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Abstract. Let G be a simple simply-connected group over an algebraically closed field k, and
X a smooth connected projective curve over k. In this paper we develop the theory of geometric
Eisenstein series on the moduli stack BunG ofG-torsors onX in the setting of the quantum geometric
Langlands program (for étale Q̄`-sheaves) in analogy with [3]. We calculate the intersection
cohomology sheaf on the version of Drinfeld compactification in our twisted setting. In the case of
G = SL2 we derive some results about the Fourier coefficients of our Eisenstein series. ForG = SL2
and X = P1 we also construct the corresponding theta-sheaves and prove their Hecke property.
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1. Introduction

1.0.1. In this paper we develop an analog of the theory of geometric Eisenstein series
from [3] for the twisted geometric Langlands correspondence. Here ‘twisted’ refers to the
quantum Langlands correspondence (as outlined in [12, 13, 26, 14]) with the quantum
parameter being a root of unity. In the case of a split torus the corresponding geometric
setting was proposed in [18].

The conjectural extension of the Langlands program for metaplectic groups was pro-
posed by M. Weissman [29, 30] (see also [15, 16]). In his approach the metaplectic group
is a central extension of a reductive group by a finite cyclic group coming from Brylinski–
Deligne theory [5]. Our approach is a geometrization of this evolving program.

For motivations, take k = Fq . LetX be a smooth projective curve over k, andG a split
reductive group. Let A be the adeles ring of F = k(X), and O ⊂ A the integer adeles. Let
n ≥ 1 with n | q−1. A Brylinski–Deligne extension ofG byK2 gives rise to an extension
1 → µn(k) → G̃ → G(A) → 1 together with its splittings over G(F) and G(O). Pick
an injective character ζ̄ : µn(k) → Q̄∗` . The global nonramified Langlands program for
G̃ aims to find the spectral decomposition of the space Functζ̄ (G(F )\G̃/G(O)) of Q̄`-
valued functions that change by ζ̄ under the action of µn(k).

A fundamental tool for this program is the theory of Eisenstein series. Let M ⊂
P ⊂ G be a Levi subgroup of a parabolic subgroup of G. By restriction this yields the
metaplectic extensions M̃ (resp., P̃ ) of M(A) (resp., P(A)). One gets the diagram of
projections

M(F)\M̃/M(O)
q
←− P(F)\P̃ /P (O)

p
−→ G(F)\G̃/G(O).

For a compactly supported function f ∈ Functζ̄ (M(F)\M̃/M(O)) the associated Eisen-
stein series (up to a normalization factor) is p!q∗f .

We study a geometric analog of this construction. We work with étale Q̄`-sheaves to
keep a close relation with the more classical Langlands program for the corresponding
metaplectic groups.

1.0.2. Let k be an algebraically closed field, and G a simple, simply-connected group
over k. In this case there is a canonical Brylinski–Deligne extension of G by K2 (the
others are obtained from it up to isomorphism as its multiples).

Let X be a smooth projective connected curve over k. Let BunG be the stack of
G-torsors onX. Pick n ≥ 1. We introduce some µN -gerb B̃unG→ BunG withN = 2ȟn;
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it comes from the canonical Brylinski–Deligne extension of G by K2. Here ȟ is the dual
Coxeter number for G. We pick an injective character ζ : µN (k) → Q̄∗` and consider
the derived category Dζ (B̃unG) of étale Q̄`-sheaves on B̃unG, on which µN (k) acts by
ζ . To these metaplectic data there corresponds a dual group Ǧn defined in [9]. The cat-
egory Rep(Ǧn) of finite-dimensional representations of Ǧn acts on Dζ (B̃unG) by Hecke
functors. The twisted geometric Langlands problem in this case is to construct Hecke
eigen-sheaves in Dζ (B̃unG) (or even a spectral decomposition thereof).

Let P ⊂ G be a parabolic subgroup, andM its Levi factor. We similarly get aµN -gerb
B̃unM → BunM and the derived category Dζ (B̃unM). As in [9], one has the correspond-
ing Levi subgroup M̌n ⊂ Ǧn, and Rep(M̌n) acts on Dζ (B̃unM) by Hecke functors.

The Eisenstein series from Section 1.0.1 admits an immediate geometrization

Eis′ : Dζ (B̃unM)→ Dζ (B̃unG).

However, Eis′ does not commute with the Verdier duality and may be improved by replac-
ing B̃unP by the relative Drinfeld compactification B̃un

P̃
along the fibres of the projection

BunP → BunG as in [3].
We define the corresponding compactified Eisenstein series functor Eis : Dζ (B̃unM)

→ Dζ (B̃unG) and study its properties. It is defined using a twisted version ICζ of the
IC-sheaf of B̃unP . One of our main results is the description of ICζ generalizing [2]. As
in [3], we show that Eis commutes with the Hecke functors with respect to the embedding
M̌n ⊂ Ǧn.

We formulate a conjectural functional equation of Eis. We also show as in [3] that the
formation of Eisenstein series is transitive for the diagram T ⊂ M ⊂ G, where T is a
maximal torus of M .

In the case of G = SL2 we get a partial description of the Fourier coefficients of Eis,
expressed in terms of a sheaf that appeared in the book [1] on factorizable sheaves (and
also in [12, 23]). The relation so obtained between these Fourier coefficients and quantum
groups seems a promising phenomenon that has to be better understood.

As an application, we get an important formula for the first Whittaker coefficient of
our Eisenstein series for metaplectic extensions of SL2 (Corollary 7.7). It turns out to be
an `-adic analog of the space of conformal blocks in the Wess–Zumino–Witten model
studied in [1]. It also could be seen as a generalization of the notion of central value of an
abelian L-function (Remark 7.8).

Among other results, we construct new automorphic sheaves on B̃unG in the case
of G = SL2 and X = P1 corresponding to the trivial Ǧn-local system and a principal
SL2 → Ǧn of Arthur. We call them theta-sheaves as they generalize the theta-sheaves
studied in [21].

2. Main results

2.0.1. Notation. We work over an algebraically closed field k. Let G be a simple al-
gebraic group over k. We assume it is simply-connected (hopefully, the non-simply-
connected case could also be done using [27]). Let T ⊂ B ⊂ G be a maximal torus
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and a Borel subgroup. Let g be the Lie algebra of G. Write 3 for the coweight lattice
of T , and 3̌ for the weight lattice. Let 3+ be the set of dominant coweights, and 3̌+

the dominant weights. Write ȟ for the dual Coxeter number of G. Write W for the Weyl
group of (G, T ) and let w0 be the longest element in W . Let I denote the set of vertices
of the Dynkin diagram of G. For i ∈ I write αi (resp., α̌i) for the simple coroot (resp.,
simple root) of G corresponding to i.

We ignore the Tate twists everywhere (they are easy to recover if necessary).
Let X be a smooth projective connected curve. Let BunG be the stack of G-torsors

on X. Let F = k(X). For x ∈ X we let Dx denote the formal neighbourhood of x in X,
and D∗x the punctured formal neighbourhood of x ∈ X. A trivial G-torsor on a base is
denoted F0

G.
Let ι : 3 ⊗ 3 → Z be the unique symmetric bilinear W -invariant form such that

ι(α, α) = 2 for a short coroot α. The induced map ι : 3 → 3̌ is also denoted by ι.
If α is a simple coroot then ι(α) = 1

2 ι(α, α)α̌. Our convention is that a super line is a
Z/2Z-graded line.

Recall the groupoid Es(T ) defined in [18, Section 3.2.1]. Its objects are pairs: a sym-
metric bilinear form κ : 3 ⊗ 3 → Z and a central super extension 1 → k∗ → 3̃s →

3 → 1 such that its commutator is (γ1, γ2)c = (−1)κ(γ1,γ2). This means that for every
γ ∈ 3 we are given a super line εγ , and for γ1, γ2 ∈ 3 a Z/2Z-graded isomorphism

cγ1,γ2 : εγ1 ⊗ εγ2 ∼−→ εγ1+γ2 (1)

such that c is associative and cγ1,γ2 = (−1)κ(γ1,γ2)cγ2,γ1σ . Here σ : εγ1⊗εγ2
∼
−→ εγ2⊗εγ1

is the super commutativity constraint. Then Es(T ) is a Picard groupoid with respect to the
tensor product of central extensions.

We have a canonical object (ι, 3̃can) ∈ Es(T ) corresponding to a canonical extension
ofG byK2 in the sense of [5, Theorem 4.7]. It is equipped with aW -equivariant structure.
We pick once and for all a square root EX of �.

Recall the Picard groupoid Pθ (X,3) of θ -data from [18, Section 4.2.1]. Its objects
are triples θ = (κ, λ, c), where κ : 3⊗3→ Z is a symmetric bilinear form, λ is a rule
that assigns to each γ ∈ 3 a super line bundle λγ on X, and c is a rule that assigns to
each pair γ1, γ2 ∈ 3 an isomorphism cγ1,γ2 : λγ1⊗λγ2

∼
−→ λγ1+γ2⊗�κ(γ1,γ2) onX. They

are subject to the conditions from loc.cit. In particular, the parity of λγ is κ(γ, γ ) mod 2.
Denote by θcan

∈ Pθ (X,3) the image of (ι, 3̃can) under the functor Es(T ) →

Pθ (X,3) of [18, Lemma 4.1]. That is, θcan
= (ι, λ, ′c), where λγ = E

⊗−ι(γ,γ )

X ⊗ εγ ,
and

′cγ1,γ2 : λγ1 ⊗ λγ2 ∼−→ λγ1+γ2 ⊗�ι(γ1,γ2)

is the evident product obtained from (1).
For an algebraic stack S locally of finite type write D(S) for the category introduced in

[17, Remark 3.21] and denoted Dc(S, Q̄`) there. It should be thought of as the unbounded
derived category of constructible Q̄`-sheaves on S.

If V → S and V ∗ → S are dual rank r vector bundles on a base stack S,
we normalize the Fourier transform Fourψ : Db(V ) → Db(V ∗) by Fourψ (K) =
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(pV ∗)!(ξ
∗Lψ ⊗ p

∗

VK)[r], where pV , pV ∗ are the projections, and ξ : V × V ∗ → A1

is the pairing.
If S is a stack and L is a super line bundle on S purely of parity zero, we will use the

stack of n-th roots of L. Its T -point is a map T → S, a super line bundle U on T purely
of parity zero, and a Z/2Z-graded isomorphism Un

∼
−→ L|T .

2.0.2. If M ⊂ G is a Levi subgroup, denote by BunM the stack of M-torsors on X.
For µ ∈ π1(M), we denote by BunµM the connected component of BunM classifying
M-torsors of degree −µ. This notation agrees with [3], but does not agree with [18].
Write Pic(BunT ) for the Picard groupoid of super line bundles on BunT . If θ = (κ, λ, c)
is an object of Pθ (X,3) we also denote by λ the super line bundle on BunT obtained
from θ via the functor Pθ (X,3)→ Pic(BunT ) defined in [18, Section 4.2.1, (18)].

The group T acts on BunT by 2-automorphisms, so if F ∈ BunT then T acts naturally
on the fibre at F of each line bundle on BunT . According to our convention, for F ∈ BunµT
with µ ∈ 3 the group T acts on λF by −κ(µ).

2.0.3. Let L be the line bundle on BunG with fibre det R0(X, gF)−1
⊗det R0(X, g⊗O)

at F ∈ BunG. This notation agrees with that of [9]. Pick n invertible in k. Pick a line
bundle Lc on BunG equipped with L2ȟ

c

∼
−→L, where Lc is a generator of Pic(BunG)

∼
−→Z.

Let B̃unG,Lc
be the stack of n-th roots of Lc. Let ζ̄ : µn(k) → Q̄∗` be an injec-

tive character. We are interested in the derived category Dζ̄ (B̃unG,Lc
) of Q̄`-sheaves on

B̃unG,Lc
, on which µn(k) acts by ζ̄ .

Assume that N = 2ȟn is invertible in k. Write B̃unG for the gerb of N -th roots of L
over BunG. Pick an injective character ζ : µN (k) → Q̄∗` such that ζ |µn(k) = ζ̄ . Denote
by Dζ (B̃unG) the derived category of Q̄`-sheaves on B̃unG on which µN (k) acts by ζ .
We have a natural map α : B̃unG,Lc

→ B̃unG, and α∗ : Dζ (B̃unG) → Dζ̄ (B̃unG,Lc
) is

an equivalence.
Let Ǧn be the n-th dual group ofG over Q̄` defined in [9, Theorem 2.9]. By construc-

tion, it is equipped with the Borel subgroup B̌n corresponding to B ⊂ G.
Let LT be the restriction of L under the natural map BunT → BunG. For λ̌ ∈ 3̌

and F ∈ BunT denote by Lλ̌F the line bundle on X obtained from F via the extension of

scalars λ̌ : T → Gm. Given λ̌ ∈ 3̌ let Rλ̌ be the line bundle on BunT defined in [18,
5.2.6, Example (2)]. The fibre of Rλ̌ at F ∈ BunT is

det R0(X,Lλ̌F)⊗ det R0(X,L−λ̌F )⊗ det R0(X,O)−2.

One has L−1
T

∼
−→

⊗
α̌>0 R

α̌ , the product being taken over the positive roots of G. Set
κ = −

∑
α̌>0 2(α̌⊗ α̌), the sum over the positive roots ofG. This is a symmetric bilinear

form κ : 3⊗3→ Z. By [9, Lemma 2.1], we have κ = −2ȟι.
Define θKil

= (κ, λ, c) by θKil
= (θcan)−2ȟ

∈ Pθ (X,3), where ‘Kil’ refers to
the Killing form on 3. The corresponding line bundle λ on BunT identifies canonically
with LT .
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Let B̃unT be the gerb of N -th roots of LT . Let Dζ (B̃unT ) be the derived category of
Q̄`-sheaves on B̃unT on which µN (k) acts by ζ , and similarly for G. Let

3] = {µ ∈ 3 | κ(µ, ν) ∈ NZ for all ν ∈ 3} = {µ ∈ 3 | ι(µ, ν) ∈ nZ for all ν ∈ 3}.

Set T ] = Gm ⊗3
].

In Section 3.1 we define a µN × µN -gerb Bun
B̃
→ BunB together with a diagram

B̃unT
q̃
←− Bun

B̃

p̃
−→ B̃unG .

We also define the perverse sheaf ICζ on Bun
B̃

. It gives rise to the Eisenstein series
functor Eis : Dζ (B̃unT )→ Dζ (B̃unG) given by

Eis(K) = p̃!(q̃
∗K ⊗ ICζ )[−dim BunT ]

The analog of [3, Theorem 2.1.2] in our setting is as follows.

Theorem 2.1. (i) The functor Dζ (B̃unT )→ D(Bun
B̃
),K 7→ q̃∗K ⊗ ICζ [−dim BunT ],

is exact for the perverse t-structures and commutes with the Verdier duality.
(ii) The functor Eis commutes with the Verdier duality.

Write Ť ] for the Langlands dual to T ] over Q̄`. Recall that Ť ] ⊂ B̌n ⊂ Ǧn is canonically
included as a maximal torus. Set 3],+ = 3] ∩ 3+; these are dominant weights of Ǧn.
For ν ∈ 3],+ denote by V ν the irreducible representation of Ǧn with highest weight ν.
For µ ∈ 3] write V ν(µ) ⊂ V ν for the subspace on which Ť ] acts by µ.

In Section 3.2 we define the action of the category of representations Rep(Ǧn) by
Hecke functors on Dζ (B̃unG). For ν ∈ 3],+ we get the Hecke functor HνG : Dζ (B̃unG)→
Dζ (B̃unG×X).

The action of Rep(Ť ]) on Dζ (B̃unT ) by Hecke functors is defined in Section 3.2.1.
For ν ∈ 3] we get the Hecke functor HνT : Dζ (B̃unT )→ Dζ (B̃unT ×X). The following
is an analog of [3, Theorem 2.1.5] in our setting.

Theorem 2.2. For each ν ∈ 3],+ andK ∈ Dζ (B̃unT ) one has a functorial isomorphism

HνGEis(K)
∼
−→

⊕
µ∈3]

(Eis � id)HµT (K)⊗ V
ν(µ),

where Eis � id : Dζ (B̃unT ×X)→ Dζ (B̃unG×X) is the corresponding functor.

One checks in addition that the isomorphism of Theorem 2.2 is compatible with the con-
volution of Hecke functors.

Let E be a Ť ]-local system on X. For ν ∈ 3] denote by Eν the local system obtained
fromE via the extension of scalars ν : Ť ]→ Gm. Let KE be the eigensheaf on B̃unT con-
structed in [18, Proposition 2.2]. It satisfies the isomorphisms HνT (KE)

∼
−→ KE �E

−ν
[1]

for ν ∈ 3]. That is, KE is an E∗-Hecke eigensheaf.

Corollary 2.3. Let E
Ǧn

be the Ǧn-local system induced from E∗. Then Eis(KE) is an
E
Ǧn

-Hecke eigensheaf in Dζ (B̃unG).
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2.0.4. Write C∗(Ǧn) for the cocentre of Ǧn, the quotient of3] by the root lattice of Ǧn.
The category Rep(Ǧn) is graded byC∗(Ǧn) according to the action of the centre of Ǧn. In
Section 3.5 we introduce the corresponding grading on the derived category Dζ (B̃unG).
We show in Proposition 3.12 that the Hecke functors for G are compatible with these
gradings on Rep(Ǧn) and on Dζ (B̃unG). This generalizes [19, Lemma 1]. We also de-
scribe the corresponding grading on the geometric Eisenstein series in Section 3.5.

Write ρn for the half sum of positive roots of Ǧn. In Section 3.6 we define the twisted
W -action on B̃unT and formulate the conjectural functional equation for Eis (Conjec-
ture 3.17). To this end, we also introduce the full triangulated subcategory Dζ (B̃unG)reg

⊂

Dζ (B̃unG) of regular complexes. The appearance of the shift by ρn here is analogous
to the shift by ρ in the functional equation for the usual geometric Eisenstein series
[3, Theorem 2.1.8]. Our formulation of the functional equation is justified by the fact that
it is compatible with our calculation of the constant terms of Eis for G = SL2 (Proposi-
tion 7.10). Moreover, it agrees with the results of [19]. In view of Theorem 2.9 below, the
proof of the functional equation is reduced to the case of rank one. However, we do not
know how to prove it for groups of rank one.

In Section 3.7 we give a relation between the action of BunZ(G) on B̃unG and Hecke
functors (and also the action of BunZ(G) on the Eisenstein series).

2.0.5. Parabolic Eisenstein series. Let P ⊂ G be a parabolic containing B, and M be
its Levi factor. Write IM ⊂ I for the corresponding subset. Write 3G,P for the quotient
of3 by the span of αi, i ∈ IM . Let LM denote the restriction of L under BunM → BunG.
Let B̃unM denote the gerb of N -th roots of LM .

In Section 4.1 we define a diagram of projections

B̃unM
q̃
←− B̃un

P̃

p̃
−→ B̃unG

and a perverse sheaf ICζ on B̃un
P̃

generalizing our previous definition for B. It gives rise
to the parabolic Eisenstein series functor Eis : Dζ (B̃unM)→ Dζ (B̃unG) given by

Eis(K) = p̃!(q̃
∗K ⊗ ICζ )[− dim BunM ].

We write EisGM = Eis if we need to stress the dependence on M .

Theorem 2.4. (i) The functor

Dζ (B̃unM)→ D(B̃un
P̃
), K 7→ q̃∗K ⊗ ICζ [− dim BunM ],

is exact for the perverse t-structures and commutes with the Verdier duality.
(ii) The functor Eis : Dζ (B̃unM)→ Dζ (B̃unG) commutes with the Verdier duality.

Remark 2.5. Let us explain at this point that the notations BunB , B̃unP throughout the
paper are reserved for the corresponding Drinfeld compactifications (we assume P 6= G,
so B̃unP should not be confused with B̃unG). The gerbs over BunB , B̃unP appearing
in this paper, such as Bun

B̃
, B̃un

P̃
(or Bun

B,G̃
, B̃un

P,G̃
below), are distinguished in our

notation by some decoration above or next to the corresponding letter B,P,G.
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Set 3M,0 = {λ ∈ 3 | 〈λ, α̌i〉 = 0 for all i ∈ IM}. Let 3̌M,0 denote the dual lattice.
In Section 4.1.1 we associate to κ a homomorphism κM : 3G,P → 3̌M,0 and prove the
following generalization of [18, Proposition 2.1].

Proposition 2.6. Let θ ∈ 3G,P with κM(θ) /∈ N3̌M,0. Then Dζ (B̃unθM) vanishes.

Recall that I is canonically in bijection with the set of simple roots of Ǧn. Let M̌n ⊂ Ǧn
be the standard Levi subgroup corresponding to IM .

In Section 4.2 we define the action of the category Rep(M̌n) of M̌n-representations on
Dζ (B̃unM) by Hecke functors. Set 3],+M = 3+M ∩3

]; these are dominant weights of M̌n.
For ν ∈ 3],+M we get the Hecke functor HνM : Dζ (B̃unM)→ Dζ (B̃unM ×X).

For ν ∈ 3],+M denote by U ν the irreducible representation of M̌n of highest weight ν.
The following is an analog of [3, Theorem 2.3.7] in our setting.

Theorem 2.7. For λ ∈ 3],+ there is an isomorphism, functorial in K ∈ Dζ (B̃unM),

HλGEisGM(K)
∼
−→

⊕
ν∈3

],+
M

(EisGM � id)HνM(K)⊗ Hom
M̌n
(U ν, V λ),

where EisGM � id : Dζ (B̃unM ×X)→ Dζ (B̃unG×X) is the corresponding functor.

One checks moreover that the isomorphism of Theorem 2.7 is compatible with the con-
volution of Hecke functors.

Corollary 2.8. Let E be an M̌n-local system on X, and K ∈ Dζ (B̃unM) an E-Hecke
eigensheaf. Then EisGM(K) ∈ Dζ (B̃unG) is an E

Ǧn
-Hecke eigensheaf. Here E

Ǧn
is the

Ǧn-local system induced from E.

One of our main results is Theorem 4.14 in Section 4.5 generalizing the description of
the IC-sheaf of B̃unP from [2] to our twisted setting. Write 3pos

G,P for the Z+-span of
{αi | i ∈ I − IM} in 3G,P . Pick θ ∈ 3pos

G,P . Let U(θ) be a decomposition of θ as in
[2, Section 1.4]. Let ǔn(P ) denote the Lie algebra of the unipotent radical of the standard
parabolic P̌n ⊂ Ǧn corresponding to IM ⊂ I. One has a locally closed substack

U(θ)B̃unP
∼
−→ BunP ×BunM H

+,U(θ)
M ↪→ B̃unP

(see Section 4.5 for the notation). Let U(θ)B̃un
P̃

be obtained from U(θ)B̃unP by the base
change B̃un

P̃
→ B̃unP . Theorem 4.14 describes the ∗-restriction of ICζ to U(θ)B̃un

P̃
in

terms of the M̌n-module ǔn(P ) and the twisted Satake equivalence Loc : Rep(M̌n)
∼
−→

Perv\M,G,n for M̌n (see Section 4.5). The proof actually establishes more (Theorem 5.3
and Corollary 5.5 do not reduce to Theorem 4.14).

In Section 6 we prove the following result, which is an analog of [3, Theorem 2.3.10]
in our setting.
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Theorem 2.9. There is an isomorphism of functors Dζ (B̃unT )→ Dζ (B̃unG),

EisGT
∼
−→ EisGM ◦ EisMT .

2.0.6. In Section 7 we specialize to the case of G = SL2. As in Section 5.1, we have a
µN -gerb Z̃θ → Zθ and a local version ICZθ ,ζ of the perverse sheaf ICζ . Here ICZθ ,ζ is
a perverse sheaf on Z̃θ (see Sections 5.1 and 7 for notation). For G = SL2 the Zastava
space Zθ is a vector bundle overXθ , and it is important to calculate the Fourier transform
Fourψ (ICZθ ,ζ ) over the dual vector bundle. This calculation at the classical level is a part
of the theory of Weyl group multiple Dirichlet series (see [4], [6] for a survey).

The description of ICZθ ,ζ is known (Theorem 5.3 and Corollary 5.5). For n = 2 the
description of Fourψ (ICZθ ,ζ ) is easily reduced to the description of ICZθ ,ζ itself (see
Section 7.2.3; this was also used in [19]). For n ≥ 3 we cannot completely describe
Fourψ (ICZθ ,ζ ), and only establish Proposition 7.2, which calculates the desired Fourier
transform over the open substack �

ˇ̃
Zθmax ⊂ �

ˇ̃
Zθ (see Section 7.2.3 for notation).

The answer in Proposition 7.2 is given in terms of the perverse sheaf IC
�X̃θ ,ζ̄

that has
been completely described in [1] in terms of cohomology of (part of) the quantum sl2
at a suitable root of unity. This is a manifestation of the phenomenon that cohomology
of quantum groups appears in the quantum geometric Langlands program (the quantum
groups were brought into the quantum geometric Langlands program in [12, 23]).

In Proposition 7.5 we give a global application of Proposition 7.2, expressing the
nondegenerate Whittaker coefficients of Eis(K),K ∈ Dζ (B̃unT ), in terms of the perverse
sheaf IC

Žθc ,ζ̄
. This, in turn, yields a formula for the first Whittaker coefficient of Eis(K)

(Corollaries 7.6 and 7.7). The complex appearing in Corollary 7.6 is an `-adic analog of
the space of conformal blocks in the Wess–Zumino–Witten model studied in [1].

In Section 7.3 we calculate the constant terms of Eis(K),K ∈ Dζ (B̃unT ), in terms of
integral Hecke functors for B̃unT . Here ‘integral’ means that we apply Hecke functors at a
collection of points and further integrate over this collection of points. The answer is given
in Proposition 7.10, which (together with the results of [19]) explains our formulation of
the functional equation.

2.0.7. Some special sheaves. Let E be a Ť ]-local system on X, and KE ∈ Dζ (B̃unT )
theE-Hecke eigensheaf as in Corollary 2.3. This is a local system over the components of
B̃unT corresponding to3]. In Section 7.4 we describe some irreducible perverse sheaves
IC(E, d) ∈ Dζ (B̃unG), d > 0, that appear in Eis(KE).

We then specialize to the case of genus g = 0. In this case E is trivial, we set
ICd = IC(Q̄`, d), d > 0, for brevity, and also define an irreducible perverse sheaf IC0
that appears in Eis(KE). Then any irreducible perverse sheaf appearing in Eis(KE) is
isomorphic to some ICd , d ≥ 0. Let Pζ,n denote the category of pure complexes on B̃unG
which are direct sums of ICd [r](r/2), d ≥ 0, r ∈ Z. Then Pζ,n is a module over Rep(Ǧn)
acting by Hecke functors.

We explicitly describe the action of Hecke functors on each ICd , d ≥ 0 (Lemma 7.20
and Theorem 7.23). We also describe all the ∗-fibres of each perverse sheaf ICd , d ≥ 0
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(Lemmas 7.17 and 7.18). Here is an immediate consequence of our results. Recall that
Ǧn

∼
−→ SL2 for n even, and Ǧn

∼
−→ PSL2 for n odd.

Corollary 2.10. Let m ≥ 1 with n − m even. One has an equivalence Pζ,n
∼
−→ Pζ,m

sending ICd [r](r/2) to itself (and preserving direct sums). This equivalence commutes
with the Hecke action (with respect to the evident isomorphism Ǧn

∼
−→ Ǧm).

Definition 2.11. For n odd set Aut = IC0. For n even set Aut = IC0⊕ IC1. As in [21],
we call Aut the theta-sheaf on B̃unG.

Corollary 2.12. The perverse sheaf Aut is a Hecke eigensheaf corresponding to the triv-
ial Ǧn-local system and the principal SL2 of the Arthur homomorphism SL2 → Ǧn.

2.0.8. Let us indicate some problems for future research:

1) Is it true that the theta-sheaves Aut satisfying the Hecke property as in Corollary 2.12
exist for all G and any curve X?

2) Is it true that Aut constructed in Corollary 2.12 is the geometric analog of a matrix
coefficient of a suitable nonramified automorphic representation of the corresponding
F∗q/(F∗q)n-metaplectic cover of G? Construct the corresponding representations for a
local and global field (according to [16], they should exist).

3) Calculate the Fourier coefficients of the theta-sheaves given in Definition 2.11.

2.0.9. In the Appendix we assume in addition that k = Fq , and prove Theorem 2.13
below.

A version of our results also holds over Fq , in particular the construction of KE and
the description of ICζ given in Corollary 5.1. It is understood that in the corresponding
description the Tate twists are recovered accordingly. Let E be a Ť ]-local system on X,
and KE the eigensheaf on B̃unT constructed in [18, Proposition 2.2]. For µ ∈ 3] write
K
µ
E for the restriction of KE to B̃unµT . By [18, Proposition 2.1], Kµ

E vanishes unless
µ ∈ 3].

For µ ∈ 3] define Eis′(Kµ
E) as

p!(q
∗(K

µ
E)⊗ ICζ ),

where the maps p, q are those of the diagram B̃unT
q
←− Bun

B̃

p
−→ B̃unG. Here Bun

B̃
is

obtained from BunB via the base change B̃unT × B̃unG→ BunT ×BunG.
Denote by Funct(Eis(Kµ

E)) (resp., Funct(Eis′(Kµ
E))) the function trace of Frobenius

on the set B̃unT (Fq) corresponding to Eis(Kµ
E) and Eis′(Kµ

E) respectively.
For B = P the set J defined in Section 4.5 identifies with the set of positive roots

of Ǧn for B̌n. We denote by3pos,pos
G,B the free abelian semigroup with base J . Set3],pos

=

3] ∩3pos. Let c̄P : 3
pos,pos
G,B → 3],pos be the morphism of semigroups given on J by the

natural inclusion J ↪→ 3],pos. We write elements of 3pos,pos
G,B as B(θ) =

∑
ν∈J nνν with

θ = c̄P (B(θ)).
The following is an analog of [3, Theorem 2.2.11] in our setting.
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Theorem 2.13. The function Funct(Eis(Kµ
E)) vanishes unless µ ∈ 3], in which case it

equals ∑
B(θ)∈3

pos,pos
G,B

Funct(Eis′(Kµ−θ
E ))

∏
ν∈J

Tr
(
Fr,R0(X(nν ) ⊗ Fq , (E−ν)(nν ))⊗ Q̄`(nν)

)
,

where B(θ) =
∑
ν∈J nνν. Here X(m) denotes the m-th symmetric power of X, and for a

local system W on X, W (m) denotes its m-th symmetric power.

As in [3, Theorem 2.2.12], Theorem 2.13 may be reformulated in terms of generating
series as follows.

Consider the group ring Q̄`[3]], the ring of regular functions on the torus Ť ]. For
µ ∈ 3] denote by tµ the corresponding element of Q̄`[3]]. Form a completed ring
¯̂Q`[3]] by allowing infinite expressions of the form∑

µ

aµt
µ,

where µ runs over a subset of 3] defined by µ ≥ µ′, where µ′ is some fixed element
of 3.

The classical Eisenstein series can be thought of as a ¯̂Q`[3]]-valued function on
B̃unG(Fq) equal to

Eiscl(KE)(t) =
∑
µ∈3]

Funct(Eis′(Kµ
E))t

µ.

Consider the modified Eisenstein series defined as

Eismod(KE)(t) =
∑
µ∈3]

Funct(Eis(Kµ
E))t

µ,

viewed as a function B̃unG(Fq) → ¯̂Q`[3]]. For ν ∈ J consider the abelian L-series

L(E∗, ν, t) ∈ ¯̂Q`[3]] equal to∑
n≥0

Tr
(
Fr,R0(X(n) ⊗ Fq , (E−ν)(n))⊗ Q̄`(n)

)
tnν .

Theorem 2.14. For any Ť ]-local system E on X one has

Eismod(KE)(t) = Eiscl(KE)(t)
∏
ν∈J

L(E∗, ν, t).

It is known that Eiscl(KE)(t) satisfies a functional equation ([24], [16]). This is a strong
argument supporting our geometric functional equation (Conjecture 3.17).
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3. Principal geometric Eisenstein series

3.1. Definitions

Wee keep the notation of Section 2. Denote by BunB the Drinfeld compactification of

BunB from [3]. We have the diagram BunT
q̄
←− BunB

p̄
−→ BunG. Write Bun

B,G̃
=

BunB ×BunG B̃unG. Set
Bun

B̃
= Bun

B,G̃
×BunT B̃unT .

A point of Bun
B̃

is given by FT ∈ BunT ,F ∈ BunG, a collection of inclusions

νλ̌ : Lλ̌FT ↪→ Vλ̌F

for all dominant weights λ̌ of T satisfying the Plücker relations, and Z/2Z-graded lines
U,UG of parity zero equipped with

UN
∼
−→ (LT )FT , UNG

∼
−→ LF.

Here Vλ̌ is the Weyl module corresponding to λ̌. Consider the open substack BunB ⊂
BunB , and let Bun

B̃
be the restriction of Bun

B̃
to this open substack. For a point of BunB

as above we have canonically LF
∼
−→ (LT )FT .

Let a : Spec k→ B(µN ) be the natural map, and Lζ the direct summand in a∗Q̄` on
which µN (k) acts by ζ . Let

Bun
B,G̃
= BunB ×BunG B̃unG;

it classifies FB , UG and an isomorphism UNG
∼
−→ LFB . We get an isomorphism

B(µN )× Bun
B,G̃

∼
−→ Bun

B̃
(2)

sending (FB ,UG,U0 ∈ B(µN )) with UN0
∼
−→ k to (FB ,UG,U) with U = UG ⊗ U−1

0 .
Write

B̃unT
q̃
←− Bun

B̃

p̃
−→ B̃unG (3)

for the projections, so

q̃(FT ,F, ν,U,UG) = (FT ,U) and p̃(FT ,F, ν,U,UG) = (F,UG).

View Lζ � IC(Bun
B,G̃

) as a perverse sheaf on Bun
B̃

via (2). Let ICζ be its intermediate
extension to Bun

B̃
.

Definition 3.1. For K ∈ Dζ (B̃unT ) set

Eis(K) = p̃!(q̃
∗K ⊗ ICζ )[−dim BunT ].

Let µN (k) × µN (k) act on Bun
B̃

by 2-automorphisms so that (a, aG) acts as a on U,
as aG on UG and trivially on (FT ,F, ν). Then (a, aG) acts on ICζ by ζ(aG/a). If K ∈
Dζ (B̃unT ) then a ∈ µN (k) ⊂ Aut(U) acts on K as ζ(a). Consequently, (a, aG) acts on
q̃∗K ⊗ ICζ as ζ(aG). So, aG acts on Eis(K) by ζ(aG).
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3.2. Hecke functors

Let 3],+ = 3] ∩ 3+. We use some notation from [9]. In particular, O = k[[t]] ⊂ F =
k((t)), and GrG = G(F)/G(O). By abuse of notation, L will also denote the Z/2Z-
graded line bundle on GrG whose fibre at gG(O) is det(g(O) : g(O)g). Write GraG for
the punctured total space of L. Let G̃rG be the stack quotient of GraG by Gm, where
z ∈ Gm acts as multiplication by zN with N = 2ȟn.

Let PervG,n be the category ofG(O)-equivariant perverse sheaves on GraG with Gm-
monodromy ζ . Let

PervG,n = PervG,n[−1] ⊂ D(GraG).

We view PervG,n as the category ofG(O)-equivariant perverse sheaves on G̃rG on which
µN (k) acts by ζ . Namely, a G(O)-equivariant perverse sheaf K on G̃rG on which µN (k)
acts by ζ is identified with pr∗K ∈ PervG,n, where pr : GraG→ G̃rG is the quotient map
under the Gm-action.

As in [9, Section 2.1], we pick a trivialization gα̌
∼
−→ k of the root space for all the

positive roots α̌ and denote by 8 this collection of trivializations.
Let �(O) denote the completed module of relative differentials of O over k. Write

�(O)1/2 for the groupoid of square roots of �(O). We pick E ∈ �(O)1/2. As in [9,
Section 2.1], for ν ∈ 3],+ we define the local system EνE on GraνG and AνE ∈ PervG,n.
By abuse of notation, EνE also denotes the corresponding local system on G̃r

ν

G.
Write HG for the Hecke stack classifying F,F′ ∈ BunG, x ∈ X and an isomorphism

β : F|X−x
∼
−→ F′|X−x . We have a diagram

BunG×X
h←G ×π
←−−−− HG

h→G
−−→ BunG,

where h←G (resp., h→G ) sends the above point to F (resp., F′). Here π(F,F′, β, x) = x.
This notation agrees with [3].

For ν ∈ 3+ we define H
ν

G as in [3, Section 2.1.4]. So, the closed substack H
ν

G ⊂ HG

is given by the condition that for each G-module V whose weights are ≤ λ̌ one has

VF(−〈ν, λ̌〉x) ⊂ VF′ ⊂ VF(−〈w0(ν), λ̌〉x).

This is equivalent to requiring that F′ be in position ≤ ν with respect to F at x. Let
Hν
G ⊂ H

ν

G be the open substack given by the property that F′ is in position ν with
respect to F at x.

Let GrG,X be the ind-scheme classifying x ∈ X and a G-torsor F with a trivialization
β : F

∼
−→ F0

G |X−x . Let GX be the functor classifying x ∈ X and an automorphism of
F0
G over the formal neighbourhood of x. Write LX for the (Z/2Z-graded of parity zero)

line bundle on GrG,X whose fibre at (F, x, β) is det R0(X, g⊗OX)⊗ det R0(X, gF)−1.
Let G̃rG,X be the gerb of N -th roots of LX over GrG,X. Let GraG,X be the punctured total
space of the line bundle LX on GrG,X.

Write BunG,X for the stack classifying (F∈BunG, x ∈ X, ν), where ν : F
∼
−→ F0

G |Dx

is a trivialization over the formal neighbourhood Dx of x. Note that BunG,X is a GX-
torsor over BunG×X. Set B̃unG,X = B̃unG×BunG BunG,X.
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Let γ← (resp., γ→) denote the isomorphism BunG,X ×GX GrG,X
∼
−→ HG such that

the projection to the first term corresponds to h←G (resp., h→G ). The line bundle L�LX on
BunG,X ×GrG,X is naturally GX-equivariant; we denote by L �̃LX its descent to

BunG,X ×GX GrG,X .

Note that H
ν

G identifies with BunG,X ×GXGr
ν

G,X under γ←. We have canonically

(γ→)∗(h←G )
∗L

∼
−→ L �̃LX. (4)

Let H
G̃

be the stack obtained from B̃unG× B̃unG by the base change h← × h→ :
HG→ BunG×BunG. Denote by h̃←G , h̃→G the projections in the diagram

B̃unG

��

H
G̃

h̃←Goo

��

h̃→G // B̃unG

��

BunG HG

h←Goo
h→G // BunG

The stack H
G̃

classifies (F,F′, β, x) ∈ HG and lines U,U′ equipped with UN
∼
−→ LF,

U′N
∼
−→ LF′ .

The isomorphism (4) yields a GX-torsor γ̃→ : B̃unG,X ×XG̃rG,X → H
G̃

extending
the GX-torsor

BunG,X ×X GrG,X → BunG,X ×GX GrG,X
γ→

−−→ HG.

Namely, it sends (x, β ′ : F′
∼
−→ F0

G |Dx , β1 : F1
∼
−→ F0

G |X−x , U′N
∼
−→ LF′ , UN1

∼
−→

(LX)(F1,β1,x)) to
(F,F′,U,U′, β : F|X−x

∼
−→ F′|X−x),

where F is obtained as the gluing of F′|X−x with F1|Dx via β−1
1 ◦ β

′
: F′

∼
−→ F1 |D∗x . We

have canonically LF′ ⊗ (LX)(F1,β1,x)
∼
−→ LF, and U = U′ ⊗ U1 is equipped with the

induced isomorphism UN
∼
−→ LF.

Let Sph(G̃rG,X) be the category of GX-equivariant perverse sheaves on G̃rG,X. Now
for S ∈ Sph(G̃rG,X) and T ∈ D(B̃unG) we can form their twisted tensor product (T �̃ S)r ,
which is the descent via γ̃→. Similarly, one may define γ̃← and the complex (T �̃ S)l

on H
G̃

(as in [3, Section 3.2.4].

We also denote the composition H
G̃
→ HG

π
−→ X by π . Let S ∈ Sph(G̃rG,X) and T ∈

Dζ (B̃unG). If a1 ∈ µN (k) ⊂ Aut(U1) acts on S as ζ(a1) then (a, a′) ∈ µN (k)×µN (k) ⊂
Aut(U)× Aut(U′) acts on (T �̃ S)r as ζ(a), so (h̃←G × π)!((T �̃ S)r) ∈ Dζ (B̃unG×X).

As in [9], write PervG,n,X for the category of complexes K ∈ D(G̃rG,X) such that
K[1] is perverse, GX-equivariant, and µN (k) acts on K by ζ . Our choice of EX (see
Section 2.0.1) yields a fully faithful localization functor

τ 0
: PervG,n→ PervG,n,X
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defined in [9, Section 2.3]. Now for ν ∈ 3],+ we get Aν := τ 0(AνE) ∈ PervG,n,X. Define

HνG : Dζ (B̃unG)→ Dζ (B̃unG×X) (5)

by
HνG(T) = (h̃

←

G × π)!((T �̃A−w0(ν))r).

We have used the fact that3],+ is preserved by −w0. This definition agrees with [3]. For
ν ∈ 3],+ write also ICν = (IC(B̃unG,X) �̃A−w0(ν))r . Let

H
ν

G̃ = H
G̃
×HG

H
ν

G.

Then ICν is an irreducible perverse sheaf, the extension by zero from H
ν

G̃. For T ∈

Dζ (B̃unG) we may rewrite

HνG(T) = (h̃
←

G × π)!((h̃
→

G )
∗T ⊗ ICν))[−dim BunG]. (6)

Recall the covariant functor ? : PervG,n,ζ−1 → PervG,n,ζ defined in [9, Remark 2.8]

(see also [22, Remark 2.2]). For ν ∈ 3],+ it sends AνE to A
−w0(ν)
E . More generally, for

S ∈ PervG,n and T ∈ Dζ (B̃unG) set

H←G (S,T) = (h̃
←

G × π)!((T �̃ τ
0(?S))r) and H→G (S,T) = (h̃

→

G × π)!(T �̃ τ
∗(S))l .

These are analogs of the corresponding functors from [3, Section 3.2.4], and they satisfy
similar properties. In particular, H←G (resp., H→G ) defines a left (resp., right) action on
Dζ (B̃unG).

3.2.1. Hecke functors for T . For ν ∈ 3] define the Hecke functor

HνT : Dζ (B̃unT )→ Dζ (B̃unT ×X)

as follows. Our definition will be consistent with (5) but will differ from those of [18].
Recall θKil

= (κ, λ, c) from Section 2.0.3. For ν ∈ 3 the line bundle λν is the
restriction of LT under X → BunT , x 7→ F0

T (νx). Note that λν
∼
−→ �ȟι(ν,ν) by [18,

Lemma 4.1].
Let (ι, 3̃],can) denote the restriction of (ι, 3̃can) to 3]; it is equipped with a W -

equivariant structure. We pick an object (ι/n, 3̃]) in Es(T ]) and a W -equivariant iso-
morphism

(ι/n, 3̃])n
∼
−→ (ι, 3̃],can)

in Es(T ]). Now [18, Lemma 4.1], the above object yields (τ, κ/N, c) ∈ Pθ (X,3]) and a
W -equivariant isomorphism

(τ, κ/N, c)N
∼
−→ θKil

|3] . (7)

Note that κ/N = −ι/n : 3] ⊗ 3] → Z may take odd values, so τ is a super line
bundle in general.
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We also write τ for the line bundle on BunT ] obtained from (7) by applying the cor-
responding functor Pθ (X,3]) → Pic(BunT ]) as in [18, Section 4.2.1]. It is equipped
with a W -equivariant structure and a W -equivariant isomorphism τN

∼
−→ i∗Xλ. Here

iX : BunT ] → BunT is the natural map.
For ν ∈ 3] let mν : B̃unT ×X → B̃unT be the map sending x ∈ X, (F,U) ∈ B̃unT

to (F′ = F(−νx),U′), where

U′ = U⊗ (L
−κ(ν)/N

F )x ⊗ τO(−νx) (8)

equipped with the induced isomorphism U′N
∼
−→ (LT )F′ . It coincides with the map de-

noted m−ν in [18, Section 5.2.3]. The Hecke functor

HνT : Dζ (B̃unT )→ Dζ (B̃unT ×X)

is defined by HνT (K) = (m
ν)∗K[1].

3.3. Proof of Theorem 2.2

We will use the following result. Let GrT , GrB be the affine grassmannians for T ,B.
Let G̃rT → G̃rB → G̃rG be obtained from GrT → GrB → GrG by the base change
G̃rG → GrG. As in [9, Section 4.1], for ν ∈ 3],+ and µ ∈ 3 one has the diagram of
ind-stacks

G̃r
µ

T

t
µ
B
←− G̃r

µ

B

s
µ
B
−→ G̃rG.

The connected component G̃r
µ

T is the one containing tµT (O), and similarly for G̃r
µ

B .

If µ ∈ 3], as in [9, Section 4.2] we denote by aµ : E
ι(µ,µ)/n
c̄ − {0} → �

ȟι(µ,µ)
c̄ − {0}

the map z 7→ z2ȟn.

Proposition 3.2 ([9]). Let ν ∈ 3],+ and µ ∈ 3. The complex a∗µ(t
µ
B)!(s

µ
B)
∗AνE vanishes

unless µ ∈ 3]. In the latter case this complex is constant and identifies canonically with
V ν(µ)[−〈µ, 2ρ̌〉].

3.3.1. Pick ν ∈ 3],+. Consider a version of the basic diagram from [3, Section 3.1.1].
Set Z̄ = H

ν

G̃×B̃unG Bun
B̃

, where we use the map h̃→G : H
ν

G̃→ B̃unG to define the fibred
product.

Lemma 3.3. There is a morphism of stacks φ : Z̄→ Bun
B̃
×X that fits into a commuta-

tive diagram

Bun
B̃
×X

p̃×id
��

Z̄
φ

oo
′h→G //

′p̃
��

Bun
B̃

p̃

��

B̃unG×X H
ν

G̃

h̃←G ×πoo
h̃→G // B̃unG

(9)

Proof. A point of Z̄ is given by

(F′T ,F
′, ν′,U′N

∼
−→ (LT )F′T

,U′NG
∼
−→ LF′) ∈ Bun

B̃
(10)
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and (x,F,F′, β,U′NG
∼
−→LF′ ,U

N
G

∼
−→LF) ∈ H

ν

G̃. For this point we let FT =F′T (w0(ν)x)

with the system of induced inclusions

νλ̌ : Lλ̌
F′T
(〈w0(ν), λ̌〉x) ↪→ Vλ̌FG

for all λ̌ ∈ 3̌+. The map φ sends the above point to

(FT ,F, ν,U
N
G

∼
−→ LF,U

N ∼
−→ (LT )FT ),

where (FT ,U,UN
∼
−→ (LT )FT ) is the image of (F′T ,U

′N ∼
−→ (LT )F′T

, x) underm−w0(ν).
ut

Set
IC(Z̄)ζ = (′p̃)∗ ICν ⊗(′h→G )

∗ ICζ [− dim BunG].

Since h̃→G in (9) is a locally trivial fibration in the smooth topology, IC(Z̄)ζ is an irre-
ducible perverse sheaf on Z̄. For a point (10) let

(a, a′, b′) ∈ µN (k)× µN (k)× µN (k) ⊂ Aut(UG)× Aut(U′G)× Aut(U′)

acting trivially on (F′T ,F
′,F). This 2-automorphism acts on IC(Z̄)ζ as ζ(a/b′).

For each µ ∈ 3pos
G one has the closed embedding iµ : BunB ×X ↪→ BunB ×X

defined in [3, Section 3.1.3]. For µ ∈ 3pos
G ∩3

] we lift it to a map

ĩµ : Bun
B̃
×X ↪→ Bun

B̃
×X

sending (x, ν,F,FT ,UN
∼
−→ (LT )FT ,U

N
G

∼
−→ LF) to (x,F,FT (−µx), Ū,UG), where

(FT (−µx), Ū) = m
µ(FT ,U) is equipped with the induced inclusions

Lλ̌FT (−µx) ↪→ Vλ̌F.

Set µICζ = ĩµ!(ICζ � IC(X)) for brevity.

Proposition 3.4. One has canonically

φ! IC(Z̄)ζ
∼
−→

⊕
µ∈3

pos
G ∩3

]

µICζ ⊗ V ν(µ+ w0(ν)).

3.3.2. Proof of Theorem 2.2

Lemma 3.5. (a) The maps q̃(′h→G ) and mw0(ν)(q̃× id)φ from Z̄ to B̃unT coincide.
(b) For any µ ∈ 3] ∩3pos

G the following diagram is canonically 2-commutative:

Bun
B̃
×X

q̃×id
//

ĩµ
��

B̃unT ×X

mµ×id
��

Bun
B̃
×X

q̃×id
// B̃unT ×X
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Let K ∈ Dζ (B̃unT ). The complex (h̃→G )
∗Eis(K)⊗ ICν over H

ν

G̃ identifies with

ICν ⊗(′p̃)!((′h→G )
∗q̃∗K ⊗ (′h→G )

∗ ICζ )[−dim BunT ]
∼
−→ (′p̃)!((

′h→G )
∗q̃∗K ⊗ IC(Z̄)ζ )[dim BunG− dim BunT ].

So,

HνGEis(K)
∼
−→ (p̃× id)!φ!((′h→G )

∗q̃∗K ⊗ IC(Z̄)ζ )[−dim BunT ]
∼
−→ (p̃× id)!

(
(q̃× id)∗(mw0(ν))∗K ⊗ φ! IC(Z̄)ζ

)
[−dim BunT ]. (11)

By Proposition 3.4, this identifies with the direct sum over µ ∈ 3pos
G ∩3

] of

(p̃× id)!
(
(q̃× id)∗(mw0(ν))∗K ⊗ ĩµ!(ICζ � IC(X))

)
⊗ V ν(µ+ w0(ν))[−dim BunT ]

∼
−→ (p̃× id)! ĩµ!

(
ĩ∗µ(q̃× id)∗(mw0(ν))∗K⊗(ICζ � IC(X))

)
⊗V ν(µ+w0(ν))[−dim BunT ].

By Lemma 3.5, we get

ĩ∗µ(q̃×id)∗(mw0(ν))∗K
∼
−→ (q̃×id)∗(mµ×id)∗(mw0(ν))∗K

∼
−→ (q̃×id)∗Hµ+w0(ν)

T (K)[−1],

becausemw0(ν)(mµ×id) = mµ+w0(ν). So, (11) identifies with the sum overµ ∈ 3pos
G ∩3

]

of

(p̃× id)!
(
(q̃× id)∗Hµ+w0(ν)

T (K)⊗ (ICζ � Q̄`)
)
⊗ V ν(µ+ w0(ν))[−dim BunT ]

∼
−→ (Eis � id)Hµ+w0(ν)

T (K)⊗ V ν(µ+ w0(ν)).

Indeed, by definition,

(Eis � id)(S) = (p̃× id)!((q̃× id)∗S⊗ (ICζ � Q̄`))[−dim BunT ].

Theorem 2.2 is thus reduced to Proposition 3.4.

3.3.3. Proof of Proposition 3.4. As in [3, Section 3.3.1], we fix x ∈ X, and let xZ̄ be
obtained from Z̄ by the base change Spec k

x
−→ X. We make this base change in the basic

diagram to get

Bun
B̃

p̃

��

xZ̄
φ

oo
′h→G //

′p̃
��

Bun
B̃

p̃

��

B̃unG xH
ν

G̃

h̃←Goo
h̃→G // B̃unG

(12)

Let IC(xZ̄)ζ = IC(Z̄)ζ |x Z̄[−1]. We will prove a version of Proposition 3.4 with x fixed.
The maps are denoted by the same letters as for x varying.

For µ ∈ 3
pos
G we have the stacks x,≥µBunB , x,µBunB , x,µBunB defined as in

[3, Section 3.3.2]. We write
x,≥µBun

B̃
, x,µBun

B̃
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and so on for the stacks obtained by the base change Bun
B̃
→ BunB from the previous

ones. Let jµ : x,µ Bun
B̃
↪→ Bun

B̃
be the natural embedding.

Proposition 3.6. The complex j∗µφ! IC(xZ̄)ζ satisfies the following.

(a) It lives in perverse degrees ≤ 0.
(b) The 0-th perverse cohomology sheaf of j∗µφ! IC(xZ̄)ζ identifies with

(µICζ )⊗ V ν(µ+ w0(ν)).

For µ ∈ 3pos
G let Z?,µ (resp., Zµ,?) denote the preimage in xZ̄ of x,µ Bun

B̃
under ′h→G

(resp., φ). For µ,µ′ ∈ 3pos
G let Zµ,µ

′

= Zµ,? ∩ Z?,µ′ . Recall that Zµ,µ
′

is empty unless
µ ≥ µ′.

If ν′ ∈ 3+ with ν′ ≤ ν then we write

Zµ,µ
′,ν′
= Zµ,µ

′

∩
′p̃−1(xH

ν′

G̃
).

Proposition 3.7. For µ,µ′ ∈ 3pos
G and ν′ ∈ 3+ with ν′ ≤ ν let Kµ,µ′,ν′

∈ D(x,µBun
B̃
)

be defined as
φ!(IC(xZ̄)ζ |Zµ,µ′,ν′ ).

(a) The complex Kµ,µ′,ν′ is placed in perverse degrees ≤ 0, with strict inequality unless
µ′ = 0 and ν′ = ν.

(b) The ∗-restriction ofKµ,0,ν to x,µBun
B̃
− x,µ Bun

B̃
is placed in perverse degrees< 0.

(c) The 0-th perverse cohomology sheaf of Kµ,0,ν over x,µBun
B̃

vanishes unless µ ∈
3] ∩3

pos
G , in which case it identifies with

(µICζ )|x,µBun
B̃
⊗ V ν(µ+ w0(ν)).

A version of [3, Lemma 3.3.6] holds with obvious changes. For ν ∈ 3+ write Gr
ν

G̃ =

Gr
ν

G ×GrG G̃rG. For µ ∈ 3 the scheme SµG is defined in [3, Section 3.2.5]. For µ ∈ 3
write

S
µ

G̃
= S

µ
G ×GrG G̃rG.

Lemma 3.8. (a) The map ′h→G : Z
?,µ′
→ x,µ′Bun

B̃
is a locally trivial fibration with

typical fibre Gr
−w0(ν)

G̃
.

(b) The morphism ′h→G : Z
µ,µ′,ν′

→ x,µ′ Bun
B̃

identifies using the notation of (a) with a
subfibration with typical fibre

Gr−w0(ν
′)

G̃
∩ S
−w0(ν)−µ+µ

′

G̃
.

(c) The map φ : Zµ,µ
′,ν′
→ x,µBun

B̃
is a locally trivial fibration with fibre

Grν
′

G̃
∩ S

µ−µ′+w0(ν)

G̃
.
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Proof of Proposition 3.7. The complex IC(xZ̄)ζ |Z?,µ′ is a twisted external product

A
−w0(ν)
E �̃ ICζ |

x,µ′ Bun
B̃

with the notation of Lemma 3.8(a). So, IC(xZ̄)ζ |Zµ,µ′,ν′ is a twisted external product

A
−w0(ν)
E |

Gr
−w0(ν

′)

G̃
∩S
−w0(ν)−µ+µ

′

G̃

�̃ ICζ |
x,µ′ Bun

B̃
.

The complex ICζ |
x,µ′ Bun

B̃
is placed in perverse degrees ≤ 0, with strict inequality unless

µ′ = 0. Further,
A
−w0(ν)
E |

Gr
−w0(ν

′)

G̃

is a constant complex placed in perverse degrees < 0 unless ν′ = ν. Now exactly as
in [3, Section 3.3.7] one proves (a). This only uses the following. For a morphism f :

Y1 → Y2 such that the maximal dimension of the fibres of f is ≤ d and a perverse sheaf
F on Y1 the complex f!F is placed in perverse degrees ≤ d. Point (b) is proved similarly
(as in [3, Section 3.3.7]).

For (c), let 0Zµ,0,ν be the preimage of Bun
B̃
⊂ x,0Bun

B̃
under ′h→G . One has

Kµ,0,ν
|x,µBun

B̃
= φ!(IC(xZ̄)ζ |0Zµ,0,ν ). (13)

A point of x,µBun
B̃

is given by (FT ,F,UN
∼
−→ (LT )FT ,U

N
G

∼
−→ LF). Let

(a, b) ∈ µN (k)× µN (k) ⊂ Aut(UG)× Aut(U)

act trivially on FT ,F. Then (a, b) acts on (13) as ζ(a/b). One shows as in [18, Lemma 11]
that any bounded complex in D(x,µBun

B̃
) on which (a, b) acts as ζ(a/b), vanishes unless

µ ∈ 3].
Assume µ ∈ 3]. The complex IC(xZ̄)ζ |0Zµ,0,ν is the twisted external product, with

the notation of Lemma 3.8(a),

A
−w0(ν)
E |

Gr
−w0(ν)
G̃

∩S
−w0(ν)−µ
G̃

�̃ ICζ |Bun
B̃
, (14)

and A
−w0(ν)
E |

Gr
−w0(ν)
G̃

∼
−→ E

−w0(ν)
E [〈ν, 2ρ̌〉].

Now in the notation of Lemma 3.8(c), φ maps 0Zµ,0,ν → x,µBun
B̃

and (14) becomes
a locally trivial fibration

(Grν
G̃
∩ S

µ+w0(ν)

G̃
)×̃x,µ Bun

B̃
→ x,µBun

B̃

and the complex (EνE)
∗ �̃ (µICζ |x,µ Bun

B̃
)[2〈µ, ρ̌〉] on the source.

Applying now Proposition 3.2 (with the character ζ replaced by ζ−1), we see that
the 0-th perverse cohomology sheaf of Kµ,0,ν

|x,µBun
B̃

identifies with (µICζ )|x,µBun
B̃
⊗

V ν(µ+ w0(ν)). ut

So, Proposition 3.6 is also proved. This concludes the proof of Proposition 3.4 (and hence
of Theorem 2.2).
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3.4. Proof of Theorem 2.1

An analog of [3, Theorem 5.1.5] holds in our situation.

Proposition 3.9. The perverse sheaf ICζ is ULA (universally locally acyclic) with re-
spect to q̃ : Bun

B̃
→ B̃unT .

Proof. Pick λ1, . . . , λr ∈ 3
],+ that form a base in 3] ⊗Z Q. Let m ≥ 2g − 1, and let

M ↪→ Xmr denote the divisor of diagonals.
Let H?

G̃
be the stack classifying

{x1,1, . . . , x1,m, x2,1, . . . , xr,1, . . . , xr,m} ∈ X
mr
− M, (F,UG), (F

′,U′G) ∈ B̃unG

and an isomorphism β : F
∼
−→ F′ |X−{x1,1,...,xr,m} such that for all i and j , F is in posi-

tion λi with respect to F′ at xi,j .
Let h←G , h

→

G : H
?
G̃
→ B̃unG denote the projections sending the above point to

(F,UG) and (F′,U′G) respectively. Let π : H?
G̃
→ Xmr− M be the projection.

Let Z̄ = H?
G̃
×B̃unG Bun

B̃
, where we use h→G to define the fibred product. Let φ :

Z̄ → Bun
B̃
×(Xmr− M) be the map defined as in Lemma 3.3. We get a commutative

diagram

Bun
B̃
×(Xmr− M)

p̃×id
��

Z̄
φ

oo
′h→G //

��

Bun
B̃

p̃

��

B̃unG×(Xmr− M) H?
G̃

h←G ×πoo
h→G // B̃unG

Let AJ : Xmr− M→ BunT ] be the map sending (xi,j ) to

F0
T ]

(∑
i,j

λixi,j

)
;

it is smooth. The composition Z̄
′h→G
−−→ Bun

B̃

q̃
−→ B̃unT equals the composition

Z̄
φ
−→ Bun

B̃
×(Xmr− M)

id×AJ
−−−−→ Bun

B̃
×BunT ]

mq̃
−→ B̃unT .

Here mq̃ denotes the composition Bun
B̃
×BunT ]

q̃×id
−−−→ B̃unT ×BunT ]

a
−→ B̃unT , where

a is the action map defined in [18, Section 5.2.3].
Define Z ⊂ Z̄ as the open substack classifying (xi,j ,F,UG,F′,U′G,F

′

T ,U
′, ν′) ∈ Z̄

such that for all λ̌ ∈ 3̌+ the following hold:

(a) The map ν′λ̌ : Lλ̌
F′T

↪→ Vλ̌
F′G

is not zero at xi,j .

(b) The map νλ̌ : Lλ̌
F′T
(−
∑
i,j 〈λi, λ̌〉xi,j ) ↪→ Vλ̌FG

is zero at no xi,j .
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As in [3, Theorem 5.1.5], the map ′h→G : Z → Bun
B̃

is smooth and surjective, and
φ : Z→ Bun

B̃
×(Xmr− M) is smooth. We get a diagram

Z
′h→G //

b

��

Bun
B̃

q̃

��

Bun
B̃
×BunT ]

mq̃
// B̃unT

where b = (id×AJ) ◦ φ, so b is smooth. It is easy to see that there is a rank one local
system E on Z with EN

∼
−→ Q̄` and an isomorphism

(′h→G )
∗ ICζ

∼
−→ E⊗ b∗(ICζ � IC(BunT ])).

So, it suffices to show that ICζ � IC(BunT ]) is ULA with respect to mq̃. Note that mq̃ is
the composition

Bun
B̃
×BunT ]

δ
−→ Bun

B̃
× B̃unT

pr2
−→ B̃unT ,

where δ composed with the projection to Bun
B̃

(resp., to B̃unT ) is pr1 (resp., mq̃). Since
B̃unT is smooth, ICζ � IC(B̃unT ) is ULA over B̃unT . Since δ is smooth, our claim follows
from [3, 5.1.2(2)]—see Remark 3.10 below. ut

Remark 3.10. Let f : Y → Z be a morphism of schemes with Z smooth. Let H be
a smooth group scheme acting on Z, and assume the stabilizer in H of any point of Z
is smooth. Assume that for any k-point z ∈ Z the map H → Z,h 7→ hz, is smooth.
Let K ∈ D(Y ). Let mf denote the composition H × Y

id×f
−−−→ H × Z

a
−→ Z, where

a is the action map. Then Q̄` � K is ULA with respect to mf . Indeed, mf is written
as the composition H × Y

δ
−→ Z × Y

pr1
−→ Z, where δ composed with the projection

to Y is pr2. The map δ is smooth, because it is obtained by base change from the map
H × Z→ Z × Z, (h, z) 7→ (hz, z).

Theorem 2.1 follows from Proposition 3.9 by applying [3, Section 5.1.2].

3.5. Some gradings

The centre Z(G) acts on BunG by 2-automorphisms, namely z ∈ Z(G) yields an auto-
morphism F → F, f 7→ f z, of F ∈ BunG. This automorphism acts trivially on gF.
We let Z(G) act on B̃unG by 2-automorphisms so that for (F,U) ∈ B̃unG, z ∈ Z(G)
acts naturally on F and trivially on U. For a character χ : Z(G) → Q̄∗` we get the full
triangulated subcategory Dζ,χ (B̃unG) ⊂ Dζ (B̃unG) of objects on which Z(G) acts by χ .

Write C∗(Ǧn) for the cocentre of Ǧn, the quotient of 3] by the root lattice of Ǧn.
One has canonically Hom(Z(Ǧn), Q̄∗`)

∼
−→ C∗(Ǧn). If µ ∈ 3],+ then Z(Ǧn) acts on V µ

by the character, which is the image of µ in C∗(Ǧn).
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There is a natural map ξ : C∗(Ǧn) → Hom(Z(G), µn(k)) sending ν ∈ 3] to the
character ι(ν)/n. The latter sends z ∈ Z(G) to ι(ν)/n(z). If α is a simple coroot ofG then
let δ denote the denominator of ι(α, α)/(2n). Recall that δα is the corresponding simple
root of Ǧn [9, Theorem 2.9]. Since ι(δα)/n lies in the root lattice ofG, (ι(δα)/n)(z) = 1
for z ∈ Z(G) by Remark 3.13 below. Thus, ξ is correctly defined. Write C∗(G)n for the
n-torsion subgroup of C∗(G).

Lemma 3.11. The map C∗(Ǧn) → C∗(G) sending ν ∈ 3] to ι(ν)/n is injective and
takes values in C∗(G)n. The resulting map C∗(Ǧn)→ C∗(G)n is not always surjective.1

Proof. Let us check this case by case for all simple simply-connected groups.
1) If G is simply-laced then for each simple coroot α of G the corresponding root

of Ǧn is nα. Moreover, ι(α) = α̌ for each simple coroot α of G. So, if λ ∈ 3] and ι(λ)
lies in nQ̌, where Q̌ is the root lattice of G, then λ ∈ n3. Our claim follows in this case.
For G simply-laced the map C∗(Ǧn) → C∗(G) identifies C∗(Ǧn) with the n-torsion
subgroup in C∗(G).

2) If G = Sp2m then the nontrivial case is n even. In this case let αi be the standard
simple coroots, so ι(αi) = 2α̌i for i < m and ι(αm) = α̌m. In this case 3] = (n/2)3,
the simple roots of Ǧn are (n/2)αi for i < m and nαm. So, (n/2)αm ∈ C∗(Ǧn)

∼
−→ Z/2Z

is a generator. Since α̌n/2 is not in the root lattice of G, our claim follows, and the map
under consideration is actually an isomorphism.

3) If G = Spin2m+1 with m ≥ 2 then the only nontrivial case is n even and nm/2
even. In this case C∗(Ǧn)

∼
−→ Z/2Z. Let αi denote the standard simple coroots. Then

ι(αi) = α̌i for i < m, and ι(αm) = 2α̌m. The simple roots of Ǧn are nαi for i < m and
(n/2)αm. The root lattice of Ǧn is n3, where3 = {(a1, . . . , am) |

∑
ai = 0 mod 2}. So,

(n/2, . . . , n/2) ∈ 3] generates3]/n3. The root lattice ofG is Zn, and ι(ν)/n sends the
above generator to (1/2, . . . , 1/2), which is not in Zn. The map under consideration is an
isomorphism in this case.

However, if n is even and nm/2 is odd then the map C∗(Ǧn) → C∗(G)n under
consideration is not surjective!

4) For G2 and F4 the claim is trivial, as the centre is trivial. ut

Proposition 3.12. Let ν ∈ 3],+ and K ∈ Dζ (B̃unG). Assume that Z(G) acts on K (by
functoriality from the above 2-action on B̃unG) by a character χ : Z(G) → Q̄∗` . Then
z ∈ Z(G) acts on HνG(K) as χ(z)ζ

(
i(ν)
n
(z)
)
.

Proof. Recall that a point of H
ν

G̃ is given by (F,F′, β : F
∼
−→ F′ |X−x) ∈ H

ν

G and U,U′.
Let Z(G) act on H

ν

G̃ by 2-automorphisms so that it acts naturally on F,F′ and trivially
on U,U′. Let us show that z ∈ Z(G) acts on ICν as ζ

(
i(ν)
n
(z)
)
.

Consider the open substack Hν

G̃
⊂ H

ν

G̃. There is a line bundle, say B, on Hν
G such

that BN is canonically the line bundle with fibre LF ⊗L−1
F′

at (F,F′, β) ∈ Hν
G. The line

bundle is uniquely defined, as the Picard group is torsion free. For z ∈ Z(G) consider the

1 The only case when it is not surjective is indicated in part 3) of the proof.
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2-automorphism of Hν
G acting as z on F,F′. Then z acts on B as (i(ν)/n)(z−1). Actually,

(i(ν)/n)(z−1) ∈ µn(k), because of Remark 3.13 below. We have an isomorphism

η : B(µN )× (H
ν
G ×BunG B̃unG)

∼
−→ Hν

G̃

where we use h→G to define the fibred product in parentheses. It sends a collection (β :
F
∼
−→ F′ |X−x , U′N

∼
−→ LF′ , UN0

∼
−→ k) to (β,F,F′,U,U′), where U = B(F,F′,β)⊗U0⊗

U′ with the induced isomorphism UN
∼
−→ LF. The perverse sheaf ICν is the intermediate

extension of

η∗(Lζ � IC(Hν
G ×BunG B̃unG)).

So, our 2-automorphism z ∈ Z(G) of H
ν

G̃ acts on ICν as ζ
(
i(ν)
n
(z)
)
. The group Z(G) acts

by the above 2-automorphisms on the diagram

B̃unG×X
h̃←G ×π
←−−−− H

ν

G̃

h̃→G
−−→ B̃unG,

and our assertion follows. ut

Remark 3.13. (i) For any ν ∈ 3 the element ι(ν) lies in the root lattice of G. So, if
z ∈ Z(G) then ι(ν)(z) = 1.

(ii) Recall that G is simple and simply-connected. Write Z(G)n for the n-torsion
subgroup of Z(G). If G is simply-laced then Ǧn is isomorphic to the Langlands dual to
G/Z(G)n. This was also observed by Savin [25].

3.5.1. The group T acts naturally on BunT by 2-automorphisms; under this action
t ∈ T acts on LT |BunµT

by the character −κ(µ)(t). In partucular, Z(G) ⊂ T acts

on BunT by 2-automorphisms, and acts trivially on LT . We let Z(G) act on B̃unT by
2-automorphisms, so that z ∈ Z acts on (FT ,U) as z on FT and trivially on U. We
also let Z(G) act on Bun

B̃
by 2-automorphisms so that z ∈ Z acts on (FT ,F,UN

∼
−→

(LT )FT ,U
N
G

∼
−→ LF) as z on FT ,FG and trivially on U,UG. The diagram (3) is equiv-

ariant with respect to this 2-action. The group Z(G) acts trivially on ICζ . So, given
S ∈ Dζ (B̃unT ), if Z(G) acts on S by a character χ : Z(G) → Q̄∗` then Z(G) acts
on Eis(S) also by χ .

Lemma 3.14. Let ν∈3] andK ∈Dζ (B̃unνT ). Then z ∈ Z(G) acts onK as ζ
(
ι(ν)
n
(z−1)

)
.

Proof. Step 1. The group T acts trivially on LT |Bun0
T

. So, T acts by 2-automorphisms of
B̃un0

T , namely, t ∈ T acts as t on F and trivially on U. For any K ∈ Dζ (B̃un0
T ), T acts

trivially on K , so Z(G) also acts trivially on K .
Step 2. Pick x ∈ X, let xmν : B̃unT → B̃unT be the restriction ofmν to x. Then xm

ν

is an isomorphism. From (8) we see if z ∈ Z(G) acts on some S ∈ Dζ (B̃unT ) as χ(z)
then z acts on (xmν)∗S as χ(z)ζ

(
ι(ν)
n
(z)
)
. ut
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3.6. Towards the functional equation

The W -action on 3 preserves 3], so W acts on the left on T ] naturally. For w ∈ W
we also denote by w : BunT ] → BunT ] , F 7→

wF, the extension of scalars map with
respect to the left action map w : T ] → T ]. We also let W act on the left on 3̌, so
wλ̌ = λ̌ ◦ w−1

∈ 3̌. For λ̌ ∈ 3̌ and F ∈ BunT we get Lλ̌
(wF)

∼
−→ Lw

−1λ̌
F canonically. For

wi ∈ W and F ∈ BunT ] one has w2(w1F)
∼
−→

w2w1F naturally.
We also let W act on the left on Ť ]. For a Ť ]-local system E on X we denote by wE

the extension of scalars of E with respect to w : Ť ] → Ť ]. So, for µ ∈ 3] we get
(wE)µ

∼
−→ (E)w

−1µ as local systems on X. For w ∈ W and the map w−1
: BunT ] →

BunT ] we then get (w−1)∗AE
∼
−→ A(wE) canonically.

LetW act naturally on the left on T . For w ∈ W write wF for the extension of scalars
of F ∈ BunT under w : T → T . Write w : BunT → BunT for the map F 7→ wF; this
is a left action of W on BunT . The line bundle LT is naturally W -equivariant. Write also
w : B̃unT → B̃unT for the map (F,U,UN

∼
−→ (LT )F) 7→ (wF,U) with the induced

isomorphism UN
∼
−→ (LT )wF. This defines a left action of W on B̃unT .

For a Ť ]-local system E on X let KE ∈ Dζ (B̃unT ) be the E-Hecke eigensheaf
constructed in [18, Proposition 2.2]; this is a local system over the components B̃unµT ,
µ ∈ 3].

Proposition 3.15. For w ∈ W there is an isomorphism (w−1)∗KE
∼
−→ K(wE).

Proof. In this proof we use the notation of [18, Section 5.2.4]. Recall that K is the ker-
nel of the natural map T ] → T , so K

∼
−→ (3/3]) ⊗ µn. The group H1(X,K)

∼
−→

H1(X,µn)⊗ (3/3
]) is equipped with the skew-symmetric nondegenerate pairing

(·, ·)c : H1(X,K)× H1(X,K)→ µn(k)

described in [18, Proposition 5.1]. Let H0 ⊂ H1(X,µn) be a maximal isotropic subgroup
with respect to the natural pairing H1(X,µn) × H1(X,µn) → H2(X,µ⊗2

n )
∼
−→ µn. Set

H = H0 ⊗ (3/3
]). Then H ⊂ H1(X,K) is a W -invariant maximal isotropic subgroup

with respect to (·, ·)c.
Recall the stacks ′BunT ] and BunT ],H from [18, Section 5.2.4]. The group W acts

naturally on ′BunT ] and BunT , and ′iX : ′BunT ] → BunT is W -equivariant. The line
bundle ′τ on ′BunT ] is naturally W -equivariant. The W -action on ′BunT ] induces a W -
action on BunT ],H so that the diagram ′BunT ] → BunT ],H → BunT is W -equivariant.
The W -actions on BunT ],H and on BunT naturally extend to W -actions on B̃unT ],H and
B̃unT . The map πH : B̃unT ],H → B̃unT is W -equivariant.

Pick a local system AEH on B̃unT ],H whose restriction to ′BunT ] is identified
with AE and such that µN (k) acts on it by ζ . Recall that KE is defined as πH !(AEH ).
Since the map ′BunT ] → B̃unT ],H is W -equivariant, our claim follows. ut

3.6.1. Recall that ρn denotes the half sum of positive roots of Ǧn. If w ∈ W then
w(ρn)−ρn ∈ 3

]. (For w a simple reflection this is clear, and the general case is obtained
by induction on the length of the decomposition into simple reflections.)
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Define the twisted W -action on B̃unT as follows. For µ ∈ 3] write �µ for the T ]-
torsor induced from � via µ : Gm → T ]. By abuse of notation, the corresponding
T -torsor is also denoted �µ. Denote by a : BunT ] × B̃unT → B̃unT the action of BunT ]
on B̃unT defined in [18, Section 5.2.3].

For (F,U,UN
∼
−→ LF) ∈ B̃unT we set

w ∗ (F,U) = a(�w(ρn)−ρn , (wF,U)) = (wF ⊗�w(ρn)−ρn ,U′), (15)

where a is the above action map and U′ is the corresponding 1-dimensional space.

Lemma 3.16. The maps (15) define a left W -action on B̃unT .

Proof. Recall that the line bundles LT on BunT and τ on BunT ] are W -equivariant.
Let W act as above on B̃unT , and on BunT ] × B̃unT as the product of the W -actions

on BunT ] and on B̃unT . Then a is W -equivariant. ut

For w ∈ W denote by K 7→ w ∗K the direct image functor Dζ (B̃unT )→ Dζ (B̃unT ) for
the new action map w∗ : B̃unT → B̃unT .

For each simple root ᾱ : Gm → T ] of Ǧn let aᾱ : Bun1× B̃unT → B̃unT denote the

restriction of a under the push-out map Bun1
ᾱ
−→ BunT ] . Call S ∈ Dζ (B̃unT ) regular if

for each simple root ᾱ of Ǧn one has

(aᾱ)! pr∗2 S = 0. (16)

This defines the full triangulated subcategory Dζ (B̃unT )reg
⊂ Dζ (B̃unT ) of regular com-

plexes. Equivalently, instead of (16) one can require the property pr2! a
∗

ᾱS = 0 to define
the regularity.

Conjecture 3.17. For w ∈ W and S ∈ Dζ (B̃unT )reg there is an isomorphism

Eis(w ∗ S)
∼
−→ Eis(S)

functorial in S ∈ Dζ (B̃unT )reg.

Remark 3.18. Let E be a Ť ]-local system on X and KE ∈ Dζ (B̃unT ) the Hecke eigen-
sheaf associated to E in [18, Proposition 2.2]. Then KE is regular if and only if Eᾱ is
nontrivial for each simple root ᾱ of Ǧn.

3.7. Action of BunZ(G)

The stack BunZ(G) is a group stack acting naturally on BunG by tensor product. For
T ∈ BunZ(F),F ∈ BunG there is a canonical Z/2Z-graded isomorphism

LF⊗T
∼
−→ LF.

In particular, L is canonically trivialized over BunZ(G). So, BunZ(G) acts on B̃unG,
namely T ∈ BunZ(G) sends (F,UG) ∈ B̃unG to (F ⊗ T,U).
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Set (3])̌ = Hom(3],Z). The map ι/n : 3⊗3]→ Z yields a map ι/n : 3→ (3])̌.
Consider for a moment Ť ] = Gm ⊗ (3

])̌ as a torus over Spec k. The map η : T → Ť ]

induced by ι/n gives the push-out map ηX : BunT → Bun
Ť ]

.
Write Z(Ǧn)n for the n-torsor subgroup of Z(Ǧn).

Lemma 3.19. The map η : T → Ť ] sends Z(G) to Z(Ǧn)n.

Proof. For ᾱ ∈ 3] one has ᾱ ◦ η = ι(ᾱ)/n. If ᾱ is a simple root of Ǧn then ι(ᾱ)/n lies
in the root lattice of G. So, for z ∈ Z(G) we get (ι(ᾱ)/n)(z) = 1, and η(z) ∈ Z(Ǧn). To
see that η(z) ∈ Z(Ǧn)n, note that if ν ∈ 3] then ι(ν) lies in the root lattice of G. ut

For T ∈ BunZ(G) let Tη := ηX(T) denote the corresponding Z(Ǧn)n-torsor on X. For
ν ∈ 3] denote by Tν

η,ζ̄
the Q̄`-local system on X obtained from Tη via the push-out by

Z(Ǧn)n
ν
−→ µn(k)

ζ̄
−→ Q̄∗`

For T ∈ BunZ(G) denote by σT : B̃unG→ B̃unG the automorphism (F,U) 7→(F⊗T,U).

Proposition 3.20. Let ν ∈ 3],+ and T ∈ BunZ(G). Then the functors Dζ (B̃unG) →
Dζ (X × B̃unG) given by

K 7→ pr∗1 T
ν

η,ζ̄
⊗ HνG(σ

∗

TK) and K 7→ (id× σT)∗HνG(K)

are naturally isomorphic.

Proof. Recall from Section 3.2 that H
ν

G̃ classifies (F,F′ ∈ BunG, x ∈ X, β :
F
∼
−→ F′ |X−x,U,U

′) such that F′ is in position ≤ ν with respect to F at x, UN
∼
−→ LF,

U′N
∼
−→ LF′ .

Let BunZ(G) act on H
ν

G̃ so that T ∈ BunZ(G) sends the above point to the collection

(F ⊗ T,F′ ⊗ T, x, β,U,U′)

with the induced isomorphisms UN
∼
−→LF⊗T and U′N

∼
−→LF′⊗T . Write σT : H

ν

G̃→H
ν

G̃

for this map for a given T. We get a commutative diagram

X × B̃unG

id×σT
��

H
ν

G̃

σT

��

π×h̃←Goo
h̃→G // B̃unG

σT

��

X × B̃unG H
ν

G̃

π×h̃←Goo
h̃→G // B̃unG

(17)

Note that Hν

G̃
is preserved by σT . The Hecke functor HνG is defined by formula (6).

Let us establish an isomorphism

σ ∗T ICν
∼
−→ ICν ⊗ π∗Tν

η,ζ̄
(18)

over H
ν

G̃. Since both are irreducible perverse sheaves, it suffices to establish it over Hν

G̃
.
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As in the proof of Proposition 3.12, there is a line bundle B on Hν
G such that BN is

canonically the line bundle with fibre LF ⊗ L−1
F′

at (F,F′, β, x) ∈ Hν
G. The line bundle

is uniquely defined, as the Picard group is torsion free. We get an isomorphism

η : B(µN )× (H
ν
G ×BunG B̃unG)

∼
−→ Hν

G̃

where we use h→G to define the fibred product in parentheses. It sends a collection (β :
F
∼
−→ F′ |X−x, U

′N ∼
−→ LF′ , U

N
0
∼
−→ k) to (β,F,F′,U,U′), where U = B(F,F′,β) ⊗ U0

⊗U′ with the induced isomorphism UN
∼
−→ LF. The perverse sheaf ICν is the intermedi-

ate extension of
η∗(Lζ � IC(Hν

G ×BunG B̃unG)).

Viewing T as a T -torsor on X, for µ̌ ∈ 3̌ we get the line bundle L
µ̌

T on X. Over Hν
G one

has an isomorphism
σ ∗TB

∼
−→ B⊗ π∗L

−ι(ν)/n

T ,

where π : Hν
G → X sends (F,F′, β, x) to x. Note that Lι(ν)/nT is a µn-torsor on X that

we see as a map X → B(µn). The restriction of Lζ̄ under the latter map identifies with
Tν
η,ζ̄

, because the composition Z(G)
η
−→ Z(Ǧn)n

ν
−→ µn equals ι(ν)/n. The isomorphism

(18) follows. Our claim follows now from the diagram (17). ut

This applies to Eisenstein series as follows. Recall that a point of Bun
B̃

is a collection
(FT ,F, ν,U,UG), where νλ̌ : Lλ̌FT ↪→ Vλ̌F are inclusions of coherent sheaves for each

dominant weight λ̌.
Let BunZ(G) act on Bun

B̃
so that T ∈ BunZ(G) sends (FT ,F, ν,U,UG) to (FT ⊗ T,

F ⊗ T, ν,U,UG). This action preserves the open substack Bun
B̃

. Let BunZ(G) act on
B̃unT so that T sends (FT ,U) to (FT ⊗ T,U). The diagram

B̃unT
q̃
←− Bun

B̃

p̃
−→ B̃unG

is BunZ(G)-equivariant.

Lemma 3.21. Let K ∈ Dζ (B̃unT ) and T ∈ BunZ(G). One has an isomorphism

σ ∗TEis(K)
∼
−→ Eis(σ ∗TK)

functorial in K ∈ Dζ (B̃unT ).
Proof. Write also σT : Bun

B̃
→ Bun

B̃
for the above action map by T. Then one has

σ ∗T ICζ
∼
−→ ICζ canonically. Our claim follows. ut

4. Parabolic geometric Eisenstein series

4.1. Definitions

Let P ⊂ G be a parabolic containing B, let M be its Levi factor, and write IM ⊂ I for
the corresponding subset. Let LM denote the restriction of L under BunM → BunG. Let
B̃unM denote the gerb of N -th roots of LM .
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The notations B̃unP ,BunP are those of [3]. Let B̃un
P,G̃

, Bun
P,G̃

be obtained from
B̃unP , BunP by the base change B̃unG → BunG. Let B̃un

P̃
, Bun

P̃
be obtained from

B̃un
P,G̃

, Bun
P,G̃

by the base change B̃unM → BunM .
The Eisenstein series functor EisM : Dζ (B̃unM)→ Dζ (B̃unG) is defined as follows.

By abuse of notation, the diagram of projections is denoted

B̃unM
q̃
←− B̃un

P̃

p̃
−→ B̃unG . (19)

A point of B̃un
P̃

is given by a point (FM ,F, ν) ∈ B̃unP , where

νV : V
U(P )

FM
↪→ VF

is a morphism of coherent sheaves for each representation V of G; U,UG are Z/2Z-
graded lines of parity zero equipped with UN

∼
−→ (LM)FM , UNG

∼
−→ LF. The map q̃ sends

the above point to (FM ,U), and p̃ sends it to (F,UG).
Let Bun

P̃
⊂ B̃un

P̃
be the preimage of BunP in B̃un

P̃
. For a point of BunP we have

canonically (LM)FM
∼
−→ LF. One defines Bun

P,G̃
similarly. We get an isomorphism

B(µN )× Bun
P,G̃

∼
−→ Bun

P̃
(20)

sending (FP ,UG,U0 ∈ B(µN )) with UN0
∼
−→ k to (FP ,UG,U) with U = UG⊗U−1

0 . By
definition,

q̃(FM ,F, ν,U,UG) = (FM ,U) and p̃(FM ,F, ν,U,UG) = (F,UG).

View Lζ � IC(Bun
P,G̃

) as a perverse sheaf on Bun
P̃

via (20). We still denote by ICζ the
intermediate extension of this perverse sheaf to B̃un

P̃
. Write j

P̃
: Bun

P̃
↪→ B̃un

P̃
for the

natural open immersion.

Definition 4.1. For K ∈ Dζ (B̃unM) set

EisM(K) = p̃!(q̃
∗K ⊗ ICζ )[− dim BunM ].

This gives a functor Dζ (B̃unM)→ Dζ (B̃unG).

4.1.1. Set 3M,0 = {λ ∈ 3 | 〈λ, α̌i〉 = 0 for all i ∈ IM}. Let Z(M)0 = Gm ⊗ 3M,0;
this is the connected component of unity of the centre of M . Denote by 3̌M,0 the lattice
dual to 3M,0. To µ ∈ 3G,P we associate the character 3M,0 → Z, λ 7→ κ(λ, µ),
denoted κM(µ). This is well-defined, because κ(αi) ∈ Zα̌i , and gives a homomorphism
κM : 3G,P → 3̌M,0.

The group Z(M)0 acts on BunM by 2-automorphisms naturally. As in Section 2.0.2
for T one checks the following. If θ ∈ 3G,P and F ∈ BunθM then Z(M)0 acts on (LM)F
by the character −κM(θ). The following is a generalization of [18, Proposition 2.1].

Proof of Proposition 2.6. A k-point F ∈ BunθM defines a map f : B(Z(M)0)→ BunθM .

Let B̃(Z(M)0) be the restriction of the gerb B̃unθM → BunθM under this map. As above,
we get the category Dζ (B̃(Z(M)0)). By [18, Lemma 5.3], Dζ (B̃(Z(M)0)) = 0 unless
κM(θ) ∈ N3̌M,0. Our claim follows. ut
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Proposition 4.2. The complexes ICζ and (j
P̃
)!j
∗

P̃
ICζ are ULA with respect to the map

q̃ : B̃un
P̃
→ B̃unM .

4.1.2. Proof of Proposition 4.2. The argument from [3, Proposition 5.1.5] applies in our
setting. For FM ,F′M ∈ BunM(k) write FM ≺ F′M if there is λ ∈ 3+ such that (FM ,F′M)
is the image under

Hλ
M

h←M×h
→
M

−−−−−→ BunM ×BunM

of some k-point. Let ∼ be the equivalence relation on BunM(k) generated by ≺. Write
3
]
G,P for the image of the natural map 3]→ 3G,P .

Let 3pos
G,P be the Z+-span of αi, i ∈ I − IM , in 3G,P . For θ ∈ 3pos

G,P we have the

open substack B̃un≤θP defined in [3, Section 5.3.1]. Recall that
⋃
θ B̃un≤θP = B̃unP , so it

is sufficient to show that ICζ is ULA with respect to B̃un≤θ
P̃
→ B̃unM for any θ ∈ 3θG,P .

Let
◦

BunM denote the biggest open substack of BunM such that for its preimage
◦

B̃unM

in B̃unM the perverse sheaf ICζ is ULA with respect to B̃un≤θ
P̃
×BunM

◦

BunM →
◦

B̃unM .

Proposition 4.3. If FM ≺ FM are k-points of BunM then F′M ∈
◦

BunM if and only if

FM ∈
◦

BunM .

Proof. The argument from [3, Proposition 5.3.4] applies. One only needs to check the
following. Pick λ ∈ 3+. Consider the stack Z classifying

(x ∈ X,FG,FM ,F
′

G,F
′

M , κ, κ
′, β, βM ,U,U

′,UG,U
′

G)

where U,U′,UG,U
′

G are lines equipped with isomorphisms

UN
∼
−→ LFM , U′N

∼
−→ LF′M

, UNG
∼
−→ LFG , U′

N
G

∼
−→ LF′G

,

(FG,FM , κ,U,UG) ∈ B̃un
P̃

, (F′G,F
′

M , κ
′,U′,U′G) ∈ B̃un

P̃
, and

β : FG
∼
−→ F′G |X−x, βM : FM

∼
−→ F′M |X−x

such that

• F′G is in G-position λ with respect to FG at x;
• F′M is in M-position λ with respect to FM at x;
• the maps κ : V U(P )FM

→ VFG have no zero at x for any V ∈ Rep(G);

• the maps κ ′ : V U(P )
F′M

→ VF′G
have no zero at x for any V ∈ Rep(G).

We have two smooth projections B̃un
P̃

h←

←−− Z
h→

−−→ B̃un
P̃

, where h← and h→ send the
above point to

(FG,FM , κ,U,UG) and (F′G,F
′

M , κ
′,U′,U′G)
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respectively. Then the line bundle on Z with fibre LFG ⊗ LF′M
⊗ L∗FM

⊗ L∗
F′G

is canonically trivialized. So, the perverse sheaves (h→)∗ ICζ [dim.rel(h→)] and
(h←)∗ ICζ [dim.rel(h←)] are locally isomorphic in the smooth topology of Z. The rest
of the argument is exactly as in [3, Proposition 5.3.4]. ut

One now finishes the proof of Proposition 4.2 as in [3, Theorem 5.1.5]. Theorem 2.4 also
follows from Proposition 4.2 as in the case M = T .

4.2. Hecke functors for M

Let L also denote the restriction of L under GrM → GrG. Let G̃rM → G̃rP be obtained
from GrM → GrP by the base change G̃rG → GrG. Let PervM,G,n be the category of
M(O)-equivariant perverse sheaves on G̃rM , on which µN (k) acts by ζ .

Let3+M ⊂ 3 be the coweights of T dominant forM . Set3],+M = 3] ∩3+M . As in [9,
Section 4.1.1] for ν ∈ 3],+M we get the perverse sheaf Aν

M,E ∈ PervM,G,n on G̃rM . Here
E is the square root of �(O) that we picked in Section 3.2.

Recall that M̌n ⊂ Ǧn is the standard Levi subgroup corresponding to IM . Note that
3
],+
M are exactly the dominant weights of M̌n. In [9, Section 4.2] we introduced a tensor

category Perv\M,G,n (obtained from PervM,G,n by changing the commutativity constraint)

and established an equivalence Perv\M,G,n
∼
−→ Rep(M̌n). For V ∈ Rep(M̌n) we denote

by Loc(V ) ∈ PervM,G,n the corresponding perverse sheaf on G̃rM . If V is an irreducible
M̌-module with highest weight ν then Loc(V ) = Aν

M,E. We write Locζ (V ) if we need to
stress the dependence on ζ .

The Hecke stack HM , the diagram

B̃unM ×X

��

H
M̃

��

h̃←M×πoo
h̃→M // B̃unM

��

BunM ×X HM

h←M×πoo
h→M // BunM

and GrM,X are defined as forG. The stack H
M̃

classifiesM-torsors FM ,F′M onX, x ∈ X,
βM : FM

∼
−→ F′M |X−x together with lines U,U′ equipped with

UN
∼
−→ (LM)FM , U′N

∼
−→ (LM)F′M

.

The line bundle LX on GrM,X is the restriction of LX under GrM,X → GrG,X. We
similarly have the isomorphisms γ← (resp., γ→)

BunM,X ×MX
GrM,X

∼
−→ HM

such that the projection to the first term corresponds to h←M (resp., h→M ). Over the stack
BunM,X ×MX

GrM,X we have canonically the isomorphism

(γ→)∗(h←M )
∗LM

∼
−→ LM �̃LX.
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Let PervM,G,n,X be the category of K ∈ D(G̃rM,X) such that K[1] is perverse,
MX-equivariant, and µN (k) acts on K by ζ . We have the fully faithful functor defined
in [9, Section 4.1.2]

τ 0
: PervM,G,n→ PervM,G,n,X .

For ν ∈ 3],+M set AνM = τ
0(Aν

M,E) ∈ PervM,G,n,X.
Consider the MX-torsor

γ̃→ : B̃unM,X ×XG̃rM,X → H
M̃
.

For MX-equivariant perverse sheaf S on G̃rM,X and T ∈ D(B̃unM) one defines their
twisted exterior product (T �̃ S)r on H

M̃
. This is the descent via γ̃→; it is normalized to

be perverse for T, S perverse. Similarly, one gets (T �̃ S)l on H
M̃

.
Now for ν ∈ 3],+M let

HνM : Dζ (B̃unM)→ Dζ (B̃unM ×X)

be given by

HνM(T) = (h̃
←

M × π)!((T �̃A
−wM0 (ν)

M )r).

As for G, one has the covariant functor ? : PervM,G,n,ζ−1 → PervM,G,n,ζ . For

ν ∈ 3
],+
M it sends Aν

M,E to A
−wM0 (ν)

M,E . For S ∈ PervM,G,n, T ∈ Dζ (B̃unM) we define

H←M (S,T) = (h̃
←

M × π)!(T �̃ τ
0(?S))r and H→M (S,T) = (h̃

→

M × π)!(F �̃ τ
0(S))l .

4.3. Geometric restriction functors

Write 3G,P = 3/{αi | i ∈ IM} for the lattice of cocharacters of M/[M,M]. Let 3̌G,P
denote the dual lattice. For θ ∈ 3G,P the connected component GrθM is the one containing
tνM(O) for any ν ∈ 3 over θ . For θ ∈ 3G,P denote by GrθP the ind-scheme classifying
(FG, β : FG

∼
−→ F0

G |D
∗
x
) ∈ GrG such that for any λ̌ ∈ 3̌+ ∩ 3̌G,P the corresponding

map

κ λ̌ : Lλ̌
F0
T

(−〈θ, λ̌〉x)→ Vλ̌FG

is regular and has no zero. This ind-scheme was denoted SθP in [3, Section 4.3.1].

Let G̃r
θ

M → G̃r
θ

P be obtained from GrθM → GrθP by the base change G̃rG → GrG.
For θ ∈ 3G,P we have the diagram

G̃r
θ

M

t̃θP
←− G̃r

θ

P

s̃θP
−→ G̃rG.

The next result follows from [9].
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Proposition 4.4. There is a functor gRes : Perv\G,n→ Perv\M,G,n given by

K 7→
⊕

θ∈3G,P

(t̃θP )!(s̃
θ
P )
∗K[〈θ, 2ρ̌ − 2ρ̌M 〉], (21)

and the following diagram of categories naturally commutes:

Perv\G,n

gRes
��

∼ // Rep(Ǧn)

Res
��

Perv\M,G,n
∼ // Rep(M̌n)

Here the horizontal equivalences are those constructed in [9], and Res is the restriction
functor for M̌n ↪→ Ǧn.

Let 3]G,P denote the image of the map 3] → 3G,P given by µ 7→ µ. Note that 3]G,P
is a subgroup of finite index in the free abelian group 3G,P , so 3]G,P is also free. In the

formula (21) for gRes one may replace 3G,P by 3]G,P .

The centre Z(M̌n) is not connected in general under our assumptions. Write C∗(M̌n)

for the cocentre of M̌n, that is, the quotient of3] by the root lattice of M̌n. We have canon-
ically Hom(Z(M̌n),Gm)

∼
−→ C∗(M̌n) by [28, 2.15(b)]. The natural map cP : C∗(M̌n)→

3
]
G,P is surjective, but not injective in general. Its kernel is finite and coincides with the

torsion subgroup in C∗(M̌n). Indeed, if
∑
i aiαi ∈ 3 vanishes in 3G,P then it is of the

form
∑
i∈IM

aiαi , and a multiple of this element lies in the root lattice
⊕

i∈IM
δiαiZ

of M̌n.
Recall that for ν ∈ 3],+M we denote by U ν the irreducible representation of M̌n with

highest weight ν.
For ν ∈ 3+M lying over θ ∈ 3G,P let t̃νP : G̃r

ν

P → G̃r
ν

M be the map obtained from t̃θP
by the base change G̃r

ν

M → G̃r
θ

M . For µ ∈ 3],+ recall the local system E
µ

E over G̃r
µ

G.
From Proposition 4.4 one gets the following.

Corollary 4.5. Let ν ∈ 3+M lying over θ ∈ 3G,P . Let µ ∈ 3],+. The complex

(t̃νP )!(E
µ

E)|G̃rνP∩G̃rµG
[〈µ, 2ρ̌〉 + 〈ν, 2ρ̌ − 2ρ̌M 〉]

is placed in perverse degrees≤ 0, its 0-th perverse cohomology sheaf vanishes unless ν ∈
3
],+
M , in which case it identifies canonically with Aν

M,E ⊗ Hom
M̌n
(U ν, V µ). The space

Hom
M̌n
(U ν, V µ) admits a base formed by those connected components C of G̃r

ν

P ∩ G̃r
µ

G

of dimension 〈µ+ ν, ρ̌〉 for which EµE descends under the map t̃νP : C → G̃r
ν

M .

Note that the descent property in Corollary 4.5 can be checked at the generic point of the
component C.
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4.4. Proof of Theorem 2.7

The proof of [3, Theorem 2.3.7] essentially applies in our setting with some minor
changes that we explain. To simplify notation, we prove a version of Theorem 2.7 with
x ∈ X fixed.

4.4.1. We have the stack x,∞B̃unP defined in [3, Section 4.1.1]. For ν ∈ 3+M one also
has the diagram x,νB̃unP ↪→ x,≥νB̃unP ↪→ x,∞B̃unP defined in [3, Sections 4.1.1 and
4.2.1], the first map is an open immersion, the second one is a closed immersion. Let
x,νB̃un

P̃
↪→ x,≥νB̃un

P̃
↪→ x,∞B̃un

P̃
be obtained from the above by the base change

B̃unM × B̃unG→ BunM ×BunG.
Recall the stacks x,∞ZP,M and x,∞ZP,G defined in [3, Sections 4.1.2 and 4.1.4]. We

similarly define the stacks x,∞ZP̃ ,M̃ and x,∞ZP̃ ,G̃ included in the diagrams

x,∞B̃un
P̃

q̃P
��

x,∞ZP̃ ,M̃

′q̃P

��

′h̃←Moo
′h̃→M //

x,∞B̃un
P̃

q̃P
��

B̃unM xHM̃

h̃←Moo
h̃→M // B̃unM

and

x,∞B̃un
P̃

p̃P
��

x,∞ZP̃ ,G̃

′p̃P

��

′h̃←Goo
′h̃→G //

x,∞B̃un
P̃

p̃P
��

B̃unG xHG̃

h̃←Goo
h̃→G // B̃unG

Both squares in each of the above diagrams are cartesian.
A point of x,∞B̃un

P̃
is (FM ,FG, κ) ∈ x,∞B̃unP and (FM ,U) ∈ B̃unM , (FG,UG) ∈

B̃unG. Let µN (k) × µN (k) act on x,∞B̃un
P̃

by 2-automorphisms so that (a, aG) acts as
a on U, as aG on UG and trivially on (FM ,FG, κ). Denote by

Dζ (x,∞B̃un
P̃
) ⊂ D(x,∞B̃un

P̃
)

the full subcategory of objects on which any (a, aG) ∈ µN (k)×µN (k) acts by ζ(aG/a).
Now for S ∈ PervM,G,n, T ∈ Dζ (x,∞B̃un

P̃
) one defines the functors

xH←P,M , xH→P,M : PervM,G,n×Dζ (x,∞B̃un
P̃
)→ Dζ (x,∞B̃un

P̃
)

and
xH←P,G, xH→P,G : PervG,n×Dζ (x,∞B̃un

P̃
)→ Dζ (x,∞B̃un

P̃
)

as in [3, Sections 4.1.2–4.1.4]. In particular, for ν ∈ 3],+M we get

xHνP,M : Dζ (x,∞B̃un
P̃
)→ Dζ (x,∞B̃un

P̃
)
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given by xHνP,M(T) = xH←P,M(A
ν
E,T). For λ ∈ 3],+ we get

xHλP,G : Dζ (x,∞B̃un
P̃
)→ Dζ (x,∞B̃un

P̃
)

given by xHλP,G(T) = xH←P,G(A
λ
E,T).

For ν ∈ 3],+M we define the perverse sheaf ICν,ζ ∈ Dζ (x,≥νB̃un
P̃
) as follows. As in

[3, Section 4.2.3] we denote by

jν : x,νB̃un
P̃
↪→ x,≥νB̃un

P̃

the corresponding open immersion. The stack x,νB̃un
P̃

classifies (F1
M ,FG, κ)∈x,0B̃unP ,

FM ∈ BunM , βM : FM
∼
−→ F1

M |X−x such that FM is in position ν with respect to F1
M at

x, (FM ,U) ∈ B̃unM , (FG,UG) ∈ B̃unG.
The projection x,νB̃un

P̃
→ x,0 BunP ×BunG B̃unG sending the above point to

(F1
M ,FG, κ,UG) is a locally trivial fibration (in the smooth topology) with typical fibre

G̃r
ν

M,x . As in Section 4.2, one gets the twisted exterior product

IC(x,0BunP ×BunG B̃unG) �̃AνM,E

on x,νB̃un
P̃

. Then ICν,ζ is defined as its intermediate extension under jν . In particular,
ICζ = IC0,ζ on x,≥0 B̃un

P̃
= B̃un

P̃
.

The following are analogs of [3, Theorems 4.1.3 and 4.1.5].

Proposition 4.6. For ν ∈ 3],+M one has canonically xHνP,M(ICζ )
∼
−→ IC

−wM0 (ν),ζ
.

Proposition 4.7. For λ ∈ 3],+ there is a canonical isomorphism

xHλP,G(ICζ )
∼
−→

⊕
ν∈3

],+
M

ICν,ζ ⊗Hom
M̌n
(U ν, V λ).

Corollary 4.8. The two functors PervG,n→ Dζ (x,∞B̃un
P̃
),

S 7→ xH←P,G(S, ICζ ) and S 7→ xH→P,M(gRes(S), ICζ ),

are canonically isomorphic. This isomorphism is compatible with the tensor structure on
PervG,n as in [3, Corollary 4.7].

Now as in [3, Section 4.1.8] combination of Propositions 4.6 and 4.7 implies Theorem 2.7.
The proof of Proposition 4.6 is completely analogous to [3, Theorem 4.1.3].

4.4.2. Proof of Proposition 4.7. The proof of [3, Theorem 4.1.5] applies in our situation
with the role of [3, Corollary 4.3.5] replaced by our Corollary 4.5.



3214 Sergey Lysenko

For the convenience of the reader recall that in the proof of [3, Theorem 4.1.5] for
ν, ν′, η ∈ 3+M , λ′ ∈ 3+G the following locally closed substack Zν,ν

′,η,λ′

P,G ↪→ x,∞ZP,G
plays a key role. It classifies

(F1
M ,FG, κ) ∈ x,0B̃unP , FM

∼
−→ F1

M |X−x, F
2
M

∼
−→ F1

M |X−x, F
′

G

∼
−→ FG |X−x

such that FM is in position ν with respect to F1
M at x, F2

M is in position η with respect to
F1
M at x, FM is in position ν′ with respect to F2

M at x, (F2
M ,F

′

G, κ) ∈ x,0B̃unP , and F′G is
in position λ′ with respect to FG at x.

It is included into the diagram

x,νB̃unP
′h←G
←−− Z

ν,ν′,η,λ′

P,G

′h→G
−−→ x,ν′B̃unP ,

where ′h←G sends the above point to ((F1
M ,FG, κ) ∈ x,0B̃unP ,FM

∼
−→ F1

M |X−x). The
map ′h→G sends the above point to

((F2
M ,F

′

G, κ) ∈ x,0B̃unP ,FM
∼
−→ F2

M |X−x)

In our situation we define Zν,ν
′,η,λ′

P̃ ,G̃
by the base change x,∞ZP̃ ,G̃ → x,∞ZP,G. Let

Kν,ν′,η,λ′ denote the !-direct image under

′h̃←G : Z
ν,ν′,η,λ′

P̃ ,G̃
→ x,νB̃un

P̃

of the ∗-restriction of (A−w0(λ)
E �̃ ICζ )r to Zν,ν

′,η,λ′

P̃ ,G̃
. As in [3, Section 4.3.8] one shows

the following.

(a) The complex Kν,ν′,η,λ′ is placed in perverse degrees ≤ 0, and the inequality is strict
unless ν′ = 0, λ′ = λ and ν = η.

(b) The ∗-restriction of Kν,0,ν,λ to x,νB̃un
P̃
− x,νBun

P̃
is placed in strictly negative per-

verse degrees.
(c) The 0-th perverse cohomology sheaf of Kν,0,ν,λ over x,νBun

P̃
identifies canonically

with ICν,ζ ⊗Hom
M̌n
(U ν, V λ).

Point (c) here uses Corollary 4.5. We are done.

4.5. Description of ICζ

In this section we give a description of ICζ generalizing the main result of [2] to our
twisted setting.

We freely use some notation of [2]. In particular, 3pos
G,P is the Z+-span of {αi |

i ∈ I − IM} in 3G,P . If θ ∈ 3pos
G,P is the projection under 3→ 3G,P of θ̃ ∈ Span(αj ),

j ∈ I − IM , then [(θ) = wM0 (θ̃). Here wM0 is the longest element of the Weyl group of
M . For θ ∈ 3pos

G,P the scheme Gr+,θM is defined in [2, Proposition 1.7].
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Let ǔn denote the Lie algebra of the unipotent radical of the Borel subgroup B̌n ⊂ Ǧn.
More generally, let ǔn(P ) denote the Lie algebra of the unipotent radical of the standard
parabolic P̌n ⊂ Ǧn corresponding to IM ⊂ I.

For ν ∈ C∗(M̌n) and V ∈ Rep(M̌n) write Vν for the direct summand of V on which
Z(M̌n) acts by ν. In particular, we have the M̌n-module (ǔn(P ))ν .

Lemma 4.9. If ν ∈ C∗(M̌n) and (ǔn(P ))ν is not zero then it is an irreducible M̌n-
module.

Proof. Each root space of Ťn in ǔn(P ) is 1-dimensional, so our claim follows from
Lemma 4.10 below. ut

Lemma 4.10. Let H be a connected reductive group over k, and Ȟ the Langlands dual
over Q̄`. Let ν1, ν2 be dominant coweights of H such that ν1 = ν2 in π1(H). Then
the irreducible Ȟ -representations V ν1 , V ν2 with highest weights ν1, ν2 admit a common
weight.

Proof. Let θ be the image of νi in π1(H). If θ = 0 then they both admit the zero weight
space. Assume θ 6= 0. Let µi be a dominant coweight of H satisfying µi ≤ νi and
minimal with this property. Then the orbit GrµiH in closed in the connected component
GrθH of the affine grassmannian of H . Since GrθH admits a unique closed H(O)-orbit,
µ1 = µ2. ut

Recall the functor Loc : Rep(M̌n)
∼
−→ Perv\M,G,n from Section 4.2.

Lemma 4.11. Let ν ∈ 3
],+
M be such that the irreducible M̌n-module U ν appears in

ǔn(P ), and let θ be the image of ν in 3pos
G,P . Then Loc(U ν) over G̃rM is the extension by

zero from G̃r
+,θ

M .

Proof. Note that ν lies in the Z+-span of positive coroots of G. Let θ̃ be the unique
element in the Z+-span of {αi | i ∈ I − IM} such that θ̃ = ν in 3G,P . So, ν = θ̃ + ν1,
where ν1 is in the Z+-span of positive coroots ofM . Now wM0 (ν) is a positive root of Ǧn,
and wM0 (ν) = ν in 3G,P . So, θ̃ ≤M wM0 (ν). This implies ν ≤M wM0 (θ̃) = [(θ). ut

Set
J = {ν ∈ C∗(M̌n) | (ǔn(P ))ν 6= 0}.

Lemma 4.12. The restriction of cP : C∗(M̌n)→ 3
]
G,P to J is injective.

Proof. Let C∗r (M̌n) ⊂ C
∗(M̌n) be the subgroup generated by the roots of Ǧn. It is a free

abelian group, so the intersection of C∗r (M̌n) with the kernel of cP is {0}. The restriction
of cP to C∗r (M̌n) is injective, and one has J ⊂ C∗r (M̌n). ut

Set 3], pos
G,P = 3

]
G,P ∩3

pos
G,P . For θ ∈ 3]G,P and V ∈ Rep(M̌n) set

Vθ =
⊕

ν∈C∗(M̌n), cP (ν)=θ

Vν .
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Remark 4.13. For i ∈ I let δi denote the denominator of ι(αi, αi)/(2n). Recall that δiαi
is the corresponding simple root of Ǧn. If i ∈ I− IM then δiαi ∈ J . The set J may also
contain other elements.

4.5.1. Given θ ∈ 3pos
G,P , let U(θ) be a decomposition of θ as in [2, Section 1.4], recall

the isomorphism of [2, Proposition 1.9]

U(θ)B̃unP
∼
−→ BunP ×BunMH

+,U(θ)
M . (22)

Let U(θ)B̃un
P̃

be obtained from U(θ)B̃unP by the base change B̃un
P̃
→ B̃unP . We will

describe the ∗-restriction of ICζ under U(θ)B̃un
P̃
↪→ B̃un

P̃
.

Recall that if U(θ) is the decomposition

θ =
∑
m

nmθm (23)

then |U(θ)| =
∑
m nm, XU(θ)

=
∏
mX

(nm), and X̊U(θ) is the complement of all the
diagonals in XU(θ). Recall that Xθ is the scheme of 3pos

G,P -valued divisors of degree θ ,
and X̊U(θ)

⊂ Xθ is locally closed. Set unsX̊U(θ)
= XU(θ)

− M, where M is the divisor of
all the diagonals. Here ‘uns’ stands for ‘unsymmetrized’.

The stack H
+,U(θ)
M classifies D ∈ X̊U(θ), FM ,F

′

M , an isomorphism βM :

FM
∼
−→ F′M |X−D such that for each V ∈ Rep(G) the induced map

βVM : V
U(P )

FM
↪→ V

U(P )

F′M

is an inclusion, and βM induces an isomorphism

FM/[M,M]
∼
−→ F′M/[M,M](−D).

Note that the Plücker relations for βVM hold automatically. So, here we think of F′M as the
‘background’ M-torsor. The stack (22) classifies the same data together with a P -torsor
F′P and an isomorphism F′P ×P M

∼
−→ F′M .

Let H
+,U(θ)

M̃
be obtained from H

+,U(θ)
M by the base change B̃unM × B̃unM →

BunM ×BunM . So, it classifies the same data together with lines U,U′ equipped with

UN
∼
−→ (LM)FM , U′N

∼
−→ (LM)F′M

.

We get

U(θ)B̃un
P̃

∼
−→ BunP ×BunMH

+,U(θ)

M̃
. (24)

Note that (a, a′) ∈ µN (k)×µN (k) ⊂ Aut(U)×Aut(U′) acts on ICζ |U(θ)B̃un
P̃

as ζ(a′/a).

Let Gr+,U(θ)M be as in [2], so it is obtained from H
+,U(θ)
M by the base change Spec k→

BunM trivializing the M-torsor F′M . We also denote by LX the line bundle on Gr+,U(θ)M

whose fibre at (FM , βM ,D) is

det R0(X, g⊗ O)⊗ det R0(X, gFM )
−1.

Let G̃r
+,U(θ)
M be the gerb of N -th roots of LX over Gr+,U(θ)M .
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As in [3, Section 6.2.3] we set 3+M,G = 3
+

M ∩ w
M
0 (3

pos
G ). Say that V ∈ Rep(M̌n) is

positive if Loc(V ) is the extension by zero from G̃r
+

M =
⋃
θ∈3

pos
G,P

G̃r
+,θ

M . In this case it is

actually the extension by zero from
⋃
θ∈3

],pos
G,P

G̃r
+,θ

M .

In fact, V ∈ Rep(M̌n) is positive if and only if for any irreducible subrepresentation
U ν ⊂ V , ν ∈ 3],+M there is µ ∈ 3+M,G such that ν ≤M µ.

Let unsG̃r
+,U(θ)
M be obtained from G̃r

+,U(θ)
M by the base change unsX̊U(θ)

→ X̊U(θ).
For V ∈ Rep(M̌n) positive we denote by LocU(θ)ζ (V ) the perverse sheaf on G̃r

+,U(θ)
M

on which µN (k) acts by ζ and such that for D =
∑
θkxk ∈ X̊

U(θ) its restriction to∏
k

G̃r
+,θk
M,xk

(25)

is (
�
k

Locζ (Vθk )
)
⊗ Q̄`[|U(θ)|].

To make this definition rigorous, we first define Locuns,U(θ)
ζ (V ) on unsG̃r

+,U(θ)
M . Write

uns ˜̃Gr+,U(θ)M for the stack over unsX̊U(θ) whose fibre overD ∈ unsX̊U(θ) is (25). The desired
perverse sheaf is obtained by descent via the gerb

uns ˜̃Gr+,U(θ)M →
unsG̃r

+,U(θ)
M .

Over uns ˜̃Gr+,U(θ)M this perverse sheaf is defined similarly using the fact [9, Sec-
tion 4.1.2] that every object of PervM,G,n admits a unique Aut02(O)-equivariant struc-
ture. Here Aut02(O) is a connected group scheme defined in [9, Section 2.3]. More pre-
cisely, consider the torsor over unsX̊U(θ) whose fibre over D is the set of isomorphisms
(Ox,EX(Ox))

∼
−→ (O,E) for all x ∈ D. Here E ∈ �(O)1/2 is the object we picked

in Section 3.2. Then uns ˜̃Gr+,U(θ)M is the twist of
∏
k G̃r
+,θk
M by this torsor. So, the object

Locuns,U(θ)
ζ (V ) is well-defined, and moreover equivariant with respect to the Galois group

of the covering unsX̊U(θ)
→ X̊U(θ). Thus, it gives rise to the perverse sheaf LocU(θ)ζ (V )

on G̃r
+,U(θ)
M defined up to a unique isomorphism.

Note that LocU(θ)ζ (V ) vanishes unless in the decomposition (23) each θm lies

in 3], pos
G,P .

4.5.2. Let BunM,U(θ) be the stack classifying FM ∈ BunM , D ∈ X̊U(θ), and
a trivialization of FM over the formal neighbourhood of D. Let B̃unM,U(θ) =
BunM,U(θ)×BunM B̃unM .

Let MU(θ) be the scheme classifying D ∈ X̊U(θ) and a section of M over the formal
neighbourhood of D. This is a group scheme over X̊U(θ). The group MU(θ) acts diago-
nally on BunM,U(θ)×X̊U(θ) Gr+,U(θ)M , and the stack quotient is denoted

BunM,U(θ)×MU(θ) Gr+,U(θ)M .
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There is an isomorphism γ→ from the latter stack to H
+,U(θ)
M such that the projection to

the first term corresponds to h→M . As above, one extends this MU(θ)-torsor to an MU(θ)-
torsor

γ̃→ : B̃unM,U(θ)×X̊U(θ)G̃r
+,U(θ)
M → H

+,U(θ)

M̃
.

So, for T ∈ D(B̃unM) and an MU(θ)-equivariant perverse sheaf S on G̃r
+,U(θ)
M we may

form their twisted product (T �̃ S)r on H
+,U(θ)

M̃
. For V ∈ Rep(M̌n) positive define

LocU(θ)BunM ,ζ (V ) = (IC(B̃unM) �̃ LocU(θ)ζ (V ))r . (26)

Similarly, applying for νP : BunP → BunM the functor ν∗P [dim.rel(νP )] to (26), we get
the perverse sheaf on (24) denoted

LocU(θ)BunP ,ζ (V ).

Theorem 4.14. The ∗-restriction of ICζ under U(θ)B̃un
P̃
↪→ B̃un

P̃
vanishes unless in

the decomposition (23) each θm lies in 3], pos
G,P , in which case it is isomorphic to

LocU(θ)BunP ,ζ−1

(⊕
i≥0

Symi(ǔn(P ))[2i]
)
⊗ Q̄`[−|U(θ)|]

where
⊕

i≥0 Symi(ǔn(P ))[2i] is viewed as a cohomologically graded M̌n-module.

5. Proof of Theorem 4.14

5.1. Zastava spaces

We keep the notation of Section 4. We also use some notation from [2]. For θ ∈ 3pos
G,P

let Zθ be as in [2]. Recall that Mod+,θM classifies (D ∈ Xθ ,FM ∈ BunM , βM), where
βM : FM

∼
−→ F0

M |X−D is an isomorphism such that for any G-module V, the map

βM : V
U(P )

FM
→ V

U(P )

F0
M

is regular over X, and βM induces FM/[M,M]
∼
−→ F0

M/[M,M](−D).
A point of Zθ is given by

(FG,FM , β, βM ,D), (27)

where (FM , βM ,D) ∈ Mod+,θM , and FG is a G-torsor on X equipped with a trivialization
β : FG

∼
−→ F0

G |X−D satisfying the conditions of [2, Section 2.2]. We have a diagram

Zθ
πP
−→ Mod+,θM → BunM , where the second map sends the above point to FM . By abuse

of notation, the restrictions of LM under these maps are also denoted by LM . Let

Z̃θ
πP
−→ Mod+,θ

M̃
→ B̃unM

be obtained from the latter diagram by the base change B̃unM → BunM . A point of Z̃θ

is given by (27) together with a line U equipped with UN
∼
−→ (LM)FM .
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The open subscheme Zθmax ⊂ Zθ is defined in [2, Section 2.2]. Let Z̃θmax =

Zθmax ×Zθ Z̃
θ . We have an isomorphism

imax : B(µN )× Z
θ
max

∼
−→ Z̃θmax

sending U0, UN0
∼
−→ k and (FG,FM , β, βM) to (FG,FM , β, βM ,U), where U = U−1

0 is
equipped with the induced isomorphism

UN
∼
−→ k

∼
−→ LFG

∼
−→ (LM)FM . (28)

Define ICZθ ,ζ as the intermediate extension of imax∗(Lζ �IC(Zθmax)) to Z̃θ . We underline
that a ∈ µN (k) ⊂ Aut(U) acts on ICZθ ,ζ as ζ−1(a).

5.1.1. Action of MXθ . For D ∈ Xθ denote by D̄ (resp., by D̄0) the formal (resp., the
punctured formal) neighbourhood of D in X. This means that we pick a homomorphism
of semigroups3pos

G,P → Z+ sending each αi , i ∈ I− IM , to a nonzero element; it yields a
morphism v : Xθ → X(d), where d is the image of θ , and D̄ is the formal neighbourhood
of v(D) in X. Similarly for D̄0.

Let MXθ be the scheme classifying D ∈ Xθ and a section of M over the formal
neighbourhood of D in X.

The space Mod+,θM can be rewritten as the space classifying D ∈ Xθ , an M-torsor
FM on D̄, its trivialization βM : FM

∼
−→ F0

M |D̄0 such that for each representation V

of M the map βM : V
U(P )

FM
→ V

U(P )

F0
M

is regular over D̄, and βM induces an isomorphism

FM/[M,M]
∼
−→ F0

M/[M,M](−D) over D̄. In this incarnation MXθ acts on Mod+,θM over Xθ

by changing the trivialization βM .
Similarly, Zθ can be seen as the scheme classifying D ∈ Xθ , an M-torsor FM on D̄,

its trivialization βM : FM
∼
−→ F0

M |D̄0 such that for each representation V of M the map
βM : V

U(P )

FM
→ V

U(P )

F0
M

is regular over D̄, and βM induces an isomorphism FM/[M,M]
∼
−→

F0
M/[M,M](−D) over D̄; a G-torsor FG over D̄, an isomorphism β : FG

∼
−→ F0

G |D̄0 such
that for each G-module V the map

VFG
β
−→ VF0

G
→ (VU(P−))F0

M

is regular and surjective over D̄, and the map

V
U(P )

FM

βM
−−→ V

U(P )

F0
M

↪→ VF0
G

β−1

−−→ VFG

is regular over D̄. In this incarnation MXθ acts on Zθ via its action on F0
M . Namely,

if g is automorphism of F0
M over D̄, it sends the above point to the collection

(FG,FM , gβM , gβ).
The line bundle LM on Zθ is naturally MXθ -equivariant. Namely, the fibre of LM at

(FG,FM , βM , β) is det R0(X, gF0
M
) ⊗ det R0(X, gFM )

−1, and MXθ acts via its action
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on F0
M . So, MXθ acts on Mod+,θ

M̃
and on Z̃θ , and the maps sθ : Mod+,θ

M̃
→ Z̃θ and

πP : Z̃
θ
→ Mod+,θ

M̃
are MXθ -equivariant. Note that ICZθ ,ζ is naturally MXθ -equivariant.

5.1.2. The relation between ICZθ ,ζ and ICζ . Write BunM,Xθ for the stack classifying
FM ∈ BunM ,D ∈ Xθ and a trivialization of FM over the formal neighbourhood of D
in X. Let B̃unM,Xθ be obtained from it by the base change B̃unM → BunM .

Recall that ZθBunM is defined as Zθ by replacing F0
M by the ‘background’ M-torsor

F′M ∈ BunM . Let Z̃θ
B̃unM

be obtained from ZθBunM by adding lines U,U′ equipped with

isomorphisms UN
∼
−→ (LM)FM and U′N

∼
−→ (LM)F′M

, where F′M is the background
M-torsor.

Let MXθ act diagonally on Z̃θ ×Xθ B̃unM,Xθ . As in Section 3.2, we have an MXθ -
torsor

γZ : Z̃
θ
×Xθ B̃unM,Xθ → Z̃θB̃unM

.

We form the twisted external product

(ICZθ ,ζ �̃ IC(B̃unM)) (29)

on Z̃θ
B̃unM

, which is the descent with respect to γZ .
Let Bunr

P−
be defined as in [2, Section 3.6] so that Bunr

P−
→ BunG is smooth. By

[2, Proposition 3.2], ZθBunM ⊂ B̃unP ×BunG BunP− is open. This extends naturally to an
open immersion

Z̃θB̃unM
↪→ B̃un

P̃
×BunG BunP− .

The restriction of pr∗1(ICζ )[dim.rel(pr1)] under this open immersion identifies with (29)
over the intersection with

B̃un
P̃
×BunG Bunr

P−

So, as in [2], ICZθ ,ζ is a local model for ICζ .

5.1.3. The natural extensions of πP and sθ are still denoted sθ : Mod+,θ
M̃
→ Z̃θ and

πP : Z̃
θ
→ Mod+,θ

M̃
.

If we pick a Gm-action on Zθ as in [2, Section 5.3] then the line bundle LM and its
trivialization over Zθmax are Gm-equivariant, as Gm is a subgroup in MXθ . So, ICZθ ,ζ is
Gm-equivariant, and the analog of [2, Proposition 5.2] holds: there is a canonical isomor-
phism

sθ !(ICZθ ,ζ )
∼
−→ πP !(ICZθ ,ζ )

over Mod+,θ
M̃

. Since all our objects are already defined over a suitable finite subfield of k,
the analog of [2, Corollary 5.5] holds, and the latter complex is a direct sum of shifted
perverse sheaves.

Recall that for a fixed x ∈ X one denotes by Sθ the preimage of Spec k
x
−→ X → Xθ

under πG : Zθ → Xθ . The corresponding preimage under πG : Z̃θ → Xθ is denoted S̃θ .
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For θ ′ ∈ 3pos
G,P with θ−θ ′ ∈ 3pos

G,P one has the locally closed subschemes θ ′Zθ ↪→ Zθ

and θ ′Sθ ↪→ Sθ defined in [2, Section 3.5]. Restricting the gerb Z̃θ , one gets the locally
closed substacks θ ′Z̃θ ↪→ Z̃θ and θ ′ S̃θ ↪→ S̃θ .

5.1.4. Recall that GrθM is the connected component containing tνM(O) for any ν ∈ 3
over θ . By virtue of [2, Proposition 2.6] for θ ∈ 3pos

G,P the isomorphism imax restricts to
an isomorphism

ixmax : B(µN )× GrθP ∩GrU(P−)
∼
−→ 0S̃θ

sending U0, UN0
∼
−→ k, (FG,FM , β, βM) to (FG,FM , β, βM ,U), where U = U−1

0 is
equipped with the induced isomorphism (28). The map πP restricts to a morphism

t̃θ : 0S̃θ → G̃r
+,θ

M

sending (FG,FM , β, βM ,U) to (FM , βM ,U). First, we prove the following analog of [2,
Theorem 5.9].

Theorem 5.1. (a) For θ ∈ 3pos
G,P the complex

t̃θ
!
(ixmax)∗(Lζ � Q̄`) (30)

is placed in perverse degrees ≤ 〈θ, 2(ρ̌ − ρ̌M)〉.
(b) Its 〈θ, 2(ρ̌− ρ̌M)〉-th perverse cohomology sheaf vanishes unless θ ∈ 3]G,P , in which

case it identifies canonically with Locζ−1(U(ǔn(P ))θ ).

The map t̃θ is M(Ox)-equivariant, so each perverse cohomology sheaf of (30) is of the
form Locζ−1(V ) for some V ∈ Rep(M̌n).

5.1.5. Proof of Theorem 5.1 for P = B. By [2, Section 6.3], for any ν ∈ 3 one has
dim(GrνB ×GrU(B−)) ≤ 〈ν, ρ̌〉. This implies (a). Moreover, (30) vanishes unless θ ∈ 3]

because of the description of PervT ,G,n.
Assume µ ∈ 3+ is deep enough in the dominant chamber so that Grν−µB ∩Gr−µ

B−
⊂

Gr−w0(µ)
G by [2, Proposition 6.4]. By loc.cit., the inclusion

a : G̃r
ν−µ

B ∩ G̃r
−µ

B− ⊂ G̃r
−w0(µ)
G ∩ G̃r

ν−µ

B

yields a bijection between the irreducible components of dimension 〈ν, ρ̌〉 of both
schemes. Recall that multiplication by tµ gives an isomorphism

Grν−µB ∩Gr−µ
B−

∼
−→ GrνB ∩Gr0

B−
.
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Recall that det(g(O) : g(O)t
µ
x )
∼
−→ �

ȟι(µ,µ)
c̄ . Assume in addition that µ ∈ 23]. In this

case we get a T (O)-equivariant diagram

G̃r
ν−µ

B ∩ G̃r
−µ

B−
b //

t̃
��

G̃r
ν

B ∩ G̃r
0
B−

t̃
��

G̃r
ν−µ

T
b // G̃r

ν

T

where for the top row, b is the isomorphism sending (U,UN
∼
−→ det(g(Ox) : g(O)g),

gG(Ox)) to (U′, tµgG(Ox)), where U′ = U⊗�
ι(µ,µ)/(2n)
c̄ is equipped with the induced

isomorphism

U′N
∼
−→ det(g(O) : g(O)t

µ
x )⊗ det(g(O) : g(O)g) ∼−→ det(g(O) : g(O)t

µ
x g).

For the bottom row, b is defined similarly. Using Lemma 5.2 below, one gets canonically

(ixmax)
∗b∗a

∗A
−w0(µ)
E [−〈µ, 2ρ̌〉]

∼
−→ (L∗ζ � Q̄`).

From Proposition 3.2 we see that

t̃
ν−µ

!
(sν−µ)∗A

−w0(µ)
E [−〈µ, 2ρ̌〉]

identifies with Loc(V −w0(µ)(ν − µ))[−〈ν, 2ρ̌〉]. If µ is large enough in the dominant
chamber compared to ν then the latter identifies with U(ǔn)ν[−〈ν, 2ρ̌〉]. Here V µ1(µ2)

denotes the µ2-weight space of Ť ] in the irreducible representation V µ1 of Ǧn with high-
est weight µ1.

5.1.6. Proof of Theorem 5.1 for general P . Let θ ∈ 3pos
G,P . For ν ∈ 3 dominant for M

with GrνM ⊂ Gr+,θM consider the map t̃ν : G̃r
ν

P ∩ G̃rU(P−)→ G̃r
ν

M . It suffices to prove that
for each such ν the complex

t̃ν
!
(ixmax)∗(Lζ � Q̄`)|G̃rνP∩G̃rU(P−)

is placed in perverse degrees ≤ 〈ν, 2ρ̌ − 2ρ̌M 〉, and its 〈ν, 2ρ̌ − 2ρ̌M 〉-th perverse coho-
mology sheaf vanishes unless ν ∈ 3],+M , and in the latter case identifies with

Aν
M,E,ζ−1 ⊗ Hom

M̌n
(U ν, U(ǔn(P ))).

Pick ν ∈ 3 dominant for M with GrνM ⊂ Gr+,θM . We have a diagram

G̃r
θ

P ∩ G̃rU(P−)
t̃θ // G̃r

+,θ

M

G̃r
ν

P ∩ G̃rU(P−)

OO

t̃ν // G̃r
ν

M

OO
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where vertical arrows are natural closed immersions. Let Z(M)0 be the connected com-
ponent of the unity of the centre Z(M) of M . Pick µ ∈ 3 satisfying 〈µ, α̌i〉 = 0 for
i ∈ IM , and 〈µ, α̌i〉 positive and large enough compared to ν for i ∈ I − IM . So,
µ ∈ Hom(Gm, Z(M)

0). Multiplication by tµ yields a diagram, where the horizontal
arrows are isomorphisms:

Grν−µP ∩Gr−µ
P−

∼ //

tν−µ

��

GrνP ∩GrU(P−)

tν

��

Grν−µM

∼ // GrνM

(31)

We may and do assume by [2, Proposition 6.6] that Grν−µP ∩Gr−µ
P−
⊂ Gr−w0(µ)

G .
Assume in addition that µ ∈ 23]. Then (31) extends to a diagram of M(O)-equivari-

ant morphisms

G̃r
ν−µ

P ∩ G̃r
−µ

P−
b //

t̃ν−µ

��

G̃r
ν

P ∩ G̃rU(P−)

t̃ν

��

G̃r
ν−µ

M
b // G̃r

ν

M

(32)

where for the top row, b is the isomorphism sending (U,UN
∼
−→ det(g(Ox) : g(O)g),

gG(Ox)) to (U′, tµgG(Ox)), where U′ = U⊗�
ι(µ,µ)/(2n)
c̄ is equipped with the induced

isomorphism

U′N
∼
−→ det(g(O) : g(O)t

µ
x )⊗ det(g(O) : g(O)g) ∼−→ det(g(O) : g(O)t

µ
x g).

For the bottom row, b is defined similarly.
Consider the inclusion a : G̃r

ν−µ

P ∩ G̃r
−µ

P− ↪→ G̃r
ν−µ

P ∩ G̃r
−w0(µ)
G . Using Lemma 5.2

below, one gets a canonical isomorphism

b∗a
∗A
−w0(µ)
E [−〈µ, 2ρ̌〉]

∼
−→ (ixmax)∗(L

∗
ζ � Q̄`).

By [3, Proposition 4.3.3], the fibres of the left vertical arrow t̃ν−µ in (32) are of dimen-
sion ≤ 〈ν, ρ̌ − 2ρ̌M 〉, so t̃

ν−µ

!
(a∗E

−w0(µ)
E ) is placed in usual cohomological degrees

≤ 〈ν, 2ρ̌ − 4ρ̌M 〉, and this complex is M(O)-equivariant. So, it is placed in perverse
degrees ≤ 〈ν, 2ρ̌ − 2ρ̌M 〉. The natural map

t̃
ν−µ

!
(E
−w0(µ)
E )→ t̃

ν−µ

!
(a∗a

∗E
−w0(µ)
E )

induces an isomorphism between the corresponding 〈ν, 2ρ̌ − 2ρ̌M 〉-th perverse co-
homology sheaves over G̃r

ν−µ

M , which identify by Corollary 4.5 with A
ν−µ

M,E ⊗

Hom
M̌n
(U ν−µ, V −w0(µ)) for ν ∈ 3],+M and vanish otherwise. Assume ν ∈ 3],+M . Since µ

is large enough on the corresponding wall of the Weyl chamber compared to ν, we have

Hom
M̌n
(U ν−µ, V −w0(µ))

∼
−→ Hom

M̌n
(U ν, U(ǔn(P ))).

Theorem 5.1 is proved. ut
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For µ ∈ 3],+ we have the line bundle Lµ,E on GrµG defined in [9, Section 2.1, p. 723].
Its analog for the Levi M is the following line bundle Lµ,M,E. For µ ∈ 3],+M let BµM =
M/P

µ
M be theM-orbit through tµM(O) in GrM as in [9, Section 4.1.1]. Denote by ω̃M,µ :

GrµM → B
µ
M the projection. Set

Lµ,M,E = E
ι(µ,µ)/n
c̄ ⊗ ω̃∗M,µO(ι(µ)/n).

Note that for µ ∈ 23] the above does not depend on E. Over GrµM one has the isomor-
phism

L|GrµM

∼
−→ LNµ,M,E. (33)

Lemma 5.2. Let µ ∈ 23],+ be orthogonal to all roots of M . Consider the map t−µ :
Gr−µ
P−
→ Gr−µM . There is a natural isomorphism

((t
−µ

P−
)∗L−µ,M,E)|Gr−µ

P−
∩Gr

−w0(µ)
G

∼
−→ L−w0(µ),E|Gr−µ

P−
∩Gr

−w0(µ)
G

(34)

compatible with the isomorphisms (33) for M and G.

Proof. The intersection B
−w0(µ)
G ∩ Gr−µ

P−
is the point t−µG(O) fixed by M . So, over

Gr−µ
P−
∩Gr−w0(µ)

G both line bundles in (34) are constant, and it suffices to establish the
desired isomorphism at the point t−µG(O). The fibres of both line bundles at this point
identify with E

ι(µ,µ)/n
c̄ in a way compatible with (33) for M and G. ut

5.2. Main technical step

The purpose of this section is to formulate Theorem 5.3, which is an analog of [2, Theo-
rem 4.5] and the main technical step in the proof of Theorem 4.14.

Define 3pos, pos
G,P as the free abelian semigroup with base J . Recall the map cP from

Section 4.3. Let
c̄P : 3

pos, pos
G,P → 3

], pos
G,P

be the morphism of semigroups, which on the base of 3pos, pos
G,P is given by cP . For

θ ∈ 3
], pos
G,P we will denote by B(θ) the elements of 3pos, pos

G,P sent by c̄P to θ .

Let θ ∈ 3],pos
G,P . Let B(θ) =

∑
ν∈J nνν be an element of3pos,pos

G,P over θ . Set |B(θ)| =∑
ν nν . Write XB(θ) for the moduli scheme of 3pos,pos

G,P -valued divisors of degree B(θ),
so

XB(θ) ∼
−→

∏
ν∈J

X(nν )

To a point (Dν, ν ∈ J ) of the latter scheme there corresponds the divisorD =
∑
ν∈J Dνν.

The map c̄P yields a finite morphism XB(θ)
→ Xθ . Let X̊B(θ)

⊂ XB(θ) be the comple-
ment to all the diagonals.

If D =
∑
k xkθk ∈ X

θ and xk are pairwise different then the fibre of Mod+,θM → Xθ

overD is
∏
k Gr+,θkM . Let ICB(θ),0

ζ be the perverse sheaf on X̊B(θ)
×Xθ Mod+,θ

M̃
on which
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µN (k) acts by ζ−1 and such that for D =
∑
k xkνk ∈ X̊

B(θ) with θk = cP (νk) its
restriction to ∏

k

G̃r
+,θk
M,xk

is �k Locζ−1((ǔn(P ))νk )[|B(θ)|]. One makes this definition rigorous as in Section 4.5.1.

This perverse sheaf is defined up to a unique isomorphism and irreducible. Let ICB(θ)
ζ be

the intermediate extension of ICB(θ),0
ζ under

X̊B(θ)
×Xθ Mod+,θ

M̃
↪→ XB(θ)

×Xθ Mod+,θ
M̃

.

Denote by iB(θ) : X
B(θ)
×Xθ Mod+,θ

M̃
→ Mod+,θ

M̃
the second projection.

For ν ∈ J let θν = cP (ν). We get a decomposition U(θ) given by θ =
∑
ν∈J nνθν , and

XB(θ) ∼
−→ XU(θ) naturally. It follows that iB(θ)∗(IC

B(θ)
ζ ) is the intermediate extension

from X̊U(θ)
×Xθ Mod+,θ

M̃
and is MXθ -equivariant. We use the fact that X̊U(θ)

⊂ Xθ is
locally closed.

Theorem 5.3. Let θ ∈ 3
pos
G,P . For the map sθ : Mod+,θ

M̃
→ Z̃θ there is an MXθ -

equivariant isomorphism

sθ !(ICZθ ,ζ )
∼
−→

⊕
B(θ)

iB(θ)∗(IC
B(θ)
ζ )[−|B(θ)|].

In particular, this complex vanishes unless θ ∈ 3], pos
G,P .

The following is proved exactly as [2], Lemma 4.3.

Lemma 5.4. The ∗-restriction of ICB(θ)
ζ to X ×Xθ Mod+,θ

M̃

∼
−→ G̃r

+,θ

M,X identifies canon-
ically with

LocX,ζ−1

(⊗
ν∈J

Symnν (ǔn(P )ν)
)
[−1+ |B(θ)|].

The functor LocX = (τ 0 Loc)[1] used in Lemma 5.4 takes values in MX-equivariant
perverse sheaves on G̃rM,X.

5.2.1. Let θ ∈ 3pos
G,P . Recall that Mod+,θBunM classifies D ∈ Xθ , FM ,F′M ∈ BunM and

an isomorphism βM : FM
∼
−→ F′M |X−D such that for each V ∈ Rep(G) the map βM :

V
U(P )

FM
→ V

U(P )

F′M
is regular, and βM induces an isomorphism

FM/[M,M]
∼
−→ F′M/[M,M](−D).

Consider the projection Mod+,θBunM → BunM ×BunM sending the above point to

(FM ,F
′

M). Denote by M̃od
+,θ

B̃unM
the stack obtained from Mod+,θBunM by the base change

B̃unM × B̃unM → BunM ×BunM .
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Recall the stacks BunM,Xθ and B̃unM,Xθ from Section 5.1.2. As we have seen in
Section 5.1.1, MXθ acts on Mod+,θM over Xθ . Let MXθ act diagonally on BunM,Xθ ×Xθ
Mod+,θM ; the corresponding stack quotient is denoted BunM,Xθ ×MXθ

Mod+,θM . Let

γ→ : BunM,Xθ ×MXθ
Mod+,θM

∼
−→ Mod+,θBunM

be the natural isomorphism such that the projection to the first factor corresponds to h→M .
As in Section 4.5.1, we get an MXθ -torsor

γ̃→ : B̃unM,Xθ ×Xθ Mod+,θ
M̃

∼
−→ M̃od

+,θ

B̃unM
.

This allows us to introduce for each B(θ) the relative version ICB(θ)
BunM ,ζ of ICB(θ)

ζ , which

is a perverse sheaf on XB(θ)
×Xθ M̃od

+,θ

B̃unM
, the intermediate extension from X̊B(θ)

×Xθ

M̃od
+,θ

B̃unM
of

(IC(B̃unM) �̃ ICB(θ),0
ζ )r .

The latter is the descent of IC(B̃unM,Xθ )�ICB(θ),0
ζ [− dimXθ ] under the X̊B(θ)

×XθMXθ -
torsor

γ̃→ : B̃unM,Xθ ×Xθ X̊
B(θ)
×Xθ Mod+,θ

M̃
→ X̊B(θ)

×Xθ M̃od
+,θ

B̃unM
.

Write also νP for the projection BunP ×BunM M̃od
+,θ

B̃unM
→ M̃od

+,θ

B̃unM
, where we

use h→M to define the corresponding fibred product. We have the locally closed embed-
ding

BunP ×BunM M̃od
+,θ

B̃unM
↪→ B̃un

P̃

sending (D,FM ,F′M , βM : FM
∼
−→ F′M |X−D,U,U

′) ∈ M̃od
+,θ

B̃unM
, FP ∈ BunP with

F′P ×P M
∼
−→ F′M to (F′G,FM , κ,U,U

′), where F′G = FP ×P G. Its image is denoted

θ B̃un
P̃

.
Translating Theorem 5.3 to B̃un

P̃
we obtain the following.

Corollary 5.5. The ∗-restriction of ICζ to θ B̃un
P̃

∼
−→ BunP ×BunM M̃od

+,θ

B̃unM
vanishes

unless θ ∈ 3],pos
G,P , in which case it identifies with ν∗P [dim.rel(νP )] applied to the complex

⊕
B(θ)

(iBunM ,B(θ))∗ ICB(θ)
BunM ,ζ [|B(θ)|].

Here iBunM ,B(θ) : X
B(θ)
×Xθ M̃od

+,θ

B̃unM
→ M̃od

+,θ

B̃unM
is the projection.
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5.3. Proof of Theorem 4.14

As [2, Theorem 1.12], Theorem 4.14 is derived from Corollary 5.5 and Lemma 5.4. The
proof uses the following combinatorial identity. Given θ ∈ 3pos

G,P and m ≥ 0 the space

(Symm un(P ))θ vanishes unless θ ∈ 3],pos
G,P , in which case

(Symm un(P ))θ =
∑

B(θ)=
∑
ν∈J nνν, |B(θ)|=m

(⊗
ν∈J

Symnν (ǔn(P )ν)
)
.

This implies⊕
B(θ)=

∑
ν∈J nνν

(
⊗
ν∈J

Symnν (ǔn(P )ν))[2|B(θ)|]
∼
−→

⊕
m≥0

(Symm un(P ))θ [2m].

Theorem 4.14 is proved (modulo Theorem 5.3).

5.4. Induction

Now we prove Theorem 5.3 by induction on θ . Recall that for θ = θ1+θ2 with θi ∈ 3
pos
G,P

the factorization property yields a natural µN (k)-gerb

Z̃θ1 × Z̃θ2 ×(Xθ1×Xθ2 ) (X
θ1 ×Xθ2)disj → Z̃θ ×Xθ (X

θ1 ×Xθ2)disj,

and the restriction of ICZθ ,ζ under this map is canonically identified with
ICZθ1 ,ζ � ICZθ2 ,ζ . Similarly, we have⊔
B(θ1),B(θ2)

(XB(θ1)×XB(θ2))×Xθ1×Xθ2 (X
θ1×Xθ2)disj

∼
−→

⊔
B(θ)

XB(θ)
×Xθ (X

θ1×Xθ2)disj

and the perverse sheaves ICB(θ)
ζ also naturally factorize. So, by the induction hypothesis

locally over Xθ− MX we get an isomorphism

sθ !(ICZθ ,ζ )
∼
−→

⊕
B(θ), |B(θ)|6=1

iB(θ)∗(IC
B(θ)
ζ )[−|B(θ)|].

As in [2], globally we could have a nontrivial monodromy for β(θ) = 2ν with ν ∈ J . So,
there is a rank one and order at most 2 local system EB(θ) on XB(θ)

×Xθ (X
θ
− MX) and

an isomorphism

sθ !(ICZθ ,ζ )
∼
−→

⊕
B(θ), |B(θ)|6=1

iB(θ)∗(IC
B(θ)
ζ ⊗ pr∗1 EB(θ))[−|B(θ)|]

over Mod+,θ
M̃
×Xθ (X

θ
− MX).

Let KB(θ) be the intermediate extension of ICB(θ)
ζ ⊗ pr∗1 EB(θ) toXB(θ)

×Xθ Mod+,θ
M̃

.
We get an isomorphism

sθ !(ICZθ ,ζ )
∼
−→

⊕
B(θ), |B(θ)|6=1

iB(θ)∗(K
B(θ))[−|B(θ)|] ⊕Kθ , (35)

where Kθ is a pure complex supported over Mod+,θ
M̃
×XθX

∼
−→ G̃r

+,θ

M,X.
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As in [2], let Mx denote the closed subscheme Spec k
x
−→ X

MX
−−→ Xθ . The analogs of

[2, Propositions 5.7 and 5.8] are as follows.

Proposition 5.6. The complex sθ !(ICZθ ,ζ )|Mx over G̃r
+,θ

M is placed in perverse degrees

≤ 0. Its 0-th perverse cohomology sheaf vanishes unless θ ∈ 3]G,P , in which case it is
identified with Locζ−1(U(ǔn(P ))θ ).

Recall the map πP : Z̃θ → Mod+,θ
M̃

.

Proposition 5.7. Assume θ ′, θ − θ ′ ∈ 3pos
G,P .

(a) The complex πP !(ICZθ ,ζ |
θ ′ S̃θ

) is placed in strictly negative perverse degrees for
θ ′ 6= 0.

(b) The complex πP !(ICZθ ,ζ |0S̃θ ) is placed in perverse degrees ≤ 0.

(c) The 0-th perverse cohomology sheaf of πP !(ICZθ ,ζ |0S̃θ ) vanishes unless θ ∈ 3]G,P ,
in which case it identifies with Locζ−1(U(ǔn(P ))θ ).

Let ConvM denote the convolution diagram for the affine grassmannian ofM at x. This is
the scheme classifying FM ,F

′

M ∈ BunM with isomorphisms β̃M : FM
∼
−→ F′M |X−x and

β ′M : F
′

M

∼
−→ F0

M |X−x . Let C̃onv
M̃

be obtained from ConvM by adding two lines U,U′

and isomorphisms
UN

∼
−→ (LM)FM , U′N

∼
−→ (LM)F′M

.

Write pr′ : C̃onv
M̃
→ G̃rM for the projection sending the above point to (F′M , β

′

M ,U
′).

It makes C̃onv
M̃

a fibration over G̃rM with typical fibre isomorphic to G̃rM . Now given
an M(Ox)-equivariant perverse sheaf S on G̃rM on which µN (k) acts as ζ−1, and any
complex S′ on G̃rM on which µN (k) acts as ζ−1, we can form their twisted external
product S �̃ S′, which is S′ along the base and S along the fibre. It is normalized to be
perverse for S′ perverse. As in [11], one proves the following. Let pr : C̃onv

M̃
→ G̃rM

be the map sending the above point to (FM , β ′M β̃M ,U). The convolution of S with S′ is
defined as pr!(S �̃ S′).

Lemma 5.8. If S is an M(Ox)-equivariant perverse sheaf on G̃rM on which µN (k) acts
as ζ−1, and S′ is a perverse sheaf on G̃rM on which µN (k) acts as ζ−1, then their convo-
lution is a perverse sheaf on G̃rM . ut

Proof of Proposition 5.7. As in the proof of [2, Proposition 5.8], one has dimZθ =

〈θ, 2(ρ̌ − ρ̌M)〉, and points (b) and (c) follow from Theorem 5.1.
Assume now θ ′ 6= θ . As in [2, Section 3.5], let Conv+,θ

′

M denote the closed subscheme
of the convolution diagram ConvM at x given by the property (FM ,F′M , β̃M) ∈ Mod+,θ

′

BunM .
As in loc.cit., one has an isomorphism

0Sθ−θ
′

×GrM Conv+,θ
′

M

∼
−→ θ ′Sθ ,
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here the map Conv+,θ
′

M → GrM used to define the fibred product sends the above point

of Conv+,θ
′

M to (F′M , β
′

M). Let C̃onv
+,θ ′

M̃ be obtained from Conv+,θ
′

M by the base change
C̃onv

M̃
→ ConvM . We get a natural µN -gerb

0S̃θ−θ
′

×G̃rM C̃onv
+,θ ′

M̃ → θ ′ S̃θ

given by forgetting U′. As in the proof of [2, Proposition 5.8], the ∗-restriction of
ICZθ ,ζ |

θ ′ S̃θ
under this gerb is described by the induction hypothesis. Namely, by Corol-

lary 5.5 and Lemma 5.4, it identifies with⊕
B(θ ′)

Locζ−1

(⊗
ν∈J

Symnν (ǔn(P )ν)[2 |B(θ ′)|]
)
�̃ (IC

Zθ−θ
′
,ζ
|
0S̃θ−θ ′ ).

Here it is understood that B(θ ′) =
∑
ν∈J nνν, the sum being taken over all elements

B(θ ′) over θ ′. Now by (b), πP !(ICZθ−θ ′ ,ζ |0S̃θ−θ ′ ) is placed in perverse degrees ≤ 0. So,
by Lemma 5.8, πP !(ICZθ ,ζ |0S̃θ ) is placed in perverse degrees < 0.

In the case θ ′ = θ the complex πP !(ICZθ ,ζ |
θ ′ S̃θ

) is placed in strictly negative perverse

degrees, as πP : θ S̃θ → G̃r
+,θ

M is an isomorphism. We are done. ut

Now as in [2, Section 5.11] one checks that all the local systems EB(θ) are trivial.
To finish the proof of Theorem 5.3 it remains to analyze the complex Kθ from (35).

There is at most one B(θ) with |B(θ)| = 1, which we denote B(θ)0 as in [2]. If it exists,
that is, θ = cP (ν) for some ν ∈ J , we have to show that Kθ ∼

−→ (iB(θ)0)∗ ICB(θ)0

ζ [−1].
Otherwise, we have to show that Kθ

= 0.
By definition of IC, as Kθ is a direct summand of sθ !(ICZθ ,ζ ), it is placed in perverse

degrees ≥ 1. Restrict both sides of (35) to Mod+,θ
M̃
|MX and apply the perverse cohomo-

logical truncation τ≥1. Using Lemma 5.4 and Proposition 5.6, we get

LocX,ζ−1(U(ǔn(P ))θ )[−1]
∼
−→

⊕
B(θ),|B(θ)|6=1

LocX,ζ−1

(⊗
ν∈J

Symnν (ǔn(P )ν)
)
[−1] ⊕Kθ

|
G̃r+,θM,X

.

As in [2, Section 5.12], this implies the desired result. We have used here the fact
that U(ǔn(P )) and Sym(ǔn(P )) are noncanonically isomorphic as M̌n-modules. Theo-
rem 4.14 is proved.

6. Composing Eisenstein series

6.0.1. In this section we prove Theorem 2.9, which is an analog of [3, Theorem 2.3.10]
in our setting.

We keep the notation of Section 4.1. Let B(M) ⊂ M be the Borel subgroup
corresponding to the roots α̌i , i ∈ IM . As in [3, Section 7.1] set B̃unB,P =
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B̃unP ×BunM BunB(M). Set also B̃un
B̃,P̃
= B̃un

P̃
×B̃unM Bun

B̃(M)
. We have the cartesian

square

B̃un
B̃,P̃

q̃′P //

p̃′M
��

Bun
B̃(M)

p̃

��

B̃un
P̃

q̃
// B̃unM

Write also B̃un
B̃,P
= B̃unB,P ×BunT ×BunG(B̃unT × B̃unG). Recall that BunB ⊂ BunB,P

is naturally an open substack. The preimage of BunB in B̃un
B̃,P

identifies with the
stack Bun

B̃
from Section 3.1. Recall the perverse sheaf Lζ � IC(Bun

B,G̃
) viewed as

a perverse sheaf on Bun
B̃

via (2). Denote by ICB,P,ζ its intermediate extension under
Bun

B̃
↪→ B̃un

B̃,P
.

Proposition 6.1. The restriction of ICB,P,ζ under the projection B̃un
B̃,P̃
→ B̃un

B̃,P

identifies canonically with

(p̃′M)
∗ ICζ ⊗(q̃′P )

∗ ICζ [− dim BunM ].

Proof. Since BunP → BunM is smooth, ICζ and (j
P̃
)!j
∗

P̃
ICζ are ULA with respect to

q̃ : B̃un
P̃
→ B̃unM by Proposition 4.2; the proof of [3, Theorem 7.1.2] applies in our

setting. Using [23, Proposition 4.8.5], one gets the desired isomorphism. ut

Remark 6.2. There are two a priori different definitions of the ULA property. For a mor-
phism p1 : Y1 → S1 and an object L ∈ D(Y1) the first definition of L being ULA with
respect to p1 is [7, Definition 2.12], and the second is [3, Definition 5.1]. In the latter one
requires that the local acyclicity holds after any smooth base change q : S → S1, while
in the former one requires it to hold after any base change q : S → S1. In the proof of
Proposition 6.1 the equivalence of the two definitions was used.

Recall the definition of the natural map rP : B̃unB,P → BunB from [3, Proposition 7.1.5].
A point of B̃unB,P is a collection (FG,FM , κP ) ∈ B̃unP , (FM ,FT , κM) ∈ BunB(M).
Here κM is the collection of embeddings

κ ν̌M : L
ν̌
FT

↪→ Uν̌FM , ν̌ ∈ 3+M ,

and Uν̌ denotes the corresponding Weyl module for M . Then rP sends this point to
(FG,FT , κ), where for λ̌ ∈ 3̌+ the map κ λ̌ is the composition

Lλ̌FT

κ λ̌M
↪→ Uν̌FM → (Vλ̌)

U(P )

FM

κ λ̌P
↪→ Vλ̌FG .

The map rP is representable and proper, it extends naturally to r̃P : B̃un
B̃,P
→ Bun

B̃
.

Recall that rP is an isomorphism over the open substack BunB ⊂ BunB .
The following is an analog of [3], Theorem 7.1.6 in our setting.

Theorem 6.3. One has canonically r̃P ! ICB,P,ζ
∼
−→ ICζ .
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6.0.2. Proof of Theorem 6.3. Once our Theorem 4.14 is established, one easily adapts
the proof of [3, Theorem 7.1.6] to our setting. We indicate the corresponding notation and
changes for the convenience of the reader.

Recall that3+M,G = 3
+

M∩w
M
0 (3

pos
G ). Given a collectionµ, ν consisting of n1, . . . , nk

∈ Z>0 and pairwise different elements (µ1, ν1), . . . (µk, νk) ∈ (3
pos
M × 3

+

M,G) − 0 one
sets Xµ,ν = X(n1) × . . . × X(nk)− M, where M is the divisor of all the diagonals. Write
D = (D1, . . . , Dk) ∈ X

µ,ν for a point of this scheme.
The Hecke stack H

µ,ν
M classifies (D∈Xµ,ν,F′M ,FM ∈ BunM , β : F′M

∼
−→ FM |X−D)

such that F′M is in position νi with respect to FM at points of Di .
By definition, µ,ν BunB,P is the image of the locally closed embedding

BunP ×BunMH
µ,ν
M ×BunM BunB(M) ↪→ B̃unB,P .

The first stack classifies (D ∈ Xµ,ν,FM ,F′M , β) ∈ H
µ,ν
M ,FP ∈ BunP with an iso-

morphism FP ×P M
∼
−→ FM , a B(M)-torsor FB(M) with FT := FB(M) ×B(M) T ,

and an isomorphism FB(M) ×B(M) M
∼
−→ F′M . Its image in B̃unB,P is the collection

(FG,F
′

M , κ) ∈ B̃unP , (F′M ,F
′

T , κM) ∈ BunB(M), where F′T = FT (−
∑
i µiDi) and

FG = FP ×P G.
For λ =

∑
i miαi ∈ 3

pos
G the locally closed substack Bun

λ

B ⊂ BunB is defined as the
image of the locally closed immersion∏

i∈I

X(mi ) × BunB → BunB

sending ((Di)i∈I,FB) to (F′T ,FG, κ), where F′T = FT (−
∑
i αiDi) for FT = FB ×B T

and FG = FB ×B G.
For µ, ν as above and λ ∈ 3pos

G one sets

µ,ν,λBunB,P = µ,νBunB,P ∩ r−1
P (Bun

λ

B).

Write µ,ν,λ Bun
B̃,P

for the preimage of µ,ν,λ BunB,P under B̃un
B̃,P
→ B̃unB,P .

We set |µ, ν| =
∑k
i=1 ni(νi − µi) ∈ 3. Theorem 6.3 is reduced to the following.

Proposition 6.4. For µ, ν with λ ∈ 3pos
G as above the following hold:

(i) The ∗-restriction of ICB,P,ζ to µ,ν,λ Bun
B̃,P

lives in perverse degrees ≤
−〈λ+ |µ, ν|, ρ̌M 〉, and the inequality is strict unless λ = 0.

(ii) The fibres of rP : µ,ν,λ Bun
B̃,P
→ Bun

λ

B are of dimension ≤ 〈λ+ |µ, ν|, ρ̌M 〉.

Proof. The proof of [3, Proposition 7.1.8] applies. The only change is that one uses Theo-
rem 4.14 (and Proposition 6.1) to guarantee that the ∗-restriction of ICB,P,ζ to µ,ν Bun

B̃,P

has smooth cohomology sheaves. ut

Proof of Theorem 2.9. For K ∈ Dζ (B̃unT ) one has

EisGMEisMT (K)
∼
−→ p̃!

(
ICζ ⊗q̃∗(p̃M)!(q̃∗MK ⊗ ICζ )

)
[− dim BunT − dim BunM ].
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By the projection formula and Proposition 6.1, this identifies with

p̃!(p̃
′

M)!(ICB,P,ζ ⊗(q̃
′

P )
∗q̃∗M)[−dim BunT ]. (36)

The composition q̃′P q̃M coincides with B̃un
B̃,P̃
→ B̃un

B̃,P

r̃P
−→ Bun

B̃

q̃
−→ B̃unT , and

p̃p̃′M coincides with B̃un
B̃,P̃
→ B̃un

B̃,P

r̃P
−→ Bun

B̃

p̃
−→ B̃unG. So, (36) identifies with

p̃!((r̃P )! ICB,P,ζ ⊗q̃∗K)[−dim BunT ]
∼
−→ EisGT (K)

by Theorem 6.3. ut

7. The case of G = SL2

7.1. Precisions

In this section we get some more precise results for G = SL2. We keep the notation
of Section 2. Let e = n for n odd (resp., e = n/2 for n even). Then 3] = e3. The
unique simple coroot of G is denoted α, the simple root of Ǧn is nα. For n even one gets
Ǧn

∼
−→ SL2, and Ǧn

∼
−→ PSL2 for n odd. Recall that ȟ = 2.

Let Lc be the line bundle on BunG with fibre det R0(X,O2) ⊗ det R0(X,M)−1 at
M ∈ BunG. The restriction of Lc to BunT is also denoted Lc.

Identify T with Gm via the coroot α : Gm
∼
−→ T , so Bun1

∼
−→ BunT . The isomorphism

Z ∼
−→ 3], 1 7→ e, yields Gm

∼
−→ T ], so that iX : Bun1 = BunT ] → BunT = Bun1 sends

E to Ee. The line bundle τ on BunT ] is chosen as in [18, 5.2.6, Example (1)]. Namely, if
n is odd then

τE = det R0(X,O)2n ⊗ det R0(X,E)−n ⊗ det R0(X,E−1)−n

for E ∈ Bun1 = BunT ] . If n is even then we first pick a super line bundle L1 on Bun1

equipped with L2
1
∼
−→ Lc on BunT . Then τ = Le1 on Bun1.

Recall the action of Z(G) = µ2 on B̃unG by 2-automorphisms (see Section 3.5).
Denote by Dζ,+(B̃unG) and Dζ,−(B̃unG) the full subcategories of Dζ (B̃unG) where
−1 ∈ µ2 acts as 1 and −1 respectively. As in [19], we get

Dζ (B̃unG)
∼
−→ Dζ,+(B̃unG)× Dζ,−(B̃unG). (37)

For n even the category Rep(Ǧn) is Z/2Z-graded according to the action of the centre of
Ǧn

∼
−→ SL2. Lemma 3.12 says in this case that the Hecke functors are compatible with

these gradings of Dζ (B̃unG) and Rep(Ǧn).

7.1.1. Take P = B. Let us reformulate Corollary 5.5 more explicitly in this case. The
stack BunB classifies exact sequences

0→ E→ M → E−1
→ 0 (38)
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on X with E ∈ Bun1. The stack BunB classifies M ∈ BunG and a subsheaf E ↪→ M ,
where E ∈ Bun1. The line bundle LT on BunT = Bun1 is such that its fibre at E is

det R0(X,O)2

det R0(X,E2)⊗ det R0(X,E−2)
=

det R0(X,O)8

det R0(X,E)4 ⊗ det R0(X,E−1)4
. (39)

There is an isomorphism L4
c

∼
−→ L over BunG whose restriction to BunT is compatible

with the isomorphism (39).
The stack B̃unT is the gerb of 4n-th roots of LT over BunT . The map c̄P : 3

pos,pos
G,B →

3
],pos
G,B is injective; its image equals nαZ+.

For θ = mα ∈ 3
pos
G,B the stack θBunB classifies D ∈ X(m) and an exact sequence

on X,
0→ E(D)→ M → E−1(−D)→ 0,

with E ∈ Bun1. The ∗-restriction of ICζ to θBun
B̃

vanishes unless m ∈ nZ, in which
case θ admits a unique B(θ) = (m/n)ν, where ν = nα ∈ J , and the map XB(θ)

→ Xθ

becomes X(m/n)→ X(m), D 7→ nD. By Corollary 5.5,

ICζ |
θBun

B̃

∼
−→ ν∗B ICB(θ)

BunM ,ζ [dim.rel(νB)+m/n],

where νB : BunB ×BunT M̃od
+,θ

B̃unT
→ M̃od

+,θ

B̃unT
is the projection. The perverse sheaf

ICB(θ)
BunM ,ζ is described as follows.

Lemma 7.1. Let E ∈ Bun1, and let D be an effective divisor on X. Then there is a
canonical Z/2Z-graded isomorphism

det R0(X,E)⊗ det R0(X,E−1)

det R0(X,E(nD)⊗ det R0(X,E−1(−nD))

∼
−→

(
det R0(X,OD)

det R0(X,E2(nD)|D)

)n
.

Proof. One has canonically det R0(X,E(nD)/E)
∼
−→

⊗n
r=1 det R0(X,E(rD)|D) and

det R0(X,E−1/E−1(−nD))
∼
−→

n⊗
r=1

det R0(X,E−1((r − n)D)|D).

Using 7.1.2 below, for 1 ≤ r ≤ n we get

det R0(X,E−1((r − n)D)|D)

det R0(X,E(rD)|D)
∼
−→

det R0(X,OD)
det R0(X,E2(nD)|D)

.

Our claim follows. ut

The stack XB(θ)
×Xθ M̃od

+,θ

B̃unT
classifies D ∈ X(m/n), E ∈ Bun1, and two lines U,UG

equipped with isomorphisms UNG
∼
−→ (LT )E(nD), UN

∼
−→ (LT )E. The stack θBun

B̃
×Xθ

XB(θ) classifies the same data together with an exact sequence

0→ E(nD)→ M → E−1(−nD)→ 0.
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Recall that N = 4n. One has an isomorphism

XB(θ)
×Xθ Mod+,θ

B̃unT
×B(µN )

∼
−→ XB(θ)

×Xθ M̃od
+,θ

B̃unT
(40)

sending (D,E,UG,UNG
∼
−→ (LT )E(nD),U

N
0
∼
−→ k) to (D,E,UG,U), where

U = UG ⊗ U−1
0 ⊗

det R0(X,E2(nD)|D)

det R0(X,OD)

is equipped with the isomorphism UN
∼
−→ (LT )E given by Lemma 7.1. The perverse

sheaf ICB(θ)
BunM ,ζ via (40) identifies noncanonically with

IC(XB(θ)
×Xθ Mod+,θ

B̃unT
) � Lζ .

7.1.2. We need the following. Let D be an effective divisor on X, A,B ∈ Bun1. There
is a canonical Z/2Z-graded isomorphism

det R0(X,A|D)
det R0(X,B|D)

∼
−→

det R0(X,A⊗B−1
|D)

det R0(X,OD)
.

7.1.3. Let θ = mα ∈ 3
pos
G,B . For E ∈ Bun1 = BunT write ZθE for the Zastava space

with the ‘background’ T -torsor E−1. Then ZθE is a vector bundle over Xθ whose fibre at

D ∈ X(m) is E2(D)/E2 ∼
−→ Ext1(E−1/E−1(−D),E). It is understood that a point of ZθE

gives rise to a diagram on X,

0→ E→ M // E−1
→ 0

E−1(−D)

ee OO

(41)

The group scheme MXθ acts trivially on Mod+,θM = Xθ . If D ∈ X(m) is given by
D =

∑
nkxk with xk pairwise different then the fibre of MXθ at D is

∏
k O
∗
xk

. The action
of MXθ on Zθ from Section 5.1.1 becomes as follows. The element g = (gk) ∈

∏
k O
∗
xk

acts on v = (vk) ∈
∏
k E

2(nkxk)/E
2 as g2v = (g2

kvk).
Let Gθ denote the group scheme over Xθ whose fibre at D is (O/O(−D))∗. The

action of MXθ on Zθ factors through an action of Gθ .
Write L̄ for the line bundle over Xθ , whose fibre at D is

(Lc)E(D)

(Lc)E
=

det R0(X,E)⊗ det R0(X,E−1)

det R0(X,E(D))⊗ det R0(X,E−1(−D))

∼
−→

det R0(X,OD)
det R0(X,E2(D)|D)

.

(42)
Here the second isomorphism is given by Lemma 7.1. The restriction of L̄ to ZθE is also
denoted L̄. Then Z̃θE is the gerb of 4n-th roots of L̄4. Write also Z̃θE,c for the gerb of n-th
roots of L̄. We have a natural map Z̃θE,c → Z̃θE making Z̃θE a trivial µ4-gerb over Z̃θE,c.
Let ICZθc ,ζ̄ denote the restriction of ICZθ ,ζ to Z̃θE,c.



Geometric Eisenstein series: twisted setting 3235

For a point (D, v ∈ E2(D)/E2,U) ∈ Z̃θE,c with Un
∼
−→ L̄D note that a ∈ µn(k) ⊂

AutU acts on ICZθc ,ζ̄ as ζ̄ (a)−1.

The open subscheme Zθmax ⊂ ZθE classifies (D, σ ∈ E2(D)/E2) such that for any
0 ≤ D′ < D we have σ /∈ E2(D′)/E2. Over Zθmax we have a canonical section of L̄ given
by the isomorphisms

det R0(X,E)⊗ det R0(X,E−1)
∼
−→ det R0(X,M)
∼
−→ det R0(X,E(D))⊗ det R0(X,E−1(−D)).

Let ŽθE → Xθ denote the dual vector bundle, so its fibre over D is E−2
⊗ �/E−2

⊗

�(−D). Denote by ˇ̃ZθE,c the gerb of n-th roots of L̄ over ŽθE.

7.2. Fourier coefficients

The purpose of this section is to establish some results about the Fourier transform

of ICZθc ,ζ̄ over ˇ̃ZθE,c. This is important in view of a relation with the theory of Weyl
group multiple Dirichlet series (see [4], [6] for a survey).

7.2.1. We need the following observation. Let X denote the stack classifying 1-dimen-
sional k-vector spaces L, U together with Un

∼
−→ L, and v ∈ L. This is a vector bundle

over the stack B(Gm) classifying a line U . Let X̌ denote the dual vector bundle over
B(Gm); this is the stack classifying U,L,Un

∼
−→ L and v∗ ∈ L∗. Let X0

⊂ X be the
open substack given by v 6= 0. We have an isomorphism τX : X

0 ∼
−→ B(µn) sending

the above point to U equipped with the trivialization Un
∼
−→ k obtained from k

∼
−→ L,

1 7→ v. For the natural map a : Spec k → B(µn) let Lζ̄ denote the direct summand in
a∗Q̄` on which µn(k) acts by ζ̄ . Let Lζ̄ ,ex denote the intermediate extension of τ ∗XLζ̄
under X0 ↪→ X.

Denote by X̌0
⊂ X̌ the open substack given by v∗ 6= 0. Let τ

X̌
: X̌0 ∼
−→ B(µn) be

the isomorphism sending the above point to U equipped with the composition Un
∼
−→

L
v∗

−→ k. Write Lζ̄ ,ěx for the intermediate extension of τ ∗
X̌
Lζ̄ to X̌. For n ≥ 2 there is a

1-dimensional Q̄`-vector space C0 and a canonical isomorphism

Fourψ (Lζ̄−1,ěx)
∼
−→ C0 ⊗ Lζ̄−1,ex. (43)

7.2.2. Example θ = α. In this case ZθE is the total space of the line bundle E2
⊗ �−1

overX. The line bundle L̄ overX identifies with E−2
⊗�. We have a map p

X̌
: Z̃θE,c → X̌

given by L = E−2
⊗�. Then

p∗
X̌
Lζ̄−1,ěx[2]

∼
−→ ICZθc ,ζ̄
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canonically. We also have the natural map pX :
ˇ̃
ZθE,c → X defined by the same formula.

Set IC
Žθc ,ζ̄
= p∗XLζ̄−1,ex[2]; this is an irreducible perverse sheaf. Now from (43) we get

an isomorphism

Fourψ (ICZθc ,ζ̄ )
∼
−→ C0 ⊗ IC

Žθc ,ζ̄
.

7.2.3. Generalization. It is natural to consider the following generalization of ICZθc ,ζ̄ .
Let L be a line bundle on X. Let θ = mα with m ≥ 0, so X(m)

∼
−→ Xθ via the map

D 7→ Dα. Let Xθ,rss
⊂ Xθ be the open subscheme of reduced divisors. Write Sign for

the sign local system on Xθ,rss. Let LZθ be the vector bundle over Xθ with fibre L(D)/L
at D ∈ X(m). Let L̄ be the line bundle over Xθ with fibre

det R0(X,OD)
det R0(X,L(D)/L)

(44)

at D. Let LZ̃θ be the gerb of n-th roots of L̄ over LZθ . Write LZθmax ⊂ LZ
θ for the open

subscheme given by v ∈ L(D)/L such that v /∈ L(D′)/L for any 0 ≤ D′ < D. Let

LZ
θ,rss
max ⊂ LZ

θ
max

be the open subscheme given by the property that D is multiplicity free.
If D =

∑
i xi ∈ Xθ with xi pairwise different then the fibre of L̄ at D equals⊗

i(L
−1
⊗�)xi , where each (L−1

⊗�)xi is of parity zero, so the order does not matter.
Moreover, L(D)/L =

⊕
i L(xi)/L. So, a point v ∈ LZ

θ,rss
max is a collection 0 6= vi ∈

L(xi)/L for all i. This gives a trivialization of each line L(xi)/L, hence also a trivializa-
tion of L̄D as the tensor product thereof. So, we get a trivialization of L̄ over LZ

θ,rss
max .

We denote by LZ̃
θ,rss
max the restriction of the gerb LZ̃

θ to this open subscheme. The
above trivialization yields an isomorphism

LZ
θ,rss
max × B(µn)

∼
−→ LZ̃

θ,rss
max . (45)

Consider IC � Lζ̄−1 as a perverse sheaf on LZ̃
θ,rss
max via (45). Its intermediate extension

to LZ̃
θ is denoted IC

LZ
θ ,ζ̄ . For a point

(D, v ∈ L(D)/L,U) ∈ LZ̃
θ

with Un
∼
−→ L̄D the element a ∈ µn(k) ⊂ Aut(U) acts on IC

LZ
θ ,ζ̄ as ζ̄−1(a).

The dual vector bundle LŽθ → Xθ has the fibre L−1
⊗�/L−1

⊗�(−D) at D. Let

L
ˇ̃
Zθ be the gerb of n-th roots of L̄ over LŽθ . We define LŽθmax similarly.

Define the open subscheme LŽ
θ,rss
max ⊂ LŽ

θ and the gerb L
ˇ̃
Z
θ,rss
max similarly. As above,

we get a trivialization of L̄ over LŽ
θ,rss
max , hence an isomorphism

LŽ
θ,rss
max × B(µn)

∼
−→ L

ˇ̃
Zθ,rss

max . (46)
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Let IC(Sign) denote the IC-sheaf of LŽ
θ,rss
max tensored by the inverse image of Sign

from Xθ,rss. Define IC
LŽ

θ ,ζ̄
as the intermediate extension of IC(Sign) � Lζ̄−1 to L

ˇ̃
Zθ

using (46). Now the isomorphism (43) yields an isomorphism

Fourψ (ICLZ
θ ,ζ̄ )

∼
−→ Cm0 ⊗ IC

LŽ
θ ,ζ̄
. (47)

The schemes LZ
θ for various L are locally isomorphic in Zariski topology, so the

description of IC
LZ

θ ,ζ̄ (and of IC
LŽ

θ ,ζ̄
) is independent of L. The fibres of IC

LZ
θ ,ζ̄ are

completely described by Corollary 5.5.
As L varies in Bun1, the schemes LZθ form a family BunT Z

θ
→ Bun1×X

θ , whose
fibre over (L,D) is L(D)/L. We still denote by L̄ the line bundle over Bun1×X

θ with

fibre (44) over (L,D). Denote by BunT Z̃
θ , BunT Ž

θ and BunT
ˇ̃
Zθ the corresponding relative

versions over BunT .
We have an automorphism τZ of BunT ×Xθ sending (L,D) to (L′ := L−1

⊗

�(−D),D). It lifts to a diagram of isomorphisms

BunT Ž
θ ∼ //

��

BunT Z
θ

��

BunT ×Xθ
τZ // BunT ×Xθ

sending (L,D, v ∈ L−1
⊗�/L−1

⊗�(−D)) to (L′,D, v ∈ L′(D)/L′), where L′ is as
above. Let M⊂ Xθ denote the divisor of diagonals. One has canonically L̄ ⊗ τ ∗Z(L̄)

∼
−→

pr∗2 O(−M), where pr2 : BunT ×Xθ → Xθ is the projection. Recall that O(−M) identifies
canonically with the line bundle whose fibre at D ∈ Xθ is det R0(X,OD)2. For n = 2
this yields isomorphisms

τ̄Z : BunT
ˇ̃
Zθ

∼
−→ BunT Z̃

θ

and
τ̄ ∗Z IC

BunT Z
θ ,ζ̄

∼
−→ IC

BunT Ž
θ ,ζ̄

(48)

for the corresponding relative versions. Thus, for n = 2 the description of IC
LŽ

θ ,ζ̄
is

reduced to that of IC
LZ

θ ,ζ̄ , which was studied in [19]. However, for n ≥ 3 the situation is
very different.

For the rest of Section 7.2.3 assume L = �. Then L̄ is canonically identified with
O(−M) overXθ . Let �X̃θ be the gerb of n-th roots of L̄ overXθ . The fibre of �Žθ → Xθ

over D ∈ Xθ is OD . Let
πn : �Ž

θ
→ �Ž

θ

be the map sending (D, v ∈ OD) to (D, vn ∈ OD). Over �Žθmax this map is finite. Let
Gθn denote the kernel of the homomorphism Gθ → Gθ , g 7→ gn. This is a group scheme
over Xθ . Let Gθn act on �Ž

θ so that g ∈ (O/O(−D))∗ sends (D, v ∈ OD) to (D, gv).
The map πn is Gθn-invariant. The restriction

πn : �Ž
θ
max → �Ž

θ
max (49)
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is a Gθn-torsor. We have the line bundle onXθ with fibre det R0(X,OD); the group scheme
Gθn acts on this line bundle by a character that we denote ηn : Gθn→ Gm. It actually takes
values in µn. Let W̌max denote the local system on �Ž

θ
max obtained from the torsor (49)

as the extension of scalars via Gθn
ηn
−→ µn(k)

ζ̄
−→ Q̄∗` .

Let �X̃θ,rss denote the restriction of the gerb �X̃
θ to Xθ,rss. Since L̄ over Xθ,rss is

canonically trivialized, one has a canonical isomorphism

Xθ,rss
× B(µn)

∼
−→ �X̃

θ,rss. (50)

Viewing (IC(Xθ,rss)⊗ Sign) � Lζ̄−1 as a perverse sheaf on �X̃
θ,rss via (50), let IC

�X̃θ ,ζ̄

denote its intermediate extension to �X̃
θ . Let π̌ : �

ˇ̃
Zθ → �X̃

θ denote the projection
sending (D, v ∈ O/O(−D),U) to (D,U).

Proposition 7.2. There is an isomorphism over �
ˇ̃
Zθmax,

W̌max ⊗ π̌
∗ IC

�X̃θ ,ζ̄
[dim.rel(π̌)]

∼
−→ IC

�Žθ ,ζ̄
.

Proof. The intermediate extension commutes with a smooth base change. So, it suffices

to establish this isomorphism over �
ˇ̃
Z
θ,rss
max , where it is easy. ut

Remark 7.3. The restriction of L̄ to the principal diagonal X ⊂ Xθ identifies with
�m(m−1). For x ∈ X the group Aut(�x) acts on the fibre of L̄ at D = mx. So, if the
∗-fibre of IC

�X̃θ ,ζ̄
at mx does not vanish then n divides m(m − 1). In particular, if n is

large enough compared tom then IC
�X̃θ ,ζ̄

is the extension by zero under �X̃θ,rss ↪→ �X̃
θ .

Remark 7.4. (i) The perverse sheaf IC
�X̃θ ,ζ̄

has been studied in [1] (see also [10, Sec-
tion 5.1]). It satisfies the natural factorization property, and all its fibres are described
in [1]. The version of IC

�X̃θ ,ζ̄
in the world of twisted D-modules is exactly the sheaf

denoted by L
µ

∅
in [12, Section 3.4] for G = SL2 and µ = −mα.

(ii) The perverse sheaf IC
�X̃θ ,ζ̄

also appears in [23] under the name Lµ
∅

forG = SL2,
µ = −mα. Note that for n > 1 the so-called subtop cohomology property is satisfied for
our metaplectic data for SL2 by [23, Theorem 1.1.6]. So, for n > 1 the perverse sheaf
IC

�X̃θ ,ζ̄
identifies with the !-direct image under �Z̃θ → �X̃

θ by [23, Proposition 4.11.1].
Here �Z̃θ is the stack from Section 7.2.3.

7.2.4. For any E ∈ Bun1 taking L = E2 we get ZθE = LZ
θ and Z̃θE = LZ̃

θ . For L = E2

set IC
Žθc ,ζ̄
= IC

LŽ
θ ,ζ̄

. By (47) one has

Fourψ (ICZθc ,ζ̄ )
∼
−→ Cm0 ⊗ IC

Žθc ,ζ̄
. (51)

7.2.5. Global calculation. Let SB denote the stack classifying E ∈ Bun1 and s2 :
E2
→ �. Let νB : BunB → BunG be the natural map. Let Bun

B̃,c
be the stack clas-

sifying (38) and a line UG equipped with

UnG
∼
−→ (Lc)E. (52)
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Let S
B̃,c

be the stack classifying (E, s2) ∈ SB and a line UG equipped with (52). We
have the Fourier transform

Fourψ : D(Bun
B̃,c
)
∼
−→ D(S

B̃,c
).

The map νB lifts to a map ν
B̃
: Bun

B̃,c
→ B̃unG,Lc

sending UG and (38) to (M,UG).
Recall that ZθBunT classifies D ∈ Xθ ,E ∈ Bun1, v ∈ E2(D)/E2 giving rise to the

diagram (41). We have the dual vector bundles ZθBunT → Xθ × BunT ← ŽθBunT . Let

fB : Z
θ
BunT → BunB ×Xθ

be the map sending (41) to the exact sequence (38) together with D ∈ X(m) = Xθ . This
is a morphism of generalized vector bundles over BunT ×Xθ given by E2(D)/E2

→

H1(X,E2). The dual map over BunT ×Xθ is denoted

f̌B : SB ×X
θ
→ ŽθBunT ;

it sends (E, s2,D) to (D,E, v ∈ E−2
⊗ �/E−2

⊗ �(−D)), where v is the image of s2
under the transpose map

H0(X,E−2
⊗�)→ E−2

⊗�/E−2
⊗�(−D).

Let S0
B ⊂ SB be the open substack given by s2 6= 0. Let S0

B̃,c
be its preimage in

S
B̃,c

. Let B̃unT ,c be the gerb of n-th roots of Lc over BunT . For K ∈ Dζ̄ (B̃unT ,c) let us
describe

Fourψ ν∗B̃Eis(K)[dim.rel(ν
B̃
)]|S0

B̃,c

. (53)

Write (E1 ↪→ M,UG,U) for a point of Bun
B̃,c

, where UnG
∼
−→ (Lc)M and Un

∼
−→ (Lc)E1 .

Denote by Z̃θBunT the stack classifying a point (E,D, v ∈ E2(D)/E2) ∈ ZθBunT and a
line Ū equipped with

Ūn
∼
−→ (Lc)E(D)/(Lc)E. (54)

Let ˇ̃ZθBunT be the stack classifying (E,D, v′ ∈ E−2
⊗ �/E−2

⊗ �(−D)) ∈ ŽθBunT and
a line Ū equipped with (54). The perverse sheaves ICZθc ,ζ̄ as E varies in BunT naturally

form a family, which is a perverse sheaf on Z̃θBunT still denoted ICZθc ,ζ̄ by abuse of no-

tation. Similarly, we denote by IC
Žθc ,ζ̄

the corresponding perverse sheaf over ˇ̃ZθBunT . The

isomorphism (51) naturally extends to the stack ˇ̃ZθBunT .
Write (SB × Xθ )̃ for the stack classifying (E, s2) ∈ SB and lines UG,U equipped

with (52) and

Un
∼
−→ (Lc)E(D). (55)
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The map f̌B extends to a morphism f̌
B̃
: (SB × X

θ )̃→
ˇ̃
ZθBunT given by Ū = U⊗ U−1

G .
We have a diagram of projections

B̃unT ,c
prT ,c
←−− (SB ×X

θ )˜
prB,c
−−→ S

B̃,c
, (56)

where prB,c sends the above point to (E, s2,UG), and the map prT ,c sends the above
point to (E−1(−D),U) equipped with (55). From the standard properties of the Fourier
transform one gets the following.

Proposition 7.5. Let m ≥ 0 and θ = mα. Over the connected component of S0
B̃,c

given

by fixing degE, the contribution of the connected component of Bun
B̃,c

given by degE1 =

− degE−m to the complex (53) identifies with

(prB,c)!(pr∗T ,cK ⊗ Cm0 ⊗ (f̌B̃)
∗ IC

Žθc ,ζ̄
)[dim.rel(f̌B)− dim BunT ]. (57)

This complex vanishes unless e divides m+ degE. ut

Proposition 7.5 implies the following description of the first Whittaker coefficients of
Eis(K) for K ∈ Dζ̄ (B̃unT ,c). Write CovB ⊂ SB for the open substack given by requiring
that s2 : E2

→ � is an isomorphism. Let Cov
B̃,c

denote the restriction of the gerb S
B̃,c

to CovB . The stack Cov
B̃,c

is the base on which the first Whittaker coefficient lives. Recall
that the line bundle on Xθ × CovB whose fibre at (D,E, s2) ∈ Xθ × CovB is

(Lc)E(D)/(Lc)E

identifies canonically with pr∗1 O(−M). So, one gets the open immersion Cov
B̃,c
×(�X̃

θ )

↪→ (SB ×X
θ )˜ sending (D,E, s2,UG, Ū) with (52) and (54) to (E, s2,D,UG,U), where

U = UG ⊗ Ū. We have the diagram

B̃unT ,c
prCov,θ
←−−−− Cov

B̃,c
×(�X̃

θ )
pr1
−→ Cov

B̃,c

obtained by restricting (56).

Corollary 7.6. The restriction of (57) to Cov
B̃,c

identifies with

(pr1)!(pr∗Cov,θ K ⊗ Cm0 ⊗ IC
�X̃θ ,ζ̄

)[−dim BunT ]. (58)

Corollary 7.7. Let E be a Ť ]-local system on X, and KE ∈ Dζ (B̃unT ) the E∗-Hecke
eigensheaf as in Corollary 2.3. The first Whittaker coefficient of Eis(KE), that is, the
complex

Fourψ ν∗B̃Eis(KE)[dim.rel(ν
B̃
)]|Cov

B̃,c
,

identifies with ⊕
θ

(pr1)!(pr∗Cov,θ KE ⊗ Cm0 ⊗ IC
�X̃θ ,ζ̄

). (59)

Here θ = mα, and the sum is over m ≥ 0 such that m+ g − 1 ∈ eZ.
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Remark 7.8. (i) The complex (58) is an `-adic analog of the space of conformal blocks
in the Wess–Zumino–Witten model that was studied in [1].

(ii) Assume Enα is nontrivial; then KE is regular. The conjectural functional equation
for Eis(KE) should be reflected in the property of (59) saying that the summand indexed
by θ = mα for E identifies (up to tensoring by some 1-dimensional space) with the
summand indexed by θ ′ = m′α for σE, wherem+m′ = (n− 1)(2g− 2). Here σE is the
extension of scalars of E under w0 : Ť

]
→ Ť ]. In particular, in this case the sum in (59)

should be over 0 ≤ m ≤ (n− 1)(2g − 2) such that m+ g − 1 ∈ eZ.
(iii) In the case n = 2 the complex (59) is calculated in [19, Theorem 4]. In this case

it is given by the ‘geometric central value’ of some L-function. Recall the line bundle
EX ∈ CovB from Section 2.0.1. A point (E, s2) ∈ CovB gives rise to the µ2-torsor on X
given by s2 : (E⊗E−1

X )2
∼
−→ OX. Write E0 for the Q̄`-local system onX obtained from this

µ2-torsor via the extension µ2 → Q̄∗` . For n = 2 the fibre of (59) over (E,UG) ∈ Cov
B̃,c

identifies with ⊕
m≥0

R0(X(m), (E−α ⊗ E0)
(m))[m]

tensored by some 1-dimensional space. If E−2α is nontrivial then the above identifies
with ⊕

0≤m≤2g−2

∧m H1(X,E−α ⊗ E0)

tensored by some 1-dimensional space, and this agrees with (ii). The compatibility
with the functional equation then comes from the isomorphism H1(X,E−α ⊗ E0)

∗ ∼
−→

H1(X,Eα ⊗ E0). So, for n > 1 we may think of (59) as a generalization of the notion of
the central value of an abelian L-function.

7.3. Constant term of Eis

Recall that Bun
B,G̃

classifies an exact sequence (38) and a line UG equipped with

UNG
∼
−→ LM . Write Bund

B,G̃
for the connected component of Bun

B,G̃
given by degE = d .

We have the diagram of projections

B̃unT
q
←− Bun

B,G̃

p
−→ B̃unG,

where q sends (E ↪→ M,UG) to (E,UG). Write B̃undT for the component of B̃unT clas-
sifying (E,U) ∈ B̃unT with degE = d . The constant term functor CT : Dζ (B̃unG) →
Dζ (B̃unT ) is defined by CT = q!p

∗
[dim.rel(p)].

Recall that BunB classifies M ∈ BunG together with a subsheaf E ↪→ M , E ∈ Bun1.
Write Bun

d

B for the connected component of BunB given by degE = d. The stack Bun
d

B

is smooth irreducible of dimension 2g − 2− 2d .
Let σ : BunT → BunT be the map E 7→ E−1. We also denote by σ : B̃unT → B̃unT

the map (E,U) 7→ (E−1,U).
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Definition 7.9. For θ = mα ∈ 3
pos
G,B with m ∈ nZ+ we define the following integral

Hecke functor IHθ : Dζ (B̃unT ) → Dζ (B̃unT ). One has B(θ) = (m/n)ν, where ν =
nα ∈ J , andXB(θ) ∼

−→ X(m/n). Recall the stackXB(θ)
×Xθ M̃od

+,θ

B̃unT
from Section 7.1.1.

Its point is a collection (E ∈ Bun1,D ∈ X
(m/n),U,UG) together with isomorphisms

UNG
∼
−→ (LT )E(nD), UN

∼
−→ (LT )E. Here E(nD) is the ‘background’ T -torsor. Consider

the diagram

B̃unT
h←T
←−− XB(θ)

×Xθ M̃od
+,θ

B̃unT

h→T
−−→ B̃unT ,

where h←T sends the above point to (E,U), and h→T sends the above point to (E(nD),UG).
Set

IHθ (K) = (h→T )!((h
←

T )
∗K ⊗ ICB(θ)

BunM ,ζ )[−dim BunT ].

Proposition 7.10. Let d1 ∈ eZ and K ∈ Dζ (B̃und1
T ). Then the complex Kd,d1 :=

CT(Eis(K))|
B̃undT

vanishes unless d − d1 ∈ nZ, in which case it is described as follows.

(a) If d1 > max{d,−d} then Kd,d1 = 0.
(b) If d < d1 ≤ −d then for θ := −(d + d1)α ∈ nαZ,

Kd,d1
∼
−→ σ!IHθ (K)[−|B(θ)|].

(c) If d ≥ d1 > −d then for θ := (d − d1)α ∈ nαZ,

Kd,d1
∼
−→ IHθ (K)[2− 2g + |B(θ)|].

(d) If d1 ≤ min{d,−d} then there is a distinguished triangle

σ!IHθ (K)[−|B(θ)|] → Kd,d1 → IHθ
′

(K)[2− 2g + |B(θ ′)|]

with θ = −(d + d1)α and θ ′ = (d − d1)α.

Proof. We calculate the direct image with respect to the composition Bun
B,G̃
×B̃unG Bun

B̃

p̃
−→ Bun

B,G̃

q
−→ B̃unT . Write a point of Bun

B,G̃
×B̃unG Bun

B̃
as (38) together with a

subsheaf E1 ↪→ M and lines U,UG equipped with UN
∼
−→ (LT )E1 , UNG

∼
−→ (LT )E.

(a) In this case Hom(E1,E) = Hom(E1,E
−1) = 0.

(b) In this case Hom(E1,E) = 0, and there remains the integral over the open sub-
stack Z̃θ

B̃undT
⊂ Bun

B,G̃
×B̃unG Bun

B̃
given by the conditions that E1 → E−1 is injective,

degE1 = d1, degE = d. Here θ = −(d + d1)α.
Let M̃od

+,θ

B̃undT
be the stack classifying E ∈ BundT , D1 ∈ X

θ and lines U,UG equipped

with UN
∼
−→ (LT )E(D1), U

N
G

∼
−→ (LT )E. Here E−1 is the ‘background’ T -torsor. Let

πB : Z̃
θ

B̃undT
→ M̃od

+,θ

B̃undT
be the natural projection. By Theorem 5.3, Kd,d1 vanishes
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unless d + d1 ∈ nZ, in which case it is as follows. One gets XB(θ)
= X((−d−d1)/n). The

corresponding map XB(θ)
→ Xθ sends D to D1 = nD. Consider the diagram

B̃unT
h←T
←−− XB(θ)

×Xθ M̃od
+,θ

B̃undT

σh→T
−−−→ B̃undT ,

where h→T sends (D,E,U,UG) to (E−1,UG), and h←T sends this point to (E−1(−nD),U).
By Theorem 5.3,

Kd,d1
∼
−→ (σh→T )!(IC

B(θ)
BunM ,ζ ⊗ (h

←

T )
∗K)[(d + d1)/n− dim BunT ].

(c) In this case Hom(E1,E
−1) = 0. Let θ = (d − d1)α. By Corollary 5.5, Kd,d1

vanishes unless d − d1 ∈ nZ. In the latter case |B(θ)| = (d − d1)/n and

Kd,d1
∼
−→ IHθ (K)[2− 2g + |B(θ)|].

(d) Stratify Bun
B,G̃
×B̃unG Bun

B̃
by the property that E1 factors through E or not.

Calculate the direct image with respect to this stratification. ut

Let E be a Ť ]-local system on X. Write K = KE for the Hecke eigensheaf on B̃unT
associated to E in [18, Proposition 2.2]. This is a local system over the components of
B̃unT corresponding to 3].

Lemma 7.11. Let ν = −nα and θ = mα withm ∈ nZ+. One has naturally IHθ (KE)
∼
−→

KE ⊗ R0(X(m/n), (Eν)(m/n))[m/n].

Remark 7.12. By [19, Lemma 15], one has canonically (AE)�−nα
∼
−→ det R0(X,Enα).

Here �−nα is the T ]-torsor obtained from � via the push-out by −nα : Gm → T ].
Denote also by σE the extension of scalars of E under w0 : Ť

]
→ Ť ]. Now from Propo-

sition 3.15 one gets σ ∗KE
∼
−→ K(σE) ⊗ det R0(X,Enα). Here σ∗ stands for the twisted

W -action (15). It follows that Proposition 7.10 is consistent with the functional equation
for Eis(KE) from Conjecture 3.17.

7.4. Some special sheaves

Let E be a Ť ]-local system on X. Sometimes we think of it simply as the rank one local
system on X corresponding to the character eα of Ť ]. Write K = KE for the Hecke
eigensheaf on B̃unT associated to E in [18, Proposition 2.2]. This is a local system over
the components of B̃unT corresponding to 3].

Recall the Shatz stratification of BunG. Let Shatz0
⊂ BunG be the open substack

of semi-stable torsors. So, M ∈ Shatz0 iff for any rank one subsheaf L ⊂ M one has
degL ≤ 0. For d > 0 let Shatzd denote the stack classifying E ∈ Bund1 and an exact
sequence 0 → E → M → E−1

→ 0. The map Shatzd → BunG sending this point
to M is a locally closed immersion. Moreover, Shatzd for d ≥ 0 form a stratification
of BunG. The stack Shatzd is irreducible of dimension 2g − 2 − 2d for d > 0, and
dim Shatz0

= dim BunG = 3g − 3.
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Let Bunst
G ⊂ BunG denote the open substack of stable sheaves. It is not empty for

g ≥ 2. The image Bun≤0
G of Bun

0
B → BunG is the complement of Bunst

G in BunG. For

d > 0 the image of p̄ : Bun
d

B → BunG is the closure Shatz
d

of Shatzd . Let Shatzd
G̃

(resp.,

Shatz
d

G̃) be obtained from ShatzdG (resp., Shatz
d
) by the base change B̃unG→ BunG.

For d > 0 a point of Shatzd
G̃

is given by (38) together with a line UG equipped with

UNG
∼
−→ (LT )E. (60)

For d > 0 let q̃ : Shatzd
G̃
→ B̃unT be the map sending the above point to (E,UG)

equipped with (60).

Definition 7.13. Let IC(E, d) denote the intermediate extension of q̃∗KE[dim Shatzd
G̃
]

under Shatzd
G̃
↪→ Shatz

d

G̃. Note that IC(E, d) ∈ Dζ (B̃unG).

Recall the stack Bun
d

B from Section 7.3. For K ∈ Dζ (B̃unT ) write Eisd(K) for the con-

tribution of the component Bun
d

B̃ to Eis(K). Recall that Eisd(K) vanishes unless d ∈ eZ.

Proposition 7.14. Let d > 0 with d ∈ eZ.

(a) If Enα is not trivial then Eisd(K)
∼
−→ IC(E, d) canonically.

(b) If Enα is trivial then

Eisd(K)
∼
−→

⊕
b≥0

IC(E, d + nb).

Proof. The map p̄ : Bun
d

B → BunG is an isomorphism over ShatzdG. It follows that
IC(E, d) appears in Eisd(K) with multiplicity one. Consider a point (E ↪→ M,UG) ∈

Shatzr
G̃

for some r > d. The fibre of p̄ : Bun
d

B → BunG over this point identifies with
X(r−d). Namely, to D ∈ X(r−d) there corresponds the subsheaf E(−D) ⊂ M . Denote
by S the ∗-fibre of Eisd(K) at this point. By Corollary 5.5, S vanishes unless r − d ∈ nZ.
If r − d ∈ nZ then we get an isomorphism

S
∼
−→ K(E,UG) ⊗ R0(X(

r−d
n
), (E−nα)(

r−d
n
))[−2r + 2g − 2+ 2(r − d)/n].

The codimension of Shatzr in Shatz
d

is 2(r−d). IfEnα is not trivial then the ∗-restriction
of Eisd(K) to Shatzr is placed in perverse degrees < 0. Part (a) follows. Under the as-
sumption of (b) we see that IC(E, r) appears in Eisd(K) with multiplicity one. Our claim
follows. ut

Remark 7.15. If n is even then by Lemma 3.14 one has the following. If d ∈ nZ (resp.,
d ∈ eZ and d /∈ nZ) then IC(E, d) ∈ Dζ,+(B̃unG) (resp., IC(E, d) ∈ Dζ,−(B̃unG)).
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7.4.1. Case g = 0. In this subsection we assume g = 0. For d > 0 set for brevity
ICd = IC(Q̄`, d). The open substack Shatz0

⊂ BunG classifies trivial G-torsors.

Definition 7.16. The line bundle Lc is trivial on Shatz0; its trivialization yields an iso-
morphism Shatz0

G̃

∼
−→ Shatz0

× B(µN ). View IC(Shatz0) � Lζ as a perverse sheaf on

Shatz0
G̃

via this isomorphism. Let IC0 be its intermediate extension to B̃unG.

Lemma 7.17. Assume d > 0 with d ∈ eZ. Let r > d. The ∗-restriction ICd |Shatzr
G̃

vanishes unless r − d ∈ nZ. If r − d ∈ nZ then

ICd |Shatzr
G̃

∼
−→ ICr [2(r − d)/n]|Shatzr

G̃
.

Proof. By Proposition 7.14, Eisd(K)
∼
−→ Eisd+n(K)⊕ ICd . Restricting this isomorphism

to Shatzr
G̃

, one obtains the desired result as in Proposition 7.14. ut

Lemma 7.18. (a) One has Eis0(K)
∼
−→ IC0[1] ⊕ IC0[−1] ⊕

⊕
b≥0 IC2n+bn.

(b) The ∗-restriction IC0|Shatzr
G̃

vanishes unless r ∈ nZ. For r ∈ nZ and r > 0 one has

IC0|Shatzr
G̃

∼
−→ ICr [2r/n− 1]|Shatzr

G̃
.

Proof. For (M,UG) ∈ Shatz0
G̃

the fibre of p̄ : Bun
0
B → BunG over M is isomor-

phic to P1. So, Eis0(K)
∼
−→ IC0[1] ⊕ IC0[−1] over Shatz0

G̃
. For d > 0 and a point

(E ⊂ M,UG) ∈ Shatzd
G̃

the fibre of p̄ : Bun
0
G → BunG over M identifies with X(d). To

D ∈ X(d) there corresponds (E(−D) ⊂ M) ∈ Bun
0
B . Now arguing as in Proposition 7.14,

one shows that the ∗-restriction Eis0(K)|Shatzd
G̃

vanishes unless d ∈ nZ. For d ∈ nZ we
get

Eis0(K)|Shatzd
G̃

∼
−→ q̃∗K⊗ R0(X(d/n), Q̄`)[−2d − 2+ 2d/n]. (61)

The codimension of Shatzd in BunG is 2d − 1. It follows that Eis0(K)|Shatzd
G̃

is placed in

perverse degrees ≤ 0, and its 0-th perverse cohomology sheaf is isomorphic to ICd .
If d = n then (61) can be written as ? ⊕ Z[1] ⊕ Z[−1], where Z = IC0|Shatzn

G̃
, and

? is self-dual. It follows that IC0|Shatzn
G̃

∼
−→ ICn[1] |Shatzn

G̃
and ? = 0.

For d = 2n the complex (61) can be written as ? ⊕ Z[1] ⊕ Z[−1], where Z =
IC0|Shatzd

G̃

, and ? is self-dual. It follows that ? = IC2n and IC0|Shatz2n
G̃

∼
−→ IC2n[3].

For d = 3n the complex (61) can be written as

?⊕ Z[1] ⊕ Z[−1] ⊕ IC2n|Shatzd
G̃

,

where ? is self-dual, and Z = IC0|Shatzd
G̃

. By Lemma 7.17, IC2n|Shatzd
G̃

∼
−→ IC3n[2] over

Shatzd
G̃

. It follows that ? = ICd and IC0|Shatzd
G̃

∼
−→ IC3n[5]. Continuing, our claim easily

follows by induction. ut
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Remark 7.19. If n = 2 then IC0 = Autg and IC1 = Auts in the notation of [21] and [19,
Appendix A]. These are the direct summands of the theta-sheaf Aut. Our description of
the fibres of IC0 and IC1 in Lemmas 7.17 and 7.18 extends [21, Theorem 1].

Recall the Hecke functors for G defined in Section 3.2. For ν ∈ 3],+ we set xHνG =
(id× ix)∗HνG[−1], where ix : Spec k → X is the point x, and id × ix : B̃unG →
B̃unG×X.

Lemma 7.20. Let ν = eα and d > 0 with d ∈ eZ.

(a) Assume n is even. For d ≥ n one has xHνG ICd
∼
−→ ICd+e⊕ ICd−e. Moreover,

xHνG ICe
∼
−→ IC0[1] ⊕ IC0[−1].

(b) Assume n is odd. For d ≥ 2n one has xHνG ICd
∼
−→ ICd+n⊕ ICd ⊕ ICd−n. Moreover,

xHνG ICn
∼
−→ IC0[1] ⊕ IC0[−1] ⊕ IC2n .

Proof. By Proposition 7.14 and Lemma 7.18, Eisd(K)
∼
−→ Eisd+n(K)⊕ ICd and

Eis0(K)
∼
−→ IC0[1] ⊕ IC0[−1] ⊕ Eis2n(K).

Write B̃undT for the component of B̃unT classifying (E,U) with degE = d. Applying
Theorem 2.2 to the complex K|

B̃undT
one gets the following.

(a) Assume n is even. One has

xHνGEisd(K)
∼
−→ Eisd+e(K)⊕ Eisd−e(K)

and xHνGEisd+n(K)
∼
−→ Eisd+n+e(K)⊕ Eisd+n−e(K). For d ≥ n this implies

xHνG ICd
∼
−→ ICd+e⊕ ICd−e .

Moreover, xHνG ICe
∼
−→ IC0[1] ⊕ IC0[−1].

(b) Assume n is odd. One has

xHνGEisd(K)
∼
−→ Eisd+n(K)⊕ Eisd(K)⊕ Eisd−n(K)

and xHνGEisd+n(K)
∼
−→ Eisd+2n(K)⊕ Eisd+n(K)⊕ Eisd(K). For d ≥ 2n this implies

xHνG ICd
∼
−→ ICd+n⊕ ICd ⊕ ICd−n .

Moreover, xHνG ICn
∼
−→ IC0[1] ⊕ IC0[−1] ⊕ IC2n. ut

Proposition 7.21. Let ν = eα.

(a) If n is even AνE is the extension by zero from G̃r
ν

G.
(b) If n is odd then for µ ∈ 3+, µ < ν the ∗-restriction AνE|G̃rµG

vanishes unless µ = 0,
and AνE|Gr0

G

∼
−→ Q̄`[2].



Geometric Eisenstein series: twisted setting 3247

Proof. In the proof we use some notation from [9]. Let O = k[[t]]. Recall that Ae ∼−→
Gr0
B ∩Gr

ν

G via the map sending f = bet−e + be−1t
1−e
+ · · · + b1t

−1 with bi ∈ A1 to(
1 f

0 1

)
G(O).

The open subscheme Gr0
B ∩GrνG ⊂ Gr0

B ∩Gr
ν

G is given by be 6= 0. In the notations of [9,
Lemma 4.2] one has F 0

T (A
ν
E) = 0 for n even, and F 0

T (A
ν
E)
∼
−→ Q̄` for n odd.

For µ ∈ 3+ with µ < ν the ∗-restriction AνE|G̃rµG
vanishes unless µ = 0. Indeed, if

µ ∈ 3+, µ < ν and µ ∈ 3] then µ = 0. One has the diagram

G̃r
0
T

tB
←− G̃r

0
B

sB
−→ G̃rG.

In the notation of [9, Lemma 4.2] we see that a∗B,0A
ν
E is not constant (resp., is constant)

over Gr0
B ∩GrνG for n even (resp., for n odd).

Calculate (tB)!s∗BA
ν
E using the stratification of Gr0

B ∩Gr
ν

G by the locally closed sub-

schemes Gr0
B ∩GrµG with µ ∈ 3+, µ ≤ ν. For n even the contribution of G̃r

0
B ∩ G̃r

ν

G to

this direct image vanishes, so the contribution of G̃r
0
B ∩ G̃r

0
G also vanishes.

For n odd the contribution of G̃r
0
B ∩ G̃r

ν

G to this direct image is

R0c(Gm × An−1, Q̄`[2n])
∼
−→ Q̄`[1] ⊕ Q̄`.

Since F 0
T (A

ν
E)
∼
−→ Q̄`, and AνE|G̃r0

G

is placed in strictly negative degrees, our claim fol-

lows from the exact triangle (Q̄`[1] ⊕ Q̄`)→ Q̄`→ AνE|Gr0
G

. ut

Write xHν

G̃
for the preimage of xHν

G in xHG̃
.

Lemma 7.22. Let ν = eα. For a point (M,M ′, β, x) ∈ Hν
G one has canonically

det R0(X,M ′)
det R0(X,M)

∼
−→

(
(M((e − 1)x)+M ′)/M((e − 1)x)

)⊗2e
⊗�e(e−1)

x .

Here dimkM((e − 1)x)+M ′)/M((e − 1)x) = 1. There is an isomorphism

κ : xH
ν

G̃

∼
−→ (B̃unG×BunG xH

ν
G)× B(µN ),

where we use h←G in the fibred product, and the projection to the first term corresponds to
h̃←G : xH

ν

G̃
→ B̃unG.

Proof. The symplectic form on M yields a nondegenerate pairing between the k-vector
spaces (M +M ′)/M and (M +M ′)/M ′. So,

det R0(X,M ′)⊗ det R0(X,M)−1 ∼
−→ det R0(X, (M +M ′)/M)2.
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The first claim follows now from the natural isomorphism

det R0(X, (M +M ′)/M)
∼
−→

(
(M((e − 1)x)+M ′)/M((e − 1)x)

)⊗e
⊗�

e(e−1)/2
x .

A point of xHν

G̃
is given by a collection (M,M ′, β) ∈ xH

ν
G and the lines U,U′ to-

gether with the isomorphisms UN
∼
−→ LM , U′N

∼
−→ LM ′ . Define κ as the map sending

(M,M ′, β,U,U′) to (M,M ′, β,U,U0), where

U = U′ ⊗ U0 ⊗ ((M((e − 1)x)+M ′)/M((e − 1)x))⊗2e/n
⊗ E

2e(e−1)/n
X,x .

For n odd the line �e(e−1)/n
x

∼
−→ E

2e(e−1)/n
X,x does not depend on the choice of EX. ut

For M ∈ Dζ (B̃unG) the contribution of xHν

G̃
to xHνG(M) can now be written as

(h̃←G )!((h̃
→

G )
∗M⊗ κ∗Lζ )[2e] (62)

for the diagram B̃unG
h̃←G
←−− xH

ν

G̃

h̃→G
−−→ B̃unG. For n odd the contribution of xH0

G̃
to

xHνG(M) is M[2].

Theorem 7.23. Let ν = eα.

(a) For n even one has xHνG IC0
∼
−→ ICe[1] ⊕ ICe[−1].

(b) For n odd one has
xHνG IC0

∼
−→ IC0[2] ⊕ IC0⊕ IC0[−2].

Proof. Recall that xHνG is given by a version of (6) with x fixed.
(a) By Lemma 3.12 and Remark 7.15, xHνG IC0 ∈ Dζ,−(B̃unG). This implies that the

∗-restriction (xHνG IC0)|Shatzi
G̃

vanishes unless i ∈ e + nZ.

Let i ≥ 0, i ∈ e+ nZ andM ∈ Shatzi . Let Y denote the fibre of h←G : xH
ν
G→ BunG

over M . Write P(Mx) for the projective space of lines in M(ex)/M((e − 1)x). We have
a map η : Y → P(Mx) sending M ′ to the line (M ′ +M((e − 1)x))/M((e − 1)x). Each
fibre of η identifies with A2e−1. Denote by S the ∗-fibre of xHνG IC0 at M .

For d ≥ 0 with d ∈ nZ let Yd ⊂ Y be the locally closed subscheme given by
M ′ ∈ Shatzd . Since i > 0, M has a canonical B-structure given by (E ⊂ M) with
degE = i and E ∈ Bun1.

If i = e then Y0
∼
−→ An, and the contribution of this locus to S is Q̄`[−3 − n].

Moreover, Yn
∼
−→ Gr−eαB ∩GreαG

∼
−→ Spec k. So, the contribution of Yn to S is Q̄`[−1−n].

We see that the ∗-restriction of xHνG IC0 to Shatze identifies with ICe[1] ⊕ ICe[−1].
Assume i = e + bn with b > 0, d ≥ 0, d ∈ nZ. Then Yd ⊂ Y is not empty only for

d = nb or d = n(b + 1). One has Ynb
∼
−→ GreαB ∩GreαG

∼
−→ An. The contribution of this

locus to S is
Q̄`[−3− 2bn+ 2b − n]

∼
−→ ICe[−1]|M .

Further, Yn(b+1)
∼
−→ Gr−eαB ∩GreαG

∼
−→ Spec k. The contribution of Yn(b+1) to S is

Q̄`[−1− 2bn+ 2b − n]
∼
−→ ICe[1]|M .

Part (a) follows.
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(b) The case n = 1 is well-known, so assume n > 1. We denote by (M,M ′, β)
a point of H

ν

G. Let i ≥ 0 with i ∈ nZ and M ∈ Shatzi . Let Ȳ denote the fibre of
h←G : xH

ν

G→ BunG over M . Let Y ⊂ Ȳ be the preimage of xHν
G in Ȳ .

For d ≥ 0 with d ∈ nZ let Yd ⊂ Y (resp., Ȳd ⊂ Ȳ ) denote the locally closed
subscheme given by M ′ ∈ Shatzd . Write S for the fibre of xHνG IC0 at M . As above, we
have a map η : Y → P(Mx), each of whose fibres identifies with A2n−1.

First, assume i = 0. Then only Ȳn = Yn and Ȳ0 contribute to S. There is a section
P(Mx) → Y of η, whose image identifies with Yn. Any local system on P1 is constant.
So, the contribution of Yn to S is R0(P1, Q̄`[−1])

∼
−→ Q̄`[−1] ⊕ Q̄`[−3].

The scheme Ȳ0 can be written as the subscheme of GrG of points of the form AG(O),
where

A =

(
1+ a1 a2
a3 1+ a4

)
∈ G(k[t−1

])

with ai ∈ k[t−1
] of degree ≤ n in t−1. In particular, G acts on Ȳ0. This action commutes

with the loop rotations group Gm ⊂ Aut(O) action on Ȳ0. The scheme Ȳ0 can equally be
seen as the scheme classifying matrices A as above with ai of the form bn,i t

−n
+ · · · +

b1,i t
−1
∈ k[t−1

] for all i. In the latter form the action of G is given by conjugation.
Recall the formulas (62) and (6). The group Gm ⊂ Aut(O) of loop rotations acts on Ȳ0

and contracts it to the point M ∈ Ȳ0. The complex (h̃→G )
∗ IC0⊗ ICν is monodromic with

respect to this action. Let i0 : Spec k → Ȳ0 denote the point M . By [2, Lemma 5.3] we
get

R0c(Ȳ0, ICν ⊗(h̃→G )
∗ IC0)

∼
−→ i!0(IC

ν
⊗(h̃→G )

∗ IC0)
∼
−→ Q̄`[−5]. (63)

It follows that over Shatz0 one has

xHνG IC0
∼
−→ IC0[2] ⊕ IC0⊕ IC0[−2].

Let now i > 0 with i ∈ nZ. Then M has a distinguished B-structure given by
the unique subbundle of degree i. Then only Ȳn+i , Ȳi , Ȳi−n may contribute to S. Note
that Ȳn+i = Yn+i is the point scheme. Its contribution to S is Q̄`[−1 − 2i + 2i/n].
One has Yi−n = Ȳi−n

∼
−→ GrνB ∩GrνG

∼
−→ A2n. So, the contribution of Ȳi−n to S is

Q̄`[−5− 2i + 2i/n].
Finally, Ȳi

∼
−→ Gr0

B ∩Gr
ν

G

∼
−→ An. To calculate the contribution of Ȳi to S, argue as in

Proposition 7.21. In the notation of [9, Lemma 4.2], the contribution of Ȳi to S identifies
with

F 0
T (A

ν
E)[−3− 2i + 2i/n]

∼
−→ Q̄`[−3− 2i + 2i/n]

∼
−→ (IC0)M .

Using Lemma 7.18 we see that S is isomorphic to the ∗-restriction of IC0[2] ⊕
IC0⊕ IC0[−2] to M . We are done. ut
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Appendix. Proof of Theorem 2.13

Assume k = Fq . A version of Corollary 5.1 holds also in this case. It is understood that
the Tate twists are recovered in the corresponding formulas. Take P = B, soM = T . Let
θ ∈ 3pos. In this case the stack Mod+,θ

M̃
defined in Section 5.1 classifies D̄ ∈ Xθ and a

line U together with UN
∼
−→ LF0

T (−D̄)
.

The stack M̃od
+,θ

B̃unT
from Section 5.2.1 classifies (D̄ ∈ Xθ ,F′T ∈ BunT ,U,U′), where

U,U′ are lines equipped with UN
∼
−→ LF′T (−D)

, U′N
∼
−→ LF′T

. Recall that J is the set of

positive roots of Ǧn for B̌n.
For B(θ) =

∑
ν∈J nνν∈3

pos,pos
G,B the perverse sheaf ICB(θ)

BunT ,ζ onXB(θ)
×Xθ M̃od

+,θ

B̃unT
is a rank one shifted local system. Consider the diagram

XB(θ)
× B̃unT

f
←− XB(θ)

×Xθ M̃od
+,θ

B̃unT
h
−→ B̃unT

where f sendsD∈XB(θ) with image D̄ ∈ Xθ , (D̄,F′T ,U,U
′)∈M̃od

+,θ

B̃unT
to (D,F′T ,U

′),
and h sends the above point to (F′T (−D̄),U) ∈ B̃unT .

Recall that XB(θ)
=
∏
ν∈J X

(nν ) and |B(θ)| is the dimension of XB(θ). One has

h∗KE ⊗ ICB(θ)
BunT ,ζ

∼
−→ f ∗

((
�
ν∈J
(E−ν)(nν )

)
�KE

)
⊗ (Q̄`[1](1/2))dim BunT +|B(θ)|.

So, by Corollary 5.5, the contribution of the stratum θ B̃un
B̃

to Funct(Eis(Kµ
E)) is

Funct(Eis′(Kµ−θ
E ))

∏
ν∈J

Tr(Fr,R0(X(nν ), (E−ν)(nν ))⊗ Q̄`(nν)).

Theorem 2.13 is proved.
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