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Abstract. Let f be a polynomial automorphism of the affine plane. In this paper we consider the
possibility for it to possess infinitely many periodic points on an algebraic curve C. We conjecture
that this happens if and only if f admits a time-reversal symmetry; in particular the Jacobian Jac(f )
must be a root of unity.

As a step towards this conjecture, we prove that the Jacobian and all its Galois conjugates lie
on the unit circle in the complex plane. Under mild additional assumptions we are able to conclude
that indeed Jac(f ) is a root of unity.

We use these results to show in various cases that any two automorphisms sharing an infinite
set of periodic points must have a common iterate, in the spirit of recent results by Baker–DeMarco
and Yuan–Zhang.
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Introduction

In this paper we discuss the following problem in the case of polynomial automorphisms
of the affine plane.
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Dynamical Manin-Mumford Problem. Let X be a quasi-projective variety and f :
X→ X a dominant endomorphism. Describe all positive-dimensional irreducible subva-
rietiesC ⊂ X such that the Zariski closure of the set of preperiodic1 points of f contained
in C is Zariski dense in C.

In case (X, f ) is the dynamical system induced on an abelian variety (defined over a
number field) by multiplication by an integer ≥ 2, it is a deep theorem originally due
to M. Raynaud (and formerly known as the Manin–Mumford conjecture) that any such
C is a translate of an abelian subvariety by a torsion point. Several generalizations of
this theorem have appeared since then, concerning abelian and semiabelian varieties over
fields of arbitrary characteristic. We refer to [PR02, Roe08] for an account on the different
approaches to these results.

S.-W. Zhang [Zh95] conjectured that a similar result should hold in the more general
setting of polarized2 endomorphisms. More precisely, he asked whether any subvariety
containing a Zariski dense set of periodic points is itself preperiodic. This conjecture was
recently disproved by D. Ghioca, T. Tucker and S.-W. Zhang [GTZ11], who proposed
a modified statement (see also [Pa13]). Some positive results on Zhang’s conjecture are
also available—see for instance [MS14].

Our goal is to explore this problem when f is a polynomial automorphism of the
affine plane A2, defined over a field of characteristic zero.

Let us first collect a few facts on the dynamics of these maps. A dynamical classifi-
cation of polynomial automorphisms was given by S. Friedland and J. Milnor [FM89],
based on a famous theorem of H. W. E. Jung. They proved that any polynomial automor-
phism is conjugate to one of the following forms:

• an affine map,
• an elementary automorphism, that is, a map of the form (x, y) 7→ (ax + b, y + P(x))

with a 6= 0, b a constant and P is a polynomial,
• a polynomial automorphism f satisfying deg(f n) = deg(f )n ≥ 2 for every integer
n ≥ 1.

In the last case the integer deg(f ) ≥ 1 denotes the maximum of the degrees of the com-
ponents of f in any set of affine coordinates. An automorphism falling into this category
will be referred to as of Hénon type. Observe that the set of periodic points of an affine
or an elementary map is algebraic, hence the dynamical Manin–Mumford problem is
uninteresting in these cases. We shall therefore restrict our attention to Hénon-type auto-
morphisms.

Suppose that f is an automorphism of Hénon type that is conjugate to its inverse by an
involution σ possessing a curve C of fixed points. Such a map is usually called reversible
[GM03a, GM03b]. Then any point p ∈ C ∩ f−n(C) is periodic of period 2n, and we
verify in §7 that #(C ∩ f−n(C)) indeed grows to infinity. Thus the pair (f, C) falls into
the framework of the Manin–Mumford problem. On the other hand, it is a theorem by

1 That is, satisfying f n(p) = fm(p) for some n > m ≥ 0.
2 This means that X is projective, and f ∗L ' L⊗q for some ample line bundle L→ X and an

integer q ≥ 2.
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E. Bedford and J. Smillie [BS91] that there exists no f -invariant algebraic curve. These
examples motivate the following conjecture.

Conjecture 1 (Dynamical Manin–Mumford conjecture for complex polynomial auto-
morphisms of the affine plane). Let f be a complex polynomial automorphism of Hénon
type of the affine plane. Assume that there exists an irreducible algebraic curve C con-
taining infinitely many periodic points of f . Then there exists an involution σ of the affine
plane whose set of fixed points is C and an integer n ≥ 1 such that σf nσ = f−n.

Recall that the Jacobian Jac(f ) of a polynomial automorphism is a non-zero constant. If
f is reversible then Jac(f ) = ±1. In particular, if f n is reversible for some n then Jac(f )
must be a root of unity.

Our first main result can thus be seen as a step towards Conjecture 1 (see Remark 4.4
below for comments about the symmetry asserted in the conjecture).

Theorem A. Let f be a polynomial automorphism of Hénon type of the affine plane,
defined over a field of characteristic zero. Assume that there exists an algebraic curve
containing infinitely many periodic points of f . Then Jac(f ) is algebraic over Q and all
its Galois conjugates have complex modulus 1.

In particular, if Jac(f ) is an algebraic integer then it is a root of unity.
Using a specialization argument, one can reduce the proof to the case where f and

C are both defined over a number field L (see §5). Fix an algebraic closure Lalg of L.
Modifying a construction of S. Kawaguchi [Ka06], C.-G. Lee [Le13] built a dynamical
height function hf : A2(Lalg) → R+. This height is associated to a continuous semi-
positive adelic metrization of the ample line bundle OP2(1) (in the sense of Zhang [Zh95])
and hf (p) = 0 if and only if p is periodic. We refer the reader to the survey [CL11] for a
detailed account on these concepts.

When f and C are defined over a number field, Theorem A is now a consequence of
the following effective statement.

Theorem A′. Let f be a polynomial automorphism of Hénon type of the affine plane,
defined over a number field L. Assume that there exists an Archimedean place v such
that |Jac(f )|v 6= 1. Then for any algebraic curve C defined over L there exists a positive
constant ε = ε(C) > 0 such that the set {p ∈ C(Lalg) : hf (p) ≤ ε} is finite.

Let us briefly explain the strategy of the proof. We follow the approach of L. Szpiro,
E. Ullmo and S.-W. Zhang [SUZ97, Ul98, Zh98] to the Bogomolov conjecture whose
statement is the analog of Theorem A′ in case f is the doubling map on an abelian variety.

The first step is to describe the asymptotic distribution of the periodic points lying
on C. Pick any place v on L and denote by Cv the completion of the algebraic closure of
the completion of L relative to the norm v. Write ‖(x, y)‖v = max{|x|, |y|} and log+ =
max{log, 0}. Then it can be shown that the sequence of functions d−n log+ ‖f n(x, y)‖v
converges uniformly on bounded sets in (Cv)2 to a continuous “Green” function G+v :
(Cv)2 → R+ satisfying the invariance property G+ ◦ f = dG+, where d = deg(f ).
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Its zero locus {G+ = 0} coincides with the set of points in (Cv)2 with bounded forward
orbits.

Replacing f by its inverse, we define a function G− in a similar way and we set
G = max(G+,G−). These Green functions were first introduced and studied in the con-
text of complex polynomial automorphisms by J. H. Hubbard [Hu86], E. Bedford and
J. Smillie [BS91] and J. E. Fornæss and N. Sibony [FS92].

The key observation is that the asymptotic distribution of periodic points on C can
be understood by applying suitable equidistribution results for points of small height on
curves. These results were developed by various authors in successively greater generality
and the version we use here is due to P. Autissier [Au01] and A. Thuillier [Th05]. More
precisely, we prove that the collection of functions {G+v }v (resp. {G−v }v) induces a con-
tinuous semipositive metrization of OC(1). Then the Autissier–Thuillier theorem implies
that the probability measures equidistributed over Galois conjugates of periodic points
in C converge to a multiple of 1G+v |C (resp. 1G−v |C) at any place3 when the period
tends to infinity.

From this one deduces that for each v the functionsG+v andG−v are proportional on C
(up to a harmonic function).

The second step is to use this information on the Green functions to infer that f is
conservative at Archimedean places. The argument relies on Pesin’s theory and is quite
technical so that let us first explain how the mechanism works under a more restrictive
assumption.

Suppose indeed that there exists a hyperbolic periodic point p in the regular locus
reg(C) of C, with multipliers u, s satisfying |u| > 1 > |s|, and assume moreover that the
local unstable manifold Wu

loc(p), the local stable manifold W s
loc(p), and the curve C are

pairwise transverse. Using the invariance property of G+, we show that the local Hölder
exponent ϑ+ of G+ at p along Wu

loc(p) satisfies |u|ϑ+ = d. Using a rescaling argument
reminiscent of that used by X. Buff and A. Epstein [BE09], we then show that this Hölder
exponent is actually equal to that of G+|C . Applying the same argument to f−1, we find
that the local Hölder exponent ϑ− of G− along the stable manifold satisfies |s|−ϑ− = d .
But since G+|C and G−|C are proportional, ϑ− and ϑ+ must be equal. This proves that
|Jac(f )| = |us| = 1.

Unfortunately we cannot ensure the existence of such a saddle point at an archimedean
place. It turns out that working at all places (Archimedean or not) resolves this difficulty.
Adapting the above argument then leads to our next main result.

Theorem B. Let f be a polynomial automorphism of Hénon type, defined over a field of
characteristic zero. Assume that there exists an irreducible curve C containing infinitely
many periodic points of f . Suppose in addition that the following transversality statement
is true:

(T) There exists a periodic point p ∈ reg(C) such that TpC is not periodic under the
induced action of f .

Then Jac(f ) is a root of unity.

3 At a non-Archimedean place, 1 stands for the Laplacian operator as defined by Thuillier.
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Observe that this result is very much in the spirit of [GTZ11, Conjecture 2.4]. Let us also
note that if C contains a saddle point at an Archimedean place, then the transversality
assumption (T) is superfluous (see Theorem 4.3).

Returning to the proof of Theorem A we get around the issue of the existence of a hy-
perbolic periodic point onC and that of the transversality of its invariant manifolds withC
by applying Pesin’s theory of non-uniform hyperbolicity, in combination with the theory
of laminar currents, in the spirit of the work of E. Bedford, M. Lyubich and J. Smil-
lie [BLS93a]. This allows us to estimate the Hölder exponent of G+ at generic points
and relate it to the positive Lyapunov exponent of the so-called equilibrium measure
µf := (ddc)2 max(G+,G−). This is an ergodic invariant measure which has remark-
able properties; in particular it describes the asymptotic distribution of periodic orbits
[BLS93b].

The proportionality of G+ and G− on C finally implies that the positive and negative
exponents are opposite, thereby showing that |Jac(f )| = 1.

The key input of Pesin’s theory into our argument is to guarantee the transversality of
stable and unstable manifolds at a µf -generic point with the curve C.

A dual way to state Theorem A is to say that the intersection of the set of periodic
points with any curve is finite when |Jac(f )| 6= 1. We expect that the following stronger
uniform statement holds.

Conjecture 2. Let f be a complex polynomial automorphism of Hénon type such that
|Jac(f )| 6= 1. Then for any algebraic curve C, the cardinality of the set of periodic points
of f lying on C is bounded from above by a constant depending only on the degree of C,
the degree of f and the Jacobian Jac(f ).

We indicate in §3.3 how to adapt the arguments of Theorem A′ to confirm a weaker form
of this conjecture.

The automatic uniformity statement obtained by T. Scanlon [Sc04], based on ideas
of E. Hrushovski, implies that such a bound would follow from (a restricted version of)
the dynamical Manin–Mumford problem for product maps of the form (f, . . . , f ) acting
on (A2)n. Even though this problem seems very delicate, we are able to address some
cases of the dynamical Manin–Mumford problem for special product maps of Hénon
type.

In the second part of the paper we prove the following two theorems.

Theorem C. Let f and g be polynomial automorphisms of Hénon type of the affine plane
defined over a number field. If f and g share a set of periodic points that is Zariski dense,
then there exist non-zero n,m ∈ Z such that f n = gm.

Theorem D. Let f and g be polynomial automorphisms of Hénon type of the affine plane
with complex coefficients such that |Jac(f )| 6= 1. If f and g share an infinite set of
periodic points, then there exist non-zero n,m ∈ Z such that f n = gm.

Notice that these two statements concern product maps (f, g) such that the diagonal in
A2
× A2 admits a Zariski dense set of periodic points.4

4 Observe that in Theorem D, this Zariski density follows from Theorem A.
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We also show in §6.4 that Theorem C holds for a pair of automorphisms sharing
infinitely many periodic cycles.

Observe that Theorems C and D are analogs in our setting of recent results due to
M. Baker and L. DeMarco [BdM11] and X. Yuan and S.-W. Zhang [YZ13a, YZ13b].

We believe that these results hold under the following weaker assumption.

Conjecture 3. Suppose f and g are complex polynomial automorphisms of Hénon type
sharing infinitely many periodic points. Then f n = gm for some non-zero integers n
and m.

The proof of Theorems C and D goes as follows. The hypothesis implies that the equidis-
tribution theorem for points of small height (X. Yuan [Yu08], C.-G. Lee [Le13]) can
be applied. Therefore f and g have the same equilibrium measure. If it happens that f
and g are simultaneously conjugate to automorphisms that extend to birational maps on
P2 contracting the line at infinity to a point that is not indeterminate, then it is not difficult
to see that the Green functions of f and g coincide. We can then invoke a theorem of
S. Lamy [La01] to conclude that f and g have a common iterate.

Otherwise we use the equality of equilibrium measures at all places to infer that f
and g, as well as any automorphism belonging to the group generated by f and g, have the
same sets of periodic points. Then we use Lamy’s geometric group-theoretic description
of Aut[A2

] to reduce the situation to the previous one.
Theorem D is obtained from Theorem C by a specialization argument. Theorem A

is used in the course of the proof, which explains the need of an extra hypothesis on the
Jacobian of one of the maps.

The plan of the paper is as follows. In §1 we gather a number of facts on the dynamics
of polynomial automorphisms over arbitrary metrized fields, including equidistribution
theorems for points of small height. Then in §2 we show how these equidistribution re-
sults apply in our situation. Theorems A and B are respectively established in §3 and 4,
assuming that f and C are defined over a number field. The extension to general ground
fields is achieved in §5. The proofs of Theorems C and D are given in §6. Finally, §7 is
devoted to a discussion of reversible mappings.

1. Polynomial automorphisms over a metrized field

In the first four sections, we fix an arbitrary complete (non-trivially) metrized field (L, |·|)
of characteristic zero that is algebraically closed. In §1.6 and §1.7, we work over a number
field L.

1.1. Potential theory over a non-Archimedean curve

In this section we suppose that the norm on L is non-Archimedean and give a brief ac-
count of Thuillier’s potential theory on curves [Th05].

We pick any algebraic curve C defined over L (possibly singular). We shall work
with the analytification Can of C in the sense of Berkovich [Be90, §3.4]. If U ⊂ C
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is an affine Zariski open subset of C, then its analytification U an is defined as the set
of multiplicative seminorms on the ring L[U ] of regular functions whose restriction to L
equals | · |, endowed with the topology of pointwise convergence. Any closed point p ∈ C
defines a point in U an given by L[U ] 3 φ 7→ |φ(p)| ∈ R+.

The space Can is then constructed by patching together the sets U an where U ranges
over any affine cover ofC. In this way, one obtains a locally compact and connected space.
There is a distinguished set of compact subsets of Can that forms a basis for its topology;
its elements are referred to as strictly L-affinoid subdomains. We refer to [Be90, §3] for a
formal definition. For us it will be sufficient to say that each affinoid subdomain A has a
finite boundary, and admits a canonical retraction to its skeleton Sk(A) ⊂ A which is the
geometric realization of a finite graph. We write rA : A→ Sk(A) for this retraction.

Any of these skeletons comes equipped with a canonical integral affine structure,
hence with a metric. One can thus make sense of the notion of a harmonic function on
Sk(A). By definition this is a continuous function that is piecewise affine and such that
the sum of the directional derivatives at any point (including the endpoints) is zero.

A harmonic function h : U → R defined on a (Berkovich) open subset U of the
regular part reg(C)an of C is a continuous function such that for all subdomains A the
map h|Sk(A) is harmonic.

For any invertible function φ ∈ L[U ] defined on an affine open subset U ⊂ C, the
function log |φ| is harmonic onU an [Th05, Proposition 2.3.20]. However it is not true that
any harmonic function can be locally expressed as the logarithm of an invertible function
[Th05, Lemme 2.3.22]. This discrepancy with the complex case will not, however, affect
our arguments.

Proposition 1.1. Pick any open subset U of reg(C)an, and suppose that hn is a sequence
of harmonic functions defined on U that converges uniformly. Then its limit limn hn is
harmonic.

Proof. This is a consequence of the following fact: Suppose we are given a sequence
of convex functions on a real interval that converges locally uniformly. Then the limit is
convex and the directional derivatives also converge at any point. ut

Proposition 1.2 ([Th05, Proposition 2.3.13]). Suppose u is a non-negative harmonic
function such that h(p) = 0 for some point p ∈ U . Then h is constant in a neighborhood
of p.

Pick any connected open subset U ⊂ reg(C)an. An upper semicontinuous function u :
U → R ∪ {−∞} is said to be subharmonic if it is not identically −∞ and satisfies the
condition that for any strictly L-affinoid subdomain A and any harmonic function h on A
the inequality u|∂A ≤ h|∂A implies u ≤ h on A.

One can check that the set of subharmonic functions is a positive convex cone that
is stable under taking maxima, contains all functions of the form log |φ| for any regular
function φ, and is stable under decreasing sequences5 [Th05, Proposition 3.1.9].

5 We shall be concerned only with subharmonic functions that are uniform limits of positive
linear combinations of maxima of functions of the form log |φ|.
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To any subharmonic function u defined on an open set U ⊂ reg(C)an is associated a
unique positive Radon measure1u supported on U that satisfies the following properties:

• 1(au + v) = a1u + 1v for any two subharmonic functions u, v and any positive
constant a > 0;
• for any regular function φ, the Poincaré–Lelong formula holds:

1 log |φ| =
∑

φ(p)=0

ordp(φ)δp;

• for any decreasing sequence un → u, 1un converges to 1u in the weak sense of
measures.

We shall use the following properties of this Laplacian operator.

Proposition 1.3. Let u : U → R ∪ {−∞} be any subharmonic function. Then u is
harmonic if and only if 1u = 0.

Proof. If u is harmonic then ±u are subharmonic as in [Th05, Définition 3.1.5], hence
±1u is a positive measure by [Th05, Théorème 3.4.8], and 1u = 0.

Conversely, if 1u = 0 then u is harmonic by [Th05, Corollaire 3.4.9]. ut

Proposition 1.4. Suppose U,V are open subsets of the Berkovich analytifications of two
smooth algebraic curves, and f : U → V is an isomorphism. Let u be any subharmonic
function on V . Then u ◦ f is subharmonic on U , and 1(u ◦ f ) = f ∗1u.

Proof. The first statement follows from [Th05, Proposition 3.1.13], and the second from
[Th05, Proposition 3.2.13]. ut

Remark 1.5. The above discussion was restricted to harmonic and subharmonic func-
tions on an open subset contained in the regular part of an algebraic curve. Throughout
the paper we will be led to consider such functions on curves which are not a priori
smooth. In every such case it is understood that the notions of harmonicity or subhar-
monicity are considered only on the regular part of the curve.

Remark 1.6. Suppose u is a bounded function that is subharmonic on reg(C), and let
π : C̃ → C be the normalization of C. Then u ◦ π extends to a subharmonic function
on C̃ and 1(u|reg(C)) coincides with π∗1(u ◦ π). We shall simply write 1u in this case.

1.2. Dynamics of regular automorphisms

Following Sibony [Si99] we say that a polynomial automorphism of the affine plane
f : A2

→ A2 is regular if its extension as a rational map to the projective plane
F : P2 99K P2 contracts the line at infinity H∞ to a point p+ that is not indetermi-
nate for F . It follows that p+ is a superattracting fixed point, and that its inverse map
contracts H∞ to the (single) indeterminacy point p− of F .
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The degree of a polynomial map is the maximum of the degrees of its (two) compo-
nents. By [FM89], up to a linear change of coordinates, any regular polynomial automor-
phism of degree ≥ 2 is the composition of finitely many maps of the form

(x, y) 7→ (ay, x + P(y))

where a ∈ L∗ and P is a polynomial of degree ≥ 2.
A polynomial automorphism of A2 will be said to be of Hénon type if it is conju-

gate (in the group of automorphisms) to a regular automorphism of degree ≥ 2. A com-
plex polynomial automorphism has positive topological entropy if and only if it is of
Hénon type.

Let f : A2
→ A2 be any regular polynomial automorphism of degree d ≥ 2 and such

that p+ = [0 : 1 : 0] and p− = [1 : 0 : 0] in homogeneous coordinates on P2.
Fix a constant C > 0, and define

V =
{
p = (x, y) ∈ L2

: ‖p‖ = max{|x|, |y|} ≤ C
}
,

V + =
{
(x, y) ∈ L2

: |y| ≥ max{|x|, C}
}
,

V − =
{
(x, y) ∈ L2

: |x| ≥ max{|y|, C}
}
.

It can be shown that if C was chosen sufficiently large, then f (V +) ⊂ V +, and more
precisely

1
d

log |y ◦ f | ≥ log |y| − const (1.1)

for any point in V +. The same kind of inequality holds when f is replaced by its inverse,
so we similarly obtain f−1(V −) ⊂ V −. This implies f (V ) ⊂ V ∪ V +.

Set

K =
{
p ∈ L2

: sup
n∈Z
‖f n(p)‖ <∞

}
, K± =

{
p ∈ L2

: sup
n≥0
‖f±n(p)‖ <∞

}
.

The next result easily follows from the above properties.

Lemma 1.7. We have

• K = K+ ∩K− ⊂ V ;
• L2

\K+ =
⋃
n≥0 f

−n(V +) and K+ ⊂ V ∪ V −;
• L2

\K− =
⋃
n≥0 f

−n(V −) and K− ⊂ V ∪ V +.

Proposition 1.8. The sequences d−n log+ ‖f±n(p)‖ converge pointwise as n → ∞ to
respective functions G± which are continuous and non-negative on L2. These functions
moreover satisfy:

(1) G± ◦ f±1
= dG±;

(2) G±(p)− log+ ‖p‖ extends to a continuous functions on P2(L)\{p∓} that is bounded
from above;

(3) {G± = 0} = K±.

This result follows from [BS91] over the complex numbers, and [Ka13, Theorem A] or
[In14, §2] over a non-Archimedean field.



3430 R. Dujardin, C. Favre

Sketch of proof. Since f is regular, we know that d−1 log+ ‖f (p)‖ ≤ log+ ‖p‖ + const
onL2. The converse inequality holds on V + by (1.1). From this we infer that the sequence
d−n log+ ‖f n(p)‖ converges uniformly on the f -invariant set V +∪V , so thatG+ is well-
defined, continuous and satisfies (1) there. Since any point eventually lands in V + ∪ V
under positive iteration, using (1) we can extend G+ to a globally defined continuous
function. Property (2) is a consequence of the estimate d−1 log+ ‖f (p)‖ ≤ log+ ‖p‖ +
const. To get (3), it is enough to show that G+(p) > 0 when p ∈ V +. Again this is a
consequence of (1.1). ut

The following fact will be crucial in our work. It follows from [BS91, Proposition 4.2]
whose proof works over any field.

Proposition 1.9. A polynomial automorphism of Hénon type admits no invariant alge-
braic curve.

1.3. Invariant measures

We keep the notation of the previous subsection. Our purpose is to construct an invariant
measure from the functions G+ and G−.

Proposition 1.10. The function G = max{G+,G−} is a continuous non-negative func-
tion on L2 that satisfies:

(1) G(p)− log+ ‖p‖ extends to a continuous function to P2(L);
(2) {G = 0} = K;
(3) G is the uniform limit of the sequence of continuous functions

max{d−n log+ ‖f n‖, d−n log+ ‖f−n‖}.

Sketch of proof. Properties (1) and (2) are direct consequences of items (2) and (3) of
Proposition 1.8.

To prove the convergence in (3), we argue as follows (see [Ka13, Theorem 2.3] for
related arguments): for large B and small ε consider the domain V +B,ε defined by

V +B,ε := {(x, y) ∈ L
2
: |y| ≥ B, |x| ≤ ε|y|}.

Define similarly V −B,ε by exchanging the roles of x and y, and letW = L2
\ (V +B,ε∪V

−

B,ε).
It follows from the proof of Proposition 1.8 that d−n log‖f n(p)‖ converges uniformly to
G+ on V +B,ε∪W . Likewise, d−n log‖f−n(p)‖ converges uniformly toG− on V −B,ε∪W . In
particular, d−n max{log+ ‖f n‖, log+ ‖f−n‖} converges uniformly toG=max{G+,G−}
on W .

We know from Proposition 1.8 thatG+(p) ≥ log+‖p‖+const on V +, hence on V +B,ε.
We claim that for every A > 0, we can choose (ε, B) so that G−(p) ≤ log+‖p‖ − A
on V +B,ε. In particular G+ > G− there. The same argument shows that log+ ‖f n‖ >
log+ ‖f−n‖ on V +B,ε, so we conclude that

1
dn

max{log+ ‖f n‖, log+ ‖f−n‖} =
1
dn

log+ ‖f n‖ → G+ = max{G+,G−}
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on that set. Of course reversing the roles of f and f−1 we get the same result on V −B,ε,
and property (3) follows.

To prove the desired estimate, observe that by our assumptions on f , we have
f−1(x, y) = (xd , 0) + l.o.t. In particular, if |x| ≤ ε|y|, then for B ≥ B(ε) we get
‖f−1(p)‖ . εd |y|d ≤ εd‖p‖d . Since G−(p) ≤ log+‖p‖ + const on L2, using the
invariance relation for G− we find that for p ∈ V +B,ε,

G−(p) =
1
d
G−(f−1(p)) ≤

1
d

log+‖f−1(p)‖ + const ≤
1
d

log(εd‖p‖d)+ const,

hence the result. ut

Now assume that (L, |·|) is Archimedean, i.e.L = C endowed with its standard hermitian
norm. In this case, G+ and G− are continuous plurisubharmonic functions on C2, and so
is G. Using Bedford–Taylor’s theory it is possible to make sense of the Monge–Ampère
operator of G and define the positive measure µf := (ddc)2G. It is an f -invariant prob-
ability measure whose support is included in K . We refer to [BLS93a] for details on its
ergodic properties.

Pick any irreducible algebraic curve C and denote by reg(C) its set of regular points.
Then µf,C is by definition the Laplacian of the functionG restricted to reg(C). SinceG is
continuous and G(p)− log+ ‖p‖ is bounded, this measure carries no mass on singletons
and its total mass equals deg(C).

When (L, | · |) is non-Archimedean, the analogues of the measures µf and µf,C have
been constructed by Chambert-Loir [CL06, CL11].

Indeed, the functionG induces a metrization | · |G on the line bundle O(1)P2 by setting
|σ |G := exp(−G), where σ is the section corresponding to the constant function 1 on A2.
Proposition 1.10 implies that the metrization | · |G is a continuous semipositive metric in
the sense of [CL11, §3.1].

The measure µf is defined as a probability measure on the Berkovich analytic
space A2,an

L .
When the affine plane is replaced by an irreducible curve C, the measure µf,C is a

positive measure on the analytification Can of C in the sense of Berkovich. It can be
defined using Thuillier’s theory recalled in §1.1 as µf,C := 1G|reg(C) . Its mass is again
equal to deg(C).

Remark 1.11. It is a priori not clear from the definition that µf is f -invariant. Over the
complex numbers this invariance is obtained from the identity µf = ddcG+ ∧ ddcG−

and the equations f ∗ddcG+ = (deg(f ))ddcG+ and f ∗ddcG− = (deg(f ))−1ddcG−.
Over a non-Archimedean field, an intersection theory of positive closed (1, 1)-currents
has been proposed in [CLD12, Gub13] and it is likely that this theory provides the right
tool to extend the above complex arguments.

When f is defined over a number field, one can proceed in a different (although less
satisfactory) way. A theorem of C. G. Lee (see Theorem 1.18 below) asserts that µf
describes the distribution of periodic points which implies it to be invariant under the
dynamics. This setting covers our needs in this paper.
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Since Green functions vary continuously with parameters, it is then possible to extend
this result to the case where f is defined over the completion of the algebraic closure of
any p-adic field.

The study of the ergodic properties of µf remains to be addressed.

1.4. Saddle fixed points

In this subsection we let f be any analytic germ fixing the point 0 ∈ A2
L. The fixed point

0 is said to be a saddle when the eigenvalues u, s of Df (0) satisfy |u| > 1 > |s|.
Given a small bidisk B around 0, we let W s

loc(0) (resp. Wu
loc(0)) be the set of points

p ∈ B such that for every n ≥ 0, f n(p) ∈ B (resp. f−n(p) ∈ B). It follows that if
p ∈ W s

loc(0) (resp. p ∈ Wu
loc(0)) then limn→∞ f

n(p) = 0 (resp. limn→∞ f
−n(p) = 0).

It is known that W s
loc and Wu

loc are graphs of analytic functions in a neighborhood of 0
tangent to the respective eigendirections of df , hence intersect transversely. We refer
to [HY83, Theorem A.1] for a proof that works over any metrized field. We refer to
W s

loc(0) (resp. Wu
loc(0)) as the local stable (resp. unstable) manifold (or curve) of 0.

It is easy to see that one may always make a change of coordinates, such thatWu
loc(0)=

{y = 0} and W s
loc(0) = {x = 0}. We will need the following more precise normal form.

Lemma 1.12. There exist coordinates (x, y) near 0 in which f assumes the form

f (x, y) =
(
ux(1+ xyg1(x, y)), sy(1+ xyg2(x, y))

)
,

where g1, g2 are analytic functions.

Note that in this set of coordinates, f is linear along the stable and unstable manifolds.

Proof. By straightening the local stable and unstable manifolds, f can be written in the
form

f (x, y) =
(
ux(1+ h.o.t.), sy(1+ h.o.t.)

)
with |u| > 1 and |s| < 1,

and we want to make this expression more precise. First, by the Schröder linearization
theorem (which holds for arbitrary L [HY83]) we can make a local change of coordinates
depending only on x in which f |Wu

loc(0)
becomes linear. Doing the same for y, we reach

the form
f (x, y) =

(
ux(1+ yg(0)(x, y)), sy(1+ xh(0)(x, y)

)
. (1.2)

Let us now focus on the first coordinate in (1.2). We want to get rid of monomials of
the form xyj for j > 0. Reorder the expression of f so that it reads

f (x, y) =
(
uxa1(y)+ x

2a2(y)+ · · · , syb1(x)+ y
2b2(x)+ · · ·

)
,

where the aj and bj are analytic and a1(0) = b1(0) = 1. We want to find local coordinates
in which a1(y) ≡ 1. For this, set (x′, y′) = (ϕ(y)x, y) with ϕ(0) = 1. Notice that in the
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coordinates (x′, y′), f preserves the coordinate axes and remains linear along them, so f
is still of the form (1.2). In the new coordinates, f can be expressed as

(x′, y′) 7→

(
ua1(y

′)
ϕ(sy′)

ϕ(y′)
x′ +O((x′)2), sy′ +O(x′)

)
,

so to achieve a1(y
′)
ϕ(sy′)
ϕ(y′)

= 1 it is enough to choose ϕ(y′) =
∏
∞

n=0 a1(s
ny′), which is

well-defined for sufficiently small y′, since |s| < 1 and a1(0) = 1. Doing the same in the
second variable, and renaming the coordinates as (x, y), we obtain

f (x, y) =
(
ux + x2a2(y)+ · · · , sy + y

2b2(x)+ · · ·
)
.

Going back to the form (1.2), we get the desired result. ut

1.5. Stable manifolds of polynomial automorphisms

In the case of polynomial automorphisms local stable manifolds can be globalized and
have the following structure.

Proposition 1.13. Let f : A2
→ A2 be any polynomial automorphism and assume that

0 is a saddle fixed point for f . Denote by s the eigenvalue ofDf (0) lying in the unit disk.
Then the global stable manifold W s(0) := {p ∈ L2

: f n(p)→ 0} is an immersed affine
line. More precisely, there exists an analytic injective immersion φs : A1

→ A2 with
image W s(0) such that f ◦ φs(ζ ) = φs(sζ ) for every ζ ∈ A1.

Proof. We saw in §1.4 that for a sufficiently small neighborhood N of 0 the intersection
W s

loc(0) = W s(0) ∩ N is parameterized by an analytic immersion φs : B(0, 1) → N

which satisfies
f ◦ φs(ζ ) = φs(sζ ). (1.3)

Since f is an automorphism, it follows that W s(0) =
⋃
n≥0 f

−n(W s
loc(0)), and using the

functional equation we may extend the analytic immersion φs by setting

φs(ζ ) = f
−nφs(s

nζ )

for every ζ ∈ L and sufficiently large n. ut

Proposition 1.14. Let f : A2
→ A2 be a polynomial automorphism of Hénon type of A2

and assume that 0 is a saddle fixed point for f . Then the restriction of G− to W s(0) is
not identically 0. In particular G−|W s (0) cannot vanish identically in a neighborhood of
the origin. The same results hold for G+|Wu(0).

Proof. Suppose for contradiction thatG− ≡ 0 onW s(0). By Proposition 1.8(3), we have
W s(0) ⊂ K−. Since the successive images by f of any point in W s(0) converge to 0, it
follows that W s(0) ⊂ K+, hence W s(0) ⊂ K .

We conclude that the image of the analytic map φs : A1
→ A2 lies in a bounded do-

main, hence it is a constant by Liouville’s theorem (see [Rob00] for the non-Archimedean
case). This contradicts the fact that φs is an immersion.

The second statement follows from the invariance relation (1.3). ut
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1.6. Heights associated to adelic metrics on the affine space

We now assume that L is a number field, and we fix an algebraic closure Lalg of L.
Let ML be the set of places of L, that is, non-trivial multiplicative norms on L modulo
equivalence. For each place v ∈ ML we denote by | · |v the unique representative that
is normalized in such a way that its restriction to Q is either the standard Archimedean
norm or the p-adic norm satisfying |p| = p−1 for some prime p > 1.

Then for any x ∈ L, the product formula
∏
v∈ML

|x|
nv
v = 1 holds. Here the integer

nv is the degree of the field extension of the completion of L over the completion of Q
relative to | · |v .

Fix an integer d ≥ 1. We let Cv be the completion of the algebraic closure of the
completion of L relative to the absolute value | · |v . We continue to denote by | · |v the
unique extension to Cv of the absolute value on L. For any p = (x1, . . . , xd) ∈ (Cv)d
we shall write ‖p‖v = max{|x1|v, . . . , |xd |v} (or simply ‖p‖ when there is no risk of
confusion).

Recall that the standard height of a point p ∈ Ad(Lalg) is defined by the formula

h(p) =
1

deg(p)

∑
v∈ML

∑
q∈O(p)

nv log+ ‖q‖v

where O(p) denotes the orbit of p under the absolute Galois group of L, and deg(p) is
the cardinality of O(p).

As in [CL11] we use heights that are associated to semipositive adelic metrics on
ample line bundles. We present here this notion in a form that is tailored to our needs.

Suppose X ⊂ AdL is an irreducible affine variety, and fix an embedding AdL ⊂ PdL. For
us, X will always be either a curve or A2

L.
A semipositive adelic metric on the (ample) line bundle OX(1) is a collection

{Gv}v∈ML of functions Gv : X(Lalg)→ R such that

(M1) the functionGv(p)− log+ ‖p‖v extends continuously to the closure of X in Pd for
each place v;

(M2) Gv(p) = log+ ‖p‖v for all but finitely many v;
(M3) Gv is plurisubharmonic for each Archimedean v;
(M4) for each non-Archimedean, the functionGv is a uniform limit of positive multiples

of functions of the form log max{|P1|v, . . . , |Pr |v} with Pi ∈ L[x1, . . . , xd ].

To any such semipositive adelic metric {Gv}v∈ML is associated a height defined on
X(Lalg) by

hG(p) =
1

deg(p)

∑
v∈ML

∑
q∈O(p)

nvGv(q),

and such that supX(Lalg) |hG − h| <∞.
For any place v, one can also associate to the metrization Gv a positive measure

MA(Gv) which is defined as in §1.3.
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When v is Archimedean, MA(Gv) is the Monge–Ampère measure mass of deg(X)
defined using Bedford–Taylor’s theory.

When v is non-Archimedean, the measure MA(Gv) is defined by Chambert-
Loir [CL06] as a positive measure of mass deg(X) on the analytification of X over Cv in
the sense of Berkovich. Its definition relies in an essential way on condition (M4) above.

When X is a curve, MA(Gv) is alternatively defined as the Laplacian of Gv|reg(C) (in
the sense of Thuillier when v is a non-Archimedean place).

1.7. Metrizations associated to polynomial automorphisms of Hénon type and
equidistribution

Assume that f is a regular polynomial automorphism of degree ≥ 2 defined over a num-
ber field L.

The following two results are direct consequences of the definitions and Proposi-
tions 1.8 and 1.10.

Proposition 1.15. For any regular polynomial automorphism f of degree ≥ 2 the col-
lection {Gv,f } defines a semipositive adelic metric on O(1)P2 .

In what follows, we denote by hf the height associated to this collection of metrics.

Proposition 1.16. Let f be a regular polynomial automorphism of degree d ≥ 2. As
above, denote by p+ the fixed point at infinity of the rational extension of f onto P2.
Then for any irreducible algebraic curve C whose Zariski closure C̄ in P2 intersects the
line at infinity at the single point p+, the collection {G+v,f |C} defines a semipositive adelic
metric on O(1)C̄ .

We will need two versions of the equidistribution theorem for points of small height: one
for curves, and one for the affine plane A2. The first statement follows from a statement
due to P. Autissier [Au01, Proposition 4.7.1] at an Archimedean place and to A. Thuil-
lier [Th05, Théorème 4.3.6] when the curve is smooth, and to X. Yuan [Yu08, Theo-
rem 3.1] in full generality.

Theorem 1.17 (Equidistribution for points of small height on a curve). Let f be a poly-
nomial automorphism of Hénon type defined over L. Suppose C is an irreducible curve of
the affine space A2 that is defined over L whose Zariski closure in P2 intersects the line
at infinity only at p+. Suppose that we are given an infinite sequence of distinct points
pm ∈ C(Lalg) such that hG+(pm)→ 0. Then, for any place v ∈ML, the convergence

1
deg(pm)

∑
q∈O(pm)

δq →
1

deg(C)
1(G+v |reg(Cv)) (1.4)

holds in the weak topology of measures, where O(pm) is the orbit of xm under the action
of the absolute Galois group of L.

For simplicity, we write Cv for the analytification of C over the field Cv .
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Proof of Theorem 1.17. To keep the argument as short as possible we directly apply
Yuan’s result [Yu08, Theorem 3.1]. To do so one needs to check that the height of C in-
duced by the metrization given by {G+v }v on O(1)C is equal to zero. We refer to [CL11] for
the definition of this quantity. Now for a curve it follows from e.g. [Zh95, Theorem 1.10]
that this height is equal to

e = ess inf
C

hG+ := sup
#F<∞

inf
p∈C\F

hG+(p).

Our assumption implies that infp∈C\F hG+(p) ≤ lim infn hG+(pn) = 0. On the other
hand, we have G+v ≥ 0 at all v, hence hG+(p) ≥ 0 for every p ∈ C. Therefore e = 0 as
required. ut

The next result, still based on Yuan’s theorem [Yu08], is due to C.-G. Lee [Le13, Theo-
rem A].

Theorem 1.18 (Equidistribution theorem for periodic points of Hénon maps). Let f be
an automorphism of Hénon type defined over L. Let (pm)m≥0 be any sequence of distinct
periodic points such that the set {pm} ∩ C is finite for any irreducible curve C ⊂ A2

L.
Then, for any place v ∈ML, the convergence

1
deg(pm)

∑
q∈O(pm)

δq → MA(Gv) (1.5)

holds in the weak topology of measures, where O(xm) is the orbit of xm under the action
of the absolute Galois group of L.

Write µf,v := MA(Gv) andKf,v := {x ∈ A2,an
Lalg
v

: ‖f n(x)‖ = O(1)}. The previous result

immediately implies

Corollary 1.19. Let f be an automorphism of Hénon type defined over a number field L,
and let v be any place on L. Then the probability measure µf,v is f -invariant and is
supported on Kf,v .

We expect this result to be valid without any assumption on the field of definition (see
Remark 1.11).

2. Applying the equidistribution theorem

A key step of the proofs of Theorems A and B is the use of equidistribution theorems
for points of small height. In doing so we follow the approach to the Manin–Mumford
conjecture initiated by Szpiro–Ullmo–Zhang [SUZ97]. In our setting this results in the
following proposition.
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Proposition 2.1. Let f be a regular polynomial automorphism, and C an irreducible
algebraic curve in the affine plane, both defined over a number field L. Suppose there
exists a sequence of distinct points pn ∈ C(Lalg) such that hf (pn) → 0. Then for any
place v ∈ ML there exist a positive rational number α := α(C, f ) and a continuous
function Hv : Cv → R such that

G+v,f = α G
−

v,f +Hv on Cv

and Hv|reg(Cv) is harmonic.

Let us stress that the constant α does not depend on the chosen place v, but only on the
curve C and the automorphism f . When v is non-Archimedean, the harmonicity of Hv is
understood in the sense of Thuillier (see §1.1).

Remark 2.2. When C has a single place at infinity,6 it may be shown that Hv must be
a constant, hence necessarily zero since it vanishes at any periodic point of f . Taking
Hv ≡ 0 somewhat simplifies the proof of Theorem A. However, it seems delicate to
prove the vanishing of Hv in the general case of a curve with several places at infinity.

Proof of Proposition 2.1. Let pn be a sequence of distinct points in C(Lalg) with hf (pn)
→ 0, and fix any place v ∈ ML. To simplify notation we denote by [Fn] the normalized
equidistributed integration measure on the Galois orbit of pn. It is a probability measure
supported on the analytification Cv of C over Cv in the sense of Berkovich.

By [BS91, Proposition 4.2] together with Proposition 1.9, there exists an integer k ≥ 0
such that f k(C) intersects the line at infinity in P2

L only at the superattracting point p+.
By Proposition 1.16, the metrization given by {G+v,f }v is semipositive adelic. Let hG+

be the associated height. Since

0 ≤ G+f,v ≤ Gf,v ≤ d
kGf,v ◦ f

−k

at all places, it follows that

hG+(f
k(pn)) ≤ hf (f

k(pn)) ≤ d
khf (pn)→ 0,

whence hG+(pn)→ 0. Theorem 1.17 thus applies and we see that the sequence of prob-
ability measures f k∗ [Fn] converges to the unique probability measure µk that is propor-
tional to 1(G+v |f k(Cv)), that is,

µk =
1

deg(f k(C))
1(G+f,v|f k(reg(Cv))).

Pulling back the convergence f k∗ [Fn] → µk by the automorphism f k , we get

lim
n
[Fn] =

1
deg(f k(C))

(f k)∗1(G+f,v|f k(reg(Cv)))

=
1

deg(f k(C))
1(G+f,v ◦ f

k
|reg(Cv)) =

dk

deg(f k(C))
1(G+f,v|reg(Cv)).

6 That is, C intersects the line at infinity in P2 in a single point and is analytically irreducible
there.
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Proceeding in the same way for f−1 we deduce that there exist non-negative integers k, k′

such that

dk

deg(f k(C))
1(G+f,v|reg(Cv)) =

dk
′

deg(f−k′(C))
1(G−f,v|reg(Cv)).

Therefore, there exists a positive rational number αC depending only on C and f such
that the restriction of G+f,v − αCG

−

f,v to reg(Cv) is harmonic. ut

For completeness, let us mention the following partial converse to Proposition 2.1.

Proposition 2.3. Suppose that there exists a positive constant α > 0, such that G+v,f =
αG−v,f on C for each place v. Then there exists a sequence of points pn ∈ C(Lalg) such
that hf (pn)→ 0.

Remark 2.4. If for every place v there exists a constant αv such thatG+v,f |C = αvG
−

v,f |C

then αv does not depend on v. This follows from the fact that the mass of 1G±v |reg(Cv)
only depends on the geometry of the branches of C at infinity.

Proof of Proposition 2.3. Replacing C by f n(C) for n large enough, one may suppose
that α > 1 and that the completion of C intersects the line at infinity only at p+. We claim
that the height of C is zero. Indeed,

hf (C) =
∑
v

∫
reg(Cv)

Gv1Gv|reg(Cv) + hf (p+) =
∑
v

∫
reg(Cv)

G+v 1G
+
v |reg(Cv) = 0,

since G+v ≡ 0 on supp(1G+v |reg(Cv)). The fact that hf (p+) = 0 can be obtained
from [Le13, Theorem 6.5] which asserts that

hf (p) = lim
n

1
deg(f )n

hnaive(φn(p))

where φn : P2
→ P4 is the regular map whose restriction to A2 is defined by φn(p) =

(f n(p), f−n(p)) and hnaive is the naive height on P4 [HS00, §B.2]. An easy computation
shows that φn(p+) is independent of n, so the result follows.

We then conclude by applying the arithmetic Hilbert–Samuel theorem [Zh95, Theo-
rem 1.10]. ut

3. The DMM statement in the Archimedean dissipative case

Throughout this section we assume that f is a regular polynomial automorphism of A2

defined over a number field L. We use the notation and results from Section 1. Our pur-
pose is to establish Theorem A′. This in turn clearly implies Theorem A in the case where
f and C are defined over a number field (the general case will be treated in §5).

The proof will be based on Pesin’s theory of non-uniformly hyperbolic dynamical
systems. We refer to [BLS93a] for a presentation adapted to our situation.
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3.1. Proof of Theorem A′

Recall that hf denotes the height associated to the semipositive adelic metric {Gf,v}. We
suppose that there exists an irreducible curve C defined over L and a sequence of points
pn ∈ C(Lalg) with hf (pn)→ 0.

We want to prove that |Jac(f )|v = 1. To simplify notation we assume that L ⊂ C,
drop the reference to v and work directly over C endowed with its standard absolute value.

Under our assumptions, we know from Proposition 2.1 that there exists a positive
constant α such that (G+ − αG−)|reg(C) is harmonic, which implies that the positive
measures µ±C := dd

c(G±|C) are proportional. Recall that sinceG± are continuous, these
measures can simply be defined by taking the restriction to reg(C) and extending by zero
at the singular points.

Denote by χu and χ s the Lyapunov exponents of f relative to the measure µ =
(ddc)2Gf . Recall that they are defined by

χu = lim
n→∞

∫
log‖Df np ‖ dµ(p) and χ s = lim

n→∞

∫
log‖Df−np ‖ dµ(p).

We also write λu = exp(χu) and λs = exp(−χ s). It is known that λu/s ≥ d > 1, and
λuλs = |Jac(f )| [BS92]. The main step of the proof of Theorem A′ is the following
proposition, which computes the lower Hölder exponent of continuity of G+ at a µ+C -
generic point (observe that for such a point one has G+(p) = 0).

Proposition 3.1. For µ+C -almost every point p in C, one has

lim inf
r→0

1
log r

log
[

sup
d(p,q)≤r, q∈C

G+(q)
]
= ϑ+,

where ϑ+ is the unique positive real number satisfying (λu)ϑ+ = d .

Replacing f by f−1, we see that a similar result holds for G− at µ−C -a.e. point, with λu

replaced by (λs)−1 and ϑ+ by ϑ− such that (λs)−ϑ− = d. Observe that λu/s ≥ d implies
that ϑ± ∈ (0, 1].

If ϑ+ = ϑ− = 1 then |Jac(f )| = λuλs = d · d−1
= 1 and we are done. Thus we may

assume that ϑ− < 1. Recall thatG+ = αG−+H with α > 0 andH a harmonic function
on C. For a µ+C -generic point p, the preceding proposition yields

ϑ+ = lim inf
r→0

1
log r

log
[

sup
d(p,q)≤r, q∈C

G+(q)
]

= lim inf
r→0

1
log r

log
[

sup
d(p,q)≤r, q∈C

(αG− +H)(q)
]
.

Now observe that for any sequence rn → 0 and any sequence of points pn at distance rn
from p we have

lim inf
n

logG+(pn)
log rn

≥ lim inf
n

1
log rn

log
[

sup
d(p,q)≤rn, q∈C

G+(q)
]
≥ ϑ+.
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Now pick pn with d(pn, p) = rn → 0 such that logG−(pn)/log rn → ϑ− < 1. This
is possible because since µ+C is proportional to µ−C , the corresponding notions of generic
points coincide. Since H is smooth, if ε is so small that (1+ ε)ϑ− < 1, we infer that

αG−(pn)+H(pn) ≥ αr
(1+ε)ϑ−
n +O(rn) ≥ const · r(1+ε)ϑ−n

for large n, so that 1 > (1+ε)ϑ− ≥ ϑ+. Since ε was arbitrary, we conclude that ϑ− ≥ ϑ+.
Applying the same argument with the roles of ϑ+ and ϑ− reversed, we conclude that

ϑ+ = ϑ−, which implies that λu = (λs)−1 and finally |Jac(f )| = 1, as desired. ut

Remark 3.2. It would perhaps be dynamically more significant to prove that the Haus-
dorff dimension of the measure 1(G+|C) at a generic point is equal to the Hausdorff
dimension of the measures induced by T + along the unstable lamination. The value of
this dimension is precisely equal to the above constant ϑ+, in virtue of Lai-Sang Young’s
formula [Yo82].

3.2. Proof of Proposition 3.1

The proposition relies on the interplay between Pesin’s theory and the laminarity proper-
ties of the currents T ±. This is very close in spirit to the main results of [BLS93a].

Since its Lyapunov exponents are both non-zero, the measure µf is hyperbolic.
Pesin’s theory then asserts the existence of a family of Lyapunov charts, in which f ex-
pands (resp. contracts) in the horizontal (resp. vertical) direction. The precise statement
is as follows (see [BP06, Theorem 8.14]). Let B(r) = {(x, y) : max{|x|, |y|} < r} be the
polydisk of radius r in C2. Then for any given ε > 0, there exists an f -invariant set E
(the set of regular points) of full µf -measure, a measurable function ρ : E → (0, 1) and
a family of charts ϕp : B(ρ(p))→ C2 defined for p ∈ E and satisfying

(i) ϕp(0) = p and e−ε < ρ(f (p))/ρ(p) < eε;
(ii) if fp := ϕ−1

f (p) ◦ f ◦ ϕp, then

fp(x, y) =
(
au(p)x + xh1(x, y), a

s(p)y + yh2(x, y)
)

(3.1)

where λu − ε ≤ |au(p)| ≤ λu + ε, λs − ε ≤ |as(p)| ≤ λs + ε, and sup{‖h1‖, ‖h2‖}

< ε;
(iii) there exist a constant B > 0 and a measurable function A : E→ (0,∞) such that

B−1
‖ϕp(q)− ϕp(q

′)‖ ≤ ‖q − q ′‖ ≤ A(p)‖ϕp(q)− ϕp(q
′)‖ (3.2)

with e−ε < A(f (p))/A(p) < eε.

We denote by Wu
loc(p) (resp. W s

loc(p)) the image by ϕp of {x = 0} (resp. {y = 0}). These
will be referred to as the local unstable (resp. stable) manifold at p. Notice that (3.1) is
slightly different from the corresponding statement in [BP06] as we have straightened the
local stable and unstable manifolds. Observe also that on removing a set of measure 0 we
may assume that f−1(Wu

loc(p)) ⊂ W
u
loc(f

−1(p)) and f (W s
loc(p)) ⊂ W

s
loc(f (p)).
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For every point p ∈ E, we define the global stable and unstable manifolds by W s(p)

=
⋃
n≥0 f

−nW s
loc(f

n(p)) and Wu(p) =
⋃
n≥0 f

nWu
loc(f

−n(p)). These are embedded
images of C respectively lying in K+ and K− like the stable and unstable manifolds of
saddle points, as we saw in §1.4.

The next result follows from [BLS93a, Lemma 8.6], and will be proved afterwards.
Recall that µ+C := T

+
∧ [C].

Lemma 3.3. Let E denote as above the set of Pesin regular points for µf . Then for every
subset A ⊂ E of full µf -measure there exists Ā ⊂ C of full µ+C -measure such that if
p̄ ∈ Ā then there exists p ∈ A such that

• p̄ ∈ W s(p),
• W s(p) intersects C transversely at p̄.

With notation as in the lemma, pick any p̄ ∈ Ē and introduce the function

θp̄(r) = sup{G+(q) : q ∈ C, d(p̄, q) ≤ r}.

To prove the proposition we need to show that µ+C -a.s.,

lim inf
r→0

log(θp̄(r))
log r

= ϑ+ =
log d
log λu

.

Using Lemma 3.3, let p ∈ E be such that W s(p) intersects C transversely at p̄. Then
there exists an integer N such that fN (p̄) lies inW s

loc(f
N (p)). By the invariance relation

for G+ and the differentiability of f , replacing C by fN (C) if needed, it is no loss of
generality to assume that N = 0.

Choose an integer n, and pick a point q ∈ B(ρ(p)) such that f k(q) ∈
ϕf k(p)B(ρ(f

k(p))) for all 0 ≤ k ≤ n. Write ϕp(q) = (x, y) so that |x|, |y| ≤ ρ(p),
and let (xk, yk) := ϕ−1

f k(p)
(f k(q)). It then follows from (3.1) that |yn| ≤ (λs + 2ε)n|y0|

and
(λu − 2ε)n|x0| ≤ |xn| ≤ (λ

u
+ 2ε)n|x0|. (3.3)

Conversely, it follows a posteriori from these estimates that any point q = ϕp(x, y) such
that

|x| ≤ ρ(p)(λu + 2ε)−ne−εn

satisfies |xk| ≤ |x|(λu + 2ε)k ≤ ρ(f k(p)), hence f k(x) ∈ ϕf k(p)B(ρ(f
k(p))) for every

0 ≤ k ≤ n.
We now estimate θp̄(r) for a given small enough r . To estimate it from below, choose

q ∈ C such that d(p, q) ≤ r and θp̄(r) = G+(q). By (3.2) writing ϕp(q) = (x, y),
we infer that |x| ≤ Br . To ease notation assume without loss of generality that B = 1.
Choose n such that

ρ(p)(eε(λu + 2ε))−n ≤ r < ρ(p)(eε(λu + 2ε))−(n−1). (3.4)
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From (3.4) and the invariance relation for G+ we get the upper bound

log θp̄(r) = − log(dn)+ logG+(f n(q)) ≤ − log(dn)+ max
ϕp(B(ρ(p)))

G+

≤ −n log d + const ≤
log r − log ρ(p)
ε + log(λu + 2ε)

log d + const,

where the first inequality on the second line follows from the fact that due to (3.2),⋃
E ϕp(B(ρ(p)) is bounded in C2. Letting r → 0, we infer that

lim inf
r→0

log θp̄(r)
log r

≥
log d

ε + log(λu + 2ε)
.

Since this holds for every ε, we conclude that

lim inf
r→0

log θp̄(r)
log r

≥
log d
log λu

. (3.5)

To prove the opposite inequality we proceed as follows. Let us introduce the auxiliary
functionψ : p 7→ supWu

loc(p)
G+. This is a measurable function that is uniformly bounded

from above since
⋃
E ϕp(B(ρ(p)) is bounded in C2. Likewise ψ(p) > 0 for every p ∈ E

sinceWu
loc(p) cannot be contained inK+ [BLS93a, Lemma 2.8] (the argument is identical

to that of Proposition 1.14).
Now fix a constant g0 > 0 such that the set {ψ > g0} has positive µf -measure. By

the Poincaré recurrence theorem, there exists a measurable set A ⊂ E of full µf -measure
such that for every p ∈ A, ψ(f nj (p)) > g0 for infinitely many nj ’s.

Let Ā be as in Lemma 3.3, and let p̄ ∈ Ā and p be as above. Stable manifold theory
shows that there exists n0 such that for n ≥ n0 the connected component of ϕ−1

f n(p)(f
n(C))

in B(ρ(f n(p))) containing ϕ−1
f n(p)(p̄) is a graph over the first coordinate which converges

exponentially fast in the C0 (hence C1) topology to {y = 0} [BP06, §8.2 and Theorem
8.13]; denote it by Cn,f n(p̄).

Since p belongs to A, we have ψ(f nj (p)) > g0 for infinitely many nj ’s. To ease
notation we simply write n for nj . Since G+ is Hölder continuous, for such an iterate n
we infer that

sup{G+(w) : w ∈ Cn,f n(p̄)} ≥ g0 − δn,

where δn is exponentially small. Let wn ∈ Cn,f n(p̄) be a point at which G+(wn) ≥ g0/2.
Consider now f−n(wn) and denote ϕ−1

p (f−n(wn)) = (xn, yn). By (3.1), we have

|xn| ≤
ρ(f n(p))

(λu − 2ε)n
≤

const
(λu − 2ε)n

,

hence, since C is transverse to W s
loc(p), from (3.2) we get

d(f−n(wn), p̄) ≤
C0

(λu − 2ε)n
,
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where C0 does not depend on n. Therefore, setting rn = C0/(λ
u
− 2ε)n and using the

invariance relation for G+ and the definition of wn, we infer that

θ(p̄, rn) ≥
g0

2dn
=
g0

2

(
rn

C0

) log d
log(λu−2ε)

.

Finally,

lim sup
n→∞

log θ(p̄, rn)
log rn

≤
log d

log(λu − 2ε)
,

thus

lim inf
r→0

log θ(p̄, r)
log r

≤
log d
log λu

which, along with (3.5), finishes the proof.

Proof of Lemma 3.3. The proof relies on the theory of laminar currents [BLS93a]. It is
shown in [BLS93a, Theorem 7.4] that the positive closed (1, 1)-current T + := ddcG+ is
laminar.

Recall that this means the following. First, we say that a current S in� ⊂ C2 is locally
uniformly laminar if every point in supp(S) admits a neighborhood B biholomorphic to a
bidisk, such that in adapted coordinates, S can be locally written as

∫
[1a] dα(a), where

the 1a are disjoint graphs over the first coordinate in B, and α is a positive measure on
the space of such graphs. These disks will be said to be subordinate to S. Notice that a
locally uniformly laminar current is always closed.

A current is laminar if for any ε > 0 there exists a finite family of disjoint open
sets �i , and for each i a locally uniformly laminar current T i ≤ T such that the mass of
T −

∑
i T

i is smaller than ε. If R is any positive closed current in C2 such that the wedge
product T ∧ R is admissible, then slightly abusing notation we define the wedge product
(
∑
i T

i) ∧ R by
∑
i(T

i
∧ R)|�i .

The geometric intersection product of a current of integration over a curve [M] with
a uniformly laminar current T =

∫
[1a] dα(a) is defined by

T ∧̇ [M] =

∫
[1a ∩M] dα(a)

where [1a ∩M] is the atomic positive measure putting mass 1 at any intersection point of
1a andM . If T has continuous potential then T ∧̇[M] = T ∧[M] [BLS93a, Lemma 6.4].

Pick any open subset� ⊂ C2, and let 0 < S+ ≤ T + be any locally uniformly laminar
current in�. Denote by M(µ) the total mass of a given positive measure µ. We claim that

lim
n→∞

M
(

1
dn
(f n)∗S+ ∧̇ [C]

)
= deg(C) ·M(S+ ∧ T −). (3.6)

To see this, we observe that the current S+ has continuous potential by [BLS93a, Lem-
ma 8.2] so that

1
dn
(f n)∗S+ ∧̇ [C] =

1
dn
(f n)∗S+ ∧ [C]
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as positive measures in f−n(�). Now f n : f−n(�)→ � is an automorphism so that

M
(

1
dn
(f n)∗S+ ∧̇ [C]

)
=M(S+ ∧ d−n(f n)∗[C]).

Replacing C by some iterate we may assume that it intersects the line at infinity at p+
only, hence d−n(f n)∗[C] → (deg(C))T − by [BS91, FS92]. Again since S+ has contin-
uous potential in �, the measures S+ ∧ d−n(f n)∗[C] converge to deg(C)S+ ∧ T −. We
conclude that M(d−n(f n)∗S+ ∧̇ [C]) converges to deg(C)M(S+ ∧ T −) as n → ∞ as
required.

Another result in [BLS93a] is that T + and T − intersect geometrically (see also
[Duj04]). This implies that for every ε > 0 there exists a current T +ε ≤ T + which is
a finite sum of uniformly laminar currents in disjoint open sets�i as above, and such that
M(T +ε ∧ T

−) ≥ 1− ε. Then from (3.6) we deduce that for large n, the positive measures

1
dn
(f n)∗T +ε ∧ [C] :=

∑
i

1
dn
(f n)∗T +ε ∧ [C]|f−n�i

are dominated by µ+C , and

M
(

1
dn
(f n)∗T +ε ∧ [C]

)
≥ (1− ε) deg(C)

∑
i

M(Tε|�i ∧ T
−)

≥ (1− ε)2 deg(C)M(T + ∧ T −) ≥ (1− 2ε) deg(C).

Now recall that T +ε |�i has continuous potential for each i, hence does not charge any
curve. By [BLS93a, Lemma 6.4] it follows that only transverse intersections between
disks subordinate to d−n(f n)∗(T +ε |�i ) and [C] need to be taken into account in the
computation of the geometric intersection d−n(f n)∗(T +ε |�i ) ∧̇ [C]. Further by [BLS93a,
Corollary 8.8], almost every disk subordinate to T +ε |�i is an open subset of some stable
curve W s(p) for some p ∈ A.

In particular, there exists a set Bn of total mass for the positive measure d−n(f n)∗T +ε
∧ [C] such that for all points q ∈ Bn ⊂ C there exists a point p ∈ A such that W s(p)

intersects C transversely at q. Since µ+C (Bn) ≥ (1− 2ε) deg(C), the proof is complete.
ut

3.3. A uniform Theorem A′

In this section we indicate how our arguments can be modified so as to get the following
statement.

Theorem A′′. Let f be a polynomial automorphism of Hénon type of the affine plane,
defined over a number field L. Assume that there exists an Archimedean place v such that
|Jac(f )|v 6= 1. For any integer d, there exists a positive constant ε(d) > 0 and an integer
N(d) ≥ 1 such that for any algebraic curve C defined over L of degree at most d, the set
{p ∈ C(Lalg) : hf (p) ≤ ε(d)} contains at most N(d) points.
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Proof. Suppose that there exists a sequence of curves Cm defined over L of degree d and
finite sets Fm ⊂ Cm invariant under the absolute Galois group of L such that #Fm ≥ m
and hf (Fm) ≤ 1/m. Let us show that |Jac(f )|v = 1.

Let µm be the probability measure equidistributed over Fm.

Lemma 3.4. Any weak limit of the sequence (µm) is supported on a curve of degree d .

Suppose first that any curve defined over L intersects only finitely many Fm’s. Then
Yuan’s result [Yu08, Theorem 3.1] implies the equidistribution µn → µf,v (see [Le13,
Theorem B]). However, µf,v gives no mass to curves so the previous lemma gives a con-
tradiction.

We may thus suppose that there exists a curveD defined over L that contains infinitely
many Fm’s. Theorem A then applies to show that |Jac(f )|v = 1 as required. ut

Proof of Lemma 3.4. For eachm pick an equation Pm =
∑
i+j≤d a

m
ij x

iyj ofCm such that
max{|amij |} = 1. Replacing Fm by a suitable subsequence we may assume that each coef-
ficient amij converges to some aij in the completion of L with respect to the norm induced
by v and we set P =

∑
i+j≤d aijx

iyj . Since the height of Fm is bounded from above,⋃
m Fm is included in a fixed bounded set K in (Cv)2. We have supK |Pm−P | → 0, and

this implies
∫
|P | dµ = limm

∫
|Pm| dµm = 0. Therefore µ is supported on the curve

{P = 0}. ut

4. The DMM statement under a transversality assumption

This section is devoted to the proof of Theorem B in the number field case. Let f be a reg-
ular polynomial automorphism of A2, and C be an irreducible algebraic curve containing
infinitely many periodic points, both defined over a number field L. By the transversality
assumption (T), replacing f by fN if needed we assume that one of these periodic points
p ∈ Reg(C) is fixed and satisfies Dfp(TpC) 6= TpC.

We want to show that Jac(f ) is a root of unity. To do so it will be enough to prove
that |Jac(f )|v = 1 for each place v.

If the place v is Archimedean, the equality |Jac(f )|v = 1 follows from Theorem A,
so we will work at non-Archimedean places only.

Lemma 4.1. Let f and C be as in Theorem B. Let p be any fixed point lying on C and
denote by λ1, λ2 the two (possibly equal) eigenvalues ofDf (p). At any non-Archimedean
place v, either |λ1|v = |λ2|v = 1 or p is a saddle.

It is also not difficult to see that for all but finitely many places v, all periodic points are
indifferent in the sense that their multipliers have norm 1.

Proof of Lemma 4.1. To reach a contradiction, without loss of generality we may assume
that |λ1|v ≤ |λ2|v , |λ1|v < 1 and |λ2|v ≤ 1.

Since |λ1|v ≤ |λ2|v ≤ 1, it is classical that there exists a (bounded) neighborhood U
of p that is forward invariant, in particular U ⊂ K+. Indeed, performing a linear change
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of coordinates we can write f (x, y) = (λ1x + h.o.t., λ2y + h.o.t.), and since v is non-
Archimedean, it follows that if x and y are small enough, then |λ1x + h.o.t.| = |λ1| |x|

and |λ2y + h.o.t.| = |λ2| |y|.
Consequently, G+|U ≡ 0, hence from Proposition 2.1 we deduce that G−|U∩C is

harmonic, and since G−(p) = 0 and G− ≥ 0, by Proposition 1.2 we conclude that
G−|U∩C ≡ 0 as well. This implies that f−n(U ∩ C) ⊂ K for all n, and since K
is bounded, the Cauchy inequality implies that the norms ‖Df−n(p)‖ stay uniformly
bounded in n along U ∩ C.

If p is a sink, that is, |λ1|v ≤ |λ2|v < 1, then ‖Df−n(p)‖ must grow exponentially
and we readily get a contradiction. The semiattracting case |λ1|v < |λ2|v = 1 requires a
few more arguments.

Assume first that λ2 is not a root of unity. Then a theorem by Herman and Yoc-
coz [HY83] asserts that in this case λ2 satisfies a Diophantine condition, hence so does
the pair (λ1, λ2), and the fixed point p is analytically linearizable. Therefore there exist
adapted coordinates (x, y) near p in which p is sent to the origin and f takes the form
f (x, y) = (λ1x, λ2y). Since ‖Df−n(p)‖ is uniformly bounded in n along U ∩ C, in
these coordinates C must be tangent to the y-axis, which contradicts our standing as-
sumption (T).

If λ2 is a root of unity, the argument is similar. Replace f by some iterate so that
λ2 = 1. To ease notation we work with f−1 instead of f . A theorem by Jenkins and
Spallone [JS12, §4] asserts that there are coordinates (x, y) as above in which f−1 can
be expressed as

f−1(x, y) = (λ−1
1 x(1+ g(y)), h(y)) with g(0) = 0 and h(y) = y + h.o.t.

(recall that |λ−1
1 | > 1). From this we deduce that

f−n(x, y) = (λ−n1 x(1+ gn(y)), hn(y)) =
(
λ−n1 x

n−1∏
j=0

(1+ g(hj (y))), hn(y)
)
.

For ε small enough, if |y|v < ε, using the ultrametric inequality we find that for every
0 ≤ j ≤ n, |hj (y)|v < ε. It follows that |1+ g(hj (y))|v = 1.

Now as in the previous case, in the new coordinates the curve C must be tangent to
the y-axis. Parameterize it as t 7→ (ψ(t), t), so that the curve f−nC is parameterized by

t 7→
(
λ−n1 ψ(t)

n−1∏
j=0

(1+ g(hj (t))), hn(t)
)
.

We see that the only possibility for it to be locally bounded as n → ∞ is that ψ ≡ 0.
As before we deduce that C is equal to the y-axis, which is invariant, and again we get a
contradiction. ut

Let us resume the proof of Theorem B. Pick any non-Archimedean place v, and recall that
we wish to prove that |Jac(f )|v = 1. To simplify notation we drop all indices referring
to the place v. Let p be the fixed point satisfying (T), and denote by λi its eigenvalues.
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Then Jac(f ) = λ1λ2. By the previous proposition either |λ1| = |λ2| = 1 and we are
done, or p is a saddle. For notational consistency we denote by u (resp. s) the unstable
(resp. stable) eigenvalue (which can be λ1 or λ2 depending on the place). By the transver-
sality assumption (T), Wu

loc(p) and W s
loc(p) are not tangent to C at p. Indeed since the

tangent directions to Wu
loc(p) and W s

loc(p) are given by the eigenvectors of Df (p), this
transversality does not depend on the place.

By Lemma 1.12 there are adapted coordinates (x, y) near p in which f takes the form

f (x, y) =
(
ux(1+ xyg1(x, y)), sy(1+ xyg2(x, y))

)
. (4.1)

By scaling the coordinates if necessary, we may assume that we work in the unit bidisk B.
The following key renormalization lemma will be proven afterwards.

Lemma 4.2. If |x|, |y| are small enough, then for every 1 ≤ j ≤ n, f j (x/un, y) ∈ B
and

f n(x/un, y) = (x, 0)+O(nρn),

uniformly in (x, y), with ρ := max{|u|−1, |s|} < 1.

In the coordinates (x, y), we write C as a graph y = ψ(x) = bx + h.o.t. over the
first coordinate. Replacing y by by we can assume b = 1. Using Proposition 2.1 we set
G̃(x) = G+(x, ψ(x)) = αG−(x, ψ(x)) + H(x,ψ(x)). By Lemma 4.2, the continuity
of G+ and the invariance relation for G+ we deduce that for small enough x,

dnG̃(x/un) = G+ ◦ f n(x/un, ψ(x/un))→ G+(x, 0). (4.2)

Applying Lemma 4.2 to f−1, for small y we have the following uniform convergence in
a small disk:

f−n(ψ−1(sny), sny) −−−→
n→∞

(0, y). (4.3)

Now we claim that |us| = 1. Indeed, assume for contradiction that |us| > 1. Then setting
yn = s

−nψ(x/un), we get yn→ 0 as n→∞. We write

dnG̃(x/un) = αG−◦ f−n(x/un, ψ(x/un))+ dnH(x/un, ψ(x/un)), (4.4)

and applying (4.3) we see that

G−◦ f−n(x/un, ψ(x/un)) = G−◦ f−n(ψ−1(snyn), s
nyn) −−−→

n→∞
G−(0, 0) = 0.

Thus from (4.2) and (4.4) we infer that

dnH(x/un, ψ(x/un)) −−−→
n→∞

G+(x, 0),

locally uniformly in the neighborhood of the origin. Since a limit of harmonic functions
is harmonic (see Proposition 1.1), we conclude that G+ is harmonic, hence identically
zero on Wu

loc(p), thereby contradicting Proposition 1.14. This contradiction shows that at
the place v we have |us|v = |Jac(f )|v = 1, and completes the proof of Theorem B. ut
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Proof of Lemma 4.2. Recall that we work in the unit bidisk B. Scaling the coordinates
further, we may assume that the functions g1, g2 appearing in (4.1) are as small as we
wish, say supB{|g1|, |g2|} ≤ ε, where ε is a small positive constant whose value will be
determined shortly.

Assume (x0, y0) ∈ B and denote by (x1, y1) = f (x0, y0), . . . , (xk, yk) = f
k(x0, y0)

its sucessive iterates (whenever defined). Using (4.1) recursively, we obtain

xk = u
kx0

k−1∏
j=0

(1+ xjyjg1(xj , yj )) and yk = s
ky0

k−1∏
j=0

(1+ xjyjg2(xj , yj )).

We claim that if |x0| ≤ B|u|−n for a suitable constant B and |y0| ≤ 1 then the first n
iterates of (x0, y0) are well-defined.

Indeed, assume by induction that the first k − 1 iterates of (x0, y0) stay in B for some
k ≤ n− 1. Then

|yk| ≤ |s|
k
k−1∏
j=0

(1+ |yj |ε).

This will in turn be bounded byA|s|k ifA is any constant satisfyingA≥
∏
j≥0(1+A|s|

jε).
We leave it to the reader to check that if ε < (1 − |s|)/10, then A = 3 will do. In what
follows we work under this assumption.

Now assume that |x0| ≤
1
4 |u|
−n and let us show by induction that for small enough ε,

|xj | ≤ |u|
j−n for 0 ≤ j ≤ n (so that in particular (xj , yj ) ∈ B). Indeed, if this estimate

holds for 0 ≤ j ≤ k − 1, then using the formula for xk , we get

|xk| ≤ |u|
k
|x0|

k−1∏
j=0

(1+ |xj |3|s|jε) ≤
1
4
|u|k−n

k−1∏
j=0

(
1+ 3ε

|us|j

|u|n

)

≤
1
4
|u|k−n

(
1+ exp

(
3ε
|u|n

n∑
j=0

|us|j
))

≤
1
4
|u|k−n

(
1+ exp

(
3ε sup

n≥0
max

(
|s|n

|us| − 1
,
n

|u|n

)))
.

Hence, on choosing ε sufficiently small (depending only on u and s), the exponential term
is smaller than 2, and we are done.

To get the conclusion of the lemma, we simply reconsider the previous computation
for k = n, and use the inequality∣∣∣∏(1+ zj )− 1

∣∣∣ ≤ exp
(∑
|zj |

)
− 1

to obtain∣∣∣∣ xnunx0
− 1

∣∣∣∣ = ∣∣∣n−1∏
j=0

(
1+ xjyjg1(xj , yj )

)
− 1

∣∣∣ = O(max(|s|n, n/|u|n)),

and we are done. ut
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In the next theorem, we give a direct argument for Theorem B under a more restrictive
assumption which is reasonable from the dynamical point of view. We feel it is interesting
to include it as it gives in this case a purely Archimedean proof of our main result. Observe
that no transversality assumption is required.

Theorem 4.3. Let f be a polynomial automorphism of the affine plane of Hénon type that
is defined over a number field L. Assume that there exists an algebraic curve C defined
over L and containing infinitely many periodic points. Suppose there exists a periodic
point p ∈ C that is a saddle at some Archimedean place. Then Jac(f ) is a root of unity.

It follows from [BLS93b] that at the Archimedean place most periodic orbits of f are
saddles, which makes the assumptions of the proposition natural. Still, there exist exam-
ples of polynomial automorphisms of C2 with infinitely many non-saddle periodic orbits,
even in a conservative setting [Dua08].

Proof of Theorem 4.3. We do an analysis similar to that of the proof of Theorem B, start-
ing from equation (4.2), and keeping the same notation. For simplicity we write Lv = C,
and drop the v. By assumption there is a saddle point p ∈ C, with multipliers u and s.
From Theorem A we know that |us| = 1. We assume that p is fixed and work in the
local adapted coordinates (x, y) given by Lemma 1.12. Since we make no smoothness or
transversality assumption here, we pick any local irreducible component of C at p, and
parameterize it by 9 : t 7→ (tk, ψ(t)) with ψ(t) = t l + h.o.t. By Proposition 2.1, for
small t ∈ C we have

G̃(t) := G+ ◦9(t) = G+(tk, ψ(t)) = αG−(tk, ψ(t))+H(tk, ψ(t)).

Swapping the stable and unstable directions if needed we may assume that k ≤ l. Pick a
kth root of u, denoted by u1/k .

Applying the same reasoning as in (4.2) we get

dnG̃(t/un/k) = G+◦ f n(tk/un, ψ(t/un/k))→ G+(tk, 0). (4.5)

Since k ≤ l and |us| = 1, we see that |skul | ≥ 1, from which we infer that ψ(t/un/k) =
O(sn). Therefore we can do the same with f−n to deduce that

dnG̃(t/un/k) = αG−◦ f−n(tk/un, ψ(t/un/k))+ dnH(tk/un, ψ(t/un/k))

= αG−(0, s−nψ(t/un/k))+ o(1)+ dnH(tk/un, ψ(t/un/k))

= αG−(0, t l/(skul)n/k)+ o(1)+ dnH(tk/un, ψ(t/un/k)). (4.6)

Arguing exactly as in the proof of Theorem B, we see that this is contradictory unless
|skul | = 1, that is, k = l (in particular, if C is smooth at p it must be transverse to
Wu

loc(p) and W s
loc(p)).

Now since we work in the Archimedean setting, we can push the analysis further and
proceed to prove that us = Jac(f ) is a root of unity. Assume it is not. Choose any θ
in the unit circle, and pick a subsequence (nj ) such that (uksk)nj → θ . Observe that
s−nψ(x/un/k) → xk/θ . Then by (4.2) and (4.4) in the smooth case (k = 1), and (4.5)
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and (4.6) in the singular case, we infer that for small t ,

G+(tk, 0) = lim
nj→∞

G+◦ f nj (9(t/unj /k))

= lim
nj→∞

[αG−◦ f−nj (9(t/unj /k))+ dnjH ◦9(t/unj /k)]

= αG−(0, tk/θ)+ lim
nj→∞

dnjH ◦9(t/unj /k).

Since θ was arbitrary and since a uniform limit of harmonic functions is harmonic, we
see that the Laplacian of the function t 7→ G−(0, tk) is rotation-invariant in a neighbor-
hood of the origin. Observe that this Laplacian can be written as κ∗1(G−(0, t)), where
κ : t 7→ tk . Recall also that the support of 1(G−(0, t)) equals ∂(K− ∩W s

loc(p)), where
the boundary is relative to the intrinsic topology on W s

loc(p). Thus we conclude that rel-
ative the linearizing coordinate on W s(p), κ−1(∂(K− ∩ W s

loc(p))) is rotation invariant,
so ∂(K− ∩ W s

loc(p)) is rotation invariant as well. But since ddc(G−|W s
loc(p)

) gives no
mass to points, p must be an accumulation point of ∂(K− ∩W s

loc(p)). By rotation invari-
ance, K− ∩W s

loc(p) will then contain small circles around the origin. By the maximum
principle this implies that G−|W s

loc(p)
vanishes in a neighborhood of p, which contradicts

Proposition 1.14. The proof is complete. ut

Remark 4.4. It is a well-known idea in the dynamical study of plane polynomial auto-
morphisms that the slices of T ± by stable and unstable manifolds (or more generally by
any curve) contain a great deal of information about f . For instance, as we saw in §3, the
Lyapunov exponents of the maximal entropy measure can be read off from this data. The
same holds for multipliers of all saddle periodic orbits. See also [BS98b] for a striking
application of this circle of ideas.

The proof of Theorem 4.3 (with k = 1, say) implies that in adapted coordinates a
relation of the form G+(x, 0) = G−(0, x) + H̃ holds, where H̃ is a harmonic function.
So we deduce that an unstable slice of K+ is holomorphically equivalent to a stable slice
of K−.

This rigidity suggests a strong form of symmetry between f and f−1, which gives
additional credibility to Conjecture 1.

5. Conclusion of the proof of Theorems A and B

Recall that when f and C are defined over a number field, Theorems A and B were
established in §3 and §4 respectively. In this section we explain how a specialization
argument allows us to extend these results to an arbitrary field K of characteristic zero.
Our approach treats Theorems A and B simultaneously.

Notice that it is not clear how to use the Lefschetz Principle here because the statement
that f has infinitely many periodic points on a curve does not belong to first order logic.

Since K has characteristic zero, replacing it by an algebraic extension if needed, we
may assume that it contains the algebraic closure of its prime field. We fix an isomorphism
of this algebraically closed field with Qalg.
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We first make a conjugacy so that f becomes a regular polynomial automorphism of
degree d ≥ 2. Pick a finitely generated Qalg-algebraR ⊂ K containing all the coefficients
of f , f−1, and of an equation defining C. We may assume that Frac(R) = K , and we set
S = Spec(R).

Let us start with a loose explanation of the proof. The field K is a function field
over Qalg, which we view as the function field of the variety S. For every s ∈ S, we
substitute the corresponding value s into the coefficients of f , obtaining a map fs . For
generic s, we obtain a polynomial automorphism (Lemma 5.1), which satisfies the as-
sumptions of Theorem A or B (Lemmas 5.2 and 5.3). Thus for every s, Jac(fs) is of
modulus 1, and we can conclude that the same holds for Jac(f ). The details however
require some algebro-geometric technology.

Let π : A2
S → S be the natural projection map. Observe that for every (scheme-

theoretic) point s ∈ S, the fiber π−1(s) is canonically isomorphic to A2
κ(s), where κ(s)

is the residue field of s. For such an s, we let Cs := π−1(s) ∩ C be the specialization
of C, and likewise we denote by fs and f−1

s the maps respectively induced by f and f−1

on A2
κ(s).

Lemma 5.1. There exists a non-empty open subset S′ ⊂ S such that for any s ∈ S′ the
map fs is a regular polynomial automorphism of degree d.

Proof. Observe first that f ◦ f−1
= id, hence fs ◦ f−1

s = id on A2
κ(s), so f is an

automorphism for all s ∈ S.
The condition of being regular of degree d can be stated as follows: Expand f as

f = f (0) + f (1) + · · · + f (d), where f (i) : A2
→ A2 contains only homogeneous terms

of degree i. Then f is regular of degree d if and only if the composition f (d) ◦f (d) is not
identically 0. Now the set of s ∈ S where f (d)s ◦ f

(d)
s 6≡ 0 is open and non-empty, and the

result follows. ut

Lemma 5.2. Suppose that p ∈ C(R) is a (closed) periodic point for f lying in C and
defined over R such that the transversality condition (T) holds for f . Then there exists an
open subset S′ ⊂ S such that for any s ∈ S′ the condition (T) is also satisfied for fs .

Proof. The condition that ps belongs to the regular locus of Cs is open since it is given
by an equation of the form dφs(ps) 6= 0 where φ ∈ R[x, y] is an equation of C.

If p has exact period k, the condition that the period of ps is also k is given by the
open condition f (p), . . . , f k−1(p) 6= p.

The condition that TpC is not invariant by an iterate of f is equivalent to saying that
the vector

( ∂φ
∂x
,
∂φ
∂y

)
is not an eigenvector for df 2k , which is open. ut

The key point is the following lemma.

Lemma 5.3. Suppose that C contains infinitely many periodic points of f . Then for any
s ∈ S the curve Cs contains infinitely many periodic points of fs .

Before proving this lemma, let us show how to conclude the proof of Theorems A and B.
Since Jac(f ) lies in R, it may be viewed as a regular function from S to A1

Qalg .
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Fix any embedding Qalg
⊂ C. By Theorems A (resp. B) over Qalg, we know that for

any closed point s ∈ S, the algebraic number Jac(f )(s) has all its conjugates of modulus 1
(resp. it is a root of unity).

If Jac(f )were not a constant function then its image would contain an open affine sub-
set of A1

Qalg , and in particular at least one algebraic number of modulus different from 1.

Therefore Jac(f ) is a constant lying in Qalg, and we are done. ut

Proof of Lemma 5.3. For any n ≥ 1, write f n = (f n1 , f
n
2 ) in affine coordinates (x, y),

and pick a defining equation C = {φ = 0} with φ ∈ R[x, y].
Given an integer l ≥ 1, denote by In,l the coherent ideal sheaf generated by the

polynomials f n1 − x, f n2 − y and φl . Let Fn,l be the quotient sheaf OA2/In,l , and denote
by Xn,l the S-subscheme of A2

S defined by Fn,l .
We claim that the map of schemes π : Xn,l → S is proper (hence finite sinceXn,l is a

subscheme of A2
S). Taking this fact for granted we proceed with the proof of the lemma.

Since π : Xn,l → S is proper, the sheaf G := π∗Fn,l is coherent on S. It follows
from Nakayama’s lemma [Ha77, Exercice II.5.8] that the function s 7→ dimκ(s) Gs/msGs
is upper semicontinuous. Now observe that

Gs/msGs = κ(s)[x, y]/((f
n
1 )s − x, (f

n
2 )s − y, φ

l
s).

Pick any closed point s ∈ S. By the Nullstellensatz, for l large enough and for any given
point p ∈ π−1(s) the stalk of the coherent sheaf Fn,l/msFn,l at p coincides with the
stalk of κ(s)[x, y]/((f n1 )s − x, (f

n
2 )s − y). To simplify notation, denote by µ(p, f ns ) the

multiplicity of p as a fixed point for f ns , that is, the dimension of the finite-dimensional
κ(s)-vector space OA2

κ(s),p
/((f n1 )s − x, (f

n
2 )s − y).

Lemma 5.4. The sequence {µ(p, f ns )}n is bounded.

Proof. Since the residue field κ(s) has characteristic zero and is finitely generated
over Qalg, we may embed it into C and assume fs is a complex polynomial map. The
result then follows from [SS74]. ut

Then we have∑
p∈C∩Fix(f ns )

µ(p, f ns ) =
∑

p∈C∩π−1(s)

dimκ(s) OA2
κ(s),p

/((f n1 )s − x, (f
n
2 )s − y)

=

∑
p∈A2∩π−1(s)

dimκ(s) OA2
κ(s),p

/((f n1 )s − x, (f
n
2 )s − y, φ

l
s)

= dimκ(s) Gs/msGs ≥ dimK Gη =
∑
p∈CK

µ(p, f nK),

where η denotes the generic point of S, and fs (resp. fK ) is the map induced by f on A2
κ(s)

(resp. on A2
K ).

By assumption we know that the quantity∑
p∈CK

µ(p, f nK) ≥ Card(CK ∩ Per(f nK))
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tends to infinity as n → ∞. It follows that
∑
p∈Cκ(s)∩Fix(f ns )

µ(p, f ns ) → ∞. By
Lemma 5.4, we conclude that Card(Cκ(s)∩Fix(f ns )) tends to infinity, as was to be shown.

It remains to prove that the projection map π : Xn,l → S is proper. Let Xn be the
S-scheme defined by the equations f n1 − x, f n2 − y. Since Xn,l is a subscheme of Xn, it
is sufficient to show that π : Xn→ S is proper.

To simplify notation we shall only treat the case n = 1. Consider the intersection of
the diagonal 1 and the graph 0 of f in P2

S × P2
S , and denote by Y its projection to the

first factor. The projection map Y → S is projective, hence proper. Observe that for each
s ∈ S, Ys is the union of the support of (X1)s , which is finite by Proposition 1.9, and two
points at infinity p−(s) and p+(s) corresponding to the (unique) indeterminacy point of
fs and its superattracting fixed point.

Let Y+ and Y− be the irreducible components of Y such that (Y±)s = p±(s) for all s.
Since p+(s) is superattracting, the differential of fs at p+(s) has no eigenvalue equal to 1,
and the intersection of 1 and 0 is transverse at p+(s). It follows from the next lemma
(which was indicated to us by A. Ducros) applied to the section s 7→ p+(s) that Y+ is
a connected component of Y . Replacing f by f−1 we find that Y− is also a connected
component of Y .

We conclude that π is a projective map from Xn = Y \ (Y+ ∪ Y−) to S, hence it is
proper. ut

Lemma 5.5. Let f : Y → S be a finite morphism of finite presentation and let σ :
S → Y be a section of f . If Of−1(s),σ (s) = κ(s) for all s ∈ S then σ(S) is open in Y .

Proof. Pick any s ∈ S and let T be the spectrum of the henselization of OS,s . Denote
by t the closed point of T . Since T is henselian, the finite T -scheme X×S T is a disjoint
union

∐
Ti of spectra of local rings. Pick i0 such that σT (s) ∈ Ti0 (here σT is the section

obtained from σ by base change).
The ring O(Ti0) is a module of finite type over O(T ). Its rank over a closed point is

equal to 1 by assumption, hence is at most 1 at any point of T . Since there is a section σT ,
this rank is actually equal to 1 everywhere, whence σT (T ) = Ti0 .

It follows that there exists an étale morphism U → S whose image contains s,
and there is a decomposition Y ×U S =

∐
Ui where each Ui is finite over U where

σU (U) = Ui0 . The image of Ui0 in Y is an open subset Y ′ of Y . By construction,
Y ′ ⊂ σ(S) and Y ′ contains σ(s). We conclude that σ(S) is open. ut

6. Automorphisms sharing periodic points

The main purpose of this section is to prove Theorems C and D.

6.1. The Bass–Serre tree of Aut[A2
]

Let us recall briefly how the group of polynomial automorphisms of the affine plane
naturally acts on a tree. We refer to [La01] for details and to [Se77] for basics on (groups
acting on) trees.
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Denote by A (resp. E) the subgroup of affine (resp. elementary) automorphisms. The
intersection A ∩ E consists of those automorphisms of the form (x, y) 7→ (ax + b,

cy + dx + e) with ac 6= 0.
Jung’s theorem states that Aut[A2

] is the free amalgamated product of A and E over
their intersection. This means that any automorphism f ∈ Aut[A2

] can be written as a
product

f = e1 ◦ a1 ◦ · · · ◦ es ◦ as

with ei ∈ E and ai ∈ A, and such a decomposition is unique up to replacing a product
e ◦ a by (e ◦ h−1) ◦ (h ◦ a) with h ∈ A ∩ E.

The Bass–Serre tree T of Aut[A2
] is the simplicial tree whose vertices are left cosets

modulo A or E. In other words we choose a set SA (resp. SE) of representatives of the
quotient of Aut[A2

] under the right action of A (resp. of E). Then the vertices of T are in
bijection with {hA}h∈SA ∪ {hE}h∈SE . There is an edge joining hA to h′E if h′ = h ◦ a for
some a ∈ A or h = h′ ◦ e for some e ∈ E.

We endow T with the unique tree metric giving length 1 to all edges. The left action of
an automorphism f on cosets induces an action on T by isometries. It sends any vertex of
the form hA (resp. hE) to f hA (resp. to f hE). Abusing notation we will simply denote
this action by f .

If the action of f on T stabilizes a point of type hA (resp. hE) then it is conjugate to
an affine (resp. elementary) map by h.

Otherwise f has no fixed point on T and it is of Hénon type. Then by definition its
axis is the set of vertices minimizing the distance d(t, f t). It is a unique geodesic (that
is, a bi-infinite path in T), which we denote by Geo(f ). It is f -invariant and f acts on
Geo(f ) as a translation, whose length is a non-zero even integer.

For further reference let us isolate two statements from [La01].

Proposition 6.1. Let f and g be automorphisms of Hénon type that do not share a non-
trivial iterate. Then Geo(f ) ∩ Geo(g) is bounded ( possibly empty).

Proof. By [La01, Corollaire 4.2], either Geo(f ) = Geo(g) or Geo(f ) ∩ Geo(g) is
bounded (possibly empty). By [La01, Théorème 5.4], if the first alternative holds, then
f and g have a common iterate. ut

Proposition 6.2. If γ is a segment in the Bass–Serre tree T, then there exists a polyno-
mial automorphism ϕ with the property that if f is any polynomial automorphism whose
invariant geodesic Geo(f ) contains γ , then the map ϕ−1

◦ f ◦ ϕ is regular.

Proof. It was observed in [La01, Remarque 2.3] that if f is a polynomial automorphism
of Hénon type whose associated geodesic contains the edge joining idA to idE, then f
is cyclically reduced. Hence by [FM89, Theorem 2.6] it is conjugate by an affine map to
a composition of generalized Hénon maps, so that in particular it is regular.

In the general case, since Geo(ϕ−1f ϕ) = ϕ−1 Geo(f ), it is enough to pick ϕ such
that ϕ−1(γ ) = [idA, idE] and conclude by the above argument. ut



The dynamical Manin–Mumford problem 3455

6.2. Proof of Theorem C

In this section we assume that both automorphisms f and g are of Hénon type and defined
over a number field L. We suppose that they share a Zariski dense subset of periodic
points, and wish to prove that they admit a common iterate. The proof is divided into
three steps.

Step 1: f and g have the same equilibrium measure at any place. Assume that f and g
share a set {pm} of periodic points which is Zariski dense in A2. We use a diagonal
argument to extract a subset {p′k} satisfying the requirements of Theorem 1.18. For this,
enumerate as (Cq)q∈N all irreducible curves in A2

L. We construct an auxiliary subsequence
of (pm) as follows. Letm1 be the minimal integer such that pm1 /∈ C1, and set p′1 = pm1 .
Then define m2 > m1 to be the minimal integer such that pm2 /∈ C1 ∪ C2, and set
p′2 = pm2 . These integers exist since the set {pm} is Zariski dense. Continuing in this way
one defines recursively a sequence (p′k) of periodic points with the desired properties. In
particular we conclude from Theorem 1.18 that µf,v = µg,v for every place v.

Step 2: f and g have the same set of periodic points. The difficulty is that we do not
assume that f and g are conjugate by the same automorphism to a regular map. If this
happens, the conclusion follows rather directly from the work of Lamy [La01], as we will
see in Step 3.

To overcome this problem, we proceed as follows. Fix a place v, and define Kv(f ) =
{p ∈ A2,an

Cv : supn∈Z |H
n(p)| <∞}.

Lemma 6.3. For any place v, the set Kv(f ) is the largest compact set in A2,an
Cv such that

sup
Kv(f )

|P | = sup
supp(µf,v)

|P | for all P ∈ Cv[A2
].

Proof. Since supp(µf,v) ⊂ Kv(f ), it is sufficient to prove that the supremum of |P |
over Kv(f ) is attained at a point lying in supp(µf,v).

Suppose that P is a polynomial function, and pick any constant C0 > 0 such that
log(|P |/C0) ≤ 0 on supp(µf,v). Then the function

G̃ := max{G, log(|P |/(C0 + ε))}

is a continuous non-negative function on A2
Cv that induces a continuous semipositive met-

ric on O(1). Since G̃ = G near supp(µf,v), from Corollary A.2 we deduce the equality of
measures MA(G̃) = MA(G), and it follows from Yuan–Zhang’s theorem [YZ13a] that
G̃−G is a constant, hence G̃ = G. It follows that log(|P |/(C0 + ε)) ≤ 0 on Kv(f ). By
letting ε→ 0, we conclude that log(|P |/C0) ≤ 0 on Kv(f ). ut

By analogy with the complex case, one can summarize the previous result by saying that
the polynomially convex hull of supp(µf,v) is the set Kf,v . Since µf,v = µg,v for all v,
we conclude that Kf,v = Kg,v .

Now pick any periodic point p of f . At the place v, it belongs to Kf,v , hence
to Kg,v . Since Lee’s height can be computed by summing the local quantities Gg,v :=
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max{G+g,v,G
−
g,v}, and since {Gg,v = 0} = Kg,v , we conclude that the canonical g-height

of p is zero, hence p is g-periodic.
In what follows, we actually need a stronger information.

Lemma 6.4. Suppose f and g are polynomial automorphisms of the affine plane of
Hénon type defined over a number field L, satisfying the assumptions of Theorem C.
Then for all places v over L, and for any Hénon-type automorphism h belonging to the
subgroup generated by f and g, one has Kh,v = Kg,v = Kf,v .
Proof. We already know that Kv := Kg,v = Kf,v . Since this compact set is invariant by
both f and g, it follows that h also preserves Kv , and this implies Kv ⊂ Kh,v for all v.
Now let Fn denote the set of points of period n for f . For all v, we have Fn ⊂ Kh,v ,
hence the canonical h-height of Fn is equal to 0. Extracting a subsequence if necessary,
we may always assume that Fn is generic since the set of periodic points of a hyperbolic
automorphism is Zariski dense. By Yuan’s theorem, Fn is equidistributed with respect to
the equilibrium measure of both Kv and Kh,v , and we conclude that Kh,v = Kv . ut

Step 3: f and g admit a common iterate. We use Lamy’s structure theory of subgroups
of the group of polynomial automorphisms of the plane [La01]. Assume for contradiction
that f and g admit no common iterate.

Lemma 6.5. Under the above hypotheses, there exist two Hénon-type elements h1, h2 in
the subgroup generated by f and g and a polynomial automorphism ϕ such that
• the subgroup H generated by h1 and h2 is a free non-abelian group;
• any element in H that is not the identity is of Hénon type;
• for any h ∈ H , the automorphism ϕ−1

◦ h ◦ ϕ is a regular automorphism of A2
L.

The rest of the argument is now contained in [La01, Théorème 5.4]. We include it for
the convenience of the reader. We may assume that h1, h2 are regular polynomial auto-
morphisms of A2

L. By Lemma 6.4 we have Kv := Kh1,v = Kh2,v at all places. Pick any
Archimedean place v. Then µ := µh1,v = µh2,v . Now since both h1 and h2 are regular,
it follows thatG1 := max{G+h1

,G−h1
} andG2 are both equal to the Siciak–Green function

of Kv by [BS91, Proposition 3.9], and are hence equal.
Replacing h1 by its inverse if necessary, we find thatG+h1

= G+h2
on a non-empty open

set where the two functions are positive. Since these functions are pluriharmonic where
they are non-zero, and since for a Hénon-type automorphism h, C2

\ K+ is connected
(indeed C2

\K+ =
⋃
n≥0 h

−n(V +)), we deduce that they coincide everywhere. We con-
clude that the positive closed (1, 1)-currents T := ddcG+h1

and ddcG+h2
are equal. Now

consider the commutator h3 = h1h2h
−1
1 h−1

2 . Observe that h∗3T = T , and h3 is regular
by the previous lemma. Since the support of T has a unique point on the line at infinity,
replacing h3 by h−1

3 if needed we may suppose that this point is not an indeterminacy
point of h3. It then follows that the mass of h∗3T equals the degree of h3 times the mass
of T , which is contradictory. This completes the proof of Theorem C.
Proof of Lemma 6.5. By Proposition 6.1, the invariant geodesics Geo(f ) and Geo(g)
have empty or bounded intersection. Assume first that Geo(f ) ∩ Geo(g) contains a seg-
ment. Pick an edge γ in this intersection. By Proposition 6.2 by conjugating we may
assume f and g are regular automorphisms.
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Set h1 = f
N and h2 = g

N whereN is greater than the diameter of Geo(f )∩Geo(g).
The invariant geodesics of these two automorphisms are equal to Geo(f ) and Geo(g)
respectively. Now pick any non-trivial word

h = h
np
1 ◦ h

mp
2 ◦ · · · ◦ h

n1
1 ◦ h

m1
2

with p ≥ 1 and all ni, mi ∈ Z \ {0}. Then a ping-pong argument [La01, Proposition 4.3]
shows that γ lies in the interior of the segment [h(γ ), h−1(γ )], which implies that h is of
Hénon type and Geo(h) ⊃ γ . By Proposition 6.2 we conclude that h is also regular. This
concludes the proof in this case.

Assume now that Geo(f ) and Geo(g) are either disjoint, or their intersection is re-
duced to a singleton. Then there exists a unique segment I = [γ1, γ2] in the tree with
I ∩Geo(f ) = {γ1} and I ∩Geo(g) = {γ2}. Pick any element γ ∈ I , and N large enough
such that the translation lengths of both fN and gN are larger than twice the diameter of I .
Then both automorphisms h1 = f

NgN and h2 = f
2Ng2N satisfy γ ∈ [hi(γ ), h−1

i (γ )],
so that we can apply the same argument as in the previous case. The proof is complete. ut

6.3. Proof of Theorem D

Here we assume that f and g are automorphisms of Hénon type with complex coefficients
such that |Jac(f )| 6= 1, and f and g share an infinite set P of periodic points.

As in Section 5, we pick a finitely generated Qalg-algebra R such that f and g are
defined over K := Frac(R) that is an integral domain, and we set S = Spec(R). As
before we write fs for the specialization of f at s ∈ S.

Towards a contradiction, assume that f and g have no common iterate. By Lemma 6.5
we can fix two elements h1, h2 in the subgroup generated by f and g such that any non-
trivial element in H := 〈h1, h2〉 is of Hénon type and regular.

Lemma 6.6. There exists a non-empty open subset S′ ⊂ S such that for any s ∈ S′

the maps h1,s and h2,s as well as their commutators (h1h2h
−1
1 h−1

2 )s , (h1h
−1
2 h−1

1 h2)s are
regular polynomial automorphisms of Hénon type.

Proof. The condition for an automorphism h to be regular is open since it amounts to say-
ing that the indeterminacy loci of h and h−1 are disjoint. A theorem of J.-P. Furter [Fu99]
asserts that an automorphism h is of Hénon type if and only if deg(h2) > deg(h). Since
there exists an open set where deg(hs) = deg(h) and deg(h2

s ) = deg(h2), the result fol-
lows. ut

Thus, replacing S by a Zariski dense open subset, we may assume that for all s ∈ S,
the maps h1,s , h2,s , (h1h2h

−1
1 h−1

2 )s and (h1h
−1
2 h−1

1 h2)s are regular polynomial automor-
phisms of Hénon type.

Let us now pick s ∈ S(Qalg) such that Jac(fs) has at least one complex conjugate of
norm 6= 1. It is always possible to find such a parameter since otherwise Jac(f ) would
be an algebraic number whose complex conjugates all lie on the unit circle, contradicting
our assumption.
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Our next claim is that Ps is infinite. Indeed, assume that Ps is finite, so it is included
in the set of fixed points of f n0 . For each n ≥ n0 denote by Xn the subscheme of A2

S

whose underlying space is

P ∩ {(x, y) : f n(x, y) = (x, y)},

endowed with the scheme structure induced by the quotient sheaf

OA2
S
/(f n1 − x, f

n
2 − y), where f n = (f n1 , f

n
2 ).

For any p ∈ Ps , the ordinary multiplicity e(p,Xn,s) of p as a point inXn,s is equal to
the multiplicity µ(p, f ns ) as a fixed point for f ns . By the Shub–Sullivan Theorem [SS74],
the sequence e(p,Xn,s) is bounded, hence

∑
p∈Ps

e(p,Xn,s) is bounded.
Arguing as in the proof of Lemma 5.3, we see that the map Xn → S is proper and

finite, and by Nakayama’s lemma we get

#[P ∩ {f n = id}] ≤
∑
p∈P

e(p,Xn) ≤
∑
p∈Ps

e(p,Xn,s) <∞.

Now observe that P∩{f n! = id} contains all the periodic points in P of period≤ n, so the
cardinality of this set tends to infinity as n→∞. This is contradictory, thereby showing
that Ps is infinite.

To conclude the proof of the theorem, fix an Archimedean place v at which |Jac(fs)|v
6= 1. Since Ps is infinite, Theorem A implies Ps is Zariski dense. By Lemma 6.4,
h1 and h2 have the sameKv , and by arguing as in Step 3 on p. 3456, we conclude that the
two pairs of functions {G+h1,s

,G−h1,s
} and {G+h2,s

,G−h2,s
} are identical. It follows that one of

the commutators (h1h2h
−1
1 h−1

2 )s or (h1h
−1
2 h−1

1 h2)s , denoted by h3, leaves G+s := G
+

h1,s

invariant, that is, G+s ◦ h3 = G
+
s . As we saw in Theorem C, since h3 is a regular auto-

morphism, this cannot be true. This contradiction finishes the proof. ut

Remark 6.7. The argument uses in an essential way the fact that the place v is Archimed-
ean. Indeed, we ultimately rely on the fact that for any two regular maps of Hénon type
the equality Gh1 = Gh2 forces that of {G+h1

,G−h1
} and {G+h2

,G−h2
}. The corresponding

statement over a non-Archimedean field k is not true.
Indeed, as above it can be shown that {G+h1

,G−h1
} = {G+h2

,G−h2
} if and only if h1

and h2 admit a common iterate. On the other hand, if h is any regular automorphism
such that h and h−1 have their coefficients in the ring of integers of k, then Gh(x, y) =
log max{1, |x|, |y|}.

6.4. Sharing cycles

In this section we observe that a strengthening of Theorem C can be obtained if one
assumes that two automorphisms of Hénon type share infinitely many periodic cycles
(and not just periodic points).

Let us start with the following observation.
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Proposition 6.8. Let f be an automorphism of Hénon type defined over a number field L.
Let (Fm) be any sequence of disjoint periodic cycles. Then the sequence (µm) of prob-
ability measures equidistributed over the Galois conjugates of Fm converges weakly to
µf,v for all places v.

As a consequence we have

Corollary 6.9. Let f and g be polynomial automorphisms of Hénon type of the affine
plane, defined over a number field. If they share an infinite set of periodic cycles, then
there exist non-zero n,m ∈ Z such that f n = gm.

Indeed, to prove the corollary it suffices to repeat the proof of Theorem C starting from
Step 2.

Proof of Proposition 6.8. We may assume that all Fm are Galois invariant. The result does
not quite follow from Lee’s argument of [Le13, Theorem A] since we do not assume that
the set

⋃
m(Fm ∩ C) is finite for every curve C. We claim however that for any algebraic

curve C,
#(C ∩ Fm) = o(#Fm) as n→∞. (6.1)

One then argues exactly as in [FG14, proof of Theorem 1] to conclude that µm converges
to µf .

Let us justify (6.1). Suppose for contradiction that there exists ε > 0 such that

#(C ∩ Fm) ≥ ε #Fm.

First observe that the minimal period of all points in Fm tends to infinity since f n admits
only finitely many fixed points for any n > 0. Pick any integer N > 1/ε and m large
enough such that the periods of all points in Fm are larger than N . We claim that

#{p ∈ Fm ∩ C : f k(p) ∈ C for some 0 < k ≤ N} → ∞.

But this implies that C ∩ f−k(C) is infinite for some 0 < k ≤ N , whence f k(C) = C,
a contradiction.

To prove the claim, let B denote the set of points in Fm ∩ C such that f k(p) /∈ C for
all 1 ≤ k ≤ N , and letG be its complement in Fm ∩C. We want to estimate #G. For this,
we see that #(B ×N) ≤ #Fm, hence

#G ≥ #(Fm ∩ C)− #B ≥ ε#Fm −
1
N

#Fm→∞

as required. ut

7. Reversible polynomial automorphisms

A polynomial automorphism of A2 is said to be reversible if there exists a polynomial
automorphism σ , which may or may not be an involution, such that σ−1f σ = f−1. Any
such σ is then called a reversor.
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Since invariance under time-reversal appears frequently in physical models, such
mappings have attracted a lot of attention in the mathematical physics literature. In
the context of plane polynomial automorphisms, reversible mappings were classified by
Gómez and Meiss [GM03a, GM03b]. In particular they prove that the reversor σ is either
affine or elementary and of finite (even) order. Moreover they show that when σ admits
a curve of fixed points, then σ must be an involution conjugate to the affine involution
t : (x, y) 7→ (y, x).

Our aim is to prove the following:

Proposition 7.1. Suppose that f is a reversible polynomial automorphism of Hénon type
and σ is an involution conjugating f to f−1. Then any curve of fixed points of σ contains
infinitely many periodic points of f .

Specific examples include all Hénon transformations of Jacobian 1 that are of the form
(x, y) 7→ (p(x)− y, x), for which the reversor is the affine involution t . So is the Hénon
mapping (x, y) 7→ (−y, p(y2) − x), of Jacobian −1. More generally, a mapping of the
form tH−1tH is reversible with reversor t , where H denotes any polynomial automor-
phism.

Let us also observe that taking iterates is really necessary in Conjecture 1. Indeed,
pick for some n ≥ 2 a primitive n-th root of unity ζ , and let p be any polynomial such
that p(ζx) = ζp(x). Then the automorphisms (p(x)− y, x), (ζx, ζy) commute and the
automorphism defined by H := (p(x) − y, x) ◦ (ζx, ζy) is not reversible but its n-th
iterate is. Observe also that the Jacobian of H equals ζ 2.
Algebraic proof of Proposition 7.1. As observed above, we may assume that σ = t so
that the curve of fixed points is actually the diagonal 1 = {x = y}.

Observe now that any point p ∈ 1 ∩ f n(1) satisfies f−n(p) = σf nσ(p) =

σf n(p) = f n(p), and is thus periodic of period 2n.
To conclude, it remains to prove that #(1 ∩ f n(1))→∞. For any p ∈ 1 ∩ f n(1),

we denote by µn(p) the multiplicity of intersection of 1 and f n(1) at p. We rely on the
following result of Arnol’d [Ar93] (see also [SY14]).

Lemma 7.2. For any p ∈ 1, the sequence µn(p) is bounded.

Now since f is a polynomial automorphism of Hénon type, we may choose affine coor-
dinates such that f extends to P2 as a regular map. Recall that f admits a superattracting
point p+ and an indeterminacy point p− on the line at infinity, and p+ 6= p−. Write 1
for the closure of the diagonal in P2.

By [BS91], there exists an integer n0 ≥ 1 such that f n(1) 3 p+ for all n ≥ n0 and
f n(1) 3 p− for all n ≤ −n0. It follows that for all n ≥ n0, the intersection f−n0(1) ∩

f n(1) is included in A2. By Bézout’s Theorem we infer that∑
p∈1

µn(p) = f
−n0(1) · f n−n0(1) = deg(f−n0(1))× deg(f n−n0(1))→∞.

We conclude that there are infinitely many fixed points of f on 1, for otherwise their
multiplicities would have to grow to infinity, contradicting Lemma 7.2. ut

Analytic proof of Proposition 7.1. Let us sketch an alternative argument for #(1∩f n(1))
→∞, based on intersection theory of laminar currents.
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For notational ease, assume that n = 2k is even. Then #(1 ∩ f n(1)) =
#(f−k(1) ∩ f k(1)). We know from [BS91] that the sequence of positive closed (1, 1)-
currents d−k[f k(1)] converges to T −, and likewise for T +. It follows from [BS98a] that
this convergence holds in a geometric sense. Informally this means that we can discard a
part of d−k[f k(1)] of arbitrarily small mass, uniformly in k, so that the remaining part is
made of disks of uniformly bounded geometry, which geometrically converge to the disks
making up the laminar structure of T −.

To state things more precisely, we follow the presentation of [Duj04]. Fix ε > 0.
Given a generic subdivision Q of C2 by affine cubes of size r > 0, there exist uni-
formly laminar currents T −Q,k ≤ d

−k
[f k(1)] and T +Q,k ≤ d

−k
[f−k(1)] made of graphs

in these cubes and such that the mass of d−k[f±k(1)] − T ±Q,k is bounded by Cr2 for
some constant C [Duj04, Proposition 4.4]. Therefore, up to extracting a subsequence,
the currents T ±Q,k converge to currents T ±Q ≤ T ± such that M(T ± − T ±Q ) ≤ Cr2.
Then we infer from [Duj04, Theorem 4.2] that if r is smaller than some r(ε), then
M(T + ∧ T − − T +Q ∧ T

−

Q ) ≤ ε/2. Furthermore, only transverse intersections account
for the wedge product T +Q ∧ T

−

Q . If we denote by ∧̇ the geometric intersection product
for curves, which consists in putting a Dirac mass at any proper intersection, without
counting multiplicities, we have the weak convergence

T +Q,k ∧̇ T
−

Q,k → T +Q ∧̇ T
−

Q = T
+

Q ∧ T
−

Q ,

where the last equality follows from [Duj04, Theorem 3.1]. Hence the mass of T +Q,k ∧̇T
−

Q,k
is larger than 1− ε for k large enough, which was the result to be proved. ut

Remark 7.3. Observe that the analytic argument implies that1 intersects f−k(1) trans-
versely at ∼ dk points. We claim that this implies

#(Per(f 2k) ∩1) = dk(1+ o(1)),

that is, most of1∩f−k(1) is made of points of exact period 2k. Indeed, assume that this
is not the case. Then there exists ε > 0 and a sequence kj → ∞ such that εdkj of these
points have a period which is a proper divisor N of d2kj , in particular N ≤ dkj . Let Fj
be this set of points and νj = d−kj

∑
p∈Fj

δp. By [BLS93b], the measure equidistributed
on Fix(f kj ) (which has cardinality dkj ) converges to µf . Thus any cluster limit ν of (νj )
has mass at least ε and satisfies ν ≤ µf . It follows that µf gives a mass of at least ε to1,
which is contradictory.

Appendix. A complement on the non-Archimedean Monge–Ampère operator

Let K be any non-trivially valued complete non-Archimedean field. We prove

Theorem A.1. Suppose L → X is an ample line bundle over a smooth K-variety of
dimension d . Pick any semipositive continuous metrics | · |1, | · |2 in the sense of Zhang.
Then

1{|·|1<|·|2} c1(L,min{| · |1, | · |2})d = 1{|·|1<|·|2} c1(L, | · |1)
d . (A.1)
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As in [BFJ15, §5] this result implies

Corollary A.2. Suppose L → X is an ample line bundle over a smooth K-variety of
dimension d . Pick any two semipositive continuous metrics | · |1, | · |2 in the sense of
Zhang and suppose that they coincide on an open set � in the analytification of X in the
sense of Berkovich. Then the positive measures c1(L, | · |1)

d and c1(L, | · |2)
d coincide

in �.

Recall that in the main body of the text, we deal with metrics | · | on O(1) → Pd , and
the evaluation of the constant section 1 on the analytification of the affine space Ad ⊂ Pd
defines a functionG := log |1|. With this identification, one has MA(G) = c1(O(1), |·|)d .

Remark A.3. This corollary also follows from the approach to pluripotential theory on
Berkovich spaces developed by Chambert-Loir and Ducros [CLD12] since their definition
of the curvature of a metric is purely local.

Proof of Theorem A.1. Assume first that the metrics | · |1, | · |2 are model metrics. This
means that we can find a model X ofX over Spec(OK) and nef line bundles L1, L2 over X
whose restriction to the generic fiber of X is L.

Observe that by [Gub98, Lemma 7.8], min{| · |1, | · |2} is also a model metric (maybe
in some other model of X).

In that case c1(L,min{| · |1, | · |2})d and c1(L, | · |1)
d are both atomic measures,

supported on divisorial points corresponding to irreducible components of the special
fiber.

IfE is such a component for which (|·|1/|·|2)(xE) < 1 then (|·|1/|·|2)(xF ) ≤ 1 for all
irreducible components F of the special fiber intersecting E. It follows that L1|E = L2|E
as numerical classes on E, and hence c1(L,min{| · |1, | · |2})d{xE} and c1(L, | · |1)

d
{xE}

by the definition of Monge–Ampère measures of model functions.
In the general case, we may assume that we have sequences of model metrics | · |i,n

on L such that | · |i,n→ | · |i uniformly on Xan. Observe that � := {| · |1 < | · |2} is open
since both metrics are continuous. It suffices to prove that∫

h c1(L,min{| · |1, | · |2})d =
∫
h c1(L, | · |1)

d

for all continuous functions h whose support is contained in � and such that 0 ≤ h ≤ 1.
Pick ε > 0 small and rational and write �n := {| · |1,ne−ε < | · |2,n|}. For n � 0,

we have � ⊆ �n. Since | · |1,ne−ε and | · |2,n| are both model metrics, we know that
c1(L,min{| · |1,ne−ε, | · |2,n})d = c1(L, | · |1,n)

d on �n by the previous step. Since h is
supported in � ⊂ �n, we get∫

hc1(L,min{| · |1,ne−ε, | · |2,n})d =
∫
hc1(L, | · |1,ne

−ε)d =

∫
hc1(L, | · |1,n)

d

for all n, and we conclude by letting n → ∞ and ε → 0 and using [CL06, Proposi-
tion 2.7]. ut
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de Berkovich. arXiv:1204.6277 (2012)

[Dua08] Duarte, P.: Elliptic isles in families of area-preserving maps. Ergodic Theory Dynam.
Systems 28, 1781–1813 (2008) Zbl 1179.37007 MR 2465600

[Duj04] Dujardin, R.: Sur l’intersection des courants laminaires. Publ. Mat. 48, 107–125 (2004)
Zbl 1048.32021 MR 2044640

[FG14] Favre, C., Gauthier, T.: Distribution of postcritically finite polynomials. Israel J. Math.
209, 235–292 (2015) Zbl 1352.37202 MR 3430241

[FS92] Fornæss, J.-E., Sibony, N.: Complex Hénon mappings in C2 and Fatou–Bieberbach
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