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Abstract. It is shown that a shrinking gradient Ricci soliton must be smoothly asymptotic to a cone
if its Ricci curvature goes to zero at infinity.
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1. Introduction

The purpose of this paper is to show that a shrinking gradient Ricci soliton must be
smoothly asymptotic to a cone if its Ricci curvature goes to zero at infinity. Recall that a
gradient shrinking Ricci soliton is a Riemannian manifold (Mn, g) for which there exists
a potential function f such that

Ric+Hess(f ) = 1
2g, (1.1)

where Ric is the Ricci curvature of M and Hess(f ) the Hessian of f . Aside from its own
interest as generalization of Einstein manifolds, Ricci solitons are important in the study
of Ricci flows. Indeed, one easily verifies (see [11]) that g(t) = (1−t)φ∗t g,−∞ < t < 1,
is a solution to the Ricci flow

∂

∂t
g(t) = −2 Ric(g(t)), g(0) = g,

for a suitably chosen family of diffeomorphisms φt on M with φ0 = Id. So shrinking
Ricci solitons may be regarded as self-similar solutions to the Ricci flows. It has been
shown in [14] and [9] that the blow-ups around a type-I singularity point always converge
to nontrivial gradient shrinking Ricci solitons. Therefore, it would be very much desirable
to understand and even classify shrinking Ricci solitons.

In the case of dimension n = 2, according to [16], the only examples are either the
sphere S2 or the Gaussian soliton, Euclidean space R2 together with the potential function
f (x) = 1

4 |x|
2. For dimension n = 3, improving upon the breakthrough of Perelman [26],

O. Munteanu (corresponding author): Department of Mathematics, University of Connecticut,
Storrs, CT 06268, USA; e-mail: ovidiu.munteanu@uconn.edu
J. Wang: School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
e-mail: jiaping@math.umn.edu

Mathematics Subject Classification (2010): 53C44, 53C21



3378 Ovidiu Munteanu, Jiaping Wang

Naber [24], Ni and Wallach [25], and Cao, Chen and Zhu [5] have concluded that a three-
dimensional shrinking gradient Ricci soliton must be a quotient of the sphere S3, or R3,
S2
× R.
For high-dimensional shrinking Ricci solitons, examples other than the spheres, the

Gaussian solitons, and their products were constructed in [2, 17, 29, 15, 12]. This cer-
tainly indicates that it would be more complicated, if at all possible, to obtain a complete
classification. Under some auxiliary conditions on the full curvature tensor, partial clas-
sification results have been established. In [24], Naber showed that a four-dimensional
noncompact shrinking Ricci soliton of bounded nonnegative curvature operator must be
a quotient of Rk × S4−k with k = 1, 2. More recently, we proved that any n-dimensional
gradient shrinking Ricci soliton of positive sectional curvature must be compact [22].
In dimension three, this is a result of Perelman [26]. Combining this with a theorem of
Böhm and Wilking [1], one sees that an n-dimensional shrinking gradient Ricci soliton
with positive curvature operator must be a quotient of the round sphere Sn.

Classification results of different flavor are also known. For example, shrinking gra-
dient Ricci solitons of vanishing Weyl tensor have been classified and must be finite
quotients of Sn, Rn, or Sn−1

× R (see [30, 13, 27, 8, 20]). More generally, in a recent
work [6], Cao and Chen have shown that a Bach-flat gradient shrinking Ricci soliton is
either Einstein, a finite quotient of the Gaussian shrinking soliton Rn, or a finite quotient
of Nn−1

× R, where Nn−1 is an Einstein manifold of positive scalar curvature. We refer
the readers to the surveys [3, 4] for more results and further information.

In another direction, Kotschwar and Wang [18] have recently shown that any two
shrinking Ricci solitons C2 asymptotic to the same cone must be isometric. Here, by a
cone, we mean a manifold [0,∞)×6 endowed with Riemannian metric gc = dr2

+r2g6 ,
where (6, g6) is a closed (n − 1)-dimensional Riemannian manifold. Denote ER =
(R,∞) × 6 for R ≥ 0 and define the dilation by λ to be the map ρλ : E0 → E0 given
by ρλ(r, σ ) = (λr, σ ). A Riemannian manifold (M, g) is said to be Ck asymptotic to the
cone (E0, gc) if, for some R > 0, there is a diffeomorphism 8 : ER → M \� such that
λ−2ρ∗λ8

∗g→ gc as λ→∞ in Ckloc(E0, gc), where � is a compact subset of M.
In view of the result of [18], it becomes of interest to determine when a shrinking

Ricci soliton is asymptotically conical. In our recent work [21], we have shown that this
is the case for four-dimensional shrinking gradient Ricci solitons with scalar curvature
converging to 0 at infinity. This result depends on the fact that the full curvature tensor
Rm of a four-dimensional soliton is controlled by its scalar curvature S alone: |Rm| ≤
c|Ric| ≤ cS. While it remains to be seen whether such an estimate is true for high-
dimensional shrinking Ricci solitons, by imposing an assumption on the Ricci curvature
instead, we manage to obtain a parallel result as well. Consequently, the classification
problem for such solitons is reduced to the one for cones.

Theorem 1.1. Let (M, g, f ) be a gradient shrinking Ricci soliton of dimension n with
Ricci curvature convergent to zero at infinity. Then (M, g) is Ck asymptotic to a cone for
all k.

The following corollary provides a partial generalization to arbitrary dimension of the
aforementioned result for the four-dimensional case.
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Corollary 1.2. Let (M, g, f ) be a shrinking Ricci soliton of dimension n with bounded
curvature. Assume that the scalar curvature converges to zero at infinity. Then (M, g)
is Ck asymptotic to a cone for all k.

Essential to the proof of Theorem 1.1 is a quadratic decay estimate for the Riemann cur-
vature Rm. Once this is available, together with Shi’s [28] derivative estimates of Rm, it
is straightforward to deduce that (M, g) is asymptotically conical [18]. As demonstrated
in [21], such a decay estimate follows from a maximum principle argument provided that
the Riemann curvature tensor Rm converges to zero at infinity. So the heart of the proof is
to conclude from Ric converging to 0 that Rm goes to 0 as well. Here, we are very much
inspired by the work of [23], where it is shown that for a shrinking gradient Ricci soliton,
its Riemann curvature is at most of polynomial growth if its Ricci curvature is bounded.
However, we emphasize that our present argument differs significantly from [23] in tech-
nical details.

Finally, we point out that our argument only requires the Ricci curvature to be suf-
ficiently small outside a compact set. More precisely, Theorem 1.1 continues to hold if
one assumes instead that |Ric | ≤ δ near the infinity of M for some positive constant δ
depending only on the dimension n.

2. Curvature estimates

In this section, we prove Theorem 1.1. We continue to denote by (M, g, f ) an n-dimen-
sional gradient shrinking Ricci soliton with potential function f.

Let us recall the following important identities:

∇kRjk = Rjkfk =
1
2∇jS, ∇lRijkl = Rijklfl = ∇jRki −∇iRkj . (2.1)

As observed in [16], this implies S+|∇f |2 = f by adding a suitable constant to f . Since
S ≥ 0 by [10], we have |∇f |2 ≤ f.

Also, denoting 1f = 1− 〈∇f,∇〉, we have

1fRij = Rij − 2Rikj lRkl, 1fRm = Rm+ Rm ∗ Rm, (2.2)

where Rm ∗ Rm denotes a quadratic expression in the Riemann curvature tensor.
Let us denote

D(r) := {x ∈ M : f (x) ≤ r}.

Note that D(r) is always compact, as by [7] there exists constant c such that

1
4 r

2(x)− cr(x) ≤ f (x) ≤ 1
4 r

2(x)+ cr(x) for r(x) ≥ 1. (2.3)

Here r(x) is the distance from x to a fixed point x0 ∈ M . Also, by [7], the volume V (r)
of D(r) satisfies

V (r) ≤ crn/2. (2.4)
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We define a cut-off function φ with support in D(r) by

φ(x) =

{
1
r
(r − f (x)) if x ∈ D(r),

0 if x ∈ M \D(r).

Let us choose r0 > 0 large enough so that f ≥ 1 and

|Ric| ≤ 1/p5 on M \D(r0). (2.5)

Here and in the following, p ≥ 8n is a large enough constant depending only on the
dimension n. In particular, since

Ric+Hess(f ) = 1
2g,

we have
Hess(f ) ≥ 1

3g on M \D(r0). (2.6)

Finally, let a > 0 be a constant satisfying

a ≤ 1
4p. (2.7)

Throughout the paper, unless otherwise indicated, we will use C to denote a constant that
may depend on the geometry ofD(r0) and on p. We will denote by c a constant depending
only on the dimension n but independent of p, and by c(p) a constant depending on p.
These constants may change from line to line.

We first prove the following lemma.

Lemma 2.1. Let (M, g, f ) be a gradient shrinking Ricci soliton of dimension n with

lim
x→∞

|Ric|(x) = 0.

Then, for p and a satisfying (2.7), we have∫
M

|Rm|pf a <∞.

Proof. Integrating by parts and using 1f ≤ n/2, we get

−
n

2

∫
M

|Rm|pf aφ2p
≤ −

∫
M

|Rm|p(1f )f aφ2p

=

∫
M

〈∇|Rm|p,∇f 〉f aφ2p
+ a

∫
M

|Rm|p|∇f |2f a−1φ2p
+

∫
M

|Rm|pf a〈∇f,∇φ2p
〉

≤

∫
M

〈∇|Rm|p,∇f 〉f aφ2p
+ a

∫
M

|Rm|pf aφ2p,

where in the last line we have used the inequalities 〈∇f,∇φq〉 ≤ 0 and |∇f |2 ≤ f.
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Therefore, by the Bianchi identities we obtain

−(a + n/2)
∫
M

|Rm|pf aφ2p
≤

∫
M

〈∇|Rm|p,∇f 〉 f aφ2p

= p

∫
M

fh(∇hRijkl)Rijkl |Rm|p−2f aφ2p
= 2p

∫
M

fh(∇lRijkh)Rijkl |Rm|p−2f aφ2p.

It follows through integration by parts that

−(a + n/2)
∫
M

|Rm|pf aφ2p

≤ −2p
∫
M

RijkhfhlRijkl |Rm|p−2f aφ2p
− 2p

∫
M

Rijkhfh(∇lRijkl)|Rm|p−2f aφ2p

− 2p
∫
M

RijkhfhRijkl(∇l |Rm|p−2)f aφ2p
− 2ap

∫
M

RijkhfhRijklfl |Rm|p−2f a−1φ2p

+
4p2

r

∫
M

RijkhfhRijklfl |Rm|p−2f aφ2p−1. (2.8)

Note that on M \D(r0), by (2.6),

−RijkhfhlRijkl ≤ −
1
3 |Rm|2.

Hence, there exists C > 0 such that

−2p
∫
M

RijkhfhlRijkl |Rm|p−2f aφ2p
≤ −

2p
3

∫
M

|Rm|pf aφ2p
+ C.

Together with (2.1) and (2.7), one concludes from (2.8) that

p

3

∫
M

|Rm|pf aφ2p
≤ −2p

∫
M

RijkhfhRijkl(∇l |Rm|p−2)f aφ2p

+
4p2

r

∫
M

|Rijkhfh|
2
|Rm|p−2f aφ2p−1

+ C. (2.9)

By (2.1) again, we have

−2p
∫
M

RijkhfhRijkl(∇l |Rm|p−2)f aφ2p
≤ cp2

∫
M

|∇Ric| |∇Rm| |Rm|p−2f aφ2p

≤ cp4
∫
M

|∇Ric|2|Rm|p−1f aφ2p
+ c

∫
M

|∇Rm|2|Rm|p−3f aφ2p.

Hence, from (2.9) we obtain∫
M

|Rm|pf aφ2p
≤ cp3

∫
M

|∇Ric|2|Rm|p−1f aφ2p
+
c

p

∫
M

|∇Rm|2|Rm|p−3f aφ2p

+
cp

r

∫
M

|Rijkhfh|
2
|Rm|p−2f aφ2p−1

+ C. (2.10)

We now estimate the first term on the right side of (2.10). Note that (2.2) implies

1f |Ric|2 ≥ 2|∇ Ric |2 − 4|Ric|2|Rm|, 1f |Rm|p−1
≥ −cp|Rm|p.
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Therefore,

1f (|Ric|2|Rm|p−1)

= (1f |Ric|2)|Rm|p−1
+ |Ric|21f |Rm|p−1

+ 2〈∇|Ric|2,∇|Rm|p−1
〉

≥ 2|∇Ric|2|Rm|p−1
− cp|Ric|2|Rm|p − cp|∇Ric| |∇Rm| |Ric| |Rm|p−2.

Using (2.5), we estimate on M \D(r0)

cp|∇Ric| |∇Rm| |Ric| |Rm|p−2
≤ |∇Ric|2|Rm|p−1

+ cp2
|∇Rm|2|Ric|2|Rm|p−3

≤ |∇Ric|2|Rm|p−1
+

c

p4 |∇Rm|2|Rm|p−3.

Similarly, (2.5) implies that

cp|Ric|2|Rm|p ≤
c

p4 |Rm|p

on M \D(r0). Consequently, on M \D(r0) we get

1f (|Ric|2|Rm|p−1) ≥ |∇Ric|2|Rm|p−1
−

c

p4 |Rm|p −
c

p4 |∇Rm|2|Rm|p−3.

Hence,∫
M

|∇Ric|2|Rm|p−1f aφ2p
≤

∫
M

1f (|Ric|2|Rm|p−1)f aφ2p

+
c

p4

∫
M

|Rm|pf aφ2p
+

c

p4

∫
M

|∇Rm|2|Rm|p−3f aφ2p
+ C. (2.11)

We use integration by parts on the first term on the right hand side in (2.11) to get∫
M

1f (|Ric|2|Rm|p−1)f aφ2p

=

∫
M

1(|Ric|2|Rm|p−1)f aφ2p
−

∫
M

〈∇f,∇(|Ric|2|Rm|p−1)〉f aφ2p

=

∫
M

|Ric|2|Rm|p−11(f aφ2p)+

∫
M

|Ric|2|Rm|p−1(1f + a|∇f |2f−1)f aφ2p

−
2p
r

∫
M

|Ric|2|Rm|p−1
|∇f |2f aφ2p−1. (2.12)

Observe that

1f a = af a−11f + a(a − 1)f a−2
|∇f |2 ≤ cp2f a−1,

1φ2p
= 2pφ2p−11φ + 2p(2p − 1)φ2p−2

|∇φ|2 ≤
cp2

r
φ2p−2.

Hence,
1(f aφ2p) = (1f a)φ2p

+ f a1φ2p
+ 2〈∇f a,∇φ2p

〉

≤ (1f a)φ2p
+ f a1φ2p

≤ cp2f a−1φ2p−2.
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Consequently, by Jensen’s inequality,∫
M

|Ric|2|Rm|p−11(f aφ2p) ≤ cp2
∫
M

|Ric|2|Rm|p−1f a−1φ2p−2

≤
c

p4

∫
M

|Rm|pf aφ2p
+ c(p)

∫
M

f a−p ≤
c

p4

∫
M

|Rm|pf aφq + C,

where in the last line we have used (2.4) and (2.7) to infer that
∫
M
f a−p ≤ C. Note that

by (2.5),∫
M

|Ric|2|Rm|p−1(1f + a|∇f |2f−1)f aφ2p
≤ cp

∫
M

|Ric| |Rm|pf aφ2p

≤
c

p4

∫
M

|Rm|pf aφ2p.

In conclusion, (2.12) becomes∫
M

1f (|Ric|2|Rm|p−1)f aφ2p
≤

c

p4

∫
M

|Rm|pf aφ2p
+ C. (2.13)

Plugging (2.13) into (2.11), we obtain

cp3
∫
M

|∇Ric|2|Rm|p−1f aφ2p

≤
c

p

∫
M

|∇Rm|2|Rm|p−3f aφ2p
+
c

p

∫
M

|Rm|pf aφ2p
+ C.

So (2.10) may be rewritten as∫
M

|Rm|pf aφ2p

≤
c

p

∫
M

|∇Rm|2|Rm|p−3f aφ2p
+
cp

r

∫
M

|Rijkhfh|
2
|Rm|p−2f aφ2p−1

+ C. (2.14)

We now use (2.1) and integration by parts to get

cp

r

∫
M

|Rijkhfh|
2
|Rm|p−2f aφ2p−1

=
cp

r

∫
M

∇jRik(Rijkhfh)|Rm|p−2f aφ2p−1

= −
cp

r

∫
M

Rikfh(∇jRijkh)|Rm|p−2f aφ2p−1

−
cp

r

∫
M

RikRijkhfh(∇j |Rm|p−2)f aφ2p−1
−
cp

r

∫
M

RikfhjRijkh|Rm|p−2f aφ2p−1

−
cap

r

∫
M

RikRijkhfhfj |Rm|p−2f a−1φ2p−1

+
cp(2p − 1)

r2

∫
M

RikRijkhfhfj |Rm|p−2f aφ2p−2.
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The last three terms above can be bounded by

−
cp

r

∫
M

RikfhjRijkh|Rm|p−2f aφ2p−1
−
cap

r

∫
M

RikRijkhfhfj |Rm|p−2f a−1φ2p−1

+
cp(2p − 1)

r2

∫
M

RikRijkhfhfj |Rm|p−2f aφ2p−2

≤ cp2
∫
M

|Ric| |Rm|p−1f a−1φ2p−2
≤
c

p

∫
M

|Rm|pf aφ2p
+ c(p)

∫
M

|Ric|pf a−p

≤
c

p

∫
M

|Rm|pf aφ2p
+ C.

Furthermore, note that

−
cp

r

∫
M

RikRijkhfh(∇j |Rm|p−2)f aφ2p−1
−
cp

r

∫
M

Rikfh(∇jRijkh)|Rm|p−2f aφ2p−1

≤
cp2
√
r

∫
M

|Ric| |∇Rm| |Rm|p−2f aφ2p−1

≤
1
p

∫
M

|∇Rm|2|Rm|p−3f aφ2p
+
c(p)

r

∫
M

|Ric|2|Rm|p−1f aφ2p−2.

Since

c(p)

r

∫
M

|Ric|2|Rm|p−1f aφ2p−2

≤
1
p

∫
M

|Rm|pf aφ2p
+ c(p)

∫
M

|Ric|2pf a−p ≤
1
p

∫
M

|Rm|pf aφ2p
+ C,

we see that

−
cp

r

∫
M

RikRijkhfh(∇j |Rm|p−2)f aφ2p−1
−
cp

r

∫
M

Rikfh(∇jRijkh)|Rm|p−2f aφ2p−1

≤
1
p

∫
M

|∇Rm|2|Rm|p−3f aφ2p
+

1
p

∫
M

|Rm|pf aφ2p
+ C.

Using all these estimates it follows that

cp

r

∫
M

|Rijkhfh|
2
|Rm|p−2f aφ2p−1

≤
c

p

∫
M

|∇Rm|2|Rm|p−3f aφ2p
+
c

p

∫
M

|Rm|pf aφ2p
+ C.

From (2.14) we now conclude that∫
M

|Rm|pf aφ2p
≤
c

p

∫
M

|∇Rm|2|Rm|p−3f aφ2p
+ C. (2.15)

The formula 1fRm = Rm+ Rm ∗ Rm implies

1f |Rm|2 ≥ 2|∇Rm|2 + 2|Rm|2 − c|Rm|3. (2.16)
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We use this to estimate

2
∫
M

|∇Rm|2|Rm|p−3f aφ2p
≤

∫
M

(1|Rm|2)|Rm|p−3f aφ2p

−

∫
M

〈∇f,∇|Rm|2〉|Rm|p−3f aφ2p
− 2

∫
M

|Rm|p−1f aφ2p
+ c

∫
M

|Rm|pf aφ2p.

We have

−

∫
M

〈∇f,∇|Rm|2〉|Rm|p−3f aφ2p
= −

2
p − 1

∫
M

〈∇f,∇|Rm|p−1
〉f aφ2p

=
2

p − 1

∫
M

((1f )f a + a|∇f |2f a−1)|Rm|p−1φ2p

−
4p
p − 1

1
r

∫
M

|∇f |2f a|Rm|p−1φ2p−1

≤
2a + n
p − 1

∫
M

|Rm|p−1f aφ2p.

Since 2a+n
p−1 ≤ 2 by (2.7), we conclude that

2
∫
M

|∇Rm|2|Rm|p−3f aφ2p

≤

∫
M

(1|Rm|2)|Rm|p−3f aφ2p
+ c

∫
M

|Rm|pf aφ2p. (2.17)

Integrating by parts, we have∫
M

(1|Rm|2)|Rm|p−3f aφ2p

= −

∫
M

〈∇|Rm|2,∇|Rm|p−3
〉f aφ2p

− a

∫
M

〈∇f,∇|Rm|2〉|Rm|p−3f a−1φ2p

+
2p
r

∫
M

〈∇f,∇|Rm|2〉|Rm|p−3f aφ2p−1

≤ −a

∫
M

〈∇f,∇|Rm|2〉|Rm|p−3f a−1φ2p
+

2p
r

∫
M

〈∇f,∇|Rm|2〉|Rm|p−3f aφ2p−1.

However,

−a

∫
M

〈∇f,∇|Rm|2〉|Rm|p−3f a−1φ2p
= −

2a
p − 1

∫
M

〈∇f,∇|Rm|p−1
〉f a−1φ2p

=
2a
p − 1

∫
M

(
(1f )f a−1

+ (a − 1)|∇f |2f a−2)
|Rm|p−1φ2p

−
4ap
p − 1

1
r

∫
M

|∇f |2f a−1
|Rm|p−1φ2p−1

≤ cp

∫
M

|Rm|p−1f a−1φ2p
≤ c

∫
M

|Rm|pf aφ2p
+ c(p)

∫
M

f a−p

≤ c

∫
M

|Rm|pf aφ2p
+ C.
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Finally, a similar argument implies that

2p
r

∫
M

〈∇f,∇|Rm|2〉|Rm|p−3f aφ2p−1
=

4p
(p − 1)r

∫
M

〈∇f,∇|Rm|p−1
〉f aφ2p−1

=
4p

(p − 1)r

∫
M

|Rm|p−1((−1f )f a − a|∇f |2f a−1)φ2p−1

+
4p(2p − 1)
(p − 1)r2

∫
M

|∇f |2|Rm|p−1f aφ2p−2

≤ cp

∫
M

|Rm|p−1f a−1φ2p−2
≤ c

∫
M

|Rm|pf aφ2p
+ c(p)

∫
M

f a−p

≤ c

∫
M

|Rm|pf aφ2p
+ C.

Using these estimates in (2.17) implies that∫
M

|∇Rm|2|Rm|p−3f aφ2p
≤ c

∫
M

|Rm|pf aφ2p
+ C.

Plugging this in (2.15) and choosing p so large that c/p ≤ 1/2, we arrive at∫
M

|Rm|pf aφ2p
≤ C.

Note that φ ≥ 1/2 on D(r/2). This implies that∫
D(r/2)

|Rm|pf a ≤ C.

Since r is arbitrary, this proves the lemma. ut

We are now ready to prove the main theorem of the paper.

Theorem 2.2. Let (M, g, f ) be a gradient shrinking Ricci soliton of dimension n with
Ricci curvature convergent to zero at infinity. Then (M, g) is Ck asymptotic to a cone for
all k.

Proof. Applying Lemma 2.1 for a = p/4 and using (2.3), one sees that for any point
x ∈ M, ∫

Bx (1)
|Rm|p ≤ C(d(x0, x)+ 1)−p/2. (2.18)

We will deduce a pointwise estimate from this by using the De Giorgi–Nash–Moser iter-
ation. First, we derive a differential inequality for |Rm|2. From (2.16) we get

1f |Rm|2 ≥ 2|∇Rm|2 − c|Rm|3.

However, estimating

|〈∇f,∇|Rm|2〉| ≤ |∇Rm|2 + |∇f |2|Rm|2,
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we get
1|Rm|2 ≥ −u|Rm|2, where u := c(|Rm| + f ).

Note that the (Dirichlet) Sobolev constant of Bx(1) depends only on the dimension n,
the Ricci curvature bound and Perelman’s invariant (see [23]). So the De Giorgi–Nash–
Moser iteration (see e.g. [19, Chapter 19]) implies that

|Rm|(x) ≤ C
(∫

Bx (1)
un + 1

)1/p(∫
Bx (1)
|Rm|p

)1/p

. (2.19)

By (2.18) and the Bishop volume comparison we get∫
Bx (1)
|Rm|n ≤

(∫
Bx (1)
|Rm|p

)n/p
Vol(Bx(1))(p−n)/p ≤ C(d(x0, x)+ 1)−n/2.

Hence, ∫
Bx (1)

un ≤ C(d(x0, x)+ 1)2n.

Together with (2.18) and (2.19) we get

|Rm|(x) ≤ C(d(x0, x)+ 1)−1/4.

In particular, this shows that limx→∞ |Rm| = 0.
Now from

1f |Rm| ≥ |Rm| − c|Rm|2

and the fact that |Rm| → 0 at infinity, it follows as in [21] that Rm decays quadratically,

|Rm|(x) ≤ c(d(x0, x)+ 1)−2. (2.20)

For completeness, we include the details here. Denote w := |Rm|. From (2.16) we get

1fw ≥ w − c0w
2

for some c0 > 0. Since w converges to zero at infinity, there exists r0 sufficiently large
such that w < 1/(8c0) on M \D(r0). As 1f (f ) = n/2− f , we get

1f (f
−1) = −1f (f )f

−2
+ 2|∇f |2f−3

≤ f−1.

Similarly,

1f (f
−2) = 2(f − n/2)f−3

+ 6|∇f |2f−4
≥ 2f−2

− nf−3.

Hence, for r0 sufficiently large, it follows that 1f (f−2) ≥ 3
2f
−2 on M \D(r0). Define

v := w − βf−1
+ 2c0β

2f−2,
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where β := r0/(4c0). From the above we get

1f v ≥ w − c0w
2
− βf−1

+ 3c0β
2f−2

= v − c0w
2
+ c0β

2f−2

= v − c0(w − βf
−1)(w + βf−1) ≥ v − c0v(w + βf

−1). (2.21)

Assume that there exists a point x ∈ M \D(r0) such that v(x) > 0. Since

v <
1

8c0
−
β

r0
+

2c0β
2

r2
0
= 0 on ∂D(r0)

and v → 0 at infinity, we conclude that v achieves a positive maximum in the interior of
M \D(r0). Applying the maximum principle to (2.21) we get

c0(w + βf
−1) ≥ 1 (2.22)

at the maximum point of v. However, recall that w < 1/(8c0) and β = r0/(4c0). This
contradicts (2.22). In conclusion, v ≤ 0 on M \D(r0), which implies (2.20).

Now (2.20) and Shi’s derivative estimates imply that the derivatives of the Riemann
curvature tensor satisfy

|∇
kRm|(x) ≤ ck(d(x0, x)+ 1)−k−2

for all k ≥ 1. From this, it follows that (M, g) is Ck asymptotic to a cone for all k. We
refer to [18] for more details. The theorem is proved. ut

In dimension four, a stronger result proved in [21] says that if (M, g, f ) has scalar cur-
vature converging to zero at infinity, then (M, g) is asymptotically conical. While it is
unclear to us whether this is true in arbitrary dimension, we do have the following partial
result.

Corollary 2.3. Let (M, g, f ) be a shrinking Ricci soliton of dimension n with bounded
curvature. Assume that the scalar curvature converges to zero at infinity. Then (M, g)
is Ck asymptotic to a cone for all k.

Proof. Recall that (M, g(t)) satisfies the Ricci flow equation, where g(t) := (1− t)φ∗t g
and dφt

dt
=

1
1−t∇f with φ0 = Id. Since (M, g) has bounded curvature, it follows that

(M, g(t)) is a noncollapsed type I ancient solution by [24]. So, for any xk → ∞,
a subsequence of (M, g(t), xk) converges in the pointed Cheeger–Gromov sense to
(M∞, g∞(t), x∞). Moreover, (M∞, g∞(t), x∞) is also an ancient solution to the Ricci
flow. Clearly, the scalar curvature, of (M∞, g∞(0)) at x∞ vanishes. So, according to [10],
the scalar curvature of (M∞, g∞(t)) must be zero identically. By the evolution equation
of the scalar curvature ∂tS = 1S + 2|Ric|2, we see that this ancient solution is Ricci flat.
This implies that for any sequence xk →∞, there exists a subsequence xkj such that the
Ricci curvature of (M, g) satisfies |Ric|(xkj ) → 0. It is then easy to conclude that the
Ricci curvature converges to zero at infinity. Now the corollary follows by appealing to
Theorem 2.2. ut
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