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Abstract. The goal of this work is to prove an embedding theorem for compact almost complex
manifolds into complex algebraic varieties. It is shown that every almost complex structure can
be realized by the transverse structure to an algebraic distribution on an affine algebraic variety,
namely an algebraic subbundle of the tangent bundle. In fact, there even exist universal embedding
spaces for this problem, and their dimensions grow quadratically with respect to the dimension of
the almost complex manifold to embed. We give precise variation formulas for the induced almost
complex structures and study the related versality conditions. At the end, we discuss the original
question raised by F. Bogomolov: can one embed every compact complex manifold as a C∞ smooth
subvariety that is transverse to an algebraic foliation on a complex projective algebraic variety?
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1. Introduction and main results

The goal of this work is to prove an embedding theorem for compact almost complex
manifolds into complex algebraic varieties. As usual, an almost complex manifold of di-
mension n is a pair (X, JX), whereX is a real manifold of dimension 2n and JX a smooth
section of End(T X) such that J 2

X = − Id; we will assume here that all data are C∞.
Let Z be a complex (holomorphic) manifold of complex dimension N . Such a

manifold carries a natural integrable almost complex structure JZ (conversely, by the
Newlander–Nirenberg theorem any integrable almost complex structure can be viewed as
a holomorphic structure). Now, assume that we are given a holomorphic distribution D
in T Z, i.e. a holomorphic subbundle D ⊂ T Z. Every fiber Dx of the distribution is then
invariant under JZ , i.e. JZDx ⊂ Dx for every x ∈ Z. Here, the distribution D is not
assumed to be integrable. We recall that D is integrable in the sense of Frobenius (i.e.
stable under the Lie bracket operation) if and only if the fibers Dx are the tangent spaces
to leaves of a holomorphic foliation. More precisely, D is integrable if and only if the
torsion operator θ of D, defined by

θ : O(D)×O(D)→ O(T Z/D), (ζ, η) 7→ [ζ, η] mod D, (1.1)
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vanishes identically. As is well known, θ is skew symmetric in (ζ, η) and can be viewed
as a holomorphic section of the bundle 32D∗ ⊗ (T Z/D).

Let M be a real submanifold of Z of class C∞ and of real dimension 2n with n < N .
We say that M is transverse to D if for every x ∈ M we have

TxM ⊕Dx = TxZ. (1.2)

We could in fact assume more generally that the distribution D is singular, i.e. given by
a certain saturated subsheaf O(D) of O(T Z) (“saturated” means that the quotient sheaf
O(T Z)/O(D) has no torsion). Then O(D) is actually a subbundle of T Z outside an
analytic subset Dsing ⊂ Z of codimension ≥ 2, and we further assume in this case that
M ∩Dsing = ∅.

When M is transverse to D, one gets a natural R-linear isomorphism

TxM ' TxZ/Dx (1.3)

at every point x ∈ M . Since T Z/D carries a structure of holomorphic vector bundle (at
least overZrDsing), the complex structure JZ induces a complex structure on the quotient
and therefore, through the above isomorphism (1.3), an almost complex structure JZ,DM

on M .
Moreover, when D is a foliation (i.e. O(D) is an integrable subsheaf of O(T Z)),

then JZ,DM is an integrable almost complex structure on M . Indeed, such a foliation is
realized near any regular point x as the set of fibers of a certain submersion: there exists
an open neighborhood � of x in Z and a holomorphic submersion σ : � → �′ to an
open subset �′ ⊂ Cn such that the fibers of σ are the leaves of D in �. We can take �
to be a coordinate open set in Z centered at point x and select coordinates such that
the submersion is expressed as the first projection � ' �′ × �′′ → �′ with respect
to �′ ⊂ Cn, �′′ ⊂ CN−n, and then D, T Z/D are identified with the trivial bundles
�× ({0} × CN−n) and �× Cn. The restriction

σM∩� : M ∩� ⊂ �
σ
→�′

provides M with holomorphic coordinates on M ∩ �, and it is clear that any other local
trivialization of the foliation on a different chart �̃ = �̃′ × �̃′′ would give coordinates
that are changed by local biholomorphisms �′→ �̃′ in the intersection �∩ �̃, thanks to
the holomorphic character of D. Thus we directly see in that case that JZ,DM comes from
a holomorphic structure on M .

More generally, we say that f : X ↪→ Z is a transverse embedding of a smooth real
manifold X in (Z,D) if f is an embedding and M = f (X) is a transverse submanifold
of Z, i.e. f∗TxX ⊕ Df (x) = Tf (x)Z for every x ∈ X (and f (X) does not meet Dsing in
case there are singularities). One then gets a real isomorphism TX ' f ∗(T Z/D) and
therefore an almost complex structure on X (for this it would be enough to assume that f
is an immersion, but we will actually suppose that f is an embedding here). We denote
by Jf the almost complex structure f ∗(JZ,Df (X)).
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In this work, we are interested in the problem of embedding a compact complex or
almost complex manifold X into a projective algebraic manifold Z, transversally to an
algebraic distribution D ⊂ T Z. We will also make use of the concept of Nash algebraic-
ity. Recall that a Nash algebraic map g : U → V between connected open (i.e. metric
open) sets U, V of algebraic manifolds Y, Z is a map whose graph is a connected com-
ponent of the intersection of U × V with an algebraic subset of Y × Z. We say that a
holomorphic foliation F of codimension n on U is algebraic (resp. holomorphic, Nash
algebraic) if the associated distribution Y ⊃ U → Gr(T Y, n) into the Grassmannian
bundle of the tangent bundle is given by an algebraic (resp. holomorphic, Nash algebraic)
morphism. The following very interesting question was investigated about 20 years ago
by F. Bogomolov [Bog96].

Basic Question 1.1. Given an integrable complex structure J on a compact manifold X,
can one realize J , as described above, by a transverse embedding f : X ↪→ Z into a
projective manifold (Z,D) equipped with an algebraic foliation D, in such a way that
f (X) ∩Dsing = ∅ and J = Jf ?

There are indeed many examples of Kähler and non-Kähler compact complex manifolds
which can be embedded in that way (the case of projective ones being of course triv-
ial): tori, Hopf and Calabi–Eckman manifolds, and more generally all manifolds given
by the LVMB construction (see Section 2). Strong indications exist that every compact
complex manifold should be embeddable as a smooth submanifold transverse to an al-
gebraic foliation on a complex projective variety (see Section 5). We prove here that the
corresponding statement in the almost complex category actually holds – provided that
non-integrable distributions are considered rather than foliations. In fact, there are even
“universal solutions” to this problem.

Theorem 1.2. For all integers n ≥ 1 and k ≥ 4n, there exists a complex affine algebraic
manifold Zn,k of dimensionN = 2k+2(k2

+n(k−n)) possessing a real structure (i.e. an
anti-holomorphic algebraic involution) and an algebraic distribution Dn,k ⊂ T Zn,k of
codimension n, for which every compact n-dimensional almost complex manifold (X, J )
admits an embedding f : X ↪→ ZR

n,k , transverse to Dn,k and contained in the real part
of Zn,k , such that J = Jf .

Remark 1.3. To construct f we first embed X differentiably into Rk , k ≥ 4n, by the
Whitney embedding theorem [Whi44], or its generalization due to [Ton74]. Once the
embedding of the underlying differentiable manifold has been fixed, the transverse em-
bedding f depends in a simple algebraic way on the almost complex structure J given
on X, as one can see from our construction (see Section 4).

The choice k = 4n yields the explicit embedding dimension N = 38n2
+ 8n (we will see

that a quadratic bound N = O(n2) is optimal, but the above explicit value could perhaps
be improved). Since Z = Zn,k and D = Dn,k are algebraic and Z is affine, one can
further compactify Z to a complex projective manifold Z, and extend D to a saturated
subsheaf D of T Z. In general such distributions D will acquire singularities at infinity,



3394 Jean-Pierre Demailly, Hervé Gaussier

and it is unclear whether one can achieve such embeddings with D non-singular on Z, if
at all possible.

Next, we consider the case of a compact almost complex symplectic manifold
(X, J, ω) where the symplectic form ω is assumed to be J -compatible, i.e. J ∗ω = ω

and ω(ξ, J ξ) > 0. By a theorem of Tischler [Tis77], at least under the assumption that
the de Rham cohomology class {ω} is integral, we know that there exists a smooth embed-
ding g : X ↪→ CPs such that ω = g∗ωFS is the pull-back of the standard Fubini–Study
metric ωFS on CPs . A natural problem is whether the symplectic structure can be accom-
modated simultaneously with the almost complex structure by a transverse embedding.
Let us introduce the following definition.

Definition 1.4. Let (Z,D) be a complex manifold equipped with a holomorphic distribu-
tion. We say that a closed semipositive (1, 1)-form β onZ is a transverse Kähler structure
if the kernel of β is contained in D, in other terms, if β induces a Kähler form on any germ
of complex submanifold transverse to D.

Using an effective version of Tischler’s theorem stated by Gromov [Gro86], we prove:

Theorem 1.5. For all integers n, b ≥ 1 and k ≥ 2n+1, there exists a complex projective
algebraic manifold Zn,b,k of dimension N = 2bk(2bk + 1) + 2n(2bk − n)), equipped
with a real structure and an algebraic distribution Dn,b,k ⊂ T Zn,b,k of codimension n, for
which every compact n-dimensional almost complex symplectic manifold (X, J, ω) with
second Betti number b2 ≤ b and a J -compatible symplectic form ω admits an embedding
f : X ↪→ ZR

n,b,k transverse to Dn,b,k and contained in the real part of Zn,k , such that
J = Jf and ω = f ∗β for some transverse Kähler structure β on (Zn,b,k,Dn,b,k).

In Section 5, we discuss Bogomolov’s conjecture for the integrable case. We first prove
the following weakened version, which can be seen as a form of “algebraic embedding”
for arbitrary compact complex manifolds.

Theorem 1.6. For all integers n ≥ 1 and k ≥ 4n, let (Zn,k,Dn,k) be the affine algebraic
manifold equipped with the algebraic distribution Dn,k ⊂ T Zn,k introduced in Theo-
rem 1.2. Then, for every compact n-dimensional (integrable) complex manifold (X, J ),
there exists an embedding f : X ↪→ ZR

n,k transverse to Dn,k , contained in the real part
of Zn,k , such that

(i) J = Jf and ∂Jf is injective;

(ii) Im(∂Jf ) is contained in the isotropic locus IDn,k
of the torsion operator θ of Dn,k , the

intrinsically defined algebraic locus in the Grassmannian bundle Gr(Dn,k, n)→Zn,k
of complex n-dimensional subspaces in Dn,k , consisting of those subspaces S such
that θ|S×S = 0.

The inclusion condition (ii) Im(∂Jf ) ⊂ IDn,k
is in fact necessary and sufficient for the

integrability of Jf .
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In Section 6, we investigate the original Bogomolov conjecture and “reduce it” to a
statement concerning approximations of holomorphic foliations. The flavor of the state-
ment is that holomorphic objects (functions, sections of algebraic bundles, etc.) defined
on a polynomially convex open set of Cn can always be approximated by polynomials or
algebraic sections. Our hope is that this might also be true for the approximation of holo-
morphic foliations by Nash algebraic ones. In fact, we obtain the following conditional
statement.

Proposition 1.7. Assume that holomorphic foliations can be approximated by Nash al-
gebraic foliations uniformly on compact subsets of any polynomially convex open subset
of CN . Then every compact complex manifold can be approximated by compact complex
manifolds that are embeddable in the sense of Bogomolov in foliated projective manifolds.

In the last Section 7, we briefly discuss a “categorical” viewpoint in which the above
questions have a nice interpretation.

2. Transverse embeddings to foliations

We consider the situation described above, whereZ is a complexN -dimensional manifold
equipped with a holomorphic distribution D. More precisely, let X be a compact real
manifold of class C∞ and of real dimension 2n with n < N . We assume that there is an
embedding f : X ↪→ Z that is transverse to D, namely f (X) ∩Dsing = ∅ and

f∗TxX ⊕Df (x) = Tf (x)Z (2.1)

at every point x ∈ X. Here Df (x) denotes the fiber at f (x) of the distribution D. As ex-
plained in Section 1, this induces an R-linear isomorphism f∗ : TX → f ∗(T Z/D), and
from the complex structures of T Z and D we get an almost complex structure f ∗JZ,Df (X)

on TX which we will simply denote by Jf here. Next, we briefly investigate the effect of
isotopies.

Definition 2.1. An isotopy of smooth transverse embeddings of X into (Z,D) is by
definition a family ft : X → Z of embeddings for t ∈ [0, 1] such that the map
F(x, t) = ft (x) is smooth on X × [0, 1] and ft is transverse to D for every t ∈ [0, 1].

We then get a smooth variation Jft of almost complex structures on X. When D is in-
tegrable (i.e. a holomorphic foliation), these structures are integrable and we have the
following simple but remarkable fact.

Proposition 2.2. Let Z be a compact complex manifold equipped with a holomorphic
foliation D and let ft : X → Z, t ∈ [0, 1], be an isotopy of transverse embeddings
of a compact smooth real manifold. Then all complex structures (X, Jft ) are biholomor-
phic to (X, Jf0) through a smooth variation of diffeomorphisms in Diff0(X), the identity
component of the group Diff(X) of diffeomorphisms of X.
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Proof. By an easy connectedness argument, it is enough to produce a smooth variation
of biholomorphisms ψt,t0 : (X, Jft0 ) → (X, Jft ) when t is close to t0, and then extend
these to all t, t0 ∈ [0, 1] by the chain rule. Let x ∈ X. Thanks to the local triviality of the
foliation at z0 = ft0(x) ∈ Z r Dsing, D is locally near x the family of fibers of a holo-
morphic submersion σ : Z ⊃ � → �′ ⊂ Cn defined on a neighborhood � of z0. Then
σ ◦ ft : X ⊃ f

−1
t (�)→ �′ is by definition a local biholomorphism from (X, Jft ) to �′

(endowed with the standard complex structure of Cn). Now, ψt,t0 = (σ ◦ft )
−1
◦ (σ ◦ft0)

defines a local biholomorphism from (X, Jft0
) to (X, Jft ) on a small neighborhood of x,

and these local biholomorphisms glue together to a global one when x and � vary (this
biholomorphism consists of “following the leaf of D” from position ft0(X) to position
ft (X) of the embedding). Clearly ψt,t0 depends smoothly on t and satisfies the chain rule
ψt,t0 ◦ ψt0,t1 = ψt,t1 . ut

Therefore when D is a foliation, to any triple (Z,D, α) where α is an isotopy class
of transverse embeddings X→ Z, one can attach a point in the Teichmüller space
J int(X)/Diff0(X) of integrable almost complex structures modulo biholomorphisms dif-
feotopic to identity. The question raised by Bogomolov can then be stated more precisely:

Question 2.3. For any compact complex manifold (X, J ), does there exist a triple
(Z,D, X, α) formed by a smooth complex projective variety Z, an algebraic foliation D
on Z and an isotopy class α of transverse embeddings X → Z, such that J = Jf for
some f ∈ α?

The isotopy class of embeddings X → Z in a triple (Z,D, α) provides some sort of
“algebraicization” of a compact complex manifold, in the following sense:

Lemma 2.4. There is an atlas of X such that the transition functions are solutions of
algebraic linear equations (rather than plain algebraic functions, as would be the case
for usual algebraic varieties). In this setting, the isotopy classes α are just “topological
classes” belonging to a discrete countable set.

This set can be infinite as one already sees for real linear embeddings of a real even-
dimensional torus X = (R/Z)2n into a complex torus Z = CN/3 equipped with a linear
foliation D.

Proof of Lemma 2.4. We first cover Z r Dsing by a countable family of coordinate open
sets �ν ' �′ν × �

′′
ν such that the first projections σν : �ν → �′ν ⊂ Cn define the

foliation. We assume here that �′ν and �′′ν are balls of sufficiently small radius, so that
all fibers z′ × �′′ν are geodesically convex with respect to a given hermitian metric on
the ambient manifold Z, and the geodesic segment joining any two points in those fibers
is unique (of course, we mean here geodesics relative to the fibers—standard results of
differential geometry guarantee that sufficiently small coordinate balls will satisfy this
property). Then any non-empty intersection

⋂
z′j × �

′′
νj

of the fibers from various co-
ordinate sets is still connected and geodesically convex. We further enlarge the fam-
ily with all smaller balls whose centers have coordinates in Q[i] and radii in Q+, so
that arbitrarily fine coverings can be extracted from the family. A transverse embedding



Algebraic embeddings of smooth almost complex structures 3397

f : X→ Z is characterized by its imageM = f (X) up to right composition with an ele-
ment ψ ∈ Diff(X), and thus, modulo isotopy, up to an element in the countable mapping
class group Diff(X)/Diff0(X). The image M = f (X) is itself given by a finite collection
of graphs of maps gν : �′ν → �′′ν that glue together, for a certain finite subfamily of co-
ordinate sets (�ν)ν∈I extracted from the initial countable family. However, any two such
transverse submanifolds (Mk)k=0,1 and associated collections of graphs (gk,ν) defined on
the same finite subset I are isotopic: to see this, assume e.g. I = {1, . . . , s} and fix even
smaller products of balls �̃ν ' �̃′ν × �̃

′′
ν b �ν still covering M0 and M1, and a cut-off

function θν(z′) equal to 1 on �̃′ν and with support in �′ν . Then we construct isotopies
(Ft,k)t∈[0,1] : M0 → Mt,k step by step, for k = 1, . . . , s, by taking inductively graphs of
maps (Gt,k,ν)t∈[0,1], k=1,...,s, ν∈I such that

Mt,1 given by

{
Gt,1,1(z

′) = γ
(
tθ1(z

′); g0,1(z
′), g1,1(z

′)
)

on �′1,

Gt,1,ν(z
′) = g0,ν(z

′) on σν
(
�ν r (Supp(θ1)× �̃

′′

1)
)
, ν 6= 1,

Mt,k given by

{
Gt,k,k(z

′) = γ
(
tθk(z

′); Gt,k−1,k(z
′),Gt,k−1,k(z

′)
)

on �′k,

Gt,k,ν(z
′) = Gt,k−1,ν(z

′) on σν
(
�ν r (Supp(θk)× �̃′′k)

)
, ν 6= k,

where γ (t; a′′, b′′) denotes the geodesic segment between a′′ and b′′ in each fiber z′×�′′ν .
By construction, we haveM0,k = M0 andM1,k∩Uk = M1∩Uk on Uk = �̃1 ∪ · · · ∪ �̃k ,
thus ft := Ft,s : M0 → Mt is a transverse isotopy between M0 and M1. Therefore, we
have at most as many isotopy classes as the cardinality of the mapping class group, times
the cardinality of the set of finite subsets of a countable set, which is still countable. ut

Of course, when D is non-integrable, the almost complex structure Jft will in general vary
under isotopies. One of the goals of the next sections is to investigate this phenomenon,
but in this section we further study some integrable examples.

Example 2.5 (Complex tori). Let X = R2n/Z2n be an even-dimensional real torus and
Z = CN/3 a complex torus where 3 ' Z2N is a lattice of CN , N > n. Any complex
vector subspace D ⊂ CN of codimension n defines a linear foliation on Z (which may
or may not have closed leaves, but for D generic, the leaves are everywhere dense). Let
f : X → Z be a linear embedding transverse to D. Here, there are countably many
distinct isotopy classes of such linear embeddings, in fact up to a translation, f is in-
duced by an R-linear map u : R2n

→ CN that sends the standard basis (e1, . . . , e2n)

of Z2n to a unimodular system of 2n Z-linearly independent vectors (ε1, . . . , ε2n) of 3.
Such (ε1, . . . , ε2n) can be chosen to generate any 2n-dimensional Q-vector subspace Vε
of 3 ⊗ Q ' Q2N , thus the permitted directions for Vε are dense, and for most of them
f is indeed transverse to D. For a transverse linear embedding, we get an R-linear iso-
morphism ũ : R2n

→ CN/D, and the complex structure Jf on X is precisely the one
induced by that isomorphism by pulling back the standard complex structure on the quo-
tient. For N ≥ 2n, we claim that all possible translation invariant complex structures
on X are obtained. In fact, we can then choose the lattice vector images ε1, . . . , ε2n to be
C-linearly independent, so that the map u : Z2n

→ 3, ej 7→ εj , extends to an injection
v : C2n

→ CN . Once this is done, the isotopy class of embedding is determined, and a
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translation invariant complex structure J on X is given by a direct sum decomposition
C2n
= S ⊕ S with dimC S = n (and S the complex conjugate of S). What we need is

that the composition ṽ : C2n
→ CN → CN/D defines a C-linear isomorphism of S onto

ṽ(S) ⊂ CN/D and ṽ(S) = {0}, i.e. D ⊃ v(S) and D ∩ v(S) = {0}. The solutions are
obtained by taking D = v(S)⊕H , where H is any complementary subspace of v(S⊕ S)
in CN (thus the choice of D is unique if N = 2n, and parametrized by an affine chart of
a Grassmannian G(N − n,N − 2n) if N > 2n). Of course, we can take here Z to be an
Abelian variety—even a simple Abelian variety if we wish.

Example 2.6 (LVMB manifolds). We refer to López de Medrano–Verjovsky [LoV97],
Meersseman [Mer00] and Bosio [Bos01] for the original constructions, and sketch here
the more general definition given in [Bos01] (or rather an equivalent one, with very minor
changes of notation). Let m ≥ 1 and N ≥ 2m be integers, and let E = Em,N+1 be a
non-empty set of subsets of cardinality 2m + 1 of {0, 1, . . . , N}. For J ∈ E , define UJ
to be the open set of points [z0 : . . . : zN ] ∈ CPN such that zj 6= 0 for j ∈ J and
UE =

⋃
J∈E UJ . Then, consider the action of Cm on UE given by

w · [z0 : . . . : zN ] = [e
`0(w)z0 : . . . : e

`N (w)zN ]

where j̀ ∈ (Cm)∗ are complex linear forms Cm → C, 0 ≤ j ≤ N . Then Bosio [Bos01,
Théorème 1.4] proves that the space of orbits X = UE/Cm is a compact complex mani-
fold of dimension n = N − m if and only if the following two combinatorial conditions
are met:

(i) for any J1, J2 ∈ E , the convex envelopes in (Cm)∗ of { j̀ }j∈J1 and { j̀ }j∈J2 overlap
on some non-empty open set;

(ii) for all J ∈ E and k ∈ {0, . . . , N}, there exists k′ ∈ J such that (J r {k′}) ∪ {k} ∈ E .

The above action can be described in terms ofm pairwise commuting Killing vector fields
of the action of PGL(N + 1,C) on CPN , given by

ζj =

N∑
k=0

λjkzk
∂

∂zk
, λjk =

∂`k

∂wj
, 1 ≤ j ≤ m.

These vector fields generate a foliation F of dimension m on CPN that is non-singular
over UE . Under the more restrictive condition defining LVM manifolds, it follows from
[Mer00] thatX can be embedded as a smooth compact real analytic submanifoldM inUE
that is transverse to F ; such a submanifold M is realized as the transverse intersection of
hermitian quadrics

∑
0≤k≤N λj,k|zk|

2
= 0, 1 ≤ j ≤ m (this actually yields 2m real con-

ditions by taking real and imaginary parts). In the more general case of LVMB manifolds,
Bosio has observed that X can also be embedded smoothly in UE ⊂ CPN (see [Bos01,
Prop. 2.3 and discussion thereafter] and also [BoM06, Part III, Section 12]).
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3. Deformation of transverse embeddings

Let f : X→ (Z,D) be a transverse embedding. Then Jf := f ∗(J
Z,D
f (X)) defines an almost

complex structure on X. In this section we give sufficient conditions on the embedding f
that ensure that small deformations of Jf , in a suitable space of almost complex structures
on X, are given as J

f̃
where f̃ are small deformations of f in a suitable space of trans-

verse embeddings of X into (Z,D). Since the implicit function theorem will be needed,
we have to introduce various spaces of Cr mappings. For any r ∈ [1,∞], we consider
the group Diffr(X) of diffeomorphisms of X of class Cr , and the subgroup Diffr0(X) of
diffeomorphisms diffeotopic to identity. When r = s + γ is not an integer, s = brc,
then Cr denotes the Hölder space of maps of class Cs with derivatives of order s that
are Hölder continuous with exponent γ . Similarly, we consider the space Cr(X,Z) of Cr
mappings X→ Z equipped with Cr convergence topology (of course, in Diffr(X), the
topology also requires convergence of sequences f−1

ν ). If Z is Stein, there exists a bi-
holomorphism 8 : T Z→ Z × Z from a neighborhood of the zero section of T Z to a
neighborhood of the diagonal in Z × Z, such that 8(z, 0) = z and dζ8(z, ζ )|ζ=0 = Id
on TzZ. When Z is embedded in CN ′ for some N ′, such a map can be obtained by taking
8(z, ζ ) = ρ(z + ζ ), where ρ is a local holomorphic retraction CN ′ → Z and TzZ is
identified to a vector subspace of CN ′ . In general (i.e. when Z is not necessarily Stein),
one can still find a C∞ or even real analytic map 8 satisfying the same conditions, by
taking e.g. 8(z, ζ ) = (z, expz(ζ )), where exp is the Riemannian exponential map of a
real analytic hermitian metric on Z; actually, we will not need 8 to be holomorphic in
what follows.

Lemma 3.1. For r ∈ [1,∞[ , Cr(X,Z) is a Banach manifold whose tangent space at a
point f : X → Z is Cr(X, f ∗T Z), and Diffr0(X) is a “Banach Lie group” with “Lie
algebra” Cr(X, T X) [the quotes meaning that the composition law is not real analytic as
one would expect, but merely continuous and differentiable at IdX, though the underlying
manifold is indeed a Banach manifold].

Let us also point out that if the composition of Cr maps is merely Cr2
for 0 < r < 1, it is

actually a Cr map for r ≥ 1.

Proof of Lemma 3.1. The use of the map 8 allows us to parametrize small deformations
of the embedding f as f̃ (x)=8(f (x), u(x)) [or equivalently u(x)=8−1(f (x), f̃ (x)) ],
where u is a smooth sufficiently small section of f ∗T Z. This parametrization is one-to-
one, and f̃ is Cr if and only if u is Cr (provided f is). The argument is similar, and very
well known indeed, for Diffr0(X). ut

Now, let J r(X) denote the space of almost complex structures of class Cr on X. For
1 ≤ r < ∞, this is a Banach manifold whose tangent space at a point J is the space of
sections h ∈ Cr(X,EndC(T X)) satisfying J ◦ h+ h ◦ J = 0 (that is, C-conjugate-linear
endomorphisms of TX). There is a natural right action of Diffr0(X) on J r−1(X) defined
by

(J, ψ) 7→ ψ∗J, ψ∗J (x) = dψ(x)−1
◦ J (ψ(x)) ◦ dψ(x).
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As is well-known and as a standard calculation shows, the differential of ψ 7→ ψ∗J at
ψ = IdX is closely related to the ∂J operator

∂J : Cr(X, T X)→ Cr−1(X,30,1TX∗ ⊗ TX1,0) = Cr−1(X,EndC(T X)),

namely it is given by v 7→ J ◦dv−dv◦J = 2J∂J v if v ∈ Cr(X, T X) is the infinitesimal
variation of ψ .

Let 0r(X,Z,D) be the space of Cr embeddings of X into Z that are transverse to D.
Transversality is an open condition, so 0r(X,Z,D) is an open subset in Cr(X,Z). Now,
Diffr0(X) acts on 0r(X,Z,D) through the natural right action

0r(X,Z,D)× Diffr0(X)→ 0r(X,Z,D), (f, ψ) 7→ f ◦ ψ.

We wish to consider the differential of this action at (f, ψ), ψ = IdX, with respect
to the tangent space isomorphisms of Lemma 3.1. This is just the addition law in the
bundle f ∗T Z:

Cr(X, f ∗T Z)× Cr(X, T X)→ Cr−1(X, f ∗T Z), (u, v) 7→ u+ f∗v.

A difficulty occurring here is the loss of regularity from Cr to Cr−1 coming from the
differentiations of f and v. To overcome this difficulty, we have to introduce a slightly
smaller space of transverse embeddings.

Definition 3.2. For r ∈ [1,∞] ∪ {ω} we consider the space

0̃r(X,Z,D) ⊂ 0r(X,Z,D) ⊂ Cr(X,Z)

of transverse embeddings f : X → Z such that f is of class Cr together with all “trans-
verse” derivatives h · df , where h runs over conormal holomorphic 1-forms with val-
ues in (T Z/D)∗. When r = ∞ or r = ω (real analytic case), we set 0̃r(X,Z,D) =
0r(X,Z,D).

Then 0̃r(X,Z,D) satisfies the following conditions:

Proposition 3.3. For 1 ≤ r <∞:

(i) the group Diffr+1
0 (X) acts on the right on 0̃r(X,Z,D);

(ii) the space 0̃r(X,Z,D) is a Banach manifold whose tangent space at a point f :
X→ Z is Cr(X, f ∗D)⊕ Cr+1(X, T X).

Proof. Part (i) is clear since Diffr+1
0 (X) acts on 0̃r(X,Z,D) through the natural right

action
0̃r(X,Z,D)× Diffr+1

0 (X)→ 0̃r(X,Z,D), (f, ψ) 7→ f ◦ ψ.

For (ii), pick f ∈ 0̃r(X,Z,D), u ∈ Cr(X, f ∗D) and v ∈ Cr+1(X, T X). The flow
of v yields a family of diffeomorphisms ψt ∈ Diffr+1

0 (X) with ψ0 = IdX and ψ̇t |t=0 = v

(in what follows, all derivatives d
dt |t=0 will be indicated by a dot). Now, fix ũ ∈ Cr(Z,D)

such that u = ũ ◦ f , by extending the Cr vector field f∗u from f (X) to Z. The extension
mapping u 7→ ũ can be chosen to be a continuous linear map of Banach spaces, using
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e.g. a retraction from a tubular neighborhood of the Cr submanifold f (X) ⊂ Z. Let
ft be the flow of ũ starting at f0 = f , i.e. d

dt
ft = ũ(ft ). Let (ej )1≤j≤N be a local

holomorphic frame of T Z such that (ej )n+1≤j≤N is a holomorphic frame of D, (e∗j ) its
dual frame and ∇ the unique local holomorphic connection of T Z such that ∇ej = 0. For
j = 1, . . . , n, we find

d

dt
(e∗j ◦ dft ) = e

∗

j (ft ) ◦ ∇
dft

dt
= e∗j (ft ) ◦ ∇(ũ(ft )) = e

∗

j (ft ) ◦ (∇ũ)(ft ) · dft .

However, if we write ũ =
∑
n+1≤k≤N ũkek we see that the composition vanishes since

e∗j ek = 0. Therefore d
dt
(e∗j ◦ dft ) = 0 and e∗j ◦ dft = e

∗

j (f ) ◦ df ∈ Cr(X). This shows
that ft ∈ 0̃r(X,Z,D) for all t , and by definition we have ḟt = ũ ◦ f = u. Now, if we
define gt = ft ◦ ψt , we find gt ∈ 0̃r(X,Z,D) by (i), and ġt = u + f∗v since ψ̇t = v.
The mapping (u, v) 7→ g1 = (ft ◦ ψt )|t=1 defines a local “linearization” of 0̃r(X,Z,D)
near f . ut

We may now consider the differential of this action at (f, ψ), where f ∈ 0̃r(X,Z,D)
and ψ = IdX. If we restrict u to be in Cr(X, f ∗D), we actually get an isomorphism of
Banach spaces

Cr(X, f ∗D)× Cr(X, T X)→ Cr(X, f ∗T Z), (u, v) 7→ u+ f∗v, (3.1)

by the transversality condition. In fact, we can (non-canonically) define on 0̃r(X,Z,D)
a “lifting”

8(f, •) : Cr(X, f ∗D)→ 0̃r(X,Z,D), u 7→ 8(f, u)

on a small neighborhood of the zero section, and the differential of 8(f, •) at 0 is given
by the inclusion Cr(X, f ∗D) ↪→ Cr(X, f ∗T Z). Modulo composition with elements of
Diffr+1

0 (X) close to identity (i.e. in the quotient space 0̃r(X,Z,D)/Diffr+1
0 (X)), small

deformations of f are parametrized by8(f, u)where u is a small section of Cr(X, f ∗D).
The first variation of f depends only on the differential of8 along the zero section of T Z,
so it is actually independent of the choice of our map 8. We can think of small variations
of f as f +u, at least if we are working in local coordinates (z1, . . . , zN ) ∈ CN on Z, and
we can assume that Dz ⊂ TzZ = CN ; the use of a map 8 like those already considered
is however needed to make the arguments global.

Let us summarize these observations as follows.

Lemma 3.4. For 1 ≤ r < ∞, the quotient space 0̃r(X,Z,D)/Diffr+1
0 (X) is a Banach

manifold whose tangent space at f can be identified with Cr(X, f ∗D) via the differential
of the composition

Cr(X, f ∗D) 8(f,•)
−−−→ 0̃r(X,Z,D)→ 0̃r(X,Z,D)/Diffr+1

0 (X)

at 0, where the first arrow is given by u 7→ 8(f, u) and the second arrow is the natural
map to the quotient. ut
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Our next goal is to compute Jf and the differential dJf of f 7→ Jf when f varies in
the above Banach manifold 0̃r(X,Z,D). Near a point z0 ∈ Z we can pick holomorphic
coordinates z = (z1, . . . , zN ) centered at z0 such that Dz0 = Span (∂/∂zj )n+1≤j≤N . Then
we have

Dz = Span
(
∂

∂zj
+

∑
1≤i≤n

aij (z)
∂

∂zi

)
n+1≤j≤N

, aij (z0) = 0. (3.2)

In other words, Dz is the set of vectors of the form (a(z)η, η) ∈ Cn × CN−n, where
a(z) = (aij (z)) is a holomorphic map into the space L(CN−n,Cn) of n × (N − n)
matrices. A trivial calculation shows that the vector fields ej (z) = ∂

∂zj
+
∑
i aij (z)

∂
∂zi

have brackets equal to

[ej , ek] =
∑

1≤i≤n

(
∂aik

∂zj
(z0)−

∂aij

∂zk
(z0)

)
∂

∂zi
at z0, n+ 1 ≤ j, k ≤ N;

in other words, the torsion tensor θ is given by

θ(z0) =
∑

1≤i≤n, n+1≤j,k≤N

θijk(z0) dzj ∧ dzk ⊗
∂

∂zi
,

θijk(z0) =
1
2

(
∂aik

∂zj
(z0)−

∂aij

∂zk
(z0)

)
.

(3.3)

We now take a point x0 ∈ X and apply this to z0 = f (x0) ∈ M = f (X) ⊂ Z. In the
coordinates z = (z1, . . . , zN ) chosen as above, we have Tz0M⊕Span(∂/∂zj )n+1≤j≤N =

Tz0Z, so we can represent M in the coordinates z = (z′, z′′) ∈ Cn × CN−n locally as a
graph z′′=g(z′) in a small polydisc�′×�′′ centered at z0, and use z′=(z1, . . . , zn)∈�

′

as local (non-holomorphic !) coordinates on M . Here g : �′→ �′′ is Cr+1 differentiable
and g(z′0) = z

′′

0 . The embedding f : X → Z is itself obtained as the composition with a
certain local Cr diffeomorphism ϕ : X ⊃ V → �′ ⊂ Cn, i.e.

f = F ◦ϕ on V, ϕ : V 3 x 7→ z′ = ϕ(x) ∈ �′ ⊂ Cn, F : �′ 3 z′ 7→ (z′, g(z′)) ∈ Z.

With respect to the (z′, z′′) coordinates, we get an R-linear isomorphism

dF(z′) : Cn→ TF(z′)M ⊂ TF(z′)Z ' Cn × CN−n,
ζ 7→ (ζ, dg(z′) · ζ ) = (ζ, ∂g(z′) · ζ + ∂g(z′) · ζ ).

Here ∂g is defined with respect to the standard complex structure of Cn 3 z′ and has a
priori no intrinsic meaning. The almost complex structure Jf can be explicitly defined by

Jf (x) = dϕ(x)
−1
◦ JF (ϕ(x)) ◦ dϕ(x), (3.4)

where JF is the almost complex structure on M defined by the embedding F : M ⊂ Z,
expressed in coordinates as z′ 7→ (z′, g(z′)). By construction we get

JF (z
′) = dF(z′)−1

◦ πZ,D,M(F (z
′)) ◦ JZ(F (z

′)) ◦ dF(z′) (3.5)
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where JZ is the complex structure on Z and πZ,D,M(z) : TzZ → TzM is the R-linear
projection to TzM along Dz at a point z ∈ M . Since these formulas depend on the first
derivatives of F , we see that Jf is at least of class Cr−1 on X and JF is at least of
class Cr−1 on M . We will see in Proposition 3.5 that Jf is in fact of class Cr on X for
f ∈ 0̃r(X,Z,D). Using the identifications TF(z′)M ' Cn, TzZ ' CN given by the above
choice of coordinates, we simply have JZη = iη on T Z since the (zj ) are holomorphic,
and we get therefore

JZ(F (z
′)) ◦ dF(z′) · ζ = idF (z′) · ζ = i(ζ, dg(z′) · ζ ) =

(
iζ, ∂g(z′) · iζ − ∂g(z′) · iζ

)
= (iζ, dg(z′) · iζ )− 2(0, ∂g(z′) · iζ ).

By definition of z 7→ a(z), we have (a(z)η, η) ∈ Dz for every η ∈ CN−n, and so

πZ,D,M(z)(0, η) = πZ,D,M(z)
(
(0, η)− (a(z)η, η)

)
= −πZ,D,M(z)(a(z)η, 0).

We take here η = ∂g(z′) · iζ . As (iζ, dg(z′) · iζ ) ∈ TF(z′)M already, we find

πZ,D,M(F (z
′)) ◦ JZ(F (z

′)) ◦ dF(z′) · ζ

= (iζ, dg(z′) · iζ )+ 2πZ,D,M(F (z′))
(
a(F (z′))∂g(z′) · iζ, 0

)
.

From (3.5), we get in this way

JF (z
′) · ζ = iζ − 2dF(z′)−1

◦ πZ,D,M(F (z
′))
(
ia(F (z′))∂g(z′) · ζ, 0

)
. (3.6)

In particular, since a(z0) = 0, we simply have JF (z′0) · ζ = iζ .
We want to evaluate the variation of the almost complex structure Jf when the embed-

ding ft = Ft ◦ϕt varies with respect to some parameter t ∈ [0, 1]. Let w ∈ Cr(X, f ∗T Z)
be a given infinitesimal variation of ft and w = u + f∗v, u ∈ Cr(X, f ∗D), v ∈
Cr+1(X, T X) its direct sum decomposition. With respect to the trivialization of D given
by our local holomorphic frame (ej (z)), we can write in local coordinates

u(ϕ−1(z′)) =
(
a(F (z′)) · η(z′), η(z′)

)
∈ DF(z′)

for some section z′ 7→ η(z′) ∈ CN−n. Therefore

u(ϕ−1(z′)) =
(
0, η(z′)− dg(z′) · a(F (z′)) · η(z′)

)
+ F∗

(
a(F (z′)) · η(z′)

)
where the first term is “vertical” and the second one belongs to TF(z′)M . We then get a
slightly different decomposition w̃ := w ◦ ϕ−1

= ũ+ F∗ṽ ∈ Cr(�′, F ∗T Z) where

ũ(z′) =
(
0, η(z′)− dg(z′) · a(F (z′)) · η(z′)

)
∈ {0} × CN−n,

ṽ(z′) = ϕ∗v(z
′)+ a(F (z′)) · η(z′) ∈ Cn.

This allows us to perturb f = F ◦ ϕ as ft = Ft ◦ ϕt with
X 3 x 7→ z′ = ϕt (x) = ϕ(x)+ t ṽ(ϕ(x)) ∈ Cn,
Cn 3 z′ 7→ Ft (z

′) = (z′, gt (z
′)) ∈ Z,

gt (z
′) = g(z′)+ t ũ(z′) = g(z′)+ t

(
η(z′)− dg(z′) · a(F (z′)) · η(z′)

)
,

(3.7)
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in such a way that ḟt = d
dt
(ft )|t=0 = w. We replace f, g, F, M by ft , gt , Ft , Mt

in (3.6) and compute the derivative for t = 0 and z′ = z′0. Since a(z0) = 0, the only
non-zero term is the one involving the derivative of the map t 7→ a(Ft (z

′)). We have
Ḟt (z

′

0) = (0, η(z
′

0)) = u(x0) where η(z′0) ∈ CN−n, thus J̇Ft can be expressed at z′0 as

J̇Ft (z
′

0) · ζ :=
d

dt
(JFt (z

′

0) · ζ )|t=0

= −2dF(z′0)
−1
◦ πZ,D,M(z

′

0)
(
ida(z0)(u(x0)) · ∂g(z

′

0) · ζ, 0
)
.

Now, if we set λ = ida(z0)(u(x0))∂g(z
′

0) · ζ , as Dz0 = {0} × CN−n in our coordinates,
we immediately get

πZ,D,M(z
′

0)(λ, 0) = (λ, dg(z′0)·λ) = dF(z
′

0)·λ, so dF(z′0)
−1
◦πZ,D,M(z

′

0)(λ, 0) = λ.

Therefore, we obtain the very simple expression

J̇Ft (z
′

0) = −2ida(z0)(u(x0)) · ∂g(z
′

0) ∈ EndC(C
n) (3.8)

where da(z0)(ξ) ∈ L(CN−n,Cn) is the derivative of the matrix function z 7→ a(z) at
z = z0 in the direction ξ ∈ CN , and ∂g(z′0) is viewed as an element of LC(C

n,CN−n).
What we want is the derivative of Jft = dϕ

−1
t ◦ JFt (ϕt ) ◦ dϕt at x0 for t = 0. Writing ϕ∗

as an abbreviation for dϕ, we find, for t = 0,

J̇ft = −ϕ
−1
∗ ◦ dϕ̇t ◦ ϕ

−1
∗ ◦ JF (ϕ) ◦ ϕ∗ + ϕ

−1
∗ ◦ JF (ϕ) ◦ dϕ̇t + ϕ

−1
∗ ◦ J̇Ft (ϕ) ◦ ϕ∗

= 2Jf ∂Jf (ϕ
−1
∗ ϕ̇t )+ ϕ

−1
∗ ◦ J̇Ft (ϕ) ◦ ϕ∗, (3.9)

where the first term on the right hand side comes from the identity −ds ◦ Jf + Jf ◦ ds =
2Jf ∂Jf s with s = ϕ−1

∗ ϕ̇t ∈ Cr(X, T X) and ds = ϕ−1
∗ dϕ̇t . Our choices ṽ = ϕ∗v+a◦F ·η

and ϕt = ϕ + t ṽ ◦ ϕ yield

ϕ̇t = ṽ ◦ ϕ = ϕ∗v + a ◦ f · η ◦ ϕ, so ϕ−1
∗ ϕ̇t = v + ϕ

−1
∗ (a ◦ f · η ◦ ϕ).

If we recall that a(z0) = 0 and η(ϕ(x0)) = η(z
′

0) = pr2 u(x0), we get, at x = x0,

∂Jf (ϕ
−1
∗ ϕ̇t )(x0) = ∂Jf v(x0)+ ϕ

−1
∗

(
da(z0)(∂Jf f (x0)) · pr2 u(x0)

)
. (3.10)

By construction, ϕ∗ = dϕ is compatible with the almost complex structures (X, Jf ) and
(Cn, JF ). A combination of (3.8), (3.9) and (3.10) yields

J̇ft (x0) = 2Jf ∂Jf v(x0)

+ ϕ−1
∗

(
2ida(z0)(∂Jf f (x0)) · pr2 u(x0)− 2ida(z0)(u(x0)) · ∂g(z

′

0) ◦ ϕ∗
)
.

As ∂Jf f (x0) = (∂JFF)(z
′

0) ◦ dϕ(x0) = (0, ∂g(z′0)) ◦ ϕ∗ and f∗ = F∗ ◦ ϕ∗, we get

J̇ft (x0) = f
−1
∗ F∗

(
2ida(z0)(∂Jf f (x0)) · pr2 u(x0)− 2ida(z0)(u(x0)) · pr2 ∂Jf f (x0)

)
+ 2Jf ∂Jf v(x0).



Algebraic embeddings of smooth almost complex structures 3405

By (3.3), the torsion tensor θ(z0) : Dz0 × Dz0 → Tz0Z/Dz0 ' F∗Tz0M = f∗Tx0X is
given by

θ(η, λ) =
∑

1≤i≤n, n+1≤j,k≤N

(
∂aik

∂zj
(z0)−

∂aij

∂zk
(z0)

)
ηjλk

∂

∂zi

= da(z0)(η) · λ− da(z0)(λ) · η.

Since our point x0 ∈ X was arbitrary and J̇ft (x0) is the value of the differential dJf (w)
at x0, we finally get the global formula

dJf (w) = 2Jf
(
f−1
∗ θ(∂Jf f, u)+ ∂Jf v

)
(observe that ∂Jf f ∈ LC(T X, f

∗T Z) actually takes values in f ∗D, so taking a projec-
tion to f ∗D is not needed). We conclude:

Proposition 3.5. Let r ∈ [1,∞] ∪ {ω}.

(i) The natural map f 7→ Jf sends 0̃r(X,Z,D) into J r(X).

(ii) The differential of the natural map

0̃r(X,Z,D)→ J r(X), f 7→ Jf ,

along every infinitesimal variation w = u+ f∗v : X→ f ∗T Z = f ∗D ⊕ f∗TX of
f is given by

dJf (w) = 2Jf
(
f−1
∗ θ(∂Jf f, u)+ ∂Jf v

)
where θ : D ×D→ T Z/D is the torsion tensor of the holomorphic distribution D,
and ∂f = ∂Jf f , ∂v = ∂Jf v are computed with respect to the almost complex
structure (X, Jf ).

(iii) The differential dJf of f 7→ Jf on 0̃r(X,Z,D) is a continuous morphism

Cr(X, f ∗D)⊕Cr+1(X, T X)→ Cr(X,EndC(T X)), (u, v) 7→ 2i(θ(∂f, u)+∂v).

If r = ∞ or r = ω then we replace r + 1 by r in (iii).

Proof. Parts (i) and (ii) are clear, as it can be easily seen that ∂f depends only on the
transversal part of df by the very definition of Jf and of ∂f = 1

2 (df + JZ ◦ df ◦ Jf ).
Part (iii) is a trivial consequence of the general variation formula. ut

Our goal now is to understand under which conditions f 7→ Jf can be a local submersion
from 0̃r(X,Z,D) to J r(X). If we do not take into account the quotient by the action of
Diffr+1

0 on J r(X), we obtain a more demanding condition. For that stronger requirement,
we see that a sufficient condition is that the continuous linear map

Cr(X, f ∗D)→ Cr(X,EndC(T X)), u 7→ 2iθ(∂f, u), (3.11)

be surjective.
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Theorem 3.6. Fix r ∈ [1,∞]∪{ω} (again, ω means real analyticity here). Let (Z,D) be
a complex manifold equipped with a holomorphic distribution, and let f ∈ 0̃r(X,Z,D)
be a transverse embedding with respect to D. Assume that f and the torsion tensor θ of
D satisfy the following additional conditions:

(i) f is a totally real embedding, i.e. ∂f (x) ∈ EndC(TxX, Tf (x)Z) is injective at every
point x ∈ X;

(ii) for every x ∈ X and every η ∈ EndC(T X), there exists a vector λ ∈ Df (x) such that
θ(∂f (x) · ξ, λ) = η(ξ) for all ξ ∈ TX.

Then there is a neighborhood U of f in 0̃r(X,Z,D) and a neighborhood V of Jf in
J r(X) such that U → V , f 7→ Jf , is a submersion.

Proof. This is an easy consequence of the implicit function theorem in the Banach space
situation r < ∞. Let 8 be the real analytic map T Z→ Z × Z considered in Section 3,
and let

9f : Cr(X, f ∗D)→ 0̃r(X,Z,D), u 7→ 8(f, f∗u).

By definition f = 9f (0) and 9f defines the infinite-dimensional manifold structure
on 0̃r(X,Z,D) by identifying a neighborhood of 0 in the topological vector space
Cr(X, f ∗D) with a neighborhood of f in 0̃r(X,Z,D), and providing in this way a “co-
ordinate chart”. As we have seen in (3.11), the differential u 7→ dJf (u) is given by

u 7→ Lf (u) = 2iθ(∂f, u)

where Lf ∈ Cr(X,Hom(f ∗D,EndC(T X))) is by our assumption (ii) a surjective mor-
phism of bundles of finite rank. The kernel K := KerLf is a Cr subbundle of f ∗D, thus
we can select a Cr subbundle E of f ∗D such that

f ∗D = K⊕ E .

(This can be seen by a partition of unity argument for r 6= ω; in the real analytic case, one
can instead complexify the real analytic objects and apply a Steinness argument together
with Cartan’s Theorem B to obtain a splitting). The differential of the composition

u 7→ g = 9f (u), g 7→ Jg,

is precisely the restriction ofLf = dJf to sections u ∈ Cr(X, E) ⊂ Cr(X, f ∗D), which is
by construction a bundle isomorphism from Cr(X, E) onto Cr(X,EndC(T X)). Hence for
r <∞, u 7→ g = 9f (u) 7→ J9f (u) is a Cr -diffeomorphism from a neighborhood WE

r (0)
of the zero section of Cr(X, E) onto a neighborhood Vr of Jf ∈ J r(X), and so g 7→ Jg

is a Cr -diffeomorphism from UE
r := 9(WE

r (0)) onto Vr . This argument does not quite
work for r = ∞ or r = ω, since we do not have Banach spaces. Nevertheless, for r = ∞,
we can apply the result for a given finite r0 and consider r ′ ∈ [r0,∞[ arbitrarily large.
Then, by applying a local diffeomorphism argument in Cr ′ at all nearby points g = 9f (u)
(and by using the injectivity on UE

r0
), we see that the map

UE
r ′ := 9f (W

E
r0
(0) ∩ Cr

′

(X, E))→ Vr0 ∩ J
r ′(X), g 7→ Jg,
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is a Cr ′ -diffeomorphism. Since this is true for all r ′ with the “same” neighborhood, i.e.
one given by the same seminorms of order r0 and the same bounds, the case r = ∞
also yields a local diffeomorphism of Fréchet manifolds. For r = ω, we have instead an
inductive limit of Banach spaces of real analytic sections u ∈ Cωρ (X, E) whose Taylor
expansions u(y) =

∑
uα(x)(y − x)

α converge uniformly on tubular neighborhoods of
the diagonal, of shrinking radii ρ → 0 (with respect to a given real analytic atlas of X,
say). The argument is quite similar, by considering the intersection Wr0(0)∩Cωρ (X, E)we
get a diffeomorphism onto a neighborhood of Jf in J ω

ρ (X), if we take ρ smaller than the
radius of convergence ρ0 that can be used for f ,9f and E . We still have to justify the fact
that g 7→ Jg is a local submersion near f . Again, for finite values of r , e.g. for r = r0, this
is true by the Banach case of the implicit function theorem. Then the fibers {g; Jg = J }
of g 7→ Jg are Banach manifolds modeled on Cr0(X,K) in a suitable neighborhood

Ur0 := 9f (W
K
r0
⊕WE

r0
) ⊂ 0̃r(X,Z,D) of f ,

where Ur0 is obtained as the image by 9f of a sufficiently small neighborhood of 0 in

Cr0(X, f ∗D) = Cr0(X,K)⊕ Cr0(X, E).

Observe that the “central” fiber {g; Jg = Jf } is in fact tangent to Cr0(X,K) ⊂
Cr0(X, f ∗D), and by continuity, Ker dJg is a complementary subspace of Cr0(X, E) for
g close to f in the Cr0 topology, r0 ≥ 1. We conclude by considering neighborhoods of
f ∈ 0̃r(X,Z,D),

Ur = 9f
(
(WK

r0
⊕WE

r0
) ∩ Cr(X, f ∗D)

)
,

that are “uniform” in r . ut

Remark 3.7. (a) When D is a foliation, i.e. θ ≡ 0 identically, or when f is holomorphic
or pseudo-holomorphic, i.e. ∂f = 0, we have dJf ≡ 0 up to the action of Diffr+1

0 (X).
Therefore, when n > 1, one can never attain the submersion property by means of a
foliation D or when starting from a (pseudo-)holomorphic map f .

(b) Condition (ii) of Theorem 3.6 is easily seen to be equivalent to (3.11). When one
of these is satisfied, condition (i) on the injectivity of ∂f is in fact automatically implied:
otherwise a vector ξ ∈ Ker ∂f (x) could never be mapped to a non-zero element η(ξ)
assigned by η.

(c) For condition (ii) or (3.11) to be satisfied, a necessary condition is that the rank
N − n of D be such that

N − n ≥ rank(EndC(T X)) = n
2,

i.e. N ≥ n2
+ n, so the dimension of Z must be rather large compared to n = dimCX.

We will see in the next section that it is indeed possible to find a quasi-projective alge-
braic variety Z whose dimension is quadratic in n, for which any n-dimensional almost
complex manifold (X, J ) admits a transverse embedding f : X ↪→ Z satisfying (i), (ii)
and J = Jf . The present remark shows that one cannot improve the quadratic character
N = O(n2) of the embedding dimension under condition (ii).
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4. Universal embedding spaces

We prove here the existence of the universal embedding spaces (Zn,k,Dn,k) claimed in
Theorem 1.2. They will be constructed as some sort of combination of Grassmannians
and twistor bundles. For k > n, we let W ⊂ R2k

×GR(2k, 2n) × EndR(R2k) be the set
of triples (w, S, J ) where w ∈ R2k , S lies in the real Grassmannian of 2n-codimensional
subspaces of R2k , J ∈ EndR(R2k) satisfies J 2

= −I and J (S) ⊂ S. Clearly, W is a
quasi-projective real algebraic variety, and it has a complexification WC which can be
described as a component of the set of triples

(z, S, J ) ∈ C2k
×GC(2k, 2n)× EndC(C2k)

such that J 2
= −I and J (S) ⊂ S. Such an endomorphism J actually induces almost

complex structures on C2k and on S, and thus yields direct sum decompositions C2k
=

6′ ⊕ 6′′ and S = S′ ⊕ S′′ where S′ ⊂ 6′, S′′ ⊂ 6′′ correspond respectively to the +i
and −i eigenspaces. If J is the complexification of some JR

∈ EndR(R2k) and S is the
complexification of some SR ⊂ R2k , we have

dim S′ = dim S′′ = 1
2 dim S = k−n and dim6′ = dim6′′ = 1

2 dimC2k
= k. (4.1)

We let Z be the irreducible non-singular quasi-projective algebraic variety consisting
of triples (z, S, J ) as above where J has such “balanced” eigenspaces S′, S′′, 6′, 6′′.
Alternatively, we could view Z as the set of 5-tuples (z, S′, S′′, 6′, 6′′) with S′ ⊂ 6′,
S′′ ⊂ 6′′ and C2k

= 6′ ⊕ 6′′, and with dimensions given as above (the decomposition
C2k
= 6′ ⊕6′′ then defines J uniquely). Therefore by (4.1) we have

N := dimC Z = 2k + 2(k2
+ n(k − n))

since k2 is the dimension of the Grassmannian of subspaces 6′ ⊂ C2k (or 6′′ ⊂ C2k),
and n(k−n) the dimension of the Grassmannian of subspaces S′ ⊂ 6′ (or S′′ ⊂ 6′′). The
real part W = ZR

⊂ Z can also be seen as the set of 5-tuples p = (w, S′, S′′, 6′, 6′′)
for which w = z = z ∈ R2k , S′′ = S′ and 6′′ = 6′.

In our first interpretation, the tangent space T Z at a point p = (z, S, J ) consists
of triples (ζ, u, v) where ζ ∈ C2k , u ∈ Hom(S,C2k/S) and v ∈ End(C2k) is such
that v ◦ J + J ◦ v = 0 and v(S) ⊂ S. In the second interpretation, TpZ is given by 5-
tuples (ζ, u′, u′′, v′, v′′) with ζ ∈ C2k , u′ ∈ Hom(S′, 6′/S′), u′′ ∈ Hom(S′′, 6′′/S′′),
v′ ∈ Hom(6′,C2k/6′) and v′′ ∈ Hom(6′′,C2k/6′′). [In order to check these relations,
it may be useful to use coordinate charts, constructed e.g. by considering a fixed J -stable
complementary subspace S⊕T = C2k , and, points of the Grassmannian close to S being
then seen as graphs of maps u ∈ Hom(S, T )—we leave these details to the reader.] We
let Dp ⊂ TpZ be the set of 5-tuples (ζ, u′, u′′, v′, v′′) for which ζ ∈ S′⊕6′′ ⊂ C2k (with
no conditions on the other components (u′, u′′, v′, v′′)). Therefore we have a canonical
isomorphism TpZ/Dp ' 6′/S′, and we see that D is an algebraic subbundle of corank n,
i.e. rank(D) = N − n, and T Z/D is isomorphic to the tautological bundle 6′/S′ arising
from the flag manifold structure of pairs (S′, 6′) with S′ ⊂ 6′ ⊂ C2k .
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Proof of Theorem 1.2. Let (X, JX) be an arbitrary compact n-dimensional almost com-
plex manifold, where JX is of class Cr+1, r ∈ [0,∞] ∪ {ω}. We may assume here that
the differential structure of X itself is Cω. Since dimRX = 2n, the strong Whitney em-
bedding theorem [Whi44] shows that there exists a Cω embedding g : X → Rk where
k = 2(2n) = 4n. (By well-known results, one can even take X to be given by a real alge-
braic variety and g to be algebraic [Ton74].) Let NX be the normal bundle of g(X) in Rk
(with a slight abuse of notation consisting in identifying X and g(X)). We use here the
Euclidean structure of Rk to view NX as a subbundle of the trivial tangent bundle TRk .
Next, we embed X in R2k by the diagonal embedding x 7→ G(x) = (g(x), g(x)), whose
normal bundle is TX ⊕NX ⊕NX. We have

TR2k
|G(X) = TX ⊕ TX ⊕NX ⊕NX.

On NX ⊕ NX (or, for that matter, on the double of any real vector bundle), there is a
tautological almost complex structure JNX⊕NX given by (u, v) 7→ (−v, u). For every
x ∈ X, we consider the complex structure J̃ (x) on TR2k

|G(x) = R2k defined by

J̃ (x) := JX(x)⊕ (−JX(x))⊕ JNX⊕NX(x).

Notice that (X,−JX) is the complex conjugate almost complex manifold X. In some
sense, we have embeddedX diagonally intoX×X (this embedding is totally real and has
normal bundle TX), and composed that diagonal embedding with the product embedding

g × g : X ×X→ Rk × Rk = R2k,

which has normal bundle pr∗1 NX⊕pr∗2 NX. Let J̃C(x) ∈ End(C2k) be the complexifica-
tion of J̃ (x), and let 6′x ⊂ C2k , 6′′x ⊂ C2k be the +i and −i eigenspaces of J̃ (x) respec-
tively (both are k-dimensional). By construction, the bundle 6′ consists of all vectors of
the form (ξ1,0, η0,1, u,−iu), ξ1,0

∈ T 1,0X, η0,1
∈ T 0,1X, u ∈ NCX, and similarly 6′′

consists of all vectors of the form (ξ0,1, η1,0, u, iu). We further define SR ⊂ TR2k and
its fiberwise complexification Sx = SRx ⊗ C ⊂ C2k by

SR = {0} ⊕ TX ⊕NX ⊕NX, S = {0} ⊕ T CX ⊕NCX ⊕NCX.

Clearly SRx is stable by J̃ (x), and

S′ := 6′ ∩ S = {0} ⊕ T 0,1X ⊕ {(u,−iu); u ∈ NCX},

S′′ := 6′′ ∩ S = {0} ⊕ T 1,0X ⊕ {(u, iu); u ∈ NCX}

are the +i and −i eigenspaces of J̃C
|S , respectively. We finally get an embedding of

class Cr+1

f : X ↪→ Z, x 7→ (G(x), S′x, S
′′
x , 6

′
x, 6

′′
x ),

and since (T Z/D)f (x) ' 6′x/S
′
x ' T

1,0
x X, we see that the almost complex struc-

ture Jf induced by the natural complex structure of T Z/D coincides with JX. As this
point, Z is quasi-projective but not affine. However f (X) is contained in the real part
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W = ZR, especially the corresponding subspaces S = S′ ⊕ S′′ lie in the real part
GR(2k, 2n) ⊂ G(2k, 2n) of the complex Grassmannian. In this situation, we can find an
ample divisor 1 of G(2k, 2n) that is disjoint from GR(2k, 2n) and invariant by complex
conjugation (to see this, we embed the Grassmannian into a complex projective space CPs
by the Plücker embedding, and observe that the real hyperquadricQ = {

∑
0≤j≤s z

2
j = 0}

is disjoint from RPs ; we can thus take 1 to be the inverse image of Q by the Plücker
embedding). By restricting the situation to the complement G(2k, 2n) r 1, we obtain
an affine algebraic open set Z′ ⊂ Z that is invariant by complex conjugation, so that
f (X) ⊂ Z′R. Theorem 1.2 is proved with Zn,k = Z′ and Dn,k = D|Z′ . ut

Remark 4.1. A computation in coordinates shows that conditions (i) and (ii) of Theo-
rem 3.6 are satisfied in this construction. Actually (i) is already implied by the fact that
the image M = f (X) ⊂ ZR

n,k is totally real.

Remark 4.2. It is easy to find a non-singular model for a projective compactification
Zn,k of Zn,k: just consider the set of 5-tuples p = (z, S′, S′′, 6′, 6′′), where z ∈ CP2k ,
S′ ⊂ 6′ ⊂ TCP2k , S′′ ⊂ 6′′ ⊂ TCP2k , such that π : Zn,k → CP2k is a fiber bundle
whose fibers are products of flag manifolds constructed from the tangent bundle of the
base. The associated distribution Dn,k = (π∗)

−1(S′ +6′′), however, does possess singu-
larities at all points where the sum S′ +6′′ is not direct.

Symplectic case: Proof of Theorem 1.5. Let (X, J, ω) be a compact n-dimensional almost
complex symplectic manifold with second Betti number b2 ≤ b and a J -compatible sym-
plectic form ω. We choose b2 rational cohomology classes onX, denoted [ω1], . . . , [ωb2 ],
that form a basis of the de Rham cohomology space H 2(X,R). For this, we take classes
[ωj ] ∈ H

2(X,Q) very close to [ω] such that [ω] lies in the interior of the simplex of
vertices [0], [ω1], . . . , [ωb2 ]. The 2-form ωj can be taken to be very close to ω in the
uniform norm over X. This ensures that the ωj ’s are symplectic and [ω] is a convex com-
bination

∑
λj [ωj ] for some λ1, . . . , λb2 > 0 with 0 <

∑
λj < 1 and

∑
λj ' 1. Since

u = ω−
∑
λjωj is a very small exact 2-form u, we can in fact achieve u = 0 after replac-

ing one of the ωj ’s by ωj + λ−1
j u. Also, after replacing each ωj by an integer multiple,

we obtain ω =
∑
λjωj where ωj is a system of integral symplectic forms and λj > 0,∑

λj < 1. After replacing ωb2 by b − b2 + 1 identical copies ωj = ωb2 , we can assume
that ω =

∑
1≤j≤b λjωj with λj > 0.

According to the effective version of Tischler’s theorem stated by Gromov [Gro86,
p. 335], for every j = 1, . . . , b there exists a symplectic embedding gj : (X, ωj ) →
(CPk, γFS) with k = 2n + 1, where γFS denotes the Fubini–Study form on CPk . Then
g :=(g1, . . . , gb) is a symplectic embedding of (X, ω) into the Kähler complex projective
manifold

(Y, γλ) :=
( b∏
j=1

CPk,
b∑

j=1

λj pr∗j γFS

)
.

Here prj :
∏b
j=1 CP

k
→ CPk denotes the j -th projection. By construction, we have

ω =

b∑
j=1

λjωj = g
∗γλ.
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Let NX be the normal bundle of g(X) in Y . Here, we identify the normal bundle with a
subbundle of T Y|g(X) by using the symplectic structure, namely we define

NX = {η ∈ T Y ; ∀ξ ∈ TX, γλ(g∗ξ, η) = 0};

the positivity condition γλ(g∗ξ, g∗JXξ) = ω(ξ, JXξ) > 0 for ξ 6= 0 implies that we
indeed have g∗TX ∩ NX = {0}, and thus T Y|g(X) = g∗TX ⊕ NX. Although we will
not make use of this, one can see that the Riemannian and symplectic normal bundles are
linked by the relation NXriem

= JstNX
symp where Jst is the standard complex structure

of Y , the latter being unrelated to JX. We embed X in Y × Y by the “diagonal” embed-
ding x 7→ G(x) = (g(x), g(x)) (set-theoretically Y coincides with Y , but we take the
conjugate complex structure JY = −JY ). We have a decomposition of the tangent bundle
given, for x ∈ X, by

T (Y × Y )G(x) = TXx ⊕ TXx ⊕NXx ⊕NXx

where the first factor TXx consists of all diagonal vectors (g∗ξ, g∗ξ) (with the slight
abuse of notation consisting in identifying X and g(X) ⊂ Y ), the second consists of
all “antidiagonal” vectors (g∗ξ,−g∗ξ), and the two normal bundle copies are pr∗1 NX
and pr∗2 NX. With respect to this decomposition, we define a complex structure J̃ (x) on
T (Y × Y )G(x) by

J̃ (x) = JX(x)⊕ (−JX(x))⊕ JNX⊕NX(x)

where JNX⊕NX is the tautological almost complex structure (u, v) 7→ (−v, u) on
NX ⊕ NX. Clearly, we have G∗J̃ = JX [in fact, Y × Y is just the complexification
of the underlying real algebraic structure YR on Y , under the anti-holomorphic involution
(x, y) 7→ (y, x)]. Let us consider the Kähler structure

γ̃ = 1
2 (pr∗1 γλ − pr∗2 γλ) on Y × Y .

Notice that −γλ is in fact a Kähler structure on Y and ω = g∗γλ = g∗(−γλ). We thus
have G∗γ̃ = g∗γλ = ω, and further claim that J̃ is compatible with γ̃ . In order to check
this, let us take two tangent vectors (ξ1, ξ2), (η1, η2) ∈ T Y ×T Y , and write ξ = ξ ′+ ξ ′′

for the decomposition of ξ ∈ T Y along TX ⊕NX. We find

J̃ (ξ1, ξ2) = J̃
( 1

2 (ξ
′

1 + ξ
′

2, ξ
′

1 + ξ
′

2)+
1
2 (ξ
′

1 − ξ
′

2, ξ
′

2 − ξ
′

1)+ (ξ
′′

1 , 0)+ (0, ξ ′′2)
)

=
1
2

(
JX(ξ

′

1 + ξ
′

2),−JX(ξ
′

1 + ξ
′

2)
)
+

1
2

(
−JX(ξ

′

1 − ξ
′

2), JX(ξ
′

2 − ξ
′

1)
)

+ (−ξ ′′2 , 0)+ (0, ξ ′′1)

=
(
JXξ

′

2 − ξ
′′

2 ,−JXξ
′

1 + ξ
′′

1
)
.

Since JX and ω are compatible and ω = g∗γλ, we have (with our abuse of notation
ξ ′1 ' g∗ξ

′

1)

γλ(JXξ
′

1, JXη
′

1) = ω(JXξ
′

1, JXη
′

1) = ω(ξ
′

1, η
′

1) = γλ(ξ
′

1, η
′

1),

and a similar formula for (ξ ′2, η
′

2). We infer from this and from the γλ-orthogonality of
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the decomposition TX ⊕NX that

γ̃
(
J̃ (ξ1, ξ2), J̃ (η1, η2)

)
=

1
2γλ(JXξ

′

2 − ξ
′′

2 , JXη
′

2 − η
′′

2)−
1
2γλ

(
−JXξ

′

1 + ξ
′′

1 ,−JXη
′

1 + η
′′

1
)

=
1
2γλ(JXξ

′

2 − ξ
′′

2 , JXη
′

2 − η
′′

2)+
1
2γλ(−JXξ

′

1 + ξ
′′

1 ,−JXη
′

1 + η
′′

1)

=
1
2γλ(ξ

′

2, η
′

2)+
1
2γλ(ξ

′′

2 , η
′′

2)+
1
2γλ(ξ

′

1, η
′

1)+
1
2γλ(ξ

′′

1 , η
′′

1)

=
1
2γλ(ξ1, η1)−

1
2γλ(ξ2, η2) = γ̃

(
(ξ1, ξ2), (η1, η2)

)
.

This proves that J̃ is compatible with the restriction of the Kähler structure γ̃ to G(X).
We now construct Zn,b,k , following essentially the proof of Theorem 1.2. We view

Ỹ = Y × Y as a real algebraic manifold equipped with a real algebraic symplectic form
γ̃ (though Ỹ is in fact complex projective and γ̃ Kähler). We consider

W = {(w, S, J ) ∈ Ỹ ×GR(T Ỹ , 2n)× EndR(T Ỹ ); J 2
= −I, J ∗γ̃ = γ̃ , J (S) ⊂ S}

and its complexificationWC which is defined by the same algebraic equations over C. We
define Zn,b,k to be the component of WC for which J and J|S have balanced +i and −i
eigenspaces 6′ ⊕6′′ = T ỸC and S′ ⊕ S′′ = S. There is a natural projection

π = πn,b,k : Zn,b,k → ỸC
= Y 2

× Y
2
,

and γ̃ can be complexified to a Kähler form γ̃C on ỸC which restricts to γ̃ on the
real part. Our construction produces a canonical lifting f : X → Zn,b,k of G : X →
Ỹ = ỸR

⊂ ỸC. Then, as above, the bundle Dn,b,k of tangent vectors ζ ∈ T Zn,b,k such
that π∗ζ ∈ S′ ⊕6′′ defines an algebraic distribution transverse toG(X), and additionally
β = π∗γ̃C is a transverse Kähler form that induces the given symplectic structure ω onX.
A calculation of dimensions shows dimC ỸC

= 4bk and dimC Z̃n,b,k = 2bk(2bk + 1)+
2n(2bk − n), since the symplectic twistor space {J } in dimension 2m = 4bk has dimen-
sion m(m − 1), and we have additionally to select n-dimensional subspaces S′, S′′ in
the given 2bk-dimensional eigenspaces of J . The above variety Zn,b,k is merely quasi-
projective, but we can of course replace it with a relative projective compactification
over ỸC, and extend Dn,b,k as a torsion free algebraic subsheaf of T Zn,b,k . ut

Remark 4.3. In the above result, we could even take β to be a genuine Kähler metric
on Zn,b,k . In fact Zn,b,k is (quasi-)projective, so it possesses a Kähler metric γ . One can
easily apply a perturbation argument, replacing β by β + εγ and letting ω vary in a
neighborhood of the original symplectic form on X.

5. A weak version of Bogomolov’s conjecture: proof of Theorem 1.6

We start with a formula computing the Nijenhuis tensor of the almost complex structure
Jf given by an embedding f : X ↪→ Z transverse to a holomorphic distribution D.
Recall that for any smooth (real) vector fields ζ , η of TX, the Nijenhuis tensor NJ of an



Algebraic embeddings of smooth almost complex structures 3413

almost complex structure J is defined in terms of Lie brackets of ζ 0,1
=

1
2 (ζ + iJ ζ ),

η0,1
=

1
2 (η + iJ η) as

NJ (ζ, η) = 4 Re [ζ 0,1, η0,1
]
1,0
= [ζ, η] − [Jζ, Jη] + J [ζ, Jη] + J [Jζ, η].

Proposition 5.1. If θ denotes the torsion operator of the distribution D on Z, the Ni-
jenhuis tensor of the almost complex structure Jf induced by a transverse embedding
f : X ↪→ Z is given by

∀z ∈ X, ∀ζ, η ∈ TzX, NJf (ζ, η) = 4θ(∂Jf f (z) · ζ, ∂Jf f (z) · η). (5.1)

Proof. We keep the same notation as in Section 3. In particular, we set M = f (X), and
near any point x0 ∈ X, we write f = F ◦ ϕ where ϕ is a local diffeomorphism defined in
a neighborhood V of x0 and F : ϕ 3 z′ 7→ (z′, g(z′)) ∈ Z. According to (3.6), the almost
complex structure JF on ϕ(V ) ⊂ M and the corresponding one Jf on V ⊂ X are given
by

∀z′ ∈ ϕ(V ), ∀ζ ∈ TzM, JF (z) ·ζ = iζ −2dF(z′)−1πZ,D,M
(
ia(F (z′))(∂g(z′) ·ζ ), 0

)
and Jf (x) = dϕ(x)−1

◦ JF (ϕ(x)) ◦ dϕ(x) for every x ∈ V . Thus, by construction, we
have ∂Jf = ∂JFF ◦ dϕ (i.e. dϕ is compatible with Jf and JF ), and (5.1) is equivalent to

∀z ∈ M, ∀ζ, η ∈ TzM, NJF (ζ, η) = 4θ
(
∂JFF(z) · ζ, ∂JFF(z) · η

)
.

Let ζ =
∑n
j=1

(
ζj

∂
∂zj
+ ζj

∂

∂ζj

)
, η =

∑n
j=1

(
ηj

∂
∂zj
+ ηj

∂
∂ηj

)
be real vector fields in z′ 7→

Tz′M . For the sake of clarity we denote by Jstζ the vector field iζ associated with the
“standard” almost complex structure of Cn, so that

Jstζ =

n∑
j=1

(
iζj

∂

∂zj
− iζj

∂

∂ζj

)
.

Without loss of generality (and in order to simplify calculations), we assume ζ, η to have
constant coefficients ζj , ηj . At the central point z′0 ∈ ϕ(V ) we have a(F (z′0)) = 0 and
JF = Jst, hence (after omitting vanishing terms such as [ζ, η]), the Nijenhuis tensor of JF
at z′0 is given by

NJF (ζ, η)|z′0
= −Jstζ ·

(
−2dF(z′)−1πZ,D,M(ia(F (z

′)) · (∂g(z′) · η), 0)
)
|z′=z′0

+ Jstη ·
(
−2dF(z′)−1πZ,D,M(ia(F (z

′)) · (∂g(z′) · ζ ), 0)
)
|z′=z′0

+ Jst
[
ζ ·
(
−2dF(z′)−1πZ,D,M(ia(F (z

′)) · (∂g(z′) · η), 0)
)]
|z′=z′0

+ Jst
[
−η ·

(
−2dF(z′)−1πZ,D,M(ia(F (z

′)) · (∂g(z′) · ζ ), 0)
)]
|z′=z′0

.
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We recall that by our normalization, a(F (z′0)) = 0 and dF(z′0)◦πZ,D,M(z
′

0) = id. Hence
for all ζ, η ∈ Tz′0M we get, at z′0,

NJF (ζ, η) =
(
2ida(z′0)(dF (z

′

0) · Jstζ ) · (∂g(z
′

0) · η), 0
)

+ Jst
(
−2ida(z′0)(dF (z

′

0) · ζ ) · ∂g(z
′

0) · η, 0
)

−
(
2ida(z′0)(dF (z

′

0) · Jstη) · ∂g(z
′

0) · ζ, 0
)

− Jst
(
−2ida(z′0)(dF (z

′

0) · η) · ∂g(z
′

0) · ζ, 0
)
.

Since Jst ◦ da(F (z
′

0)) ◦ Jst = −da(F (z
′

0)), we infer(
da(z′0)(dF (z

′

0) · Jstζ ) · (∂g(z
′

0) · η)− Jst(da(z
′

0)(dF (z
′

0) · ζ )) · ∂g(z
′

0) · η, 0
)

= −

(
Jst
(
da(F (z′0))(dF (z

′

0)+ Jst ◦ dF(z
′

0) ◦ Jst) · ζ
)
· (∂g(z′0) · η), 0

)
.

Finally, since dF(z′0)+ Jst ◦ dF(z
′

0) ◦ Jst = 2∂F (z′0) = 2∂g(z′0), for every ζ, η ∈ Tz′0M
we obtain

NJF (ζ, η) = −4i
(
Jst
(
da(F (z′0))(∂JFF(z

′

0) · ζ ) · (∂JFF(z
′

0) · η)
)
, 0
)

+ 4i
(
Jst
(
da(F (z′0))(∂JFF(z

′

0) · η) · (∂JFF(z
′

0) · ζ )
)
, 0
)

= −4iJst θ
(
∂JFF(z

′

0) · ζ, ∂JFF(z
′

0) · η
)
,

which yields the expected formula. ut

Proof of Theorem 1.6. Let (X, J ) be a complex manifold and let f : X ↪→ Zn,k be
an embedding into the universal space (Zn,k,Dn,k) such that Jf = J . Then Jf is an
integrable structure, hence NJf vanishes identically. It follows from (5.1) that Im(∂Jf ) is
contained in the isotropic locus of θ , that is, the set of n-dimensional subspaces S in the
Grassmannian bundle Gr(Dn,k, n)→ Zn,k such that θz|S×S = 0 at any point z ∈ Zn,k .

ut

6. Relation to Nash algebraic approximations of holomorphic foliations

In this section we prove Proposition 1.7. Let X be a compact complex manifold. We
denote by JX the corresponding (almost) complex structure. We first embedX diagonally
intoX×X. This is a totally real embedding with normal bundle TX. If we denote by ϕ the
embedding then ϕ(X) is totally real and compact inX×X. Moreover if pr1 : X×X→ X

is the projection on the first factor then Ker(d pr1) = pr∗2 TX defines a holomorphic
foliation of X ×X and, quite trivially, ϕ(X) is transverse to Ker(d pr1).

Since X × X is a complexification of the real analytic manifold ϕ(X), a well known
result of Grauert [Gra58] shows that ϕ(X) possesses a Stein tubular neighborhood U in
X × X (by Nirenberg and Wells [NiW69], every totally real submanifold of a complex
manifold has in fact a fundamental system of Stein neighborhoods, and in the compact
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case they can be obtained as tubes Uε = {d(z,w) < ε} for the geodesic distance as-
sociated with any hermitian metric on X). According to a result of Stout [Sto84], the
Stein neighborhood U can be shrunk to a Runge open subset U ′ b U that is biholo-
morphic to a bounded polynomial polyhedron � in an affine complex algebraic manifold
Z = {Pj (z) = 0} ⊂ CN , say � = {z ∈ Z; |Qj (z)| < 1} b Z, where Pj , Qj ∈
C[z1, . . . , zN ]. Let ψ : U ′→ � be this biholomorphism, let f = ψ ◦ ϕ : X ↪→ Z be the
resulting real analytic embedding and let JZ be the complex structure on Z. We denote
by M = f (X) = ψ(ϕ(X)) the image of X by f , and by F = f∗(Ker(d pr1)|U ′) the
direct image of Ker(d pr1) restricted to U ′. Then F ⊂ T Z|� is a holomorphic foliation
of codimension n on �, and M is transverse to F . By construction, the complex struc-
ture JZ,FM on M induced by (T Z/F , JZ) on M coincides with f∗(JX). Now, we invoke
the following

Proposition 6.1. There exists a Runge open subset �̃ ⊂ CN with � = �̃ ∩ Z, a holo-
morphic retraction ρ : �̃ → �, and a holomorphic foliation F̃ of codimension n on �̃
such that M ⊂ � is transverse to F̃ .

Proof. The normal bundle sequence

0→ T Z→ TCN
|Z → NZ→ 0

admits an algebraic splitting σ : NZ → TCN
|Z since H 1

alg(Z,Hom(NZ, T Z)) = 0
(Z being affine). Then h(z, ζ ) = z+ σ(z) · ζ , ζ ∈ NZz, defines an algebraic biholomor-
phism h from a tubular neighborhood V of the zero section of NZ onto a neighborhood
h(V ) of Z in CN . Clearly, if π : NZ→ Z is the natural projection, then ρ = π ◦ h−1 is
a Nash algebraic retraction from Ṽ := h(V ) onto Z. We take

�̃ =
{
z ∈ CN ; |P(z)|2 :=

∑
|Pj (z)|

2 < ε(1+ |z|2)−A, |Qj (z)|2 + C|P(z)| < 1
}

with ε � 1 and A, C � 1 chosen so large that �̃ b h(V ). Then ρ maps �̃ submersively
onto �, and �̃ is a Runge open subset in CN . We simply take F̃ = (ρ∗)−1F ⊂ T �̃ to be
the inverse image of F in �̃. ut

End of proof of Proposition 1.7. Thanks to Proposition 6.1 and our preliminary discussion,
we may assume that f : X ↪→ Z∩�̃ ⊂ �̃ is a real analytic embedding into a Runge open
subset �̃ ⊂ CN , transversally to a holomorphic foliation F̃ on �̃, with JX = Jf . Assume
that such foliations can be approximated by Nash algebraic foliations F̃ν on �̃, uniformly
on compact subsets. This means that F̃ν is given by a Nash algebraic distribution δν :
�̃→ Gr(CN , n) that is moreover integrable. It is worth observing that if the integrability
assumption is dropped, then the existence of the Nash algebraic approximating sequence
δν is actually granted by [DLS93] (but it seems quite difficult to enforce the integrability
condition in this context).

Now M = f (X) is still transverse to Fν for ν ≥ ν0, and in this way we would
obtain a sequence of integrable complex structures Jν = f ∗J

Z,Fν
M on X that approximate

JX = f
∗J

Z,F
M in the Kuranishi space of small deformations of X. ut
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Remark 6.2. Instead of embedding just X in an affine algebraic manifold Z, we could
embed the whole Kuranishi space X → S of X into a product Z × S, keeping S as a
parameter space (it is enough to take a small Stein neighborhood S′ ⊂ S containing the
base point 0 of the central fiber X0 = X). For this we simply observe that X embeds
diagonally as a totally real submanifold 1 ⊂ X × X ⊂ X × X, hence 1 admits a Stein
neighborhood as before, and we can embed the latter as a Runge open set in an affine
algebraic manifold. By looking at the projection pr1 to X and at the fibers over S, the
vertical tangent bundle pr∗2 TX defines a holomorphic foliation transverse to all complex
structures Xt close to X0 = X. It is then not unlikely that one could also embed the
original complex structure JX (without having to take an approximation), by using some
sort of openness argument and the fact that we have embedded the whole Kuranishi space.

Remark 6.3. It should also be observed that there is probably no topological obstruction
to the approximation problem. In fact, it is enough to consider the case where we have a
real analytic embedding f : X ↪→ Z, transversal to a holomorphic foliation given by a
trivial subbundle F ⊂ T Z on some Runge open set � b Z of an affine algebraic man-
ifold. Otherwise, thanks to [DLS93], one can always assume that F is isomorphic to the
restriction of an algebraic vector bundle F ′ on Z (possibly after shrinking � and replac-
ing Z by some finite cover Z′ → Z). Then, since Z is affine, one can find a surjective
algebraic morphism µ : O⊕pZ → F ′. Its kernel G = Kerµ satisfies F ′ ⊕ G ' O⊕pZ , i.e.
F ′ ⊕ G is algebraically trivial. We replace Z by Z̃ = G (the total space of G), and F
by the inverse image F̃ = (π∗)−1(F) ⊂ T Z̃ via π : Z̃ → Z. Then F̃ ' π∗(F ′ ⊕ G),
hence F̃ is holomorphically trivial. We can therefore always reduce ourselves to the case
where F is holomorphically trivial. When this is the case, F admits a global holomorphic
frame (ζj ), and the Lie brackets satisfy [ζj , ζk] =

∑
` ujk`ζ` for some uniquely defined

holomorphic functions ujk` on �. These functions can of course be approximated by a
sequence of polynomials pνjk` ∈ C[Z], ν ∈ N, but it is unclear how to construct Nash
algebraic foliations from these data.

7. Categorical viewpoint

Compact complex manifolds form a natural category CCM, where the morphisms are
by definition holomorphic maps 9 : X → Y . The present work is also concerned
with the category FAV of “foliated algebraic varieties” for which the objects are suit-
able triples (Z,D, f ). Here, Z is a non-singular complex algebraic variety, D ⊂ O(T Z)
an integrable algebraic subsheaf and f : X → Z a C∞ embedding of a compact even-
dimensional real manifold X transversally to D. A morphism

(Z,D, f )→ (W, E, g) (where g : Y → W is transverse to E)

is a pair (9, ϕ) where 9 : Z → W is an algebraic morphism such that d9(D) ⊂ 9∗E ,
and ϕ : X→ Y a differentiable map with the property that 9 ◦ f = g ◦ ϕ. By definition,
ϕ is then a holomorphic map from (X, Jf ) into (Y, Jg), since d9 induces a holomorphic
(and even algebraic) morphism

d9 mod D : T Z/D→ 9∗(TW/E)



Algebraic embeddings of smooth almost complex structures 3417

between the “transverse structures”. We have a natural functor

FAV→ CCM, (Z,D, f ) 7→ (X, Jf ),

and the Basic Question 1.1 can then be reformulated:

Question 7.1. Is the functor FAV→ CCM surjective?

Here, one can of course identify triples in FAV given by isotopy equivalent transverse
embeddings f : X → Z, and complex structures (X, J ), (X, J ′) that are equivalent
through a path of biholomorphic maps ht : (X, J ) → (X, Jt ), t ∈ [0, 1], J0 = J ,
J1 = J

′, h0 = IdX. One could also say that a morphism

(9, ϕ) : (Z,D, f : X→ Z)→ (W, E, g : Y → W)

defines an “isomorphism of transverse structures” if ϕ : X→ Y is a diffeomorphism and

d9 mod D : T Z/D→ 9∗(TW/E)

yields a bundle isomorphism on restriction to f (X) (so that d9 modD has to be a generic
isomorphism between the quotients; one could further allow 9 to be merely a rational
morphism provided the indeterminacy set does not intersect f (X)). Such an isomorphism
of transverse structure is obtained by taking 9 = pr1 : Z × A → Z with an arbitrary
algebraic variety A, pulling back D to T (Z × A) and replacing f with f × {a0} : X →

Z × {a0}; in this way one can add many “extra parameters” to Z that play no role at all
in the transverse complex structure. One can obtain another such situation by blowing up
or blowing down subvarieties of Z that do not intersect f (X), possibly after displacing
f (X) by a transverse isotopy. Question 7.1 can then be completed as follows, but we
currently have extremely little evidence about it:

Question 7.2. What are the fibers of FAV→ CCM, at least if we identify objects through
transverse isotopies and isomorphisms of transverse structures? Are they parametrized by
finite-dimensional moduli spaces?

Although we are not able to answer these questions, it can be observed that our weak
version of Bogomolov’s conjecture (Theorem 1.6) also admits a categorical interpreta-
tion. For this, we introduce a category WFAV of “weakly foliated algebraic varieties”. Its
objects are quadruplets

(Z,D,S, f )
whereZ is a complex algebraic variety, S ⊂ D are nested algebraic subsheaves of O(T Z)
such that [S,S] ⊂ D, and f : X → Z is a smooth embedding of a compact even-
dimensional real manifoldX into Z such that f (X) is transverse to D and Im(∂Jf f ) ⊂ S
for the induced almost complex structure Jf . It then follows from Proposition 5.1 that
(X, Jf ) is still integrable, thus (X, Jf ) is a compact complex manifold. One can see that
a transverse isotopy (ft )t∈[0,1] such that Im(∂ft ) ⊂ S yields a path of biholomorphic
structures. Morphisms

(9, ϕ) : (Z,D,S, f )→ (W, E, T , g)
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are defined to be algebraic morphisms 9 : Z → W such that d9 maps D in E , S in T ,
and 9 ◦ f = g ◦ ϕ with ϕ : X→ Y . We then get the following affirmative answer to the
weak analogue of Bogomolov’s question.

Theorem 7.3. The natural functor WFAV→ CCM defined by (Z,D,S, f ) 7→ (X, Jf )

is surjective.

Proof. First, we apply Theorem 1.6 to a compact complex manifold (X, J ) to obtain a
smooth embedding f : X → Zn,k that is transverse to a distribution Dn,k ⊂ T Zn,k . We
replace Zn,k byWn,k ⊂ Gr(Dn,k, n), whereWn,k is defined as the set of all n-dimensional
subspaces S ∈ Gr(Dn,k, n) such that θ|S×S = 0. Notice that Wn,k → Zn,k is actually
a smooth fiber bundle, thanks to the homogeneous action of the linear group preserv-
ing the flag construction. Let π : Wn,k → Zn,k . We equip Wn,k with the distribution
En,k := (dπ)−1(Dn,k). Then En,k possesses a natural rank n subbundle Tn,k ⊂ En,k de-
fined as the restriction of the tautological subbundle on the Grassmannian bundle. Now,
the smooth map g = (f, ∂f ) defines a morphism g : X → Wn,k that is transverse to
En,k , and we have [En,k, En,k] ⊂ Tn,k by construction. It is easy to see that the object
(Wn,k, En,k, Tn,k, g) ∈WFAV is mapped to (X, J ) ∈ CCM by the natural functor. ut
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Meersseman et López de Medrano–Verjovsky. Ann. Inst. Fourier (Grenoble) 51, 1259–
1297 (2001) Zbl 0994.32018 MR 1860666

[BoM06] Bosio, F., Meersseman, L.: Real quadrics in Cn, complex manifolds and convex poly-
topes. Acta Math. 197, 53–127 (2006) Zbl 1157.14313 MR 2285318

[DLS93] Demailly, J.-P., Lempert, L., Shiffman, B.: Algebraic approximation of holomorphic
maps from Stein domains to projective manifolds. Duke Math. J. 76, 333–363 (1994)
Zbl 0861.32006

[Gra58] Grauert, H.: On Levi’s problem and the imbedding of real-analytic manifolds. Ann. of
Math. 68, 460-472 (1958) Zbl 0108.07804 MR 0098847

[Gro86] Gromov, M.: Partial Differential Relations. Ergeb. Math. Grenzgeb. 9, Springer, Berlin
(1986) Zbl 0651.53001 MR 0864505
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