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Abstract. Schmidt and Spieß described the abelian tame fundamental group of a smooth variety
over a finite field by using Suslin homology. In this paper we show that their result generalizes to
singular varieties if one uses Weil–Suslin homology instead.
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1. Introduction

In the 1980’s, Kato and Saito (based on ideas of Bloch) generalized the class field theory
for smooth, projective curves over finite fields to smooth, projective varieties of arbitrary
dimension [KaSa]: The map from the free abelian group generated by the closed points
which sends a generator x ∈ X to the image of the Frobenius of k(x) under πab

1 (k(x))→

πab
1 (X) factors through the Chow group of zero cycles, and induces an isomorphism

rX : CH0(X)
∼
−→ πab

1 (X)W.

Here πab
1 (X)W is the subgroup of elements in πab

1 (X)whose images in the absolute Galois
group of the finite base field are integral Frobenius powers.

If X is not necessarily projective but still smooth, then Schmidt and Spieß [SS, Sc]
showed that the same result still holds if one replaces the Chow group by Suslin ho-
mology and the fundamental group by its tame version: The reciprocity map induces an
isomorphism of finitely generated abelian groups

rX : H
S
0 (X,Z)

∼
−→ π

t,ab
1 (X)W.

This result does not extend to nonsmooth schemes: the example of the node shows that
rX is neither injective nor surjective in general. IfX is normal, then rX is surjective but an
example of Matsumi–Sato–Asakura [MAS] shows that rX may have a nontrivial kernel.
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In this paper, we show that the result of Schmidt and Spieß can be generalized to
singular varieties if one uses a refined version of Suslin homology on the one hand, and
replaces the fundamental group by the enlarged fundamental group of [SGA3, X, §6]
on the other hand. We denote the abelian enlarged tame fundamental group by 5t,ab

1 in
order to distinguish it from the usual abelian tame fundamental group π t,ab

1 , which is its
profinite completion. The groups coincide if X geometrically unibranch (e.g., normal).
Our first result is:

Theorem 1.1. For any connected scheme X, separated and of finite type over a finite
field, the pro-group 5t,ab

1 (X)W is isomorphic to a (constant) finitely generated abelian
group.

On the other hand, recall from [Ge3] the definition of Weil–Suslin homology: Let F be
the finite base field, F ∈ GalF the Frobenius automorphism and G ∼= Z the subgroup of
GalF generated by F . For an abelian group A, the groups HWS

i (X,A) are defined as the
homology of the cone of 1−F ∗ on the Suslin complex tensored byA of the base change X̄
of X to the algebraic closure F̄ of F. By definition, there are short exact sequences

0→ H S
i (X̄, A)G→ HWS

i (X,A)→ H S
i−1(X̄, A)

G
→ 0.

Furthermore, for all i there are natural maps

H S
i (X,A)→ HWS

i+1(X,A).

If X is smooth and A is finite, then it follows from the proof of Kato’s conjecture by
Jannsen, Kerz and Saito [KeSa] (and under resolution of singularities) that these maps are
isomorphisms (for i = 0 this follows from the theorem of Schmidt–Spieß).

We define a refined reciprocity homomorphism

recX : HWS
1 (X,Z)→ 5

t,ab
1 (X)W

such that the composite with the natural map H S
0 (X,Z)→ HWS

1 (X,Z) is the reciprocity
map rX described above. Our main result, conjectured in [Ge3], is the following

Theorem 1.2. For any connected scheme X, separated and of finite type over a finite
field F, the homomorphism

recX : HWS
1 (X,Z)→ 5

t,ab
1 (X)W

is surjective. The kernel of recX contains the maximal divisible subgroup of HWS
1 (X,Z),

and is equal to it if resolution of singularities for schemes of dimension ≤ dimX + 1
holds over F.

As a corollary, we obtain (under resolution of singularities) an isomorphism of profinite
completions

rec∧X : H
WS
1 (X,Z)∧ ∼−→ π

t,ab
1 (X).

Under Parshin’s conjecture [Ge3], HWS
1 (X,Z) is finitely generated, hence recX would be

an isomorphism.
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2. The fundamental group and tame coverings

2.1. Etale and Weil-etale cohomology

Let X be a scheme, separated and of finite type over a finite field F. The absolute Ga-
lois group GalF acts on X̄ = X ×F F̄ via its action on F̄. Pulling an etale sheaf F
on X back to F̄ on X̄, we obtain a sheaf with a GalF-action [SGA7, XIII, §1.1]. By
using this action, the etale cohomology H ∗et(X,F) can be calculated as the cohomology
of R0GalFR0et(X̄, F̄). The Weil-etale cohomology of F is by definition the cohomology
of R0G R0et(X̄, F̄), where G ∼= Z is the subgroup of GalF generated by the Frobe-
nius. Since R0GalF and R0G coincide on discrete torsion modules, etale and Weil-etale
cohomology coincide on torsion sheaves (cf. [Ge1, §2] for a more detailed account).

We can calculate the Weil-etale cohomology of a sheaf F as follows: Choose an in-
jective resolution F → I•. Then

H i
et(X,F) = H i(I•(X̄)G) and H i

W(X,A) = H
i
(
I•(X̄)

1−F ∗
−−−→ I•(X̄)

)
,

where F ∗ is the pull-back along the Frobenius, and the left complex is considered to
be in homological degree 0. We form the double complex by using the negative of the
differential in the second complex, i.e., the differential of the total complex has the form

Ii(X̄)⊕ Ii−1(X̄)→ Ii+1(X̄)⊕ Ii(X̄), (α, β) 7→ (dα, α − F ∗α − dβ). (1)

From the definition, we obtain short exact sequences

0→ H i−1
et (X̄,F)G→ H i

W(X,F)→ H i
et(X̄,F)G→ 0, (2)

as well as a homomorphism

H i
et(X,F)→ H i

W(X,F) (3)

for each i ≥ 0, which is an isomorphism for i = 0 and injective for i = 1.
By [SV1, Thm. 10.2], etale and qfh-cohomology of a constant sheaf A coincide.

Hence, in order to calculate Weil-etale cohomology of A, we can also work with an in-
jective resolution A → I• in the big qfh-site over F. If moreover A is a Z/m-module
for some m ≥ 1, then we can also work with a resolution of A by injective h-sheaves of
Z/m-modules [SV1, Thm. 10.7].

For a regular connected curve C over a field k we consider the subgroup H 1
t (C,A)

⊆ H 1
et(C,A) of tame cohomology classes (corresponding to those continuous homomor-

phisms πet
1 (C)→ A which factor through the tame fundamental group π t1(C

′, C′ − C),
where C′ is the regular compactification of C).

For a general k-scheme X, we call a cohomology class in a ∈ H 1
et(X,A) tame if for

any morphism f : C → X with C a regular curve, we have f ∗(a) ∈ H 1
t (C,A). The tame

cohomology classes form a subgroup

H 1
t (X,A) ⊆ H

1
et(X,A).
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The groups coincide if X is proper, if p = 0, or if p > 0 and A is p-torsion free, where p
is the characteristic of the base field k. If X is smooth with smooth compactification X′,
then H 1

t (X,Z/pr) ∼= H 1
et(X

′,Z/pr) for any r ≥ 1 by [GS, Prop. 2.10].
ForX separated and of finite type over the finite field F, we define the tame Weil-etale

cohomology to be the subgroup

H 1
W,t(X,A) ⊆ H

1
W(X,A)

of those elements whose image in H 1
et(X̄, A) in (2) is tame.

Recall that an abstract blow-up square is a cartesian diagram

Z′ X′

Z X

i′

π ′ π

i

(4)

such that i is a closed embedding, π is proper, and π induces an isomorphism (X′−Z′)red
∼
−→ (X − Z)red.

Proposition 2.1. If in the abstract blow-up square (4), π is finite, or if the abelian
group A is torsion, then there is an exact sequence

0→ H 0
W(X,A)→ H 0

W(X
′, A)⊕H 0

W(Z,A)→ H 0
W(Z

′, A)

→ H 1
W,t(X,A)→ H 1

W,t(X
′, A)⊕H 1

W,t(Z,A)→ H 1
W,t(Z

′, A).

Proof. Let Sch/F be the category of separated schemes of finite type over F. For S ∈
Sch/F we denote by Zh(S) the h-sheaf of abelian groups associated with the presheaf
defined by U 7→ Z[MorF(U, S)].

For any finite field extension F′/F, the base changes of X, Z, Z′, X′ to F′ form an
abstract blow-up square in a natural way. By the same argument as in the proof of [Ge2,
Prop. 3.2] (for the eh-topology) or [SV2, Lem. 12.1] (for the cdh-topology), we have an
exact sequence of h-sheaves on Sch/F,

0→ Zh(Z′F′)→ Zh(ZF′)⊕ Zh(X′F′)→ Zh(XF′)→ 0. (5)

If A is torsion, then etale and h-cohomology with values in A agree by [SV1, Thm. 10.2].
Applying the functor RHomh(−, A) and passing to the limit over all F′/F, we obtain the
exact triangle

R0(X̄et, A)→ R0(X̄′et, A)⊕ R0(Z̄et, A)→ R0(Z̄′et, A)→ R0(X̄et, A)[1] (6)

and the long exact sequence

→ H i
et(X̄, A)→ H i

et(X̄
′, A)⊕H i

et(Z̄, A)→ H i
et(Z̄

′, A)→ H i+1
et (X̄, A)→ . (7)

If π is finite, we have the qfh-version of the exact sequence (5) and obtain (6) and (7) for
arbitrary A, since etale and qfh-cohomology with values in any abelian group agree by
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[SV1, Thm. 10.7]. Applying R0G to (6) and taking cohomology, we obtain the long exact
sequence

H i
W(X,A)→ H i

W(X
′, A)⊕H i

W(Z,A)→ H i
W(Z

′, A)→ H i+1
W (X,A)→ · · · . (8)

By [GS, Prop. 5.1], (7) induces an exact sequence

0→ H 0
et(X̄, A)→ H 0

et(X̄
′, A)⊕H 0

et(Z̄, A)→ H 0
et(Z̄

′, A)

δ
−→ H 1

t (X̄, A)→ H 1
t (X̄

′, A)⊕H 1
t (Z̄, A)→ H 1

t (Z̄
′, A). (9)

Comparing (9) with the sequences (7) and (8), we obtain the statement of the proposition
by a diagram chase. ut

2.2. The enlarged fundamental group

We recall the definition of the enlarged fundamental group of [SGA3, X, §6]: Let X be
a connected, locally noetherian scheme. For a group G (considered as a constant group
scheme over X), a G-torsor P over X is a nonempty etale X-scheme P (i.e., π : P → X

is unramified, flat and locally of finite type) with a G-action P ×X G → P such that
P ×X G→ P ×X P , (x, g) 7→ (x, xg), is an isomorphism. By [Mi, Prop. 2.7] (see also
Ex. 2.6 there), for any etale sheaf F on X we have a Hochschild–Serre spectral sequence

Ers2 = H
r(G,H s

et(P, π
∗F)) =⇒ H r+s

et (X, F ).

For a geometric point ξ of X, one defines 51(X, ξ,G) to be the set of isomorphism
classes of G-torsors over X pointed over ξ . The trivial G-torsor gives a distinguished
element in51(X, ξ,G). For aG-torsor P onX and a group homomorphism f : G→ H ,
consider

f∗(P ) := (P ×H)/G,

where G acts by (t, h) · g = (tg, f (g−1)h). Then f∗(P ) is an H -torsor over X and we
obtain a functor

G 7→ 51(X, ξ,G)

from groups to pointed sets. By [SGA3, X, §6], this functor is pro-represented by the
enlarged fundamental pro-group 51(X, ξ), i.e.,

51(X, ξ,G) ∼= Hompro-grps(51(X, ξ),G).

Explicitly, there is a pro-system of groups 51(X, ξ) = (Gi)i∈I with I filtering, and a
Gi-torsor Pi corresponding to the projection map 51(X, ξ) → Gi for all i such that
for any transition map αij : Gi → Gj in the system we have Pj = (αij )∗(Pi), and for
any morphism 51(X, ξ) → H represented by f : Gj → H in the filtered colimit, the
corresponding H -torsor is f∗(Pj ).

Next we define the enlarged tame fundamental group by extending the notion of
curve-tameness from [KeSc] to the enlarged context. A G-torsor P over a regular con-
nected curve C over a field k is called tame if the projection P → C extends to an at most
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tamely ramified covering of the regular compactification C′ of C. If X is any scheme,
separated and of finite type over k, and P is a G-torsor on X, then we call P tame if its
pull-back to the normalization of any curve on X is a tame torsor. If G = A is abelian,
then an A-torsor is tame if and only if its associated class in H 1

et(X,A) lies in H 1
t (X,A).

The functor
G 7→ 51,t(X, ξ,G)

sending G to the set of isomorphism classes of pointed tame G-torsors on X is pro-
represented by the enlarged tame fundamental group5t

1(X, ξ), a quotient of51(X, ξ) in
the category of pro-groups.

The abelianizations5ab
1 (X) and5t,ab

1 (X) of51(X, ξ) and5t1(X, ξ) represent the re-
strictions of the respective functors to the category of abelian groups and are independent
of the chosen base point ξ .

Lemma 2.2. For any abelian group A we have

Hompro-grps(5
ab
1 (X),A)

∼= H
1
et(X,A),

and similarly for the tame version.

Proof. Write 5ab
1 (X) = (Ai) and Pi for the Ai-torsor corresponding to the projection

5ab
1 (X)→ Ai . We obtain a filtered direct system of Hochschild–Serre spectral sequences

H r(Ai, H
s
et(Pi, A))→ H r+s

et (X,A)

inducing a system of short exact sequences

0→ H 1(Ai, A)→ H 1
et(X,A)→ H 0(Ai, H

1
et(Pi, A)).

The right map is the zero map in the colimit over all i, because if the A-torsor P arises
from a map f : Ai → A, i.e., P = f∗(Pi), then P trivializes over Pi . Finally,

colimH 1(Ai, A) ∼= colim Hom(Ai, A) = Hompro-grps(5
ab
1 (X),A). ut

From now on let X be a connected scheme, separated and of finite type over the finite
field F. As above, we denote by G the subgroup of GalF consisting of all integral powers
of the Frobenius automorphism.

Definition 2.3. The enlarged Weil-tame fundamental group 5t
1(X, ξ)W is defined by the

cartesian diagram of pro-groups

5t
1(X, ξ)W 5t

1(X, ξ)

G 51(F)
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The abelianization 5t,ab
1 (X)W of 5t

1(X, ξ)W fits into the analogous cartesian diagram

5
t,ab
1 (X)W 5

t,ab
1 (X)

G 51(F)

The profinite completion of 5t,ab
1 (X)W is the usual abelian (curve-)tame fundamental

group π t,ab
1 (X) of [KeSc].

Proposition 2.4. For any abelian group A, there is a functorial isomorphism

Hompro-grps(5
ab
1 (X)W, A)

∼= H
1
W(X,A)

compatible with the isomorphism of Lemma 2.2, and there is a similar isomorphism for
the tame version.

Proof. Replacing F by its maximal algebraic extension in 0(X,OX) changes G to a
subgroup of finite index, but does not change the groups on both sides of the statement.
Hence we may assume that X is geometrically connected [DG, I, §4, 6.7]. Setting X̄ =
X ×F F̄, we have the exact sequence of pro-groups

1→ 51(X̄, ξ)→ 51(X, ξ)W → G→ 1.

If we write 51(X, ξ)W = (Gi), then 51(X̄, ξ) = (Ḡi) with Ḡi = ker(Gi → G). We
denote by P̄i the Ḡi-torsor over X̄ associated with the projection map 51(X̄, ξ)→ Ḡi .

Consider the functor F 7→ 0(P̄i,F) from the category of etale sheaves on X to
Gi-modules. The inclusion A→R0(P̄i, A) induces a map R0Gi (A)→R0GiR0(P̄i, A)

in the derived category of abelian groups. Since R0Gi = R0GR0Ḡi , we can write this
map in the form

R0Gi (A)→ R0GR0ḠiR0(P̄i, A). (10)

Since taking global sections over P̄i has an exact left adjoint, it sends injectives sheaves
on X to injective ZḠi-modules, and we obtain R0ḠiR0(P̄i, A) = R0(X̄,A). We can
thus write (10) in the form

R0Gi (A)→ R0GR0(X̄,A). (11)

Taking cohomology, and passing to the colimit over i, we obtain maps

H n(5ab
1 (X)W, A)→ H n

W(X,A), n ≥ 0.

For n = 1 this is the map of the proposition and we have to show that it is an isomorphism.
For this we rewrite (11) in the form

R0GR0Ḡi (A)→ R0GR0(X̄,A) (12)
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and consider the map of the associated spectral sequences, which degenerate to short
exact sequences. In degree 1, we obtain the commutative diagram with exact lines

0 AG H 1(51(X)W, A) H 1(51(X̄), A)
G 0

0 H 0
et(X̄, A)G H 1

W(X,A) H 1
et(X̄, A)

G 0

Since X is geometrically connected, the left vertical map is an isomorphism. The right
vertical map is an isomorphism by Lemma 2.2. Hence the middle map is an isomorphism.

To show the statement for the tame variant, we note that there is a similar diagram to
the one above for the tame groups. Indeed, a torsor on X is tame if and only if its base
change to X̄ is tame, so we obtain the exact sequence

1→ 5t
1(X̄, ξ)→ 5t

1(X, ξ)W → G→ 1.

On the other hand, the bottom sequence of the above diagram induces a similar sequence
for the tame Weil-etale cohomology by definition. This time, the right vertical map is an
isomorphism by the tame version of Lemma 2.2. ut

For a finite disjoint unionX =
∐
Xi of connected schemes we write by abuse of notation

5
t,ab
1 (X)W =

∏
i

5
t,ab
1 (Xi)W.

Theorem 2.5. For any X, separated and of finite type over a finite field F, 5t,ab
1 (X)W is

isomorphic to a finitely generated abelian group.
Proof. First assume that X is normal and connected. We claim that the kernel

5
t,ab
1 (X)geo

:= ker
(
5

t,ab
1 (X)W → 51(F)W ∼= Z

)
is a finite abelian group. If X is smooth, this follows from the main theorem of Schmidt–
Spieß [SS, Sc]. For a general normal X, choose a dense open smooth subscheme U ⊂ X.
Then, by [SGA1, V, Prop. 8],5t,ab

1 (U)geo surjects onto5t,ab
1 (X)geo, hence the latter group

is finite.
Now letX be arbitrary. We can assume thatX is connected and reduced. LetX′→ X

be the normalization. The cokernel 5ab
1 (X

′/X) of 5ab
1 (X

′) → 5ab
1 (X) represents the

functor 51
ab(X

′/X) which sends an abelian group A to the set of isomorphism classes
of A-torsors on X which trivialize over X′. We denote the tame version of this group by
5

t,ab
1 (X′/X) and the cokernel of 5t,ab

1 (X′)W → 5
t,ab
1 (X)W by C. Consider the diagram

5ab
1 (X

′) 5ab
1 (X) 5ab

1 (X
′/X) 0

5
t,ab
1 (X′) 5

t,ab
1 (X) 5

t,ab
1 (X′/X) 0

5
t,ab
1 (X′)W 5

t,ab
1 (X)W C 0

α

β
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Since X′ → X is proper, a torsor on X which trivializes over X′ is tame. Hence α is an
isomorphism, and so is β. By [SGA3, X §6, p. 109], 5ab

1 (X
′/X) is a finitely generated

abelian group, hence so is C. We have proved above that the geometric part of5t,ab
1 (X′)W

(defined componentwise if X′ is not connected) is finite. This implies that 5t,ab
1 (X)W is

constant and finitely generated. ut

3. Weil–Suslin homology

Let k be a perfect field and X a scheme, separated and of finite type over k. We recall
that, for a smooth k-scheme T , the group Cor(T ,X) of finite correspondences is the free
abelian group generated by closed integral Z ⊆ T ×X which are finite and surjective over
a component of T . The Suslin complex of X is the complex C•(X) = Cor(1•, X), where
1i = Spec k[T0, . . . , Ti]/(

∑
Ti − 1). Set ∂ :=

∑i
j=0(−1)j δji ∈ Cor(1i−1,1i), where

δ
j
i : 1

i−1
→ 1i , j = 0, . . . , i, are the face maps. Then the differential Cor(1i, X) →

Cor(1i−1, X) is the composition of the correspondences x 7→ x◦∂ . The following lemma
is easy to check from the definitions:

Lemma 3.1. Let f : X→ Y be a morphism of schemes.

(a) If X and T are smooth and c ∈ Cor(T ,X), then (idT × f )∗c = f ◦ c. Here the left
hand side is a push-forward of cycles, and the right hand side is a composition of
correspondences.

(b) If X and Y are smooth and d ∈ Cor(Y, Z), then (f × idZ)∗d = d ◦ f . Here the
left hand side is a pull-back of cycles, and the right hand side is a composition of
correspondences.

(c) If f is an automorphism of the smooth scheme X, then f ∗c = f−1
∗ c for any cycle c.

Let T and X be separated schemes of finite type over k and σ ∈ Gal(k̄/k). Then σ acts
on X̄ = X ×k k̄ via its action on k̄, and on algebraic cycles by pull-back.

Lemma 3.2. The action of σ on Cork̄(T̄ , X̄) induced by pull-back of algebraic cycles
sends a correspondence α to the composition σ−1

X α σT , where σX and σT are the auto-
morphisms of X̄ and T̄ induced by σ . In other words, the following diagram of corre-
spondences commutes:

T̄ T̄

X̄ X̄

σT

σ ∗α α

σX

(13)

Proof. From Lemma 3.1, we have

σX ◦ σ
∗α = (idT ×σX)∗(σT × σX)∗α

= (idT ×σ−1
X )∗(idT ×σX)∗(σT × idX)∗α = α ◦ σT . ut
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Now we assume that k = F is a finite field. Let X̄ be the extension to the algebraic
closure F̄, and let F be the Frobenius automorphism of F̄/F. Let G ∼= Z be the Weil
group of F, generated by the Frobenius F .

Definition 3.3. Weil–Suslin homology HWS
i (X,A) with coefficients in the abelian group

A is defined as the homology of the cone of

C•(X̄)⊗ A
1−F ∗
−−−→ C•(X̄)⊗ A,

i.e., the total complex of the double complex

· · · C2(X̄)⊗ A C1(X̄)⊗ A C0(X̄)⊗ A

· · · C2(X̄)⊗ A C1(X̄)⊗ A C0(X̄)⊗ A

−∂

1−F ∗

−∂

1−F ∗ 1−F ∗

∂ ∂

In degree i, the total complex consists of all elements

(xi, xi−1) ∈ Cor(1̄i, X̄)⊗ A ⊕ Cor(1̄i−1, X̄)⊗ A

with differential
(x, y) 7→ (x∂ + y − F−1yF,−y∂). (14)

The spectral sequence for double complexes gives short exact sequences

0→ H S
i (X̄, A)G→ HWS

i (X,A)→ H S
i−1(X̄, A)

G
→ 0 (15)

where the left hand side and right hand side are the coinvariants and invariants with respect
to G, respectively. The map C•(X) → C•(X̄), sending a generator Z ⊆ X × 1i to its
pull-back to the algebraic closure, has image in the kernel of 1−F ∗. Therefore, we obtain
natural maps, for i ≥ 0,

H S
i (X,A)→ HWS

i+1(X,A). (16)

Remark 3.4. For a torsion GalF-moduleM , we haveR0(F,M) ∼= [M 1−F ∗
−−−→ M], where

the last complex is concentrated in (cohomological) degrees zero and one. Hence, if A is
a torsion group, then

HWS
i (X,A) = H 1−i(R0(F, C•(X̄)⊗ A)).

Remark 3.5. The definition of Weil–Suslin homology depends on the finite base field F
(via F ∈ GalF). However, if X → F factors through F′/F, then the Weil–Suslin homol-
ogy of X does not depend on whether we consider X as a scheme over F′ or over F.

Proposition 3.6. An abstract blow-up diagram (4) induces a long exact sequence of
Weil–Suslin homology groups

HWS
1 (Z′, A)→ HWS

1 (X′, A)⊕HWS
1 (Z,A)→ HWS

1 (X,A)

→ HWS
0 (Z′, A)→ HWS

0 (X′, A)⊕HWS
0 (Z,A)→ HWS

0 (X,A)→ 0.
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Proof. By definition of Weil–Suslin homology, only the terms Ci(?̄) for i ≤ 2 are in-
volved in the definition of the terms in the sequence, hence a diagram chase shows that it
suffices to show that in the short exact sequence of complexes

0→ C•(Z̄
′)→ C•(X̄

′)⊕ C•(Z̄)→ C•(X̄)→ K•→ 0

one has Hi(K•) = 0 for i ≤ 2. This was shown in [GS, proof of Prop. 5.2]. ut

Since H S
0 (F̄,Z) = Z and H S

i (F̄,Z) = 0 for i ≥ 1, we can calculate the Weil–Suslin
homology of the point by using (15) as follows.

Example 3.7.

HWS
i (F,Z) ∼=

{
Z, i = 0, 1,
0, i ≥ 2.

Let C be a smooth, proper, geometrically connected curve over F. By [Li], we have

H S
i (C̄,Z) ∼=


Pic(C̄), i = 0,
F̄×, i = 1,
0, i ≥ 2.

Recalling F̄×G = 0 and Pic(C̄)G ∼= Z, the exact sequence (15) yields the following:

Example 3.8. Let C be a smooth, proper, geometrically connected curve over F. Then

HWS
i (C,Z) ∼=


Z, i = 0,
Pic(C), i = 1,
F×, i = 2,
0, i ≥ 3.

The following improves [Ge3, Prop. 7.8]:

Proposition 3.9. Let X be a connected, separated scheme of finite type over F. Then the
structure map induces an isomorphism

deg : HWS
0 (X,Z) ∼−→ HWS

0 (F,Z) ∼= Z.

Proof. We have HWS
0 (X,Z) ∼= H S

0 (X̄,Z)G, hence deg is surjective, and it remains to
show that its kernel is trivial. Since elements inH S

0 (X̄,Z) are represented by zero-cycles,
any element ofHWS

0 (X,Z) comes by push-forward fromHWS
0 (C,Z) for some connected

curve C ⊂ X (use, e.g., [Mu, II, §6, Lemma]). We can therefore assume that X = C is a
connected curve.

If C′ → C is finite and surjective, then HWS
0 (C′,Z) → HWS

0 (C,Z) is surjective.
Moreover, any element of degree zero in HWS

0 (C̄,Z) can be lifted to an element in the
kernel of the multi-degree map

HWS
0 (C′,Z)→ Zπ0(C

′).
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We can therefore assume that C is a normal, connected curve. Moreover, we can assume
that C has an F-rational point (use Remark 3.5). Let A be the semi-abelian Albanese
variety of C. Then, by [SV1, Thm. 3.1] (and [Li] if C is proper), the degree zero part of
H S

0 (C̄,Z) is isomorphic to A(F̄). The G-coinvariants of this group are both finite and
divisible, hence trivial. ut

Corollary 3.10. The canonical injection

HWS
1 (X,Z)/m→ HWS

1 (X,Z/m)

is an isomorphism for any m ≥ 1.

Proof. The cokernel is isomorphic to ker(HWS
0 (X,Z) ·m−→ HWS

0 (X,Z)) = 0. ut

4. Duality

We say that resolution of singularities holds for schemes of dimension ≤ d over a perfect
field k if the following two conditions are satisfied.

(1) For any integral separated scheme of finite type X of dimension ≤ d over k there
exists a projective birational morphism Y → X with Y smooth over k which is an
isomorphism over the regular locus of X.

(2) For any integral smooth schemeX of dimension≤ d over k and any birational proper
morphism Y → X there exists a tower of morphismsXn→ Xn−1 → · · · → X0 = X

such that Xn → Xn−1 is a blow-up with a smooth center for i = 1, . . . , n, and the
composite morphism Xn→ X factors through Y → X.

In this paper, we do not use the full duality statement below, but only the equality of the
orders of the respective groups.

Theorem 4.1. Let X be separated and of finite type over the finite field F of characteris-
tic p. If m is prime to p, then there is a perfect pairing of finite groups

HWS
i (X,Z/m)×H i

et(X,Z/m)→ Z/m.

If X is smooth and resolution of singularities for schemes of dimension ≤ dimX + 1
holds over F, then there is a perfect pairing of finite groups for any r ≥ 1,

HWS
1 (X,Z/pr)×H 1

t (X,Z/p
r)→ Z/pr .

Proof. By [Ge3, Thms. 5.4 and 5.5], we have a perfect pairing of finite groups

HGS
i−1(X,Z/m)×H

i
et(X,Z/m)→ Z/m,

where HGS
i−1 is Galois–Suslin homology. By [Ge3, §7.1], we have HGS

i−1(X,Z/m) ∼=
HWS
i (X,Z/m), showing the first statement (note that HWS

i is denoted by H ar
i in [Ge3]).
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For the second statement, let X′ be a smooth, proper variety containing X as a dense
open subscheme. Then, by [GS, Prop. 6.2], we have H S

i (X̄,Z/p
r) ∼= H S

i (X̄
′,Z/pr) for

i = 0, 1, and the exact sequence (15) above implies that

HWS
1 (X,Z/pr) ∼= HWS

1 (X′,Z/pr).

Furthermore,H 1
t (X,Z/pr) ∼= H 1

et(X
′,Z/pr) by [GS, Prop. 2.10]. Hence we may assume

that X = X′ is smooth and proper.
Let ZcX be the complex of etale sheaves on X which associates to U → X the Bloch

complex z0(U, •). Then, for smooth properX,H i
et(X,Z/pr) is dual to Ext2−iX (Z/pr ,ZcX)

by [Ge4, Thm. 5.1]. Furthermore,

Ext2−iX (Z/pr ,ZcX) ∼= Ext1−i
X,Z/pr (Z/p

r ,ZcX/p
r) (by [Ge4, Lem. 2.4])

∼= H
1−i
et (X,ZcX/p

r)

∼= H
1−i(R0(F, R0(X̄et,ZcX̄/p

r))
)

∼= H
1−i(R0(F,Zc

X̄
/pr(X̄))

)
(by [Ge4, Thm. 3.1]).

The natural map
C•(X̄)⊗ Z/pr → Zc

X̄
/pr(X̄)

induces an isomorphism on H j for j = −1, 0 by [SS, Thm. 2.7] (the assumption
dimX ≤ 2 is unnecessary and not used in the proof). Hence for i = 1 we obtain

H 0(R0(F,Zc
X̄
/pr(X̄))

)
∼= H

0(R0(F, C•(X̄)⊗ Z/pr)
)

∼= H
WS
1 (X,Z/pr) (by Remark 3.4).

This concludes the proof. ut

5. The reciprocity map

For any X and any abelian group A, we construct a functorial pairing

HWS
1 (X,Z) × H 1

W,t(X,A)
〈 , 〉
−−→ A, (17)

which induces natural maps

Hom(5t,ab
1 (X)W, A) ∼= H

1
W,t(X,A)→ Hom(HWS

1 (X,Z), A)

for any abelian (pro-)group A, hence the Yoneda lemma induces

recX : HWS
1 (X,Z)→ 5

t,ab
1 (X)W. (18)

The pairing (17) should satisfy two conditions. First, the composite of recX with the
natural map H S

0 (X,Z)→ HWS
1 (X,Z) should be the map

rX : H
S
0 (X,Z)→ 5

t,ab
1 (X)W
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which sends the class [x] of a closed point x ∈ X to its Frobenius automorphism in
5

t,ab
1 (X)W.

Secondly, we want (17) to be compatible with the pairing over F̄ considered in [GS]:
there we considered (over any algebraically closed field) a natural pairing

H S
1 (X̄,Z)×H

1
t (X̄, A)→ A, (19)

which is defined by pulling back torsors along finite correspondences. ForA = Z/m with
(m, char(F̄)) = 1, the induced homomorphism

Hom(H S
1 (X̄,Z),Z/m)→ H 1

et(X̄,Z/m)

coincides with the composite of Hom(H S
1 (X̄,Z),Z/m)

can
↪−→ H 1

S (X̄,Z/m) with the
Suslin–Voevodsky comparison isomorphism [SV1, Cor. 7.8]

H 1
S (X̄,Z/m)

SV
−→
∼

H 1
et(X̄,Z/m).

We want to construct the pairing (17) in such a way that the diagram

H S
1 (X̄,Z) × H 1

t (X̄, A) A

HWS
1 (X,Z) × H 1

t (X,A) A

(19)

(17)

commutes. In [GS, §4] an explicit interpretation of (19) in terms of qfh-sheaves is given.
This motivates the following construction of the pairing (17).

Let A be an abelian group and A→ I• an injective resolution of the constant sheaf A
in the category of qfh-sheaves. An element of H 1

W,t(X,A) is represented by a pair

(α, β) ∈ I1(X̄)⊕ I0(X̄) with dα = 0, [α] ∈ H 1
t (X̄, A) and dβ = α − F ∗α.

An element in HWS
1 (X,Z) is represented by a pair

(x, y) ∈ Cor(1̄1, X̄)⊕ Cor(1̄0, X̄) with x∂ = F−1yF − y.

SinceH 1
t (1̄

1, A) = 0 = H 1
et(1̄

0, A), we can find s ∈ I0(1̄1)with ds = x∗F ∗α ∈ I1(1̄1)

and t ∈ I0(1̄0) with dt = y∗α ∈ I1(1̄0). Then

〈(x, y), (α, β)〉 := F ∗t − t − ∂∗s + y∗β (20)

lies in
A = H 0

et(1̄
0, A) = ker(I0(1̄0)

d
−→ I1(1̄0)).

Indeed, we have

d(F ∗t − t − ∂∗s + y∗β) = F ∗y∗α − y∗α − ∂∗x∗F ∗α + y∗(α − F ∗α)

= F ∗y∗α − (F ∗y∗F ∗
−1
− y∗)(F ∗α)− y∗F ∗α = 0.

One checks without difficulty that 〈(x, y), (α, β)〉 does not depend on the choices of s
and t .
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Lemma 5.1. 〈(x, y), (α, β)〉 ∈ A only depends on the class of (x, y) in HWS
1 (X,Z) and

on the class of (α, β) in H 1
W,t(X,A).

Proof. For γ ∈ I0(X̄), s = x∗F ∗γ and t = y∗γ satisfy the condition and we have

〈(x, y), (dγ, γ −F ∗γ )〉 = F ∗t − t − ∂∗s+ y∗(γ −F ∗γ ) = F ∗y∗γ − y∗γ − (xδ)∗F ∗γ

= F ∗y∗γ − y∗γ −F ∗y∗γ + y∗F ∗γ = 0.

Let (u, v) ∈ Cor(1̄2, X̄) ⊕ Cor(1̄1, X̄). Since H 1
t (1̄

2, A) = 0 = H 1
t (1̄

1, A), we can
find σ ∈ I0(1̄2) with dσ = u∗F ∗α and τ ∈ I0(1̄1) with dτ = −v∗α. Then s =
∂∗σ + F ∗τ − τ − v∗β and t = ∂∗τ satisfy

ds = (u∂ + v − F−1vF )F ∗α, dt = (−v∂)∗α

and

〈(u∂ + v − F−1vF,−v∂), (α, β)〉 = F ∗t − t − ∂∗s − (v∂)∗β

= F ∗∂∗τ − ∂∗τ − ∂∗(∂ + σ ∗F ∗τ − τ − v∗β)− ∂∗v∗β = 0. ut

By Lemma 5.1, we obtain the pairing (17) and the reciprocity map (18).

Lemma 5.2. If f : X→ Y is an F-morphism, then the diagram

HWS
1 (X,Z) × H 1

W,t(X,A) A

HWS
1 (Y,Z) × H 1

W,t(Y,A) A

f∗

〈 , 〉X

f ∗

〈 , 〉Y

commutes, hence recX : HWS
1 (X,Z)→ 5

t,ab
1 (X)W is functorial in X.

Proof. Let A → I• an injective resolution of the constant sheaf A in the category of
qfh-sheaves. Let c ∈ H 1

W,t(Y,A) be represented by

(α, β) ∈ I1(Ȳ )⊕ I0(Ȳ ) with dα = 0, [α] ∈ H 1
t (Ȳ , A) and dβ = α − F ∗α.

Furthermore, let ζ ∈ HWS
1 (X,Z) be represented by

(x, y) ∈ Cor(1̄1, X̄)⊕ Cor(1̄0, X̄) with x∂ = F−1yF − y.

We have to show that 〈ζ, f ∗(c)〉X = 〈f∗(ζ ), c〉Y . This follows directly from the construc-
tion: First note that f∗(ζ ) is represented by (f ◦ x, f ◦ y). Choose s ∈ I0(1̄1) with

ds = (f ◦ x)∗F ∗α ∈ I1(1̄1)

and t ∈ I0(1̄0) with dt = (f ◦ y)∗α ∈ I1(1̄0). Then

〈(f ◦ x, f ◦ y), (α, β)〉Y = F
∗t − t − ∂∗s + (f ◦ y)∗β
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by definition. Since ds = x∗F ∗(f ∗(α)) and dt = y∗(f ∗(α)), we obtain

〈(x, y), f ∗(α, β)〉X = F
∗t − t − ∂∗s + y∗(f ∗(β)) = F ∗t − t − ∂∗s + (f ◦ y)∗β

= 〈(f ◦ x, f ◦ y), (α, β)〉Y ,

showing the assertion. ut

Proposition 5.3. The composite of recX with the natural map H S
0 (X,Z) →

HWS
1 (X,Z) is the map

rX : H
S
0 (X,Z)→ 5

t,ab
1 (X)W

which sends the class [x] of a closed point x ∈ X to its Frobenius automorphism in
5

t,ab
1 (X)W.

Proof. By functoriality, it suffices to consider the case X = 10. In this case, we have
natural identifications Z = H S

0 (1
0,Z) = HWS

1 (10,Z) (sending 1 ∈ Z to id10 ∈

Cor(10,10)), and for any abelian group A, we have A = H 0
et(1̄

0, A)G = H
1
W,t(1

0, A).
With respect to these identifications, the pairing (17) is just multiplication Z × A → A,
(n, a) 7→ na. Furthermore, the isomorphism of Proposition 2.4,

A = H 1
W,t(1

0, A)
∼
−→ Hom(5t,ab

1 (10)W, A) = Hom(G,A),

maps a ∈ A to the homomorphism G → A which sends the Frobenius F ∈ G ∼= Z to
a. By using all this, the statement of the proposition follows from the definition of the
reciprocity map. ut

6. Comparison of blow-up sequences

If A = Z/m, then Weil-etale and etale cohomology agree, and by Corollary 3.10, the
pairing (17) induces a pairing

HWS
1 (X,Z/m)×H 1

t (X,Z/m)→ Z/m, (21)

and hence a map
81
X : H

WS
1 (X,Z/m)→ H 1

t (X,Z/m)
∗, (22)

which is the mod m version of recX.
In addition, we consider the pairing

HWS
0 (X,Z/m)×H 0

et(X,Z/m)→ Z/m (23)

defined as follows: Choose x ∈ Cor(1̄0, X̄) representing a class in HWS
0 (X,Z/m) =

H S
0 (X̄,Z/m)G, and α ∈ I 0(X̄) with dα = 0 and α−F ∗α = 0. Then set 〈x, α〉 = x∗α ∈

H 0
et(1̄

0,Z/m) = Z/m. We obtain a map

80
X : H

WS
0 (X,Z/m)→ H 0

et(X,Z/m)
∗. (24)

The maps 80 and 81 extend in a natural way to nonconnected schemes. They induce
a map from the exact sequence of Proposition 3.6 to the dual of the exact sequence of
Proposition 2.1. The compatibility with the boundary map is given by
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Proposition 6.1. For any abstract blow-up square

Z′ X′

Z X

i′

π ′ π

i

the following diagram is commutative:

HWS
1 (X,Z/m) HWS

0 (Z′,Z/m)

H 1
t (X,Z/m)∗ H 0

et(Z
′,Z/m)∗

δ

81
X

80
Z′

−δ∗

Here δ is the boundary map of the exact sequence of Proposition 3.6, and δ∗ is the dual
of the boundary map of the exact sequence of Proposition 2.1.

Proof. We have to show that the diagram

HWS
1 (X,Z/m) × H 1

t (X,Z/m) Z/m

HWS
0 (Z′,Z/m) × H 0

et(Z
′,Z/m) Z/m

δ

〈 , 〉

−δ

〈 , 〉

commutes. Let a ∈ HWS
1 (X,Z/m) and b ∈ H 0

et(Z
′,Z/m). We set

CW
i (X) = Ci(X̄)⊗ Z/m ⊕ Ci−1(X̄)⊗ Z/m,

i.e., CW
• (X) is the complex calculating HWS

• (X,Z/m). Consider the diagram

0 CW
1 (Z

′) CW
1 (X

′)⊕ CW
1 (Z) CW

1 (X)

0 CW
0 (Z

′) CW
0 (X

′)⊕ CW
0 (Z) CW

0 (X).

(i′∗,−π
′
∗)

(∂∗,1−F ∗)

(π∗,i∗)

(∂∗,1−F ∗) (∂∗,1−F ∗)

(i′∗,−π
′
∗) (π∗,i∗)

By Proposition 3.6 and its proof, a ∈ HWS
1 (X,Z/m) can be represented by a cocycle

α ∈ CW
1 (X) which can be lifted to CW

1 (X
′)⊕CW

1 (Z). We choose α̂ ∈ CW
1 (X

′)⊕CW
1 (Z)

with (π∗, i∗)(α̂) = α, hence (π∗, i∗)(∂∗, 1 − F ∗)(α̂) = 0. We conclude that δ(a) ∈
HWS

0 (Z′,Z/m) is represented by an element γ ∈ CW
0 (Z

′) with

(i′∗,−π
′
∗)(γ ) = (∂

∗, 1− F ∗)(α̂). (25)
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Let I• be an injective resolution of Z/m in the category of sheaves of Z/m-modules on the
h-site on Sch/F, and let β ∈ I0(Z′)with dβ = 0 be a representative of b ∈ H 0

et(Z
′,Z/m).

Consider the diagram

I0(X′)⊕ I0(Z) I0(Z′)

I1(X) I1(X′)⊕ I1(Z) I1(Z′)

I0(1̄1)⊕ I0(1̄0) I1(1̄1)⊕ I1(1̄0) I1(1̄1)⊕ I1(1̄0) I2(1̄1)⊕ I2(1̄0)

I0(1̄0) I1(1̄0) I1(1̄0) I2(1̄0)

α̂∗

d

(i′∗,−π ′∗)

d

(π∗,i∗)

α∗

(i′∗,−π ′∗)

α̂∗

d

(∂∗,1−F ∗) (∂∗,1−F ∗) (∂∗,1−F ∗)

d

(∂∗,1−F ∗)

d d

Since the complex coker(I•(X′)⊕ I•(Z)→ I•(Z′)) is exact (cf. the exact triangle (6) in
the proof of Proposition 2.1), we find β̂ ∈ I0(X′) ⊕ I0(Z) with (i′∗,−π ′∗)(β̂) = β. By
the argument of [MVW, Lem. 12.7], the sequence

0→ F(X)→ F(X′)⊕ F(Z)→ F(Z′)

is exact for every h-sheaf F . Therefore the second line in the diagram is exact and there
is a unique ε ∈ I1(X) with (π∗, i∗)(ε) = dβ̂ representing δ(b) ∈ H 1

t (X,Z/m). From
α̂∗(dβ̂) = α∗(dε) it follows that

d(α̂∗(β̂)) = α∗(ε) ∈ ker(∂∗, 1− F ∗).

By definition, we have

〈a, δb〉 = −(∂∗, 1− F ∗)α̂∗(β̂) ∈ ker(I0(1̄0)→ I1(1̄0)) = H 0
et(1̄

0,Z/m).

On the other hand, 〈δa, b〉 = γ ∗(b) ∈ H 0
et(1̄

0,Z/m) is represented by γ ∗β ∈ I0(10)

and

γ ∗β = γ ∗(i′
∗
,−π ′

∗
)(β̂) = (i′∗(γ ),−π

′
∗(γ ))

∗(β̂) = ((∂∗, 1− F ∗)(α̂))∗(β̂).

Now we write α̂ = (α̂1, α̂2) with α̂1 ∈ C1(X̄
′)⊕ C1(Z̄) and α̂2 ∈ C0(X̄

′)⊕ C0(Z̄).
Then (∂∗, 1− F ∗)(α̂) = α1∂ + α2 − F

−1α2F . Since F ∗(β̂) = β̂, we conclude that

((∂∗, 1− F ∗)(α̂))∗(β̂) = (δ∗, 1− F ∗)α̂∗(β̂).

This completes the proof. ut
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7. Proof of the main theorem

To prove our main theorem, we first consider finite coefficients.

Proposition 7.1. The map 80
X is an isomorphism for any X and m.

Proof. We can assume that X is connected. Then, by Proposition 3.9, the degree map
induces an isomorphism HWS

0 (X,Z/m) ∼
−→ HWS

0 (F,Z/m) ∼= Z/m. Furthermore,
H 0

et(F,Z/m)
∼
−→ H 0

et(X,Z/m). Hence, by functoriality, we can reduce the statement to
the case X = Spec(F), where it is easy. ut

Theorem 7.2. For any separated scheme of finite type over a finite field F, the map

81
X : H

WS
1 (X,Z/m)→ H 1

t (X,Z/m)
∗

is surjective. It is an isomorphism if m is prime to the characteristic or if resolution of
singularities holds for schemes of dimension ≤ dimX + 1 over F.

Proof. By Propositions 2.1, 3.6 and 6.1, and induction on the dimension, we can assume
that X is normal and connected. Then, by Proposition 5.3 and Chebotarev–Lang density,
the composite

H S
0 (X,Z)/m→ HWS

1 (X,Z/m)
81
X
−−→ H 1

t (X,Z/m)
∗

is surjective, hence so is 81
X. To get the isomorphism, we note that by Theorem 4.1, the

source and the target of 81
X have the same order under the given hypothesis. ut

Proof of Theorem 1.2. Consider the diagram (for any m)

HWS
1 (X,Z) 5

t,ab
1 (X)W

HWS
1 (X,Z/m) 5

t,ab
1 (X)W/m

ϕ

recX

ψ

81
X

The composite 81
X ◦ ϕ is surjective by Corollary 3.10 and Theorem 7.2. Hence the co-

kernel of recX is divisible. Since5t,ab
1 (X)W is finitely generated, all divisible elements of

HWS
1 (X,Z) are in the kernel of recX, and the cokernel of recX is finitely generated and

divisible, hence trivial.
Now assume that resolution of singularities holds for schemes of dimension ≤

dimX + 1 over F. Then 81
X is an isomorphism for all m. Hence the kernel of recX is

the set divHWS
1 (X,Z) of divisible elements. This agrees with the maximal divisible sub-

group by the following lemma. ut

Lemma 7.3. Let A be an abelian group. If A/divA is finitely generated, then divA is
divisible.

Proof. Let B = A/divA, choose an integer n such that nB is free, and let C ⊆ A be the
inverse image of nB in A. Then divC = divA because nA ⊆ C ⊆ A. By freeness of nB,
we obtain C = nB ⊕ divA, hence divA = divC = div divA. ut
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8. The case of proper curves

In this section we illustrate the results of this paper in the case of proper curves. Let C
be a connected, proper curve over F. The morphism Cred → C induces an isomorphism
on Weil–Suslin homology as well as on fundamental groups. We may therefore assume
that C is reduced. We first note that HWS

1 (C,Z) is a finitely generated abelian group.
This follows by applying Proposition 3.6 to the normalization morphism C̃ → C and by
using Examples 3.7 and 3.8. Furthermore, resolution of singularities holds for schemes of
dimension ≤ 2 over F. Hence Theorem 1.2 yields the reciprocity isomorphism

recC : HWS
1 (C,Z) ∼−→ 5ab

1 (C)W.

Since C is proper, we have CH0(C) = H
S
0 (C,Z), hence (16) yields an injection

φ : CH0(C) ↪→ HWS
1 (C,Z).

By [Ge5, Thm. 6.2 and Prop. 6.3], coker(φ) is isomorphic to H1(0,Z), where 0 is the
dual graph associated with the curve C. We obtain an exact diagram

0 CH0(C) HWS
1 (C,Z) H1(0,Z) 0

0 CH0(C) 5ab
1 (C)W H1(0,Z) 0

φ

recCo

rC

where, by Proposition 5.3, rC is the map which sends the class of a closed point to its
Frobenius automorphism. Denoting by Â the profinite completion of an abelian group A,
completion of the bottom line yields the exact sequence

0→ ĈH0(C)→ πab
1 (C)→

̂H1(0,Z)→ 0, (26)

which is the exact sequence of [KaSa, Prop. 1].
Finally, we consider the example of a nodal curve. Let C̃ be a smooth, proper curve

over F admitting two rational points P,Q, and let C be the curve obtained by identifying
P andQ. We denote the image of P andQ in C byO, i.e., we have an (abstract) blow-up
square

{P,Q} C̃

{O} C

(27)

Let D be a countable chain of copies Ci , i ∈ Z, of C with Pi ∈ Ci identified with
Qi−1 ∈ Ci−1 for all i ∈ Z:

D : · · ·

•

•

•

•

•

· · ·
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Translation gives a natural Z-action on D, and C is the quotient D/Z with respect to
this action. In particular, we have a surjection 5ab

1 (C) � AutC(D) = Z. Inspecting the
combinatorics of D, we see that

ker(5ab
1 (C)→ Z) ∼= 5ab

1 (C̃)/(FrobP −FrobQ).

Hence, we have an exact sequence

0→ 5ab
1 (C̃)W /(FrobP −FrobQ)→ 5ab

1 (C)W → Z→ 0. (28)

In particular,
5ab

1 (C)W
∼= Z⊕ Z⊕ (finite)

as abelian groups. Applying Proposition 3.6 to the blow-up square (27) and using Ex-
amples 3.7 and 3.8, we obtain the exact sequence

0→ CH0(C̃)/([P ] − [Q])→ HWS
1 (C,Z)→ Z→ 0. (29)

The reciprocity map recC induces an isomorphism between the exact sequences (29)
and (28). The map on the left hand side is induced by the reciprocity map of the smooth
curve C̃, which sends [x] ∈ CH0(C̃) to Frobx ∈ 5ab

1 (C̃)W = π
ab
1 (C̃)W .
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Marie 1960–1961 (SGA 1), dirigé par A. Grothendieck. Lecture Notes in Math. 224,
Springer, Berlin (1971) Zbl 0234.14002 MR 2017446

[SGA3] Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes
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