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Abstract. We derive optimal estimates in stochastic homogenization of linear elliptic equations in
divergence form in dimensions d ≥ 2. In previous works we studied the model problem of a discrete
elliptic equation on Zd . Under the assumption that a spectral gap estimate holds in probability, we
proved that there exists a stationary corrector field in dimensions d > 2 and that the energy density
of that corrector behaves as if it had finite range of correlation in terms of the variance of spatial
averages—the latter decays at the rate of the central limit theorem. In this article we extend these
results, and several other estimates, to the case of a continuum linear elliptic equation whose (not
necessarily symmetric) coefficient field satisfies a continuum version of the spectral gap estimate.
In particular, our results cover the example of Poisson random inclusions.
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1. Introduction

We establish quantitative results on the corrector equation for the stochastic homoge-
nization of linear elliptic equations in divergence form, when the diffusion coefficients
satisfy a spectral gap estimate in probability. Let � be the set of admissible coeffi-
cients A : Rd → Rd×d which are measurable and take values into the set of uniformly
bounded and elliptic matrices (see Section 2.1 for details). Consider a probability mea-
sure on � (which we call an ensemble) whose expectation is denoted by 〈·〉. Let D be
a bounded domain. Since the seminal contributions of Papanicolaou and Varadhan [26]
and of Kozlov [20], it is known that if the ensemble is stationary and ergodic, then for all
f ∈ H−1(D) and almost every realization of A, the weak solution uε ∈ H 1

0 (D) of the
elliptic equation

−∇ · A(·/ε)∇uε = f

weakly converges in H 1(D), as ε → 0, to the unique weak solution uhom ∈ H
1
0 (D) of

the deterministic elliptic equation

−∇ · Ahom∇uhom = f.

The matrix Ahom is a deterministic and constant elliptic matrix. As a by-product of the
analysis, it is shown that Ahom is characterized by the formula

Ahomξ = 〈A(0)(ξ +∇φ(0))〉 (1.1)

for all ξ ∈ Rd , where φ is the so-called corrector in direction ξ . It is the unique ran-
dom field taking values in H 1

loc(R
d) whose realization solves almost surely the corrector

equation
−∇ · A(ξ +∇φ) = 0 (1.2)

in the sense of distributions on Rd , such that φ(0) = 0 almost surely (at every point
x ∈ Rd the quantity φ(x) is almost surely well-defined), and ∇φ is stationary and has
bounded second moment. In order to prove the homogenization result, and the existence
of the corrector field φ, both Papanicolaou & Varadhan and Kozlov rewrite equation (1.2)
in the probability space L2(�) (see Section 2.1 for details), where it naturally lives. In the
periodic case—which can be recast in this setting—this space is simply L2(T)/R, with T
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the d-dimensional torus. In this case, (1.2) reduces to an elliptic equation on the torus, for
which we have the Poincaré inequality at our disposal. In the general ergodic case this nice
picture breaks down, and the absence of Poincaré’s inequality in the infinite-dimensional
space � makes the analysis of the corrector equation more subtle. To circumvent the lack
of coercivity of the elliptic operator in probability, these authors add a zero-order term
of magnitude T −1 > 0 to the equation, and consider the unique stationary field with
bounded second moment and vanishing expectation φT that solves the modified corrector
equation

T −1φT −∇ · A(ξ +∇φT ) = 0 (1.3)

in the sense of distributions on Rd almost surely. The existence and uniqueness of φT is
a direct consequence of the Lax–Milgram theorem. In addition, the a priori estimate

T −1
〈φ

2
T (0)〉 + 〈|∇φT (0)|

2
〉 . 1

is enough to pass to the limit as T ↑ ∞ in the equation, and allows one to define ∇φ
as the weak limit of ∇φT—which is a stationary gradient field. Yet one loses control of
〈φ

2
T (0)〉, and it is not known whether there exists a stationary random field ψ such that
∇ψ = ∇φ.

As far as rates are concerned, there are only few contributions in the literature. A first
general comment is that ergodicity alone is not enough to obtain convergence rates, so that
mixing properties have to be assumed on the coefficientsA. Besides the optimal estimates
in the one-dimensional case by Bourgeat and Piatnitskii [5], the first contribution in the
linear case is due to Yurinskiı̆ who proved in [28, (0.10)] that for d > 2 and for mixing
coefficients with an algebraic decay (not necessarily integrable), there exists γ > 0 such
that

〈|uε − uhom|
2
〉 . εγ . (1.4)

In the recent contribution [2], Armstrong and Smart developed a quantitative stochastic
homogenization theory for convex integral functionals based on a quantification of the
subadditive ergodic theorem for fields with finite range of dependence, and proved for
all d ≥ 2 some algebraic rates of convergence for the Dirichlet problem with higher
integrability than in (1.4).

The focus of the present paper is not on the homogenization error 〈|uε − uhom|
2
〉,

but rather on the corrector field and its decorrelation properties. As shown in the case of
discrete elliptic equations in [13], this is indeed a first step towards the quantification of
the homogenization error.

The key ingredient of our analysis is a proxy for Poincaré’s inequality in probability,
in the form of a spectral gap estimate, which generalizes to the continuum setting the
estimate

var[X] ≤
∑
e

〈
sup
a(e)

∣∣∣∣ ∂X∂a(e)
∣∣∣∣2〉 var[a] (1.5)

we used in the case of a discrete elliptic equation [16, 17]. Although this estimate may
seem to crucially rely on the fact that there are only countably many random variables
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{a(e)}e, this is not the case. In the continuum setting, (1.5) can indeed be replaced by

var[X] .
ˆ
Rd

〈(
osc
A|B(z)

X
)2〉

dz, (1.6)

where oscA|B(z) X denotes the oscillation of X with respect to the restriction of A onto
the ball B(z) = {z′ : |z − z′| < 1} centered at z and of radius 1. Whereas (1.5) holds
for independent and identically distributed coefficients, (1.6) holds for instance for the
Poisson inclusion process.

With this single ingredient (1.6) of probability theory, and in line with the discrete case
[16, 17], we shall prove using linear elliptic PDE theory that all the moments 〈|φT (0)|q〉
(q > 0) of the modified corrector are bounded for d > 2 independently of T . This implies
in particular the existence of a stationary corrector (Corollary 1). As a first step, we prove
that all the moments of ∇φT are finite (Proposition 1). Let φ′ denote the adjoint corrector
in direction ξ ′, that is, the corrector associated with the transpose coefficients A∗ of A.
In terms of quantitative estimates we shall prove for d > 2 that the variance of smooth
averages of the energy density (ξ ′+∇φ′) ·A(ξ+∇φ) of the corrector on balls of radius L
decays at the rateL−d of the central limit theorem (as if the energy density had finite range
of correlation, which it has not)—see Theorem 1. Lastly, we shall give optimal estimates
of the convergence of the gradient ∇φT of the modified corrector towards the gradient
∇φ of the corrector, and of the approximation 〈(ξ ′+∇φ′T (0)) ·A(0)(ξ+∇φT (0))〉 of the
homogenized coefficients towards the homogenized coefficients ξ ′ · Ahomξ (Theorem 2
and Proposition 2).

It is worth noticing that our results hold for random diffusion coefficients which are
merely measurable. In particular, what matters for the estimates is only the correlation
length of the random coefficient field, not the potentially smaller length scale given by
the spatial variations of the coefficients.

Before we conclude, note that Armstrong and Smart [2] proved exponential moment
bounds for∇φ under a finite range of dependence assumption, that is, a result of the flavor
of Proposition 1 (with higher stochastic integrability).

Throughout the paper, we make use of the following notation:

• d ≥ 2 is the dimension;
• N0 denotes the set of non-negative integers, and N the set of positive integers;
• 〈·〉 is the expectation;
• var[·] is the variance associated with the ensemble average;
• cov[·; ·] is the covariance associated with the ensemble average;
• . and & stand for ≤ and ≥ up to a multiplicative constant which only depends on the

dimension d, the ellipticity constant λ (see (2.1) below), and the spectral gap constants
ρ and ` (see Definition 2.2), unless otherwise stated;
• when both . and & hold, we simply write ∼;
• we use � instead of & to indicate that the multiplicative constant is large compared

to 1 (although finite);
• for all R > 0, and z ∈ Rd , BR(z) := {z′ : |z− z′| < R}, and BR := BR(0).
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2. Main results

2.1. General framework

In this subsection we recall some standard results due to Papanicolaou and Varadhan [26].
We start with the definition of the random coefficient field.

We let λ ∈ (0, 1] denote an ellipticity constant which is fixed throughout the paper,
and set

�0 := {A0 ∈ Rd×d : A0 is bounded, i.e. |A0ξ | ≤ |ξ | for all ξ ∈ Rd ,

A0 is elliptic, i.e. λ|ξ |2 ≤ ξ · A0ξ for all ξ ∈ Rd}. (2.1)

We equip �0 with the usual topology of Rd×d . A coefficient field, denoted by A, is a
Lebesgue-measurable function on Rd taking values in �0. We then define

� := {measurable maps A : Rd → �0},

which we equip with the σ -algebra F that makes the evaluationsA 7→
´
Rd Aij (x)χ(x) dx

measurable for all i, j ∈ {1, . . . , d} and all smooth functions χ with compact support.
This makes F countably generated.

Following the convention in statistical mechanics, we describe a random coefficient
field by equipping (�,F) with an ensemble 〈·〉 (the expected value). Following [26], we
shall assume that 〈·〉 is stochastically continuous: for all δ > 0 and x ∈ Rd ,

lim
|h|↓0
〈1{A : |A(x+h)−A(x)|>δ}〉 = 0.

We shall always assume that 〈·〉 is stationary, i.e. for all translations z ∈ Rd the coefficient
fields {Rd 3 x 7→ A(x)} and {Rd 3 x 7→ A(x + z)} have the same joint distribution
under 〈·〉. Let τz : �→ �, A(·) 7→ A(·+z), denote the shift by z; then 〈·〉 is stationary if
and only if τz is 〈·〉-preserving for all shifts z ∈ Rd . The stochastic continuity assumption
ensures that the map Rd ×�→ �, (x,A) 7→ τxA, is measurable (where Rd is equipped
with the σ -algebra of Lebesgue measurable sets).

A random variable is a measurable function on (�,F). We denote by H =

L2(�,F , 〈·〉) the Banach space of square integrable random variables, that is, those
random variables ζ such that 〈ζ 2

〉 < ∞. This is a Hilbert space for the scalar product
(ζ, χ) 7→ 〈ζχ〉. By definition of F , any random variable of H can be approximated by
a random variable of H that only depends on the value of A ∈ � on bounded domains.
A random field ζ̃ is a measurable function on Rd×�. To any random variable ζ : �→ R
we associate a 〈·〉-stationary extension ζ : Rd×�→ R via ζ (x,A) := ζ(A(·+x)). Con-
versely, we say that a random field is 〈·〉-stationary if it can be represented in that form. If
ζ̃ is a stationary field, then ζ̃ (x, A) = ζ(τxA) for some random variable ζ , so that for all
x ∈ Rd , ζ̃ (x, ·) is measurable on (�,F) by the measurability of the map (x,A) 7→ τxA

on Rd × �. If 〈·〉 is stationary, then the ensemble average of a stationary random field ζ
is independent of x ∈ Rd ; therefore we simply write 〈ζ 〉 instead of 〈ζ (x)〉.
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Stationarity allows one to define a differential calculus on H. As shown in [26, Sec-
tion 2], since 〈·〉 is stochastically continuous, one may define a differential operator D
on H by its components Di in direction ei for all i ∈ {1, . . . , d} as follows:

Diζ(A) := lim
h→0

ζ(τheiA)− ζ(A)

h
= lim
h→0

ζ (hei, A)− ζ (0, A)
h

= ∇ζ (0, A).

The domain H1 of D is closed and dense in H. It is a Hilbert space for the inner product
(ζ, χ) 7→ 〈ζχ〉 + 〈Dζ · Dχ〉.

We say that a stationary ensemble is ergodic if the only elements of F that are invari-
ant under the shift group (τz)z∈Rd have probability 0 or 1.

Lemma 2.1 (Corrector, [26, Theorem 2]). Let 〈·〉 be an ergodic stationary ensemble.
Then for all directions ξ ∈ Rd , |ξ | = 1, there exists a unique random field φ in
H 1

loc(R
d ,H) which solves the corrector equation

−∇ · A(ξ +∇φ) = 0 (2.2)

in the sense of distributions on Rd and satisfies φ(0) = 0, both almost surely, and such
that ∇φ is the stationary extension of the field ∇φ(0, ·) ∈ H, with 〈∇φ(0, ·)〉 = 0. In
particular, 〈|∇φ(0, ·)|2〉 . 1.

We also recall the standard definition of the modified corrector:

Lemma 2.2 (Modified corrector, [26, proof of Theorem 2]). Let 〈·〉 be a stationary en-
semble. Then for all T > 0 and all directions ξ ∈ Rd , |ξ | = 1, there exists a unique
random field φT ∈ H1 with vanishing expectation, whose stationary extension φT solves
the modified corrector equation

T −1φT −∇ · A(ξ +∇φT ) = 0 (2.3)

distributionally on Rd almost surely, and such that T −1
〈φ2
T 〉 + 〈|DφT |

2
〉 . 1.

Note that φT is stationary, whereas φ is not.

Remark 2.1. The field φT can be defined as the unique function in H1 satisfying, for all
ζ ∈ H1,

〈T −1ζφT + Dζ · A(0)DφT 〉 = −〈Dζ · A(0)ξ〉. (2.4)

Remark 2.2. If A is replaced by its pointwise transpose A∗ in Lemmas 2.1 and 2.2, the
associated correctors are called adjoint correctors. For all ξ ′ ∈ Rd and T > 0, the adjoint
corrector φ′ and modified adjoint corrector φ′T are suitable solutions of

−∇ · A∗(ξ ′ +∇φ
′
) = 0,

T −1φ
′

T −∇ · A
∗(ξ ′ +∇φ

′

T ) = 0.

Definition 2.1 (Homogenized coefficients). Let 〈·〉 be an ergodic stationary ensemble,
let ξ, ξ ′ ∈ Rd , and φ and φ′ be the corrector and adjoint corrector of Lemma 2.1 and
Remark 2.2. We define the homogenized d × d-matrix Ahom in directions ξ ′ and ξ by

ξ ′ · Ahomξ = 〈(ξ
′
+∇φ

′
(0)) · A(0)(ξ +∇φ(0))〉 = ξ ′ · 〈A(0)(ξ +∇φ(0))〉. (2.5)
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2.2. Statement of the main results

To obtain quantitative results, we assume in addition to stationarity and ergodicity that 〈·〉
has a spectral gap in the following sense.

Definition 2.2 (Spectral gap (SG)). We say that an ensemble 〈·〉 satisfies (SG) if there
exist ρ > 0 and ` <∞ such that for all measurable functions X on (�,F) we have

var[X] ≤
1
ρ

〈ˆ
Rd

(
osc
A|B`(z)

X
)2
dz

〉
, (2.6)

where oscA|B`(z) X denotes the oscillation of X with respect to A restricted to the ball
B`(z) of radius ` and center at z ∈ Rd :(

osc
A|U

X
)
(A) =

(
sup
A|U

X
)
(A)−

(
inf
A|U

X
)
(A)

= sup{X(Ã) : Ã ∈ �, Ã|Rd\U = A|Rd\U }

− inf{X(Ã) : Ã ∈ �, Ã|Rd\U = A|Rd\U }. (2.7)

Note that for U ⊂ Rd , oscA|U X ∈ [0,∞] is itself a random variable, which is not
necessarily measurable so that the expectation of the RHS of (2.6) is understood as an
outer expectation.

As the following lemma shows, (SG) is stronger than ergodicity.

Lemma 2.3. Let 〈·〉 be a stationary ensemble that satisfies (SG) for some ρ > 0 and
` <∞. Then 〈·〉 is ergodic.

The first main result of this paper shows that the variance of smooth averages of the
energy density of the modified corrector on a domain of size L decays according to the
central limit theorem scaling L−d .

Theorem 1. Let 〈·〉 be a stationary ensemble that satisfies (SG), and let φ, φ′ and φT , φ
′

T

denote the corrector and adjoint corrector, and modified corrector and modified adjoint
corrector for respective directions ξ, ξ ′ ∈ Rd , |ξ | = |ξ ′| = 1, and T > 0 (see Lemmas 2.1
and 2.2, and Remark 2.2). For all L > 0 consider the random matrix AT ,L characterized
by

ξ ′ · AT ,Lξ :=

ˆ
Rd

(
T −1φ

′

T (x)φT (x)+ (ξ
′
+∇φ

′

T (x)) · A(x)(ξ +∇φT (x))
)
ηL(x) dx,

where x 7→ ηL(x) is a smooth averaging function on BL such that
´
Rd ηL(x) dx = 1 and

sup |∇ηL| . L−d−1. Then, for all T � 1,

var[ξ ′ · AT ,Lξ ] .

{
L−2 ln(2+

√
T /L) for d = 2,

L−d for d > 2.
(2.8)

In particular, by letting T ↑ ∞ in (2.8), the variance estimate holds for the energy density
of the correctors φ′ and φ themselves for d > 2. ut
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The main ingredient in the proof of Theorem 1 is of independent interest. It states that all
finite stochastic moments of the modified corrector φT are bounded independently of T
for d > 2 and grow at most logarithmically in T for d = 2.

Proposition 1. Let 〈·〉 be a stationary ensemble that satisfies (SG), and let φT denote the
modified corrector for direction ξ ∈ Rd , |ξ | = 1. Then for all q ≥ 1 and all T � 1,

〈|φT |
q
〉
1/q .

{
(ln T )1/2 for d = 2,
1 for d > 2,

(2.9)

where the multiplicative constant depends on q, besides depending on λ, ρ, `, and d. In
addition, for all q ≥ 1 and all R ≥ 1,〈(ˆ

BR

|∇φT (y)|
2 dy

)q/2〉1/q

. 1, (2.10)

where the multiplicative constant depends on q and R (and on λ, ρ, `, and d).

Remark 2.3. Since (SG) is invariant under transposition of A, all the estimates obtained
for the modified corrector and for the corrector hold as well for the modified adjoint
corrector and the adjoint corrector under the same assumptions on A.

For d > 2 we also proved in [15] the corresponding versions of Theorem 1 and Proposi-
tion 1 for the approximation of the corrector using periodic boundary conditions on cubes
of side length L. As opposed to the present proof, the proof in [15] does not make use of
Green’s functions and relies on the De Giorgi–Nash–Moser regularity theory.

As a direct corollary of Proposition 1 and of Lemma 2.2, we obtain the following
existence and uniqueness result for stationary solutions of the corrector equation (2.2) for
d > 2, which settles a long-standing open question.

Corollary 1. Let 〈·〉 be a stationary ensemble that satisfies (SG). Then, for d > 2 and for
all directions ξ ∈ Rd , |ξ | = 1, there exists a unique random field φ ∈ H1 with vanishing
expectation whose stationary extension φ solves the corrector equation

−∇ · A(ξ +∇φ) = 0

distributionally on Rd almost surely. In particular, 〈φ2
+ |Dφ|2〉 . 1.

The proof of this result as a corollary of Proposition 1 is elementary and left to the reader.
Our second main result quantifies the difference between Ahom and an approximation
of Ahom obtained using ∇φT instead of ∇φ, which we call the systematic error.

Theorem 2. Let 〈·〉 be a stationary ensemble that satisfies (SG), and let φT , φ′T denote
the modified corrector and modified adjoint corrector for directions ξ, ξ ′ ∈ Rd , respec-
tively, |ξ | = |ξ ′| = 1, and T > 0. The approximationAT of the homogenized matrixAhom
defined by

ξ ′ · AT ξ := 〈(ξ
′
+ Dφ′T ) · A(0)(ξ + DφT )〉
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satisfies, for T � 1,

|Ahom − AT | .


T −1 for d = 2,
T −3/2 for d = 3,
T −2 ln T for d = 4,
T −2 for d > 4.

(2.11)

Note that estimate (2.11) saturates at d = 4. Higher order approximations of Ahom using
the modified correctors φT and extrapolation techniques have been introduced by Mourrat
and the first author [12, Proposition 2]. We proved in [14] in the discrete setting that the
optimal scaling of the systematic error is T −d/2 even beyond d = 4, and that it can be
reached in any dimension for approximations of sufficiently high order. We believe that
the corresponding continuum version of these estimates also holds true.

Theorem 2 is a direct consequence of the following proposition, which quantifies the
convergence of the gradient of the modified corrector to its weak limit.

Proposition 2. Let 〈·〉 be a stationary ensemble that satisfies (SG), let φT denote the
modified corrector for direction ξ ∈ Rd , |ξ | = 1, and T > 0, let ∇φ(0) denote the weak
limit of DφT in H. Then for all T � 1,

〈|DφT −∇φ(0)|2〉 .


T −1 for d = 2,
T −3/2 for d = 3,
T −2 ln T for d = 4,
T −2 for d > 4.

(2.12)

Remark 2.4. For d > 2, if we denote by φ the stationary corrector of Corollary 1, we
also have

〈(φT − φ)
2
〉 .


T −1/2 for d = 3,
T −1 ln T for d = 4,
T −1 for d > 4.

(2.13)

In the case when the coefficients A are symmetric, the operator L = −D · A(0)D defines
a quadratic form on H1. We denote by L its Friedrichs extension on H as well. Since
L is a self-adjoint non-negative operator, by the spectral theorem, it admits the spectral
resolution

L =
ˆ
∞

0
λG(dλ). (2.14)

As a by-product of the proof of Proposition 2 we obtain the following bounds on the
bottom of the spectrum of L projected on d = −D · A(0)ξ ∈ (H1)′:

Corollary 2. Let 〈·〉 be a stationary ensemble taking values in the set of symmetric ma-
trices and satisfying (SG), and let ξ ∈ Rd with |ξ | = 1, and d = −D · A(0)ξ . Then the
spectral resolution G of L = −D · A(0)D satisfies, for all ν > 0,

〈dG(dλ)d〉([0, ν]) .


νd/2+1 for 2 ≤ d < 6,
ν4
|log ν| for d = 6,

ν4 for d > 6.
(2.15)
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In the discrete setting we proved in [14], using a semigroup approach, that

〈dG(dλ)d〉([0, ν]) . νd/2+1

for all d ≥ 2. The method we use here could be pushed forward to prove similar estimates
for all d ≥ 6.

Before we turn to the structure of the proofs, let us comment on the interest of these
results. As in [16, 17], our main concern here is the approximation of the homogenized
coefficients Ahom. As discussed in [16, 17, 11] in the discrete setting, the modified cor-
rectors φT and φ′T can be replaced on some ball BL by approximations φT ,R and φ′T ,R
computed on a larger ball BR with homogeneous Dirichlet boundary conditions up to an
error of infinite order measured in units of (R − L)/

√
T . This holds in the continuum

setting as well, and we shall assume that we have access to the modified correctors φT
and φ′T on BL in practice. A natural approximation of Ahom is then given by

ξ ′ · ÃT ,Lξ :=

ˆ
BL

(ξ ′ +∇φ
′

T (x)) · A(x)(ξ +∇φT (x))ηL(x) dx,

where ηL is as in Theorem 1. By stationarity, the error between ÃT ,L (which is a random
variable) and Ahom satisfies

〈(ξ ′ · ÃT ,Lξ − ξ
′
· Ahomξ)

2
〉 = var[ξ ′ · ÃT ,Lξ ] + (ξ ′ · (AT − Ahom)ξ)

2.

The square root of the first term is called the random error, and the square root of the sec-
ond term, the systematic error. The systematic error is estimated in Theorem 2, whereas
the random error is estimated in Theorem 1 as the following remark shows.

Remark 2.5. While it is natural to include the zero-order term T −1
〈φ′T φT 〉 into the def-

inition of the energy density, it is not essential for our result. Here is the reason: By a
simplified version of the string of arguments which lead to Theorem 1 we can show that
the variance of the zero-order term is estimated by

var
[ˆ

Rd
φ
′

T (x)φT (x)ηL(x)dx

]
.

{
ln T for d = 2,
L2−d for d > 2.

This is of higher order than (2.8) for L . T . When approximating φT and φ′T on BL by
some φT ,R and φ′T ,R on a bounded domain BR , one needs R − L �

√
T for the error

due to the artificial boundary conditions to be small. Taking R ∼ L, this yields L�
√
T ,

which is compatible with the regime L . T .

2.3. The example of the Poisson inclusion process

Definition 2.3. By the Poisson ensemble we understand the following probability mea-
sure on �: Let the configuration of points P := {xn}n∈N on Rd be distributed according
to the Poisson point process with density 1. This means the following:
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• For any two disjoint (Lebesgue measurable) subsets D and D′ of Rd the configuration
of points in D and the configuration of points in D′ are independent. In other words, if
X is a function of P that depends on P only through P|D , and X′ is a function of P
that depends on P only through P|D′ , then

〈XX′〉0 = 〈X〉0〈X
′
〉0, (2.16)

where 〈·〉0 denotes the expectation with respect to the Poisson point process.
• For any (Lebesgue measurable) bounded subset D of Rd , the number of points in D is

Poisson distributed; the expected number is given by the Lebesgue measure of D.

Fig. 1. Poisson random inclusions.

With any realization P = {xn}n∈N of the Poisson point process, we associate the coeffi-
cient field A ∈ � (see Figure 1 for a typical realization) via

A(x) =

{
λ if x ∈

⋃
∞

n=1 B(xn)

1 else

}
Id. (2.17)

This defines a probability measure 〈·〉 on � by “push-forward” of 〈·〉0.

We then have:

Lemma 2.4. The Poisson ensemble is stationary and satisfies (SG) with constants ρ =
` = 1.

For a direct proof of Lemma 2.4 (with suboptimal constants ρ and `) relying on a mar-
tingale decomposition approach, we refer to [15]. The present version (with optimal con-
stants ρ = ` = 1) follows from the well-known Poincaré inequality for the Poisson point
process: For all measurable functions X of the Poisson point process, we have

var0[X] ≤

ˆ
Rd
〈(X(· ∪ {x})−X)2〉0 dx (2.18)

(see for instance [27, 22]). For all measurable functions of A, we then have

var[X] = var0[X ◦ A]
(2.18)
≤

ˆ
Rd
〈(X ◦ A(· ∪ {x})−X ◦ A)2〉0 dx

≤

ˆ
Rd

〈(
osc
A|B(x)

X
)2〉

0
dx =

ˆ
Rd

〈(
osc
A|B(x)

X
)2〉

dx,

where the last two expectations are outer expectations.
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More general constructions of ensembles 〈·〉 from the Poisson point process ensemble
〈·〉0 are discussed in [8, 9].

2.4. Structure of the proofs and statement of the auxiliary results

The proof of Proposition 1 is new and gives optimal scalings in any dimension (in con-
trast to the approach of [16]). Proposition 1 is a direct consequence of the following two
lemmas (and Jensen’s inequality in probability). The first lemma shows that the estimate
(2.9) is a consequence of (2.10) for all q large enough.

Lemma 2.5. Let 〈·〉 be a stationary ensemble that satisfies (SG), and let φT denote the
modified corrector for direction ξ ∈ Rd , |ξ | = 1. Then there exists q̄ ≥ 1 such that for all
q ≥ q̄ and all T � 1 and R & 1,

〈|φT |
2q
〉
1/q .

〈( 
BR

|∇φT (y)|
2 dy

)q〉1/q
{

ln T for d = 2,
1 for d > 2,

(2.19)

where the multiplicative constant depends on q (and on λ, ρ, `, and d).

The second lemma yields (2.10).

Lemma 2.6. Let 〈·〉 be a stationary ensemble that satisfies (SG), and let φT denote the
modified corrector for direction ξ ∈ Rd , |ξ | = 1. Then for all q ≥ 1 and all T � 1 and
R & 1, 〈( 

BR

|∇φT (y)|
2 dy

)q/2〉1/q

. 1, (2.20)

where the multiplicative constant depends on q (and on λ, ρ, `, and d).

Remark 2.6. For d > 2, by Young’s inequality, Lemma 2.6 is a consequence of Lem-
ma 2.5 itself and of the following Caccioppoli inequality in probability for the modified
corrector: for all q ∈ N,

〈φ
2q
T |DφT |

2
〉 . 〈φ2q

T 〉, (2.21)

as used in [16]. For d = 2, however, this argument does not provide the optimal power of
the logarithm in (2.9) nor the optimal scaling in (2.10) for d = 2, whence the more subtle
approach developed here.

In order to prove Lemma 2.5 we shall apply (SG) to powers of the modified corrector φT .
Compared to the discrete setting, we give a significantly simplified proof which avoids
the involved induction argument of [16]. To this end, we first derive a “q-version” of the
spectral gap estimate, a continuum analogue of the spectral gap estimate of [14].

Corollary 3 (q-(SG)). If 〈·〉 satisfies (SG) with constants ρ > 0 and ` <∞, then for all
q ≥ 1 and all random variables X,

〈(X − 〈X〉)2q〉1/q .

〈(ˆ
Rd

(
osc
A|B ˜̀(z)

X
)2
dz
)q〉1/q

(2.22)

with ˜̀ = 2`, where the multiplicative constant depends on q and ρ.
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In order to obtain explicit formulas for the oscillation of φT , we consider an alternative
definition for φT that extends the definition of modified correctors for any A ∈ � (and
not only for almost every A):

Lemma 2.7. For all A ∈ �, T > 0, and ξ ∈ Rd with |ξ | = 1, there exists a unique
distributional solution on Rd of the equation

T −1φT −∇ · A(ξ +∇φT ) = 0 (2.23)

in the class of functions χ ∈ H 1
loc(R

d) such that lim supt↑∞
ffl
Bt
(χ2
+ |∇χ |2) dx < ∞.

In addition, this solution satisfies

sup
z∈Rd

ˆ
B√

T
(z)

(T −1φ
2
T + |∇φT |

2) dx .
√
T
d
. (2.24)

By definition of the σ -algebra, it is clear that square local averages of φT and of ∇φT are
measurable on (�,F). For almost all A ∈ �, the Birkoff ergodic theorem shows that φT
defined in Lemma 2.2 satisfies

lim
t↑∞

 
Bt

(φ
2
T + |∇φT |

2) dx = 〈φ2
T + |DφT |

2
〉 <∞,

and satisfies (2.23) in the sense of distributions. Hence φT (·;A) coincides with the solu-
tion of Lemma 2.7 for almost all A ∈ �.

When applying Lemma 2.2 to powers of φT (0; ·), the sensitivity of φT (0;A) with
respect to the coefficients A appears and needs to be controlled. Our estimates involve
Green’s functions, whose well-known properties are recalled in the following definition.

Definition 2.4 (Green’s function). For all A ∈ � and 0 < T <∞, there exists a unique
function GT (x, y;A) ≥ 0 with the following properties:

• Qualitative continuity off the diagonal, that is,

{(x, y) ∈ Rd × Rd : x 6= y} 3 (x, y) 7→ GT (x, y;A) is continuous. (2.25)

• Upper pointwise bounds on GT :

GT (x, y;A)

. gT (x − y) := exp
(
−c
|x − y|
√
T

){
ln(2+

√
T /|x − y|) for d = 2,

|x − y|2−d for d > 2;
(2.26)

here and below, the rate constant c > 0 in the exponential is generic and may change
from term to term, but only depends on d and λ.
• Averaged bounds on ∇xGT and ∇yGT :(

R−d
ˆ
R<|x−y|<2R

|∇xGT (x, y;A)|
2 dx

)1/2

. exp
(
−c

R
√
T

)
R1−d , (2.27)(

R−d
ˆ
R<|y−x|<2R

|∇yGT (x, y;A)|
2 dy

)1/2

. exp
(
−c

R
√
T

)
R1−d . (2.28)
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• Differential equation: We note that (2.26) and (2.27) & (2.28) imply that Rd 3 x 7→
(GT (x, y;A),∇xGT (x, y;A)) and Rd 3 y 7→ (GT (x, y;A),∇yGT (x, y;A)) are (lo-
cally) integrable. Hence even for discontinuous A, we may formulate the requirement

T −1GT −∇x · A(x)∇xGT = δ(x − y) distributionally in Rdx , (2.29)

T −1GT −∇y · A
∗(y)∇yGT = δ(y − x) distributionally in Rdy , (2.30)

where A∗ denotes the transpose of A.

We note that the uniqueness statement implies GT (x, y;A∗) = GT (y, x;A) so that GT
is symmetric whenever A is symmetric.

Although these results are well-known, we did not find suitable references dealing with
the massive term. In the appendix we present a self-contained proof using only the De
Giorgi–Nash–Moser theory, and inspired by [18].

The following result is of independent interest. It quantifies the sensitivity of solutions
of linear elliptic PDEs with respect to the coefficient field.

Lemma 2.8. Let A ∈ �, and let GT and φT be the associated Green function and modi-
fied corrector for T > 0 and ξ ∈ Rd , |ξ | = 1. Then, for all x, z ∈ Rd , R ∼ 1, and T > 0,

osc
A|BR(z)

φT (x) . hT (z, x)

(ˆ
B3R(z)

|∇φT (y)|
2 dy + 1

)1/2

, (2.31)

where hT is given by

hT (z, x) :=


(ˆ

BR(z)

|∇yGT (y, x)|
2 dy

)1/2

for |z− x| ≥ 2R

1 for |z− x| < 2R

 . 1. (2.32)

In addition,

sup
A|BR(z)

ˆ
BR(x)

|∇φT (y)|
2 dy .

ˆ
BR(x)

|∇φT (y)|
2 dy+

ˆ
BR(z)

|∇φT (y)|
2 dy+1. (2.33)

Although this lemma holds for measurable coefficients, we first prove it under an addi-
tional smoothness assumption on A. This assumption is then removed by an approxima-
tion argument: The pointwise convergence of φT and GT under the convergence of A
follows from the De Giorgi–Nash–Moser theory (in the form of a uniform Hölder esti-
mate). This is a difference with the discrete setting for which (discrete) gradients of a
function X are controlled by the function X itself and Green functions are not singular—
so that smoothness is not an issue.

As can already be seen in Lemma 2.8, not only the Green function itself but also its
gradient appears in the estimates. On the one hand, we shall need local estimates which
are uniform with respect to the conductivity function:
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Lemma 2.9. Let A ∈ �, and for all Ã ∈ � let GT (·, ·; Ã), for T > 0, be the Green
function associated with Ã. Then, for all R ∼ 1, and all x, z ∈ Rd with |x − z| > R,

sup
Ã∈�

Ã|Rd \BR(z)
=A|Rd \BR(z)

ˆ
BR(z)

|∇yGT (y, x; Ã)|
2 dy .

ˆ
BR(z)

|∇yGT (y, x;A)|
2 dy. (2.34)

On the other hand, we shall make use of both integrated and pointwise estimates on the
gradient of the Green function: optimal quenched but integrated or annealed but point-
wise control with an exponent 2p slightly larger than 2—Meyers’ type estimates—and a
suboptimal but quenched and pointwise control.

Lemma 2.10 (Optimal quenched integrated estimates of gradients). Let A ∈ � and GT
be its associated Green function, and T > 0. Then there exists p̄ > 1 (depending only
on λ) and d such that for all p̄ ≥ p ≥ 1 and R > 0,(

R−d
ˆ
R<|y|≤2R

|∇yGT (y, 0)|2p dy
)1/(2p)

. R1−d exp
(
−c

R
√
T

)
, (2.35)(

R−2d
ˆ
BR

ˆ
8R<|y|≤16R

|∇∇GT (y, x)|
2p dy dx

)1/(2p)

. R−d exp
(
−c

R
√
T

)
, (2.36)

where ∇∇ denotes the mixed second gradient.

For the proof of (2.35), we refer the reader to the corresponding results [16, Lemmas 2.7
and 2.9] in the discrete setting, the proofs of which are first presented in the continuum
setting considered here (where algebraic decay can be replaced by the exponential decay
stated here). For (2.36), which we shall only use to prove the following lemma, the proof
is similar and the Meyers argument is used twice: once for each variable.

Lemma 2.11 (Optimal annealed pointwise estimates of gradients). Let 〈·〉 be a station-
ary ensemble, and for allA ∈ � denote byGT the associated Green function with T > 0.
Then there exists p̄ > 1 (depending only on λ) and d such that for all p̄ ≥ p ≥ 1 and all
|y| � 1,

〈|∇yGT (y, 0)|2p〉1/(2p) . |y|1−d exp
(
−c
|y|
√
T

)
, (2.37)

〈|∇∇GT (y, 0)|〉 . |y|−d exp
(
−c
|y|
√
T

)
. (2.38)

For p = 1, (2.37) is a consequence of the annealed estimates by Delmotte and
Deuschel [6] on the parabolic Green function for stationary ensembles. We prove Lem-
ma 2.11 by combining the Meyers estimates of Lemma 2.10 with the elliptic approach
to the Delmotte–Deuschel result developed by Marahrens and the second author [23, 24].
Although the estimate (2.38) on the mixed second derivative is not used in this article, it
is stated here for future reference.
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Lemma 2.12 (Suboptimal quenched pointwise estimates of gradients). Let A ∈ �

and GT be its associated Green function with T > 0. Then there exists α > 0 depending
only on λ such that for all R ∼ 1 and all |z| > 2R,(ˆ

BR(z)

|∇z′GT (z
′, 0)|2 dz′

)1/2

.

{
|z|−α exp(−c|z|/

√
T ) for d = 2,

|z|2−d exp(−c|z|/
√
T ) for d > 2.

(2.39)

This lemma (which is suboptimal for d > 2 but sufficient for our purpose) follows from
Caccioppoli’s inequality and the following refined energy estimate that we shall use in
the proof of Lemma 2.6.

Lemma 2.13 (Refined energy estimates). There exists an exponent α(d, λ) > 0 such
that for all A ∈ �:

• for all R ≥ 1, T > 0 and any v ∈ H 1(BR) satisfying

T −1v −∇ · A∇v = 0 (2.40)

we have(ˆ
B1

(T −1v2
+ |∇v|2) dx

)1/2

. R−α
(ˆ

BR

(T −1v2
+ |∇v|2) dx

)1/2

; (2.41)

• for all T > 0 and all v ∈ H 1(Rd) and g ∈ L2(Rd ,Rd) related by

T −1v −∇ · A∇v = ∇ · g, (2.42)

and all radii R, we have(ˆ
BR

(T −1v2
+ |∇v|2) dx

)1/2

.

(ˆ
Rd
(|x|/R + 1)−2α

|g(x)|2 dx

)1/2

; (2.43)

• for all R ≥ 1 and T > 0, the modified corrector φT satisfies(ˆ
B1

(T −1(ξ · x + φT (x))
2
+ |ξ +∇φT (x)|

2) dx

)1/2

. R−α
(ˆ

BR

(T −1(ξ · x + φT (x))
2
+ |ξ +∇φT (x)|

2
+ T −1R2) dx

)1/2

. (2.44)

As in [16], the proof of Theorem 1 relies on (SG) and on Proposition 1. As opposed to our
proof in the discrete setting, we shall replace the use of convolution estimates of Green
functions (cf. [16, Lemma 2.10] and [12, Estimate A.8]) by a suitable use of the pointwise
estimates of Lemmas 2.11 and 2.12.

Our proof of Proposition 2 is new, and significantly differs from the corresponding
proofs for the discrete setting [17, 12]. Since the function (0,∞) → H1, T 7→ φT , is
smooth, we may define ψT := T 2 ∂φT

∂T
∈ H1. As for the corresponding proof in the dis-

crete setting, we have to estimate the quantity 〈φTψT 〉 = cov[φT ;ψT ]. In [17] we used
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the covariance estimate of [17, Lemma 3] as a starting point. In the case of the Poisson
point process, a corresponding covariance estimate holds as well and is known as the
Harris–FKG inequality [27, 22]. It is however not clear whether (SG) implies a covari-
ance inequality in general. A first possibility to avoid the use of a covariance estimate is to
appeal to spectral theory (in the case of symmetric coefficients) to bound this covariance
using the variance of ψT , in the spirit of [25, 12] in the discrete setting (see also Corol-
lary 2). In our proof of Proposition 2 however, we use neither a covariance estimate nor
spectral theory. To apply Lemma 2.2 to ψT , one needs to control the susceptibility of ψT
(in the spirit of Lemma 2.8).

Lemma 2.14. Let A ∈ �, and let GT and φT be the associated Green function and
modified corrector for ξ ∈ Rd with |ξ | = 1, and T > 0. Set

ψT = T
2 ∂φT

∂T
. (2.45)

Then ψT ∈ H
1
loc(R

d) is the unique distributional solution, in the class of functions χ in
H 1

loc(R
d) such that lim supt↑∞

ffl
Bt
(χ2
+ |∇χ |2) dx <∞, of the equation

T −1ψT −∇ · A∇ψT = φT . (2.46)

For all R ∼ 1, T > 0, and x, z ∈ Rd , we have

osc
A|BR(z)

ψT (x)

. hT (z, x)

(ˆ
B3R(z)

|∇ψT (z
′)|2 dz′ + νd(T )

(ˆ
B9R(z)

|∇φT (z
′)|2 dz′ + 1

))1/2

+

(ˆ
B3R(z)

|∇φT (z
′)|2 dz′ + 1

)1/2 ˆ
Rd
gT (x − y)hT (z, y) dy, (2.47)

where νd(T ) is given by

νd(T ) =


T ln T for d = 2,
√
T for d = 3,

ln T for d = 4,
1 for d > 4,

(2.48)

hT is as in (2.32), and gT as in (2.26). In addition,

sup
A|BR(z)

ˆ
BR(z)

|∇ψT (y)|
2 dy .

ˆ
BR(z)

|∇ψT (y)|
2 dy+νd(T )

(ˆ
B3R(z)

|∇φT (y)|
2 dy+1

)
.

(2.49)

The oscillation of ψT involves integrals of products of the Green function and of its
gradient, the expectation of which is controlled using the pointwise estimates (2.26) for
the Green function and the pointwise estimates of Lemmas 2.11 and 2.12 for its gradient.
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3. Proofs of the main results

In this section we prove Proposition 1 in the form of Lemmas 2.5 and 2.6, and also
Theorem 1, Proposition 2, and Theorem 2. We shall assume for convenience that (SG)
holds with ` = 1. By scaling the equation according to x̂ = `x, one indeed reduces to the
case ` = 1. We note that we lose a factor of 2 on the radius when passing to the q-version
of (SG) in Corollary 3. It is obvious that the original (SG) then also holds with radius 2.
From now on, we will use both with radius 2.

3.1. Proof of Lemma 2.5: control of the moments of φT by its gradient

In this proof the multiplicative constants in . may depend on q ≥ 1. We split the proof
into three steps.

Step 1: Application of (SG). We prove

〈φ
2q
T 〉

1/q .

〈(ˆ
Rd
h

2
T (z, 0)

(ˆ
B6(z)
|∇φT (y)|

2 dy + 1
)
dz

)q〉1/q

. (3.1)

By Corollary 3, which we apply to X = φT , for all q ≥ 1 we have

〈φ
2q
T 〉

1/q .

〈(ˆ
Rd

(
osc
A|B2(z)

φT

)2

dz

)q〉1/q

.

From Lemma 2.8 with R = 2 we learn that(
osc
A|B2(z)

φT (0)
)2

. h
2
T (z, 0)

(ˆ
B6(z)
|∇φT (y)|

2 dy + 1
)
.

This yields (3.1).

Step 2: Dyadic decomposition of Rd and use of stationarity. We prove

〈φ
2q
T 〉

1/q .

(
1+

∑
i∈N
(2iR)d/q

(
sup
A∈�

ˆ
2iR<|z|≤2i+1R

h
2 q
q−1
T (z, 0) dz

) q−1
q
)

×

(〈(ˆ
B6

|∇φT (y)|
2 dy

)q〉
+ 1

)1/q

(3.2)

for R ≥ 2 such that Lemma 2.10 holds. Since we control ∇yGT (y, 0) well when in-
tegrated over dyadic annuli, we decompose Rd into the ball {|z| ≤ 2R} and the annuli
{2iR < |z| ≤ 2i+1R} for i ∈ N. The triangle inequality in Lq(�) on the RHS of (3.1)
yields

〈φ
2q
T 〉

1/q .

〈(ˆ
|z|≤2R

h
2
T (z, 0)

(ˆ
B6(z)
|∇φT (y)|

2 dy + 1
)
dz

)q〉1/q

+

∑
i∈N

〈(ˆ
2iR<|z|≤2i+1R

h
2
T (z, 0)

(ˆ
B6(z)
|∇φT (y)|

2 dy + 1
)
dz

)q〉1/q

.
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Since hT . 1 pointwise by definition (see (2.32)), the stationarity of ∇φT yields〈(ˆ
|z|≤2R

h
2
T (z, 0)

(ˆ
B6(z)
|∇φT (y)|

2 dy + 1
)
dz

)q〉1/q

.

(〈(ˆ
B6

|∇φT (y)|
2 dy

)q〉
+ 1

)1/q

.

For the other terms, we use Hölder’s inequality in the z-integral with exponents
( q
q−1 , q

)
,

bound the integral involving hT by its supremum over �, and then appeal again to the
stationarity of ∇φT :〈(ˆ

2iR<|z|≤2i+1R
h

2
T (z, 0)

(ˆ
B6(z)
|∇φT (y)|

2 dy + 1
)
dz

)q〉
≤

〈(ˆ
2iR<|z|≤2i+1R

h
2 q
q−1
T (z, 0) dz

)q−1 ˆ
2iR<|z|≤2i+1R

(ˆ
B6(z)
|∇φT (y)|

2 dy + 1
)q
dz

〉
.

(
sup
A∈�

ˆ
2iR<|z|≤2i+1R

h
2 q
q−1
T (z, 0) dz

)q−1

(2iR)d
(〈(ˆ

B6

|∇φT (y)|
2 dy

)q〉
+ 1

)
.

Estimate (3.2) then follows from summing over i.

Step 3: Choice of q and estimate of the Green function. We prove

〈φ
2q
T 〉

1/q .

(〈(ˆ
B6

|∇φT (y)|
2 dy

)q〉1/q

+ 1
){

ln T for d = 2,
1 for d > 2,

(3.3)

for all q large enough that q/(q − 1)≤ p̄, where p̄ is the Meyers exponent of Lemma 2.10.
By definition (2.32) of hT and Hölder’s inequality, for all i ∈ N we haveˆ

2iR<|z|≤2i+1R
h

2 q
q−1
T (z, 0) dz .

ˆ
(2i−1)R<|z|≤(2i+1+1)R

|∇GT (z, 0)|2
q
q−1 dz.

Estimate (2.35) yields a bound for all i ∈ N which is uniform in A ∈ �:
ˆ

2iR<|z|≤2i+1R
h

2 q
q−1
T (z, 0) dz . (2iR)d(2iR)(1−d)2

q
q−1 exp

(
−c

2q
q − 1

(2i − 1)R
√
T

)
.

Combined with (3.2), and the fact that R is of order 1, this yields

〈φ
2q
T 〉

1/q .

(〈(ˆ
B6

|∇φT (y)|
2 dy

)q〉1/q

+ 1
)

×

∑
i∈N0

((2iR)d((2iR)d(2iR)(1−d)2
q
q−1 )q−1)1/q exp

(
−c

2iR
√
T

)
.

=

(〈(ˆ
B6

|∇φT (y)|
2 dy

)q〉1/q

+ 1
)∑
i∈N0

(2iR)2−d exp
(
−c

2iR
√
T

)
.
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Since for d > 2, the sum on the RHS is bounded independently of T , and for d = 2 the
sum is bounded by ln T , (3.3) follows. Note that the radius of the ball B6 only depends
on the (SG) constant ˜̀ = 2.

3.2. Proof of Lemma 2.6: moment bounds on ∇φT

We split the proof into four steps, and combine the approach without Green’s functions
we developed in [15] with a compactness argument developed by Bella and the second
author for systems [4], which we extend from bounded domains with periodic boundary
conditions to the whole space with the massive term. In the first step we decompose
∇φT into Fourier modes, and show it is enough to consider a finite number of Fourier
coefficients. In the second step we estimate the oscillation of the Fourier coefficients, and
apply q-(SG) and elliptic regularity in the third step to obtain a nonlinear estimate. We
conclude in the fourth step.

Step 1: Compactness argument. We argue that for any δ > 0 and any radius

R ≤
√
T , (3.4)

there exist N(d, δ) linear functionals F0, . . . , FN−1 : H
1(B2R) → R bounded in the

sense that

|Fnu| ≤

(ˆ
B2R

(T −1u2
+ |∇u|2) dx

)1/2

, (3.5)

and which have the property that for any u ∈ H 1(B2R) and f ∈ L2(B2R) related by

T −1u−∇ · A∇u = T −1f (3.6)

we have
ˆ
BR

(T −1u2
+ |∇u|2) dx .

N−1∑
n=0

|Fnu|
2
+ δ

ˆ
B2R

|∇u|2 dx +

ˆ
B2R

T −1f 2 dx, (3.7)

where the multiplicative constant is independent of δ, T and R. We split (3.7) into an a
priori estimate for (3.6), namelyˆ

BR

(T −1u2
+ |∇u|2) dx .

ˆ
B2R

(
T −1u2

+ R−2(u− ū)2 + T −1f 2) dx, (3.8)

where ū denotes the average of u in B2R , and the construction of the functionals Fn such
that for every function u ∈ H 1(B2R),

ˆ
B2R

(T −1u2
+ R−2(u− ū)2) dx .

N−1∑
n=0

(Fnu)
2
+ δ

ˆ
B2R

|∇u|2 dx. (3.9)

We start with (3.9), which thanks to (3.4) we may split into

R−2
ˆ
B2R

(u− ū)2 dx .
N−1∑
n=1

(Fnu)
2
+ δ

ˆ
B2R

|∇u|2 dx (3.10)
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and
T −1

ˆ
B2R

ū2 dx ≤ (F0u)
2,

where the last estimate is trivially satisfied (as an identity) by defining F0u=
√
|B2R|/T ū

=
´
B2R

u dx/
√
T |B2R|, which by Jensen’s inequality satisfies the boundedness condition

(3.5) in the simple form of (F0u)
2
≤ T −1 ´

B2R
u2 dx. We thus turn to (3.10); by rescaling

length according to x = Rx̂, we may assume that 2R = 1. Let {(λn, un)}∞n=0 denote a
complete set of increasing eigenvalues and L2-orthonormal eigenfunctions of −4 on B1
endowed with homogeneous Neumann boundary conditions, that is,ˆ

B1

∇v · ∇un dx = λn

ˆ
B1

vun dx for all v ∈ H 1(B1). (3.11)

In particular,
´
B1
|∇un|

2 dx = λn
´
B1
u2
n dx = λn. We also note that λ1 > 0. Hence for

all n ≥ 1,

Fnu =

ˆ
B1

∇u ·
∇un
√
λn
dx for all u ∈ H 1(B1) (3.12)

defines a linear functional Fn on vector fields that has the boundedness property (3.5) in
the form of (Fnu)2 ≤

´
B1
|∇u|2 dx. By completeness of the orthonormal system {un}∞n=0,

Plancherel and u0 = const, we have
ˆ
B1

(u− ū)2 dx =

∞∑
n=1

(ˆ
B1

uun dx

)2

(3.11)
=

∞∑
n=1

1
λn

(ˆ
B1

∇u ·
∇un
√
λn
dx

)2

≤
1
λ1

N−1∑
n=1

(ˆ
B1

∇u ·
∇un
√
λn
dx

)2

+
1
λN

∞∑
n=N

(ˆ
B1

∇u ·
∇un
√
λn
dx

)2

.

We note that (3.11) implies that also {∇un/
√
λn}
∞

n=1 is orthonormal, so that the above
together with definition (3.12) yields

ˆ
B1

(u− ū)2 dx ≤
1
λ1

N−1∑
n=1

(Fn∇u)
2
+

1
λN

ˆ
B1

|∇u|2 dx.

Because limN↑∞ λN = ∞, this implies (3.10) in its (2R = 1)-version.
We now turn to (3.8); it is obviously enough to showˆ

BR

|∇u|2 dx .
ˆ
B2R

(
T −1(u− f )2 + R−2(u− ū)2

)
dx.

By rescaling length according to x =
√
T x̂, it is enough to establish the case of T = 1,

that is, ˆ
BR

|∇u|2 dx .
ˆ
B2R

(
(f − u)2 + R−2(u− ū)2

)
dx. (3.13)
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We test (3.6) for T = 1, that is,

−∇ · A∇u = f − u (3.14)

with η2(u− ū), where η is a cut-off function for BR in B2R:ˆ
B2R

η2
∇u · A∇u dx =

ˆ
B2R

η(u− ū)(−2∇η · A∇u+ η(f − u)) dx,

which by the properties of A turns into

λ

ˆ
B2R

η2
|∇u|2 dx ≤

ˆ
B2R

η|u− ū|
(
2|∇η| |∇u| + η|f − u|

)
dx.

By Young’s inequality this givesˆ
B2R

η2
|∇u|2 dx .

ˆ
B2R

(
|∇η|2(u− ū)2 + η2(f − u)2

)
dx,

which by choice of η turns into the desiredˆ
BR

|∇u|2 dx .
ˆ
B2R

(
R−2(u− ū)2 + (f − u)2

)
dx.

Step 2: Oscillation estimate of the Fourier coefficients. Let α > 0 be the exponent of
Lemma 2.13 and let Fn denote the functionals of Step 1 on H 1(B2R). In this step we
argue that for all n ∈ N0,ˆ
Rd

(
osc
A|B2(z)

Fn(ξ+∇φT )
)2
dz . sup

z∈Rd

{
(|z/R|+1)−2α

(ˆ
B2(z)
|ξ+∇φT |

2 dx

)}
. (3.15)

Let F and u denote any of the Fn and un/
√
λn. Assume first that A is a smooth coeffi-

cient field. For all z ∈ Rd , let Az be a smooth coefficient field that coincides with A on
Rd \ B2(z), and denote by φT ,z the modified corrector associated with Az. We first claim
that it is enough to prove that for all χ ∈ L2(Rd),(ˆ

Rd
χ(z)

ˆ
B2R

(∇φT (x)−∇φT ,z(x)) · ∇u(x) dx dz

)2

.

(ˆ
Rd
χ2 dz

)
sup
z∈Rd

{
(|z/R| + 1)−2α

ˆ
B2(z)
|ξ +∇φT |

2 dx

}
. (3.16)

Indeed, since χ is arbitrary and the RHS does not depend on {Az : z ∈ Rd}, this implies
that

ˆ
Rd

sup
Az

∣∣∣∣ˆ
B2R

(∇φT (x)−∇φT ,z(x)) · ∇u(x) dx

∣∣∣∣2 dz
. sup

z∈Rd

{
(|z/R| + 1)−2α

ˆ
B2(z)
|ξ +∇φT |

2 dx

}
,

from which (3.15) follows by density (to relax the assumption that A be smooth) and the
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elementary estimate

osc
A|B2(z)

F(ξ +∇φT ) ≤ 2 sup
Az

|F(ξ +∇φT )− F(ξ +∇φT ,z)|.

We now prove (3.16). Set v(x) :=
´
Rd χ(z)(φT (x) − φT ,z(x)) dz. By Fubini’s theo-

rem, and since ∇u has L2(B2R)-norm unity,(ˆ
Rd
χ(z)

ˆ
B2R

(∇φT (x)−∇φT ,z(x)) · ∇u(x) dx dz

)2

=

(ˆ
B2R

∇v(x) · ∇u(x) dx

)2

.
ˆ
B2R

|∇v|2 dx

ˆ
B2R

|∇u|2 dx =

ˆ
B2R

|∇v|2 dx.

Since v satisfies

T −1v −∇ · A∇v = ∇ ·

(ˆ
Rd
χ(z)(A− Az)(ξ +∇φT ,z) dz

)
on Rd , we deduce from (2.43) that
ˆ
B2R

|∇v|2 dx .
ˆ
Rd
(|x|/R + 1)−2α

(ˆ
Rd
|χ(z)| |A(x)− Az(x)| |ξ +∇φT ,z(x)| dz

)2

dx

=

ˆ
Rd

ˆ
Rd

ˆ
Rd
(|x|/R + 1)−2α

|χ(z)| |A(x)− Az(x)|

×|ξ +∇φT ,z(x)| |χ(z
′)| |A(x)− Az′(x)| |ξ +∇φT ,z′(x)| dx dz dz

′

≤

ˆ
Rd

ˆ
Rd

ˆ
Rd
(|x|/R + 1)−2αχ2(z)|ξ +∇φT ,z(x)|

2

×|A(x)− Az(x)| |A(x)− Az′(x)| dz
′ dx dz

.
ˆ
Rd
χ2(z)

ˆ
B2(z)

(|x|/R + 1)−2α
|ξ +∇φT ,z(x)|

2 dx dz

.

(ˆ
Rd
χ2 dz

)
sup
z∈Rd

{
(|z|/R + 1)−2α

ˆ
B2(z)
|ξ +∇φT ,z|

2 dx

}
.

It remains to show thatˆ
B2(z)
|ξ +∇φT ,z|

2 dx .
ˆ
B2(z)
|ξ +∇φT |

2 dx. (3.17)

Indeed, since δφ := φT ,z − φT satisfies

T −1δφ −∇ · Az∇δφ = ∇ · (A− Az)(ξ +∇φT ),

an energy estimate yieldsˆ
Rd
|∇δφ|2 dx .

ˆ
B2(z)
|ξ +∇φT |

2 dx,

from which (3.17) follows by the triangle inequality.
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Step 3: Application of (SG) and elliptic regularity. We prove

〈(F (ξ +∇φT )− 〈F(ξ +∇φT )〉)
2q
〉
1/q

. Rd/q−2α
〈(ˆ

BR

(T −1(ξ · x + φT (x))
2
+ |ξ +∇φT (x)|

2
+ T −1R2) dx

)q〉1/q

(3.18)

for all q ≥ d+1
2α , where the multiplicative constant is independent of T and R. We first

apply q-(SG) to F(ξ +∇φT ) and appeal to (3.15) to get

〈(F (ξ +∇φT )− 〈F(ξ +∇φT )〉)
2q
〉
1/q

.

〈(
sup
z∈Rd

{
(|z/R| + 1)−2α

ˆ
B2(z)
|ξ +∇φT |

2 dx

})q〉1/q

, (3.19)

where the multiplicative constant is independent of T and R. Note that

sup
z∈Rd

{
(|z/R| + 1)−2α

ˆ
B2(z)
|ξ +∇φT |

2 dx

}q
.

ˆ
Rd
(|z/R| + 1)−2qα

(ˆ
B3(z)
|ξ +∇φT |

2 dx

)q
,

where the multiplicative constant only depends on d . Hence, by stationarity of the modi-
fied corrector and the estimateˆ

Rd
(|x/R| + 1)−2qα dz . Rd ,

which holds for all q ≥ d+1
2α , (3.19) turns into

〈(F (ξ +∇φT )− 〈F(ξ +∇φT )〉)
2q
〉
1/q . Rd/q

〈(ˆ
B3

|ξ +∇φT |
2 dx

)q〉1/q

.

An appeal to (2.44) now shows that for all R ≥ 6,
ˆ
B3

|ξ +∇φT |
2 dx . R−2α

ˆ
BR

(T −1(ξ · x + φT (x))
2
+ |ξ +∇φT (x)|

2
+ T −1R2) dx.

Step 4: Buckling and proof of (2.20). By stationarity, there exists C depending only on d
such that for all q ≥ 1,〈(ˆ

B2R

|ξ +∇φT |
2 dx

)q〉1/q

≤ C

〈(ˆ
BR

|ξ +∇φT |
2 dx

)q〉1/q

.

Hence, from the first step for u(x) = ξ · x + φT (x) and f (x) = −ξ · x, we learn by (3.7)
and the triangle inequality that for some δ > 0 small enough there exist some constant
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C <∞ and N ∈ N such that for all R > 0, all T > 0 and all q ≥ 1,〈(ˆ
BR

(
T −1(ξ · x + φT (x))

2
+ |ξ +∇φT (x)|

2) dx)q〉1/q

≤ C max
n∈{0,...,N−1}

〈(Fn(ξ +∇φT ))
2q
〉
1/q
+ CT −1Rd+2. (3.20)

In the rest of this step, C may change from line to line but remains independent of R
and T . Let F denote any of the Fn. By the triangle inequality followed by Jensen’s in-
equality,

〈(F (ξ +∇φT ))
2q
〉
1/q
≤ 〈(F (ξ +∇φT )− 〈F(ξ +∇φT )〉)

2q
〉
1/q
+ 〈(F (ξ +∇φT ))

2
〉,

so that the combination of (3.20), (3.5) in Step 1, and of (3.18) in Step 3 shows that for
q ≥ d+1

2α and R ≥ 6,〈(ˆ
BR

(T −1(ξ · x + φT (x))
2
+ |ξ +∇φT (x)|

2) dx

)q〉1/q

≤ CRd/q−2α
〈(ˆ

B2R

(T −1(ξ · x + φT (x))
2
+ |ξ +∇φT (x)|

2) dx

)q〉1/q

+

〈ˆ
B2R

|ξ +∇φT |
2 dx

〉
+ CT −1Rd+2. (3.21)

By stationarity, there exists C <∞ depending only on d such that for all q ≥ 1,〈(ˆ
B2R

(
T −1(ξ · x + φT (x))

2
+ |ξ +∇φT (x)|

2) dx)q〉1/q

≤ C

〈(ˆ
BR

(
T −1(ξ · x + φT (x))

2
+ |ξ +∇φT (x)|

2) dx)q〉1/q

,

so that for all q ≥ d+1
2α we can absorb the first RHS term of (3.21) into the LHS for R

large enough. By the energy estimate of Lemma 2.2, the triangle inequality, and since√
T ≥ R (as required in Step 1), this yields〈(ˆ

BR

|∇φT |
2 dx

)q〉1/q

.

〈ˆ
B2R

|ξ +∇φT |
2 dx

〉
+ Rd + T −1Rd+2 . Rd

for all q ≥ d+1
2α (and therefore all q ≥ 1 by Jensen’s inequality) and T � 1 large enough.

3.3. Proof of Theorem 1: variance estimate

Let us denote the spatial average of a function h : Rd → R with the averaging function ηL
by

〈〈h〉〉L :=

ˆ
Rd
h(x)ηL(x) dx,

where we recall that ηL satisfies

ηL : Rd → R+, supp(ηL) ⊂ BL,
ˆ
Rd
ηL(x) dx = 1, |∇ηL| . L−d−1. (3.22)
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The claim of the theorem is

var[〈〈T −1φ
′

T φT+(ξ
′
+∇φ

′

T )·A(ξ+∇φT )〉〉L] .

{
L−2 ln(2+

√
T
L
) for d = 2,

L−d for d > 2,
(3.23)

where φT , φ
′

T are the modified corrector and modified adjoint corrector associated withA
through Lemma 2.7 (with A∗ in place of A for the adjoint corrector).

This proof is an adaptation and simplification of the corresponding proof in the dis-
crete setting, where we replace convolution estimates by the triangle inequality combined
with the pointwise annealed estimates of Lemma 2.11. The starting point is (SG) applied
to

EL,T = 〈〈T −1φ
′

T φT + (ξ
′
+∇φ

′

T ) · A(ξ +∇φT )〉〉L,
which yields

var[〈〈T −1φ
′

T φT + (ξ
′
+∇φ

′

T ) · A(ξ +∇φT )〉〉L]

.

〈ˆ
Rd

(
osc
A|B2(z)

〈〈T −1φ
′

T φT + (ξ
′
+∇φ

′

T ) · A(ξ +∇φT )〉〉L

)2
dz

〉
. (3.24)

Step 1: Sensitivity estimate for the averaged energy density. We prove

osc
A|B2(z)

EL,T (A) . L−(d+1)
ˆ
BL

Y1(z, x)(Y2(z)+ Y2(x)) dx + ( sup
B2(z)

ηL)Y2(z), (3.25)

where for all A ∈ �, EL,T (A) denotes the averaged energy

EL,T (A) := 〈〈T −1φ
′

T φT + (ξ
′
+∇φ

′

T ) · A(ξ +∇φT )〉〉L,

and Y1 and Y2 are stationary random fields given by

Y1(z, x) := min
{(ˆ

B1(x)

ˆ
B2(z)
|∇yGT (y, x

′)|2 dy dx′
)1/2

, 1
}

+min
{(ˆ

B1(x)

ˆ
B2(z)
|∇yG

′

T (y, x
′)|2 dy dx′

)1/2

, 1
}
,

Y2(x) :=

ˆ
B6(x)
|∇φT |

2 dx′ +

ˆ
B6(x)
|∇φ

′

T |
2 dx′ + 1.

Let Ã coincide with A outside B2(z), z ∈ Rd . We denote by φ̃T and φ̃
′

T the modified
corrector and adjoint corrector associated with Ã so that EL,T (Ã) is given by

EL,T (Ã) := 〈〈T −1φ̃
′

T φ̃T + (ξ
′
+∇φ̃

′

T ) · Ã(ξ +∇φ̃T )〉〉L.

We first derive a representation formula for the difference EL,T (A)− EL,T (Ã):

EL,T (Ã)− EL,T (A) = −
ˆ
Rd
(φ̃
′

T − φ
′

T )∇ηL · Ã(ξ +∇φ̃T ) dx

+

ˆ
Rd
(φT − φ̃T )∇ηL · A

∗(ξ ′ +∇φ
′

T ) dx

+

ˆ
Rd
(ξ ′ +∇φ

′

T ) · (Ã− A)(ξ +∇φ̃T )ηL dx. (3.26)
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An elementary calculation yields

EL,T (Ã)− EL,T (A) = T −1
ˆ
Rd
(φ̃
′

T−φ
′

T )φ̃T ηL dx+

ˆ
Rd
∇(φ̃

′

T−φ
′

T )·Ã(ξ+∇φ̃T )ηL dx

− T −1
ˆ
Rd
(φT − φ̃T )φ

′

T ηL dx −

ˆ
Rd
∇(φT − φ̃T ) · A

∗(ξ ′ +∇φ
′

T )ηL dx

+

ˆ
Rd
(ξ ′ +∇φ

′

T ) · (Ã− A)(ξ +∇φ̃T )ηL dx.

This identity, combined with the weak form of the modified corrector and adjoint correc-

tor equations (2.23) for φ̃T and φ′T and test functions ηL(φ̃
′

T − φ
′

T ) and ηL(φ̃T − φT ),
turns into (3.26).

Since A and Ã coincide outside B2(z), one may bound |φ̃T (x) − φT (x)| and

|φ̃
′

T (x) − φ
′

T (x)| by the oscillations over A|B2(z) of φT (x) and φ′T (x), respectively, so
that (3.26) yields

|EL,T (Ã)− EL,T (A)|

.
ˆ
Rd

(
osc
A|B2(z)

φ
′

T

)
|∇ηL|(|∇φ̃T | + 1) dx +

ˆ
Rd

(
osc
A|B2(z)

φT

)
|∇ηL|(|∇φ

′

T | + 1) dx

+

ˆ
B2(z)

(|∇φ
′

T | + 1)(|∇φ̃T | + 1)ηL dx.

Before we can take the supremum over A and Ã and use estimates (2.31) and (2.33)
in Lemma 2.8 (and the corresponding estimates for the adjoint correctors), we have to
rewrite the RHS in terms of local square averages of ∇φ′T and ∇φ̃T . To this end we
introduce a new variable y in the first RHS term via

´
Rd dx .

´
Rd dx

´
B1(x)

dy. We then
use Cauchy–Schwarz’ inequality and take the supremum over A|B2(z) and Ã|B2(z). Since
the RHS does not depend on A|B2(z) or Ã|B2(z), it controls the oscillation of EL,T (A) with
respect to A|B2(z), and we have

osc
A|B2(z)

EL,T (A)

.
ˆ
Rd

(ˆ
B1(x)

(
osc
A|B2(z)

φ
′

T

)2
dy

)1/2(
sup
B1(x)

|∇ηL|
)(

sup
A|B2(z)

ˆ
B1(x)
|∇φT |

2 dy + 1
)1/2

dx

+

ˆ
Rd

(ˆ
B1(x)

(
osc
A|B2(z)

φT

)2
dy

)1/2(
sup
B1(x)

|∇ηL|
)(

sup
A|B2(z)

ˆ
B1(x)
|∇φ

′

T |
2 dy + 1

)1/2

dx

+

(
sup
B2(z)

ηL

)(
sup
A|B2(z)

ˆ
B2(z)
|∇φT |

2 dy + sup
A|B2(z)

ˆ
B2(z)
|∇φ

′

T |
2 dy + 1

)
.

An application of estimates (2.31) and (2.33) in Lemma 2.8 (and the corresponding esti-
mates for φ′T ) with R = 2 yields (3.25) by Young’s inequality and the properties of η.
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Step 2: Proof of (2.8). We apply the spectral gap estimate to EL,T , use the oscillation
estimate (3.25), and expand the square:

var[EL,T ] .
ˆ
Rd

〈(
osc
A|B2(z)

EL,T (A)
)2〉

dz

.
ˆ
Rd

〈(
L−(d+1)

ˆ
BL

Y1(z, x)(Y2(z)+ Y2(x)) dx +
(

sup
B2(z)

ηL

)
Y2(z)

)2〉
dx

. L−2(d+1)
ˆ
BL

ˆ
BL

ˆ
Rd
〈Y1(z, x)(Y2(z)+ Y2(x))Y1(z, x

′)(Y2(z)+ Y2(x
′))〉 dz dx dx′

+

ˆ
Rd

(
sup
B2(z)

ηL

)2
〈Y 2

2 (z)〉 dz. (3.27)

To estimate the RHS of (3.27) we appeal to (2.10) and Lemma 2.11, which imply that for
p̄ as in Lemma 2.11 and all q ≥ 1,

〈|Y1(z, x)|
2p̄
〉
1/(2p̄) .

1
1+ |x − z|d−1 exp

(
−c
|x − z|
√
T

)
, (3.28)

〈|Y2|
q
〉
1/q . 1. (3.29)

Using (3.29) for q = 4 for the second RHS term and Hölder’s estimate in probability with
exponents

(
2p̄, 2p̄

p̄−1 , 2p̄, 2p̄
p̄−1

)
for the first RHS term followed by (3.28) and (3.29) for

q = 4 p̄
p̄−1 then yields

var[EL,T ] . L−2(d+1)
ˆ
BL

ˆ
BL

ˆ
Rd

1
1+ |x − z|d−1 exp

(
−c
|x − z|
√
T

)
×

1
1+ |x′ − z|d−1 exp

(
−c
|x′ − z|
√
T

)
dz dx dx′

+

ˆ
Rd

(
sup
B2(z)

ηL

)2
dz.

By definition of ηL, the second RHS term scales as L−d . For the first RHS term, we treat
the cases d = 2 and d > 2 separately, and start with d > 2. In this case, we may discard
the exponential cut-off, and a direct calculation yields

ˆ
Rd

1
1+ |x − z|d−1

1
1+ |x′ − z|d−1 dz .

1
1+ |x − x′|d−2 ,

whereas ˆ
BL

ˆ
BL

1
1+ |x − x′|d−2 dx dx

′ . Ld+2,

so that the claim (2.8) follows for d > 2.
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For d = 2, we split the integral over z into two parts: the integral over B2L and over
Rd \ B2L. On B2L we discard the exponential cut-off:
ˆ
B2L

ˆ
BL

ˆ
BL

1
1+ |x− z|

1
1+ |x′− z|

dx dx′ dz . L2
ˆ
B3L

ˆ
B3L

1
1+ |x|

1
1+ |x′|

dx dx′

. L4,

whereas on Rd \ B2L we take advantage of the exponential cut-off:
ˆ
Rd\B2L

ˆ
BL

ˆ
BL

1
1+ |x− z|

exp
(
−c
|x− z|
√
T

)
1

1+ |x′− z|
exp

(
−c
|x′− z|
√
T

)
dz dx dx′

.
ˆ
Rd\BL

L4 1
1+ |z|2

exp
(
−c
|z|
√
T

)
dz . L4 ln

(
1+

√
T

L

)
,

and the claim (2.8) follows for d = 2.
To extend the result to the corrector field itself for d > 2, we rely on the same soft

arguments as in the discrete case for the limit T ↑ ∞, and refer the reader to [16, proof
of Theorem 2.1, Step 8].

3.4. Proof of Proposition 2: convergence of ∇φT to ∇φ

We divide the proof into six steps. In the first step we give some preliminary results on
the function ψT of Lemma 2.14, which allow us in the second step to reduce the claim
of Proposition 2 to an estimate of var[ψT ]. The remaining four steps are dedicated to the
proof of that estimate.

Step 1: Preliminary results. By differentiating (2.4) with respect to T , we find that for all
ζ ∈ H1,

〈T −1ψT ζ + Dζ · A(0)DψT 〉 = 〈φT ζ 〉. (3.30)

Taking ζ = ψT yields the a priori estimate

T −1
〈ψ2

T 〉 + 〈|DψT |
2
〉 . 〈φTψT 〉. (3.31)

Next, we prove the following formula for the derivative of 〈φTψT 〉 with respect to T :

|∂T 〈φTψT 〉| = |T
−2(var[ψT ] + 2〈ψ∗TψT 〉)| ≤ T

−2(2 var[ψT ] + var[ψ∗T ]), (3.32)

where ψ∗T is the unique weak solution in H1 of

T −1ψ∗T − D · A∗(0)Dψ∗T = φT .

To this end we differentiate (3.30) in its pointwise form with respect to T ,

T −1∂TψT − D · A(0)D∂TψT = ∂T φT + T −2ψT = 2T −2ψT ,

which we rewrite as ∂TψT = 2T −2(T −1
− D · A(0)D)−1ψT . Likewise, we write ψ∗T =

(T −1
− D · A∗(0)D)−1φT . This implies (3.32) as follows:
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∂T 〈φTψT 〉 = 〈∂T φTψT 〉 + 〈φT ∂TψT 〉

= T −2 var[ψT ] + 2T −2
〈φT (T

−1
− D · A(0)D)−1ψT 〉

= T −2 var[ψT ] + 2T −2
〈((T −1

− D · A∗(0)D)−1φT )ψT 〉

= T −2(var[ψT ] + 2〈ψ∗TψT 〉).

Note that the sensitivity estimates for ψ∗T are identical to the sensitivity estimates for ψT
in Lemma 2.14 since the distribution of A∗ satisfies the same assumption as the one of A
(because transposition is a linear local operation).

Step 2: Reduction of the proof of Proposition 2 to the proof of

var[ψT ], var[ψ∗T ] .


√
T

6−d
for 2 ≤ d < 6,

ln
√
T for d = 6,

1 for d > 6.
(3.33)

Since ∇φ(0) is the weak limit in H of DφT , by lower semicontinuity of the norm, the
triangle inequality, the definition of ψT , and (3.31) we have

〈|DφT −∇φ(0)|2〉1/2 ≤ lim inf
t↑∞

〈∣∣∣∣ˆ t

T

(∂τ∇φτ ) dτ

∣∣∣∣2〉1/2

≤

ˆ
∞

T

〈|∇∂τφτ |
2
〉
1/2 dτ

=

ˆ
∞

T

τ−2
〈|∇ψτ |

2
〉
1/2 dτ

(3.31)

.
ˆ
∞

T

τ−2
〈φτψτ 〉

1/2 dτ.

To prove (2.12) it is therefore enough to show that

0 ≤ 〈φTψT 〉 .


T for d = 2,
√
T for d = 3,

ln T for d = 4,
1 for d > 4.

(3.34)

By (3.32), and Young’s and Cauchy–Schwarz’ inequalities, for all T0 . 1 and T ≥ T0,

〈φTψT 〉 =

ˆ T

T0

∂τ 〈φτψτ 〉 dτ + 〈φT0ψT0〉

≤

ˆ T

T0

τ−2(2 var[ψτ ] + var[ψ∗τ ]) dτ + 〈φ
2
T0
〉
1/2
〈ψ2

T0
〉
1/2,

so that (3.34) follows from (3.33) as regards the integral term, and from (3.31), Cauchy–
Schwarz’ inequality, and Proposition 1 with T = T0 . 1 as regards the second term.

The rest of the proof is dedicated to the proof of (3.33). Since the proofs of the esti-
mates of var[ψT ] and var[ψ∗T ] are similar, we only treat the former.

Step 3: Proof of

var[ψT ]

.

〈ˆ
Rd
h

2
T (z, 0)

(ˆ
B6(z)
|∇ψT (z

′)|2 dz′ + νd(T )

(ˆ
B18(z)

|∇φT (z
′)|2 dz′ + 1

))
dz

〉
+

〈ˆ
Rd

(ˆ
B6(z)
|∇φT (z

′)|2 dz′ + 1
)(ˆ

Rd
gT (y)hT (z, y) dy

)2

dz

〉
. (3.35)
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Here hT and gT are as in (2.32) and (2.26) for R = 2, respectively, and νd(T ) is given by
(2.48).

Since ψT = T 2∂T φT , one may apply (SG) to ψT . The claim then follows from (2.47)
in Lemma 2.14 with R = 2, and Young’s inequality.

The first term of the RHS is a nonlinear term since it involves ψT , whereas the second
term is linear. We estimate these terms separately in Steps 4 and 5.

Step 4: Suboptimal estimate of the nonlinear term. We prove〈ˆ
Rd
h

2
T (z, 0)

(ˆ
B6(z)
|∇ψT (z

′)|2 dz′ + νd(T )

(ˆ
B18(z)

|∇φT (z
′)|2 dz′ + 1

))
dz

〉

.


T 2−2α ln T for d = 2
T for d = 3
ln2 T for d = 4
1 for d > 4

+ 〈|DψT |2〉 ×

T 1−2α for d = 2,
√
T for d = 3,

ln T for d = 4,
1 for d > 4,

(3.36)

where α > 0 is the Hölder exponent of Lemma 2.12. Indeed, for |z| > 3 we bound
hT (z, 0) by Lemma 2.12, whereas hT (z, 0) is of order 1 for |z| ≤ 3 by (2.32), so that

hT (z, 0) .

{
min{|z|−α exp(−c|z|/

√
T ), 1} for d = 2,

min{|z|2−d exp(−c|z|/
√
T ), 1} for d > 2.

Since this estimate is deterministic, one may take it out of the expectation in the LHS of
(3.36). By stationarity and Lemma 2.2,〈ˆ

B6(z)
|∇ψT (z

′)|2 dz′ + νd(T )

(ˆ
B18(z)

|∇φT (z
′)|2 dz′ + 1

)〉
. 〈|DψT |2〉 + νd(T )(〈|DφT |2〉 + 1) . 〈|DψT |2〉 + νd(T ).

Estimate (3.36) thus follows by integrating over z and by the definition (2.48) of νd(T ).

Step 5: Estimate of the linear term. We prove〈ˆ
Rd

(ˆ
B6(z)
|∇φT (z

′)|2 dz′ + 1
)(ˆ

Rd
gT (y)hT (z, y) dy

)2

dz

〉

.


√
T

6−d
for 2 ≤ d < 6,

ln
√
T for d = 6,

1 for d > 6.
(3.37)

By the triangle inequality in probability,〈ˆ
Rd

(ˆ
B6(z)
|∇φT (z

′)|2 dz′ + 1
)(ˆ

Rd
gT (y)hT (z, y) dy

)2

dz

〉
=

ˆ
Rd

〈(ˆ
Rd
gT (y)hT (z, y)

(ˆ
B6(z)
|∇φT (z

′)|2 dz′ + 1
)1/2

dy

)2〉
dz

≤

ˆ
Rd

(ˆ
Rd
gT (y)

〈(ˆ
B6(z)
|∇φT (z

′)|2 dz′ + 1
)
h

2
T (z, y)

〉1/2

dy

)2

dz.
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Let p̄ be the Meyers exponent of Lemma 2.11. Hölder’s inequality in probability with
exponents

( p̄
p̄−1 , p̄

)
, Lemma 2.11, Proposition 1, and the definition of gT then yield〈ˆ

Rd

(ˆ
B6(z)
|∇φT (z

′)|2 dz′ + 1
)(ˆ

Rd
gT (y)hT (z, y) dy

)2

dz

〉
≤

ˆ
Rd

(ˆ
Rd

{
ln(2+

√
T /|y|) for d = 2

|y|2−d for d > 2

}
1

1+|y−z|d−1 exp
(
−c
|y|+|y−z|
√
T

)
dy

)2

dz.

For 2 ≤ d ≤ 3 we use the exponential cut-off both in the inner and outer integrals
(dimension d = 3 is critical for the inner integral), for 3 < d ≤ 6 we use the exponential
cut-off for the outer integral only (dimension d = 6 is critical for the outer integral), and
for d > 6 one may discard the exponential cut-off. We start with d > 3:〈ˆ

Rd

(ˆ
B6(z)
|∇φT (z

′)|2 dz′ + 1
)(ˆ

Rd
gT (y)hT (z, y) dy

)2

dz

〉

.
ˆ
Rd

1
1+ |z|2(d−3) exp

(
−c
|z|
√
T

)
dz .


√
T

6−d
for 3 < d < 6,

ln
√
T for d = 6,

1 for d > 6.

For d = 2, the inner integral scales as
√
T exp(−c|z|/

√
T ), and the claim (3.37) follows.

For d = 3, we rewrite the inner integrand using the exponential cut-off (up to changing
the value of c) in the form〈ˆ

R3

(ˆ
B6(z)
|∇φT (z

′)|2 dz′ + 1
)(ˆ

R3
gT (y)hT (z, y) dy

)2

dz

〉
.

ˆ
R3

(ˆ
R3

√
T |y|−2 1

1+ |y − z|2
exp

(
−c
|y| + |y − z|
√
T

)
dy

)2

dz

.
ˆ
R3
T

1
1+ |z|2

exp
(
−c
|z|
√
T

)
dz .

√
T

3
,

that is, (3.37).

Step 6: Nonlinear estimate and buckling. The combination of (3.35) with (3.36) & (3.37)
yields

var[ψT ] . 〈|DψT |2〉×


T 1−2α for d = 2
√
T for d = 3

ln T for d = 4
1 for d > 4

+

√
T

6−d
for 2 ≤ d < 6

ln
√
T for d = 6

1 for d > 6

 . (3.38)

We then appeal to the following nonlinear estimate, which follows from (3.31), Cauchy–
Schwarz’ inequality and Proposition 1:

〈|DψT |2〉 . var[ψT ]1/2
{
(ln T )1/2 for d = 2,
1 for d > 2.

(3.39)
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Combined with the nonlinear estimate (3.39), (3.38) thus turns into

var[ψT ] . var[ψT ]1/2×


T 1−2α(ln T )1/2 for d = 2
√
T for d = 3

ln T for d = 4
1 for d > 4

+

√
T

6−d
for 2 ≤ d < 6

ln
√
T for d = 6

1 for d > 6

 ,
which yields the desired estimate (3.33) for ψT by Young’s inequality.

3.5. Proof of Theorem 2: convergence of AT to Ahom

Theorem 2 follows from the identities

〈(Dφ′T −∇φ
′
(0)) · A(0)(ξ +∇φ(0))〉 = 0, (3.40)

〈(DφT −∇φ(0)) · A∗(0)(ξ ′ +∇φ
′
(0))〉 = 0, (3.41)

the calculation

ξ ′ ·AT ξ − ξ
′
·Ahomξ

= 〈(ξ ′+Dφ′T ) ·A(0)(ξ +DφT )〉−〈(ξ ′+∇φ
′
(0)) ·A(0)(ξ +∇φ(0))〉

= 〈(Dφ′T −∇φ
′
(0)) ·A(0)(ξ +∇φ(0))〉+〈(ξ ′+Dφ′T ) ·A(0)(DφT −∇φ(0))〉

(3.40),(3.41)
= −〈(DφT −∇φ(0)) ·A∗(0)(ξ ′+∇φ

′
(0))〉+〈(ξ ′+Dφ′T ) ·A(0)(DφT −∇φ(0))〉

= 〈(Dφ′T −∇φ
′
(0)) ·A(0)(DφT −∇φ(0))〉,

Cauchy–Schwarz’ inequality, and Proposition 2 (which holds both for φT and φ′T ).

3.6. Proof of Corollary 2: bounds on the bottom of the spectrum

By the estimate (3.33) of var[ψT ] in the proof of Proposition 2, it is enough to prove that
for all T ≥ 1,

〈dG(dλ)d〉([0, T −1
]) . T −4 var[ψT ]. (3.42)

Indeed, since for all λ ≤ T −1,

T −4

(T −1 + λ)4
& 1,

we have

〈dG(dλ)d〉([0, T −1
]) =

ˆ T −1

0
ded(λ) . T −4

ˆ
∞

0

1
(T −1 + λ)4

ded(λ). (3.43)

Since ψT = (T −1
+L)−2d, we recognize in the integral of the RHS of (3.43) the spectral

representation of 〈ψ2
T 〉 = var[ψT ], which proves (3.42).
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4. Proofs of the spectral gap estimates

4.1. Proof of Lemma 2.3: (SG) implies ergodicity

We shall prove ergodicity in the following form: For all X ∈ L1(�), we have

lim
R↑∞

〈∣∣∣∣ 
BR

X(y) dy − 〈X〉

∣∣∣∣〉 = 0, (4.1)

whereX is the stationary extension ofX. We divide the proof into two steps. We first show
by approximation that it is enough to prove (4.1) for bounded random fields X ∈ L∞(�)
which only depend on A through its restriction A|V to some bounded set V . We then
show that for such random fields, (4.1) follows from (SG).
Step 1: Approximation argument. Since the mapX 7→ 〈|

ffl
BR
X(y) dy−〈X〉|〉 is Lipschitz

continuous on L1(�) uniformly in R, it is enough to establish (4.1) on an L1(�)-dense
subset of X’s. By definition of measurability, we may thus restrict ourselves to X’s that
depend on A only through its restriction A|V to some bounded set V . Moreover, a simple
truncation argument shows that any X ∈ L1(�) can be approximated in L1(�) by X̃ ∈
L∞(�). Hence we may restrict ourselves to X ∈ L∞(�) that depend on A only through
its restriction on a some ball BL.
Step 2: Proof that (SG) implies (4.1). By Step 1, it is enough to prove (4.1) for bounded
random fields X ∈ L∞(�) which only depend on A through its restriction to balls BL. In
that case, by stationarity of X and since X does not depend on A|Rd\BL ,

var[
 
BR

X(y) dy] ≤
1
ρ

ˆ
Rd

〈(
osc
A|B`(x)

 
BR

X(y) dy

)2〉
dx

≤
1
ρ

 
BR

 
BR

ˆ
Rd

〈
osc
A|B`(x)

X(y) osc
A|B`(x)

X(y′)
〉
dx dy dy′

. ‖X‖2L∞(�)

 
BR

 
BR

ˆ
Rd
1|x−y|≤L+`1|x−y′|≤L+` dx dy dy

′

. R−d(L+ `)2d‖X‖2L∞(�),

so that by Cauchy–Schwarz’ inequality and stationarity of X,〈∣∣∣∣ 
BR

X(y) dy − 〈X〉

∣∣∣∣〉 ≤ var
[ 

BR

X(y) dy

]
R↑∞
−−−→ 0.

4.2. Proof of Corollary 3: q-(SG)

We assume without loss of genarality that 〈X〉 = 0, and divide the proof into three steps.
Step 1: Proxy for the Leibniz rule. For any function ζ and all q ≥ 1,

osc |ζ |q . |ζ |q−1 osc ζ + (osc ζ )q . (4.2)

This follows from Young’s inequality and the two elementary estimates

osc |ζ |q . (sup |ζ |q−1) osc ζ, sup |ζ | ≤ |ζ | + osc ζ.
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Step 2: Proof that for all q ≥ 1,

〈X2q
〉
1/q . 〈X2

〉 +

〈(ˆ
Rd

(
osc

A|B2`(z)
X
)2
dz

)q〉1/q

. (4.3)

By definition of the oscillation we have oscA|B2`(z)
X ≥ oscA|B`(0) X for all z ∈ B`(0) so

that
´
Rd (oscA|B2`(z)

X)2 dz & (oscA|B`(0) X)
2. Since the origin plays no special role, this

can be rewritten as

sup
z

(
osc
A|B`(z)

X
)2

.
ˆ
Rd

(
osc

A|B2`(z)
X
)2
dz.

This immediately implies, for any q ≥ 1,
ˆ
Rd

(
osc
A|B`(z)

X
)2q

dz .

(ˆ
Rd

(
osc

A|B2`(z)
X
)2
dz

)q
. (4.4)

We then apply (SG) to |X|q :

〈X2q
〉 − 〈|X|q〉2 = var[|X|q ] .

〈ˆ
Rd

(
osc
A|B`(z)

|X|q
)2

dz

〉
.

By the Leibniz rule (4.2) this implies

〈X2q
〉 . 〈|X|q〉2 +

〈ˆ
Rd
X2(q−1)

(
osc
A|B`(z)

X
)2
〉
+

〈ˆ
Rd

(
osc
A|B`(z)

X
)2q

〉
. (4.5)

We treat the three terms of the RHS separately. For the third term we appeal to (4.4). For
the second term, we use Hölder’s and Young’s inequalities both with exponents

( q
q−1 , q

)
,

which yields for all C > 0

〈X2(q−1)
ˆ
Rd

(
osc
A|B`(z)

X
)2
〉 ≤ 〈X2q

〉
q−1
q

〈(ˆ
Rd

(
osc
A|B`(z)

X
)2
)q〉1/q

≤
q − 1
Cq
〈X2q
〉 +

Cq−1

q

〈(ˆ
Rd

(
osc
A|B`(z)

X
)2
)q〉

. (4.6)

For the first term of the RHS of (4.5) it is enough to treat the case q > 2 since for q ≤ 2,
it is controlled by the q th power of the RHS of (4.3). We then apply Hölder’s inequality

with exponents
(
2 q−1
q−2 , 2 q−1

q

)
to 〈|X|q〉 = 〈|X|q

q−2
q−1 |X|

q
q−1 〉; this yields for all C > 0, by

Young’s inequality,

〈|X|q〉2 ≤ 〈X2q
〉
q−2
q−1 〈X2

〉
q
q−1

≤
q − 2

C(q − 1)
〈X2q
〉 +

Cq−2

q − 1
〈X2
〉
q . (4.7)

The combination of (4.5)–(4.7) with (4.4) and Young’s inequality yields (4.3).
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Step 3: Conclusion. The spectral gap estimate applied to X,

〈X2
〉 .

〈ˆ
Rd

(
osc
A|B`(z)

X

)2

dz

〉
,

combined with Jensen’s inequality in probability yields

〈X2
〉 .

〈(ˆ
Rd

(
osc
A|B`(z)

X

)2

dz

)q〉1/q

,

so that the claim follows from (4.3).

5. Proofs of the sensitivity estimates

The sensitivity estimates do not require the coefficients A ∈ � to be smooth. It is how-
ever convenient to first prove these estimates under that additional assumption. These
estimates are then recovered for general coefficients by density. Indeed, by elementary
L2-theory, if the coefficientsA are approximated by a sequence of smooth coefficientsAk
in L1

loc(R
d), then φT (·;Ak) converges in H 1

loc(R
d) to φT (·;A), and for all x the Green

function y 7→ GT (y, x;Ak) converges in H 1
loc(R

d
\ Br(x)) for all r > 0. This is enough

to prove the convergence of the RHS of the oscillation estimates (2.31) and (2.47). For
the LHS we use in addition the fact that φT and ψT are Hölder continuous uniformly
in space and with respect to A, so that L2

loc(R
d) convergence implies pointwise con-

vergence. The Hölder continuity of φT is a consequence of the De Giorgi–Nash–Moser
theory, while the uniform Hölder continuity in addition relies on the uniform L2-bound
(2.24) of Lemma 2.7. A similar argument holds for ψT .

5.1. Proof of Lemma 2.8: sensitivity of φT

We letA1, A2 ∈ � be smooth and coincide outside BR(z), z ∈ Rd , with someA ∈ �. For
convenience we denote by φ1 and φ2, and G1 and G2 the associated modified correctors
for ξ ∈ Rd , |ξ | = 1, and Green functions for T > 0.

Step 1: Preliminaries. By definition, φ1 and φ2 are smooth and φ1 − φ2 is a classical
solution of

T −1(φ1 − φ2)−∇ · (A1∇(φ1 − φ2)) = ∇ · ((A1 − A2)(ξ +∇φ2)). (5.1)

Since A1 and A2 coincide outside BR , the RHS of (5.1) has compact support so that
φ1 − φ2 ∈ H 1(Rd). Since all the quantities are smooth and x 7→ G1(x, y) ∈

W 1,d/(d−1+ε)(Rd) for all 0 < ε ≤ 1, φ1 − φ2 satisfies the Green representation formula

φ1(x)− φ2(x) = −

ˆ
Rd
∇yG1(y, x) · (A1(y)− A2(y))(ξ +∇φ2(y)) dy. (5.2)
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The second ingredient in the proof is estimate (2.33), which we prove now. Since
φ1 − φ2 ∈ H

1(Rd), an a priori estimate based on (5.1) yields
ˆ
Rd
|∇φ1(y)−∇φ2(y)|

2 dy .
ˆ
BR(z)

|ξ +∇φ2(y)|
2 dy.

This shows by the triangle inequality that for all x ∈ Rd ,
ˆ
BR(x)

|ξ +∇φ1(y)|
2 dy .

ˆ
BR(x)

|ξ +∇φ2(y)|
2 dy +

ˆ
BR(z)

|ξ +∇φ2(y)|
2 dy,

which yields the claim.

Step 2: Proof of (2.31) for |z − x| ≥ 2R. The starting point is the Green representation
formula (5.2), which yields, by Cauchy–Schwarz’ inequality,

|φ1(x)− φ2(x)| .

(ˆ
BR(z)

|∇yG1(y, x)|
2 dy

)1/2(ˆ
BR(z)

|ξ +∇φ2(y)|
2 dy

)1/2

. (5.3)

In order to conclude, we need to take the supremum over all the smooth coefficients
A1, A2 such that A1|BR(z) = A2|BR(z) = A|BR(z) in the RHS of (5.3). For the first
term, which depends on A1 but not on A2, we appeal to Lemma 2.9. For the second
term, we use (2.33). Note that the RHS of (5.3) is finite only for |z − x| > R, and that´
BR(z)
|∇yG1(y, x)|

2 dy . 1 for all |z− x| ≥ 2R by property (2.27) of Definition 2.4.

Step 3: Proof of (2.31) for |z − x| < 2R. By definition of oscA|BR(z) , using the triangle
inequality and thus just at the expense of a factor of 2, we may make any restrictions
on one of the two coefficient fields A1 and A2, say on A2, provided it does not violate
its smooth connection to A outside of BR(z). For our purpose, it is convenient to have
quantitative smoothness of A2 near z in the form of

A2|Rd\BR(z) = A|Rd\BR(z), A2|BR/2(z) = Id. (5.4)

As mentioned above, this can be obtained by setting A2 = (1− η)A+ η Id, where η is a
smooth cut-off function for BR/2(z) in BR(z).

We turn now to the proof of (2.31). It is enough to prove that for all R . 1 and all
|z− x| ≤ 2

3R,

osc
A1|BR(z)

φ1(x) .

(ˆ
BR(z)

|∇φ1(y)|
2 dy + 1

)1/2

,

then replace R by 3R in this estimate, and use the fact that

osc
A1|BR(z)

φ1(x) ≤ osc
A1|B3R(z)

φ1(x).

Due to the singularity of the Green function at x = y, the estimate (5.3) of Step 2 cannot
be used for |z−x| ≤ R. Instead of using Cauchy–Schwarz’ inequality, we cut the integral
into two parts BR/4(z) and BR(z) \ BR/4(z), and use Hölder’s inequality with exponents
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(p, q) for some 1 < p < d
d−1 for the first term, and Cauchy–Schwarz’ inequality for the

second term:

|φ1(x)− φ2(x)|

.

(ˆ
BR/4(z)

|∇yG1(y, x)|
p dy

)1/p(ˆ
BR/4(z)

|ξ +∇φ2(y)|
q dy

)1/q

+

(ˆ
BR(z)\BR/4(z)

|∇yG1(y, x)|
2 dy

)1/2(ˆ
BR(z)\BR/4(z)

|ξ +∇φ2(y)|
2 dy

)1/2

. (5.5)

We first treat the first summand on the RHS: The first factor is bounded uniformly in A1
since ∇G1 is bounded in Lp(Rd) uniformly with respect to A1 and T > 0 (as a conse-
quence of (2.27) and a dyadic decomposition of BR/4). For the second factor, we note that
φ2 satisfies

T −1φ2 −4φ2 = 0

in BR/2(z) since A2|BR/2(z) = Id, so that for all i ∈ {1, . . . , d}, ∂xiφ2 satisfies

T −1∂xiφ2 −4∂xiφ2 = 0

in BR/2(z). Hence, by classical interior elliptic regularity (see for instance [10, Theo-
rem 2, Sec. 6.3]), for all k ∈ N,

‖∇φ2‖H k(BR/4(z))
. ‖∇φ2‖L2(BR/2(z))

, (5.6)

where the multiplicative constant depends on k and R. This yields, by Sobolev embed-
ding, (ˆ

BR/4(z)
|∇φ2(y)|

q dy

)1/q

.

(ˆ
BR/2(z)

|∇φ2(y)|
2 dy

)1/2

,

so that the first summand on the RHS of (5.5) is estimated by(ˆ
BR/4(z)

|∇yG1(y, x)|
p dy

)1/p(ˆ
BR/4(z)

|ξ +∇φ2(y)|
q dy

)1/q

.

(ˆ
BR(z)

|∇φ2(y)|
2 dy + 1

)1/2

.

For the second summand of the RHS of (5.5), the first factor is of order 1 by (2.27), so
that(ˆ

BR(z)\BR/4(z)
|∇yG1(y, x)|

2 dy

)1/2(ˆ
BR(z)\BR/4(z)

|ξ +∇φ2(y)|
2 dy

)1/2

.

(ˆ
BR(z)

|∇φ2(y)|
2 dy + 1

)1/2

.

The claim then follows by taking the supremum in A2|BR(z) of these two estimates using
(2.33).
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5.2. Proof of Lemma 2.14: sensitivity of ψT

The proof has the same structure as the proof of Lemma 2.8. We letA1, A2 ∈ � be smooth
and coincide outside BR(z), z ∈ Rd , with some A ∈ �. For convenience we denote by φ1
and φ2, and ψ1 and ψ2 the associated modified correctors for ξ ∈ Rd , |ξ | = 1 and the
functions given by (2.45). We also denote by G1 the Green function associated with A1
and a zero-order term of magnitude T .

Step 1: Preliminaries and proof of (2.49). Since δφ := φ1−φ2 is smooth and inH 1(Rd)
according to Step 1 in the proof of Lemma 2.8, and ψ2 is smooth, the function δψ :=
ψ1 − ψ2 is a classical solution of

T −1δψ −∇ · A1∇δψ = δφ −∇ · (A1 − A2)∇ψ2, (5.7)

and is in H 1(Rd). Hence the Green representation formula holds: For all x ∈ Rd

δψ(x) =

ˆ
Rd
∇yG1(y, x) · (A1 − A2)(y)∇ψ2(y) dy +

ˆ
Rd
G1(y, x)δφ(y) dy. (5.8)

We first establish (2.49). We test the following equivalent form of (5.7):

T −1δψ −∇ · A2∇δψ = δφ −∇ · (A2 − A1)∇ψ1

with δψ , which yields the a priori estimate

T −1
ˆ
Rd
(δψ)2 dx +

ˆ
Rd
|∇δψ |2 dx .

ˆ
Rd
|δφδψ | dx +

ˆ
BR(z)

|∇ψ1|
2 dx. (5.9)

We then appeal to (2.31) in Lemma 2.8 to bound the first term of the RHS by

ˆ
Rd
|δφδψ | dx ≤

ˆ
Rd
|δψ(x)|h1(z, x) dx

(ˆ
B3R(z)

|∇φ1|
2 dy + 1

)1/2

,

where h1 is given by (2.32) (with Green’s function GT (·, ·;A1)). In dimension d = 2,
we use Cauchy–Schwarz’ inequality and obtain, by integrating h1 on dyadic annuli (and
using (2.27)),

ˆ
Rd
|δφδψ | dx ≤

√
T

(
T −1

ˆ
Rd
δψ

2
dx

)1/2

(ln T )1/2
(ˆ

B3R(z)
|∇φ1|

2 dy + 1
)1/2

.

Using Young’s inequality and absorbing the L2-norm of δψ into the LHS of (5.9) yields
ˆ
Rd
|∇δψ |2 dx .

ˆ
BR(z)

|∇ψ1|
2 dy + T ln T

(ˆ
B3R(z)

|∇φ1|
2 dy + 1

)
,

from which (2.49) follows for d = 2, by using in addition (2.33).
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For d > 2, we use Cauchy–Schwarz’ inequality with weight

ˆ
Rd
|δφδψ | dx ≤

(ˆ
Rd

1
|z− x|2 + 1

(δψ(x))2 dx

)1/2

×

(ˆ
Rd
(|z− x|2 + 1)h

2
1(z, x) dx

)1/2(ˆ
B3R(z)

|∇φ1|
2 dy + 1

)1/2

.

To the first factor, we apply Hardy’s inequality in the form
ˆ
Rd

1
|z− x|2 + 1

(δψ(x))2 dx .
ˆ
Rd
|∇δψ |2 dx.

For the second factor, we appeal to (2.27) for h1 when integrated on dyadic annuli. This
yields, uniformly with respect to z ∈ Rd ,

ˆ
Rd
(|z− x|2 + 1)h

2
1(z, x) dx .


√
T for d = 3,

ln T for d = 4,
1 for d > 4.

This implies the desired estimate (2.49) for d > 2 by Young’s inequality and (2.33).

Step 2: Proof of (2.47) for |z − x| ≥ 2R. The starting point is the Green representation
formula (5.8). By Cauchy–Schwarz’ inequality, we bound the first term of the RHS by∣∣∣∣ˆ

Rd
∇yG1(y, x) · (A1 − A2)(y)∇ψ2(y) dy

∣∣∣∣
.

(ˆ
BR(z)

|∇yG1(y, x)|
2 dy

)1/2(ˆ
BR(z)

|∇ψ2|
2 dy

)1/2

.

We then take the supremum in A1 and A2 using Lemma 2.9 and estimate (2.49), respec-
tively. This yields

sup
A1,A2

∣∣∣∣ˆ
Rd
∇yG1(y, x) · (A1 − A2)(y)∇ψ2(y) dy

∣∣∣∣
.

(ˆ
BR(z)

|∇yG1(y, x)|
2 dy

)1/2

×

(ˆ
BR(z)

|∇ψT |
2 dy + νd(T )

(ˆ
B3R(z)

|∇φT |
2 dy + 1

))1/2

. (5.10)

Note that the RHS of (5.10) is only finite for |z−x| > R and that
´
BR(z)
|∇yGT (y, x)|

2 dy

. 1 for |z− x| ≥ 2R by (2.27) and a dyadic decomposition of BR(z).
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For the second term of the RHS of (5.8), we bound the Green function pointwise
by gT (see (2.26)), and use the oscillation estimate (2.31) to bound δφ:

sup
A1,A2

ˆ
Rd
G1(y, x)|δφ(y)| dy .

ˆ
Rd
g1(x − y)h1(z, y) dy

(ˆ
B3R(z)

|∇φ1|
2 dy + 1

)1/2

.

(5.11)
Combining (5.10) and (5.11) yields (2.47) for |z− x| ≥ 2R.

Step 3: Proof of (2.47) for |z − x| < 2R. As in the proof of Lemma 2.8, it is enough to
consider smooth functions A2 of the form

A2|Rd\BR(z) = A|Rd\BR(z), A2|BR/2(z) = Id,

and prove that for all R > 0 and |z− x| ≤ 2
3R,

sup
A1,A2

δψ(x) .

(ˆ
BR(z)

|∇ψ1|
2 dy + νd(T )

(ˆ
B3R(z)

|∇φ1|
2 dy + 1

))1/2

+

(ˆ
BR(z)

|∇φ1(y)|
2 dy + 1

)1/2 ˆ
Rd
g1(x − y)h1(z, y) dy,

then to replace R by 3R in this estimate, and to use

osc
A|BR(z)

ψ1(x) ≤ osc
A|B3R(z)

ψ1(x).

The starting point is again the Green representation formula (5.8). The second term
can be dealt with as in Step 2. For the first term however, due to the singularity of the
Green function at x = y, we cannot use the Cauchy–Schwarz inequality. Instead, we
proceed as in the proof of Lemma 2.8. We split the integrals into two parts, and apply
Hölder’s inequality with exponents (p, q) for some 1 < p < d/(d − 1) to the first term,
and Cauchy–Schwarz’ inequality to the second term:∣∣∣∣ˆ

Rd
∇yG1(y, x) · (A1 − A2)(y)∇ψ2(y) dy

∣∣∣∣
.

(ˆ
BR/8(z)

|∇yG1(y, x)|
p dy

)1/p(ˆ
BR/8(z)

|∇ψ2|
q dy

)1/q

(5.12)

+

(ˆ
BR(z)\BR/8(z)

|∇yG1(y, x)|
2 dy

)1/2(ˆ
BR(z)\BR/8(z)

|∇ψ2|
2 dy

)1/2

. (5.13)

We first treat (5.12). The first factor in (5.12) is bounded uniformly in A1 since ∇G1 is
bounded in Lp(Rd) uniformly with respect to A1 and T > 0 (see (2.27)). For the second
factor, we note that in BR/2(z), ψ2 satisfies

T −1ψ2 −4ψ2 = φ2.
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Hence, for all i ∈ {1, . . . , d},

T −1∂xiψ2 −4∂xiψ2 = ∂xiφ2,

so that by classical interior regularity (see for instance [10, Theorem 2, Sec. 6.3]), for all
k ∈ N0,

‖∇ψ2‖H k+2(BR/8(z))
. ‖∇φ2‖H k(BR/4(z))

+ ‖∇ψ2‖L2(BR/4(z))
, (5.14)

where the multiplicative constant depends on k andR. This yields, by Sobolev embedding
and the regularity property (5.6) in the proof of Lemma 2.8,(ˆ

BR/8(z)
|∇ψ2|

q dy

)1/q

.

(ˆ
BR/2(z)

|∇φ2|
2 dy

)1/2

+

(ˆ
BR/4(z)

|∇ψ2|
2 dy

)1/2

.

Thus (5.12) is bounded as follows:

(ˆ
BR/8(z)

|∇yG1(y, x)|
p dy

)1/p(ˆ
BR/8(z)

|∇ψ2|
q dy

)1/q

.

(ˆ
BR(z)

|∇φ2|
2 dy

)1/2

+

(ˆ
BR(z)

|∇ψ2|
2 dy

)1/2

. (5.15)

We now turn to (5.13). We recall that the first factor in (5.13) is bounded by 1 (see (2.27)),
so that(ˆ

BR(z)\BR/8(z)
|∇yG1(y, x)|

2 dy

)1/2(ˆ
BR(z)\BR/8(z)

|∇ψ2|
2 dy

)1/2

.

(ˆ
BR(z)

|∇ψ2|
2 dy

)1/2

. (5.16)

Appealing to (2.33) and (2.49) to estimate the supremum with respect to A2 of the RHS
of (5.15) and (5.16) completes the oscillation estimate for |z− x| < 2R.

Appendix. Proofs of the other auxiliary lemmas

A.1. Proof of Lemma 2.7: existence and uniqueness for φT

We proceed in two steps, first sketching the argument for the existence, and then turning
to uniqueness. We may consider T = 1 by scaling.

Step 1: Existence. Let ξ ∈ Rd . To obtain a sequence of approximate solutions φR , we
solve (2.23) on balls BR with increasing radii and homogeneous Dirichlet boundary con-
ditions. We test the defining equation for φR with the function η2

zφR where ηz(x) =
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exp(−c|z− x|) for arbitrary z ∈ Rd and some c > 0 to be fixed later. This yields
ˆ
BR

η2
zφ

2
R dx +

ˆ
Rd
η2
z∇φR · A∇φR dx

= −2
ˆ
BR

φRηz∇ηz · A∇φR dx −

ˆ
BR

η2
z∇φR · Aξ dx − 2

ˆ
BR

ηzφR∇ηz · Aξ dx,

which, by the bounds on A and Young’s inequality for each term of the RHS with con-
stants κ, 2κ and κ > 0, respectively, turns into
ˆ
BR

(
η2
z−

2
κ
|∇ηz|

2
)
φ

2
R dx+λ

ˆ
BR

η2
z

(
1−2

κ

λ

)
|∇φR|

2 dx ≤

(
1

4κ
+κ

)
|ξ |2

ˆ
Rd
η2
z dx.

(A.1)
Choosing κ = λ/4 and c =

√
λ/4 then yields the a priori estimate

ˆ
BR

η2
zφ

2
R dx +

ˆ
Rd
η2
z |∇φR|

2 dx . |ξ |2
ˆ
Rd
η2
z dx.

By weak compactness, the sequence φR (or a subsequence) weakly converges inH 1
loc(R

d)

to some function φ, which is a distributional solution of (2.23) on Rd . In addition, φ
satisfies the a priori estimate

ˆ
Rd
η2
zφ

2
dx +

ˆ
Rd
η2
z |∇φ|

2 dx . |ξ |2
ˆ
Rd
η2
z dx, (A.2)

which implies (2.24) since its RHS does not depend on z.

Step 2: Uniqueness. Let δφ be such that lim supt↑∞
ffl
Bt
((δφ)2 + |∇δφ|2) dx < ∞ and

satisfy (2.23) with ξ = 0. Let η0 be as in Step 1 for z = 0. We first argue that
ˆ
Rd
η2

0δφ
2
dx +

ˆ
Rd
η2

0|∇δφ|
2 dx <∞.

Indeed, by assumption, there existsC <∞ such that supt≥1
ffl
Bt
((δφ)2+|∇δφ|2) dx ≤ C,

so that for all N ∈ N,
ˆ
BN

η2
0δφ

2
dx +

ˆ
BN

η2
0|∇δφ|

2 dx .
N∑
t=1

td exp(2c(1− t))
 
Bt

(δφ
2
+ |∇δφ|2) dx

≤ C

∞∑
t=1

td exp(−2ct) <∞.

We may thus test equation (2.23) with η2
0,Rδφ, where η0,R = η0µR and µR is a smooth

cut-off function on BR . Passing to the limit R ↑ ∞ by dominated convergence leads to
the energy identity

ˆ
Rd
η2

0δφ
2
dx +

ˆ
Rd
η2

0∇δφ · A∇δφ dx = −2
ˆ
Rd
η0δφ∇η0 · A∇δφ dx.
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Using Young’s inequality as for (A.1) then yieldsˆ
Rd

(
η2

0 −
2
κ
|∇η0|

2
)
(δφ)2 dx +

ˆ
Rd
η2

0

(
1− 2

κ

λ

)
|∇δφ|2 dx ≤ 0,

which, with the choice κ = λ/4 and c =
√
λ/4 as in Step 1, establishes uniqueness.

A.2. Proof of Lemma 2.9: sensitivity of GT

By a standard regularization argument, one may assume that Ã and A are smooth and
coincide outside BR(z), z ∈ Rd . We denote byGT , G̃T ∈ W 1,1(Rd) the associated Green
functions, T > 0. Subtracting the defining equations (2.29) with singularity at y ∈ Rd
for GT and G̃T then yields

T −1(G̃T (x, y)−G(x, y))−∇x ·
(
Ã(x)∇x(G̃T (x, y)−GT (x, y))

)
= ∇x ·

(
(Ã− A)(x)∇xGT (x, y)

)
(A.3)

in the sense of distributions on Rdx . SinceGT and G̃T belong to C∞(Rd ×Rd \ {x = y}),
the RHS of (A.3) is smooth with support inBR(z) provided |z−y| > R. HenceGT (·, y)−
G̃T (·, y) is also a classical solution of (A.3) and therefore belongs to H 1(Rd) since the
RHS has compact support.

The energy estimate yields
ˆ
Rd
|∇x(G̃T (x, y)−GT (x, y))|

2 dx

.
ˆ
Rd
∇x(G̃T (x, y)−G(x, y)) · (Ã− A)(x)∇xGT (x, y) dx.

Since A and Ã coincide outside BR(z), using the Cauchy–Schwarz inequality we obtain(ˆ
BR(z)

|∇x(G̃T (x, y)−GT (x, y))|
2 dx

)1/2

.

(ˆ
BR(z)

|∇xGT (x, y)|
2 dx

)1/2

,

so that by the triangle inequality(ˆ
BR(z)

|∇xG̃T (x, y)|
2 dx

)1/2

.

(ˆ
BR(z)

|∇xGT (x, y)|
2 dx

)1/2

,

as desired.

A.3. Properties of the Green functions

We first address the existence part. By a scaling argument, it is sufficient to consider
T = 1 (we thus drop the subscript T = 1 from our notation). By a standard approximation
argument, it is sufficient to consider the case of a smooth uniformly elliptic coefficient
field A on a (large) ball D. Let G(x, y) denote the Green function for these data, which
is known to exist by classical theory. For the above properties of the whole-space, non-
smooth coefficients Green function, it is enough to establish the following properties ofG:
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• Uniform, but qualitative continuity off the diagonal and off the boundary, that is, for all
r > 0,

{(x, y) ∈ D2
: dist({x, y}, ∂D) ≥ 2, |x − y| > r} 3 (x, y) 7→ G(x, y)

has modulus of continuity only depending on d, λ, r, (A.4)

but not on the modulus of continuity of A nor on D. By Arzelà–Ascoli’s compactness
criterion, it is this equicontinuity that ensures the continuity (2.25) when taking the
limit in the approximation argument.
• Pointwise upper bounds on G: For x, y away from the boundary in the sense of

dist({x, y}, ∂D) ≥ 1 we claim

G(x, y) . exp(−c|x − y|)

{
ln(2+ 1/|x − y|) for d = 2,
|x − y|2−d for d > 2.

(A.5)

It is obvious that under the locally uniform convergence off the diagonal coming from
Arzelà–Ascoli’s compactness criterion this turns into (2.26) in the limit.
• Averaged bounds on ∇xG and ∇yG: For dist(y, ∂D) ≥ 1 we have(

R−d
ˆ
D∩{R<|x−y|<2R}

|∇xG(x, y)|
2 dx

)1/2

. exp(−cR)R1−d , (A.6)

and for dist(x, ∂D) ≥ 1 we have(
R−d

ˆ
D∩{R<|y−x|<2R}

|∇yG(x, y)|
2 dy

)1/2

. exp(−cR)R1−d . (A.7)

By lower semicontinuity of these expressions under pointwise convergence of G,
(A.6) & (A.7) turn into (2.27) & (2.28) in the limit.
• Differential equation:

G−∇x · A(x)∇xG = δ(x − y) distributionally in Dx,
G−∇y · A

∗(y)∇yG = δ(y − x) distributionally in Dy .

Since (A.5) and (A.6) & (A.7) imply the local equiintegrability of the maps Rd 3 x
7→ (G(x, y),∇xG(x, y)) and Rd 3 y 7→ (G(x, y),∇yG(x, y)), this yields (2.29) &
(2.30) in the limit.

We now come to a further reduction: because of the symmetry of our assumptions under
exchanging the roles of x and y, we may restrict to the x-variable in proving the above
estimates. Because our assumptions are invariant under translation, we may restrict to the
case of y = 0 and we may assume

dist(0, ∂D) ≥ 1. (A.8)

We thus suppress the y-dependence in our notation and just write G(x), which is charac-
terized as the solution of

G−∇ · A∇G = δ in D, G = 0 on ∂D. (A.9)
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It will be convenient to separate the near-field behavior dominated by the singularity (i. e.
for |x| � 1) from the far-field behavior dominated by the massive term (i.e. for |x| � 1):
• Pointwise upper bounds on G: We shall show

G(x) .

{
ln(2+ 1/|x|) for d = 2
|x|2−d for d > 2

for |x| < 2/3, (A.10)

G(x) . exp(−c|x|) for |x| ≥ 2/3, dist(x, ∂D) ≥ 1. (A.11)

This yields (A.5) (with a reduced value for the generic c > 0).
• Uniform, but qualitative continuity of G: We note that by De Giorgi’s a priori esti-

mate of the Hölder modulus of an A-harmonic function, these quantitative pointwise
estimates imply that for all r > 0,

{x ∈ D : dist(x, ∂D) ≥ 2, |x| > r} 3 x 7→ G(x)

has modulus of continuity only depending on d, λ, r.

Note that because of the massive term (which however is under good control because
of (A.10) & (A.11)), we need a version of De Giorgi’s estimate with a (bounded) right-
hand side (see for instance [19, Theorem 4.1]). Since a uniform modulus of continuity
of G(x, y) in x (for all y) and a uniform modulus of continuity in y (for all x) implies
a uniform modulus of continuity in (x, y), this yields (A.4).
• Average estimates on ∇G: We shall show(

R−d
ˆ
D∩{R<|x|<2R}

|∇G|2 dx

)1/2

. R1−d for 0 < R ≤ 1/6, (A.12)(
R−d

ˆ
D∩{|x|>R}

|∇G|2 dx

)1/2

. exp(−cR) for R ≥ 1/6. (A.13)

This implies (A.6).
Our argument for (A.10)–(A.13) is self-contained with the exception of De Giorgi’s a
priori estimate for A-subharmonic functions u (i.e. satisfying −∇ · A∇u ≤ 0) in some
ball BR(x):

u(x) . R−d
ˆ
BR(x)

max{u, 0}. (A.14)

With this key ingredient, we split the proof into several easy steps.

Step 1: Near-field estimates on G. We start by establishing average near-field estimates
on G. We start with the easier case of d > 2 and establish

R−d
ˆ
D∩{|x|≤R}

Gdx . R2−d for all R > 0, (A.15)

reproducing the classical argument of Grüter & Widman [18, (1.1) Theorem]. To this end,
we test (A.9) with min{G,M} for an arbitrary 0 ≤ M <∞. Using the uniform ellipticity
A ≥ λ Id we obtainˆ

D

min{G,M}2 dx + λ
ˆ
D

|∇ min{G,M}|2 dx ≤ M.
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We remove the first positive term, which comes from the massive term. With the help of
the scale invariant Sobolev estimate (here we use d > 2) on D (with vanishing boundary
data), this yields ˆ

D

|min{G,M}|2d/(d−2) dx . Md/(d−2),

from which, redefining M/2 to be M , we deduce the weak Ld/(d−2)-estimate

|D ∩ {G > M}| . M−d/(d−2),

where | · | denotes the d-dimensional volume. We now restrict to the ball of radius R:

|D ∩ {|x| < R} ∩ {G > M}| . min{R−d ,M−d/(d−2)
}

and integrate over M ∈ (0,∞) to recover the L1-norm:

ˆ
D∩{|x|≤R}

Gdx =

ˆ
∞

0
|D ∩ {|x| < R} ∩ {G > M}| dM

.
ˆ
∞

0
min{R−d ,M−d/(d−2)

} dM
M=R−(d−2)M̂
= R2

ˆ
∞

0
min{1, M̂−d/(d−2)

}dM̂ ∼ R2,

which establishes (A.15).
The average near-field estimates on G is more subtle for d = 2; in fact, one naturally

controls only the oscillation of G in the sense that(
R−2 inf

c∈R

ˆ
|x|<R

(G− c)2 dx

)1/2

. 1 for all 0 < R ≤ 1. (A.16)

We note that because of (A.8) and R ≤ 1, we have {|x| < R} ⊂ D. The argument for
(A.16) mimics [21, Lemma 10] which is a simplification of [16, Lemma 2.8], which itself
was a quantification of [7, Lemma 2.5]. Let cR denote the median of G over {|x| ≤ R}.
Following the argument for d > 2, we test (A.9) with the truncated G − cR , namely
max{min{G − cR,M},−M} for an arbitrary 0 ≤ M < ∞. Since the test function has
no sign, the massive term now gets into our way. However, since G ≥ 0 in D by the
maximum principle, for the normal derivative we have ν · A∇G ≤ 0 on ∂D, so that
integrating (A.9) yields

´
D
Gdx ≤ 1. Hence we may rewrite (A.9) as−∇·A∇(G−cR) =

f := δ−G with the total variation of the signed measure f bounded by 1+
´
Gdx ≤ 2.

Therefore, testing yields

λ

ˆ
D

∣∣∇ max
{
min{G− cR,M},−M

}∣∣2 dx ≤ 2M,

which we reduce to the ball {|x| ≤ R} and split into
ˆ
|x|≤R

∣∣∇ min
{
max{±(G− cR), 0},M

}∣∣2 dx . M. (A.17)
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By symmetry, it is enough to show that the plus sign in (A.17) implies

R−2
ˆ
|x|≤R

u2 dx . 1, where u := max{G− cR, 0}. (A.18)

Here is the argument: By definition of the median cR , the function u and a fortiori
min{u,M} vanishes on at least half the ball {|x| ≤ R}. Hence by a Poincaré–Sobolev
estimate on {|x| ≤ R} we obtain(

R−2
ˆ
|x|≤R

min{u,M}6 dx
)1/6

.

(ˆ
|x|≤R

|∇ min{u,M}|2 dx
)1/2 (A.17)

. M1/2,

where there is nothing specific to the exponent 6, in fact, any finite exponent larger than 4
would do. As in the previous step, this yields the weak-type estimate

(R−2
|{|x| ≤ R} ∩ {u > M}|)1/6 . min{1,M−1/2

},

which (after taking the sixth power) we integrate against
´
∞

0 ·M dM to obtain the
(squared) L2-norm

R−2
ˆ
|x|<R

u2 dx .
ˆ
∞

0
min{1,M−3

}M dM ∼ 1.

This establishes (A.18) and thus (A.16).
In order to “anchor” the (d = 2)-estimate (A.16) onG, we need the following average

intermediate-scale estimate on G:(ˆ
|x|≤1

G2 dx

)1/2

. 1. (A.19)

As opposed to the previous step, we now use the massive term to our advantage by testing
with min{G,M} as in case of d > 2:

ˆ
D

min{G,M}2 dx + λ
ˆ
D

|∇ min{G,M}|2 dx ≤ M.

Note that since {|x| ≤ 1} ⊂ D (see (A.8)), we may restrict the estimate to the ball
{|x| ≤ 1} where we use a Sobolev estimate to obtain(ˆ

|x|≤1
min{G,M}6 dx

)1/6

. M1/2.

We then proceed as in the previous step (with R = 1).
Equipped with (A.16) and (A.19), we can now complete the average near-field esti-

mate on G in case of d = 2:(
R−2

ˆ
|x|≤R

G2 dx

)1/2

. ln(2+ 1/R) for all 0 < R ≤ 1. (A.20)
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An elegant way to obtain such a logarithmic estimate, even directly in its pointwise ver-
sion, is a dimension reduction from d = 3 as in Avellaneda & Lin [3]; however, we need
the BMO-type bound (A.16) also for the average near-field estimate on ∇G so that we opt
for a derivation of (A.20) from (A.16). We consider dyadic radii R = 2−n with n ∈ N0.
Let cn denote the average of G over {|x| < 2−n}. From (A.16) for R = 2−n we learn in
particular that |cn+1− cn| . 1, whereas from (A.19) we get in particular |c0| . 1. Hence
|cn| . n+ 1, and thus, once again from (A.16),(

R−2
ˆ
|x|≤2−n

G2 dx

)1/2

. n+ 1,

which translates into (A.20).
We now obtain the desired pointwise near-field estimates (A.10) on G as follows:

Since G ≥ 0, G is a subsolution of −∇ · A∇ away from the origin, and thus (A.10)
follows from (A.15) (for d > 2) and (A.20) (for d = 2) by applying De Giorgi’s result
(A.14) to the ball B with center x and radius R = |x|/2 (which by (A.8) and |x| ≤ 2/3 is
contained in D).

Step 2: Far-field estimates on G. We start with the average version of the far-field esti-
mates—all dimensions can be treated simultaneously:

ˆ
D∩{|x|≥1/3}

(exp(c|x|)G)2 dx . 1. (A.21)

For this purpose, we fix a smooth cut-off function η that vanishes in {|x| ≤ 1/6} but is
equal to 1 on {|x| ≥ 1/3}, and we will show that

ˆ
D

η2 exp(2c|x|)G2 dx . 1. (A.22)

In order to establish (A.22), we follow Caccioppoli’s strategy as modified by Agmon [1]
and test (A.9) with η2 exp(2c|x|)G to arrive at

ˆ
D

η2 exp(2c|x|)G2 dx +

ˆ
D

∇(η2 exp(2c|x|)G) · A∇Gdx = 0.

Introducing the abbreviation η̃ := η exp(c|x|) we now use the pointwise inequality

∇(η̃2G) · A∇G = η̃2
∇G · A∇G− 2Gη̃∇η̃ · A∇G

≥ λη̃2
|∇G|2 − 2|G| |η̃| |∇η̃| |∇G| ≥ −

1
λ
G2
|∇η̃|2

to obtain the integral inequality
ˆ
D

η2 exp(2c|x|)G2 dx ≤
1
λ

ˆ
G2
|∇(η exp(c|x|))|2 dx

≤
2c
λ

ˆ
D

G2η2 exp(2c|x|) dx +
2
λ

ˆ
D

G2
|∇η|2 dx.
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The second RHS term, which by choice of η is supported in {1/6 < |x| < 1/3}, is . 1
by the pointwise near-field estimates (A.10), the first RHS term can be absorbed into the
LHS provided c < 1/(2λ). This establishes (A.22) and thus (A.21).

We now obtain the pointwise far-field estimates (A.11) on G from (A.21) via De
Giorgi’s result (A.14) applied to a ball B with center x and radius R = 1/3.

Step 3: Average estimates on the gradient ∇G. The near-field estimates (A.12) are easy
for d > 2: they follow from (A.10) via the standard Caccioppoli estimate based on testing
(A.9) with η2G, where η is a cut-off function for the annulus {R < |x| < 2R} in the
annulus {R/2 < |x| < 4R}. The massive term produces a good term that we discard.

In the case of d = 2, (A.12) follows from the average near-field estimate (A.16)
on the oscillation of G via a standard Caccioppoli estimate based on testing (A.9) with
η2(G − c), where η is a cut-off function for the annulus {R < |x| < 2R} in the annulus
{R/2 < |x| < 4R}, and c is the average of G over {|x| ≤ 4R}. As opposed to the
previous step, the massive term gets in our way by generating the following RHS term,
which however is lower order (in R � 1):

R−2
ˆ
D

η2(G− c)G dx .

(
R−2

ˆ
|x|<4R

(G− c)2 dx R−2
ˆ
|x|<4R

G2 dx

)1/2

(A.16),(A.10)

. (ln(2+ 1/R))1/2.

The far-field estimates (A.13) can again be easily treated for all d: they follow from the
average far-field estimates (A.21) onG (employed for |x| ∼ R, sayR � 1) via a standard
Caccioppoli estimate based on testing (A.9) with η2G, where η is a cut-off function for
{|x| > R} in {|x| > R/2}. The massive term produces a good term that we discard.

Step 4: Uniqueness argument. The uniqueness argument is different from [18] (who do
not consider the whole-space case with a massive term) in the sense it makes stronger
assumptions, namely (2.27), but uses less machinery, namely no lower pointwise bounds
coming from Harnack’s inequality. By scaling, we may still assume that T = 1. We fix
a uniformly elliptic (but not necessarily smooth) coefficient field A. We consider a Green
function G(x, y).

The main technical step of our uniqueness argument is the following: For any ε > 0,
we consider the mollification of G(x, y) in y, say,

Gε(x, y) = ε
−d

ˆ
|y′−y|<ε

G(x, y′) dy′.

We claim thatˆ
Rd

(
G2
ε(x, y)+ |∇xGε(x, y)|

2) dx <∞ for all ε > 0, y ∈ Rd . (A.23)

Here is the argument: A dyadic decomposition shows that (A.24) and (A.12) (together
with (2.26)) imply that for any fixed α > d − 2, say α = d − 1, we haveˆ

Rd
|x − y|α

(
G2(x, y)+ |∇xG(x, y)|

2) dx . 1 for all y ∈ Rd . (A.24)
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Since α < d, we obtain because of ∇xGε(x, y) = ε−d
´
|y′−y|≤ε

∇xG(x, y
′) dy′, by

Cauchy–Schwarz in y′,

G2
ε(x, y)+ |∇xGε(x, y)|

2

≤ ε−d
ˆ
|y′−y|≤ε

|x − y′|−α dy′ε−d
ˆ
|y′−y|≤ε

|x − y′|α
(
G2(x, y′)+ |∇xG(x, y

′)|2
)
dy′

α<d

. ε−d−α
ˆ
|y′−y|≤ε

|x − y′|α
(
G2(x, y′)+ |∇xG(x, y

′)|2
)
dy′,

and thus by (A.24),
ˆ
Rd
G2
ε(x, y)+ |∇xGε(x, y)|

2 dx

. ε−d−α
ˆ
|y′−y|≤ε

ˆ
Rd
|x − y′|α

(
G2(x, y′)+ |∇xG(x, y

′)|2
)
dx dy′

(A.24)

. ε−α,

which is a quantification of (A.23).
We now come to the uniqueness argument proper and consider the difference u(x, y)

of two Green’s functions. By assumption, for fixed y, u(·, y) and ∇xu(·, y) are integrable
and satisfy

u−∇x · A(x)∇xu = 0 distributionally in Rd .
This persists for the mollification uε(·, y) in the y-variable introduced in the previous
step:

uε −∇x · A(x)∇xuε = 0 distributionally in Rd . (A.25)

On the other hand, we know from (A.23) that the uε(·, y) and ∇xuε(·, y) are square
integrable. This means that we may test (A.25) with uε to getˆ

Rd

(
u2
ε(x, y)+ |∇xuε(x, y)|

2) dx = 0.

This implies uε(x, y) = 0 for almost every x and all y. By the continuity property (2.25),
this implies first uε(x, y) = 0 for all x 6= y and then in the limit ε ↓ 0 that u(x, y) = 0
for x 6= y, thus establishing uniqueness.

A.4. Proof of Lemma 2.11: optimal integrated estimates of ∇GT

We follow [23] and split the proof into four steps. Let 1 ≤ p ≤ p̄ where p̄ is as in
Lemma 2.10.

Step 1. We claim that by Lemma 2.10 we have, for any radius R,〈
R−d

ˆ
R<|y|≤2R

(
|∇∇GT (0, y)|2p + R−2p

|∇xGT (0, y)|2p
)
dy

〉1/2p

. R−d exp
(
−c

R
√
T

)
. (A.26)
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Indeed, by stationarity we have

〈|∇∇GT (x, y)|
2p
〉 = 〈|∇∇GT (0, y − x)|2p〉,

〈|∇xGT (0, y)|2p〉 = 〈|∇yGT (−y, 0)|2p〉,

so that (A.26) follows by taking the expectation of the (2p)th power of (2.36) and (2.35).

Step 2. Consider the A-dependent functions u = u(x;A), f (x;A), h(x;A), and the
vector field g = g(x;A) related by

T −1u−∇ · A∇u = ∇ · g + f + T −1h in Rd . (A.27)

Suppose that f and g are supported on an annulus of radius R:

f (x) = 0, g(x) = 0 unless R < |x| ≤ 2R, (A.28)

and that h is bounded by some κ and supported on B2R . Then we claim

〈|∇u(0)|2p〉
1

2p . sup
A∈�

(
R−d

ˆ
Rd
(|g|2p + R2p

|f |2p) dy

) 1
2p

+ T −1 min{R,
√
T } sup

A∈�

κ. (A.29)

〈|∇u(0)|〉 .
〈
R−d

ˆ
Rd
(|g|2 + R2

|f |2) dy

〉1/2

+ T −1
〈κ2
〉. (A.30)

To prove (A.29), we start by noting that (A.27) yields the representation formula

u(x) =

ˆ
Rd
GT (x, y)(∇ · g + f + T

−1h)(y) dy,

which we use in the form of

∇u(0) = −
ˆ
Rd
∇∇GT (0, y)g(y) dy +

ˆ
Rd
∇xGT (0, y)(f (y)+ T −1h(y)) dy.

By Cauchy–Schwarz’ inequality and the support assumption, this yields

|∇u(0)| ≤
(ˆ

R<|y|≤2R
|∇∇GT (0, y)|2 dy

ˆ
R<|y|≤2R

|g(y)|2 dy

)1/2

+

(ˆ
R<|y|≤2R

|∇xGT (0, y)|2 dy
ˆ
R<|y|≤2R

|f (y)|2 dy

)1/2

+ T −1κ

ˆ
B2R

|∇xGT (0, y)| dy.
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This implies, by Hölder’s inequality in probability,

〈|∇u(0)|2p〉
1

2p ≤ 31 sup
A∈�

(
R−d

ˆ
Rd
(|g|2p + R2p

|f |2p) dy

) 1
2p
+32T

−1 sup
A∈�

κ,

〈|∇u(0)|〉 ≤ 33

〈
R−d

ˆ
Rd
(|g|2 + R2

|f |2) dy

〉1/2

+34T
−1
〈κ2
〉,

where we have set for abbreviation

31 := R
d

〈
R−d

ˆ
R<|y|≤2R

(
|∇∇GT (0, y)|2p + R−2p

|∇xGT (0, y)|2p
)
dy

〉 1
2p
,

32 :=

〈(ˆ
B2R

|∇xGT (0, y)| dy
)2p〉 1

2p
,

33 := R
d

〈
R−d

ˆ
R<|y|≤2R

(
|∇∇GT (0, y)|2 + R−2

|∇xGT (0, y)|2
)
dy

〉1/2

,

34 :=

〈(ˆ
B2R

|∇xGT (0, y)| dy
)2〉1/2

.

On the one hand, (A.26) in Step 1 exactly yields 33 . 31 . 1. On the other hand, a
decomposition of B2R into the dyadic annuli {2i < |x| ≤ 2i+1

} for i ∈ (−∞, I )∩Z with
I = [log2(2R)]+1 combined with the triangle inequality, (A.26), and Hölder’s inequality
yields (using the exponential cut-off for R ≥

√
T )

34 ≤ 32 ≤

I∑
i=−∞

〈(ˆ
2i<|y|≤2i+1

|∇xGT (0, y)| dy
)2p〉 1

2p

.
I∑

i=−∞

(2i)d(1−
1

2p )
〈ˆ

2i<|y|≤2i+1
|∇xGT (0, y)|2p dy

〉 1
2p

(A.26)

.
I∑

i=−∞

(2i)d(1−
1

2p )((2i)d+2p(1−d))
1

2p exp(−c2i/
√
T )

=

I∑
i=−∞

(2i)1−d exp(−c2i/
√
T ) . min{2I ,

√
T }.

The desired estimates (A.29) and (A.30) follow.

Step 3. Consider an A-dependent functions u = u(x;A) satisfying

T −1u−∇ · A∇u = 0 in B2R. (A.31)
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Then we claim

〈|∇u(0)|2p〉
1

2p .

(
1+

R
√
T

)
sup
A∈�

(
R−d

ˆ
B2R

|∇u|2p dy

) 1
2p
. (A.32)

〈|∇u(0)|〉 .
(

1+
R
√
T

)〈
R−d

ˆ
B2R

|∇u|2 dy

〉1/2

. (A.33)

To see this, consider a cut-off function η for BR in B3/2R such that |∇η| . R−1 and set
v := η(u− ū), where ū denotes the average of u on B3/2R . Equation (A.31) yields

T −1v −∇ · A∇v = −∇ · g + f + T −1h (A.34)

with g := (u − u)A∇η, f := −∇η · A∇u, and h = ηū. By choice of η, the functions g
and f satisfy the support condition (A.28) and we have, for all q ≥ 1,ˆ

Rd
(|g|2q + R2q

|f |2q) dy .
ˆ
B3R/2

(R−2q
|u− ū|2q + |∇u|2q) dy,

so that Poincaré’s inequality on B3R/2 applied to the first term of the RHS yieldsˆ
Rd
(|g|2q + R2q

|f |2q) dy .
ˆ
B3R/2

|∇u|2q dy. (A.35)

It remains to bound the second RHS term of (A.29). To this end we now take a cut-
off function η for B3R/2 in B2R such that |∇η| . R−1. Testing (A.31) with η2u and
integrating on B2R then yields

T −1
ˆ
B2R

η2u2 dy = −

ˆ
B2R

η2
∇u · A∇u dy − 2

ˆ
B2R

ηu∇η · A∇u.

We absorb the second RHS term into the LHS by Young’s inequality and get, by definition
of η,

|ū| =

∣∣∣∣ 
B3R/2

u dy

∣∣∣∣ ≤ ( 
B3R/2

u2 dy

)1/2

.
√
T

( 
B2R

|∇u|2 dy

)1/2

,

so that by Jensen’s inequality

T −1 min{
√
T ,R} sup

B2R

|ηū| .
R
√
T

(
R−d

ˆ
B2R

|∇u|2q dy

) 1
2q
. (A.36)

By (A.35) and (A.36) for q = p and for q = 2, (A.32) and (A.33) follow from (A.29)
and (A.30).

Step 4: Proof of (2.37) and (2.38). We fix y ∈ Rd \ {0} and apply Step 3 to u(x) =
GT (x, y) and R = 1

6 |y|. From (A.32) we obtain

〈|∇xGT (0, y)|2p〉
1

2p .

(
1+
|y|
√
T

)
sup
A∈�

(
|y|−d

ˆ
B1/3|y|

|∇xGT (x, y)|
2p dx

) 1
2p
.
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Since
B|y|/3 ⊂ {x ∈ Rd : 2|y|/3 < |x − y| ≤ 4|y|/3}, (A.37)

we obtain by (2.35) with R = 1
2 |y| the desired estimate (2.37), i.e.

〈|∇xGT (0, y)|2p〉
1

2p .

(
1+
|y|
√
T

)
|y|1−d exp

(
−c
|y|
√
T

)
. |y|1−d exp

(
−c
|y|
√
T

)
,

for a slightly smaller c > 0.
Next we turn to the mixed second gradient, and apply Step 3 to the function u(x) =

∇yGT (x, y) with R = 1
6 |y| and deduce from (A.33) that

〈|∇∇GT (0, y)|〉 .
(

1+
|y|
√
T

)〈
|y|−d

ˆ
B|y|/3

|∇∇GT (x, y)|
2 dx

〉1/2

.

The inclusion (A.37) yields

〈|∇∇GT (0, y)|〉 . (1+
|y|
√
T
)

〈
|y|−d

ˆ
2
3 |y|≤|x−y|≤

4
3 |y|
|∇∇GT (x, y)|

2 dx

〉1/2

.

By stationarity in the form of 〈|∇∇GT (x, y)|2〉 = 〈|∇∇GT (0, y − x)|2〉 and (A.26), this
yields the desired estimate (2.38).

A.5. Proof of Lemma 2.13: refined energy estimates

We split the proof into three steps. We start with the proof of (2.41), then show that it
implies (2.43) by a dyadic decomposition of the RHS, and then turn to (2.44), which is a
variation of (2.41).

Step 1: Proof of (2.41). By rescaling length according to x =
√
T x̂, we see that it is

enough to show that (2.40) yields (2.41) for T = 1. By dyadic iteration, it is enough to
show there exists a constant θ(d, λ) < 1 such that

v −∇ · A∇v = 0 in B2R (A.38)

implies ˆ
BR

(v2
+ |∇v|2) dx ≤ θ

ˆ
B2R

(v2
+ |∇v|2) dx,

which by the Widman hole-filling trick follows fromˆ
BR

(v2
+ |∇v|2) dx .

ˆ
R<|x|≤2R

(v2
+ |∇v|2) dx. (A.39)

In order to obtain (A.39), we test (A.38) with η2(v − v̄), where η is a cut-off function
for BR in B2R and v̄ is the average of v on {R < |x| ≤ 2R}, to obtainˆ

B2R

(
η2(v − v̄)v +∇(η2(v − v̄)) · A∇v

)
dx = 0.
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For the massive term we use v(v − v̄) ≥ 1
2v

2
−

1
2 v̄

2; for the elliptic term we use

∇(η2(v − v̄)) · A∇v = η2
∇v · A∇v + 2η(v − v̄)∇η · A∇v

≥ λη2
|∇v|2 − 2η|v − v̄| |∇η| |∇v|

≥
1
2
λη|∇v|2 −

2
λ
(v − v̄)2|∇η|2,

so that we obtain
ˆ
B2R

η2(v2
+ λ|∇v|2) dx ≤

ˆ
B2R

(
η2v̄2
+

4
λ
|∇η|2(v − v̄)2

)
dx. (A.40)

By the properties of η, this yields
ˆ
BR

(v2
+ |∇v|2) dx . Rd v̄2

+ R−2
ˆ
R<|x|≤2R

(v − v̄)2 dx.

In order to obtain (A.39), we use Jensen’s inequality on the average v̄ yielding
Rd v̄2 .

´
R<|x|≤2R v

2 dx; we use Poincaré’s estimate on the annulus, yielding
R−2 ´

R<|x|≤2R(v − v̄)
2 dx .

´
R<|x|≤2R |∇v|

2 dx.

Step 2: Proof of (2.43). Rescaling lengths according to x = Rx̂ (which entails v = Rv̂
and
√
T = R

√
T̂ ) we see that it is enough to establish (2.43) for R = 1 only, that is,(ˆ

B1

(T −1v2
+ |∇v|2) dx

)1/2

.

(ˆ
Rd
((|x| + 1)−α|g|)2 dx

)1/2

. (A.41)

By the triangle inequality, it is sufficient to establish (A.41) under the additional condition
that

supp g ⊂ {R < |x| ≤ 2R}, (A.42)

in which case (A.41) turns into(ˆ
B1

(T −1v2
+ |∇v|2) dx

)1/2

. (R + 1)−α
(ˆ

Rd
|g|2 dx

)1/2

. (A.43)

By the energy estimate, i.e. testing (2.42) with v, we have(ˆ
Rd
(T −1v2

+ |∇v|2) dx

)1/2

.

(ˆ
Rd
|g|2 dx

)1/2

. (A.44)

This trivially yields (A.43) for R ≤ 1, so that we may focus on R ≥ 1. For R ≥ 1, we see
that (A.44) implies (A.43) using (2.41) since

T −1v −∇ · A∇v = 0 in BR.
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Step 3: Proof of (2.44). As in Step 1, by rescaling length according to x =
√
T x̂, we

may restrict to the case of T = 1. By dyadic iteration, it is enough to show there exists a
constant θ(d, λ) < 1 such that

u−∇ · A∇u = f := −ξ · x in B2R (A.45)

implies ˆ
BR

(u2
+ |∇u|2) dx ≤ θ

(ˆ
B2R

(u2
+ |∇u|2) dx + Rd+2

)
,

which follows by the Widman hole-filling trick fromˆ
BR

(u2
+ |∇u|2) dx .

ˆ
R<|x|≤2R

(u2
+ |∇u|2) dx + Rd+2. (A.46)

In order to obtain (A.46), we test (A.45) with η2(u− ū), where η is a cut-off function for
BR in B2R and ū is the average of u on the annulus {R < |x| ≤ 2R}, to obtain

ˆ
B2R

η2( 1
2u

2
+

1
2 (u− ū)

2
+∇u · A∇u

)
dx

=

ˆ
B2R

(
η2 1

2 ū
2
− 2η(u− ū)∇η · A∇u+ η2(u− ū)f

)
dx.

By the assumptions on A, this turns into the inequality
ˆ
B2R

η2( 1
2u

2
+

1
2 (u− ū)

2
+ λ|∇u|2

)
dx

≤

ˆ
B2R

(
η2 1

2 ū
2
+ 2η|u− ū| |∇η| |∇u| + η2(u− ū)f

)
dx.

Using Young’s inequality shows thatˆ
B2R

η2(u2
+ |∇u|2) dx .

ˆ
B2R

(η2ū2
+ |∇η|2|u− ū|2 + η2f 2) dx.

Using the properties of η yieldsˆ
BR

(u2
+ |∇u|2) dx . Rd ū2

+

ˆ
B2R

f 2 dx + R−2
ˆ
R<|x|≤2R

|u− ū|2 dx.

We now apply Jensen’s inequality to the average ū, yielding Rd ū2 .
´
R<|x|≤2R u

2; we
also appeal to Poincaré’s estimate on the annulus, yielding R−2 ´

R<|x|≤2R(u− ū)
2 dx .´

R<|x|≤2R |∇u|
2 dx. This entails

ˆ
BR

(u2
+ |∇u|2) dx ≤

ˆ
B2R

f 2 dx +

ˆ
R<|x|≤2R

(u2
+ |∇u|2) dx.

Appealing to the special form of f yields (A.46).
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A.6. Proof of Lemma 2.12: suboptimal pointwise estimates of ∇GT

On {|z′| > |z|/2} the Green function satisfies

T −1GT (·, 0)−∇ · A∇GT (·, 0) = 0. (A.47)

Let 1 ∼ R ≤ |z|/6. We first prove the result for d > 2 by combining Caccioppoli’s
inequality and the pointwise bounds on the Green functions, and then turn to d = 2 using
in addition Lemma 2.13. Caccioppoli’s inequality for (A.47) then yieldsˆ

BR(z)

|∇z′GT (z
′, 0)|2 dz′ .

ˆ
B3R/2(z)

G2
T (z
′, 0) dz′, (A.48)

and we conclude by the pointwise estimate (2.26) for d > 2.
For d = 2 we appeal to Lemma 2.13 and use (2.41) in the form of(ˆ

BR(z)

|∇z′GT (z
′, 0)|2 dz′

)1/2

. |z|−α
(ˆ

B|z|/3(z)
(T −1G2

T (z
′, 0)+ |∇GT (z′, 0)|2) dz′

)1/2

.

On the one hand, the pointwise estimate (2.26) for d = 2 yields for the first RHS term,
since |z| & 1,

ˆ
B|z|/3(z)

T −1G2
T (z
′, 0) dz′ . sup

B|z|/3(z)

(
|z′|
√
T

)2

exp
(
−c
|z′|
√
T

)
ln2
(

2+

√
T

|z′|

)
. 1.

On the other hand, for the second RHS term we use Caccioppoli’s inequality in the form:
for all c ∈ R,ˆ

B|z|/3(z)
|∇GT (z

′, 0)|2 dz′ . |z|−2
ˆ
B|z|/2(z)

(GT (z
′, 0)− c)2 dz′ + T −1

|z|2|c|.

If |z| ≤
√
T , we choose c =

ffl
B3|z|/2

GT (z
′, 0) dz′ and appeal to the oscillation estimate

(A.16) (in its T -rescaled version) to obtain

|z|−2
ˆ
B|z|/2(z)

(GT (z
′, 0)− c)2 dz′ ≤ |z|−2 inf

κ∈R

ˆ
B3|z|/2(0)

(GT (z
′, 0)− κ)2 dz′ . 1;

and we use (2.26), which implies that

T −1
|z|2|c| . sup

B3|z|/2

{(
|z′|
√
T

)2

exp
(
−c
|z′|
√
T

)
ln
(

2+

√
T

|z′|

)}
. 1.

If |z| >
√
T , we take c = 0 and use supB3|z|/2

GT (z
′, 0) . 1 by (2.26).
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Inst. H. Poincaré Probab. Statist. 47, 294–327 (2011) Zbl 1213.60163 MR 2779406

[26] Papanicolaou, G. C., Varadhan, S. R. S.: Boundary value problems with rapidly os-
cillating random coefficients. In: Random Fields, Vol. I, II (Esztergom, 1979), Colloq.
Math. Soc. János Bolyai 27, North-Holland, Amsterdam, 835–873 (1981) Zbl 0499.60059
MR 0712714

[27] Wu, L.: A new modified logarithmic Sobolev inequality for Poisson point processes and
several applications. Probab. Theory Related Fields 118, 427–438 (2000) Zbl 0970.60093
MR 1800540

[28] Yurinskiı̆, V. V.: Averaging of symmetric diffusion in random medium. Sibirsk. Mat. Zh. 27,
167–180 (1986) (in Russian) Zbl 0614.60051 MR 0867870

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1326.39015&format=complete
http://www.ams.org/mathscinet-getitem?mr=3418538
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1233.60026&format=complete
http://www.ams.org/mathscinet-getitem?mr=2824870
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1342.60101&format=complete
http://www.ams.org/mathscinet-getitem?mr=3418749
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06537679&format=complete
http://www.ams.org/mathscinet-getitem?mr=3432548
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1213.60163&format=complete
http://www.ams.org/mathscinet-getitem?mr=2779406
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0499.60059&format=complete
http://www.ams.org/mathscinet-getitem?mr=0712714
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0970.60093&format=complete
http://www.ams.org/mathscinet-getitem?mr=1800540
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0614.60051&format=complete
http://www.ams.org/mathscinet-getitem?mr=0867870

	Introduction
	Main results
	General framework
	Statement of the main results
	The example of the Poisson inclusion process
	Structure of the proofs and statement of the auxiliary results

	Proofs of the main results
	Proof of Lemma 2.5: control of the moments of _T by its gradient
	Proof of Lemma 2.6: moment bounds on _T
	Proof of Theorem 1: variance estimate
	Proof of Proposition 2: convergence of _T to 
	Proof of Theorem 2: convergence of A_T to A_hom
	Proof of Corollary 2: bounds on the bottom of the spectrum

	Proofs of the spectral gap estimates
	Proof of Lemma 2.3: (SG) implies ergodicity
	Proof of Corollary 3: q-(SG)

	Proofs of the sensitivity estimates
	Proof of Lemma 2.8: sensitivity of _T
	Proof of Lemma 2.14: sensitivity of _T

	Appendix. Proofs of the other auxiliary lemmas
	Proof of Lemma 2.7: existence and uniqueness for _T
	Proof of Lemma 2.9: sensitivity of G_T
	Properties of the Green functions
	Proof of Lemma 2.11: optimal integrated estimates of G_T
	Proof of Lemma 2.13: refined energy estimates
	Proof of Lemma 2.12: suboptimal pointwise estimates of G_T

	References

