)) is the corresponding functor.

One checks in addition that the isomorphism of Theorem 2.2 is compatible with the con-
volution of Hecke functors.

Let E be a T?-local system on X. For v € A" denote by E" the local system obtained
from E via the extension of scalars v : 7% — G- Let K be the elgensheaf on BunT con-
structed in [18, Proposition 2.2]. It satisfies the isomorphisms Hy. (K ) 5 KpRE™ YI1]
for v € A", Thatis, K is an E*-Hecke eigensheaf.

Corollary 2.3. Let Ey, be the Gp-local system induced from E*. Then Eis(Xg) is an
Es -Hecke eigensheaf in D (B-ITHG).
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2.0.4. Write C *(én) for the cocentre of én, the quotient of A® by the root lattice of én.
The category Rep(én) is graded by C* (Gy) according to the action of the centre of Q, In
Section 3.5 we introduce the corresponding grading on the derived category D, (Bung).
We show in Proposition 3.12 that the Hecke functors for G are compatible with these
gradings on Rep(Gn) and on D, (Bung) This generalizes [19, Lemma 1]. We also de-
scribe the corresponding grading on the geometric Eisenstein series in Section 3.5.

Write pj, for the half sum of positive roots of én In Section 3.6 we define the twisted
W-action on BunT and formulate the conjectural functional equation for Eis (Conjec-
ture 3.17). To this end, we also introduce the full triangulated subcategory D, (Bun(;)reg -
D, (BunG) of regular complexes. The appearance of the shift by p, here is analogous
to the shift by p in the functional equation for the usual geometric Eisenstein series
[3, Theorem 2.1.8]. Our formulation of the functional equation is justified by the fact that
it is compatible with our calculation of the constant terms of Eis for G = SL, (Proposi-
tion 7.10). Moreover, it agrees with the results of [19]. In view of Theorem 2.9 below, the
proof of the functional equation is reduced to the case of rank one. However, we do not
know how to prove it for groups of rank one. ~

In Section 3.7 we give a relation between the action of Bunz ) on Bung and Hecke
functors (and also the action of Bunzg) on the Eisenstein series).

2.0.5. Parabolic Eisenstein series. Let P C G be a parabolic containing B, and M be
its Levi factor. Write Jyy C J for the corresponding subset. Write Ag, p for the quotient
of Aﬂb\}/f the span of «;, i € Jpr. Let £y denote the restriction of £ under Buny; — Bung.
Let Buny, denote the gerb of N-th roots of £yy.

In Section 4.1 we define a diagram of projections

—~ —~

Buny, a Bun £> Bung

and a perverse sheaf IC; on Bun p generalizing our previous definition for B. It gives rise
to the parabolic Eisenstein series functor Eis : D (Bunys) — D (Bung) given by

Eis(K) = p1(§"K ® IC;)[— dim Buny,].
We write Eis{, = Eis if we need to stress the dependence on M.

Theorem 2.4. (i) The functor
D (Buny) — D(Bunj), K > §*K ® IC,[— dim Buny],

is exact for the perverse t-structures and commutes with the Verdier duality.
(i1) The functor Eis : Dy (Buny) — D¢ (Bung) commutes with the Verdier duality.

Remark 2.5. Let us explain at this point that the notations Bungp, Bun p throughout the
paper are reserved for the corresponding Drinfeld compactifications (we assume P # G,
so Bunp should not be confused with Bung) The gerbs over Bung, Bun p appearing
in this paper, such as Bun ; i Bun; p (or Bun B.G Bun p.¢; below), are distinguished in our
notation by some decoration above or next to the correspondmg letter B, P, G.
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Set Ao ={r € A| (A, a;) = 0foralli € Iy} Let IV\M,() denote the dual lattice.
In Section 4.1.1 we associate to k a homomorphism ks : Ag.p — [V\M,o and prove the
following generalization of [18, Proposition 2.1].

Proposition 2.6. Let § € Ag.p with k31(0) & N Ayy0. Then D (Bun'yy) vanishes.

Recall that J is canonically in bijection with the set of simple roots of Gp. Let M, C G,
be the standard Levi subgroup corresponding to Jy,.

In Section 4.2 we define the action of the category Rep(M,,) of M, -representations on
D, (Igfan) by Hecke functors. Set Ai}f = A;[ N A¥; these are dominant weights of M,.
Forv € Ai}f we get the Hecke functor H}’w : D¢ (]§vunM) — D¢ (]§vunM x X).

Forv e Aiﬁ‘f denote by UV the irreducible representation of M, of highest weight v.
The following is an analog of [3, Theorem 2.3.7] in our setting.

Theorem 2.7. For A € A*¥ there is an isomorphism, functorial in K € D, (1§?InM),

HLEisS (K) = @ (Eis§, mid)HY, (K) ® Homy, (U, VY,
veAﬁf

where Eisl(l;,l Xid : D, (Bq;nM xX) — D¢ (Bq;n(; x X) is the corresponding functor.

One checks moreover that the isomorphism of Theorem 2.7 is compatible with the con-
volution of Hecke functors.

Corollary 2.8. Let E be an M local system on X, and X € Dy (BunM) an E-Hecke
eigensheaf. Then ElsM(K) € D¢ (BunG) is an Ev -Hecke eigensheaf. Here Es G, is the

G-local system induced from E.

One of our main results is Theorem 4.14 in Section 4.5 generalizing the description of
the IC-sheaf of Bunp from [2] to our twisted setting. Write Ap o p for the Z -span of
{o; | i € J—Ty}in Ag,p. Pick 0 € ApOS Let (@) be a decomp051t10n of 6 as in
2, Sectlon 1.4]. Let 1, (P) denote the Lie algebra of the unipotent radical of the standard
parabolic P, C G, corresponding to Jy; C J. One has a locally closed substack

+,40(8)
:H‘.M

u(g)BunP - Bunp X Bunyy — Bunp

(see Sectlon 4.5 for the notation). Let u(@)Bun be obtained from u(g)Bun p by the base
change Bun 5 P Bunp. Theorem 4.14 describes the -restriction of IC; to u(g)Bun pin
terms of the Mn-module 1, (P) and the twisted Satake equivalence Loc : Rep(Mn) =
IP’ervi,[’G,n for M, (see Section 4.5). The proof actually establishes more (Theorem 5.3
and Corollary 5.5 do not reduce to Theorem 4.14).

In Section 6 we prove the following result, which is an analog of [3, Theorem 2.3.10]
in our setting.



Geometric Eisenstein series: twisted setting 3187

Theorem 2.9. There is an isomorphism of functors D¢ (lgvunr) — Dy (E:ﬁ/n(;),
Eis¢ = Eis$, o Eis).

2.0.6. In NSection 7 we specialize to the case of G = SL,. As in Section 5.1, we have a
un-gerb 2% — 7% and a local version IC 76, of the perverse sheaf IC;. Here IC 0 , is
a perverse sheaf on VA (see Sections 5.1 and 7 for notation). For G = SL, the Zastava
space Z? is a vector bundle over X, and it is important to calculate the Fourier transform
Foury, (ICzs ) over the dual vector bundle. This calculation at the classical level is a part
of the theory of Weyl group multiple Dirichlet series (see [4], [6] for a survey).

The description of ICs , is known (Theorem 5.3 and Corollary 5.5). For n = 2 the
description of Foury (ICze ) is easily reduced to the description of ICzs . itself (see
Section 7.2.3; this was also used in [19]). For n > 3 we cannot completely describe
Foury, (ICzs ), and only establish Propositiog 7.2, which calculates the desired Fourier

transform over the open substack o 2%, C oZ (see Section 7.2.3 for notation).

The answer in Proposition 7.2 is given in terms of the perverse sheaf IC G X0 ¢ that has
been completely described in [1] in terms of cohomology of (part of) the quantum sl
at a suitable root of unity. This is a manifestation of the phenomenon that cohomology
of quantum groups appears in the quantum geometric Langlands program (the quantum
groups were brought into the quantum geometric Langlands program in [12, 23]).

In Proposition 7.5 we give a global application of Proposition 7.2, expressing the
nondegenerate Whittaker coefficients of Eis(K), K € D, (Buny), in terms of the perverse
sheaf IC, . This, in turn, yields a formula for the first Whittaker coefficient of Eis(K)
(Corollarles 7.6 and 7.7). The complex appearing in Corollary 7.6 is an £-adic analog of
the space of conformal blocks in the Wess—Zumino—Witten model studied in [1].

In Section 7.3 we calculate the constant terms of Eis(K), K € D (Bunr), in terms of
integral Hecke functors for Buny. Here ‘integral’ means that we apply Hecke functors at a
collection of points and further integrate over this collection of points. The answer is given
in Proposition 7.10, which (together with the results of [19]) explains our formulation of
the functional equation.

2.0.7. Some special sheaves. Let E be a T*-local system on X, and Xg € D¢ (]_s:;ilT)
the E-Hecke eigensheaf as in Corollary 2.3. This is a local system over the components of
Buny corresponding to A®. In Section 7.4 we describe some irreducible perverse sheaves
IC(E,d) € D¢ (Bung), d > 0, that appear in Eis(Xg).

We then specialize to the case of genus g = 0. In this case E is trivial, we set
IC; = IC(Qy, d), d > 0, for brevity, and also define an irreducible perverse sheaf ICy
that appears in Eis(Xg). Then any irreducible perverse sheaf appearing in Eis(Kg) is
isomorphic to some ICy, d > 0. Let P, , denote the category of pure complexes on ]§vunG
which are direct sums of ICy4[r](r/2),d > 0, r € Z. Then P; ,, is a module over Rep(Gn)
acting by Hecke functors.

We explicitly describe the action of Hecke functors on each ICy, d > 0 (Lemma 7.20
and Theorem 7.23). We also describe all the x-fibres of each perverse sheaf ICy, d > 0
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(Lemmas 7.17 and 7.18). Here is an immediate consequence of our results. Recall that
én = SL, for n even, and én = PSL, for n odd.

Corollary 2.10. Let m > 1 with n — m even. One has an equivalence P = Pem
sending 1C4[r](r/2) to itself (and preserving direct sums). This equivalence commutes

with the Hecke action (with respect to the evident isomorphism G, > ém).

Definition 2.11. For n odd set Aut = ICy. For n even set Aut = ICy @ IC;. As in [21],
we call Aut the theta-sheaf on Bung.

Corgllary 2.12. The perverse sheaf Aut is a Hecke eigensheaf corresponding to the triv-
ial Gp-local system and the principal SLy of the Arthur homomorphism SLy — G,,.

2.0.8. Let us indicate some problems for future research:

1) Is it true that the theta-sheaves Aut satisfying the Hecke property as in Corollary 2.12
exist for all G and any curve X?

2) Is it true that Aut constructed in Corollary 2.12 is the geometric analog of a matrix
coefficient of a suitable nonramified automorphic representation of the corresponding
IF(’; / (F;)”—metaplectic cover of G? Construct the corresponding representations for a
local and global field (according to [16], they should exist).

3) Calculate the Fourier coefficients of the theta-sheaves given in Definition 2.11.

2.0.9. In the Appendix we assume in addition that k = F,, and prove Theorem 2.13
below.

A version of our results also holds over Fy, in particular the construction of Xg and
the description of IC, given in Corollary 5.1. It is understood that in the corresponding
description the Tate twists are recovered accordingly. Let E be a T*%-local system on X,
and K the eigensheaf on BunT constructed in [18, Proposition 2.2]. For u € A" write
9(“ for the restriction of Xg to BunT By [18, Proposition 2.1], 3{“ vanishes unless
JTS Al

For yu € A® define Eis'(X%) as

pi(g*(K%) ® IC,),

where the maps p, q are those of the diagram ]§T1/nT < Bun B LN E/&Tfn(;. Here Bunj is
obtained from Bunp via the base change BTlTnT X BTIIIG — Bun7 x Bung.

Denote by Funct(Els(iK )) (resp., Funct(Eis’ (JC ))) the function trace of Frobenius
on the set BunT (F,) corresponding to Els(fK ) and Eis’ (fK ) respectively.

For B = P the set J defined in Section 4.5 identifies with the set of positive roots
of G, for B,. We denote by Apo,sépos the free abelian semigroup with base J. Set A»P° =
AFNAPS Letcp : Ag ' — A%PS be the morphism of semigroups given on J by the
natural inclusion J <> A’: POS “We write elements of ApoS POS as B(0) = Y vey Myv With
0 =cp(B(O)).

The following is an analog of [3, Theorem 2.2.11] in our setting.
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Theorem 2.13. The function Funct(Eis(iK‘g)) vanishes unless |1 € A", in which case it
equals

> Funet(Eis' (K %) [ Te(Fr. REGX™ @ Fy, (E7)™) @ Qe (ny)).
9 APO&POS veJ
BO)eAg p

where B(0) = ), ; nyv. Here X™ denotes the m-th symmetric power of X, and for a
local system W on X, W denotes its m-th symmetric power.

As in [3, Theorem 2.2.12], Theorem 2.13 may be reformulated in terms of generating
series as follows.

Consider the group ring Q¢[A?], the ring of regular functions on the torus T*. For
n € A* denote by r* the corresponding element of Q¢[A"). Form a completed ring

o —

Q¢[A*] by allowing infinite expressions of the form

Zaﬂt”,

I

where 1 runs over a subset of A” defined by 1 > u/, where i is some fixed element
of A.

NThe classical Eisenstein series can be thought of as a @g[At]-valued function on
Bung (IF4) equal to

—

Eisel(Kp) (1) = Y Funct(Eis'(Kg))t/.
HEAR

Consider the modified Eisenstein series defined as

Eismod (K£) (1) = Y Funct(Eis(K))r",
HEA?

viewed as a function ﬁ?fnc Fy) — Q¢[Af]. For v € J consider the abelian L-series

o —

L(E*, v, 1) € Q¢[A¥] equal to

> Te(Fr, RO(X™ @ Fy, (E7)™) @ Qe(m))e™.

n>0
Theorem 2.14. For any T%-local system E on X one has

Bismod (K£)(1) = Bisa(Kp) (@) [ | L(E*, v, 0).

veJ

It is known that Eisc|(Cg)(¢) satisfies a functional equation ([24], [16]). This is a strong
argument supporting our geometric functional equation (Conjecture 3.17).
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3. Principal geometric Eisenstein series

3.1. Definitions
Wee keep the notation of Section 2. Denote by Bunp the Drinfeld compactification of

Bunp from [3]. We have the diagram Bunr & Bunp L Bung. Write Buny, » =
Bunp Xgun; Bung. Set ~
Bung = BunByG XBuny BunT .

A point of Bunj is given by F7 € Buny, F € Bung, a collection of inclusions
.ok i
Vi LG = Vi

for all dominant weights Aof T satisfying the Pliicker relations, and Z/2Z-graded lines
U, Ug of parity zero equipped with

U S L), UN S L.

Here V* is the Weyl module corresponding to X. Consider the open substack Bung C
Bung, and let Bun 5 be the restriction of Bun j to this open substack. For a point of Bung
as above we have canonically £ = L1)F;-

Leta : Speck — B(uy) be the natural map, and £, the direct summand in aQy on
which py (k) acts by ¢. Let

Bung & = Bung XBung B-Il-il(;;
it classifies I, Ug and an isomorphism ug’ 5 Lg,. We get an isomorphism
B(uy) x Bun, & — Buny )

sending (Fp, Ug, Up € B(un)) with U(l)\' S kto (Fp, Ug, W) with U = Ug ® ug‘.
Write

—~

B-?l-;lT <i Buné ﬂ) BUHG (3)

for the projections, so
q&Fr, F,v, U, Ug) = Fr, W) and pGFr,F, v, U, Ug) = (F, Ug).
View £, X IC(Bun B. &) as a perverse sheaf on Buny via (2). Let IC; be its intermediate
extension to Bun .
Definition 3.1. For K € D, (EifnT) set
Eis(K) = p1(q"K ® IC;)[—dim Bunr].

Let uy (k) x uy(k) act on B_un[g by 2-automorphisms so that (a, ag) acts as a on U,
as ag on Ug and trivially on (7, F, v). Then (a, ag) acts on IC; by ¢(ag/a). If K €
D, (]gvunr) then a € uy(k) C Aut(U) acts on K as ¢(a). Consequently, (a, ag) acts on
q*K ® IC; as ¢(ag). So, ag acts on Eis(K) by ¢ (ag).
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3.2. Hecke functors

Let AT = A" N A*. We use some notation from [9]. In particular, O = k[[¢]] C F =
k((?)), and Grg = G(F)/G(0O). By abuse of notation, £ will also denote the Z/27Z-
graded line bundle on Grg whose fibre at gG(0) is det(g(O) : g(0)®). Write Grag for
the punctured total space of L. Let Grg be the stack quotient of Grag by G, where
z € Gy, acts as multiplication by zV with N = 2hn.

Let Pervg , be the category of G(0)-equivariant perverse sheaves on Grag with G-
monodromy ¢. Let

Pervg,, = Pervg ,[—1] C D(Grag).

We view Pervg , as the category of G (O)-equivariant perverse sheaves on GrG on which
wn (k) acts by ¢. Namely, a G(0O)-equivariant perverse sheaf K on Grg on which uy (k)
acts by ¢ is identified with pr* K € Pervg ,, where pr : Grag — Gr is the quotient map
under the Gp,-action.

As in [9, Section 2.1], we pick a trivialization gd = k of the root space for all the
positive roots & and denote by ® this collection of trivializations.

Let (0) denote the completed module of relative differentials of O over k. Write
Q(0)!/? for the groupoid of square roots of Q(0). We pick & € Q(0)/%. As in [9,
Section 2.1], for v € A»* we define the local system Eg on Grag; and Ay € Pervg,,.
By abuse of notation, E¢ also denotes the corresponding local system on G~rVG

Write H for the Hecke stack classifying F, 3’ € Bung, x € X and an isomorphism

B: Flx—x — F|x_x. We have a diagram

< T —

Bung xX L He BN Bung,
where h(‘;_ (resp., hg’) sends the above point to & (resp., F'). Here n(F, F, 8, x) = x.
This notation agrees with [2]]} .
Forv € A" we define {; as in [3, Section 2.1.4]. So, the closed substack H; C H¢
is given by the condition that for each G-module V whose weights are < A one has

Ve (— (v, 2)x) C Vg7 C Vg (—{wo(v), 1)x).

This is equivalent to requiring that ¥’ be in position < v with respect to JF at x. Let
-V . . . I .
H{ € Hg be the open substack given by the property that J” is in position v with
respect to F at x.
Let Grg,x be the ind-scheme classifying x € X and a G-torsor 3 with a trivialization

B:F > 3"% |x—x. Let Gx be the functor classifying x € X and an automorphism of
9{(); over the formal neighbourhood of x. Write Ly for the (Z/2Z-graded of parity zero)

line bundle on Grg x whose fibre at (F, x, B) is detRI"(X, g ® Ox) ® detRI"(X, g5) L.
Let Grg,x be the gerb of N-th roots of £x over Grg, x. Let Grag, x be the punctured total
space of the line bundle £ x on Grg x.

Write Bung, x for the stack classifying (5 € Bung, x € X, v), where v : & = 3'% ID,
is a trivialization over the ﬁg{mal neig@ourhood Dy of x. Note that Bung x is a Gx-
torsor over Bung x X. Set Bung x = Bung XBung Bung x.
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Let y < (resp., ¥y~ ) denote the isomorphism Bung x X, Grg,x = H¢ such that
the projection to the first term corresponds to A (resp., i ). The line bundle L& £ x on
Bung, x x Grg.x is naturally G x-equivariant; we denote by £ X Ly its descent to

BunG,X XGyx GI"G,X .

Note that ﬁvG identifies with Bung, x x(;Xﬁva x under y <. We have canonically

Y)ME)L = LRLy. “)
Let 3 be the stack obtained from lgvung X lgvun(; by the base change 7~ x h™ :
He — Bung x Bung. Denote by &g, h; the projections in the diagram
}'fle 7n—

—~ 0 2 —
Bung +%— 3z —2= Bung

Lol

G
Bung +—— g —— Bung

The stack H classifies (F, 37, B, x) € Hg and lines U, U" equipped with uv = Lo,
uUN = L. . -

The isomorphism (4) yields a G x-torsor y~ : Bung,x XxxGrg x — Hg extending
the G x-torsor

—

14
BunG’X Xx GI‘G,X — BunG,X XGX GI‘G’X —> j‘fG.

Namely, it sends (x, 8 : & = F% |p., 1 : F1 — T [x_o, UN > Ly, UY S
(Lx)(F.p1.x) 1O

FF U, B Flxx = Flx),
where F is obtained as the gluing of F'|x_, with Fy|p, via ﬂl_l 0B F S F |px. We
have canonically L5 ® (Lx)(F,.8,.x) S Ly, and U = W @ Uy s equipped with the
induced isomorphism UY — L. N

Let Sph(Grg, x) be the category of G x-equivariant perverse sheaves on Grg,x. Now
for 8 € Sph(Grg,x) and T € D(Bung) we can form their twisted tensor product (T X 8)",
which is the descent via 7. Similarly, one may define 7 < and the complex (T & 8)’
on J{G (as in [3, Section 3.2.4].

We also denote the composition Hz — He X bym.LetS € Sph(GNrG, x)and T €
D;(Bung).Ifa; € pn (k) C Aut(Uy) acts on 8 as ¢ (ay) then (a, a’) € uy (k) x un (k) C
Aut(U) x Aut(W) acts on (TR S)" as ¢(a), so (fz(‘;_ x 7)) ((T®S8)") € D¢ (Bung x X).

As in [9], write Pervg , x for the category of complexes K € D(Grg, x) such that

K[1] is perverse, G x-equivariant, and uy (k) acts on K by ¢. Our choice of x (see
Section 2.0.1) yields a fully faithful localization functor

70 Pervg, — Pervg n x
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defined in [9, Section 2.3]. Now for v € A% we get A" := IO(A‘é) € Pervg . x. Define

HY, : D, (Bung) — D (Bung x X) )
by
HG(T) = (hg x i (TRAT),
We have used the fact that A%+ ifs\Preserved by —wy. This definition agrees with [3]. For
v € A%t write also IC” = (IC(Bung, x) BA~0M)" Let

ﬁv(; = f}fé XHg %UG

ThenAI/C” is an irreducible perverse sheaf, the extension by zero from ﬁ‘é. For T €
D, (Bung) we may rewrite

HY(T) = (h§ x T)((hg)*T ® ICY))[—dim Bung]. (6)

Recall the covariant functor * : PGI‘VG’”, -1 > Pervg ¢ defined in [9, Remark 2.8]

(see also [22, Remark 2.2]). For v € A®™T it sends A} to Agw“(”). More generally, for
8 € Pervg,, and T € D, (Bung) set

HS (8, 7) = (hg x o ((TR°(x8))) and Hg (8, T) = (hg x n)(TRT*(S)).

These are analogs of the corresponding functors from [3, Section 3.2.4], and they satisfy
similar properties. In particular, H; (resp., H; ) defines a left (resp., right) action on
D, (Bung).

3.2.1. Hecke functors for T. For v € A? define the Hecke functor
HY. : D, (Buny) — D; (Buny x X)

as follows. Our definition will be consistent with (5) but will differ from those of [18].

Recall 6% = (k, &, ¢) from Section 2.0.3. For v € A the line bundle A" is the
restriction of L7 under X — Bunp, x — 3:(7)~(VX). Note that AY — QM) by [18,
Lemma 4.1].

Let (1, A% denote the restriction of (1, A") to A%; it is equipped with a W-
equivariant structure. We pick an object (¢/n, A®) in &(T?) and a W-equivariant iso-
morphism

(t/n, AH" S (1, Abcan

in &5 (T*%). Now [18, Lemma 4.1], the above object yields (z, k /N, ¢) € P?(X, A?) and a
W-equivariant isomorphism

(t.k/N,c)VN S oK. . @)

Note that k/N = —t/n : A* @ A* — Z may take odd values, so T is a super line
bundle in general.
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We also write 7 for the line bundle on Bunz; obtained from (7) by applying the cor-
responding functor PY(X, APy — Pic(Buny:) as in [18, Section 4.2.1]. It is equipped
with a W-equivariant structure and a W-equivariant isomorphism 7V 5 ixA. Here
ix : Buny: — Bunr is the natural map.

Forv € Af let m" BunT xX — Bunr be the map sending x € X, (F,U) € Bunr
to (F = F(—vx), U), where

—k()/N

=U® (L )x ® TO(—vx) ®

equipped with the induced isomorphism UN 5 (L7)g. It coincides with the map de-
noted m_, in [18, Section 5.2.3]. The Hecke functor

HY. : D (Buny) — D, (Buny x X)
is defined by H}.(K) = (m")*K[1].

3.3. Proof of Theorem 2.2

We will use the following result. Let Grr, Grp be the affine grassmannians for 7, B.
Let GrT — GrB — Grg be obtained from Gry — Grg — Grg by the base change
GrG — Grg. As in [9, Section 4.1], for v € A%t and i € A one has the diagram of
ind-stacks

~pu M5 o~ S
Gry <— Grg — Grg.
The connected component Gr’; is the one containing t* 7 (0), and similarly for Gr’g.

If 1 € A, as in [9, Section 4.2] we denote by a,, : 8““ W oy s Q?(“’“) — {0}

the map z — z”’”.

Proposition 3.2 ([9]). Letv € A»T and u € A. The complexa (t ) (53)*A” vanishes

unless o € A*. In the latter case this complex is constant and identifies canonically with
V()= (1, 25)).

3.3.1. Plck v € A%T. Consider a version of the basic dlagram from [3, Section 3.1.1].
Set Z = U-CG X Bung BunB, where we use the map h_’ J—CG — BunG to define the fibred
product.

Lemma 3.3. There is a morphism of stacks ¢ : Z — Bung x X that fits into a commuta-
tive diagram
/h—>
BunB x X <;¢ z—2 BunB

lﬁxid l’ﬁ lfa ®
=

h‘_xn — ~=

BunG xX 2= He —, Bung
Proof. A point of Z is given by
F, F o, uN S (AT)TT,u/(I;V — Lg7) € Bun, (10



Geometric Eisenstein series: twisted setting 3195

and (x, F, 5, B, U’év 5 Lo, ug’ S L)€ ﬁvé For this point we let 7 =37 (wo(v)x)
with the system of induced inclusions

Vi L@,T«wo(v), Jyx) = Vi
forall X € AT. The map ¢ sends the above point to
@1, F, v, Ug = Ly, U = (Lr)gy),

where (F7, U, UV = (L1)7,) is the image of (F JuUN S (Lr)g/T, x) under m~wo®),
O

Set
IC(Z)g = (P*IC’ ®(hg )* IC;[— dim Bung].

Since ﬁg in (9) is a locally trivial fibration in the smooth topology, IC(Z); is an irre-
ducible perverse sheaf on Z. For a point (10) let

(a,a’,b") € un(k) x pn(k) x py (k) C Aut(Ug) x Aut(Uy) x Aut(U)

acting trivially on (F7., ¥, F). This 2-automorphism acts on IC(Z); as ¢(a/b).
For each u € A%OS one has the closed embedding i, : Bung xX < Bung xX
defined in [3, Section 3.1.3]. For u € A%OS N A% we liftit to a map

iy :Bunz xX < Bung xX
sending (x, v, T, I, UV = (L1)gp, UY = L) to (x, F, Fr(—px), U, Ug), where
(Fr(=px), W) = m*(Fr, W) is equipped with the induced inclusions
x X
LSFT(_M) — V5.
Set ,IC; = i,,)(IC; RIC(X)) for brevity.

Proposition 3.4. One has canonically

HIC(2); > @  uIC ® VV(i+ wo(v)).
HEAT NAS

3.3.2. Proof of Theorem 2.2

Lemma 3.5. (a) The maps q('h ) and m™0 W) (G x id)¢ from Z to lgvunr coincide.
(b) Forany u e A*N A]zfs the following diagram is canonically 2-commutative:

—_— gxid —~
Bung xX —— Buny xX

lfﬂ Jm/‘ xid

—_— gxid —~
Bung xX —— Buny xX
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Let K € D; (B-vunr). The complex (fzg’)*Eis(K) ® ICY over ﬁg identifies with
ICY @(P)((hg)*d K ® (hg )* IC,)[—dim Bunr]
= (p((hg)*§* K ® IC(Z),)[dim Bung — dim Bunz].
So,
HYEis(K) = (p x idyp((hg )*§* K ® IC(Z))[—dim Bunz]
= (p x id) (@ x id)*(m"°)*K ® ¢ IC(Z);)[~dimBunz].  (11)

By Proposition 3.4, this identifies with the direct sum over u € AIZ;OS N AF of

(p x id) (@ x id)*(m"*™)*K ® i,,(IC; WIC(X))) ® V" (1 + wo(v))[—dim Bunr]
= (B x i), (% @ xid)* (") * K @ (IC; RIC(X))) ® V" (1 +wo(v))[—dim Bunr .
By Lemma 3.5, we get
i (@xid)* (m" M) K = (§xid)* (m" xid)* (m"0 ") K = @@ xid)*HE T (k) [—1,
because m™0") (m* xid) = m*T*00) So, (11) identifies with the sum over i € A% NA*
of
(P x id) (@ x id)*H¥+w°(”)(K) ® (IC; ®Qy)) ® V(1 + wo(v))[—dim Bunr]

S (Bis ®id)HE T (K) @ VP (1 + wo(v)).
Indeed, by definition,

(Bis ®id)(8) = (p x id)y((§ x id)*8$ ® (IC; ® Q¢))[—dim Bunr].

Theorem 2.2 is thus reduced to Proposition 3.4.

3.3.3. Proof of Proposition 3.4. As in [3, Section 3.3.1], we fix x € X, and let XZ be

obtained from Z by the base change Spec k 5 X. We make this base change in the basic
diagram to get

R

Bung +Z Bunj

lﬁ B lﬁ (12)

—~ hg  —v hg —~
BunG x?‘fé BunG

Let IC(, Z)g = IC(Z); | z[—1]. We will prove a version of Proposition 3.4 with x fixed.
The maps are denoted by the same letters as for x varying.
For u € AI();)S we have the stacks y >,Bung, , ,Bung, ; ,Bunp defined as in
[3, Section 3.3.2]. We write L
x,>pBung,  ,Bung
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and so on for the stacks obtained by the base change Bunz — Bung from the previous
ones. Let j, : r , Bung < Bunj be the natural embedding.

Proposition 3.6. The complex j;¢1 1C(x Z)g satisfies the following.

(a) It lives in perverse degrees < Q. B
(b) The O-th perverse cohomology sheaf of j;q&g IC( Z); identifies with

(uIC) ® V" (1 + wo(v)).

For n € AZOS let Z** (resp., Z*”) denote the preimage in , Z of x.u Bung under ‘A
(resp., ¢). For u, u' € A%OS let Z#H = z? N 2% Recall that Z#H is empty unless
w=

If v e AT with v/ < v then we write

Zir = 0 ().

Proposition 3.7. For ., u’ € A‘Z;)S andv' € AT withv' < v let KMV e D( ,Bungy)
be defined as

HACG )¢ |y )

(a) The complex K o Vg placed in perverse degrees < 0, with strict inequality unless
W =0and Vv =v.

(b) The x-restriction of K%V to x,uBung —, , Bung is placed in perverse degrees < 0.

(¢) The O-th perverse cohomology sheaf of K"V over x,uBung vanishes unless . €
AN Arg)s, in which case it identifies with

GICH)I, Buny ® V(1 + wo(v)).

A version of [3, Lemma 3.3.6] holds with obvious changes. For v € A™ write Grvé =

@UG XGrg Grg. For u € A the scheme Sé is defined in [3, Section 3.2.5]. For © € A
write

Sg = Sg XGrg Grg.

Lemma 3.8. (a) The map 'h : VANCIN x,wBung is a locally trivial fibration with
typical fibre @éwom

(b) The morphism'hg; : ZHu Yy x,u’ Bung identifies using the notation of (a) with a
subfibration with typical fibre

—wp(v') —wo (V) —p+p’
GrG N SG .

(¢) The map ¢ : Zu x,uBung is a locally trivial fibration with fibre

" u—p' +wo(v)
Gré N SG .
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Proof of Proposition 3.7. The complex IC(, Z )¢ |42 18 a twisted external product

A RIC, |

o Bunj

with the notation of Lemma 3.8(a). So, IC(, Z); | yuw v is @ twisted external product

—wo(v) =
AS |Grtw0(v/) ﬂwao(u)iH“/ = IC{ |x‘/// Bung*
G G
The complex IC;| g4 is placed in perverse degrees < 0, with strict inequality unless
X, B
u' = 0. Further,
‘A_wO(U) — W, V/
€ |GrG 0®")

is a constant complex placed in perverse degrees < 0 unless v = v. Now exactly as
in [3, Section 3.3.7] one proves (a). This only uses the following. For a morphism f :
Y1 — Y> such that the maximal dimension of the fibres of f is < d and a perverse sheaf
F on Y] the complex fiF is placed in perverse degrees < d. Point (b) is proved similarly
(as in [3, Section 3.3.7]).

For (c), let 920V be the preimage of Bung C x,omé under ‘A . One has

K" Buny = $1ACG 2 cloze00)- (13)
A point of  , Bunj is given by (F7, F, UN = (L1)g,, UN = Lg). Let
(a,b) € uyk) x uy k) C Aut(Ug) x Aut(U)
act trivially on Fr, F. Then (a, b) acts on (13) as {(a/b). One shows as in [18, Lemma 11]
that anj)i/ bounded complex in D(y,,Buny) on which (a, b) acts as ¢ (a/b), vanishes unless
nw e A-.

Assume u € AP, The complex IC(, Z); [ozu0.v 1s the twisted external product, with
the notation of Lemma 3.8(a),

AEwO(U) |G gm0 R1C; [Bun;;» (9
G G

and A"V - —uger = Eg "0, 25)].
G

Now in the notation of Lemma 3.8(c), ¢ maps °Z*%V —  ,Bunj and (14) becomes
a locally trivial fibration

(Gr"é N SgJ””O(”));gC)M Bun; — . ,Bung

and the complex (E})* X (,IC, [ Buny) [2(1t, 0)] on the source.

Applying now Proposition 3.2 (with the character ¢ replaced by ¢ '), we see that
the O-th perverse cohomology sheaf of K*%7| ,Bun; identifies with (,IC¢)l, ,Bun; ®
V¥ (p + wo(v)). o
So, Proposition 3.6 is also proved. This concludes the proof of Proposition 3.4 (and hence
of Theorem 2.2).
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3.4. Proof of Theorem 2.1

An analog of [3, Theorem 5.1.5] holds in our situation.

Proposition 3.9. The perverse sheaf 1C; is ULA (universally locally acyclic) with re-
spect to q : Bung — Bunr.

Proof. Pick Ay, ..., A € A% that form a base in Af ®z Q. Letm > 2g — 1, and let
A — X™ denote the divisor of diagonals.
Let fH?G be the stack classifying

{xl,l’ o 7-x1,m’x2,17 .. '1xr,11 o 7xr,m} € er_ A) (3” uG)? (gf/’ /G) € BunG

and an isomorphism 8 : F S |X—{x1.1,...1r.,,) SUch that for all i and j, F is in posi-
tion A; with respect to I at x; ;.

Let hg;, hg - f]{z.; — Bung denote the projections sending the above point to
(7, Ug) and (F", Uy;) respectively. Let 7 : J{?G — X™ — A be the projection.
) Let Z = J—C?G X fun; Bung, where we use hg to define the fibred product. Let ¢ :
Z — Bung x (X" — A) be the map defined as in Lemma 3.3. We get a commutative
diagram

N - "hy
Bung x(X™ — A) <—¢ Z —G>Buné

lﬁxid Jv J;S
h xm hy

B-ITHG X (X™ — A) < j‘fé —G>]§Vun(;

Let AJ : X" — A— Buny: be the map sending (x; ;) to

(o)
L]

'hy —~

it is smooth. The composition Z —% Bun B 3 Bunr equals the composition

s ¢ idxAJ
——

—_— —_ mg —~
Z — Bunj x(X"— A) Bunj x Buny: —% Buny .

Here mg denotes the composition Bunj x Bung: id, Bunr x Bung: — Bung, where
a is the action map defined in [18, Section 5.2.3].

Define Z C Z as the open substack classifying (i, T, UG, T, U, T, W, V) € Z
such that for all X € A™ the following hold:

(a) The map v : Léﬁ/r — \7;0 is not zero at x; ;.

(b) The map v* : L;T(— > (s xi ) V):\TG is zero atno x; .
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As in [3, Theorem 5.1.5], the map ‘A7 : Z — Bunjy is smooth and surjective, and
¢:7Z— mé X (X™ — A) is smooth. We get a diagram

hy
% ~
Z Bun B

bl

—_~

a5 i
Bunj x Buny; —— Buny

where b = (id xAJ) o ¢, so b is smooth. It is easy to see that there is a rank one local
system € on Z with EV = Q¢ and an isomorphism

(hg)*1C; = € ® b*(IC; ®IC(Buny:)).

So, it suffices to show that IC; ®IC(Buny:) is ULA with respect to mg. Note that mg is
the composition

Buné x Bunpy — Buné x Buny — Bunrp,

where 6 composed with the pro_]ecnon to Bun g (r (resp., to BunT) is pry (resp., mg). Since

BunT is smooth, IC; X IC(Bunr) is ULA over Bun7. Since § is smooth, our claim follows
from [3, 5.1.2(2)]—see Remark 3.10 below. ]

Remark 3.10. Let f : Y — Z be a morphism of schemes with Z smooth. Let H be
a smooth group scheme acting on Z, and assume the stabilizer in H of any point of Z
is smooth. Assume that for any k-point z € Z the map H — Z,h — hz, is smooth.
Let K € D(Y). Let my denote the composition H x Y L Hx 2z S 7, where
a is the action map. Then @( X K is ULA with respect to my. Indeed, my is written
as the composition H x Y 2 zZxy 2L Z, where § composed with the projection
to Y is pry. The map § is smooth, because it is obtained by base change from the map
HxZ—ZxZ,(hz) v (hz,2).

Theorem 2.1 follows from Proposition 3.9 by applying [3, Section 5.1.2].

3.5. Some gradings

The centre Z(G) acts on Bung by 2-automorphisms, namely z € Z(G) yields an auto-
morphism & — &, f > fz, of § € Bung. This automorphism acts trivially on g
We let Z(G) act on BunG by 2-automorphisms so that for (F, U) € BunG, z € Z(G)
acts naturally on F and tr1v1a11y on U. For a character X Z2(G) — Qz we get the full
triangulated subcategory D¢,y (Bun(;) C Dy (Bung) of objects on which Z(G) acts by X.-

Write C* (G,,) for the cocentre of Gn, the quotient of Al by the root lattice of G,,
One has canonically Hom(Z(Gn), Qe) 5 C*(Gn). If w € A% then Z(G,,) acts on V#

by the character, which is the image of  in C* (Gy).



Geometric Eisenstein series: twisted setting 3201

There is a natural map & : C*(én) — Hom(Z(G), (k) sending v € AF to the
character ¢ (v)/n. The latter sends z € Z(G) to t(v)/n(z). If « is a simple coroot of G then
let § denote the denominator of ¢(«, o) /(2n). Recall that S« is the corresponding simple
root of én [9, Theorem 2.9]. Since ¢(5ar)/n lies in the root lattice of G, (1(a)/n)(z) = 1
for z € Z(G) by Remark 3.13 below. Thus, & is correctly defined. Write C*(G),, for the
n-torsion subgroup of C*(G).

Lemma 3.11. The map C*(G,) — C*(G) sending v € AF to 1(v)/n is injective and
takes values in C*(G),,. The resulting map C*(G,) — C*(G), is not always surjective.'

Proof. Let us check this case by case for all simple simply-connected groups.

D If G is simply-laced then for each simple coroot o of G the corresponding root
of Gn is na. Moreover, ((«) = @ for each simple coroot & of G. So, if A € A” and ((})
lies in n Q where Q is the root lattice of G, then A € nA. Our claim follows in this case.
For G simply-laced the map C*(Gy ) — C*(G) identifies C*(Gy ) with the n-torsion
subgroup in C*(G).

2) If G = Sp,,, then the nontrivial case is n even. In this case let o; be the standard
simple coroots, so t(et;) = 2d&; for i < m and t(ct,) = &y In this case AF = (n/2)A,
the simple roots of én are (n/2)a; fori < m and noy,. So, (n/2)ay, € C*(é,,) 5 727,
is a generator. Since &y, /2 is not in the root lattice of G, our claim follows, and the map
under consideration is actually an isomorphism.

3) If G = Spin,,, ;| with m > 2 then the only nontrivial case is n even and nm/2
even. In this case C *(én) 5 Z/27. Let «; denote the standard simple coroots. Then
t(a;) = @; fori < m, and t(aty,) = 2&;,. The simple roots of én are na; fori < m and
(n/2)ay,. The root lattice of é,, isnA, where A = {(ay, ...,an) | Y_a; = 0mod 2}. So,
(n/2,...,n/2) € A* generates A*/nA. The root lattice of G is Z", and ¢(v)/n sends the
above generator to (1/2, ..., 1/2), which is not in Z". The map under consideration is an
isomorphism in this case.

However, if n is even and nm/2 is odd then the map C*(G,) — C*(G), under
consideration is not surjective!

4) For G, and Fy the claim is trivial, as the centre is trivial. O

Proposition 3.12. Letv € Abt and K € - D¢ (Bung) Assume that Z(G) acts on K (by
functoriality from the above 2-action on Bung) by a character x : Z(G) — Qe Then

z € Z(G) acts on H(,(K) as x(Z)C(l(;) (Z)).

Proof. Recall that a point ofﬁ‘é is givenby (F,5,8:F 5 F |x_y) € ﬁVG and U, U.
Let Z(G) act on ﬁVG by 2-automorphisms so that it acts naturally on F, ¥ and trivially
on U, UW. Let us show that z € Z(G) acts on IC" as {(%(z)).

Consider the open substack 3{"6 C ﬁl}é There is a line bundle, say B, on H; such

that BY is canonically the line bundle with fibre £g ® L;,l at (3,3, B) € H(,. The line
bundle is uniquely defined, as the Picard group is torsion free. For z € Z(G) consider the

' The only case when it is not surjective is indicated in part 3) of the proof.
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2-automorphism of J{/; acting as z on F, F”. Then z acts on B as (i (v)/ n)(z~1). Actually,
(i(v)/n)(z~") € wa(k), because of Remark 3.13 below. We have an isomorphism

0t B(un) X (G XBung Bung) = %

where we use i to define the fibred product in parentheses. It sends a collection (8 :
FS T |x—e, UN S Ly, UY = k) to (B, F, T, U, W), where U = B 57,5 ® Uy ®
W with the induced isomorphism UV 5 L. The perverse sheaf IC” is the intermediate
extension of

N+(L¢ RIC(HY XBung Bung)).

So, our 2-automorphism z € Z(G) ofﬁ‘é actson IC" as ¢ (%(z)). The group Z(G) acts
by the above 2-automorphisms on the diagram

GXT —y h
BunG xX <& He BN Bun(;,

and our assertion follows. O

Remark 3.13. (i) For any v € A the element ¢(v) lies in the root lattice of G. So, if
z € Z(G) then t(v)(z) = 1.

(ii) Recall that G is simple and simply-connected. Write Z(G), for the n-torsion
subgroup of Z(G). If G is simply-laced then G, is isomorphic to the Langlands dual to
G/Z(G),. This was also observed by Savin [25].

3.5.1. The group T acts naturally on Buny by 2-automorphisms; under this action
t € T acts on LT|Bun‘; by the character —«(u)(¢). In partucular, Z(G) C T acts
on Buny by 2-automorphisms, and acts trivially on £L7. We let Z(G) act on ]gvunr by
2-automorphisms, so that z € Z acts on (Fr,U) as z on Fr and trivially on U. We
also let Z(G) act on Bung by 2-automorphisms so that z € Z acts on Fr, F, uw =
L1)gs, UN = Lg) as z on I, T and trivially on U, Ug. The diagram (3) is equiv-
ariant w1th h respect to this 2-action. The group Z(G) acts trivially on IC;. So, given
8 € Dy(Bunr), if Z(G) acts on & by a character x : Z(G) — Qe then Z(G) acts
on Eis(8) also by .

Lemma 3.14. Lerve A and K €Dy (Buny). Then z € Z(G) acts on K as ¢ (“2(z71)).

Proof Step 1. The group T acts trivially on L7 |Bun0 So, T acts by 2- automorphlsms of

BunT, namely, t € T acts as ¢ on JF and trivially on U. For any K € D, (BunT) T acts
trivially on K, so Z(G) also acts trivially on K.

Step 2. Pickx € X, let ym" : ﬁlT — ﬁlT be the restriction of m" to x. Then ,m"
is an isomorphism. From (8) we see if z € Z(G) acts on some § € D; (Igvunr) as x(z)
then z acts on (,m")*S8 as X(z){(‘(n—”)(z)). O
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3.6. Towards the functional equation

The W-action on A preserves A%, so W acts on the left on T4 naturally. For w € W
we also denote by w : Bunyy — Bung:, F +— “J, the extension of scalars map with
respect to the left action map w : T% — T* We also let W act on the left on A, so
wh=xiow !eA ForieAandF e Bunr we get L(u F) = L canomcally For
w; € W and F € Bunyy one has *2(*15) = w2l F paturally.
We also let W act on the left on 7. For a T%-local system E on X we denote by VE
the extension of scalars of E with respect to w : T — T*. So, for w e A% we get

(YEH* = (E)“ﬂ“ as local systems on X. For w € W and the map w™!

: Bunyy —
Buny: we then get w H*AE N A("E) canonically.

Let W act naturally on the left on 7. For w € W write " J for the extension of scalars
of § € Buny under w : T — T. Write w : Buny — Bunr for the map F +— “J; this
is a left action of W on Buny. The line bundle L7 is naturally W-equivariant. Write also
w BunT — BunT for the map (F, U, UY 5 Lr)F) —> ('”S" U) with the induced
1som0rph1sm uv = (L1)we. This defines a left actlon of W on BunT

For a T*-local system E on X let Xg € D, (BunT) be the E-Hecke elgensheaf
constructed in [18, Proposition 2.2]; this is a local system over the components BunT,
we AF.

Proposition 3.15. For w € W there is an isomorphism (w™")*Xg 5 KwE).

Proof. In this proof we use the notation of [18, Section 5.2.4]. Recall that K is the ker-
nel of the natural map T8 > T,s0 K N (A/Aﬁ) ® un. The group HI(X, K) =
H (X, tn) ® (A/A?) is equipped with the skew-symmetric nondegenerate pairing

(e : HY(X, K) x H'(X, K) — (k)

described in [18, Proposition 5.1]. Let Hy C H!(X, 1,,) be a maximal isotropic subgroup
with respect to the natural pairing H' (X, 12,) x H'(X, pn) — H2(X, u®2) S pu,. Set
H=Hy® A/ A"). Then H C Hl(X , K) is a W-invariant maximal isotropic subgroup
with respect to (-, ).

Recall the stacks ‘Buny; and Bung: 5 from [18, Section 5.2.4]. The group W acts
naturally on ‘Buny; and Buny, and 'ix : ‘Bunyy — Buny is W-equivariant. The line
bundle 't on ‘Buny: is naturally W-equivariant. The W-action on ‘Buny; induces a W-
action on Buny; y so that the diagram ‘Buny: — Bung: j; — Bunr is W-equivariant.
The W-actions on Buny; 5 and on Buny naturally extend to W-actions on BTuvnTu’ y and
]§vunT. The map 7y : B:ffnT;,H — lngnT is W-equivariant.

Pick a local system AEgm on éﬁdnTu’ gy Whose restriction to 'Bung; is identified
with AE and such that py (k) acts on it by ¢. Recall that K is defined as w1 (AEg).
Since the map 'Buny: — IgffnTuH is W-equivariant, our claim follows. O

3.6.1. Recall that p, denotes the half sum of positive roots of én. If w € W then
w(pp) — pn € A?. (Forw a simple reflection this is clear, and the general case is obtained
by induction on the length of the decomposition into simple reflections.)
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Define the twisted W-action on Bf’ﬁ/nr as follows. For € A? write Q* for the T*F-
torsor induced from Q via i : Gy, — TF. By abuse of notation, the corresponding
T -torsor is also denoted 2. Denote by a : Buny: x Buny — Bunr the action of Buny:
on Bunry defined in [18, Section 5.2.3].

For (F, U, UN = £4) € Buny we set

w (F, W) = a(@VP7 (UF ) = (VT @ QU U, (15)
where a is the above action map and U’ is the corresponding 1-dimensional space.

Lemma 3.16. The maps (15) define a left W-action on Ié-alT.

Proof. Recall that the line bundles L7 on Bunr and t on Buny: are W-equivariant.
Let W act as ahgve on Bunr, and on Bunz: x Bunr as the product of the W-actions
on Buny: and on Bun7. Then a is W-equivariant. O

For w € W denote by K +> w * K the direct image functor D, (]§vunr) — D¢ (]371\1;17) for
the new action map wx* : Buny — Bunry. 5 N __
For each simple root @ : Gy, — T? of G, let az : Bun; x Buny — Buny denote the

restriction of a under the push-out map Bun; & Bung:. Call § € D, (BTl\l/nr) regular if
for each simple root & of G,, one has

(ag)ipr 8 = 0. (16)

This defines the full triangulated subcategory D, (Iivunr)reg C D¢ (Bf'ﬁ/nT) of regular com-
plexes. Equivalently, instead of (16) one can require the property pry a>8 = 0 to define
the regularity.

Conjecture 3.17. Forw € W and 8§ € D¢ (lgvunT)reg there is an isomorphism
Eis(w * 8) — Eis(8)
functorial in § € D, (Buny ) e,

Remark 3.18. Let E be a T%-local system on X and Kg € D, (]gvunr) the Hecke eig_en—
sheaf associated to E in [18, Proposition 2.2]. Then K¢ is regular if and only if E¢ is
nontrivial for each simple root & of G,,.

3.7. Action of Bungz g,

The stack Bunz ) is a group stack acting naturally on Bung by tensor product. For
T € Bunz(r), F € Bung there is a canonical Z/2Z-graded isomorphism

LygT — Lg.

In particular, £ is canonically triviali@ over Bungzg). So, Bunzs) acts on BTl\l/n(;,
namely T € Bunzg) sends (&, Ug) € Bung to (F® T, U).
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Set (A= Hom(A?, Z). Themap ¢/n : A® A* — Zyieldsamap/n: A — (A%
Consider for a moment 7% = Gy, ® (A?) as a torus over Speck. Themapn : T — T¢
induced by ¢/n gives the push-out map 7y : Buny — Buny,.

Write Z (én)n for the n-torsor subgroup of Z (én).

Lemma 3.19. The map n: T — T* sends Z(G) to Z(Gn)n.

Proof. Fora € A" one has @ o = 1(@)/n. If @ is a simple root of G, then t(@)/n lies
in the root lattice of G. So, for z € Z(G) we get (1(a)/n)(z) = 1, and n(z) € Z(G,). To
see that n(z) € Z(Gy),, note that if v € AP then ¢(v) lies in the root lattice of G. O

For T € Bungzg) let T, := nx(7) denote the corresponding Z (G )n-torsor on X. For
v € A? denote by T” _ the Qy-local system on X obtained from T, via the push-out by

Z(Gn)n 5 Mn(k) _> @(
For T € Bungzg) denote by o : BTKnG — lgvung the automorphism (F, U) — (FRT, U).

Proposition 3.20. Ler v € A" and T e Bungz(g). Then the functors Dy (B:ﬁ/ng) —
D¢ (X x Bung) given by

K + pr} 7;,5 QH(05K) and K +— (id x o3)"H{(K)

are naturally isomorphic.

Proof. Recall from Section 3.2 that ﬁ‘)@ classifies (F,F € Bung,x € X, B
A |x—x, U, W) such that F is in position < v with respect to F at x, UV = L,
uN S Lg.

Let Bungz(g) act on ﬁ‘é so that T € Bungg) sends the above point to the collection

FRT,FT,x,8UU)

with the induced isomorphisms UY = Lggq and WY S L. Write o3 : Hg — He
for this map for a given T. We get a commutative diagram

nxh — hﬁ
X x BunG —< He < BunG

lidm lay l (17)
-

—~ 71><h‘G__U

X x Bung +—— Hg —< BunG

Note that U-C"G is preserved by o7. The Hecke functor Hy; is defined by formula (6).
Let us establish an isomorphism

03 IC" = IC" ® 7*T) (18)

over ﬁg. Since both are irreducible perverse sheaves, it suffices to establish it over 9—%.
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As in the proof of Proposition 3.12, there is a line bundle B on J{({; such that BN is

canonically the line bundle with fibre L5 ® L;,l at (F,F,B,x) € J—C"G The line bundle
is uniquely defined, as the Picard group is torsion free. We get an isomorphism

Nt B(un) x (3G XBung Bung) — HY
where we use i to define the fibred product in parentheses. It sends a collection (B :
FS T Jxex, UV = Ly, UY = B to (B, F, T, U, W), where U = Big 57,5 ® Up
® W with the induced isomorphism UV 5L 7. The perverse sheaf IC" is the intermedi-

ate extension of __
Nx(Lg RIC(HG XBung Bung)).

Viewing T as a T-torsor on X, for /i € A we get the line bundle Lf; on X. Over H(; one
has an isomorphism

oiB S By,
where 7 : H, — X sends (F, F', B, x) to x. Note that Ll(‘))/" is a p-torsor on X that
we see as a map X — B(u,). The restrlctlon of L under the latter map identifies with
‘J’n & because the composition Z(G) Lz (G In —> Wy equals ¢(v)/n. The isomorphism
(18) follows. Our claim follows now from the diagram (17). ]

This applies to Eisenstein serles as follows. Recall that a point of Bun ; 7 1s a collection
(Fr, F, v, U, Ug), where v* L’\ — \7A are inclusions of coherent sheaves for each

dominant weight X

Let Bunz(g) act on B_un[g so that T € Bunzg) sends (Fr, F, v, U, Ug) to (T ® T,
F ® T, v, U, Ug). This action preserves the open substack Bunj. Let Bunzg) act on
I§Iﬁ1T so that T sends (F7, U) to (Fr ® T, U). The diagram

Bung a Bunj X Bung
is Bunz(g)-equivariant.

Lemma 3.21. Let K € D, (l§vunr) and T € Bungz(g). One has an isomorphism
0XEBis(K) — Eis(04K)
functorial in K € D¢ (1§VunT).

Proof. Write also o7 : Bun 5= mé for the above action map by J. Then one has

o3 1C; = IC; canonically. Our claim follows. |

4. Parabolic geometric Eisenstein series

4.1. Definitions

Let P C G be a parabolic containing B, let M be its Levi factor, and write Jy; C J for
the corresponding subset. Let £, denote the restriction of £ under Buny — Bung. Let
Buny, denote the gerb of N-th roots of £y,.
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The notations Bun p,Bunp are those of [3]. Let Bun PG’ Bun P.G be obtained from
Bunp, Bunp by the base change BunG — Bung. Let Bun ; B Bun; 5 be obtained from
BunP &» BunP & by the base change BunM — BunM

The Eisenstein series functor Eisys : Dy (BunM) — Dy (]§I1Jng) is defined as follows.
By abuse of notation, the diagram of projections is denoted

Buny < Bun; & Bung . (19)
A point of ]§vun[~, is given by a point (Fys, F, v) € B-\/llnp, where
V. pUP)
: VSFM —> Vg
is a morphism of coherent sheaves for each representation V of G; U, Ug are Z/27Z-
graded lines of parity zero equipped with UV Sy M)F s ug = L. The map g sends

the above point to g ., W), and p sends it to (F, uG)F.V
Let Buns C Bunj be the preimage of Bunp in Bun . For a point of Bunp we have

canonically (L), 5 L. One defines Bun p ¢ similarly. We get an isomorphism
B(uy) x Bun, & — Bunj (20)

sending (Fp, Ug, Up € B(uuy)) with Uf)v Skto (Fp, Ug, W) with U = Ug ®u51. By
definition,

a(g‘M’gjvvvuqu)z(g‘M’u) and ﬁ(g’M,fTr,U,u,UG):(g’,UG).

View £; ®IC(Bun p.G) @s a perverse sheaf on Bun ; via (20). We still denote by IC; the

intermediate extension of this perverse sheaf to Bun ;. Write j; : Bunz <> Bunj for the
natural open immersion.

Definition 4.1. For K € D, (Buny) set
Eisy(K) = pi(@* K Q IC;)[— dim Buny].
This gives a functor D, (lﬂw) — D¢ (}il/n(;).

41.1. SetAyo={r e A| (A &) =O0foralli € Iy} Let Z(M)° = G, ® Ap.0:
this is the connected component of unity of the centre of M. Denote by 1V\M,o the lattice
dual to Ap 0. To 4 € Ag,p we associate the character Ay o — Z, A — k(A uw),
denoted ks (/L).V This is well-defined, because « («;) € Zg;, and gives a homomorphism
KM - AG’p — AM,().

The group Z(M)? acts on Buny, by 2-automorphisms naturally. As in Section 2.0.2
for T one checks the following. If 6 € Ag,p and J € Bunﬁ,, then Z(M)? acts on LT
by the character —«,(6). The following is a generalization of [18, Proposition 2.1].

Proof of Proposition 2.6. A k-point I € Bunﬁ,, defines amap f : B(Z(M)?) — Bunﬁ,[.
Let B (Z(M)°) be the restriction of the gerb B/Il-i’li,[ — Bun?u under this map. As above,
we get the category D;(E(Z(M)O)). By [18, Lemma 5.3], D, (E(Z(M)O)) = 0 unless
kpm(0) € NIV\M,Q. Our claim follows. ]
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Proposition 4.2. The complexes 1C; and (jz) j;f) IC; are ULA with respect to the map

q: Bun; — Buny.

4.1.2. Proof of Proposition 4.2. The argument from [3, Proposition 5.1.5] applies in our
setting. For Fy, F), € Buny (k) write Fyy < F), if there is A € A™ such that (Fy, F),)
is the image under

Y A

hy, xh
fHﬁ‘,, RSN Buny, x Buny,

of some k-point. Let ~ be the equivalence relation on Bunys (k) generated by <. Write

AnG’P for the image of the natural map A* — Ag. p.

Let A%OSP be the Z, -span of o;,i € J —Jp, in Ag,p. For 6 € A%OSP we have the

open substack ]§Vun§9 defined in [3, Section 5.3.1]. Recall that Ue ]§Vun]_<30 = Bun p, S0 it

is sufficient to show that IC; is ULA with respect to BTuvn? — BTlTnM forany 6 € A%. P

—~

Let Buny, denote the biggest open substack of Buny, such that for its preimage Buny,

. S~ . . —~ 9 o —~
in Buny, the perverse sheaf IC; is ULA with respect to Bun?, XBuny Buny — Buny,.

Proposition 4.3. If Ty < Fy are k-points of Buny then F), € B;mM if and only if
3|~M € Bme.

Proof. The argument from [3, Proposition 5.3.4] applies. One only needs to check the
following. Pick A € A™. Consider the stack Z classifying

(x € X,56,Fm, Fg. Fyyo ke, ', B, B, W, W, U, Ug)
where U, W, Ug, Uy; are lines equipped with isomorphisms
WS Ly, UNS Ly UY S Ly, WE S Ly,
(6. Fu, i, U, Ug) € Bunp, (F,, Fyyo k', W, Uy,) € Bunj, and

B:F6 — Tg lx—xs Bm:Tu — Frylx—x

such that

Fy; is in G-position A with respect to F¢ at x;
e J, is in M-position A with respect to Fy at x;

e the maps « : Vg}\iP) — Vg, have no zero at x for any V € Rep(G);
e the maps k' : V;/,(P) — Vg& have no zero at x for any V € Rep(G).
M

N kg h< h~ 5=
We have two smooth projections Buns <— Z — Bunj, where 2~ and 2™ send the
above point to

(T, Fm. k., U, Ug) and  (Fg, Fyy, e, W, Up)
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respectively. Then the line bundle on Z with fibre L3, ® ngw ® L*:;M ® L%,

is canonically trivialized. So, the perverse sheaves (h~)*IC.[dim.rel(h™~)] and
(h=)*IC;[dim.rel(h )] are locally isomorphic in the smooth topology of Z. The rest
of the argument is exactly as in [3, Proposition 5.3.4]. O

One now finishes the proof of Proposition 4.2 as in [3, Theorem 5.1.5]. Theorem 2.4 also
follows from Proposition 4.2 as in the case M = T'.

4.2. Hecke functors for M

Let £ also denote the restriction of £ under Gryy — Grg. Let GrM — Gr p be obtained
from Gryy — Grp by the base change Grg — Grg. Let Pervy G » be the category of
M (O)-equivariant perverse sheaves on Grys, on which uy (k) acts by ¢.

Let A, C A be the coweights of T dominant for M. Set A% = A*N AT, Asin [9,

Section 4.1.1] for v € Aﬁ’ we get the perverse sheaf A Me € Pervy . on GrM Here
€ is the square root of 2 (O) that we picked in Section 3. 2.

Recall that M” C Gn is the standard Levi subgroup corresponding to Jjs. Note that
Aif are exactly the dominant weights of Mn. In [9, Section 4.2] we introduced a tensor
category Pervi,l’ . (obtained from Pervy, g » by changing the commutativity constraint)
and established an equivalence Pervaw’ G 5 Rep(Mn). For V e Rep(M,,) we denote
by Loc(V) € Pervy ., the corresponding perverse sheaf on GrM. If V is an irreducible
M-module with highest weight v then Loc(V) = A"M’ &+ We write Loc (V) if we need to

stress the dependence on ¢.
The Hecke stack 3y, the diagram

hyy xm h_’

BunM xX 2 Hyy —>BunM
l hig X Jz hy Jz
Buny xX +—— Hy —>BunM
and Gryy, x are defined as for G. The stack J{; classifies M-torsors Fy, 3"3,, onX,x € X,
By Fu — J |x—x together with lines U, U" equipped with
v S Ly, UV Lm),.

The line bundle £Lx on Gry x is the restriction of £y under Gry x — Grg x. We
similarly have the isomorphisms y < (resp., y )

BunM,X XMy GI‘M,X — fHM

such that the projection to the first term corresponds to &, (resp., hy;). Over the stack
Buny, x X my Gry, x we have canonically the 1som0rphlsm

() (hy) Lm — Ly B Ly,
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Let Pervy, g.n,x be the category of K € D(GrM,x) such that K[1] is perverse,
M x-equivariant, and @y (k) acts on K by ¢. We have the fully faithful functor defined
in [9, Section 4.1.2]

70 Pervy.g.n — Pervygnx -

.+
Forv e A};" set A}, = rO(A}’VLS) e Pervy gnx-
Consider the M x-torsor

s ~ )
V4 .BunM’X XxGI‘M’X — J{M

For My-equivariant perverse sheaf 8§ on GrM, x and T € D(P:Tan) one defines their
twisted exterior product (T X 8)" on H 47+ This is the descent via y ™ ; it is normalized to
be perverse for T, 8 perverse. Similarly, one gets (T8 8)! on H e

Now for v € Ai;;r let

HY, : D, (Buny) — D, (Buny xX)

be given by
) 7 s _w(l)\/l(v) r
Hy, (T) = (R x o (TRA, ™).
As for G, one has the covariant functor » : Pervy g, -1 — Pervay g n,c. For
_uwM —~
V€ Aﬁf it sends A}, o to Ang (v). For 8 € Pervy, G,n, T € Dy (Buny) we define

Hi (8, T) = (hy x m(TR°(8))" and  Hy, (S, T) = (hy; x n(F&%8)).

4.3. Geometric restriction functors

Write Ag,p = A/{a; | i € Iy} for the lattice of cocharacters of M /[M, M]. Let ]\G,p
denote the dual lattice. For @ € Ag, p the connected component Grﬁ,, is the one containing
t"M(O) for any v € A over 0. For 6 € Ag, p denote by Gr?a the ind-scheme classifying

GG, B : Fg = 3’"% ID:) € Grg such that for any re Atn 1V\G,p the corresponding
map

o L;()T(—w, Mx) = Vi

is regular and has no zero. This ind-scheme was denoted S?D in [3, Section 4.3.1].

Let G‘ri,, — Gri be obtained from Grﬁ,, — Gr(; by the base change GrG — Grg.
For & € Ag,p we have the diagram

~ 0 i";, ~ Ei, ~
Gry, < Grp — Grg.

The next result follows from [9].
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Proposition 4.4. There is a functor gRes : IP’ethG n = ]P’erv?w G.n 8iven by

K @ ©GnGEH*KI0,26 —25m)], 1)

0eAg,p

and the following diagram of categories naturally commutes:

IP’eran’n — Rep(én)

J gRes j{RCS

Per"ix],c,n —= 5 Rep(M,)

Here the horizontal equivalences are those constructed in [9], and Res is the restriction
Sfunctor for M,, — G,,.

Let Agp denote the image of the map A* — Ag.p given by u > . Note that A%’P
is a subgroup of finite index in the free abelian group Ag,p, so Aé’ p is also free. In the
formula (21) for gRes one may replace Ag, p by AﬁG’P.

The centre Z (MJ’) is not connected in general under our assumptigns. Write C *(M,,)
for the cocentre of M,,, that is, the quotient of Al by the root lattice of M,,. We have canon-
ically Hom(Z(M,,), Gy) — C*(M,) by [28, 2.15(b)]. The natural map cp : C*(M,) —
A%’ p 1s surjective, but not injective in general. Its kernel is finite and coincides with the
torsion subgroup in C*(M,,). Indeed, if ), a;jo; € A vanishes in Ag, p then it is of the
form ) a;a;, and a multiple of this element lies in the root lattice S;ia; 7
of Mn

Recall that for v € Aﬁf we denote by U" the irreducible representation of M, with
highest weight v.

For v € A}, lying over 6 € Ag p let ¥4 : Grp — Gry, be the map obtained from ),

iGJM ieJM

by the base change Gr;,, — Gri,l. For € A% recall the local system EY over Gr’é
From Proposition 4.4 one gets the following.

Corollary 4.5. Letv € A;[ lying over 0 € Ag, p. Let u € AbY. The complex
ENELIGn G Lt 20) + (0,26 — 26Mm)]

is placed in perverse degrees < 0, its 0-th perverse cohomology sheaf vanishes unless v €
Ai};r, in which case it identifies canonically with AUM, ¢ ® Hom M, v, V“).NThe spilce
Hom M, (UY, VH) admits a base formed by those connected components C of Grl;, N Gr’é

of dimension (|1 + v, p) for which E g descends under the map {?, :C — Gr;,,

Note that the descent property in Corollary 4.5 can be checked at the generic point of the
component C.
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4.4. Proof of Theorem 2.7

The proof of [3, Theorem 2.3.7] essentially applies in our setting with some minor
changes that we explain. To simplify notation, we prove a version of Theorem 2.7 with
x € X fixed.

4.4.1. We have the stack 4 ooBunp defined in [3 Section 4.1.1]. For v € A one also
has the diagram ,, vBunp — i, >UBunp — ooBunp defined in [3, Sectlons 4.1.1 and
4.2./1\]J, the first maR}s an open 1r,11£ner510n, the second one is a closed immersion. Let
xyBung <= ; >,Buns < ; o Bunj be obtained from the above by the base change
]§vunM X lgvunc; — Buny; x Bung.

Recall the stacks x, oo Zp,pm and x oo Zp,c defined in [3, Sections 4.1.2 and 4.1.4]. We
similarly define the stacks y 0o Z 5 47 and x,0Z 5 ¢ included in the diagrams

—~ ’h‘_ ’h_’ —~

x,c0BUn <—x OOZP i —>x coBunjp

lﬁlf’ l/ﬁf' lﬁP
by iy

—~

~ o o
BunM xiHM BunM

and

/h(— /h*}

—~

xiooBUNG T — ¢ 0 Z 5 & — 1 ocBuUn

lf’P JjﬁP lﬁp
P < h= =~

G G
BunG xﬂ‘(@ Bun(;

S

Both squares in each of the above diagrams are cartesian. ~

A point of  oBun is (Fyy, Fg, k) € x,c0Bunp and (Fyy, U) € Buny, (Fg, Ug) €
lgvung. Let uy (k) x uy (k) act on x,oolgvlmf, by 2-automorphisms so that (a, ag) acts as
aonl, as ag on Ug and trivially on (Fys, Fg, k). Denote by

D¢ (x,00Bun) C D(y,00Bun)

the full subcategory of objects on which any (a,ag) € un(k) x un (k) acts by ¢(ag/a).
Now for § € Pervys,G.n, T € D¢ (x,c0Bun ) one defines the functors

XH;M, xH;”M : Pervas, 6.0 X D¢ (x,00Bun ) — D¢ (y,00Bun )

and
xH;G, xH;G : Pervg,, x D¢ (x,00Bung) — D¢ (x,00Bunp)

as in [3, Sections 4.1.2—4.1.4]. In particular, for v € Aﬁf we get

XHVP,M : D{ (x,oo]?:l\l-hﬁ) — D{(x,oolguvnp)
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given by ,H}, 1, (T) = 1Hp ), (A}, 7). For & € AT we get
«H) G - D¢ (x,00Bun 5) — D¢ (x,00Bun )

given by ,H}p (T) = ;Hp (A%, 7).

Forv € Aﬁf we define the perverse sheaf IC,, ; € D, (x,zvlgffnla) as follows. As in
[3, Section 4.2.3] we denote by

Jv ixpBung < ;> ,Bung

the corresponding open immersion. The stack » ,Bun classifies (F L FG, k) €x oBunp,

Fym € Bunyy, ﬂM Fy = ?M |x— x such that F); is in position v with respect to 3’1 at
X, (?M, U) S BunM, (SL'G uG) € BunG

The projection | 1,Bun 5 — x0Bunp Xpung BunG sending the above point to
(CT'~ ! FG, Kk, Ug) is a locally trivial fibration (in the smooth topology) with typical fibre
Gr, M .- As in Section 4.2, one gets the twisted exterior product

IC(x 0Bunp xpun; Bung) @A}, ¢
on y, vBun p- Then IC,, “v.g is deﬁned as its intermediate extension under j,. In particular,

IC; =1Co,; on x>0 BunP = BunP
The following are analogs of [3, Theorems 4.1.3 and 4.1.5].

. 4+ . ~
Proposition 4.6. For v € A}, one has canonically XH”P’M(IC;) — IC—wéW(v),{'

Proposition 4.7. For A € A* there is a canonical isomorphism

Hp g(C) = @ 1C, ®@Homy; (U, VH).

veAﬁ Al

Corollary 4.8. The two functors Pervg , — D¢ (X,oolgvun )
8 XH;G(S, IC;) and 8+~ XHZM(gRes(S), IC,),

are canonically isomorphic. This isomorphism is compatible with the tensor structure on
Pervg., as in [3, Corollary 4.7].

Now as in [3, Section 4.1.8] combination of Propositions 4.6 and 4.7 implies Theorem 2.7.
The proof of Proposition 4.6 is completely analogous to [3, Theorem 4.1.3].

4.4.2. Proof of Proposition 4.7. The proof of [3, Theorem 4.1.5] applies in our situation
with the role of [3, Corollary 4.3.5] replaced by our Corollary 4.5.
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For the convenience of the reader recall that in the proof of [3, Theorem 4.1.5] for
vV, n e Ab, M € Ag the following locally closed substack Z}’,”‘)(;’"’A > .00ZP.G

plays a key role. It classifies
Ty Fo, ) € woBunp, Fur = Fiy x—c, Fay = Fiy Ix—v, T = TG Ix—s

such that ) is in position v with respect to 5"11‘4 at x, 3"%,[ is in position 1 with respect to
Sr}w at x, Fjy is in position v" with respect to 3"%,1 atx, (72, G k)€ X,olgvunp, and F; is
in position A" with respect to F¢ at x.

It is included into the diagram

—~ 4 g ’ )\4/ /h(?
vV,
xyBunp «— ZP’GW —> ,»Bunp,

—~

where 'h 5 sends the above point to ((ff",lw, FG,Kk) € x,oBf‘l\llnp, Fy — 3"/1‘,, |x—x). The
map 'h; sends the above point to

2 g “~ ~g2
(T, TG, k) € xoBunp, Ty — Fyy Ix—x)
v,V n, A
P,G
vV A : : )
KVV-1* denote the !-direct image under

In our situation we define Z by the base change stOZﬁ,G — x,00Zp,G- Let

’ ’ —~
I . VA
hg 22 — xvBung

/ /
v,V A

of the s-restriction of (Agwo(k) X IC¢)" to A

the following.

. As in [3, Section 4.3.8] one shows

(a) The complex K v g placed in perverse degrees < 0, and the inequality is strict
unless V' = 0,2 =Aandv =7n.

(b) The s-restriction of K"-%¥* to xwBung — , ,Bun is placed in strictly negative per-
verse degrees.

(c) The 0-th perverse cohomology sheaf of K"-%"* over , ,Bun 5 identifies canonically
with IC, ¢ ® Hom; (U", V4.

Point (c) here uses Corollary 4.5. We are done.

4.5. Description of 1C;

In this section we give a description of IC; generalizing the main result of [2] to our
twisted setting.
We freely use some notation of [2]. In particular, A%O;, is the Z4-span of {o; |

iel—IylinAgp.1f0 € A%O; is the projection under A — Ag, p of § € Span(e;),
Jj €3 —1Jpm,thenb(9) = wg/[ (6). Here wé” is the longest element of the Weyl group of
M. Forf € AI(); SP the scheme Gr;&ﬁ is defined in [2, Proposition 1.7].
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Let 11, denote the Lie algebra of the unipotent radical of the Borel subgroup B, C G,.
More generally, let i, (P) denote the Lie algebra of the unipotent radical of the standard
parabolic B, C Gn corresponding to Jp; C J.

For veCH (M )and V € Rep(M ) erte V, for the direct summand of V on which
Z(M ) acts by v. In particular, we have the M -module (11, (P)),.

Lemmad4.9. If v € C*(Mn) and (,,(P)), is not zero then it is an irreducible Mn
module.

Proof. Each root space of YV",, in 11, (P) is 1-dimensional, so our claim follows from
Lemma 4.10 below. O

Lemma 4.10. Let H be a connected reductive group over k, and H the Langlands dual
over Qq. Let vi, vy be dominant coweights of H such that vi = vy in w(H). Then
the irreducible H-representations V', VY2 with highest weights vy, v admit a common
weight.

Proof. Let 6 be the image of v; in w1 (H). If 6 = 0 then they both admit the zero weight
space. Assume 6 # 0. Let u; be a dominant coweight of H satisfying u; < v; and
minimal with this property. Then the orbit Gr’IfIi in closed in the connected component
Gr?_l of the affine grassmannian of H. Since Gr?_, admits a unique closed H (O)-orbit,
M1 = pn2. o

Recall the functor Loc : Rep(Mn) = IF’erVEW G.n from Section 4.2.

Lemma4.11. Let v € Aﬁ’ be such that the irreducible M,-module U" appears in
U, (P), and let 0 be the image of v in A p- Then Loc(U") over GrM is the extension by

zero from GrMe.

Proof. Note that v lies in the Z -span of positive coroots of G. Let 6 be the unique
element in the Z-span of {o; | i € J — Ty} suchthat & = vin Ag p. So,v =60 + V1,
where v is in the Z -span of positive coroots of M. Now wy My)isa p0s1t1ve root of Gn,
and wy M) =vin Ag,p- So, 0 <m wy M (). This implies v <y wy (0) = b(0). ]

Set 5
J={veC"(M,)| W, (P)), # 0}.

Lemma 4.12. The restriction of cp : C*(M,,) — A% p to J is injective.

Proof. Let Cj‘(]l;[n) C C*(M,) be the subgroup generated by the roots of Gy. Itis a free
abelian group, so the intersection of C;¥(M,,) with the kernel of cp is {0}. The restriction
of cp to C}(M,) is injective, and one has J C C}(M,). ]

Set Ag;’ypgs = AIi pN ApoS For 6 € A G.P and V € Rep(Mn) set

Vo = ) V.
veC*(My), cp (v)=6
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Remark 4.13. Fori € Jlet §; denotg the denominator of ¢(«;, ;) /(2n). Recall that §;«;
is the corresponding simple root of G,. If i € J — Jyy then §;«; € J. The set J may also
contain other elements.

4.5.1. Given 0 € AZO,SP, let $1(6) be a decomposition of € as in [2, Section 1.4], recall
the isomorphism of [2, Proposition 1.9]

Tl ~ B
w@Bunp = Bunp xpun, 774 (22)

Let u(@)lifnla be obtained from u(@)ﬁfnp by the base change I§1T111; — Bunp. We will
describe the *-restriction of IC; under g(9)Bunz < Bunj.
Recall that if $4(6) is the decomposition

0 = anem (23)

then [L(0)] = Y, nm, xXHO — IL, X@m) | and XH®) ig the complement of all the
diagonals in X%(®  Recall that X9 is the scheme of AZO, SP-Valued divisors of degree 6,
and X4©® < x9 is locally closed. Set uns g 2l0) — y @) A, where A 1is the divisor of
all the diagonals. Here ‘uns’ stands for ‘unsymmetrized’.
The stack D{I,,’u(e) classifies D € JQ(LW), Fu, fr”;w, an isomorphism By,
Fy — F |x—p such that for each V € Rep(G) the induced map
By Vg, = Vg

is an inclusion, and B, induces an isomorphism
FImm,m = 5t§v1/[M,M](_D)-

Note that the Pliicker relations for ,BA\; hold automatically. So, here we think of F, as the
‘background’ M -torsor. The stack (22) classifies the same data together with a P-torsor
F’, and an isomorphism F, x p M = Fy- . .

Let iH;;me) be obtained from J—f;&’u(@) by the base change Buny x Buny —
Buny; x Buny,. So, it classifies the same data together with lines U, U’ equipped with

U = Cwgy, WY = Lug,.

We get
u(@)Bun}; — Bunp XBunM}CEu(G)- 24)
Note that (a, a’) € uy (k) x uy (k) C Aut(U) x Aut(U') acts on IC, |u(0)§;]ﬁ as ¢(a'/a).

Let Gr;,’u(g) be as in [2], so it is obtained from U{Eu(e) by the base change Spec k —

Buny, trivializing the M-torsor F),. We also denote by Lx the line bundle on Gr;,’u(e)

whose fibre at (Fys, By, D) is
detRT(X, g ® O) ® detRI'(X, gg,,) "

Let (A}dr;,’u(g) be the gerb of N-th roots of Ly over GrL’u(g).
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As in [3, Section 6.2.3] we set A[Tl,G = A,T,I N wé”(A%OS). Say that V € Rep(Mn) is

. . . S+ ~ +.0 . .-
positive if Loc(V) is the extension by zero from Gry, = UGEA%OSP Gry, . In this case it is

. ~ 4.0
actually the extension by zero from geniros Gryp
G,P

In fact, V € Rep(Mn) is positive if and only if for any irreducible subrepresentation

U'cV,ve Aif there is u € ALG such that v <p; u.

Let ““SGrL’u(g) be obtained from Gr;,’u(g) by the base change "X _ XU®)
For V € Rep(M,,) positive we denote by Loc};(e) (V) the perverse sheaf on Gr;ju(e)

on which py (k) acts by ¢ and such that for D = )" 6px; € XU®) jts restriction to
~+.0
[ ]G, (25)
k

is

(9Loce (Va)) ® Qelist®) 1.

. o A0 .
To make this definition rigorous, we first define Locl{ms’u(e) (V) on ““*Gr;r,, @ Write

““SGrJACI’u(G) for the stack over "X %(®) whose fibre over D € "X *®) s (25). The desired
perverse sheaf is obtained by descent via the gerb

unstr-"A:jﬂ@) _, uns NrEU(Q)'

Over ““sGrEu(g) this perverse sheaf is defined similarly using the fact [9, Sec-
tion 4.1.2] that every object of Pervy g, admits a unique Autg(O)—equivariant struc-
ture. Here Autg(O) is a connected group scheme defined in [9, Section 2.3]. More pre-
cisely, consider the torsor over "X*(®) whose fibre over D is the set of isomorphisms
Oy, Ex(0y)) = (O, €) for all x € D. Here & € Q(0)!/2 is the object we picked
in Section 3.2. Then u“SGrL’u(e) is the twist of [, GrL’Qk by this torsor. So, the object
Loc?ns’uw) (V) is well-defined, and moreover equivariant with respect to the Galois group
of the covering "X @ — X"® Thys, it gives rise to the perverse sheaf Locél(g)(V)

on Gr;r,,'u(e) defined up to a unique isomorphism.
Note that Locé’[(g)(V) vanishes unless in the decomposition (23) each 6,, lies

. #1, pos
in AG,P .

4.5.2. Let Buny ) be the stack classifying Fy € Buny, D e~}°(u(9>, and
a trivialization of )y over the formal neighbourhood of D. Let Buny sy =
Bunyy s(9) XBun,, Buny.

Let M) be the scheme classifying D € X U® and a section of M over the formal
neighbourhood of D. This is a group scheme over XU® The group M) acts diago-

U(0)

nally on Bunyy g Fu® GrL’ , and the stack quotient is denoted

—+,34(0)
BunM’u(g) XMu(e) GI‘M .
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There is an isomorphism y ~ from the latter stack to g_qr/[,u(e) such that the projection to
the first term corresponds to /. As above, one extends this Mj)-torsor to an My)-

torsor

~ —~ ~ +,4(0) BIG
¥~ i Buny g) X jue Gry, — f}C;;I ©)

So, for T € D(ﬁnM) and an Mj()-equivariant perverse sheaf S on Gr;,’u(g) we may

form their twisted product (T X S)” on j_(;l,u(e). ForV e Rep(Mn) positive define

Locg? (V) = IC(Buny) & Loc, (V)" (26)

BunM,

Similarly, applying for vp : Bunp — Buny, the functor v}’}[dim.rel(u p)] to (26), we get
the perverse sheaf on (24) denoted

Loc2@ (v,

Bunp,¢

Theorem 4.14. The *-restriction of 1C; under u(g)ﬁ?;n P Bun p vanishes unless in

the decomposition (23) each 6,, lies in A:éplfs, in which case it is isomorphic to

Loy (@ Sym' Gin(PYI[2i1) © Qul—lt@)1]
i>0

Bunp,; !

where ®i20 Symi (1, (P))[2i] is viewed as a cohomologically graded Mn-module.

5. Proof of Theorem 4.14

5.1. Zastava spaces

We keep the notation of Section 4. We also use some notation from [2]. For 6 € A%O’ SP
let Z? be as in [2]. Recall that ModJACI’Q classifies (D € X%, Fy € Bunyy, Bm), where
By Fm = 3%,1 | x—p is an isomorphism such that for any G-module V, the map

cYUE)Y U P)
Pu Tu 79,

is regular over X, and By induces Fr/(p, = %/[M’M](—D).
A point of Z? is given by
(F6.Fm, B, Bm. D), 27)
where (Fy, By, D) € M0d+’9, and JFg is a G-torsor on X equipped with a trivialization
B : JFg = 3"% |x—p satisfying the conditions of [2, Section 2.2]. We have a diagram
z0 I Modlﬁ,’19 — Buny,, where the second map sends the above point to F;. By abuse
of notation, the restrictions of £j; under these maps are also denoted by £,,. Let

o _
VAN Mod}f — Buny

be obtained from the latter diagram by the base change Bun m — Bunys. A point of Z°
is given by (27) together with a line U equipped with UV S (Ly) Fur-
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The open subscheme Z¢ c Z? is defined in [2, Section 2.2]. Let 79 =

0 =0 max max
Zax X760 Z°. We have an isomorphism

Imax : B(un) % ngx - Zﬁ)ax

sending Uop, u{;’ S kand (Fg, Fur, B, Bu) to (F, Fur, B, By, W), where U = ual is
equipped with the induced isomorphism

UN Sk S Ly, = (L), (28)

Define IC 4 ¢ as the intermediate extension of 7,4+ (L &IC(Zglax)) to Z?. We underline
that a € uy (k) C Aut(U) acts on ICZ% as {‘1 (a).

5.1.1. Action of Mys. For D € X? denote by D (resp., by D) the formal (resp., the
punctured formal) neighbourhood of D in X. This means that we pick a homomorphism
of semigroups A%O’ SP — Zy4 sending each «;, i € J—Jyy, to a nonzero element; it yields a

morphism v : X — X(@, where d is the image of ¢, and D is the formal neighbourhood
of v(D) in X. Similarly for D°.

Let Mxo be the scheme classifying D € X? and a section of M over the formal
neighbourhood of D in X.

The space Mod'/t,’e can be rewritten as the space classifying D € X?, an M-torsor
Fy on D, its trivialization Bu : Fu = 3’2,] | 50 such that for each representation V
of M the map By : Vg}(wp) — VZSP) is regular over D, and B induces an isomorphism

~ )/ —
Tmpm,m — M/[M’M](—D) over D. In this incarnation Mye acts on Mod;,’e over X?
by changing the trivialization By. B

Similarly, Z? can be seen as the scheme classifying D € X?, an M-torsor F); on D,

its trivialization By : Ty — 3"3,, | 5o such that for each representation V of M the map

Bum - ngwp) — Vgép) is regular over D, and Bm induces an isomorphism Faz/ (a1, M =
M

&"?W[MM](—D) over D; a G-torsor F over D, an isomorphism 8 : F¢ = 3:% | 50 such
that for each G-module V the map

B
Vg, — VsroG — (VU(p—))Sr(;/I

is regular and surjective over D, and the map

ur) Bu UP B
V?;)—)VSFO( )C—>V?(();——>V5tc

M

is regular over D. In this incarnation Mys acts on Z? via its action on 3"%,, Namely,
if g is automorphism of 3"?” over D, it sends the above point to the collection
(FG. FTm, 8Bum. 8P)-

The line bundle £y on Z? is naturally M xo-equivariant. Namely, the fibre of £, at
TG, Fum, Bu, B) is detRI'(X, 93"24) ® detRI'(X, ggM)_l, and Mo acts via its action
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on F9,. So, My acts on Mod;[’6 and on Z%, and the maps s : ModJAEI‘Q — 7% and

np: 20 > Mod:f are M ye-equivariant. Note that IC s  is naturally M ye-equivariant.

5.1.2. The relation between IC s . and IC;. Write Buny, s for the stack classifying
Fu € Bml/!’, ,De X % and a trivialization of F, M over the @rmal neighbourhood of D
in X. Let Buny, xo be obtained from it by the base change Buny; — Buny,.

Recall that Zgun is defined as Z% by replacing 3’?‘4 by the ‘background’ M-torsor

F), € Buny. Let Zg be obtained from Zgun

by adding lines U, U equipped with
isomorphisms UY = (LM)gM and WN S (Lm),. where F, is the background
M -torsor. - ~

Let Myo act diagonally on Z? x ys Bun,, yo. As in Section 3.2, we have an Myo-
torsor

—
Yz . Z X xo BunM )G ZBunM

We form the twisted external product
(ICz . & IC(Buny)) (29)

on 29~ , which is the descent with respect to yz.
Let Bun be defined as in [2 Section 3.6] so that Bun/,

[2, Proposmon 3.2], z¢
open immersion

»— — Bung is smooth. By

Buny C Bun P XBung Bunp- is open. This extends naturally to an

~0 ~
ZBTmM — Bunj Xpyn; Bunp- .

The restriction of prj(IC;)[dim.rel(pr,)] under this open immersion identifies with (29)
over the intersection with ~
Bun 3 Xgung Bun', -

So, as in [2], ICZ% is a local model for IC;.

5.1.3. The natural extensions of 7p and s? are still denoted s? : M0d+M’0 — 7% and
np: 2% — Mod;gl’g.

If we pick a Gp,-action on Z? as in [2, Section 5.3] then the line bundle £, and its
trivialization over Zf;ax are Gp-equivariant, as Gy, is a subgroup in Mye. So, ICy0, ¢ is
Gm-equivariant, and the analog of [2, Proposition 5.2] holds: there is a canonical isomor-
phism

s7'(IC 0 ) = mp1(IC,0 )

over Mod =’ . Since all our objects are already defined over a suitable finite subfield of %,
the analog of [2, Corollary 5.5] holds, and the latter complex is a direct sum of shifted
perverse sheaves.

Recall that for a fixed x € X one denotes by S the preimage of Spec k 5 X x?
under 7 : Z% — XY. The corresponding preimage under 7 : Z% — X? is denoted S°.
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For6' € Ay, p with6—6' € Ag;  one has the locally closed subschemes g 2% — Z°

and ¢/S? — §Y defined in [2, Section 3.5]. Restricting the gerb Z?, one gets the locally
closed substacks ¢ Z? < Z% and oS? — S.

5.1.4. Recall that Grﬁ,[ is the connected component containing " M (O) forany v € A
over 0. By virtue of [2, Proposition 2.6] for 6 € A%OSP the isomorphism imax restricts to
an isomorphism

i%ax : B(un) x Gt N Gryp-y — oS

sending U, UY — k, (FG, T, B, Bu) to (T, T, B, By, W), where U = Uy is
equipped with the induced isomorphism (28). The map mp restricts to a morphism

. 80 _, G

sending (Fg, Fpr, B, Bu, W) to (Fyr, By, W). First, we prove the following analog of [2,
Theorem 5.9].

Theorem 5.1. (a) For6 € A%O’SP the complex

(200 (L BQp) (30)

is placed in perverse degrees < (0,2(p — pp)).
(b) Its (0, 2(0 — pm))-th perverse cohomology sheaf vanishes unless 0 € A%’ p» in which
case it identifies canonically with Loc, -1 (U (i, (P))p).

The map & is M (O,)-equivariant, so each perverse cohomology sheaf of (30) is of the
form LOC;—] (V) for some V € Rep(M,,).

5.1.5. Proof of Theorem 5.1 for P = B. By [2, Section 6.3], for any v € A one has
dim(GrY, x Gryg-y) < (v, 0). This implies (a). Moreover, (30) vanishes unless 6 € Al
because of the description of Pervr g ,.

Assume p € AT is deep enough in the dominant chamber so that Gry, “NGrp"

Grgw(’(“ ) by [2, Proposition 6.4]. By loc.cit., the inclusion
a:Gry " NGrg" c GNrg”’O(“) NGry "

yields a bijection between the irreducible components of dimension (v, ) of both
schemes. Recall that multiplication by ## gives an isomorphism

Grz_“ n Gr;‘f = Gry N Gr%_ .
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Recall that det(g(0) : g(0)*) = Q?‘(“’“). Assume in addition that ;1 € 2A%. In this
case we get a T (0)-equivariant diagram

Gry " N Grg" — 4 Gryn Gr%_
li li
SN V—[ b SV
Gr; n ——  Gry
where for the top row, b is the isomorphism sending (U, UV = det(g(Oy) : g(0)9),
2G(0,)) to (W, t#gG(0,)), where U = U @ Q" s equipped with the induced
isomorphism
UM 5 det(a(0) : g(0)*) ® det(g(0) : 6(0)*) = det(g(0) : g(0)*¥).
For the bottom row, b is defined similarly. Using Lemma 5.2 below, one gets canonically

Y bua A" (1, 25)] > (£ B Q).

(ir);ax
From Proposition 3.2 we see that
BT A i 27)]

identifies with Loc(V ™0 (v — p))[—(v, 2p)]. If 1 is large enough in the dominant
chamber compared to v then the latter identifies with U (i1,),[— (v, 20)]. Here V1 (1)
denotes the u;-weight space of 7% in the irreducible representation V4! of G, with high-
est weight ft1.

5.1.6. Proof of Theorem 5.1 for general P. Let6 € AE;SP. For v € A dominant for M

with Gr}, C Gr}l}’e consider the map " : Gr‘;, N GrU( Py —> GrvM It suffices to prove that
for each such v the complex

8 (imad) (Lr B QOG0

is placed in perverse degrees < (v, 2p — 2p0p), and its (v, 20 — 20p)-th perverse coho-
mology sheaf vanishes unless v € Ai};r, and in the latter case identifies with

ve.cot ® Homy (U°, Ui (P))).

Pick v € A dominant for M with Gr}, C Gr;,’g. We have a diagram

~ 0 ~ 10 ~ 4.0
GrP N GI‘U(Pf) t—> GI‘L

L]

~ ~ 't'v ~y
GTP N GI‘U(pf) E— GTM
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where vertical arrows are natural closed immersions. Let Z(M)° be the connected com-
ponent of the unity of the centre Z(M) of M. Pick u € A satisfying (u, &;) = 0 for
i € Jy, and (i, @;) positive and large enough compared to v for i € J — Jy. So,
w € Hom(Gp, Z(M)?). Multiplication by #* yields a diagram, where the horizontal
arrows are isomorphisms:

GI‘VP_M N Gr;’f — Gr‘;g N GrU(P—)

ltvﬂ lt” (€20

M ~ g
—)
Gr,, Gr),

We may and do assume by [2, Proposition 6.6] that Gr;,_“ N Gr;’f C Gr(_;wow ),

Assume in addition that u € 2A%. Then (31) extends to a diagram of M (O)-equivari-
ant morphisms

GI'II);TM N GI‘;& —b> GI'UP N (’:JJI'U(Pf)

l@u l;v (32)

Gl b G
where for the top row, b is the isomorphism sending (U, UV = det(g(Oy) : g(0)9),
2G(0,)) to (W, t*gG(0,)), where W = U @ Q" s equipped with the induced
isomorphism
~ n ~ Iz
UV 5 det(@(0) : 9(0)*) ® det(g(0) : g(0)%) = det(a(0) : g(0)"*¥).

For the bottom row, b is defined similarly.

Consider the inclusion a : Grp " N Grpt < Grp "' N Grgwow)
below, one gets a canonical isomorphism

. Using Lemma 5.2

bua* Ag "= (10, 25)] = (i) (L} B Qo).

By [3, Proposition 4.3.3], the fibres of the left vertical arrow M in (32) are of dimen-
sion < (v, p — 20pm), SO E}_“(a*ngow)) is placed in usual cohomological degrees
< (v,2p — 4pp), and this complex is M (0)-equivariant. So, it is placed in perverse
degrees < (v, 20 — 2p0ys). The natural map
{;}—M(ngo(u)) N {;}—u (a*a*ngO(“))
induces an isomorphism between the corresponding (v,20 — 20)-th perverse co-
v—u

homology sheaves over GrUM_lL, which identify by Corollary 4.5 with AM s ®

Hom ;; (U v=i y—wol)y for v € A * and vanish otherwise. Assume v € AtI . Since 1
is large enough on the correspondmg wall of the Weyl chamber compared to v, we have

Hom, (U"™*, V™~ wo(w)y =, Homy, (U”, U (it,(P))).

Theorem 5.1 is proved. O
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For € A®T we have the line bundle £, ¢ on Gr; defined in [9, Section 2.1, p. 723].
Its analog for the Levi M is the following line bundle £, 5 ¢. For u € Aﬁf let B’AZ =
M/Pﬂ’f, be the M-orbit through t# M (O) in Gry as in [9, Section 4.1.1]. Denote by @,
Gr’;l — %lzf/] the projection. Set

Lume =" @ Dy, O /).

Note that for u € 2A¥ the above does not depend on €. Over Gr’;,, one has the isomor-
phism
Llge — Lff,M,g. (33)

Lemma 5.2. Let i € 2A%T be orthogonal to all roots of M. Consider the map t™* :

Gr;ﬁ — GrA_,,M . There is a natural isomorphism

I o) (34)

KNk
((tpf) L_M’M’8)|Gr;’i NGrg Gr;'ﬁ NGrg

compatible with the isomorphisms (33) for M and G.

Proof. The intersection Bawow ) N Gr," is the point t~*G(O) fixed by M. So, over

pe
Gr;ﬁ N Gr(_;w(’(“ ) both line bundles in (34) are constant, and it suffices to establish the
desired isomorphism at the point : 7* G (0O). The fibres of both line bundles at this point

identify with €.“"/" in a way compatible with (33) for M and G. O

5.2. Main technical step

The purpose of this section is to formulate Theorem 5.3, which is an analog of [2, Theo-
rem 4.5] and the main technical step in the proof of Theorem 4.14.

Define Afgsj,pos as the free abelian semigroup with base J. Recall the map cp from
Section 4.3. Let

Cp AP s pEPS

be the morphism of semigroups, which on the base of A%Oi{,POS is given by cp. For
0 e AE;}’;S we will denote by 25(0) the elements of A%(’;p

Let6 e Aﬁdf’;s. LetB(#) = Y, nyv be an element of A%O’S}’)pos over 6. Set [ B(#)| =

>, ny. Write X B®) for the moduli scheme of A%o’sf’,pos—valued divisors of degree 25(9),

SO
xBO) = Hx(nv)

velJ

> sent by ¢p to 6.

To a point (D, v € J) of the latter scheme there corresponds the divisor D = )" _; D,v.
The map ép yields a finite morphism X 2@ — X Let XBO) « xBO pe the comple-
ment to all the diagonals.

If D= Zk X0k € X? and x are pairwise different then the fibre of ModII’G — x?

over Dis [], Gr;;,’ek. Let IC?(Q)’0 be the perverse sheaf on XBO) X6 Mod}je on which
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un (k) acts by 7! and such that for D = Dk XkVk € XBO) with 6, = cp(vp) its
restriction to
~ +.0k
HGTM,xk
k

is & Loc, -1 (W (P))y)[IB(0)]]. One makes this definition rigorous as in Section 4.5.1.

This perverse sheaf is defined up to a unique isomorphism and irreducible. Let IC;B(Q) be

5(6),0
CC

the intermediate extension of I under

XBO Mod;l’e > XBO Mod:;l’e .

Denote by iz : X BO x v Mod}l’e — Mod;gl’e the second projection.

Forv € Jletf, = cp(v). We get adecomposition L{(0) given by 6 = ZVEJ n,0,, and
XBO) 5 xUO paturally. It follows that i%(@)*(IC?(Q)) is the intermediate extension
from XH4© x X0 Mod}l’e and is M yo¢-equivariant. We use the fact that X4 < x9 is
locally closed.

Theorem 5.3. Let 6 € AY",. For the map s¥ : Mod}l’e — 7Y there is an Myo-
equivariant isomorphism

' (1C ) S D im@)=(1CF V) —1BO)).
B(6)

In particular, this complex vanishes unless 6 € Aﬁc’yp;s.

The following is proved exactly as [2], Lemma 4.3.

Lemma 5.4. The x-restriction of IC?(G) to X Xyo Mod;l’e = GrJACI’,QX identifies canon-
ically with
Locy -1 (@ Sym™ (i, (P),))[=1 + [BO)]].

veJ

The functor Locy = (ro Loc)[1] used in Lemma 5.4 takes values in My-equivariant
perverse sheaves on Grys, x.

5.2.1. Letf € Ag;. Recall that Mod;:"?  classifies D e X, EFM,?;VI € Buny, and

Buny,
an isomorphism By : Fy = ;1/1 |x—p such that for each V € Rep(G) the map By :

ng(wp) — Vg,(m is regular, and Sy, induces an isomorphism
M

Faa v — Ty, (= D).

gﬁiM — Buny; x Buny; sending the above point to

+,0
Buny,

Consider the projection Mod
(E,A/[’ ?ﬁl)F.\/Denote by M\(;dl;:fw the stack obtained from Mod

Bunjs x Buny; — Buny, x Buny,.

by the base change
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Recall the stacks Buny, x» and BTIIEIM’ xo from Section 5.1.2. As we have seen in
Section 5.1.1, Mys acts on Mod;,’e over X?. Let My act diagonally on Buny, xo X xo
Modj{,,’e; the corresponding stack quotient is denoted Buny, yo X, ModJACI’G. Let

Y™ 1 Buny yo X, ModL’Q 5 ModgﬁiM
be the natural isomorphism such that the projection to the first factor corresponds to A} .
As in Section 4.5.1, we get an M yo-torsor

+.0

e~ 1o o~ o~
Yy~ i Buny xo Xxo ModM — Modgy .

This allows us to introduce for each 2B3(0) the relative version IC]?I(&’ ¢ of IC?(Q), which

. ~ 1.0 . : . .

is a perverse sheaf on X®® x ys Modgll ., the intermediate extension from X®® x o
~ 10

MOdB';nM of

(IC(Buny,) & IC?(Q)’O)’.

The latter is the descent of IC(P:;I}IM’XG)ﬁlcg%(e)’O[— dim X?] under the XB® x o M yo-
torsor
+.6

J;A) :]:};Il-i’lMyxé Xxé)o(%(g) X xo Modj‘;e — )%%(9) X xo l\,;IB/dBunM'

. . ~ 1.0 ~ 4.6
Write also vp for the projection Bunp Xpyp MMOdﬁHnM — ModgZ ., where we

use hy; to define the corresponding fibred product. We have the locally closed embed-
ding

—~ +’€ S~
Bunp XB"“MMOdJiﬁlM < Bunp

sending (D, Far, Fyyo By + T = Fy lx-p, UL, U) € M\(;d;:fw, Fp € Bunp with
Fp xp M = Ty to (T, Ty, k, U, U), where F; = Fp xp G. Its image is denoted
gBun};.

Translating Theorem 5.3 to Bun 5 we obtain the following.

. - ~ -~ +.,0 .
Corollary 5.5. The x-restriction of 1C; to yBun 5 — Bunp XBunMMOdgLTnM vanishes

unless 0 € Agf’;s, in which case it identifies with vy [dim.rel(vp)] applied to the complex

D (iBuny.50)x [Ch [IBO)1.
B(O)

- . XB®) Tod = Tod =l octi
Here iguny,,50) : X X x0 MOdBunM — MOdBunM is the projection.
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5.3. Proof of Theorem 4.14

As [2, Theorem 1.12], Theorem 4.14 is derived from Corollary 5.5 and Lemma 5.4. The
proof uses the following combinatorial identity. Given 6 € A%Ojo and m > 0 the space

(Sym™ u, (P))g vanishes unless 6 € Agf’;s, in which case

(Sym” 1, (P))g = 3 (® sym™ in(P))).
BO=Y,c;mv, IBO)|=m V<
This implies
D (® Sym™ (i, (P),)[2[BO)1 = @ (Sym™ w,(P))g[2m].
B(O)=)_,c;nyv VEJS m>0

Theorem 4.14 is proved (modulo Theorem 5.3).

5.4. Induction
Now we prove Theorem 5.3 by induction on 6. Recall that for 6 = 81 46, with 6; € AE;SP
the factorization property yields a natural uy (k)-gerb

Z% X Z% x xor y xir) (XN x XP)gig — Z° xx0 (X7 x XP)aig,
and the restriction of ICz , under this map is canonically identified with
ICys, WICys, .. Similarly, we have

(XBOD 5 XBOy 5 oo (X x X2) g5 = L] XP@ %0 (X0 x XP2) 435
B(01),B(62) B(0)

and the perverse sheaves ICY;B(Q) also naturally factorize. So, by the induction hypothesis
locally over X’ — Ax we get an isomorphism

SM1CH ) = B imenIC )=IBO)I.
B©O), IBO)|#]

As in [2], globally we could have a nontrivial monodromy for 8(6) = 2v with v € J. So,
there is a rank one and order at most 2 local system €3 ) on XB® X x6 (X?— Ay) and
an isomorphism

SUCH )= D imeUC, P @pri Eme) [~ IBO)]]
B(0), BO)|#1

0
over M0d+1171 X x0 (X?— Ax).
Let X2 be the intermediate extension of IC;B(Q) ®prj Exs@e) to X BO) x 4o Mod;je.
We get an isomorphism

SSACH ) > D imeKPO)-IBO) @K, 35)
B(0), BO)|#1

. ~ ~+.0
where X is a pure complex supported over Mod+M’0 xxo X — Gry .
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As in [2], let A, denote the closed subscheme Spec k 5x ﬂ) X?. The analogs of
[2, Propositions 5.7 and 5.8] are as follows.

Proposition 5.6. The complex s (IC 70, over Gr}j,’e is placed in perverse degrees

< 0. Its O-th perverse cohomology sheaf vanishes unless 0 € A%’ p» In which case it is
identified with Loc, - (U@, (P))g).

Recall the map 7p : 7% > M0d+M’6.

eps pos
Proposition 5.7. Assume 0',0 — 0" € Ag p.

(a) The complex ﬂP!(ICZQ’AW’S‘@) is placed in strictly negative perverse degrees for
0" #0.

(b) The complex wp\(ICzs | 50) is placed in perverse degrees < 0.

(¢) The O-th perverse cohomology sheaf of 7wp|(IC 0. ¢ |0§9) vanishes unless 6 € A:(L;’ P
in which case it identifies with Loc, -1 (U, (P))g).

Let Conv,s denote the convolution diagram for the affine grassmannian of M at x. This is
the scheme classifying Jy, 3:;‘_4\_/6 Buny, with isomorphisms 5M Ty = "J";w |x—x and
By = Ty — Ty lx—x. Let Conv ; be obtained from Convy, by adding two lines U, U
and isomorphisms

W = Ewgy,, UN > Eu)g, -

Write pr’ : Conv > GrM for the projection sending the above point to (I, B, U).
It makes Conv j7 @ fibration over GrM with typlcal fibre isomorphic to GrM Now given
an M(Oy)- equ1var1ant perverse sheaf $ on GrM on which py (k) acts as g— and any
complex 8" on Gry on which uy (k) acts as ¢~!, we can form their twisted external
product 8§ X 8’, which is 8 along the base and § along the fibre. It is normalized to be
perverse for 8’ perverse. As in [11], one proves the following. Let pr : Conv i GrM

be the map sending the above point to (Fy, B, By, W). The convolution of 8 with 8 is
defined as pr;(S® §).

Lemma 5.8. If 8 is an M(Qy)-equivariant perverse sheaf on GrM on which (k) acts
as {1, and 8’ is a perverse sheaf on Gry on which uy (k) acts as ¢~ U then their convo-
lution is a perverse sheaf on Gryy. o

Proof of Proposition 5.7. As in the proof of [2, Proposition 5.8], one has dim Z¢ =
(6,2(0 — pum)), and points (b) and (c) follow from Theorem 5.1.

Assume now 6’ # 0. As in [2, Section 3.5], let COHVJ'A:,’G/ denote the closed subscheme
of the convolution diagram Conv)y at x given by the property (Fy, T, Bu) € ModguiM

As in loc.cit., one has an isomorphism
9/

’ ~
0SP—?¢ X Gry CO“"}T/[ S 080,
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here the map Convx,l’e/ — Gryy used to define the fibred product sends the above point

’ /\—/-I—,Q/ ’
of ConvL’g to (F,, B},)- Let Convy; be obtained from ConVL’Q by the base change

—_—

Conv; — Convy. We get a natural . y-gerb

~ / - +,9/ ~
0S?~? X G,y Convyy  — oS?
given by forgetting U’. As in the proof of [2, Proposition 5.8], the x-restriction of
ICz6 |9,§9 under this gerb is described by the induction hypothesis. Namely, by Corol-
lary 5.5 and Lemma 5.4, it identifies with

@ Loce—i (@ Sym™ (i (P2 1BE) & (Cu-0r ] z0-0):
B velJ '
Here it is understood that B(0') = ZUE 7 v, the sum being taken over all elements
B(0") over 8’. Now by (b), 7p(IC, 4 o gV|O~S*9,(y) is placed in perverse degrees < 0. So,
by Lemma 5.8, wp1(IC0 , l,50) is placed in perverse degrees < 0.
In the case " = 6 the complex 7py(IC 20, ¢ |9/§9) is placed in strictly negative perverse

S ~+.0 . . .
degrees, as p : pS¢ — Gr,, is an isomorphism. We are done. O

Now as in [2, Section 5.11] one checks that all the local systems Eg3 ) are trivial.

To finish the proof of Theorem 5.3 it remains to analyze the complex K¢ from (35).
There is at most one B(9) with |B(9)| = 1, which we denote B(6)? as in [2]. If it exists,

~ 0

that is, & = cp(v) for some v € J, we have to show that K¢ — (i%(e)o)* IC;B(G) [—1].
Otherwise, we have to show that K¢ = 0.

By definition of IC, as %? is a direct summand of s¢*(IC 70.¢ ), it is placed in perverse
degrees > 1. Restrict both sides of (35) to Mod;gl’e |ay and apply the perverse cohomo-
logical truncation 7>1. Using Lemma 5.4 and Proposition 5.6, we get

LOCX’é-—l (U(an(P))G)[_l]

S @ ooy (@ Sym™ (i (P)) -1 @K 510
B(©B),|B(0)|#1 veJ M.X
As in [2, Section 5.12], this implies the desired result. We have ysed here the fact
that U (11,,(P)) and Sym(ii, (P)) are noncanonically isomorphic as M,-modules. Theo-
rem 4.14 is proved.

6. Composing Eisenstein series

6.0.1. In this section we prove Theorem 2.9, which is an analog of [3, Theorem 2.3.10]
in our setting.

We keep the notation of Section 4.1. Let B(M) C M be the Borel subgroup
corresponding to the roots &;, i € Jy. As in [3, Section 7.1] set Bung p =
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Bunp XBuny, Bunp(). Setalso Buny 5 = Buns xg5, Bung,, . We have the cartesian
square
— i

Bunl;,’;, —_— Buné(M)

v b

P:Tl;l}; —q> ]§Tﬁ1M
Write also lgvaP = I§vur13,p X Buny x Bung (B:ﬁJnT X B-Il-;l(;). Recall that Bung C Bunp p
is naturally an open substack. The preimage of Bung in B-l\l/né’P identifies with the
stack Buny from Section 3.1. Recall the perverse sheaf £; X IC(Bun B. G) viewed as
a perverse sheaf on Buny via (2). Denote by ICp p ;. its intermediate extension under
Bung — P;TI/IIB’P.

—~

Proposition 6.1. The restriction of ICpg p ; under the projection Bun 3.p — Bung,p
identifies canonically with

()" IC; ®(@p)* IC, [— dim Buny].
Proof. Since Bunp — Buny, is smooth, IC; and (jz) j;; IC; are ULA with respect to

q: lgvuni, — lgvunM by Proposition 4.2; the proof of [3, Theorem 7.1.2] applies in our
setting. Using [23, Proposition 4.8.5], one gets the desired isomorphism. O

Remark 6.2. There are two a priori different definitions of the ULA property. For a mor-
phism p; : Y1 — S and an object L € D(Y)) the first definition of L being ULA with
respect to py is [7, Definition 2.12], and the second is [3, Definition 5.1]. In the latter one
requires that the local acyclicity holds after any smooth base change ¢ : S — S, while
in the former one requires it to hold after any base change g : S — S;. In the proof of
Proposition 6.1 the equivalence of the two definitions was used.

Recall the definition of the natural map tp : Bung_ p — Bung from [3, Proposition 7.1.5].
A point of Bung p is a collection (Fg, Ty, kp) € Bunp, (Fy, Ir, kM) € Bunpay).
Here « )y is the collection of embeddings

VoL Y v +
KM.L:;TQUC;M, Ve Ay,

and U” denotes the corresponding Weyl module for M. Then tp sends this point to
(FG, Fr, k), where for X € AT the map «” is the composition

i i
LT JNU(P) XP Aok
Lh, S Wy, — W " S v

The map tp is representable and proper, it extends naturally to tp : Bun 5.p —> Bung.

Recall that tp is an isomorphism over the open substack Bung C Bunp.
The following is an analog of [3], Theorem 7.1.6 in our setting.

Theorem 6.3. One has canonically Tpi 1Cp p ¢ > IC,.



Geometric Eisenstein series: twisted setting 3231

6.0.2. Proof of Theorem 6.3. Once our Theorem 4.14 is established, one easily adapts
the proof of [3, Theorem 7.1.6] to our setting. We indicate the corresponding notation and

changes for the convenience of the reader.
Recall that AJAC, G = A;{,, ﬂwé"’(Ag’s). Given a collection [, v consisting of ny, . . ., ng

€ Z~¢ and pairwise different elements (i1, vy), ... (Ui, Vk) € (Aﬁf}s X AJAC[ ) — 0 one

sets XAV = X x . x X@)— A where A is the divisor of all the diagonals. Write
D= (D;,...,Dy) e X*Vfora point of this scheme.

The Hecke stack H’;" classifies (D € X*7, F,, Fy € Buny, B : F), S Fu lx—p)
such that F, is in position v; with respect to F at points of D;.

By definition, 7w Bunp_p is the image of the locally closed embedding

v —
Bunp xXBuny, H;  XBuny Bunpgs) < Bunp p.

The first stack classifies (D € X®V, Fyy, Ty B) € }CW, Fp € Bunp with an iso-
morphism Fp xp M = Fm, a B(M)-torsor Fpy with Fr := Fpary xpamy T,
and an isomorphi,s\r/n Iy XBany M = iﬂw. Its image in BTHIB’P is the collection
(F6, Ty, k) € Bunp, (F),, I, ky) € Bunpy), where 3, = Fr (=3, u; D;) and
Fe=Fp xp G.

For» =) ;mja; € AIZ;OS the locally closed substack ﬁﬁ C Bungp is defined as the
image of the locally closed immersion

HX("“) x Bung — Bunp
i€l

sending ((D)jeg, Fp) to (I, Fg, k), where I = Fr (=", o;D;) for Fr = Fp xp T
andf}'(; = SUB XB G.
For 1, v as above and A € A%OS one sets

—1 a5
wwaBung p = zwBung p Nty (Bung).

Write 75,5 Bung ,, for the preimage of 5, Bunp p under lérﬁlé p— él\];lB’P.
We set |, v| = Zf-;l n;(v; — ;) € A. Theorem 6.3 is reduced to the following.
Proposition 6.4. For i, v with A € A%OS as above the following hold:

(i) The x-restriction of ICp p¢ to gw,Bung p lives in perverse degrees <
— (A + |, V|, Pym), and the inequality is strict unless A = 0.

(ii) The fibres of tp : v, Bung , — Bun)g are of dimension < (A + |1t, V|, Om)-

Proof. The proof of [3, Proposition 7.1.8] applies. The only change is that one uses Theo-

rem 4.14 (and Proposition 6.1) to guarantee that the *-restriction of ICp p ¢ to ;7 Bung ,
has smooth cohomology sheaves. O

Proof of Theorem 2.9. For K € D, (l§vunr) one has

Eis§ EisY (K) — pi(IC; ®3*(pum)1(@ K ® IC,))[— dim Buny — dim Buny].
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By the projection formula and Proposition 6.1, this identifies with
p1(Py)1(ICp, p ¢ ®(p)*d3)[—dim Bunr]. (36)

. o o . —_~ —_~ p — q o~
The composition qpquy coincides with Bung 5 — Bung , — Bunz — Bunr, and

pp), coincides with ﬁﬁané’}; — ﬁﬁJnB’P AN Bunj LN Bung. So, (36) identifies with

Pi((Ep) ICp p  ®F*K)[—dim Buny] — Eisf (K)

by Theorem 6.3. O

7. The case of G = SL,;

7.1. Precisions

In this section we get some more precise results for G = SL,. We keep the notation
of Section 2. Let e = n for n odd (resp., e = n/2 for n even). Then A% = eA. The
unique simple coroot of G is denoted «, the simple root of G, is na. For n even one gets
én = SL,, and én = PSL, for n odd. Recall that /1 = 2.

Let £, be the line bundle on Bung with fibre det R (X, ©2) ® detRT'(X, M)~ ! at
M € Bung. The restriction of £, to Bunr is also denoted L.

Identify T with Gy, via the coroot & : Gy, = T, so Bung = Bunr. The isomorphism
Z = A%, 1+ e, yields Gy — T%, so thatix : Bun; = Buny: — Buny = Bun; sends
€ to €°. The line bundle 7 on Buny: is chosen as in [18, 5.2.6, Example (1)]. Namely, if
n is odd then

te = detRT(X, 0)** @ detR[(X, &) @ detRI(X, E~H™"

for £ € Bun; = Bung:. If n is even then we first pick a super line bundle £ on Bun;
equipped with L% = L. onBuny. Then 7 = L{ on Bun;.
Recall the action of Z(G) = p» on Bung by 2-automorphisms (see Section 3.5).

Denote by D;,+(]§ﬁ/nc) and D;,_(ﬁvlm(;) the full subcategories of D, (ﬁlc) where
—1 € pp acts as 1 and —1 respectively. As in [19], we get

D (Bung) — D 4 (Bung) x D;,_ (Bung). (37)

For n even the category Rep(én) is Z/2Z-graded according to the action of the centre of

G, = SL,. Lemma 3.12 says in this case that the Hecke functors are compatible with
these gradings of D, (Bung) and Rep(G,).

7.1.1. Take P = B. Let us reformulate Corollary 5.5 more explicitly in this case. The
stack Bunp classifies exact sequences

0=>E&->M—8E150 (38)
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on X with & € Bun;. The stack Bunp classifies M € Bung and a subsheaf & < M,
where £ € Bunj. The line bundle £7 on Buny = Bun; is such that its fibre at € is
detRI'(X, 0)2 B detRI'(X, 0)8

detRI(X, €2) @ detRI'(X, €72)  detRI(X, &)* @ detRI'(X, -4’

(39)

There is an isomorphism L‘C‘ = L over Bung whose restriction to Buny is compatible
with the isomorphism (39).

The stack Buny is the gerb of 4n-th roots of £7 over Buny. The map ¢p : A% 3™ —
Ag?gs is injective; its image equals naZ.. .

For 0 = ma € Ag)} the stack gBunpg classifies D € X (m) and an exact sequence

on X,
0> &D)—> M — & (=D) >0,

with &€ € Bunj. The *-restriction of IC; to gBunj vanishes unless m € nZ, in which

case 6 admits a unique B(0) = (m/n)v, where v = na € J, and the map xB0O) _ xt
becomes X™"/™ — XM D s uD. By Corollary 5.5,

ICe |, . ok Icglﬁ\)l’c[dim.rel(vlg) +m/n],

— +,0 ~ +.0 . ..
where vg : Bung x BunTMod;grvm ;= Mod;;rvun .18 the projection. The perverse sheaf
Icgl(neﬁ)b ¢ is described as follows.

Lemma 7.1. Let € € Buny, and let D be an effective divisor on X. Then there is a
canonical 7./27-graded isomorphism

detRI'(X, &) @ detRT(X, &1 :)< detRI(X, Op) )"
detRI(X, EmD) @ detRI(X, &~ 1(—nD)) detRI(X, €2(nD)|p) )

Proof. One has canonically detRI'(X, E(nD)/&) 5 ®"_, detRI(X, E(rD)|p) and
~ n
detRT(X, &7'/&71(=nD)) > & detRI(X, &~ ((r —n)D)|p).
r=1
Using 7.1.2 below, for 1 < r < n we get

detRI(X, &~ '((r —n)D)|p) ~ detRI(X, Op)
detRT(X, E(rD)|p) detRT(X, €2(nD)|p)”

Our claim follows. O

The stack X 2® X o M\(;dl;:ﬁT classifies D € X™/™ & e Bunj, and two lines U, Ug

equipped with isomorphisms U S (L) empy, UN = (L7)e. The stack gBun 5 Xxo
XB® classifies the same data together with an exact sequence

0—> &nD) > M — & Y (—=nD) — 0.
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Recall that N = 4n. One has an isomorphism

p ~ ~ 1.0
XBO o Mod;f;nr xB(uy) — X2 x40 Modg (40)

sending (D, &, Ug, Ug = L1)emb) ugf = k) to (D, &, Ug, W), where

detRT(X, €2(nD)|p)

U=Us U
¢®U ® I RT(X. 0p)

is equipped with the isomorphism UY 5 Upe given by Lemma 7.1. The perverse

sheaf ICJ?J(&, ¢ via (40) identifies noncanonically with

B(O +.,0
IC(XPD x 4o Modfz ) ® L;.

7.1.2. We need the following. Let D be an effective divisor on X, A, B € Bunj. There
is a canonical Z/2Z-graded isomorphism

detRT(X, Alp) ~ detRT'(X, A® B~ p)
detRI'(X, B|p) detRI['(X,Op)

7.1.3. Letf = ma € A]z;ojg. For &€ € Bun; = Buny write Zg for the Zastava space
with the ‘background’ T-torsor £~!. Then Z(é is a vector bundle over X? whose fibre at
D e X™ is £2(D)/€? = Ext!(€7!'/€71(=D), €). It is understood that a point of Z%
gives rise to a diagram on X,

0-&—->M—e1>50
T (41)
&~1(-D)

The group scheme Mys acts trivially on Mod};* = X?. If D € X is given by
D =} ngxi with x pairwise different then the fibre of My at D is [, O, . The action
of Mys on Z% from Section 5.1.1 becomes as follows. The element g = (gx) € [], 0%,
actson v = (v¢) € [ [ E2(npxy) /€2 as g2v = (g,%vk).

Let G? denote the group scheme over X? whose fibre at D is (O/O(—D))*. The
action of Myo on Z? factors through an action of G?.

Write £ for the line bundle over X?, whose fibre at D is

(Lemy)  detRT(X, &) ® detRI(X, &) ~ _ detRI(X, 0p)
(Loe  detRI(X, E(D)) ® detRI(X, E-1(—D)) detRT (X, E2(D)|p) "
(42)

Here the second isomorphism is given by Lemma 7.1. The restriction of £ to Z(% is also
denoted £. Then Z% is the gerb of 4n-th roots of L4, Write also Z% . for the gerb of n-th
roots of £. We have a natural map Zg,c — ZE making Z(é a trivial w4-gerb over Zg’c.
Let ICy ; denote the restriction of ICs , to Zg .
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For a point (D, v € &(D)/&* U) € Z%YC with U" = Lp note that a € un(k) C
AutU acts on IC ; as (@)~

The open subscheme Zﬁ]ax C ng classifies (D, o € £%(D)/&?) such that for any
0<D < Dwehaveo ¢ £2(D)/&%. Over Z¢

max We have a canonical section of £ given
by the isomorphisms

detRI(X, &) ® detRI' (X, €71 = detRI(X, M)
S detRI(X, &(D)) ® detRT(X, 71 (—=D)).

Let Z% — XY denote the dual vector bundle, so its fibre over D is e 2eQ / &2
Q(—D). Denote by Z?: . the gerb of n-th roots of L over Z%.

7.2. Fourier coefficients

The purpose of this section is to establish some results about the Fourier transform

of IC,s ; over Z‘Z.C. This is important in view of a relation with the theory of Weyl
group multiple Dirichlet series (see [4], [6] for a survey).

7.2.1. We need the following observation. Let X denote the stack classifying 1-dimen-
sional k-vector spaces L, U together with U" = L, and v € L. This is a vector bundle
over the stack B(Gy,) classifying a line U. Let X denote the dual vector bundle over
B(Gp); this is the stack classifying U, L, U" = L and v* € L*. Let X° C X be the
open substack given by v # 0. We have an isomorphism 7y : X° = B(un) sending

the above point to U equipped with the trivialization U” > k obtained from k — L,
1 — v. For the natural map a : Speck — B(u,) let £; denote the direct summand in
a*Qg on which w, (k) acts by E Let £ 7.ex denote the intermediate extension of 7:5%5 7
under X0 — X. 5 5

Denote by X° C X the open substack given by v* # 0. Let Ty - X0 = B(u,) be
the isomorphism sending the above point to U equipped with the composition U” 5
L % k. Write £ 7,ex for the intermediate extension of t;fCL ;to X. For n > 2 there is a

1-dimensional Q-vector space Cp and a canonical isomorphism

Foury (£7-1 6) — Co® Lzt oy (43)
7.2.2. Example 6 = «. In this case ZZ is the total space of the line bundle &2 @ Q!
over X. The line bundle £ over X identifies with £ 2®$2. We have a map Py Zg . X

given by L = €72 ® Q. Then

PiLi-1 21 = 1Cz ¢
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canomcally We also have the natural map p~ : Z9 . — X defined by the same formula.
SetICy ; = p5Lz-1,,[2]; this is an 1rredu01ble perverse sheaf. Now from (43) we get

an isomorphlsm
Foury (IC 9 ) > C® IC; ¢

7.2.3. Generalization. It is natural to consider the following generahzatlon of ICZe
Let L be a line bundle on X. Let = ma with m > 0, so X 5 X via the map
D — Da. Let X?™ ¢ XY be the open subscheme of reduced divisors. Write Sign for
the sign local system on X5, Let ; Z? be the vector bundle over X¢ with fibre L(D)/L
at D € X" Let £ be the line bundle over X? with fibre

detRI'(X, Op)
detRI' (X, L(D)/L)

(44)

at D. Let L29 be the gerb of n-th roots of £ over 1 Z?. Write LZm ax C 1. Z? for the open
subscheme given by v € L(D)/L such that v ¢ L(D’)/L forany 0 < D’ < D. Let

Z@ ss CL Z@

max max

be the open subscheme given by the property that D is multiplicity free.

If D =),x € X? with x; pairwise different then the fibre of Lat D equals
®; (L' ® Q),,;, where each (L' ® Q),, is of parity zero, so the order does not matter.
Moreover, L(D)/L = @; L(x;)/L. So, a point v € L Z85 s a collection 0 # v
L(x;)/L for all i. This gives a trivialization of each line L(x;)/L, hence also a tr1V1ahza—
tion of £ p as the tensor product thereof. So, we get a trivialization of L over LZm;;(S

We denote by ; Z55 the restriction of the gerb 7 Z? to this open subscheme. The
above trivialization yields an isomorphism

LZG,rss x B(in) :) LZG,rss. (45)

max max

Consider IC X £; 7-1 as a perverse sheaf on LZIQII;,S(S via (45). Its intermediate extension

to 1 Z? is denoted IC , 70,7~ For a point
(D,veL(D)/L, W) e Z°

with U" = Lp the element a € w, (k) C Aut(U) acts on IC, 70 7 as . Ya).
The dual vector bundle ng — X? has the fibre L™1 ® Q/L_1 ® Q(—D) at D. Let
LZ" be the gerb of n-th roots of L over LZ9 We define L29

ax Similarly.

Define the open subscheme LZ&;;S C 1 Z? and the gerb LZ&;;S similarly. As above,
we get a trivialization of L over LZmax , hence an isomorphism

LZESS X B(n) = LZEGES. (46)

max max
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Let IC(Sign) denote the IC-sheaf of ; Z%%° tensored by the inverse image of Sign

from X7 Define ICL 707 as the intermediate extension of IC(Sign) X £ ;-1 to L20
using (46). Now the isomorphism (43) yields an isomorphism

Fourw(ICLze,g) :> 681 ® ICLZG,E . (47)

The schemes ; Z% for various L are locally isomorphic in Zariski topology, so the
description of IC, 7o 7 (and of ICLZQ’ Z) is independent of L. The fibres of IC, 4 ; are
completely described by Corollary 5.5.

As L varies in Buny, the schemes 7, Z% form a family pyn, Z® — Bun; x X?, whose
fibre over (L, D) is L(D)/L. We still denote by £ the line bundle over Bun; x X? with

fibre (44) over (L, D). Denote by Bun, 29, Buny 7% and Bung 7Y the corresponding relative
versions over Buny.

We have an automorphism tz of Bunr x X? sending (L, D) to (L' = L' ®
Q(—D), D). It lifts to a diagram of isomorphisms

Bunr Zg —_— Buny Ze

l l

T
Bunp x X? —Z>BunT x X?

sending (L, D,ve L' @ Q/L~' ® Q(—=D)) to (L', D,v € L'(D)/L’), where L' is as
above. Let AC X? denote the divisor of diagonals. One has canonically £ ® T L) >
pry O(—A), where pr, : Buny x X% — X? is the projection. Recall that O(— A) identifies
canonically with the line bundle whose fibre at D € X % is detRT'(X, Op)?. Forn = 2
this yields isomorphisms

- 20~ 0
Tz :Buny Z° —> Bunp Z
and

71C,,, 72z = IC (48)

Bunp 29!2
for the corresponding relative versions. Thus, for n = 2 the description of ICL 70z is
reduced to that of ICL 20 which was studied in [19]. However, for n > 3 the situation is
very different.

For the rest of Section 7.2.3 assume L = €. Then £ is canonically identified with
O(=n) over X?. Let o X? be the gerb of n-th roots of £ over X?. The fibre 0f929 N '
over D € X? is Op. Let

Ty . QZG — QZG
be the map sending (D, v € Op) to (D, v" € Op). Over 929 this map is finite. Let

max
G? denote the kernel of the homomorphism G’ — G?, g > g". This is a group scheme

over X?. Let (Gg act on 929 so that g € (O/O(—D))* sends (D,v € Op) to (D, gv).
The map 7, is G -invariant. The restriction

v

Ty - ergnax - QZ?HE[X (49)
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isa GZ—torsor. We have the line bundle on X? with fibre det R['(X, O p); the group scheme
G? acts on this line bundle by a character that we denote 1, : G¢ — Gy, It actually takes

values in u,. Let Wmax denote the local system on QZmaX obtained from the torsor (49)

as the extension of scalars via GZ = (k) —> @e-

Let o X% denote the restriction of the gerb oX? to X?1. Since £ over X9 is
canonically trivialized, one has a canonical isomorphism

X0 x B(pn) = X, (50)

Viewing (IC(X?™%) ® Sign) X LE—] as a perverse shegf on o X% via (50), let ICQX%

denote its intermediate extension to 95( O Let 7 : 929 — Qf( ¢ denote the projection
sending (D, v € O/0(—D),U) to (D, U).

Proposition 7.2. There is an isomorphism over QZmaX,

Wmax ® 7 ICQXg’g:[dlm.rel(n)] —> ICQZ(} 2
Proof. The intermediate extension commutes with a smooth base change. So, it suffices

to establish this isomorphism over o Z0®, where it is easy. ]

Remark 7.3. The restriction of £ to the principal diagonal X C X? identifies with
Qmm=D _For x € X the group Aut(2,) acts on the fibre of £ at D = mx. So, if the
*-fibre of ICQ %% at mx does not vanish then n divides m(m — 1). In particular, if n is

large enough compared to m then ICQ %0 7 is the extension by zero under X0 s o X7

Remark 7.4. (i) The perverse sheaf ICSZ %0.¢ has been studied in [1] (see also [10, Sec-
tion 5.1]). It satisfies the natural factorization property, and all its fibres are described
in [1]. The version of ICQ %% in the world of twisted D-modules is exactly the sheaf
denoted by L“ in [12, Section 3.4] for G = SL; and u = —ma.

(ii) The perverse sheaf IC oX0F also appears in [23] under the name L“ for G = SL,;,
u = —ma. Note that for n > 1 the so-called subtop cohomology property is satisfied for
our metaplectic data for SLy by [23, Theorem 1.1.6]. So, for n > 1 the perverse sheaf
ICQ %% identifies with the !-direct image under oZ? - Qf( o by [23, Proposition 4.11.1].
Here 929 is the stack from Section 7.2.3.

7.2.4. Forany & € Bun; taking L = &> we get Zfé =1 7% and Zfé = 7% For L = &2
set ICZQ F= ICLZ”.E' By (47) one has

Foury (IC 9 7) = e ®1Cz ;- (51)
7.2.5. Global calculation. Let Sp denote the stack classifying € € Bun; and 57 :

&2 — Q. Let vg : Bung — Bung be the natural map. Let Bunj . be the stack clas-
sifying (38) and a line Ug equipped with

UL = (L. (52)



Geometric Eisenstein series: twisted setting 3239

Let 8 . be the stack classifying (€, s2) € Sp and a line U equipped with (52). We
have the Fourier transform

Foury : D(Bunj ) - D@83 )

The map vp lifts to a map v : Bungyc — ﬁﬁJnG,LC sending Ug and (38) to (M, Ug).
Recall that Z2 classifies D € X?,& € Bun;,v € EZ(D)/S2 giving rise to the

BunT

diagram (41). We have the dual vector bundles ZgunT — X? x Buny <« ZgunT. Let

fB: ZgunT — Bung x X’

be the map sending (41) to the exact sequence (38) together with D € X = X%  This
is a morphism of generalized vector bundles over Buny x X? given by &£2(D)/&? —
H!(X, €%). The dual map over Buny x X? is denoted

£ 0 70 .
fB : SB x XV — ZBunT’

it sends (&, 52, D) to (D, &, v € £2Q Q/E2® Q(—D)), where v is the image of s
under the transpose map

H(X,67299Q) - £20Q/872®Q(-D).

Let 8% C 8p be the open substack given by s, # 0. Let 8% . be its preimage in

Sé,c' Let Iivunr,c be the gerb of n-th roots of £, over Bunr. For K € DE (lgvunr,c) let us
describe

Foury, ngis(K)[dim.rel(vé)]lgo~ . (53)
B,c

Write (€1 — M, Ug, W) for a point ofB_ung » Where U 5 (Loy and U S Loe,-
Denote by Z¢ , the stack classifying a point (¢, D, v € &2(D)/&% e 78 ,anda

a2 Bun Bun
line U equipped with
W = (Lem/(Lee. (54)
Let ZlgunT be the stack classifying (€, D,v' € €2 ® Q/E72 ® Q(—D)) € ZgunT and

a line U equipped with (54). The perverse sheaves IC0. 7 as € varies in Buny naturally

form a family, which is a perverse sheaf on ZgunT still denoted IC ¢ 7 by abuse of no-

tation. Similarly, we denote by IC, F the corresponding perverse sheaf over ZgunT. The

0

isomorphism (51) naturally extends to the stack ZBunT.

Write (85 x XY for the stack classifying (€, s7) € 8p and lines Ug, U equipped
with (52) and

U = (Lo)e(p)- (55)
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The map fp extends to a morphism f3 : (85 x X?J — Zf i, given by U =U® ug'.
We have a diagram of projections

— PIT ¢ ~ PIpc
Bunr,. <= (85 x X) —25 85, (56)

where prp . sends the above point to (&, 52, Ug), and the map pry . sends the above

point to (£~'(=D), U) equipped with (55). From the standard properties of the Fourier
transform one gets the following.

Proposition 7.5. Let m > 0 and 0 = ma. Over the connected component of S% . given

by fixing deg &, the contribution of the connected component of Bun 7o 8ivenbydegl =
—deg & — m to the complex (53) identifies with

(prByC)g(pr?c K®C)® (f[;)* Ing’E)[dim.rel(fVB) — dim Bunr]. 57)
This complex vanishes unless e divides m + deg €. O

Proposition 7.5 implies the following description of the first Whittaker coefficients of
Eis(K) for K € DE(BunT’C). Write Covp C Sp for the open substack given by requiring
that 55 : £ — € is an isomorphism. Let Cov 3. denote the restriction of the gerb 8 B
to Cov . The stack Cov z ¢ is the base on which the first Whittaker coefficient lives. Recall

that the line bundle on X? x Covg whose fibre at (D, &, s5) € X? x Covg is
(Loewmy/(Loe

identifies canonically with prj O(— A). So, one gets the open immersion Cov 5. X(a X%

— (8p x X%) sending (D, &, 52, Ug, U) with (52) and (54) to (€, 52, D, Ug, U), where
U = U ® U. We have the diagram

o~ Prcov,o S pr
Buny,. <—— Covg x(X") —> Cov; .
obtained by restricting (56).

Corollary 7.6. The restriction of (57) to Cov B identifies with
(prl);(préov,e K®C)® ICQXQ!Z)[—dim Bunr]. (58)

Corollary 7.7. Let E be a T%-local system on X, and Xg € D¢ (]gvunr) the E*-Hecke
eigensheaf as in Corollary 2.3. The first Whittaker coefficient of Eis(KXg), that is, the
complex

Foury, vZEis(fKE)[dim.rel(vé)]|C0V§‘C,

identifies with
D Er1(Pregys Ke ® € ®IC 5o 7). (59
0

Here 6 = ma, and the sum is over m > 0 such thatm + g — 1 € eZ.
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Remark 7.8. (i) The complex (58) is an £-adic analog of the space of conformal blocks
in the Wess—Zumino—Witten model that was studied in [1].

(i) Assume E"* is nontrivial; then K is regular. The conjectural functional equation
for Eis(X ) should be reflected in the property of (59) saying that the summand indexed
by 6 = mo for E identifies (up to tensoring by some 1-dimensional space) with the
summand indexed by 8’ = m’« for ? E, where m +m’ = (n — 1)(2g — 2). Here ° E is the
extension of scalars of E under wy : T8 > T% In particular, in this case the sum in (59)
should be over 0 <m < (n — 1)(2g — 2) such thatm + g — 1 € eZ.

(iii) In the case n = 2 the complex (59) is calculated in [19, Theorem 4]. In this case
it is given by the ‘geometric central value’ of some L-function. Recall the line bundle
E€x € Covp from Section 2.0.1. A point (€, s3) € Covp gives rise to the po-torsor on X
given by s; : (8®€}1 )2 50 x. Write & for the @e -local system on X obtained from this
Wuo-torsor via the extension u, — @Z For n = 2 the fibre of (59) over (&€, Ug) € COVE’C
identifies with

@ RI(X™, (E™ ® €9)™)[m]

m=>0

tensored by some 1-dimensional space. If E~2% is nontrivial then the above identifies
with
® A"HX. E®&)
0<m<2g—-2
tensored by some I-dimensional space, and this agrees with (ii). The compatibility

with the functional equation then comes from the isomorphism HY(X, E~® ® &p)* =
HY(X, E* ® &p). So, forn > 1 we may think of (59) as a generalization of the notion of
the central value of an abelian L-function.

7.3. Constant term of Eis

Recall that Buny  classifies an exact sequence (38) and a line U equipped with

UN — L. Write BunB - for the connected component of Buny, ¢ given by deg &=
We have the diagram of projections

Bunry & BunB & ﬂ) Bung,

where g sends (€ <> M, Ug) to (€, Ug). Write BunT for the component of BunT clas-
31fy1ng (&, € BunT with deg & = d. The constant term functor CT : D, (Bung) —
D, (BunT) is defined by CT = q\p*[dim.rel(p)].

Recall that Bunp classifies M € Bung together with a subsheaf &€ < M, € € Bun;.
Write ﬁ‘; for the connected component of Bunp given by deg & = d. The stack m%
is smooth irreducible of dimension 2g — 2 — 2d.

Let o : Buny — Bungz be the map & — £~!. We also denote by o : Buny — Buny
the map (&, W) — (£~ W).
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Definition 7.9. For 6 = ma € A[(’;% with m € nZ, we define the following integral
Hecke functor H? : D, (]§vunr) — Dy (B-Il-}lr). One has B(0) = (m/n)v, where v =
na € J,and XBO 5 xm/m Recall the stack X @) x 4o md]gv from Section 7.1.1.
Its point is a collection (€ € Buny, D € xXm/m o, Ug) together with isomorphisms
ug = L7)emb) uvy = (L1)e. Here E(nD) is the ‘background’ T -torsor. Consider
the diagram
Buny <1 X3 x 1, NModg 2T Blng,
where 215" sends the above point to (€, U), and 7 sends the above point to (€(nD), Ug).
Set
H’(K) = (h7 ) ((hi)* K @ IC?) )[—dimBunr].

Buny,

Proposition 7.10. Let di € eZ and K € D, (]§Vun?). Then the complex Kq 4, =
CT(Eis(K)) |I§E1 a vanishes unless d — dy € nZ, in which case it is described as follows.
T

(@) If di > max{d, —d} then K4 4, = 0.
() If d < dy < —d then for 0 := —(d 4+ d1)a € naZ,

Ka.a, — oH (K)[—|B(©0)]].
(¢) If d = dy > —d then for 0 .= (d — d)a € naZ,
Kaa, — TH(K)[2 —2¢ + |BO)]].
(d) If di < min{d, —d} then there is a distinguished triangle
oH (K)[—|B©®)[] > Ka.a, — H (K)[2 — 2g + [B(©)]]

withd = —(d + d)a and 0’ = (d — dy)«.

Proof. We calculate the direct image with respect to the composition Bun » x g, - Bung

LA Buny & EN lgvunr Write a point of Buny Xﬁla Bunjy as (38) together with a

subsheaf £; < M and lines U, Ug equipped with uv = — (L7)e,, u S (Lr)e.
() In this case Hom(€&;, &) = Hom(&;, &1 = 0.
(b) In this case Hom(&1, E) = 0, and there remains the integral over the open sub-

stack Zﬁﬁ'n" C Bung & xgm. Bunj given by the conditions that £; — €~ is injective,

deg €| =dj,deg€é = d.Here 6 = —(d + d))c.
Let M\(;dﬁd be the stack classifying € € Bun‘;, D; € XY and lines U, Ug equipped
with UV 5 (LT)g(Dl), u = (L7)e. Here €71 is the ‘background’ T -torsor. Let

F19: 3 ng : = Mod ~6,1 be the natural projection. By Theorem 5.3, K, 4, vanishes
ungy
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unless d 4+ d| € nZ, in which case it is as follows. One gets xXBO) — x(=d=d)/n) The
corresponding map X2® — X% sends D to D; = nD. Consider the diagram
~ k% —~ hy o~
Bunry L xBO X x6 Mod—t;ed iL) Bun(;,
Bunp
where h7” sends (D, €, U, Ug) to (&1 Ug), and hy sends this point to (&Y =nD),W).
By Theorem 5.3,
~ — B0 «~ .
Ka.a, = (ohy W(C,,) . @ (h77)*K)[(d +d1)/n — dim Bunr].
(c) In this case Hom(&, €~1) = 0. Let 6 = (d — di)a. By Corollary 5.5, Kaa,
vanishes unless d — d; € nZ. In the latter case |B(0)| = (d — d;)/n and

Ka.a, — HY(K)[2 —2g 4 |BO)]].

(d) Stratify Buny & x g, - Bung by the property that &; factors through &€ or not.
Calculate the direct image with respect to this stratification. O

Let E be a T%-local system on X. Write I = Kg for the Hecke eigensheaf on B_VunT
associated to E in [18, Proposition 2.2]. This is a local system over the components of
Bunz corresponding to A*.

Lemma 7.11. Letv = —na and 0 = ma withm € nZ.. One has naturally TH® (X ) =
Kg @ RC(X™/M (E*)™/™)[m/n).

Remark 7.12. By [19, Lemma 15], one has canonically (AE)q-na 5 detRT (X, E™).
Here Q"¢ is the T*-torsor obtained from 2 via the push-out by —na : G, — TF.
Denote also by °E the extension of scalars of E under wo : T% — T*¥. Now from Propo-

sition 3.15 one gets o * Kg = Kep) ® detRI' (X, E™*). Here o * stands for the twisted
W-action (15). It follows that Proposition 7.10 is consistent with the functional equation
for Eis(Xg) from Conjecture 3.17.

7.4. Some special sheaves

Let E be a T%-local system on X. Sometimes we think of it simply as the rank one local
system on X corresponding to the character ea of T Write X = Kg for the Hecke
eigensheaf on Buny Aa/ssociated to E in [18, Proposition 2.2]. This is a local system over
the components of Buny corresponding to A”.

Recall the Shatz stratification of Bung. Let Shatz’ ¢ Bung be the open substack
of semi-stable torsors. So, M € Shatz? iff for any rank one subsheaf L C M one has
deg L < 0. For d > 0 let Shatz? denote the stack classifying & Bun‘f and an exact
sequence 0 — & — M — &' — 0. The map ShatzY — Bung sending this point
to M is a locally closed immersion. Moreover, Shatz? for d > 0 form a stratification
of Bung. The stack Shatz? is irreducible of dimension 2¢ —2 —2d ford > 0, and
dim Shatz® = dim Bung = 3g — 3.
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Let BunSGt C Bung denote the open substack of stable sheaves. It is not empty for
g > 2. The image Buné0 of Buny — Bung is the complement of Bunsé in Bung. For
d > 0 the image of p : Bun[é — Bung is the closure Shatz’ of Shatz?. Let Shatz?} (resp.,

Shatzg) be obtained from Shatz‘é (resp., Shatzd) by the base change P:Tﬁm — Bung.
For d > 0 a point of Shatzdé is given by (38) together with a line Ug equipped with

u¥y = (Lr)e. (60)

Ford > Olet g : Shatz”é — Buny be the map sending the above point to (£, Ug)
equipped with (60).

Definition 7.13. Let IC(E, d) denote the intermediate extension of ¢*X g[dim Shatz‘é]
under Shatz‘é — Shatz?;. Note that IC(E, d) € D, (lﬁfnc).

Recall the stack m[é from Section 7.3. For K € D, (E:Tl/nT) write Eis? (K) for the con-
tribution of the component B_un% to Eis(K). Recall that Eis? (X) vanishes unless d € ¢Z.

Proposition 7.14. Letd > O with d € eZ.

(a) If E™ is not trivial then Eis? (X) = IC(E, d) canonically.
(b) If E™ is trivial then

Eis?(K) = @ IC(E,d + nb).
b>0

Proof. The map p : m‘g — Bung is an isomorphism over Shatz‘é. It follows that
IC(E, d) appears in Eis? (X) with multiplicity one. Consider a point (& < M, Ug) €
Shatzg for some r > d. The fibre of p : m‘; — Bung over this point identifies with
XU=D_ Namely, to D € X"~ there corresponds the subsheaf &(—D) C M. Denote

by S the x-fibre of Eis? (X) at this point. By Corollary 5.5, S vanishes unless r —d € nZ.
If r — d € nZ then we get an isomorphism

~ (5D (pney (5
S — K g ® RDX T (E7) ) [—2r +2¢ — 2 +2(r — d)/n].

The codimension of Shatz” in md is 2(r —d). If E™ is not trivial then the %-restriction
of Eis?(X) to Shatz” is placed in perverse degrees < 0. Part (a) follows. Under the as-
sumption of (b) we see that IC(E, r) appears in Eis? (K) with multiplicity one. Our claim
follows. o

Remark 7.15. If n is even then by Lemma 3.14 one has the following. If d € nZ (resp.,
d € eZ and d ¢ nZ) then IC(E, d) € D¢ 4 (Bung) (resp., IC(E, d) € D, _(Bung)).
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7.4.1. Case g = 0. In this subsection we assume g = 0. For d > 0 set for brevity
IC4; = IC(Qy, d). The open substack Shatz® ¢ Bung classifies trivial G-torsors.

Definition 7.16. The line bundle £, is trivial on Shatzo; its trivialization yields an iso-
morphism Shatz% 5 Shatz? x B(uy). View IC(Shatz’) L, as a perverse sheaf on
Shatz% via this isomorphism. Let ICy be its intermediate extension to ﬁ;ng.

Lemma 7.17. Assume d > 0 with d € eZ. Let r > d. The x-restriction ICd|Shatz’"G
vanishes unlessr —d € n’Z. If r — d € nZ then

ICalshatzz, = 1C/[2( — d)/n]Ishatz -

Proof. By Proposition 7.14, Eis? (X) = Eis?™ (X)) @ 1C,. Restricting this isomorphism
to Shatz%;, one obtains the desired result as in Proposition 7.14. O

Lemma 7.18. (a) One has Eis®(X) — ICo[1] ® ICo[—11 @ @)= ICon+sn.

(b) The x-restriction 1Cq|shar,7. vanishes unless r € nZ. Forr € nZ and r > 0 one has
G

1ColShau, — 1C12r/n — lshac -

Proof. For (M,Ug) € Shatz% the fibre of p : Bung — Bung over M is isomor-
phic to PL. So, EisO(JC) = 1Cy[1] & ICy[—1] over Shatz%. For d > 0 and a point
(EC M, Ug) € Shatz‘é the fibre of p : Bun; — Bung over M identifies with XD To

D € XD there corresponds (£(—D) C M) € Bun g- Now arguing as in Proposition 7.14,
one shows that the x-restriction Eis0(9<)|3hatzd_ vanishes unless d € nZ. For d € nZ we
G

get
Eis’ () ghape — ¢ K @ RT(X™, Qp)[—2d — 2 +2d/n]. (61)
G

The codimension of Shatz¢ in Bung is 2d — 1. It follows that Eis®(X)| Shatz< 18 placed in

perverse degrees < 0, and its O-th perverse cohomology sheaf is isomorphic to ICy.
If d = n then (61) can be written as ? & Z[1] & Z[—1], where Z = ICq|ghat,2 , and
G

? is self-dual. It follows that ICy| Shatz. 5 IC,[1 | Shatz!. and ? = 0.
For d = 2n the complex (61) can be written as ? @ Z[1] & Z[—1], where Z =
ICo|gpq,e » and ? is self-dual. It follows that ? = ICy, and IColg;, .2 = 1C,,[3].
G G

For d = 3n the complex (61) can be written as

@ Z[1]® Z[-1]1 & IC2n|shatzd&’

where ? is self-dual, and Z = IC|gy,,« - By Lemma 7.17, ICop | gpa0pd = 1C3,[2] over
G G

Shatz%. It follows that ? = IC; and ICy| Shatz‘é = 1C3,[5]. Continuing, our claim easily

follows by induction. O
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Remark 7.19. If n = 2 then ICy = Aut, and IC; = Aut, in the notation of [21] and [19,
Appendix A]. These are the direct summands of the theta-sheaf Aut. Our description of
the fibres of ICy and IC; in Lemmas 7.17 and 7.18 extends [21, Theorem 1].

Recall the Hecke functors for G defined in Section 3.2. For v € A%T we set XHE; =
(id x iy)*Hg[—1], where i, : Speck — X is the point x, and id x i, : Bung —
Bung x X.

Lemma 7.20. Letv = ex and d > O withd € eZ.

(a) Assume n is even. For d > n one has XH"G 1C, = 1Cy4e ®IC, .. Moreover,
+HYIC, = ICo[1] @ ICo[—1].
(b) Assume n is odd. For d > 2n one has xH”G 1C,; = ICy4, ®IC; ®IC,—_y,. Moreover,
HG1C, S IC[1] @ ICo[—1] ® IC, .
Proof. By Proposition 7.14 and Lemma 7.18, Eis? (X) — Eis?*"(X) @ IC4 and
Eis®(K) = ICo[1] @ ICo[—1] & Eis* (X).

Write ﬁl? for the component of Buny classifying (€, W) with deg & = d. Applying
Theorem 2.2 to the complex K |B~url 4 one gets the following.
T

(a) Assume n is even. One has
+HLEis? (K) = Eis?(X) @ Eis? ~*(X)
and (HY,Eis?™" (K) — Eis?™¢(X) @ Eis?*"~¢(X). For d > n this implies
HLIC, = 1Cs4, ®1C,—, .

Moreover, (HY; IC, — ICo[1] @ ICo[—1].
(b) Assume 7 is odd. One has

HLEis? (K) = Eist(X) @ Eis? () @ Eis? " (X)
and (H),Eis?™" (K) = Eis?™>"(X) @ Eis?*"(X) @ Eis?(X). For d > 2n this implies
+HEIC, = 1C14n ®IC; ®ICyy .
Moreover, XH"G 1C, = 1Cy[1] ® ICy[—1] & ICy,,. m]

Proposition 7.21. Let v = ec.

(@) Ifn is even Ay is the extension by zero from GrUG
(b) Ifn is odd then for p € A*, u < v the x-restriction Agl Gl vanishes unless . = 0,

and A |0 S Qul2.
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Proof._In the proof we use some notation from [9]. Let O = k[[¢]]. Recall that A°¢ =
Gr'Y) NGry; via the map sending f = bt ¢ +be—1t' ¢ + - + by~ with b; € Al to

1 s
(0 1 )G(O).

The open subscheme Gr% NGry; C Gr% ﬂirvc is given by b, # 0. In the notations of [9,

Lemma 4.2] one has F{(A%) = 0 for n even, and F(A%) 5 Qy for n odd.
For u € A" with < v the *-restriction Ay |Gr’(§ vanishes unless u = 0. Indeed, if

we At, < vand u € A* then = 0. One has the diagram
~ t ~ ~
Gr(} £ Gr% SLN Grg.

In the notation of [9, Lemma 4.2] we see that ag Oﬂ‘é is not constant (resp., is constant)
over Gr% N Gry; for n even (resp., for n odd).
Calculate (tp)153.A using the stratification of Gr% ﬂﬁvG by the locally closed sub-

. . . ~ 0 ~
schemes Gr% N Gr’é with & € AT, u < v. For n even the contribution of Grp N GrVG to
. . . . . . ~0 ~0 .
this direct image vanishes, so the contribution of Grg N Gr; also vanishes.

For n odd the contribution of Gr% N GrVG to this direct image is
RI(Gm x A", Qel2n]) = Qel1]® Q.

Since F}) (A%) 5 Qy, and Agl & is placed in strictly negative degrees, our claim fol-

lows from the exact triangle Q11 Qp) — Qp — Ay |Gr%. ]
Write xﬂ{g for the preimage of , H¢, in , H.
Lemma 7.22. Let v = ea. For a point (M, M’, B, x) € J{E one has canonically

detRI (X, M) ~ _ , 8% eete)
detRT(X, M) ((M((e = Dx) + M) /M((e — D))" @ Q7.

Here dimy M ((e — 1)x) + M')/M((e — 1)x) = 1. There is an isomorphism

K xg{vé = (BTmG XBung xj{z;) x B(un),

where we use h(; in the fibred product, and the projection to the first term corresponds to
he : xﬂ{‘é — Bung.

Proof. The symplectic form on M yields a nondegenerate pairing between the k-vector
spaces (M + M'")/M and (M + M")/M’. So,

detRI'(X, M') @ detRT (X, M)~' S detRI(X, (M + M')/M)>.
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The first claim follows now from the natural isomorphism

detRT'(X, (M + M")/M) = ((M((e — 1)x) + M)/ M ((e — 1)x))®" ® Q2.

A point of XJ-C”G is given by a collection (M, M’, ) € J(, and the lines U, U’ to-
gether with the isomorphisms UY = £y, WN 5 £,y Define « as the map sending
M, M, B, U, W) to (M, M, B8, U, Upy), where

U=U U ® (M((e — Dx) + M)/ M((e — Dx)®2/" @ &5V,

For 1 odd the line ¢~ D/" = 83;&2_1)/ " does not depend on the choice of €. ]

For M € D, (B,'-l\l/nG) the contribution of xf}{z.; to yHg; (M) can now be written as

(hEN(hG M @ L) 2€] (62)
—~ hE g o~
for the diagram Bung & Xf}{‘é BN Bung. For n odd the contribution of Xﬂf% to
+Hg (V) is M[2].
Theorem 7.23. Let v = ea.
(a) For n even one has yH(, 1Cy = IC.[1] ® IC.[—1].
(b) For n odd one has
«Hg ICy 5 1C[2] @ ICo & ICH[—2).

Proof. Recall that ,Hy; is given by a version of (6) with x fixed.

(a) By Lemma 3.12 and Remark 7.15, \HY, ICo € D¢, (Bung). This implies that the
k-restriction ( XH"G ICo)|ghatzi. vanishes unless i € e + nZ.
G

Leti > 0,i € e+nZand M € Shatz'. Let Y denote the fibre of h‘G_ : XJ-CE; — Bung
over M. Write P(M,) for the projective space of lines in M (ex)/M ((e — 1)x). We have
amapn : Y — P(M,) sending M’ to the line (M’ + M((e — 1)x))/M((e — 1)x). Each
fibre of 1 identifies with A2¢~1. Denote by S the *-fibre of ;Hy; ICo at M.

For d > 0 with d € nZ let Y; C Y be the locally closed subscheme given by
M’ € Shatz?. Since i > 0, M has a canonical B-structure given by (& C M) with
deg& =i and € € Bun,.

If i = e then Y) = A" and the contribution of this locus to S is @g[—S — n].
Moreover, Y, — Grz“ NGrgy = Spec k. So, the contribution of ¥, to S is Q,[—1 —n].
We see that the *-restriction of yHy; IC to Shatz® identifies with IC,[1] & IC.[—1].

Assume i = e+ bn withb > 0,d > 0,d € nZ. Then Y; C Y is not empty only for
d =nbord = n(b+ 1). One has Y, — Gry NGrg = A", The contribution of this
locus to S is

Qe[—=3 = 2bn + 2b — n] = IC[—11|m.

Further, Y, p41) 5 Grz“ NGrg = Spec k. The contribution of Y41 to S is

Qe[—1 = 2bn +2b — n] = 1C,[1]|um.

Part (a) follows.
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(b) The case n = 1 is well-known, so assume n > 1. We denote by (M, M’, B)
a point of ﬁvG Leti > O withi € nZ and M € Shatz. Let Y denote the fibre of
he - foG — Bung over M. Let Y C Y be the preimage of . Hg in Y.

Ford > 0 withd € nZ let Y; C Y (resp., Y; C Y) denote the locally closed
subscheme given by M’ € Shatz¢. Write S for the fibre of «Hg ICo at M. As above, we
have amap n : ¥ — P(M,), each of whose fibres identifies with AL

First, assume i = 0. Then only Y, = Y, and Yo contribute to S. There is a section
P(M,) — Y of n, whose image identifies with Y,. Any local system on P! is constant.
So, the contribution of ¥, to S is RT(P', Q¢[—1]) = Q¢[—1]1® Q¢[—3].

The scheme Y can be written as the subscheme of Grg of points of the form AG(0),
where

A (1 ;al 112{}4) e Gkt
with a; € k[+~!] of degree < n in 1. In particular, G acts on Yo. This action commutes
with the loop rotations group G, C Aut(0) action on Y. The scheme Y; can equally be
seen as the scheme classifying matrices A as above with a; of the form b, ;™" 4 --- +
by ;t~" € k[t~"] for all i. In the latter form the action of G is given by conjugation.

Recall the formulas (62) and (6). The group G C Aut(0O) of loop rotations acts on Yo
and contracts it to the point M € Y. The complex (h_’)* ICy ® IC” is monodromic with
respect to this action. Let ig : Speck — Y denote the point M. By [2, Lemma 5.3] we
get

RT (Yo, IC” ®(hg )*ICo) — iy(IC” @(hg )*1Co) — Qe[ —51. (63)

It follows that over Shatz” one has
+Hg; 1Co = 1Co[2] & ICo & 1Co[—2].

Let now i > 0 with i € nZ. Then M has a distinguished B-structure given by
the unlque subbundle of degree i. Then only Yn+l, Y;, Yi_, may contribute to S. Note
that Y,4; = Y+ is the point scheme. Its contribution to S is Qg[ 1 —2i + 2i/n].
One has Y;_, = Yi_, — GryNGr; — A" So, the contribution of ¥;_, to S is
Q¢[—5 — 2i +2i/n).

Finally, ¥; — G, ﬂ&v(; 5 A", To calculate the contribution of ¥; to S, argue as in
Proposition 7.21. In the notation of [9, Lemma 4.2], the contribution of ¥; to S identifies
with

FAL[=3 = 2i +2i/n] = Q¢[—3 — 2i +2i/n] = (ICo)u.

Using Lemma 7.18 we see that S is isomorphic to the x-restriction of ICy[2] &
ICy @ ICo[—2] to M. We are done. ]
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Assume k = F,. A version of Corollary 5.1 holds also in this case. It is understood that
the Tate twists are recovered in the corresponding formulas. Take P = B,so M = T. Let
6 € AP%.In this case the stack Mod;l’e defined in Section 5.1 classifies D € X% and a

. . N ~ _
line U together with U — L:Tr(%(fD).
The stack Mod;atfw from Section 5.2.1 classifies (D € X?, 3"/T € Bunz, U, W), where
U, W are lines equipped with UY = £ F1.(~D)» (T 77.- Recall that J is the set of
positive roots of é,, for én

~ 1.0
ForB(®) =Y, nyve A%O;POS the perverse sheaf ICl?u(fT)’ conX BO) x o Mod];fE]T
is a rank one shifted local system. Consider the diagram

xBO Bunry <L xB©®) X x6 Mod;:l'lvnT — Bunr

where f sends D € X 2® withimage D € X%, (D, ¥, U, W) el\ﬁgdglr to (D, I, U),
and & sends the above point to (fr”T(—D), ) e lgvunr.
Recall that X2 = [Tes X ) and |B(0)] is the dimension of X2 One has

h*KE ® IC;?;(HGT) ] :) f*(( &](E—V)(nu)> = KE) ® (@[[1](]/2))dimBunT +|%(9)\
’ Ve
So, by Corollary 5.5, the contribution of the stratum ng‘fl/n ;to Funct(Eis(iK’g)) is

Funct(Eis' (K% ")) ]_[ Tr(Fr, R[(X ™) (E7")™)) @ Qqp(ny)).

veJ

Theorem 2.13 is proved.
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