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Abstract. For a smooth curve γ , we define its elastic energy as E(γ ) = 1
2
∫
γ k

2(s)ds where k(s)
is the curvature. The main purpose of the paper is to prove that among all smooth, simply connected,
bounded open sets of prescribed area in R2, the disc has the boundary with the least elastic energy.
In other words, for any bounded simply connected domain�, the following isoperimetric inequality
holds: E2(∂�)A(�) ≥ π3. The analysis relies on the minimization of the elastic energy of drops
enclosing a prescribed area, for which we also give an analytic answer.
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1. Introduction

Let� be a smooth, bounded simply connected open set in the plane (the exact smoothness
which is required will be made precise in Section 2) and let ∂� denote its boundary.
Following L. Euler, we define its elastic energy as

E(∂�) =
1
2

∫
∂�

k2(s) ds (1)

where s is the arc length parameter and k is the curvature. We will denote by A(�) the
area of � and by L(�) its perimeter. The aim of this paper is to prove the following
isoperimetric inequality.

Theorem 1.1. For any bounded, smooth, simply connected, nonempty open set � ⊆ R2,

E2(∂�)A(�) ≥ π3, (2)

where equality holds only for the disc.
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Université Savoie Mont Blanc, Campus Scientifique, 73376 Le Bourget-du-Lac, France;
e-mail: dorin.bucur@univ-savoie.fr
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Since for any disc BR we have E2(∂BR)A(BR) = π
3, we deduce that for every A0 > 0,

the disc is the unique solution for the minimization problem

min{E(∂�) : A(�) = A0, � a bounded, smooth, simply connected open set in R2
}.

More precisely, if we perform any scaling of ratio t , we have E(t∂�) = t−1E(∂�) and
A(t∂�) = t2A(∂�). Therefore, it is classical to prove that the following three minimiza-
tion problems are equivalent (in the sense that any solution of one gives a solution of the
others after a suitable scaling):

(i) minE2(∂�)A(�),
(ii) min{E(∂�) : A(�) ≤ A0},

(iii) min{E(∂�)+ A(�)}.

Let us make some comments. For a detailed bibliography on closed elasticae, we refer
to the classical [8] or the more recent [9]. Inequality (2) was already known for convex
domains. Indeed, by a famous inequality due to M. Gage [6], for any bounded convex
domain we have

E(∂�)A(�)

L(�)
≥
π

2
with equality for the disc. Therefore,

E2(∂�)A(�) ≥ E2(∂�)A(�)
4πA(�)
L2(�)

≥
π2

4
× 4π = π3,

the first inequality being the classical isoperimetric inequality, and the second the Gage
inequality. If the convexity hypothesis is dropped, then the Gage inequality is false (as
shown by the counter-example of Figure 1).

The simple connectedness assumption is necessary. Indeed, if we take as a domain �
the ring

�R = {(x, y) : R <
√
x2 + y2 < R + 1/R},

we get

E(∂�R) =
π

R
+

πR

R2 + 1
, while A(�R) = π

(
R +

1
R

)2

− πR2
= 2π + π/R2.

showing that E2(∂�R)A(�R)→ 0 as R→∞.
In the same way, the boundedness assumption is also necessary. Let us consider the

following unbounded domain, subgraph of a Gaussian function, but with finite area and
elastic energy:

�α = {(x, y) ∈ R2
: −∞ < x <∞, 0 < y < e−αx

2/2
}.

We have

A(�α) =

∫
∞

−∞

e−αx
2/2 dx =

√
2π/α,

while
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E(∂�α) =
1
2

∫
∞

−∞

(α2x2
− α)2e−αx

2

(1+ α2x2e−αx
2
)5/2

dx =
α3/2

2

∫
∞

−∞

(u2
− 1)2e−u

2

(1+ αu2e−u
2
)5/2

du,

and we see that E2(∂�α)A(�α)→ 0 as α→ 0.
This shows that the assumptions in Theorem 1.1 cannot be weakened.
Our strategy is to solve the following equivalent version of problem (2):

min{E(∂�)+ A(�) : � ⊆ R2 open, smooth, bounded, simply connected}, (3)

and to prove that the solution is a disc.
The proof follows the direct method of the calculus of variations (existence, regularity,

analysis of the optimality conditions), but the existence part is by no means easy. In
fact we need a control on the perimeter of a minimizing sequence (which is not a priori
bounded) and have to handle the fact that the geometric limit of a minimizing sequence
may not be smooth any more, in the sense that tangential self-intersections could occur.

Indeed, the boundedness constraints on E(∂�) and A(�) do not ensure that the
perimeter is uniformly bounded, as shown by a counter-example like a dumbell (see
Figure 1). In order to deal with minimizing sequences having a diameter going to to
infinity, our strategy follows the idea introduced by De Giorgi [4] for the analysis of the
isoperimetric inequality. First, we introduce an artificial boundedness constraint: we shall
assume that all our competing sets lie in a ball of radius R centered at the origin. In a
second step, we prove that if R is large enough, the optimal set does not touch the bound-
ary of the ball (up to a suitable translation), and so we will be able to write optimality
conditions on the full boundary, and consequently deduce that the set is the disc.

Fig. 1. A dumbbell with bounded area and elastic energy with a large perimeter.

In order to handle the self-intersection points, we analyse the minimization of the
elastic energy of drops enclosing a fixed area, i.e. closed loops without self-intersection
points, which are smooth except at one point, where the tangents are opposite. For this
class of sets, we can easily eliminate the situations in which the limit of a minimizing
sequence has self-intersections. Consequently, we give a complete characterization of the
optimal drop, which turns out to be unique. We refer to Section 3 for a precise definition
of drops.

Here is our plan.
• Let R > 0. We analyze the problem

min{E(∂�)+ A(�) : � ⊆ BR an open, smooth, simply connected drop}. (4)

There existsR0 > 0 such that forR ≥ R0 the optimal drop does not touch the boundary
of BR . As a consequence of the optimality conditions, we give an analytic description
of the optimal drop and deduce it is unique, independent of R.
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• For every R ≥ R0 we consider

min{E(∂�)+ A(�) : � ⊆ BR open, smooth, simply connected}. (5)

We prove the existence of a solution which does not touch the boundary of BR . The
possible self-intersection points of a geometric limit of a minimizing sequence are
eliminated by direct comparison with the disc, since their energy would be at least the
double of the energy of the optimal drop. Consequently, we can write the optimality
conditions on the full boundary and deduce that there are only four sets which satisfy
the optimality conditions. By direct observation, the disc is the solution.
• We conclude that the solution of (3) is the disc, and so inequality (2) holds, with equal-

ity if and only if � is a disc.

2. Preliminaries

All curves γ : [0, L] → R2 considered are parametrized by arc length. We denote by θ
the angle of the tangent to γ to the axis Ox. The curvature of γ at γ (s) will be denoted
k(s) and it is equal to θ ′(s). Since we shall work with curves with finite elastic energy,
the function θ belongs to the Sobolev space H 1(0, L). By the embedding H 1(0, L) ⊆
C0,α
[0, L] for any α < 1/2, the function θ is in particular continuous.

All curves we work with in this paper have finite elastic energy

E(γ ) =
1
2

∫
[0,L]
|θ ′(s)|2 ds <∞.

We start with a series of three technical lemmas.

Lemma 2.1. Let γ : [0, L] → R2 be a curve parametrized by arc length such that
E(γ ) < ∞. Then for δ = π2/(32E(γ )) the curve is locally the graph of a 1-Lipschitz
function on each interval of size δ/

√
2.

Proof. Fix s0 and assume that θ(s0) = 0. By the Cauchy–Schwarz inequality we get, for
every s ∈ (s0, s0 + δ),

|θ(s)| ≤ δ1/2(2E(γ ))1/2 ≤ π/4,

which gives the conclusion. ut

Lemma 2.2. Let γ : [0, L] → R2 be a curve parametrized by arc length such that
E(γ ) <∞. If ε > 0 and 0 ≤ s < t ≤ L are such that

|θ(s)− θ(t)| = ε,

then ∫
[s,t]

|θ ′|2 ≥ ε2/L.



A new isoperimetric inequality for elasticae 3359

Proof. As
∫
[0,L] |θ

′
|
2 ds <∞, we write

|θ(s)− θ(t)| =

∣∣∣∣∫ t

s

θ ′(u) du

∣∣∣∣ ≤ |t − s|1/2(∫
[s,t]

|θ ′|2
)1/2

,

which gives the result. ut

Remark 2.3. The idea eneging from the lemma is that if there is an ε-variation of the
angle, then the elastic energy on that section of the curve is at least a constant times ε2,
the constant depending on the global length of the curve.

Let BR be a ball of radius R.

Lemma 2.4. Let γ : [0, L] → R2 be a smooth loop parametrized by arc length such that
E(γ ) <∞ and γ ([0, L]) ⊆ BR . Then

L ≤ 2R2E(γ ).

Proof. Denoting γ (s) = (x(s), y(s)), we have

L =

∫ L

0
[x′2(s)+ y′2(s)] ds = −

∫ L

0
[x(s)x′′(s)+ y(s)y′′(s)] ds.

But |x(s)x′′(s)+y(s)y′′(s)| ≤ (x2(s)+y2(s))1/2(x′′2(s)+y′′2(s))1/2 ≤ R|k(s)|. There-
fore, the conclusion of the lemma follows from the Cauchy–Schwarz inequality

L2
≤ R2L

∫ L

0
k2(s) ds. ut

Assume that a simply connected open set� is bounded by a loop γ such that E(γ ) <∞,
and γ has no self-intersections on an interval (s0, s0 + L). Assume moreover that for
all perturbations of the form Id + tV , V ∈ C∞c (R2,R2), such that (suppV ) ∩ ∂� =
(suppV ) ∩ γ |(s0,s0+L) the shape derivative of E(γ ) + A(�) is vanishing at t = 0 (see
[7, Chapter 5] for details on the shape derivative). We shall call such a piece of curve
γ |(s0,s0+L) a free branch and denote it γ̃ .

Theorem 2.5 (Optimality conditions). Let γ̃ be any free branch of a minimizer � of the
energy E(∂�)+ A(�). Then s 7→ k(s) is C∞ on γ̃ and satisfies:

(B1) k′′ = − 1
2k

3
+ 1,

(B2) k′2 = − 1
4k

4
+ 2k + 2C for some constant C,

(B3) there exists Q ∈ R2 such that for all M ∈ γ̃ , |QM|2 = 2k + 2C for some con-
stant C,

(B4) there exists Q ∈ R2 such that for all M ∈ γ̃ ,
−−→
QM · Eν = 1

2k
2 where Eν is the exterior

normal vector to ∂�.
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Remark 2.6. The point Q in (B3) and (B4) is the same (see the proof below). The con-
stant C in (B2) and (B3) is also the same. To see that, take a point MM on γ̃ where the
curvature k is maximum. If such a point does not exist, just extend the curve with the
same ODE. Then, according to (B3), |QMM| is also maximum and the normal derivative
of the boundary at this point is

−−→
QMM/|QMM|. Therefore (B4) yields |QMM| =

1
2k

2, and
plugging this into (B3) gives (B2), because k′ = 0 at this point, with the same constant.

Proof of Theorem 2.5. Let us first prove (B3). For that purpose we use the expression of
the elastic energy and the area parametrized with the angle θ . We have (see [2] for more
details)

E(γ̃ ) =
1
2

∫
γ̃

θ ′2 ds =: e(θ), A(�) =

∫∫
T

cos θ(u) sin θ(s) du ds =: a(θ)

where T is the triangle {(u, s) ∈ R2
: 0 ≤ u ≤ s ≤ L(�)}. We write L for L(�). Thus

we are led to minimize the sum e(θ) + a(θ) with the following constraints (the starting
point and the ending point of the branch γ̃ are fixed):∫ L

0
cos(θ(s)) ds = x(L)− x(0),

∫ L

0
sin(θ(s)) ds = y(L)− y(0). (6)

The derivative of e(θ) is (for a compactly supported perturbation v)

〈de(θ), v〉 =

∫ L

0
θ ′v′ ds = −

∫ L

0
θ ′′v ds,

while the derivative of a(θ) is given by

〈da(θ), v〉 =

∫∫
T

[cos θ(u) cos θ(s)v(s)− sin θ(s) sin θ(u)v(u)] du ds.

Using (6) and Fubini, we can write∫∫
T

sin θ(s) sin θ(u)v(u) du ds

= (y(L)− y(0))
∫ L

0
sin θ(s)v(s) ds −

∫∫
T

sin θ(u) sin θ(s)v(s) du ds.

Therefore, the optimality condition for the constrained problem reads: there exist La-
grange multipliers λ1, λ2 such that, for any v,

−

∫ L

0
θ ′′v ds +

∫ L

0

(
cos θ(s)

∫ s

0
cos θ(u) du+ sin θ(s)

∫ s

0
sin θ(u) du

)
v(s) ds

= (y(L)− y(0))
∫ L

0
sin θ(s)v(s) ds − λ1

∫ L

0
sin θ(s)v(s) ds + λ2

∫ L

0
cos θ(s)v(s) ds,

(7)
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which implies (thanks to x′(s) = cos θ(s), y′(s) = sin θ(s))

−θ ′′ + x′(x − x(0))+ y′(y − y(0)) = (y(L)− y(0)− λ1)y
′
+ λ2x

′. (8)

By integration, we get (B3) on setting Q = (x(0)+ λ2, y(L)− λ1).

Now, the C∞ regularity of k(s) (and θ(s)) comes from a bootstrap argument and
equation (8). The first condition (B1) comes from the classical shape derivative of the
elastic energy (under the small perturbation defined above). Following e.g. [2, Appendix],
we see that it is given by

dE(∂�, V ) = −

∫
γ̃

(
1
2
k(s)3 + k′′(s)

)
〈V, ν〉 ds,

while the derivative of the area is classically

dA(�, V ) =

∫
γ̃

〈V, ν〉 ds,

Condition (B1) follows since the derivative of E + A must vanish for any admissible V .
We obtain condition (B2) by multiplying (B1) by k′ and integrating.

At last, differentiating twice (B3) we get k′ =
−−→
QM · Eτ (where Eτ is the tangent vector)

and k′′ = 1−k
−−→
QM ·Eν. Using (B1) we see that 1

2k
3
= k
−−→
QM ·Eν, so (B4) holds where k 6= 0.

Since k is a solution of the ODE (B1), and therefore can be written with elliptic functions,
it can only vanish at isolated points, and thus (B4) holds everywhere by continuity of both
members. ut

In the following lemma, we assume that the simply connected open set � is a minimizer
of the energy E(∂�)+ A(�).

Lemma 2.7. Any free branch of a minimizer � has length L uniformly bounded by

L ≤ 146.

Proof. We work with a free branch of γ̃ on s ∈ (s0, s0 + L) and use the optimality
conditions above. We also know that the elastic energy of this branch is less than the total
energy of the best disc B, so that

E(γ̃ ) ≤ E(∂B)+ A(B) = 3π2−2/3. (9)

We consider two cases. Assume first that C ≤ 1 on this branch (C is defined above in
(B2), (B3)). Then we know from (ODE3) in the Appendix that

k(s) ≤ kM(C) ≤ kM(1) ≤ 7/3. (10)

Then, from (B3),
|QM|2 ≤ 14/3+ 2 = 20/3,

hence the arc is contained in the disc centered at Q with radius R0 =
√

20/3.
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On the other hand, if we put the origin at Q, then

L(γ̃ ) = L =

∫ L

0
(x′2 + y′2) dx = (xx′ + yy′)|L0 −

∫ L

0
(xx′′ + yy′′) ds.

But |x(L)x′(L)+y(L)y′(L)| ≤ R0 and |x(0)x′(0)+y(0)y′(0)| ≤ R0, while by Cauchy–
Schwarz and (9),∣∣∣∣∫ L

0
[xx′′ + yy′′] ds

∣∣∣∣ ≤ R0

∫ L

0
|k| ds ≤ R0

√
L2E(γ̃ ) ≤ R0

√
L3π21/3.

Therefore,

L ≤ 2
√

20/3+
√
(20/3)× 3π × 21/3

√
L, (11)

which implies (as soon as C ≤ 1)
L ≤ 90. (12)

Second case: C ≥ 1 for this branch. In this case, from (ODE3) in the Appendix we
have

kM(C) ≥ kM(1) ≥ 9/4, km(C) ≤ km(1) ≤ −9/10.

We decompose the interval I = (s0, s0 + L) into three parts (some could be empty),
I = I− ∪ I0 ∪ I+ where

I− = {s ∈ I : k(s) ≤ 0},

I0 = {s ∈ I : 0 < k(s) < 21/3
},

I+ = {s ∈ I : 21/3
≤ k(s)},

and we are going to prove that the length of each part is uniformly bounded, by a con-
trolled constant. First of all, we have seen that the integral of k2 on a period satisfies (see
(ODE4) in the Appendix)

1
2

∫ T

0
k2 ds ≥

π

4

√
22
3
.

Following (9), this implies that we cannot have more than three periods on each free
branch. We begin with I+. Obviously

E(γ̃ ) ≥
1
2

∫
I+

k2 ds ≥
1
2

22/3
|I+|,

therefore
|I+| ≤ 3π × 2−2/3

× 21/3
≤ 8. (13)

For I0, we consider one of its connected components, say (α, β). Since kM(C) ≥ 9/4
> 21/3 and km(C) ≤ −9/10 < 0, we cannot have any local minimum or local maximum
of k in I0 according to (ODE2) from the Appendix. Therefore, k is either increasing
from k(α) to k(β), or decreasing from k(α) to k(β). Moreover, there are at most six such
connected components because there are at most three periods of k. Let us consider the
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case of k increasing from k(α) to k(β), the other one being similar. We have 0 ≤ k(α) ≤
k(β) ≤ 21/3. By (B1), k′′ ≥ 0 on (α, β), so that k is convex. Therefore

k(α)+ k′(α)(s − α) ≤ k(s), (14)

which implies
k(α)+ k′(α)(β − α) ≤ k(β) ≤ 21/3.

Now k(α) ≥ 0 and k′(α) =
√

2C + 2k(α)− 1
4k

4(α) ≥
√

2C, thus
√

2(β − α) ≤
√

2C(β − α) ≤ 21/3 or β − α ≤ 2−1/6. Since there are at most six such intervals,
we have

|I0| ≤ 6× 2−1/6
≤ 6. (15)

Finally, we consider the case of I−. The set I− is not empty only whenC > 0 and km < 0.
The set I− is composed of connected components [α, β] such that k(α) = k(β) = 0 or is
included in such connected components. Since we want to estimate the length of I− from
above, it suffices to look for the length of such connected components. There are at most
three such (identical) components and k

(α+β
2

)
= km by symmetry.

Now, the elastic energy of such a component satisfies

E(γ̃α1,β1) =
1
2

∫ β1

α1

k2 ds =

∫ β1

(α1+β1)/2
k2 ds =

∫ (α1+β1)/2

α1

k2 ds. (16)

We denote byL−=β1−α1 the length of this component. By convexity, on (α1, (α1+β1)/2)
we have

k(s) ≤
2km

L−
(s − α1) ≤ 0,

thus

E(γ̃α1,β1) ≥

∫ α1+L−/2

α1

4k2
m

L2
−

(s − α1)
2 ds =

k2
m
6
L−.

Now, for C ≥ 1 we have (see (ODE3) in the Appendix) k2
m ≥ k2

m(1) ≥ 81/100 and
E(γ̃α1,β1) ≤ 3π2−2/3. Therefore

L− ≤
600
81 × 3π2−2/3

≤ 44,

and the total length of I− satisfies

|I−| ≤ 3L− ≤ 132. (17)

In conclusion, for C ≥ 1 the total length of the branch satisfies (by gathering (13),
(15), (17))

L ≤ 132+ 8+ 6 = 146. ut
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3. The optimal drop

In this section we prove the existence of a best drop minimizing the sum of the elastic
energy and the area enclosed. We introduce the class of admissible Jordan drops consist-
ing of simply connected open sets � bounded by a Jordan curve γ of finite length, which
satisfies

θ(0) = θ(Lγ )− π, E(γ ) <∞,

whereLγ is the length of γ . A drop will be denoted (�, γ ),� being the open set enclosed
by the Jordan curve γ (all Jordan curves are oriented in the positive sense).

Fig. 2. A drop.

The class of Jordan drops is not closed under Haudsdorff convergence, since tangen-
tial contacts may occur in the limit of a sequence of Jordan drops. If this situation occurs
for a minimizing sequence, we shall focus only on the loop which is the boundary of a
suitably chosen connected component of the limit set, which turns out to be a Jordan drop.
This selection is possible thanks to a priori geometric information on the minimizing se-
quence.

For some R > 0, we consider the problem

inf{E(γ )+ A(�) : (�, γ ) is a Jordan drop, � ⊆ BR}. (18)

Note that by a similar argument to that for Lemma 2.4, the length of a Jordan drop γ
cannot exceed 8R2E(γ ). Indeed, the same argument works for the drop: if the singularity
lies at the origin, we have x2

+ y2
≤ 4R2 since the diameter of the drop is less than 2R.

Here is the main result.

Theorem 3.1. Problem (18) has at least one solution.

Remark 3.2. With no assumptions on the radius R, it could be possible that the optimal
drop (�, γ ) touches the boundary of the ball but, as we shall prove, it may not have
self-intersections.

For simplicity of the notation, the ball BR will be denoted B. We start with the following.

Lemma 3.3. Let (�, γ ) be a drop contained in B. If for some ε > 0 there exist 0 ≤ s <
t ≤ Lγ with

θ(t) = θ(s)− π − ε

then there exists a new drop (�̃, γ̃ ) in B such that∫
γ̃

|θ̃ ′|2 ≤

∫
γ

|θ ′|2 −
ε2

2Lγ
and A(�̃) ≤ A(�).
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Proof. Assume s and t satisfy the hypotheses. Then, from continuity of θ , there exist
s < s < t < t such that

θ(s) = θ(s)− ε/2 and θ(t) = θ(t)+ ε/2.

Moreover, there exist s ≤ s′ < t ′ ≤ t such that

θ(t ′) = θ(t), θ(s′) = θ(s) and θ(u) ∈ (θ(t ′), θ(s′)) for every u ∈ (s′, t ′).

Indeed, we define

t ′ = inf{t > s : θ(t) = θ(t)}, s′ = sup{s < t ′ : θ(s) = θ(s)}.

Then the curve γ |[s′,t ′] is a graph in the direction θ(s′), by the choice of s′ and t ′. Setting
the orientation of the curve in the trigonometric sense, we are in a configuration similar to
Figure 4. Using the graph property, we can translate continuously the piece of the curve
γ |[s′,t ′] in a parallel way in the direction θ(s′) until this piece touches again γ and add
the two parallel segments described by the points γ (s′), γ (t ′) in the newly created curve
(Figure 4, right).

s'

t'

θ(s')

Fig. 3. The curve is a graph in the direction θ(s′).

s'
t'

θ(s')

Ω

s'
t'

θ(s')

s*
t*

Fig. 4. Translation of γ |[s′,t ′] in the direction θ(s′).

We denote by sα ∈ [s′, t ′] and tα ∈ [0, L] \ [s′, t ′] the couples of touching points.
We denote by s1, respectively s2, the minimal and maximal values of sα . Then one of
the curves starting at s2 and ending at t2, or starting at t1 and ending at s1, is a drop.
Precisely, it is the one which does not contain the point γ (0). Without losing generality
we can assume it is the curve s2 → t2; we rename the point (s2, t2) = (s∗, t∗) and denote
this curve γ̃ . We notice that γ̃ cannot touch the piece γ |[s,s′] any more. If there were a
contact point, this contact is generated by the translation of γ |[s′,t ′] and has to be precisely
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(s∗, t∗). But in this case, t∗ lies in the interval [t, s′], so the curve starting at t∗ and ending
at s∗ is a drop, which does not touch the piece γ |[t ′,t].

In this way, we built a new drop (�̃, γ̃ ), which encloses a domain contained in�, and
in view of Lemma 2.2 has an elastic energy at least ε2/(4Lγ ) smaller. ut

Proof of Theorem 3.1. Let (�n, γn) be a minimizing sequence of drops. We may assume
that E(γn), A(�n) and Lγn are convergent. Assume that for every n we have Lγn ≤ L

∗.
In order to work on a fixed Sobolev space H 1(0, L∗), we assume that θn is formally
extended by the constant θn(Lγn) on (Lγn , L

∗
]. Up to a subsequence, we can assume that

θn converges uniformly on [0, L∗] to some function θ . We define the limit curve γ in the
following way: Lγ = limn→∞ Lγn and γ : [0, Lγ ] → R2, γ (s) =

∫ s
0 e

iθ(t) dt+a, where
a = limn→∞ γn(0).

Fix ε > 0. Then, from the previous lemma, for every s < t and n large enough we
have

θn(t) ≥ θn(s)− π − ε.

Indeed, otherwise we could replace (�n, γn) by (�̃n, g̃n) decreasing the energy by a fixed
amount ε2/(4L∗), where L∗ is a bound of the lengths. This contradicts the minimality of
the sequence.

In particular, passing to the limit we find that for every ε > 0 and every s < t ,

θ(t) ≥ θ(s)− π − ε.

Since ε is arbitrary, we get
θ(t) ≥ θ(s)− π. (19)

From the compactness of the class of closed subsets of BR endowed with the Hausdorff
metric, and the embedding of H 1(0, L∗) into C0,α

[0, L∗], we may assume that for some
open set � ⊆ BR ,

�cn
H
−→ �c,

and the convergence of θn leads to

γn([0, Lγn ])
H
−→ γ ([0, Lγ ]).

We refer to [3] or [7] for precise properties of Hausdorff convergence. We know that in
general 1� ≤ lim infn→∞ 1�n , so thatA(�) ≤ limn→∞A(�n). Nevertheless, in our situ-
ation of the perimeters being uniformly bounded, we get 1�n → 1� inL1(BR). Moreover,
∂� ⊆ γ ([0, Lγ ]) and� is simply connected (i.e. any loop contained in� is homotopic to
a point in�), but not necessarily connected. The curve γ is possibly self-intersecting, but
not crossing, i.e. at every self-intersecting point, the tangent line is the same, and while
looking locally around the point, the pieces of curve passing through it are (in view of
Lemma 2.1) graphs of functions. From the simple connectedness hypothesis, these func-
tions are necessarily ordered. From Lemma 2.2 and the fact that the elastic energy is finite,
the number of pieces of curve passing through the touching point is uniformly finite. The
situation displayed in Figure 5 may occur.
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Fig. 5. Self-touching curve, disconnecting the limit.

We shall prove that γ cannot have self-intersection points, other than the type above,
in which case we cut at the self-intersection point, keeping only the drop given by the left
loop and decreasing in this way both the elastic energy and the area. The key ingredients
are the local representation of the curve as a graph and inequality (19). We shall analyze
the different contact types between two pieces of γ . Since the curves are graphs on an
interval [−l/

√
2, l/
√

2], and the representing functions are ordered, we shall look at the
orientation of each piece.

Case 1: Opposite orientation, not disconnecting. Two branches of γ touching at some
point γ (s) = γ (t) are represented as graphs of functions gs, gt on [−l/

√
2, l/
√

2]. We
assume that gs(0) = γ (s) = γ (t) = gt (0) and choose the couple (s, t) such that for some
ε > 0 we have

∀u ∈ (0, ε) gs(u) > gt (u),

otherwise we change the contact point. This inequality would imply the existence of
points s′ > s and t ′ < t such that θ(t ′) < θ(s′) − π , in contradiction with (19), so
that this situation cannot occur.

s

t

Ω

Ω

θ(s)

Fig. 6. Case 1: opposite orientation, not disconnecting.

Case 2: Contact of two branches of the same orientation. By simple connectedness,
this situation implies that the touching point γ (s) belongs to at least three branches, in
particular between the graphs of gs and gt there is a graph corresponding to a piece with
opposite orientation. There are two possibilities: either this new contact corresponds to a
point t ′ ∈ (t, L) or to s′ ∈ (0, s). The first situation is in fact Case 1 between the contact
points s and t ′. The second situation also leads to Case 1, but for the contact points s′

and t ′, so we conclude that the second case cannot hold.

Case 3: Opposite orientation, disconnecting. This is the only remaining possibility for
self-intersections. There may be several contact points, but every contact point is simple,
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s
tΩ

Ω

θ(s)

Ω

Fig. 7. Case 2: same orientation

otherwise we would fall in Case 2. So let {(sα, tα)}α be the couple of parameters corre-
sponding to the contact points. Because of simple connectedness and absence of contact
points as in Cases 1 and 2, we know that if sα < sβ then tβ < tα . Consequently, we can
identify the contact point (s∗, t∗) such that between s∗ and t∗ there is no other contact,
by setting s∗ = supα sα and t∗ = infα tα . Of course, s∗ and t∗ cannot coincide. Indeed, in
view of Lemma 2.2 applied to γ |[sα,tα], the elastic energy would then blow up. So γ |[s∗,t∗]
is a Jordan curve for which all the area enclosed is part of �, since otherwise, by simple
connectedness, a branch of the curve must pass through the contact point, bringing us to
Case 2.

s
t

Ω

Ω θ(s)

Fig. 8. Case 3: simple touch, disconnecting.

So γ |[s∗,t∗] is a drop, with elastic energy lower than γ and enclosing an area less than
or equal to A(�). This means that γ |[s∗,t∗] is a solution for problem (18). ut

Lemma 3.4. There exists R0 such that if the radius R of the ball BR in Theorem 3.1
satisfies R ≥ R0, then there exists a translation of the optimal drop which does not touch
the boundary of BR .

Proof. The proof relies on Lemma 2.7. Assume that (�∗, γ ∗) is an optimal drop for
problem (18) which touches the boundary, such that there is no translation moving the
drop at positive distance from the boundary. This means that the touching points between
γ ∗ and BR are distributed in such a way that they do not fall in an arc of length less
than πR.
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150

300

150

300

Fig. 9. An optimal drop touching the boundary.

Fix R0 = 300. This means that the optimal drop which touches the boundary of the
ball B300 centered at the origin of radius 300 cannot touch the boundary of the ball B150
of radius 150, otherwise at least one free branch would have length larger than 146, in
contradiction with Lemma 2.7. Two situations may occur, as shown in Figure 9. Either
the origin lies inside �∗, and so B150 has also to lie inside �∗, or the origin is not inside
in �∗ and so �∗ ∩ B150 = ∅. The first situation is excluded since the energy of (�∗, γ ∗)
would be larger than the area π · 1502 of the disc of radius 150, in contradiction with its
optimality. The second situation is excluded since there would be a free branch of length
larger than 146. ut

Theorem 3.5. There exists a unique optimal drop (�∗, γ ∗) which minimizes the energy
E(γ ) + A(�) among all Jordan drops in R2. It is fully characterized by the optimality
conditions (B1)–(B4) with a unique constant C which can be determined. Moreover

E(γ ∗)+ A(�∗) > π > 3π2−5/2
=

1
2 [E(∂B2−1/3)+ A(B2−1/3)].

Figure 10 gives the representation of the optimal drop.

Proof. Existence follows from Theorem 3.1 and Lemma 3.4. The optimality conditions
(B1)–(B4) can be written on the whole γ (except at the singularity) according to The-
orem 2.5. We start for s = 0 at the origin, which is the singular point with horizontal
tangent (θ(0) = 0). By (B4) and star-shape property, the point Q is necessarily on the
x-axis, the curvature k(s) is negative for s > 0 small, and k(s)→ 0 as s → 0. The func-
tion k(s) is periodic but we will prove below (see the end of the proof) that we have only
one period for the optimal drop and the curve is symmetric about the x-axis. Therefore
to characterize the optimal drop, we can proceed in the following way: for any constant
C > 0, we solve the ODE 

k′′ = − 1
2k

3
+ 1,

k(0) = 0,
k′(0) = −

√
2C,

(20)

which has a unique solution. Let us denote by sM the value where k is maximum with
k(sM) = kM (respectively sm and km = k(sm) for the minimum). The point MM of
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Fig. 10. The optimal drop.

abscissa sM is necessarily on the x-axis and its tangent is vertical. Thus, we look for the
value of C for which θ(sM) =

∫ sM
0 k(s) ds = π/2.

We claim that conversely, if we find a value of C for which
∫ sM

0 k(s) ds = π/2, then
we have found the optimal drop. Indeed, since it satisfies the optimality conditions, it suf-
fices to check that the curve we obtain by x(s) =

∫ s
0 cos θ(t) dt and y(s) =

∫ s
0 cos θ(t) dt

with θ(s) =
∫ s

0 k(t) dt is an admissible drop. Since MM is the point where the curva-
ture is maximum, according to (B3), it is the point on γ which is the farthest to Q. But
since the tangent is vertical at this point, it is necessarily on the x-axis: y(sM) = 0,
and the total length of the curve is 2sM. Now, since k is symmetric with respect to sM
(see (ODE1) in the Appendix), we have k(sM + t) = k(sM − t), and after integration,
θ(sM + t) = π − θ(sM − t). This identity gives θ(2sM) = π and

x(2sM) =
(∫ sM

0
+

∫ 2sM

sM

)
cos θ(t) dt =

∫ sM

0
[cos θ(t)+ cos(π − θ(t))] dt = 0,

y(2sM) =
(∫ sM

0
+

∫ 2sM

sM

)
sin θ(t) dt =

∫ sM

0
[sin θ(t)+ sin(π − θ(t))] dt

= 2y(sM) = 0,

which shows that the curve γ is a drop.
Thus to prove uniqueness of the optimal drop, we need to prove that we can find only

one C > 0 for which I (C) :=
∫ sM

0 k(s) ds = π/2. Let us write∫ sM

0
k(s) ds =

(∫ 2sm

0
+

∫ sM

2sm

)
k(s) ds = 2

∫ sm

0
k(s) ds +

∫ sM

2sm
k(s) ds,

where we have used the symmetry of k with respect to sm (see (ODE1)). This symmetry
also shows that k(2sm) = 0. We are going to prove uniqueness of C (and therefore of the
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optimal drop) by proving that the function C 7→
∫ sM

0 k(s) ds is strictly decreasing. Let us
perform the change of variable u = k(s) in each integral above. It follows, by using (B2)
to express k′, that ∫ sM

2sm
k(s) ds =

∫ kM

0

u√
2C + 2u− u4/4

du,∫ sm

0
k(s) ds = −

∫ km

0

u√
2C + 2u− u4/4

du.

(21)

Now to compute the derivative of the first integral I1(C) with respect to C, we make the
change of variable u = kMx. This yields

I1(C) =

∫ 1

0

k2
Mx√

2C + 2kMx − k
4
Mx

4/4
dx.

We compute the derivative of I1 using dkM
dC
= 2/(k3

M − 2) (see (ODE3) in the Appendix)
and an easy computation gives

dI1

dC
=

∫ 1

0

6k2
Mx(x − 1)

(k3
M − 2)(2C + 2kMx − k

4
Mx

4/4)3/2
dx,

which is clearly negative. In the same way, for the second integral I2(C) =
∫ sm

0 k(s) ds

we get
dI2

dC
= −

∫ 1

0

6k2
mx(x − 1)

(k3
m − 2)(2C + 2kmx − k4

mx
4/4)3/2

dx,

which is also negative, proving the uniqueness of a solution C for the equation I1(C) +

2I2(C) = π/2. Let us remark that a simple computation yields I (0) = 2π/3, while the
limit of I (C) when C goes to∞ is −π/2, confirming that there exists a solution to our
problem.

Let us estimate from below the energy of the optimal drop. Denote by s1 = 2sm the
first positive zero of k; we recall that sm is the first minimum of k and km = k(sm), and
sM the first maximum of k and kM = k(sM). From (B2), km and kM are the real roots of
the polynomial (which is concave)

PC(X) = −
1
4X

4
+ 2X + 2C. (22)

The maximum of PC is at X = 21/3 and PC(0) = 2C. We have

km < 0 ≤ 21/3
≤ kM (23)

(km must be negative, otherwise the set �∗ would be convex).
Moreover, when C increases, then kM(C) is increasing while km(C) is decreasing

(with increasing absolute value |km(C)|), because we translate the curve y = − 1
4x

4
+ 2x

up).



3372 Dorin Bucur, Antoine Henrot

If we denote by S = kM + km and P = kmkM the sum and the product of those two
roots, classical elimination and relation between roots provide

S2
= P − 8C/P , −8/S = P + 8C/P , (24)

while the two complex roots z0, z0 satisfy z0 + z0 = −S, z0z0 = −8C/P .
Since P ≤ 0 and C > 0, the last equation gives S > 0. Let us come back to the

computation of the elastic energy of the optimal drop (�∗, γ ∗),

E(γ ∗) =

∫ sM

0
k2 ds.

Now
∫ sM

0 k2 ds ≥
∫ sM
sm
k2 ds and k is increasing from sm to sM (since k′ can only vanish

at zeroes of PC(X), which only correspond to maxima kM and minima km). We perform

the change of variable x = k(s) on this interval: dx = k′(s) ds =
√

2C + 2k − 1
4k

4 ds.
Therefore

E(γ ∗) ≥

∫ sM

sm

k2 ds =

∫ kM

km

x2√
2C + 2x − 1

4x
4
dx.

We want to find a lower bound of this integral. For this purpose, we write (following (22))

PC(x) =
1
4 (kM − x)(x − km)(x

2
+ Sx − 8C/P ).

Now, the parabola y = 1
4 (x

2
+Sx−8C/P ) is symmetric with respect to−S/2, and since

(kM + km)/2 = S/2 ≥ −S/2, the maximum of y on the interval [km, kM] is equal to

F 2
=

1
4 (k

2
M+SkM−8C/P ) = 1

4 (2k
2
M+kmkM−8C/P ) = 1

4 (3k
2
M+2kmkM+k

2
m), (25)

where we have used (24) for the last equality. Thus∫ kM

km

x2√
2C + 2x − 1

4x
4
dx ≥

1
F

∫ kM

km

x2
√
(kM − x)(x − km)

dx.

This last integral can be computed explicitly and gives

E(γ ∗) ≥
1
F

3k2
M + 2kmkM + 3k2

m

4
π

2
. (26)

We have F ≤ 1
2

√
3k2

M + 2kmkM + 3k2
m, and (26) gives

E(γ ∗) ≥
π

4

√
3k2

M + 2kmkM + 3k2
m. (27)

It remains to get a bound for the quantity H = 3k2
M + 2kmkM + 3k2

m which depends only
on C. We discuss two cases.
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Case A. If C ≥ 1, then H = k2
M + 2kM(kM + km) + 3k2

m ≥ k
2
M + 3k2

m. Both mappings
C 7→ k2

m, C 7→ k2
M are increasing, thus C ≥ k2

M(1) + 3k2
m(1). We study P1(X) =

−
1
4X

4
+ 2X + 2. Since

P1
( 7

3

)
= −

241
324 and P1

( 9
4

)
=

95
1024 ,

we get
9
4 ≤ kM(1) ≤ 7

3 . (28)

From P1(−1) = − 1
4 and P1

(
−

9
10

)
=

1439
40000 , we get

−1 ≤ km(1) ≤ − 9
10 . (29)

It follows that H ≥
( 9

4

)2
+ 3

( 9
10

)2
=

2997
400 ≈ 7.4925.

Case B. In the case 0 ≤ C ≤ 1, we use k2
M(C) ≥ k2

M(0) = 4, k2
m(C) ≥ 0 and

|kM(C)km(C)| ≤ |kM(1)km(1)| ≤ 7/3 to get

H = 3k2
M + 2kmkM + 3k2

m ≥ 12− 14/3 = 22/3 = 7.333 . . .

So in any case, H ≥ 22/3. It follows from (26) that

E(γ ∗) ≥ 1
4π
√

22/3. (30)

Now, integrating (B4) on the curve, we get 2A(�∗) =
∫
γ ∗
−−→
QM · Eν ds = 1

2

∫
γ ∗
k2 ds =

E(γ ∗).
Therefore

E(γ ∗)+ A(�∗) = 3
2E(γ

∗) ≥ 3π
8

√
22/3 > π > 3π2−5/3. (31)

Let us now conclude by proving that the optimal drop has only one period of the function
k(s). The estimate (30) we get is actually true on any possible period. Therefore, if we
have a solution (γ ∗2 , �

∗

2) with at least two periods, we would have E(γ ∗2 ) ≥
1
2π
√

22/3,
therefore as in (31) its total energy would satisfy E(γ ∗2 )+A(�

∗

2) > 2π . Now, proceeding
in a similar way as we did for the estimate from below, we can get (details omitted) an
estimate from above for an optimal drop with only one period which is

E(γ ∗)+ A(�∗) ≤ 2π

(the exact value is E(γ ∗) + A(�∗) ' 4.6823); therefore, any critical point with more
than one period cannot be optimal. ut

4. Proof of Theorem 1.1

With the notation of Sections 2 and 3 we return to problem (3), and write

inf{E(γ )+ A(�) : � smooth, bounded, simply connected, ∂� = γ }. (32)

First of all we recall that among all circles, the optimal one has radius r = 2−1/3. Let
R ≥ 300 and let us solve the problem

inf{E(γ )+ A(�) : � smooth, bounded, simply connected, � ⊆ BR, ∂� = γ }. (33)
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By the same arguments as in Section 3, a minimizing sequence will converge to a couple
(�, γ ). Two possibilities may occur. Assume first that there are self-intersections. In this
case the limiting couple (�, γ ) contains at least two drops, as in Case 3 of Theorem 3.1.
Following Theorem 3.5, this configuration cannot be optimal since the energy of � is
larger than the double of the optimal energy of a drop, so it is excluded.

The second situation is that (�, γ ) does not have self-intersections. Since the radius
is large enough, for a suitable translation the loop does not touch the boundary of the ball,
as in Lemma 3.4. Moreover, in this case the optimality conditions

−−→
OM · Eν = 1

2k
2 can be

written on the full boundary.

Remark 4.1. This condition recalls the result of Ben Andrews [1, Theorem 1.5] which,
under the hypothesis of positive curvature, would allow one directly to conclude that the
curve is a circle of radius 2−1/3 (by direct computation). As the curvature is not known
to be positive, we use again the optimality conditions. Actually, Andrews’s result does
not hold true for nonconvex curves. Indeed, Figure 11 (which have been obtained using
the optimality conditions) shows a curve which satisfies

−−→
OM · Eν = 1

2k
2 on the whole

boundary.

If the curvature is not constant, we can assert that � is star-shaped and the structure of
γ is a union of periods consisting of two branches γ1 and γ2, where γ1 : [0, l] → R2

is a branch of the curve with increasing curvature such that γ (0) = km, γ (l) = kM
and γ2 : [l, 2l] → R2 is a congruent branch with decreasing curvature from kM to km.
Following (9) and (ODE4), γ consists of one, two or three periods (γ1, γ2) (as explained
in the proof of Theorem 3.5). From the optimality conditions (B1)–(B4) one can eliminate
any of those three configurations, since their energy is much larger than the one of the ball.
Indeed, in the case of two or three periods, a couple (γ1, γ2) has a cap γ(l−a,l+a), where
a is chosen such that νγ (a) is orthogonal to the segment Oγ (l). As in Figure 11 (left), we
can cut and reflect along the line γ (l − a), γ (l + a) to get a new domain with smaller

kM

km

.(l ! a).(l + a)

kM

km

.(l)

.(l ! a)

Fig. 11. The case of more than one period (left). The case of one period (right).
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area and smaller elastic energy. If there is only one period, the argument is similar since
we can center-symmetrize the branch from γ (l − a) to γ (l), where a is chosen such
that the normal at γ (l − a) is parallel to the segment Oγ (l) (see Figure 11, right). The
symmetrization center is the middle of the segment joining γ (l − a) to γ (l).

Both previous constructions are admissible as a consequence of the optimality condi-
tions (B1)–(B4).

5. Appendix: analysis of the ODE issued from optimality conditions

In this section, we give several properties of the following ODE in nonstandard form:

k′
2
= −

1
4k

4
+ 2k + 2C,

where C ∈ R is a constant. This ODE is issued from the optimality conditions on a free
branch of a minimizer for our problem (see Theorem 2.5). We also refer the reader to
reference [2] for related analysis.

Clearly, C ≥ − 3
4 21/3

≈ −0.944, otherwise the right hand side is negative. We denote
by km(C) ≤ kM(C) the two real roots of the polynomial PC(X) = − 1

4X
4
+ 2X+ 2C, or

simply km, kM if there is no ambiguity.
Here we gather some immediate facts concerning this ODE.

(ODE1) The solution of the ODE is periodic (the period is denoted by T ), symmetric
with respect to its minimum or maximum.

(ODE2) The only local minima (maxima) are actually global minima (maxima, respec-
tively) and correspond to k = km (k = kM, respectively), and k is monotone
between these two values.

(ODE3) The mapping C 7→ kM(C) is increasing and its range is from 21/3 to∞, while
the mapping C 7→ km(C) is decreasing and its range is from −∞ to 21/3.
Moreover, km(C) < 0 when C > 0, 9/4 ≤ kM(1) ≤ 7/3, −1 ≤ km(1) ≤
−9/10, −C ≤ km(C). Furthermore, kM(C) ≥ 2+C for −3/2× 21/3

≤ C ≤ 0.
(ODE4) The integral 1

2

∫ T
0 k2 ds on one period is estimated from below

1
2

∫ T

0
k2 ds ≥

π

4

√
22
3
.

The proof of (ODE1) is classical, either working with the closed orbit, or using an explicit
form of the solution thanks to elliptic functions.

The proof of (ODE2) is easy since k′ can vanish only at the zeroes of PC .
For the proof of (ODE3) we notice that

dkM

dC
=

2

k3
M − 2

> 0 and
dkm

dC
=

2
k3

m − 2
< 0,

km(0) = 0, kM(0) = 2, PC(−C) < 0⇒ km(C) ≥ −C, PC(2+C) = −C
[ 1

4C
3
+ 2C2

+

6C + 4
]
≥ 0 and the bounds for km(1), kM(1) have been obtained in (28), (29).
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The proof of (ODE4): we have already proved this inequality in Section 3 when C ≥
0. In the case − 3

4 21/3
≤ C < 0, we have km ≥ −C > 0 and kM ≥ 2 + C > 0, so

3k2
M + 2kmkM + 3k2

m ≥ 4C2
+ 8C + 12 ≥ 8 ≥ 22/3, and the result follows in the same

way.
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