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Abstract. In this work we study the properties of segregation processes modeled by a family of
equations
L)) =u;(x)F;uy,...,ug)x), i=1,...,K,

where F;(uy, ..., ug)(x) is a non-local factor that takes into consideration the values of the func-
tions ; in a full neighborhood of x. We consider as a model problem

1
Auj (x) = —u () ZH(uj)(x)
i#]
where ¢ is a small parameter and H(ujs.)(x) is for instance
H(u)(x) = / ut(y) dy or H@H@) = sup ul(y).
Bi(x) yeBi (x)

Here B (x) is the unit ball centered at x with respect to a smooth, uniformly convex norm p in R".
Heuristically, this will force the populations to stay at p-distance 1 from each other as ¢ — 0.

Keywords. Segregation of populations, free boundary problems, long-range interactions

1. Introduction

Segregation phenomena occur in many areas of mathematics and science: from equiparti-
tion problems in geometry, to social and biological processes (cells, bacteria, ants, mam-
mals), to finance (sellers and buyers). There is a large body of literature in connection
with our work and we would like to refer to [4, 5, 8-21, 26-29, 31-33] and the references
therein. We particularly point out the articles [15, 26, 28, 29, 31] where spatial separa-
tion due to competition for resources is discussed among ant nests, mussels and sessile
animals.
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These articles study a family of models arising from different applications whose
main two ingredients are: in the absence of competition, species follow a “propagation”
equation involving diffusion, transport, birth-death, etc., but when two species overlap,
their growth is mutually inhibited by competition, consumption of resources, etc. The
simplest form of such models consists, for species o; with spatial density u;, of a system
of equations

L(uj) =u;iFi(uy,...,ug).

The operator L quantifies diffusion, transport, etc., while the term u; F; corresponds to
attrition of u; from competition with the remaining species.

In these models, the interaction is punctual, i.e. u;(x) interacts with the remaining
densities also at position x. There are many processes, though, where the growth of o; at
x is inhibited by the populations o; in a full area surrounding x.

This work is a first attempt to study the properties of such a segregation process.
Basically, we consider a family of equations

L(ui)(x) =ui(x)Fi(uy,...,ug)(x)

where F;(u1, ..., ug)(x) is now a non-local factor that takes into consideration the values
of u; in a full neighborhood of x. Given the previous discussion, a possible model problem
would be the system

1
Aut (x) = ;uf(x)ZH(uf)(x), i=1,...,K,
i)

where ¢ is a small parameter and H (uje.)(x) is a non-local operator, for instance

H(uf)(x)=/ u§(y)dy or H@$)(x)= sup uf(y).
Bty yeBi(x)

To study the limit configuration when the competition for resources is very high, we
consider the limit as ¢ — 0. Heuristically, the non-local term forces the populations to
stay at distance 1 from each other. As an example, as we will prove, in the case of two pop-
ulations in dimension two, we will have strips of length precisely one between the regions
where the populations live. At “edge” points, which we will define as singular points, the
angles of the asymptotic cones have to be the same (Figure 1). Here S; = Si1 USiz, i=1,2,
represents the region where the population o; with density u; exists. Moreover, the ratio
between the normal derivatives at regular points across the free boundary depends on the
ratio of the respective curvatures sz. For example, if Z; € asll and Z, € 8521, Z1 and Z»
are not “edge” points, and d(Z1, Z;) = 1 then

uy(Z1)  x(Zy)

22 = WZa) if 5(Z2) #0,  ul(Z) =u?(Zy) if 2(Zy) =0.

Instead of the unit ball B;(x) in the Euclidean norm we will consider the translation
at x of a general smooth set BB that is also uniformly convex, bounded and symmetric with
respect to the origin. The set 3 defines a smooth, uniformly convex norm p in R”".
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Fig. 1. Example of a limit configuration for K = 2, n = 2.

Note that there is some similarity with the Lasry—Lions model of price formation
[6, 25] where the selling and buying prices are separated by a gap due to the transaction
cost.

2. Notation and statement of the problem

Let B be an open bounded domain of R", convex, symmetric with respect to the origin and
with smooth boundary. Then B can be represented as the unit ball of anorm p : R* — R,
o € C®(R"\ {0}), called the defining function of B, i.e.

B={xeR"|px) <1}.

We assume that B is uniformly convex, i.e. there exists 0 < a < A such that in R" \ {0},

21 5
al, <D Ep < Al,, 2.1
where [, is the n x n identity matrix. In what follows we denote

Bi={yeR"|p(y) <r}), Bx):={yeR"[px—y) <r}

So throughout the paper we will always refer to the Euclidean ball as B and to the p-ball
as B. For a given closed set K, let

d,(-, K) = inf p(- —
(- K) nf pG=y)
be the distance function from K associated to p. Then there exist ¢1, ¢ > 0 such that
cd(-, K) <dy(-, K) < c2d(-, K), (2.2)

where d (-, K) is the distance function associated to the Euclidean norm | - | of R”.
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Let Q C R" be a bounded Lipschitz domain. We will denote by (d€2)<; the p-strip
of size 1 around 9€2 in the complement of 2 defined by

(0R)<1 :={x € Q° | dy(x,9) < 1}.

Fori = 1,..., K, let f; be non-negative functions defined on (9€2)<; with supports at
p-distance > 1 from each other:

dy(supp fi,supp fj) = 1 for i # j. 2.3)
We will consider the following system of equations: fori =1, ..., K,

1
Auf(x) = —uf(x) H®wé)(x) in<,

&? ,; ! 2.4)
ui = fi on (3Q)<;.

The functional H (u;)(x) depends only on the restriction of u; to By (x).
We will consider, for simplicity,

Hw)(x) = /B R =y, 1= p <o, 25)
1(x
or
H(w)(x) = sup w 2.6)
B (x)

with ¢ a strictly positive smooth function of p, with at most polynomial decay at 95;:

p(p)=CA—-p), ¢=0. 2.7)

In the rest of the paper, when we refer to viscosity solutions u{, ..., u% of the problem
(2.4), we mean that uf, ..., u% are continuous functions that satisfy the system (2.4) in
the viscosity sense. Moreover, we make the following assumptions: fori =1, ..., K,

& > 0, Qis a bounded Lipschitz domain in R”,

fi 1 (0Q2)<1 = R, fi =0, f; #0, f; is Holder continuous,

dc > 0Vx € aQ2 Nsupp fi & |B(x) Nsupp fi| > c|By(x)], (2.8)
(2.3) holds true,

H is either of the form (2.5) or (2.6), and (2.7) holds.

3. Main results

For the reader’s convenience we present our main results below. Assume that (2.8) holds
true. Then:

Existence (Theorem 4.1): There exist continuous functions ui, ..., u%, depending on
the parameter ¢, that are viscosity solutions of problem (2.4).
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Limit problem (Corollary 5.6): There exists a subsequence ()" converging locally
uniformly, as ¢ — 0, to a function u = (uy, ..., ug), satisfying the following properties:

(i) the u;’s are locally Lipschitz continuous in Q and have supports at distance at least 1
from each other, i.e.

ui =0 in{x € Qldy(x,suppu;) <1} foranyj #i.
(i) Au; =0 whenu; > 0.

Semiconvexity of the free boundary (Corollary 6.2): If xo € d{u; > O} then there is an
exterior tangent p-ball of radius 1 at xg.

The supports of u; are sets of finite perimeter (Corollary 6.5): The set {u; > 0} has
finite perimeter.

Sharp characterization of the interfaces (Theorem 7.1): Under the additional assump-
tion that p = 1 in (2.5), the supports of the limit functions are at distance exactly 1 from
each other, i.e. if xo € d{u; > 0} N Q, then there exists j # i such that

Bi(xo) N o{u; > 0} # 0.

Classification of singular points in dimension 2 (Lemma 8.9, Theorem 8.10, Corollaries
8.11, 8.12): For n = 2, assume in addition that p = 1 in (2.5) and that the supports of
the f;’s have a finite number of connected components. Fori # j, let xo € 0{u; > 0}NQ
and yo € d{u; > 0} N Q be points such that {u; > 0} has an angle 0; at xo, {u; > 0} has
an angle 9; at yo and p(xo — yo) = 1. Then

Ifxo € 0{u; > 0} NI and yo € 3{u; > 0} N L, then
0; S@j.

Moreover, singular points, i.e. points where the free boundaries have corners, are isolated
and finite. If the domain is a strip and there are only two populations, then under addi-
tional monotonicity assumptions on the boundary data, the free boundary sets d{u; > 0},
i = 1,2, are of class cl.

Lipschitz regularity of free boundary for the associated obstacle problem in dimen-
sion 2 (Theorem 8.18): For n = 2, under the additional assumptions that p = 1 in (2.5),
fi = 1, and the supports of the f;’s are connected, and under additional conditions about

the regularity of 9%, if (ui, ..., u%) is a particular solution of (2.4) which satisfies the
associated obstacle problem (8.49) with (uy, ..., ug) the limit as ¢ — 0, then the free
boundaries of{u; > 0}, i =1, ..., K, are Lipschitz curves of the plane.

Free boundary condition (Theorem 9.2): In any dimension, assume that we have two
populations, H is defined as in (2.5) with ¢ = 1, p = 1 and Bi(x) = Bi(x) is the
Euclidean ball, 0 € 9{u; > 0}, e, € d{uy > 0}, and d{u; > 0} and d{ur, > 0} are
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of class C? in a neighborhood of 0 and e, respectively. Let 5;(0) denote the principal
curvatures of d{u; > 0} at 0 where outward is the positive direction, and let ;(e;)
denote the principal curvatures of d{uy > 0} at e, where now inward is the positive
direction. Then we have the following relation between the exterior normal derivatives of
uy and us:

1 n—1 .
uw©® _ I1 %O i 0) £ 0 forsomei =1,....n—1,

u%(en) B =1 (en)
2 (0)#0
ullj(())zulzj(en) if #,(0)=0 foranyi =1,...,n—1.

4. Existence of solutions
The proof below follows the same steps as in [30] and it is written below for the reader’s
convenience.

Theorem 4.1. Assume (2.8). Then there exist continuous positive functions u’“f, el u%,
depending on the parameter ¢, that are viscosity solutions of problem (2.4).

Proof. The proof uses a fixed point result. Let B be the Banach space of bounded contin-
uous vector-valued functions defined on the domain €2 with the norm

|1, ... ug)l g := max sup |u; (x)].
I xeQ
Fori =1,..., K, let ¢; be the solutions of
A¢p; =0 inQ,
Z mn (4.1)
¢ =fi ondQ.

Let ® be the subset of bounded continuous functions in €2 that satisfy prescribed boundary
data, and are bounded from above and from below as stated below:

O ={(ur,...,ug) |ui: 2 - Riscontinuous, 0 < u; < ¢; in 2, u; = f; on (02)<1}.

Notice that ® is a closed and convex subset of B. Let T be the operator defined on ©
in the following way: T¢(uy, ..., ug) := (v{,...,vg) ifforanyi =1,..., K, v] isa
solution to the following problem:

1
A@H(x) = Svf(0) Y H@wj)(x) inQ,
€ I 4.2)
vf = f; on (02)<1,
where u;, j # i, are given. Observe that if T°¢ has a fixed point,

Téus, ... u%) =i, ... ,ug),

then (uf, ..., u%) is a solution of problem (2.4).
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In order for 7°¢ to have a fixed point, we need to prove that it satisfies the hypothesis
of the Schauder fixed point theorem [23]:

(1) T¢(®) C O: Classical existence results guarantee the existence of a viscosity solu-
tion (vf, ..., v%) of problem (4.2) which is smooth in . Since f; > 0 and f; # 0, the
strong maximum principle implies

v; >0 inQ.

This implies that

Avi >0 inQ, (4.3)
and again from the comparison principle we have

v <¢; inQ.
We have proved that 7¢ (uy, ..., ug) € ©.
(2) T¢ is continuous: Assume that (41, ..., ugm) = (U1, ...,ug) in B, meaning that

as m — 0o,

max ||ujm — u;llpe — 0.
1<i<K

We need to prove that for each fixed ¢ > 0,

T wim, ... ugm) — Ty, ...,ux)l|lp — 0 asm — oo.
Let
Ta(ulm9 ce UKm) = (ve]?m’ cees ngm)~
If we prove that there exists a constant C, independent of m such that, fori =1,..., K,

Vi — Vi llLee < Comax [lujm — ujliLoe,
J

then the result follows. For all x € Q2 and for fixed i, let
wm (x) = v, (x) — v (x),
and suppose for instance that there exists y € 2 such that
om(y) > r*D max lujo — ;= (4.4)
for some large D > 0, where r is such that 2 C B,, and B, is the Euclidean ball centered

at 0 of radius r. We want to prove that this is impossible if D is sufficiently large. Let A,,
be the concave radially symmetric function

By (x) = Y 2 — |x|%)  with = D max ujm — uj L.

Observe that:

(@) hyu(x) =00ndB,;

() hp(x) <riD max; ||uj, — ujllr forall x in B,;

() 0 = wy(x) < hy(x) on 0€2, since vfm and vf are solutions with the same boundary
data.
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Since we are assuming (4.4), there exists a negative minimum of %, — w,, in Q. Let
xo € 2 be a point where the minimum value is attained. Then

him (x0) — wm(x0) <0 and  A(hy — wn)(x0) = 0.

Then
Awp (x0) = A(v},) (x0) — Avj (x0)

1
=2 ((vfm (x0) — v} (x0)) Z H (ujm)(x0)

J#
— vf (x0) ) (H ())(x0) — H(u,-m)(xo>)>
J#
1
z3 ((Ufm(xo) — v} (x0)) Z H (ujm)(x0)
J#

— v; (x0) (K — 1)C max [|uj, — Mj||L°°(SZ)>
J

by adding and subtracting ﬁvf (x0) Y joki H(ujn)(xo), where C depends on the f;’s

and ¢. Then

_ o — e e .
0 < A(hym — wp)(x0) < —2¥mn 2 (V1 v,-)(xo)E H(ujm)(xo)
J#i

— i (xo)(K — 1)C max lutjm — Mj||L°°>

1
—2nD max |[ujy, — ujlizo + E—zvf(xo)(l( - 1C mjax lotjm — ujll=

IA

~

C
_2anjax lttjm — ujllLoe + 2 m/ax ltjm — ujllLoo

IA

because 0 < /1, (x0) < wp(x0) = (v, — vi)(xp) and Zj#i H (ujm)(x0) = 0, and so

1
== (), = v (x0) ; H (i) (x0) <O.
JFL

Taking D = D, > ﬁ we obtain

0 < A(hm — wp)(xg) <0,

which is a contradiction.
., Ukm) be abounded sequence in B and let

(3) T#(®) is precompact: Let (u1y, . .

Wi oo Vi) = T Wim, oo UKm).
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Then by standard Holder estimates for viscosity solutions, (vfm, e, vf(m) is bounded in
the space of Holder continuous functions on Q. Since the subset of ® of Holder contin-
uous functions on €2 is precompact in ®, we can extract from (v{,, ..., v%,,) a subse-
quence which converges in B.

We have proven the existence of a solution (u‘i, e, u%) of (2.4). The same argument
as in (1) shows that uf > (0 in 2. This concludes the proof of the theorem. ]

5. Uniform in ¢ Lipschitz estimates

In this section we will prove uniform in & Lipschitz estimates that will imply the con-
vergence, up to subsequences, of the solution (u‘f, R u%) of (2.4) to a limit function
(u1,...,ug) as ¢ — 0. We will show that the functions u; are locally Lipschitz contin-
uous in 2 and harmonic inside their support. Moreover, u; = 0 in the p-strip of size 1
around the support of u; for any j # i, i.e. the supports of the limit functions are at
distance at least 1 from each other. We start by proving general properties of subsolutions
of uniform elliptic equations.

Lemma 5.1. Let:
(a) w be a subharmonic function in By such that
(a;)) w <1inBy,
(a2) w(0)=m > 0;
(b) Dg be a smooth convex set with bounded curvatures
[2(@Dg)| < Co, i=1,...,n—1
(like By above).
Then there exists a universal to = 19(Co, n, p) such that if d,(Dy, 0) < tom, then
sup > m/2.
aDyNB;
Proof. Assume without loss of generality that 0 ¢ Dg and let 4 be harmonic in By \ Dy
and such that
h=1 on (05;) \ Dy,
h=m/2 on (3dDg) N By.
By assumption (b), the set 131 \ Dy satisfies an exterior uniform ball condition at any point
of Dy N By; therefore, by a standard barrier argument, 2 grows no more than linearly
away from dDg in By 2, i.e., there exist ki, ko > 0 depending on Cp and n such that
if x € Bijp \ Dy and d(x,3Dg) < ko, then h(x) < kid(x,dDgy) + m/2. To prove
that 4#(0) < m observe that if t9 < kpc1, where ¢ is given by (2.2), then d(0, 0 Dg) <

tom/c1 < kom < ko, and therefore if in addition g is so small that ]Z—}ro < % we have

k k
h(0) < k1d(0, 8Dg) + = < ~-d,(0,9Dg) + = < ~Lzom + = < m.
2 Cq 2 C] 2

Hence, we must have supy g, @ > m/2, for otherwise the comparison principle would
imply w(x) < h(x) in By \ Do, which is a contradiction at x = 0. O
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Lemma 5.2. Let w be a positive subsolution of a uniformly elliptic equation (A\*I <
ajj < A2I)
a,-jDija) > 9260 in B,.
Then there exist c, C > 0 such that
©© < Ce .
supg, @

glx) = ; cosh(%xl)

is a supersolution of the equation a;; D;ju = 6%u. Moreover, using the convexity of the
exponential function, it is easy to check that

Proof. The function

glx) > C1e  for any x € 455,.
Then the comparison principle implies

o) _ 8k)
supg, @ ~ Crec?

for any x € B,.

The result follows by taking x = 0. O

The next lemma says that if u{ attains a positive value o at some interior point, then all
the other functions uf , J # 1, go to zero exponentially in a p-ball of radius 1 4 co around
that point.

Lemma 5.3. Assume (2.8). Let (uf, ..., u%) be aviscosity solution of problem (2.4). For
i=1,....K,0>0,and0 <r <1 let
o

sup,q fi
Then there exists a universal constant 0 < T < 1 such that in the sets

Elff’jr ={x e Q|d,(x,T]") <1+ wmr/2, dy(x, supp fj) = tmr/4}

7" = {y e Q|dy(y,supp fi) = 2r, u; =0}, m:=

we have
us = Ce 7 for j £,

for some positive o« and B depending on the structure of H (p and q).

Proof. Let 0 < 7 < 1 to be determined. For 0 < r < 1, consider the set )ZZ ’jr defined

above and let X € Eg’jr . We want to show that for j # i, we have

- C o%rP

Aut ut in By /a(®) (5.1)

2
I3
for some &, B > 0. Let us prove it for X such that d, (¥, I'7") = 1+ tmr/2, which is the
hardest case. First of all, note that since d,, (x, supp f;) > tmr/4, the ball By,,,/4(x) does
not intersect supp f;. Therefore, uj (which is eventually zero in By, /4(X) N Q€) satisfies

1 . _
Auf > g—zuf 1; H$)  in Bopyr/a(®). (5.2)
J
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Next, the ball Bi_¢;,/2(X) is at distance Tmr from a point y € Fl‘.”r. Observe that since
Bor(y) N supp fi = ¥, the function u{ (which is eventually zero in By, (y) N Q) satisfies
Au‘iE > 0 in By, (y). Moreover, since uf is subharmonic in €2, it attains its maximum at
the boundary of ©, so that u{ /sup,q f; < 1in Q. In particular m = o /sup,gq f; < 1. Set
_ @G+

supyg fi
Then v < 1 and v(0) = u}(y)/sup,q fi = 0/supyq fi = m and Av > 0in By. Let

X—y
Do 1=31/r—rm/2< . )

Then the principal curvatures of Dy satisfy
C, _2rG,
—mm/2  2—rtm

v(x) : (5.3)

|52, (0 Dp)| < r <2rC, < 2C,.

Moreover Dy is at distance tm from 0. Hence, from Lemma 5.1 applied to the function v
given by (5.3) with Dg defined as above, if T = min{l, 7o}, where tq is the universal
constant given by the lemma, then there is a point z in 3B _¢ur/2(X) N B, (y) such that
uf(z) > 0/2. Next, if x € Byyr/4(X) then

Bi(x) D Brmr/4(z)

(sinced,(x,z) <dp(x,%) +dp(x,2) <tmr/4+1—1tmr/2 =1—tmr/4).
First consider the case of H defined as in (2.6). Then for any x € B, /4(X) we have

H(u)(x) = sup uf >ui(z) >0/2,
By (x)
which, together with (5.2), implies (5.1) with@ = 1 and g = 0.

Next, let us turn to the case of H defined as in (2.5). Since z € B, (y) and d,,(y, supp f;)
> 2r, we have B, (z)Nsupp f; = @, and therefore the function uf (which is eventually zero
in B, (z) N Q°) satisfies Au? > 0in B, (z). This implies that (u;)”, p > 1, is subharmonic
in B, (z), and by the mean value inequality,

P
][ ()(uf)"dx > (%) (5.4)
B.r Z

in any Euclidean ball B,(z) C B,(z), for any p > 1. Since d,, and the Euclidean distance
are equivalent, there is an s ~ Tmr such that

Bs(z) C Brmr/S(Z) - Brmr/4(z) C Bi(x). (5.5

Moreover, if y € Bs(z) and x € By /4(X), then

p@—w)fp@—my+p@—fy+p@—x>s3§f+(1—’?r>+fm’=1—Tm’

that is,
1—p(y—x)>=1tmr/8. (5.6)
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Hence, using (5.5), (2.7), (5.6) and (5.4), for all x € Byyr/a(x) we get

H (uj)(x) = /B ( )(Mf)p(y)ﬁo(p(y —x))dy = / WH?(MCA = ply —x)?dy
1(x

B (z)

> / WP ()C(xmr/8)7 dy > Co®rP
B;(2)

where @ and B depend on p, g and on the dimension n. This and (5.2) imply (5.1).
Now, by Lemma 5.2 we get ujg.(f) < Ce=<o"r/e for o = @/2+land B =8/2+1,
and the lemma is proven. O

Corollary 5.4. Assume (2.8). Let (uf, ..., u%) be a viscosity solution of problem (2.4).
Let y be a point in 2 such that for some i,

ui(y) =0, dy(y,supp fj) = 1+wmr forall j #i, d,(y,dQ) > 2r,

where m = o /supyq fi, 0 <r <1, & < 02128 and v, o and B are given by Lemma 5.3.
Then there exists a constant Co > 0 such that in By,rj4(y) we have

|Vui| < Co/r 5.7

and
Aui; — 0 uniformly as ¢ — 0. (5.8)

Proof. First of all, note that m < 1, as u; attains its maximum at the boundary of €.
Since in addition T < 1, we see that Byyr2(y) C Bz (y) C . Therefore, we use
(2.4) to estimate Auf(z) for z € Byprj2(y). To do that, we need to estimate H(u;)(z)
for j # i. But H (u;)(z) involves points x at p-distance 1 from z. Let x be such that
dp(x,z) < 1. Thend,(x,y) < 1+ tmr/2. Moreover, since d,(y, supp fj) = 1 + tmr,
we have d, (x, supp fj) > tmr/2. Hence, by Lemma 5.3, for any j # i,

uf-(x) < Ce="r"1e forx e Bi(2).

From the previous estimate and (2.4), it follows that for z € By,r/2(y) we have

—1/2

=o0(l) ase— 0, 5.9

—corP e Ce ¢t
0 < Auf(z) < u(2) < u; (2)

g2 g2

for & < 02?128 If we normalize the function in a Lipschitz fashion:

rmrz+
@ =2 ),
Tmr
then we have "
—3(0)_2 l(y) Zsupi)Qfl”
Tmr Tr
and
0<Ai{@@) < — (Z)Z H(u5)<—z +y> forz € B1(0),

i# ¢
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where
12
Tmr _, _ 1 Tmr_ Ce ¢
5 uf(Z);g—zH(Mj)(TZ‘f‘Y) = 8—2
J#

Then, by the Harnack inequality (see e.g. [3, Theorem 4.3]), we get

12

. ) . Ce €t
sup u; < Cy| inf u; + —
B12(0) B1/2(0) €

12

2 - Cee c
>5Cn( SWhag fi , Ce )5—.
Tr & r

Lipschitz estimates then imply that [Vu{| < C/r in B1/2(0), and (5.7) follows.
Further, (5.9) implies (5.8). m]

The next lemma says that in a p-strip of size 1 around the support of f;, the function u;,
i # j,decays to 0 exponentially.

Lemma 5.5. Assume (2.8). Let (ui, ..., u%) be aviscosity solution of problem (2.4). For
j=1,...,K,0 >0, letF;T = {fj = o} C Q. Then on the sets

xeQld(x.T))<1-r}, 0<r<l,

we have
I3 —carP e . .
u; <Ce / fori # j,

for some positive o and B depending on the structure of H (p and q) and the modulus of
continuity of fj.

Proof. Letx € Qand y € F}T be such that d,(x,y) < 1 —r. We want to estimate
H(uf)(x) for any x € B,2(X). Let x € B,/2(x). Then

do(x,y) <1—r/2. (5.10)
First consider the case of H defined as in (2.6). We have

H(uj)(x) = sup uj > fj(y) = o.
B (x)

Next, let us turn to the case of H defined as in (2.5). Let rg := min{o?, r/4} for some y

depending on the modulus of continuity of f;. Then f; > o/2 in By, (y) N supp f;.
Moreover, from (5.10) and ry < r/4, we have

By, (y) Nsupp fj C Byja(y) C Brpa(y) C Bi(x),
and for any z € B,,(y) Nsupp fj,

px =) = px—=y)+pO—2)<1-r2+rp=<1-r/4
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Therefore, using in addition (2.7), and the fact that, by (2.8), |B,,(y) N supp fij| >
C|Br0(y)|a we get

H () (x) = /B

= / (NP @Cr/4HTdz > Co”roﬁ,
By, (»)Nsupp f;

@)’ @e(p(x —2))dz = / @)@ - plx —2))dz

1(x) B, (y)Nsupp f;

where B depends on ¢ and on the dimension 7.
Thus, for H defined as in (2.5) or (2.6), the function uf, i # j, (which is eventually
zero in B, 2(x) N Q°) is a subsolution of

B
Co’r,
Auf > uj 2
in B,/2(x), where p = 1 and B = 0 in the case (2.6). The conclusion follows as in
Lemma 5.3. m]

The following corollary is a consequence of Lemma 5.3, Corollary 5.4 and Lemma 5.5.

Corollary 5.6. Assume (2.8). Let (uf, ey u%) be a viscosity solution of problem (2.4).
Then there exists a subsequence (ui’, e, u%) and continuous functions (uy, ..., ug)
such that

(', ... u) —> (i, ...,ug) aeinQ asl— oo,

and the convergence ofuf’ to u; is locally uniform in the set {x € Q | d,(x, supp f;) > 1,
Jj # i}. Moreover:

(i) theu;’s are locally Lipschitz continuous in 2 and have disjoint supports, in particular
u;=0 in{x € Q|dy(x,suppu;) <1} foranyj #i.
(i) Au; = 0whenu; > 0.
Proof. Fixanindexi =1,..., K. Let
Qi :={x € Q|dy(x,supp fj) > 1 forany j #i}, B;:=Q\Q;.
Claim 1. u{(x) — Oase — O forany x € B,;.

Indeed, let xo € B;. Then there exists j # i such that d, (xo, supp f;) < 1. Note that

{er‘dp(x,Suppfj) <1c |Jw eQ|dp(x,F;’)51—r},

r,o>0

where F}T = {f; = o}. Therefore, there exist r,0 > 0 such that xo € {x € Q |

dp(x, F;-T) < 1—r}, and by Lemma 5.5 we have uf(xo) < Ce‘“’arﬂ/g for some a, B > 0.
Claim 1 follows.
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Claim 2. There exists a subsequence (uf’ )i locally uniformly convergent in Q; asl — oo
to a locally Lipschitz continuous function u;.

Fix 0 < r < 1 and define
Q :={x € Qj | dy(x,09Q) > 2r, dp(x,supp fj) > 1 + tr forany j # i}.

Fix0 < 1/Qa), seto, = ¢? > 0 and consider 7, « and B as given by Lemma 5.3. Since
e = 082“051/9720‘ = 63a80(1/0_2a) and 1/6 —2a > 0, we can fix g = ¢o(r) so small that

for any ¢ < g9 we have ¢ < 082"‘}"2“5 . Then, by Corollary 5.4, the functions
vf 1= (uf —0e)4 = (uf — &%)+

are Lipschitz continuous in . Indeed, if uf (x) < &?, then v (x) = 0. Next, let x be
such that u (x) > &?. Then Vi (x) = Vui(x). Set o = uj (x). Then d,(x, supp fj) >
1+ r > 14+ mtr, where m = o/supyq fi < 1. Moreover, d,(x,d2) > 2r and
e < af"‘rzﬂ < 02728 We can therefore apply Corollary 5.4 to get

|Vu; (x)| < Co/r.

This concludes the proof that the functions v are Lipschitz continuous in 7.
Therefore, we can extract a subsequence (vf’ ); uniformly convergent to a Lipschitz
continuous function u; in er as | — o0o. By the definition of the v;’s, there exists a sub-
sequence (uf’ )1 uniformly convergent to the same function u; in Q2 as [ — oo. Taking
r — 0 and using a diagonalization argument, we can find a subsequence of (u;), con-
verging locally uniformly to a Lipschitz function u; in 2;. This ends the proof of Claim 2.

Claims 1 and 2 yield the convergence, up to a subsequence, of u{ to a continuous
function u; which is locally Lipschitz in both €2; and B;. The fact that the supports of the
limit functions are at distance > 1 is a consequence of Claims 1 and 2 and Lemma 5.3.
Moreover, from the proof of Claim 2 and Corollary 5.4, we infer that the limit function u;
is harmonic inside its support, i.e. (ii) holds. To conclude the proof of (i), we just need to
prove that u; is Lipschitz in a neighborhood of points belonging to dB; = 9€2; N 2. Let
xo € 9€2; N 2. Then from Claim 1, u; (xg) = 0. If xg ¢ d{u; > 0}, then in a neighborhood
of xg, #; = 0 and of course it is Lipschitz there. On the other hand, if xo € d{u; > 0},
then since there exists an exterior p-tangent ball of radius 1 at any point of 9€2; N 2 and
u; is harmonic inside its support, a barrier argument implies that there exist ro, C > 0
such that 0 < u;(x) = u; (x) — u;(xp) < Clx — xo| for any x € B,,(xp). This concludes
the proof of (i) and of the corollary. O

6. A semiconvexity property of the free boundaries

Let (u1, ..., ug) be the limit of a convergent subsequence of (uf, e, u%), whose exis-
tence is guaranteed by Corollary 5.6. Fori =1, ..., K, set
S(u;) :=1{x € Q:u; >0}. 6.1

(In the next sections, for simplicity this set will be represented by S;.) Then the sets S(u;)
have the following semiconvexity property:
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Lemma 6.1. Set
Tuj)={xeQ:dy(x,Sw;) =1}, S(u;) ={x € Q:dy(x, T(u;)) > 1}.

Then 0S(u;) C 95*(u;).

Proof. We have S*(u;) D S(u;). To prove the desired inclusion, for ¢ > 0 consider the
sets Sy (u;j) :=={x € Q:u; >o0}and

To(ui) :={x € Q:dy(x, So(u;)) =1},  Sy(u;) ={x € Q:dy(x, T5(u;)) > 1}.

Notice that the union of the p-balls centered at points in Sy (#;) coincides with the union
of the p-balls centered at points in S} (u;):

@ (Lw) = |J Bx., ®Tw) = [J Biw.

x€Sy (ui) xeSk(u;)

If x € S5(u;), from Corollary 5.6(i) we have d,(x, supp fj) > 1 for j # i, and the
locally uniform convergence of u? to u; and Lemma 5.3 imply that, up to subsequences,
u; < Ce=co"rP/e in Bi(x), where 2r = min{d, (x, supp f), C(d,(x, supp fj) — D)}.
Now, the set where uf decays is the same if we had considered x € S (#;), by (a) and (b).
Therefore H(uf)/és2 — 0in S(u;) as ¢ — 0. It follows that Au; = 0 in S} (u;) if
S (u;) is not empty. Now, if A is a connected component of S, (¢;), then there exists a
connected component A* of S¥(u;) such that A C A*. Since u; is harmonic and non-
negative in A*, the strong maximum principle implies that u; > 0 in all of A*, that is,
A* C A. We conclude that A = A*. Therefore, any connected component of Sy (u;) is
equal to a connected component of S (u;). Passing to the limit as o — 0, we find that any
connected component of S(u;) is equal to a connected component of S*(u;). In particular,
aS(u;) C 8™ (u;). o

From Lemma 6.1 we can conclude that the sets S(u;) have a tangent p-ball of radius 1
from the outside at any point of the boundary, as stated in the following corollary.

Corollary 6.2. If xo € 0S(u;) N Q there is an exterior tangent ball B (y) at xq, in the
sense that for x € Bi1(y) N Bi(xo), all uj(x) = 0 (including u;).

The following two lemmas about the distance function may be known; we provide the
proof for the reader’s convenience.

Lemma 6.3. Let S be a closed set. Then, in the set {x | dy(x, S) > 0}, d, (-, S) satisfies
in the viscosity sense

C
Ady(-, ) = ,
dp (-, S)

where C is a constant depending on n, || Dd, (-, S)|| L and the constant A of (2.1).
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Proof. We first prove that there exists a smooth tangent function from above at any point
of the graph of d,(-, S) in the set {d,(-, S) > 0}. For simplicity we will write dg(-)
instead of d, (-, §). Let yo be a point in the complement of S. Let x € 9 be a point
realizing the distance from yp to S. Assume, without loss of generality, that x = O.
Then d,(y0,0) = p(y0) = ds(yo). In particular, the ball B,y (yo) is contained in S¢
and tangent to S at 0. For any y € B, (»0), we have ds(y) < dp(y,0) = p(y),
therefore the graph of the function y — p(y) is tangent from above to the graph of ds(-)
at (yo, ds(¥0))-

Next, let ¢ be a test function touching dg(-) from below at yg. Then y touches from
below the function p(y) at yg. In particular, Ay (y9) < Ap(yp). Let us compute Ap.
Using (2.1), we get

1 1 D D 1
D(p) = —D2<—p2> ~ 2P0 (AL, - Dp® Dp),
P 2 P p
which gives Ap < C/p. In particular,

. C
p(yo)  ds(yo)’

AYr(yo) <

This concludes the proof. O

Lemma 6.4. Let S be a closed and bounded set. Let (S)—=1 be the set of points at p-dis-
tance 1 from S. Then (S)=1 has finite perimeter.

Proof. For simplicity we will write dg(-) instead of d, (-, S) as in the previous lemma,
and first we present a heuristic proof by integrating Ad§ over the set {0 < dg < 1}. Since
| Dds| is bounded, from Lemma 6.3 we see that

Ad} =2|Dds|* + 2dsAds < C.

Therefore, integrating Adg, we get
C > / Ad%dx = / 2dsDds - ndH"™! +/ 2dsDds - ndH""!
{0<ds<1} {ds=0} {ds=1}

=/ 2Ddg -ndH"' > c/ dH"™ ' = cH" ({dg = 1)),
{ds=1} {ds=1}

where n = Ddg/|Ddg]| is the unit exterior normal. This provides an upper bound for
H"~1({ds = 1}) and concludes the heuristic proof.

To make the argument precise, we need to handle the regularity over the boundary. For
that, consider a smooth function n with compact support in (0, 1) such that0 < n(§) <&
forany & € [0,1],n(§) =& for& € [6,1 =681, 10| <con (0,1 —38)and n'(§) < —c¢/$
for & € (1 — 4, 1), where § > 0 is a small parameter. Then, in a weak sense,

div(n(ds) Dds) = n'(ds)| Dds|* + n(ds) Ads. (6.2)
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Moreover, from Lemma 6.3, in the set {0 < ds < 1} we have
C
n(ds)Ads < n(ds)— < C
ds
in the viscosity sense, and therefore in the distributional sense (see, e.g., [24] for the

equivalence between viscosity solutions and weak solutions). Therefore, since n(ds) is a
function with compact support in {0 < ds < 1}, we get

0= / div(n(ds)Dds) dx < / n'(ds)|Dds|* dx + C
{0<dg<1} {0<ds<1}

= / n'(ds)| Dds|* dx + / n'(ds)| Dds|* dx + C
{0<dg<1-8} {1—8<dg<1}

< / n' (ds)|Dds|? dx + C < —f/ |Dds|?dx +C.  (6.3)
(1—8<dg<1} 8 Jil—s<dg<1)

Now, using the coarea formula and the inequalities above, we get

1 ! n—1 1 2
S H T (ds = 1)y dr = ~ |Dds|? dx < C.
3 Ji-s 8 Ji—s<dg<1y

Finally, taking the limit as § — 0% and using the lower semicontinuity of the perimeter
with respect to convergence in measure, we infer that

1 1
Per({ds = 1}) < liminf—/ H' ' ({ds =1})dt < C. O
s—0t § Ji_s
Corollary 6.5. The sets S(u;), i =1, ..., K, have finite perimeter.
Proof. The corollary is an immediate consequence of Lemmas 6.1 and 6.4. O

7. A sharp characterization of the interfaces

In Section 5 we proved that the supports of the limit functions u; are at distance at least 1
from each other (Corollary 5.6). In this section we will prove that they are exactly at
distance 1, as stated in the following theorem.

Theorem 7.1. Assume (2.8) with p = 1in (2.5). Let (ui, ..., u%) be a viscosity solution
of problem (2.4) and (uy, . ..,ug) the limit as ¢ — 0 of a convergent subsequence. Let
xo € d{u; > 0} N Q. Then there exists j # i such that

By (x0) N d{u; > O} # &. (7.1)

Proof. 1t is enough to prove the theorem for a point xo for which 9.S(u;) has a tangent
p-ball from the inside, since such points are dense on dS(u;). Indeed, let x be any point
of 35 (u;). Consider a sequence (xj) of points in S(u;) converging to x as k — oo. Let di
be the p-distance of x; from 95(u;). Then the p-balls By, (x;) are contained in S(u;) and
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there exist points y; € 0S(u;) N By, (xi) where the x;’s realize the distance from 95 (u;).
The sequence (yx) is a sequence of points of 95 (u;) that have a tangent p-ball from the
inside and converge to x.

Next, from Corollary 5.6(ii), we know that d,(xo, supp f;) > 1 for any j # i. If
there is a j such that d,(xo, supp fj) = 1, then (7.1) is obviously true. Therefore, we
can assume that d,(xo, supp fj) > 1 for any j # i. Then for small § > 0 we have
B14s(xo) Nsupp fj = ¥, and from (2.4) we know that

1 .
Auj > —uj ]; H@$) inByys(xo).
J

We divide the proof into two cases:

(a) H(w)(x) = / uWMep(r — ) dy, (6 Hw)(x) = sup u(y).

By (x) yeB(x)

Proof of case (a). Let S(u;) = {x € Q| u; > 0} as in (6.1). Let Bg be a small p-ball
centered at xo € dS(«;). Then, as a measure, as ¢ — 0, up to a subsequence

Al"'islBs(Xo) — AuilBg(xy)

(the latter has strictly positive mass, since u; is not harmonic in Bg(xg)).

We can bound
/ ZAM? dx > / Auj dx.
Biys(xo) j=i ’ Bs (x0)

Indeed,

e? / Auf(x)dx =) / / uf (D) (p(x — )us(y) dy dx
Bs (xo) j#i J Bs(xo) /Bi(x)
=> / / 5 () X10,11(p (x — D@ (p(x — y)us (y) dx dy
i Bs (x0) xBi4s(x0) |

< Z// u; () x0,11(p(x — )@ (p(x — y)uj(y)dx dy
2 Bay5(x0) xBi45(x0)

=Y [ wweee ey <2y [ auody,
j#i J Biis(xo) JBi(y) j#i 7 Biys(xo)

(7.2)

where (o, 1] s the indicator function of the set [0, 1].
Therefore, for any small positive S, letting ¢ — 0 we get

/ Z Auj 2/ Au; > 0,
Biys(xo) j= B (x0)

which implies that there exists j # i such that u; cannot be identically zero in Bjys(xo).
Since S small is arbitrary, the result follows.
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Proof of case (b). This case is more involved. We may assume xo = 0. Let yp be such
that B, (yo) C S(u;) and 0 € 9B, (yo). By Corollary 6.2 there exists a p-ball B1(y1) such
that By (y1) N S(u;) =@ and 0 € B (yy).

Let us first prove two claims.

Claim 1. There exist ;' < u and C1 > 0 such that in the annulus {1’ < p(x — yo) < u}
we have
ui(x) = Cidy(x, 3B, (y0))-
Since any p-ball B satisfies the uniform interior ball condition, for any x € 9B, (yo)
there exists a Euclidean ball Bg,(zo) of radius Rg independent of x contained in B, (yo)
and tangent to 58, (yo) at x. Let m > 0 be the infimum of «; on the set {x € B, (yo) |
d(x, 0B, (y0)) = Ro/2}, where d is the Euclidean distance function, and let ¢ be the
solution of
A¢p =0 in{Rop/2 < |x — z0| < Ro},
¢ =0 ondBg,(20),
¢ =m ondBg,(z0),
i.e. forn > 3,
Ri2
x)=Cnym| ———~ — 1.
o) = o= s 1)
Since u; is harmonic in B, (yo) and u; > ¢ on d Bg,(z0) U9 Bg,,2(z0), by the comparison
principle u; > ¢ in {Ryp/2 < |x — zo| < Ro}. In particular, for any x € {Ro/2 <
|x —zo|] < Rp} belonging to the segment between zg and x, using the fact that ¢ is convex
in the radial direction, that
d¢
Bvi

_ Cn)(n—2)m
= R—o

3B, (20)

where v; is the interior normal at d Bg,(zo), and that (2.2) holds, we get

C -2
ui(x) = (")(+0)’"d(x, 9Bgy (20)) = C(n, Roymd (x, 3B, (30)
> C1dy(x, 0B, (0)).

Therefore, letting x vary in 913, (yo) we get
ui(x) = Cidp(x, 9B, (y0))  forany x € By (yo) with d(x, 9B, (y0)) < Ro/2.
By (2.2), Claim 1 follows.

Next, let eg = yo/0 (o) and fix o < u so small that B, (oeg) C{u < p(x — yo) < u}
N Bi4+s(y1). Forr € [0 — v, 0 + v] and small v < o, define

ui = inf wuf and u;:= inf u;.
0B, (oeq) 8B, (aeg)

Since a5, (oeg) N (S(u;))¢ # B forr € [o,0 + v], and u; = 0 on (S(u;))¢, we have
u; =0 for r €lo,0 +vl. (7.3)
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By Claim 1, we know that in B, (cep) we have
u;(x) > Cidy(x, 3B, (y0)) > C1d,(x, 9Bs(0eg)) = C1(0 — p(x — oep)).
We deduce that, for r € [c — v, 0],

u; = inf wu; > inf Ci(c —p(x —oey)) =Ci(oc —r).

=i —

3B (oep) 3B (oep)

From this inequality and (7.3), we infer that

u; >Ci(c —r)", reloc—uv,o+uvl (7.4)
Next, for j #iandr € [0 — v, 0 + v], define
uj = sup u; and @j:= sup uj.
3B14,(oep) 3B14,(oep)

The functions u; and IZ; are respectively solutions of

1 _ 1 _
Aub < g—zlf Z sup uf,  Ail; > E—ZMf sup u;, (7.5)
i£j Bih) BiGh)
where
_ n—1 1 9/, ,0u
A=t == =ng o U

and gi and 7] are respectively the points where the infimum of u? on 3B, (cep) and the
supremum of ujs. on 3B+, (0ep) are attained. Note that in spherical coordinates

Au = Ayu + Agu,

and if we are at a point where u attains a minimum value in 6 for a fixed r then Agu > 0,
while the opposite inequality holds if we are at a maximum point. We also remark that

r

5 = oeo+ m@" — oeg) € 3B, (oeg) N B1(Z),
therefore .
sup uj > ui (3)) = uj. (7.6)
Bz

Moreover, since 5| (gi) C Bji4r(oeg) and uf is a subharmonic function, we have

&
J
sup uj < sup u;= sup uj=1i;. (1.7)
Bi(z) Bitr(oep) 0B14r(geq)
From (7.5)—(7.7), we conclude that
At < A, (Z uj) (1.8)
J#i

In other words, for any ¢ € C°(0 — v, 0 + v), ¢ > 0, we have

otv 3 ad 1 otv d ad 1
/ uf (" ¢ drs/ >t — (= ¢))ar.
v | Or ar \ rn—1 o—v i T or ar \ rn—1
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Passing to the limit as ¢ — 0 along a uniformly converging subsequence, we get

o+v 9 9 1 o+v P P 1
[ wa (o) o< [ S (15 (e o
oy L Or ar \ rn—1 o—v i or ar \ rn—1

The linear growth of u; away from the free boundary, given by (7.3) and (7.4), implies
that A,u; develops a Dirac mass at » = o and

atv 3§ 4 0 1
/ gig(r" 15<rn_1¢>>dr>0
o—UvU

for v small enough. Hence, A, (Zj#i ij) is a positive measure in (¢ — v, o + v), and
therefore there exists j # i such that u; cannot be identically zero in B4, (0ep). Since
o small is arbitrary, the result follows. O

8. Classification of singular points and Lipschitz regularity in dimension 2

In this section we study singular points in dimension 2. We will always assume (2.8)
with p = 1 in (2.5). From the results of the previous sections we know that the solu-

tions uf, ..., u% of system (2.4), along a subsequence, converge as & — 0 to functions
ui, ..., ug which are locally Lipschitz continuous in 2 and harmonic inside their sup-
port. Fori = 1, ..., K, denote the interior of the support of u; by S; as in (6.1), and the
union of the interiors of the supports of all the other functions by
ci=Js. (8.1)
J#

Since the sets S; are disjoint, we have dC; = (J; ; 3S;. From Theorem 7.1 we know that
S; and C; are at p-distance 1, therefore for any x € 9.S; there is a y € dC; such that
p(x —y) = 1. We say that x realizes at y the distance from C;.

Definition. A point x € 9.S; is a singular point if it realizes the distance from C; to at
least two points in dC;. We say that x € 9S; is a regular point if it is not singular.

Geometrically, we can describe regular and singular points as follows. Let x € 9S; be a
singular point and y1, y» € dC; points where x realizes the distance from C;. Then the
balls B;(y;) and Bj(y,) are tangent to dS; at x. Consider the convex cone determined
by the two tangent lines to the two tangent p-balls Bi(y;) and B;(y2), which does not
intersect the two p-balls. The intersection of all cones generated by all p-balls of radius 1,
tangent at x and with center exterior to S;, defines a convex asymptotic cone centered at x
(see Figure 2). The asymptotic cone can be equivalently defined as the intersection of all
cones generated by all p-balls of radius 1, tangent at x and with center in C; (see Lemma
8.1 below).

If x € 8S; is a regular point, then there is only one point y € dC; where x realizes the
distance from C;. In this case, the two tangent balls coincide, and therefore by definition
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Fig. 2. Asymptotic cone at x(.

the asymptotic cone at x € 95; is a half-plane. We will show that at regular points, 9.5; is
the graph of a differentiable function. If & € [0, 7] is the opening of the cone at x, we say
that S; has angle 6 at x. Regular points correspond to 6 = w. When 6 = 0 the tangent
cone is actually a half-line and S; has a cusp at x. Later on in this section we will show
that, under additional hypotheses on the boundary data and the domain €2, the case 6 = 0
never occurs, and therefore the free boundaries are Lipschitz curves of the plane.

Lemma 8.1. Let C = {(x1,x2) | x2 > «a|x1|}, « > 0, be the asymptotic cone of S; at
0 € 0S;. Then there exist y1, y» € dC; such that the balls Bi(y1) and B (y,) are tangent
respectively to the lines x, = ax at 0.

Proof. Let y1, yo € B1(0) be such that the line x; = «x is tangent to B;(y;) at 0 and the
line x, = —ax is tangent to 31 (y2) at 0. Suppose for contradiction that y;, y, ¢ 9C;.
Then any y € C; such that p(y —0) = 1 must lie in the smaller arc in 31 (0) between y;
and y,. Moreover, there exists § > 0 such that all p-balls B;(y) have at most as tangent
lines at O the lines xp = £ (o — §)x1. Then the asymptotic cone at 0 must contain the cone
{(x1,x2) | x2 = (o — §)|x1]}, which is not possible. ]

Lemma 8.2. Assume that S; has an angle 6 € (0, ] at xo € 9S;. Then there exists a
neighborhood U of x, a system of coordinates (x1, x2) and a locally Lipschitz function
Y i (=r,r) = R, for some r > 0, such that in the coordinates (x1, x3), we have xo =
(0, 0) and

08 NU = {(x1, ¥(x1)) | x1 € (=r,r)}.

If in addition 6 = 7, then ¢ is differentiable at 0.

Proof. Let C be the convex asymptotic cone of S; at x¢. Let us fix a system of coordinates
(x1, x2) such that the x; axis coincides with the axis of the cone and is oriented in such a
way that the cone is above the x| axis. Then xg = (0, 0) and C = {(x, x2) : x2 > «a|x1]|}
with @ = tan(#). To prove that in these coordinates, dS; is the graph of a function
in a small neighborhood of xg, it suffices to show that there exists a small » > 0 such
that, for any |¢| < r, the vertical line {x; = ¢} intersects dS; N B,(0) in only one point.
Suppose for contradiction that there exists a sequence (#,) such thatt, — 0 asn — oo,

and the line {x; = #,} intersects dS; N B, (0) at two distinct points (¢,, a,) and (¢, by,)
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with b, > a,. Assume, without loss of generality, that #,, > O for any n. By Lemma 8.1
there exist y1, y» € dC; that realize the distance from 0, and such that B;(y;) is tangent
to the line {(x1, x3) : xo = ax1} at 0 and B (y7) is tangent to {(x1, x3) : xo = —ax1} also
at 0. For instance, in the particular case of the Euclidean norm, we would have

1 1 1 1
= , — d ==/ —,— — .
. (\/1+a2 O[\/1+oﬂ> ane < T+a2 1+a2)

In general, we can say that the x, coordinate of y; and y» is a negative value —c. We have
Bi(y1)NBi(y2) # @, since & > 0. Moreover, S; (B (y1)UB;(y2)) = @. Then both points
(t, an) and (t,, b,) must be above B (y1) UB;(y2) for n large enough. Next, let y, y,l,7 €
aC; be points where (¢,, a,) and (t,,, b,), respectively, realize the distance from C;. Then
the p-balls Bi(y?) and B (yf;) are exterior tangent balls to 9.5; at (t,, a,) and (¢, b,),
respectively. Recall that the p-distance between (%,, a,) and (¢,, b,) converges to O as
n — oo, and so yq has to belong to the lower half p-ball 3B (t,, a,) N {x2 < a,} forn
large enough. Indeed, if not, the tangent p-ball B;(y7) would contain (%,, b,) for n large
enough. Similarly, yf,’ has to belong to the upper half p-ball 3B (¢,, b,) N {x2 > b,} forn
large enough. This implies that the tangent p-ball 5 (yff ) converges to a tangent ball to S;
at 0, B; (yb ), with yb € {x2 > 0}. On the other hand, by the definition of the asymptotic
cones, all the centers of the tangent balls at 0 must belong to the set 351 (0) N {x; < —c},
where —c < 0 is the x; coordinate of the points y;, y» defined above. Therefore, we have
reached a contradiction. We infer that there exists r > 0 such that 95; is the graph of a
function ¥ : (—r, r) — R. Since 9.S; is a closed set, ¥ is continuous.

Let us prove that v is Lipschitz continuous at 0. If C = {x, > «/|x|} is the tangent
cone of S; at xg in coordinates (xp, x2), then for » > 0 small enough we have

{x2 = 2a|x1]} C S; N B (0) C {x2 > ar|x1]/2},
that is, for |x| < r,

alx1|/2 = Y(x) = ¥ () = ¥ (0) < 2afxq].

Therefore, 1 is Lipschitz at 0.

Next, assume that &6 = m. Then y; = y», and x¢ is a regular point. Therefore,
Bi(y1) C {x2 < 0} is the unique tangent ball to the graph of ¥ at x9 = (0, 0). Moreover,
the tangent cone is the half-plane {x, > 0}. Let us show that ¢ is differentiable at O.
Assume for contradiction that there exists a sequence (x}') C (—r, r) of positive numbers
such that x{' — 0 as n — oo and

xn
lim w(nl) =B #0. (8.2)

n—0o x|

Since there exists a tangent ball from below to the graph of ¥ at O contained in {xy < 0},
we must have 8 > 0. For any (x{, ¥ (x}')) € 9S; there exists y, € dC; such that By (y,)
is tangent to S; at (xf, lﬁ(x{‘)). Let y, € 9C; be the limit of a converging subsequence
of (). Then the p-ball B;(y,) is an exterior tangent ball at S; at 0. Equation (8.2) gives
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¥ (x)) > Bx] /2 for n large enough, i.e. the points (x{, ¥ (x])) of the free boundary are
above the line {xp = B|x|/2}. This implies that y; # y», that is, the limit p-ball B;(y>)
must be different from B;(y;). This is in contradiction with the fact that x¢ is a regular
point. Therefore we must have

T ACDRY
x1—0t X1
Similarly, one can prove that
im Y00 g,
x1—>0= X1
We conclude that v is differentiable at 0 and v'(0) = 0. m]

Lemma 8.3. Assume that there exists an open subset U of R? such that any point of
U N 3S; is regular. Then U N 3S; is a C' curve of the plane.

Proof. Let yg € 9S; N U. By Lemma 8.2, there exists a differentiable function i and a
small r > 0, such that, in the system of coordinates (x1, x2) centered at yp and with the
X7 axis in the direction of the inner normal of 3.S; at yg, 9.5; N B, (yg) is the graph of ¥.
Moreover, in these coordinates, ¥ (yg) = ¥'(yo) = 0. By Corollary 6.2, there exists a
tangent ball from below, with uniform radius, at any point of the graph of . This implies
that for any |x?| < r, there exists a C? function .0 tangent from below to the graph of
Y at x? and such that |(ﬂ§0| < C, for some C > 0 independent of x?. Therefore we have,
for any |x{| < r, !

Y z g 0(an) = <px?(X?) + <p;?(x?)(x1 —x0) — Clxp — 2P
=y () + ¥ 6D 1 — x) — Clay — 7%
Now, let us show that ¢ is of class C'. Fix a point x(l) and consider a sequence (xi)

converging to x? as [ — oo. Let p be the limit of a convergent subsequence of (v’ (xi)).
Passing to the limit in / in the inequality

Y = ) + 9 ) — x)) = Clag — x4,

we get
Yxn) = a0 + plx —x¥) = Clxy — V2

for any |x1| < r. Since v is differentiable at x?, we must have p = w/(x?). m]

Lemma 8.4. Assume that the supports of the boundary data f; on (0Q2)<1 have a finite
number of connected components. Then the sets S; have a finite number of connected
components.

Proof. Consider all the connected components of S;, Sij,i =1,....,Kandj=1,2,....
Note that for any i and j,

8Sij N{x e (0Q)<1 | filx) > 0} # 0.
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Indeed, if not we would have u; = 0 on 3/ and Au; > 0 in S/. The maximum principle
would then imply #; = 0 in Si] , which is not possible. Moreover, by continuity, as{ must
contain one connected component of the set {x € (02)<1 | fi(x) > 0}. For this reason
we say that the components of S; reach the boundary of 2. This implies that the connected
components of S; are finitely many. O

8.1. Properties of singular points

We start by proving three lemmas that will allow us to estimate the growth of the so-
lutions near the singular points. The first lemma states that positive functions which are
superharmonic [subharmonic] in a cone and vanish on its boundary, have at least [at most]
linear growth away from the boundary of the cone far from the vertex, with a slope that
degenerates in a Holder fashion when approaching the vertex. The power just depends
on the opening of the cone. The second and third lemmas generalize these estimates to
domains which are sets of points at p-distance greater than 1 from a closed bounded set.
Then we prove that the set of singularities is a set of isolated points and we give a char-
acterization. For the set S; which has finite perimeter, we denote by 3*S; the reduced
boundary, that is, the set of points whose blow-ups converge to half-planes; and the es-
sential boundary, 9,S;, are all points except points of Lebesgue density zero and one. We
have H!(3,S; \ 9*S;) = 0. For more details see [1, 22].

Lemma 8.5. Let v be a nonnegative Lipschitz function defined on B C R" such that Av
is locally a Radon measure on By and v is smooth on S = {v > 0}. Assume that S is a set
of finite perimeter. Then, for every smooth ¢ with compact support contained in By,

d
/ Av¢=/Av¢dx—/ Yy ann!
B s gxs Vs

where vg is the measure-theoretic outward unit normal and 0* S is the reduced boundary.

Proof. As a distribution and integrating by parts,
/ Avgp = / VAP dx = /[div(de)) —div(Vvg) + Aveldx.
By s s
Applying the generalized Gauss—Green theorem (see [7], and also [1, 22] for more details)
we obtain the result. O
Lemma 8.6. Let 6y € (0, ). Let C be the cone defined in polar coordinates by
C={(.0)10€l0,00),0=06 =<6}

Let uy and uy be respectively a superharmonic and a subharmonic positive function in
the interior of C N Boy, such that uy > uy = 0 on 0C N Byy,. Then for any r < ro/3 there
exist R = R(0o,r), and constants ¢, C > 0 depending on respectively (6y, uy, ro) and
(6o, uz, ro), but independent of r, such that for any x € [r, 3r] x [0, R] we have

(@) u1(x) > crd(x, 9C), (b) uz(x) < Cr%d(x, dC),

where o is given by
1+a=um/6.
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Proof. Let us introduce the function
v(e,0) =o' sin((1 + @)f). (8.3)

Notice that v is harmonic in the interior of C, since it is the imaginary part of the function
z1*% where z = x + iy, which is holomorphic in C \ (—oo, 0]. Moreover v is positive
inside C and vanishes on its boundary. By a barrier argument, 1 has at least linear growth
away from the boundary of C, meaning that for p € [ro/2, 3ro/2] (far from the vertex and
from 0 By,)

ui(x) > kd(x, aC)

fork = cominyec, q(x,a0)>so #1 and forx € {x € C | ro/2 < |x| < 3rp/2, d(x, 3C) < s0}
where cg and s depend on r and 68y. Therefore, we can find a constant ¢ > 0, depending
on uy, ro and 6y, such that

ur >=cv  onCNaBy,.

Since in addition #; > cv = 0 on 9C N By, the comparison principle implies
ur >=cv inCN By, (8.4)

Since v is increasing in the radial direction and if we are near 9C it is also increas-
ing in the 6 direction, for r < |x| < 3r with r < r9/3 and d(x,C) < R with R =
r min{1, tan(6p/2)} we have

u1(x) > cv(x) > Cr%d(x, 9C),

and (a) follows.
To prove (b) similarly, we have

uy <Cv  inCN By, (8.5)

where C depends on (6y, uz, ro) but is independent of r. In particular, for r < |x| < 3r
and d(x,C) < R/2 we have

uz(x) < Cu(x) < Cr%(x, 3C). O

Lemma 8.7. Let Q2 be an open set, C be a closed subset of 2, and § = {x € Q |
dy(x,C) > 1}. Let Sy be a connected component of S. Assume that 0S1 = I'1 U I'y with
't NIy = {0} and Sy has an angle 6y € (0, 7] at 0 € 3S. Let uy be a superharmonic
positive function in S1 N By (0) with uy = 0 on 951 N By, (0). Then there exists a
sequence (xp) C T'1 of regular points with x, — 0ash — 0, and there exist balls
Bg, (zp) C 81 tangent to 957 at x,, where Ry, > c|xy|, such that

ui(x) > cR,’d(x, dBg,(zn)) foranyx € Bg,(zn) \ Br,/4(zn),

where as is given by

1 = .
+ o % —3
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Proof. Since 6y € (0, w] for any 0 < § < 6y, there exist rs > 0 and a cone Cal centered
at 0 with opening 6y — § such that

C3 N B, (0) C S1 N By, (0).

Take a sequence of points #;, € 8(,’; N B,;(0) converging to 0 as & — 0. Let

)
rp:=d(t,,0) and Ry ::rhmin{l,tan( 02 )}

Then, for 4 small enough, there exist balls Bg, (s,) C Cg N B, (0) such thatt, € dBg, (s1).
Consider a system of polar coordinates (g, 8) centered at 0. Moving the balls Bg, (s,)
along the 6 direction until they touch I'{, we can find a sequence of regular points xj,
in that region such that d(x;,0) < cry, and balls Bg,(z5) C S1 N By;(0) such that
Xp € 0B, (z5). Observe that the center z; remains inside the cone C(Sl, that is, for 7 and
& small enough, we have z; € Cg and d(zp, 8C51) > Rj /2. Let us introduce the barrier

function

m Ry, .
¢(x) = log , where m= inf .
10g4 |x — zp| 0Bry,/4(zn)

Then ¢ satisfies
A¢ =0 in Bg,(zn) \ Br,/a(zn),
¢ =0 ondBg,(zn),
¢ =m  ondBg,a(zp).
Since u; > ¢ on dBg,, (z1) U 0 Bg, /4(z1), the comparison principle implies

u1 > ¢ in Bg,(zx) \ Br,/4(2n).
If v; is the inner normal vector of Bg, (z;), then for x € dBg, (zx),

R0} m
—(x) = ,
vy Ry log4

and the convexity of ¢ in the radial direction gives, for any x € B, (zn) \ Br,,/4(zn),

ur(x) = d(x, dBg, (z1)).

Ry log4

Let us estimate m. Since d(z, BCSI) > Ry /2, we have d(x, 8C§) > Ry /4 for any x in
Bg,/4(zp). As in Lemma 8.6, consider the harmonic function v(x), introduced in (8.3),
defined on the cone C g (¢ = as), and the comparison principle result stated in (8.4). Then

, , { ( Ry 90—5> <3rh n)} (3rh>“5+1
m>c¢c mmn v=>mnyv\rp——,—— ), v| —,— =ci| —
3B, ja(zn) 4° 8 4716 4

where ¢y = c1(uy, rs, 6p — 8). Therefore, since r, /R, > 1, we conclude that for any
x € Bg,(zn) \ Bg,/4(zn),

ui(x) = cRy’d(x, dBg, (z1))- o
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Lemma 8.8. Let Q2 be an open set, C be a closed subset of 2, and § = {x € Q |
dy(x,C) = 1}. Let S| be a connected component of S. Assume that Si has an angle
6o € [0, w] at 0 € 0Sy. Let up be a subharmonic positive function in Sy N By, (0) with
uz = 0on 81 N By (0). Then, for any 0 < & < 6y, there exists rs > 0 such that for any
r < rs/S there exist R = R(0y, r), and a constant C > 0 depending on (6g + 8, ua, rs),
but independent of r, such that

ur(x) < CrPd(x,081)  foranyx € (B3,(0) \ B-(0)) N {x € Si | d(x,dS)) < R/4}
(8.6)
where Bs is given by

T

Proof. For any § > 0, there exist rs > 0 and a cone C(% centered at 0 and with opening
6o + & such that
S1 N B, (0) C CZ N By, (0).

Take any r < rs and let y € 35 N (B3,(0) \ B-(0)) and ry := d(y,0) € (v, 3r). Since
S is at p-distance 1 from C, for any point of the boundary of S; there exists an exterior
tangent p-ball of radius 1. This implies that for » small enough, there exists wy such that
the Euclidean ball Bg, (wy) is contained in the complement of S, and y € 8BR), (wy),

where R\ is defined by
6o+ 6
Ry:rymin{l,tan< 0;_ )}

Let us now take as barrier the function

|wy — x|

P M 1
V) = a6 °g< R,

) with M= sup us.
9B3p, /2(wy)
Then  satisfies
Ay =0 in B3g 2(wy) \ Br,(wy),
Y =M ondBzg,n(wy),
Y =0 on E)BR},(wy).

Using the comparison principle with u, the concavity of ¥ in the radial direction implies
that for any x € Bsg,j2(wy) \ Br,(w,),

M
< ————d(x, 0Bg, (wy)).
U < R, 102G3/2) (x, dBg, (wy))
Let us estimate M. Consider again a system of polar coordinates (o, #) centered at 0 and
the harmonic function v(x), introduced in (8.3), defined on the cone Cf (¢ = Bs). By
definition of v, Ry, and taking into account (8.5), for §, r small enough and

6y + 6 Bs Ry

) min{ 1, tan(@)}

M<C max v< Cv<4ry,

) = C1(4ry)Pt! = Cir
dB3gy 2 (wy)
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we see that for any x € B3g,/2(wy) \ Bg, (wy) belonging to the segment y + s(y — wy),
s € (0, 1/2), we have

ur(x) < CMd(x, 9Bg,(wy)) = CMd(x,9S)) < Crf“d(x, aS81). 8.7
Letting the tangent ball move along 951 N (B3, (0) \ B, (0)), we get (b). m]

Lemma 8.9. Assume (2.8) withn = 2 and p = 1 in (2.5). Assume in addition that the
supports on 02 of the boundary data f; have a finite number of connected components.
Let (u‘i, - u%) be a viscosity solution of problem (2.4) and (u1, ..., ug) the limit as
& — 0 of a convergent subsequence. Then all singular points of 2 are isolated.

Proof. Suppose for contradiction that there exists a sequence (yi)xen of distinct singular
points such that y, € 9S; and yy — y € Qask — oo. Since by Lemma 8.4 the connected
components of the sets S;,i = 1, ..., K, are finitely many, we may assume without loss
of generality that the points y; belong to the same connected component of S;, which we
denote by S}. If there exists Opax < 7 such that Sj] has an angle smaller than 6.« at yx
for any k, then there exists k such that starting from Vg after a finite number of singular
points SJ] would be an isle and not reach the boundary. Therefore we would have u; = 0
on BS/I and Au; = 0in Sll, and the maximum principle would imply u; = 0 in S/l, which
is a contradiction. We infer that there exists a k € N such that the angle at yy is close to .
In particular, if x]l‘ and xlz‘ are points in C; that realize the p-distance from S§; at yi, then
the p-distance between x]f and x§ is less than 1.

Next, suppose that xf‘ and xlz‘ belong to the same connected component of S;, for some
i # j. Then by Theorem 7.1 we know that 9S; N 31 (yx) has to contain the arc of the unit
p-ball between x’l‘ and xlzc. If not, there would be points in the curve connecting xll‘ and x]2‘
which do not realize the distance from C;. Any point inside this arc is a regular point
at p-distance 1 from y;. Consider any of them, for instance the middle point of the arc,
denoted by x;. We want to compare the mass of the Laplacian of u; at x; with the mass of
the Laplacian at u; at yy, across the free boundaries. First assume H is defined as in (2.5).
Foro < %dp(xi‘, x'z‘) define

Do (xp) := {x € By (xp) | d(x,3C) < 02},

where C; is the asymptotic cone to Sl.1 at xi. Note that since x; is a regular point, aC; is
the tangent line to BSl.l at xg, and so C; has opening . Let (D, (x¢)) <1 be the set of points
at p-distance less than 1 from D, (x;). Then

/ Au; < Z/ Au; (8.8)
Dy (x¢) = D4

as in (7.2) with (D4 (xx)) <1 in place of B4 5(xg). By the Hopf Lemma, we obtain

du; -
/ Au; = / M 431 > ¢HBS; N Dy (1) = Co (8.9)
Dy (x1) 38iNDy (xx) Vi

where v; is the inner normal vector.
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Now we estimate |, (Do (xp))-; Dutj- From Corollary 6.5 we know that S; has finite
perimeter. Therefore by Lemmas 8.5 and 8.8 we obtain

8 .
/ Auj = / L a¥ < CoP H(@*S) N (Do () <) (8.10)
(Do (x1)) <1 0*SINWDe () <1 IV

where v S; is the measure-theoretic inward unit normal to .S ]_1 and Bs > 0. Since, for some
constant c,
1 1
35! N (Do (xi))<1 C 3S} N Beg ()

by (2.2), there exists ¢, that for simplicity we will still name ¢, such that 8S/.1 N(Dy (xx)) <1
C 38} N Beo (yi). Then

H(*S] N (Do (1)) <1) < Per(dS] N Beg (y1)). 8.11)

To estimate Per(d Sj1 N Bes (¥)), consider (6.2) in the distributional sense. Take a smooth
function 0 < ¢ < 1 with compact support contained in B., (yx) N{x | 0 < d(x, S;) < 1}
and suchthatp =lon Bo (yx) N{x | 1 =8 <d(x,S;) <1 —¢}forO <e < §andé as
introduced in the definition of # in the proof of Lemma 6.4. Then for ds, (-) = d, (-, S;)
we have

o= [ divin(ds,) Dds, )¢ dox
Beo (yr)N{x |0<d§i <1}

n'(ds;)| Dds, 1> dx + / n(ds,) Ads, ¢ dx

/Bm (Nfx|0<ds; <1} Beo (y)M{x|0<ds; <1}

<

/ n'(ds;)|Dds, [*¢ dx + Co.
Beo (ye)N{x|0<ds; <1}

Proceeding as in Lemma 6.4 we obtain
Per(dS] N Beo (1)) < Co. (8.12)
Putting together (8.8)—(8.12) we obtain
Colths > Co,

and we get a contradiction for o small enough. In the case (2.6) the proof follows the
same steps using (7.8).

Therefore x’l‘ and x’z‘ must belong to different components of C; for any k > k. In
particular, since the distance between them is less than 1, they must belong to two different

components of the same population. Suppose that x’l‘ € Sl.] and x§ € Sl.z, fori # j.

Consider the consecutive two points x’f +and x§ *+1 which realize the distance at Yis1>and

again belong to two different components of C;. Since Sj1 (to which y belongs) and Si2
reach the boundary of €2, the point x12<+1 must belong to a connected component different
from Sl.l. Iterating the procedure, we construct a sequence of distinct points belonging to
connected components, each different from the others. This contradicts Lemma 8.4. We

conclude that singular points are isolated. O
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Theorem 8.10. Assume (2.8) withn = 2 and p = 1 in (2.5). Let (uj, ..., u%) be a
viscosity solution of problem (2.4) and (u, ..., uk) the limit as ¢ — 0 of a convergent
subsequence. Fori # j, let xo € 3S; N Q2 and yo € S; N Q2 be points such that S; has an
angle 0; € [0, ] at xo, Sj has an angle 9; € [0, ] at yo and p(xo — yo) = 1. Then

0; =6;. (8.13)
If xo € 38; N0 and yo € 9S; N Q, then

0; < 9]'. (8.14)

Proof. By Lemma 8.4, the connected components of the sets S; are finitely many. Assume
xo € Q and yp € Q. Without loss of generality we can assume that xo = 0. It suffices to
show the theorem for yo belonging to a region that is side by side with S;, in the sense
that O is the limit as ~ — 0 of interior regular points x;, € 9.5; N Q2 with the property
that x, realizes the distance from S; at interior points y; € 9S5; N, with y, — o as
h — 0. Let C; be the asymptotic cone at 0. First suppose for simplicity that 9S; and 9.S;
are locally cones around 0 and yq respectively. In particular, 6;, 6; > 0. We will explain
later on how to handle the general case.

Proof of Theorem 8.10 when 3S; and 3S; are locally cones. We assume that there exists
ro > 0 such that 95; N By, = C; N By, where By, is the Euclidean ball centered at O
of radius 2rg. When xg € €2, we are just interested in the side of the cone C; contained
in .

If (o, 0) is a system of polar coordinates in the plane centered at zero, we may assume
that C; is the cone given by

Ci ={(0,0) | 0€[0,00), 0<6 <86;}.

First consider the case (2.6). Assume that x;, = (2rp, 0) with r;, > 0. We know that
rp, — 0as h — 0, so we can fix & so small that r;, < ro/3. By Lemma 8.6 applied to
U] = u;, we have

ui(x) > crfl’d(x, aS;) forany x € [ry, 3r,] x [0, Rp], (8.15)

where
l+a=m/6; > 1. (8.16)

Now, we repeat an argument similar to the one in the proof of Theorem 7.1. We look
at inf u; on small circles of radius r that go across the free boundary of u;, and we look at
sup u; in circles of radius r + 1 across the free boundary of u;, then we compare the mass
of the corresponding Laplacians. Precisely, there exists a small 0 > 0 and e € S; such
that B, (e) C [y, 3rn] x [0, Ry] and x;, € 3B, (e). In particular, in B, (¢) the function u;
satisfies (8.15). Forv < o and r € [0 — v, 0 + v], we define

u; ;= inf u; and u;:= sup u;. (8.17)
Y B B4, (e)
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In what follows we denote by C and c several constants independent of k. For r €
[c — v, o], by (8.15) we have

u; > alis‘nf crpd(x,dS8;) > alisr,l(fe) Crid,(x,9S;) = Cri(c —r).

u i
For r € [0, 0 + v], the ball B, (e) goes across 3.5;, therefore u; = 0. Hence

u;(ry>Cry(oc —r) forrefo—v,ol,

(8.18)

u;(r)=0 forr € [0, 0 + v].

Next, let us study the behavior of u;. First of all, let us show that
dy(e,dSj) = ple—yp) =1+o0. (8.19)

Since d, (e, 3S;) = o and d,(S;, S;) > 1, it is easy to see that dy(e, S;) > 1+ 0. The
function p is also called a Minkowski norm and from known results about Minkowski
norms, if we denote by T the Legendre transform 7' : R” — R”" defined by T'(y) =
p(»)Dp(y), then T is a bijection with inverse T~ (£) = p*(&) Dp* (&), where p* is the
dual norm defined by p*(&) := sup{y - & | y € Bj}. Now, the ball Bi(yy) is tangent
to 05; at x; and therefore also tangent to B, (¢) at xp. This implies that Dp(e — xj) =
—Dp(xp, — e) = Dp(x;, — yp). Consequently,
e—xp =T ' (T(e—x)=T""(@Dple—x) =T (0 Dpxh — yn))
= o T~ (T (e — ) = o (o — ).

We infer that

e=xp +0(xp— yn) (8.20)
and

ple—yp) =0 +0)plxp—yn) =1+0,

which proves (8.19). As a consequence 0B14,(e) N S; = ¥ forr € [0 — v, o), while if
r € (0,0 + v] then dB1,(e) N S; # ¥ and 3B, (e) enters inside S; at p-distance at
most r — ¢ from the boundary of ;. In particular,

u; =0 forrelo—v,ol (8.21)
Next, if 6; is the angle of S; at yo, let B be defined by
1+ B=m/0; > 1. (8.22)

Note that y, is at p-distance 2r;, from yy. Again by Lemma 8.6 applied to u; = u;, (after
a rotation and a translation) we have the estimate

uj(x) < Crld(x,98;) < Crld,(x,85))
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in a neighborhood of yj,. As a consequence, recalling in addition that the ball B, (e)
enters in §; at p-distance r — o from the boundary, for r € [0, 0 + v] we get
Uj = su <crfr -
= p uj <Cr,(r—o).
B4, (e)

The last estimate and (8.21) imply
uj(r) < Crf(r—cr)+ forr e [c —v,0 +v]. (8.23)

Now, we want to compare the mass of the Laplacians of u; and u;. Define, as in (8.17),
u; ;= inf uf, @i := sup ui, k#Ii
o B T B

For o and v small enough, the ball 3, (e) is contained in €2 for any r < o + v, and thus

1 .
Auf = S—Zuf Z H(up) inByis(e).
i

On the other hand, since x;, is an interior regular point that realizes its distance from S;
at an interior point, yy, its distance from the support of the boundary data fj is greater
than 1 for any k # i. We infer that, for o and v small enough and r < o + v,

1
Auf > —up Y H(uf) inBiy,(e).
& I

Hence, arguing as in the proof of Theorem 7.1, we see that

Auf <D At in (o — v, 0 + ), (8.24)
ki

where A,u = %%(r %) Since x;, is a regular point of 9.S; that realizes the distance
from S; at y, € 0C;, the ball B1; 41, (e) does not intersect the support of the functions iy
for k # j and small v and o. Therefore, multiplying inequality (8.24) by a positive test
function ¢ € C2°(0 — v, o 4 v), integrating by parts in (o0 — v, o + v) and passing to the
limit as ¢ — 0 along a converging subsequence, we see that the only surviving function
on the right hand side is #; and we get

o+v 9 9 1 o+v P 9 1
—\r— - dr < i —\r—| — dr. 8.25
[ i Ge)) = [ ma (i Ge)) o o
Let us choose a function ¢ which is increasing in (o — v, o) and decreasing in (o, o 4 v)
and hence with maximum at r = o, and let us estimate the two sides of the last inequality.
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Estimates (8.18) imply that (a ) < —Cr}. Therefore, for small v we have
o+v 9 9 1 4
[y i (Ge))
:—/(7 %ri<l¢)dr=—/(7 < L(07) 4 00— r(l))ri<l¢>dr
o—y Or Or r
o . ¢ 1
- [ e )(——;4») ar=out) [ (—+ ¢)
ou;, o o
—8;’(6 )[¢(0) - ¢(0)10g(—>] - 0u(1)[¢(0) +¢(U)10g<—)}
r o—v o—v

(Cri = 0u(1))¢(0).
Similarly, using (8.23) and integrating by parts, we get

a+U_‘ 9 9 1 4 - c |
/J_U u13r< ar( ¢>> r < (Cry) +0u(1)$(0).

From the previous estimates and (8.25), letting v go to 0, we obtain

v

ry <C rf ,
and therefore, for 4 small enough,
B <a.

Recalling the definitions (8.16) and (8.22) of « and B respectively, we infer that 6; < 6;.
This proves (8.14). If xo = 0 is an interior point of €2, exchanging the roles of u; and u;,
we get the opposite inequality 6; < 0;, and this proves (8.13) for H defined as in (2.6).

Next, let us turn to the case (2.5). Again we compare the mass of the Laplacians of u;
and u; across the free boundaries. For o < r;, define

Do (xp) := {x € By (xp) | d(x,8S;) < o?}. (8.26)

If we denote by (D, (x1,)) <1 the sets of points at p-distance less than 1 from D, (x;,), we

have
/ Auj < Z/ Aug (8.27)
Dy (xp) ki Y (Do (xn)) <1

as in (7.2) with (Dy (x3)) <1 in place of Bi4s(xp). By Lemma 8.6 the normal derivative
of u; with respect to the inner normal v;, at any point on the boundary dC; with distance
to the vertex between ry, and 3ry, is greater than crjf. Hence

du; 2rp+Co
/ Au; = / —LdH > c/ ri dr = Crjo.
Dy (x3) CiNDy (xp) Vi pr—

Note that (Dy (x4))<1 N 3S; C Beo (yr) N 3S;, and therefore, for o small enough, again
from Lemma 8.6 we have
Auj < C rf o
(Do (xp)) <1
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Then for rj, small enough we obtain 8 < o, and therefore 6; < 6;. If xo = 0 is an interior

point of €2, exchanging the roles of u; and u; we get 6; < 6;. This concludes the proof of

the theorem in the case where 9.5; and 9.; are locally cones around 0 and yg respectively.
We are now going to explain how to adapt the proof in the general case.

Proof of Theorem 8.10 in the general case. If ; = 0, then 6; < 6;. A_ssume 0; € (0, ]
and 0; € [0, 7]; then for any 0 < § < 6;, there exist r5 > 0, a cone CfS centered at 0 and

with opening 6; — 4, and a cone C({ centered at yo and with opening 6; + § such that

CiN B, (0) C SN B,(©0) and S;N By, (yo) C CL N Byy(y0).

Let (xp,) be the sequence of regular points on 9.5; N €2 given by Lemma 8.7 (consider I'y
to be the closest side to S;), and let r, = d(0, x5). Denote by yj the point on 95; N Q
at p-distance 1 from x;,. Then d, (yx, y0) < crp. Now, the proof of the theorem proceeds
as in the previous case and we can compare the mass of the Laplacians across the free
boundaries of u; and u;.

First consider the case (2.5). For ¢ > 0 take D, (x,) and (Dy (x)) <1 as defined
in (8.26). For o small enough, by Lemma 8.9, 9S; N D, (x3,) does not contain singular
points and by Lemma 8.3 it is a C! curve of the plane.

By Lemma 8.7,

ou;
/ Auj = / —LdH > Cr)o.
Dy (x) 38iND, (xy) Vi

(D(I(-xh))<] m 3SJ C Bc(y(yh) ﬂ BS],

Note that

and therefore, for o small enough, from Lemma 8.8, as in the proof of Lemma 8.9, we

have
/ Auj < C’rf‘sa.
(D (xp)) <1

Then for i small enough, we obtain 85 < as, and therefore 6; < 6;. If xo = 0 is an
interior point of €2, exchanging the roles of u; and u; we get 0; < 0;.
Next, let us turn to the case (2.6). Then we define, for r € [R;, — v, R, + v],

u;, = inf wu; and u;:= sup uj.
LB 9By ()

Arguing as before, and using the Lemma 8.7 we get 85 < «s, and therefore, letting § go
to 0, we finally obtain 6; < 6;. Note in particular that if §; > 0 then 8, > 0. If xo = O is
an interior point of €2, exchanging the roles of u; and u; we get6; < 6;. O

An immediate corollary of Theorem 8.10 is the C'-regularity of the free boundaries when
K = 2 and under the following additional assumptions on 2, f1 and f>:

Q:={(x1.x2) €eR? | g(x2) <x1 <h(x2), ;2 €[a,bl}, b—a=4, (8.28)



On a long range segregation model 3611

where
g, h :[a, b] — R are Lipschitz functions with (8.29)
—my < g<-m <My<h<M, My>-m+4 '
the boundary data are such that
fi=l, f£2=0 on{x <gh)},
=0, =1 >h ,
i f2 on {x1 > h(x2)} (8.30)

f1 1s decreasing in x1 on {x2 < a} U {xp > b},

> is increasing in x1 on {x; < a} U {xy > b}.

These assumptions imply that —u; and u, are increasing in the x; direction. Then we
have the following

Corollary 8.11. Assume (2.8) with p = 1 in (2.5). Assume in addition K = n = 2 and
(8.28)—(8.30). Then the sets 0S;, i = 1, 2, are of class cl.

Proof. We know that the sets 0.5; are curves of the plane at p-distance 1 from each other.
Suppose for contradiction that 957 has an angle 6 < m at yg. In particular, there exist
two p-balls of radius 1, centered at two points z, w € 9S>, that are tangent to 957 at yg.
Then, by the monotonicity property of the u;’s and Theorem 7.1, the arc of the p-ball of
radius 1 centered at yg between the points z and w must all be in 3.5,. This means that any
point inside this arc, which is a regular point of 3.5, is at p-distance 1 from the singular
point yp € 8Sj. This contradicts Theorem 8.10. We have shown that any point of the free
boundaries is regular. Then by Lemma 8.3 the free boundaries are of class C!. O

Another corollary of Theorem 8.10 is that the number of singular points is finite.

Corollary 8.12. Assume (2.8) withn = K = 2 and p = 1 in (2.5). Assume in addition
that the supports on 92 of the boundary data f| and f> have a finite number of connected
components. Then the singular points form a finite set.

Proof. From Lemma 8.4, S1 and S have a finite number of connected components. More-
over, we recall that any connected component has to reach the boundary.

Let xo be a singular point belonging to the boundary of the support of one of the
limit functions u;. Without loss of generality assume xo € 9S7. Let y;, y» € 95> be
two different points where x( realizes the distance from S (y1, y2 € 381 (xg) N 357, see
Figure 3). We can choose y; such that 31 (xg) is the limit as k — oo of balls 5 (xx) with
X € 881, tangent to points y; € 95 with yy — y; and xx — xp as k — oo. Theorem
8.10 implies that S, has an angle at y; and y;, and the intersection of the arc on 951 (xq)
between y; and y; with dC must have empty interior. This means that near y; there are
points on 9.5, outside B (xg). These points are at distance greater than 1 from xp and from
any other point of dS] close to xp, and must realize the distance from S outside B (y)
(see Figure 3). Therefore if we take a sequence z; of such points converging to y; and we
consider the corresponding tangent balls centered at points that are in 957 where the z;’s
realize the distance, we obtain a second tangent ball By (x1) for y; with x| # xq.
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Forbiddén arc

Fig. 3. Forbidden arc.

Now, denote by SI the connected component of S; whose boundary contains xg. Re-
member that since S| and S, are at p-distance 1, we have u; = 0 in Bi(y;) U B ().
Moreover, since the connected components of S, whose boundaries contain y; and y;
must reach the boundary of €2, they separate the components of S; whose boundaries
contain xo and x;. Therefore x; must belong to the boundary of different components
of ;. The same argument that we have used for x; and xg also proves that y; and y, must
belong to the boundary of different components of Cj.

We conclude that a singular point xy of S involves at least four different connected
components, and there corresponds to it another singular point, x1, belonging to a differ-
ent component of S; (see Figure 4).

Assume without loss of generality that x; € 9§ 12 Since all the connected components
must reach the boundary of €, x; is the only singular point of Sf corresponding to a

\Sf

Iy

2
S.
S% (1 Y2 2

Ch

Fig. 4. A singular point involving four components.
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singular point of Sll. Since the connected components of S; are finitely many, we infer
that there are a finite number of singular points on 9§ 11 This argument applied to any
connected component of S; shows that the set of singular points of S; is finite. O

8.2. Lipschitz regularity of the free boundaries

In this section, we will show, under some additional assumptions on the domain €2 and
the boundary data f;, that we can construct a solution of problem (2.4) such that the
free boundaries S; of the limiting functions have the following properties: if S; has an
angle 6 at a singular point, then & > 0. This result can be rephrased by saying that the
free boundaries are Lipschitz curves of the plane. Let us make the assumptions precise.
We assume that the domain 2 has the property that for any point of the boundary there
are tangent p-balls of radius 1 4 »n, with n > 0, contained in 2 and in its complement.
Precisely:

Q is a bounded domain of R?;
In > 0Vx € 0Q AB11,(y), Bi4y(2): (8.31)
x € 0B149(y) N3B144(2), Bi4y(y) C R, and B4, (2) C Q°.

On the boundary data f;,i =1, ..., K, we assume
fi = lin supp fi;
de > 0Vx € 92 Nsupp fi : |B-(x) Nsupp fi| > c|Br(x)],
dp(supp fi, supp fj) = 1, i # j, (8.32)

d,(supp f; N OS2, supp fi+1 NIR) =1, where fxi1 = f1;
I; := supp f; N 3K is a connected (C?) curve.

We are going to build a solution of (2.4) such that the support of any limiting function u;
contains a full neighborhood of I'; in € with Lipschitz boundary. Then we prove that the
free boundaries are Lipschitz. In order to do it, we first prove the existence of a solution

(uf, ..., u%) of an obstacle problem associated to system (2.4). Then we show that the
functions u; never touch the obstacles, implying that (u{, ..., u%) is actually a solution
of (2.4). We consider obstacle functions v;, fori = 1, ..., K, defined as follows. Let

yi, yé be the endpoints of the curve I';. For 0 < u < A < 1, we set
, 2 ‘ ‘
MY ={xeQ dx,Ty) =pn), T} i={xel dx y),dx, y) = 1)

For © and A small enough, Ff‘ *isa CL! curve in Q€ with endpoints z"l, zé such that
d(zh, yi) = A, 1 =1,2. We finally set

Ai={xeQldx, T < =an | Bw. (8.33)
xer‘;")‘

Note that
0A; =T; U (0BA; NQ),
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Fig. 5. Construction of an obstacle.

where dA; N Q is the union of two arcs contained respectively in the balls B), (z’i) and
Bk(zé), and a curve contained in the set of points of 2 at distance A — u from I'; (see
Figure 5). Denote by af the angle of A; at yli, ! =1, 2. Note that

(8.34)

a; —n/2+0,(1) asu — 0,
al -0 as i — A,

where 0, (1) — 0as A — 0.
We take as obstacles the functions v; : (£2)<; — R defined as the solutions of the
following problem, fori =1, ..., K:

Ay =0 in A;,
Yi=fi on(3Q)<i, (8.35)
1//,' =0 in \ Al‘.
In this section we deal with the solution (uf, e, u‘;) of the following obstacle problem:
fori=1,..., K,
uj = in €,
1
Auf(x) < Suf(x) > H@b)(x) inQ,
£ b
| ua . (8.36)
Auj(x) = —u; () Y H@) o) in fuf > 91,
J#i
ui = f; on (32) <.

In the whole section we make the following assumptions:

e >0,

(8.31) and (8.32) hold true,

H is either of the form (2.5) with p = 1, or (2.6) and (2.7) hold true,
fori =1,..., K, A; and ¢; are defined by (8.33) and (8.35) respectively.

(8.37)
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Theorem 8.13. Assume (8.37). Then there are continuous positive functions uf, . .., u'%,
depending on the parameter €, that are viscosity solutions of problem (8.36). In particular

Aut (x) = gizuf(x) Z H@$)(x) inQ\ A;. (8.38)
J#
Moreover, fori =1,..., K,
Auf >0 inQ (8.39)
in the viscosity sense.
Proof. The proof of the existence of a solution (uf, ..., u%) of (8.36) is a slight modifi-

cation of the proof of Theorem 4.1. Here
O ={(u1,...,ux) | u;: 2— Riscontinuous, ¥; <u; < ¢; in 2, u; = f; on () <1}.

In the set Q \ A;, we have uf > 0 = 1;, which implies (8.38). Inequality (8.39) is a
consequence of the following facts: in {u; > v/;} we have Auf = sizuf it H(uj.) > 0;
in the interior of {u{ = ¥;}, Aui = Ay; = 0; the free boundaries d{u; > v} have

locally finite n — 1-Hausdorff measure [2]. ]
Theorem 8.14. Assume (8.37). Let (uf,...,u%) be a viscosity solution of prob-
lem (8.36). Then there exists a subsequence (uil, R u%) and continuous functions

(ui, ..., ug) defined on Q such that
(ui’,...,u%)—)(ul,...,w{) ae inQ asl— oo,

and the convergence of uf’ to u; is locally uniform in the support of u;. Moreover:

(1) The u;’s are locally Lipschitz continuous in , in particular, there exists Co > 0
such that if d,(x, 02) > r, then

[Vui(x)| < Co/r. (8.40)
(i) The u;’s have disjoint supports, more precisely
u; =0 in {x € Q|dy(x,suppuj) <1} forany j #1i.

>iii) Au; = 0 when u; > 0.
@(iv) u; > v in Q.
(V) uj = fi on Q.

Proof. The convergence statement is again a consequence of Lemma 5.3, Corollary 5.4
and Lemma 5.5, which hold true with supp f; and supp f; replaced respectively by
suppy; = A; and suppy; = A; (in Lemma 5.3 and Corollary 5.4), and F}T defined
as the set {Y; > o} (in Lemma 5.5). Estimates (5.7) of Corollary 5.4 imply (8.40). Prop-
erty (iv) is an immediate consequence of uf > 1; in Q. Finally, (v) is implied by the fact
that ; < uf < ¢; in 2, and ¢; = ¥; = f; on 02, where ¢; is given by (4.1). O
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As proven in Corollary 6.2, one can show that the free boundaries satisfy the exterior
p-ball condition with radius 1, that they have finite 1-Hausdorff measure, and that the
distance between the supports of two different functions is precisely 1. We are now going
to prove that if . — p is small enough, then any solution of the obstacle problem (8.36)
never touches the obstacles inside the domain 2. To this end, we first need the following
lemma:

Lemma 8.15. Assume (8.37). Then there exists ¢ > 0 such that, fori = 1,..., K,
VY c
—((x) < —— foranyx € 0A; N 2, (8.41)
8\),‘ A— 12

where v; is the exterior normal vector to the set A;.

Proof. Fix xg € 9dA; N Q. Then, by definition of A;, there exists z € Q¢ such that
d(z,02) = u, By(z) N2 C A; and xg € 9B) (z). Consider now the ring {x | u <
|x — z| < A} and the barrier function ¢ that solves

Ap=0 in{x|u<|x—2z <A},
¢ =1 on 3B, (z),
¢=0 on 3B, (2).

The function ¥; is harmonic in B, (z)N2, ¢¥; > 0= ¢ on 3B, (z)NQ,andy; =1 > ¢ on
02N By, (z). Therefore by the comparison principle, ¥; (x) > ¢ (x) for any x € B) (2) N <2,

and this implies (8.41) at x = xo. ]
Theorem 8.16. Assume (8.37). Let (uy,...,ug) be the limit of a converging subse-
quence of solutions (ui, ..., u%) of (8.36). Set a := L — . Then there exists ay > 0
such that foranya < apandi =1, ..., K,

u; >y inA;NQ. (8.42)

Proof. In order to prove (8.42), it is enough to show that
ui(x) > yi(x) foranyx € 0A; N Q2. (8.43)

Indeed, if (8.43) holds true, since by (8.35) and Theorem 8.14, both u; and ; are har-
monic in A;, the strong maximum principle implies u#; > ; in A;. This and (8.43) give
(8.42). Suppose for contradiction that there exists xg € 9dA; N Q such that u;(xg) =
Yi(xp) = 0. Then, by (8.41),

314,' C

o) < i) < < (8.44)
—(x —(x - =——. .
al)i 0= al)i 0= )L—pb a

Assumptions (8.31) imply that if the angles af of A; at yli, [ = 1, 2, are small enough,
then the sets

Yi={yly=x+vx),xe€di N
Xo={yly=x+1tvi(x), x €A, NQ, 0<t <1}
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are relatively compact in 2 and

dp(xo,supp ;) > 1 forany j #i. (8.45)

Therefore, by (8.34), we can choose a so small that (8.45) holds true. Moreover, from
(8.45), there exists a small o > 0 such that By, (xo) Nsuppy; = @, j # i, and from
(8.36) we know that

1 .
Auj > 8—2u§H(uf) in Bj 44 (x0)

(consider uf extended by zero if the ball falls out of 2). When H is defined as in (2.5)
with p = 1, arguing as in (8.27) in the proof of Theorem 8.10 we obtain

Z/ Auj 2/ Au;.
j#i Y (Do (x0)) <1 Dy (x0)

Now, since u; > ¥; > 0in A; and u; (xg) = 0, the point xo belongs to d{u; > 0}NIA; N2.
Since dA; N 2 has an interior tangent ball and d{x; > 0} has an exterior tangent ball, we
deduce that xq is a regular point. Since the set of regular points is open (Lemma 8.9), for
o small enough we have

8 .
/ Au; > — / M, (8.46)
Dy (x0) d{u;>0)ND, (xg) Vi

where v; is still the exterior normal vector to A;. On the other hand, if yg is the point
that realizes the distance 1 with x¢, assume without loss of generality that yo € 9 supp u;;
then yg has to be in ¥; and be a regular point. Consequently, for p small enough such that
0{u; > 0} N By(yo) is C! we have

auj
Auj = — —Lan.
B, (30) 3lu;>0)NB, (vo) IVj

Now, using the fact that for o so small that p > co, suppu; N (Dg(x0))<1 C Beo (o),

we have
/ Auj 2/ Au;. (8.47)
Beo (o) (Do (x0)) <1

Putting all together, dividing (8.46) and (8.47) respectively by H(d{u; > 0} N D4 (x0))
and H(0{u; > 0} N Bcs(¥0)), and passing to the limit as ¢ — 0 we obtain

ou; ou;
——L(y9) = —c—(x0) >
Vi av;

o, . (8.48)

Q|

We are now going to show that (8.48) yields a contradiction. Indeed, the point y, realizes
its distance from the set {u#; > 0} at xo, so the ball 3 (yp) is tangent to {u#; > 0} at xg.
Moreover, since A; C {u; > 0}, the ball Bj(yp) is tangent to A; at xg. On the other
hand, for a small enough, by assumption (8.31), B;(yg) is contained in 2. In particular,
the p-distance of yg from 9€2 is greater than 1. Therefore, from (8.40), we infer that
[Vu;(yo)| < Co, which contradicts (8.48) for a small enough.
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When H is defined as in (2.6), we argue as in case (b) in the proof of Theorem 7.1,
and similarly we get a contradiction for a small enough. O

Corollary 8.17. Under the assumptions of Theorem 8.16, if a < ag then (uf, ..., u%) is
a solution of the problem

uf > in Q,
1 .
Auf(x) = S—Zuf(x) Z H@ui)(x) inQ, (8.49)
J#
ui = fi on (3Q2) <.
In particular, (uf, ..., u%) is a solution of (2.4).

We are now ready to show that free boundaries are Lipschitz.

Theorem 8.18. Let (u, ..., u%) be the solution of (2.4) given by Corollary 8.17. Let
(ui,...,ug) be the limit as ¢ — 0 of a converging subsequence. Then the free bound-
aries d{u; > 0}, i =1, ..., K, are Lipschitz curves of the plane.

Proof. Assume that the free boundaries are not Lipschitz. This implies that there exists
at least one singular point with asymptotic cone with zero opening.

Let xo be an interior singular point with asymptotic cone with zero angle. Without loss
of generality suppose xo € d{u; > 0}. Let e; be the line perpendicular to the cone axis
and passing through xq, in which we choose an orientation such that the cone is below
the axis ej. As we proved in Theorem 8.10 and Corollary 8.12, there exist yg and y;, with
Y0, Y1 € Uj#l 0{u; > 0} singular points at distance 1 from xo with asymptotic cones
with zero opening. Also, by Theorem 7.1 for any regular point x € d{u; > 0} N By (xp)
there exists a corresponding y € Uj £1 0{u;j > 0} such that

y=x+vx)

with v(x) the external normal vector to d{u; > 0} at x. Observe that yg, y; must lie on e;.
In fact, let x,i € d{u1 > 0} be regular points converging to xo as n — oo from the left
side of the cone axis, and let x;, € d{u; > 0} be regular points converging to xo from
the right side of the cone axis. Then the limits of the normal vectors, v(xfl) — vl and
v(x]) — V", both have direction e; since they are orthogonal to the cone axis. Let yo and
y1 be without loss of generality the points defined by

yo=xo+v, yi=xo+v".

So we have three singular points at distance 1, all on the line e;. Repeating the same
argument and using now y; as the reference singular point, we conclude that there must
exist another singular point, y,, with zero opening cone, at distance 1 from y; and also
on the axis ej. Iterating, we will be able to proceed until the prescribed boundary of the
domain stops us from finding the next point. We will have all singular points with cone
with zero opening aligned on the axis e, until we reach the boundary 92 and we cannot
proceed with this process, i.e. we cannot obtain the next point aligned in the direction
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of ey, which implies that d<2 crosses the axis e; and the distance of yj to the boundary
of 2 along e is less than or equal to 1.

Now, there are two cases: either y; € 92 or y; € Q. If y; € 02 assume without loss
of generality that y; € d{u; > 0}. Since u; > |, we have A; C {u; > 0} and y; must
coincide with one of the endpoints yll, [l = 1,2, of the curve I'1. Indeed, by the fourth
assumption in (8.32), no points of d{u; > 0} are on <2 between the curves I'y and I'>,
and I'y and I'k. Assume without loss of generality that y, = yll. Let 6 be the angle of
d{u; > 0} at yll. Then, from (8.14) applied to y; = yl1 and yp = yx—1, we get6 = 0. On
the other hand, since A C {u; > 0}, we have 6 > Ol} > 0, where a{ is the angle of A
at yll. ‘We have obtained a contradiction.

Fig. 6. Contradiction in the case y; € 92.

Suppose now that y, is an interior point. Again, assume that y, € d{u; > 0}. Let
Zx € 92 be the closest point to yj in the direction e; and d(yk, zx) = [ < 1. Recall that
by (8.31) there is an exterior tangent ball at zx, Bj4;, so once the axis ej is crossed, 2
will remain outside of the tangent ball at zz, and so d€2 will not cross e; again in B, (k).
We know that z; cannot belong to d{u; > 0} since it does not respect the distance 1 and
also A; C {u; > 0}. And by Theorem 7.1 for any point on the free boundary there exists
a corresponding point at distance 1 belonging to the support of another function. Taking
into account the previous case, the only option is that the point y that realizes the distance
from yj belongs to By (yx), and it must be such that the angle between e and the line that
contains both y; and y is strictly positive (see Figure 7). Therefore, B; (y)N{u; > 0} # @.

We have obtained a contradiction. We conclude that the free boundaries cannot have
a zero angle at a singular point, so they are Lipschitz curves of the plane. O
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Fig. 7. Contradiction in the case y; € €.

9. A relation between the normal derivatives at the free boundary

In this section we restrict ourselves to the following case:

K =2,
H defined as in (2.5), with ©.1)
p =1, ¢ =1 and p the Euclidean norm.

Therefore, system (2.4) becomes
1 .
Auf(x) = —uf(x)/ uj(y)dy inQ,
&2 Bi(o)

& — i & & .
Aus(x) = 2uz(x) u;(y)dy ing,
€ B (x)

where we denote by Bj (x) the Euclidean ball of radius 1 centered at x. Let (11, u>) be the
limit functions of a converging subsequence that we still denote (u‘i, ug), andfori =1, 2
let

Si = {ui > 0}.

From Section 7 we know that the u;’s have disjoint supports and there is a strip of width
exactly 1 that separates S and S,. Moreover, Corollary 6.2 guarantees that at any point of
the boundary of the two sets, the principal curvatures are < 1. Fori = 1,2, let x; € 9.5;
be such that x; is at distance 1 from x,, 9S; is of class C 2ina neighborhood of x;, and
all the principal curvatures of 9.; at x; are strictly less than 1. Without loss of generality
we can assume x; = 0 and x; = e,, where ¢, = (0, ..., 1). Denote by u,l)(O) and
u%(en) the exterior normal derivatives of # and u; respectively at 0 and e,,. Note that the
two normals have opposite directions. We want to deduce a relation between u}}(O) and
u%(en). Let us start by recalling some basic properties of the level surfaces of the distance
function to a set.
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9.1. Level surfaces of the distance function to a set. Some basic properties

Consider a bounded open set S and its boundary 85, of class C2. Let 5 (x) be the princi-
pal curvatures of 35 at x (outward is the positive direction). Assume that for any x € 95
there exists a tangent ball Bg(z) to 95 at x such that Bg(z) C S€. In particular the prin-
cipal curvatures satisfy s;(x) <1/R,i=1,...,n— 1.

(a) The distance function to S, ds(x) = d(x, S), is defined and is C2 as long as

0 <ds(x) <R.

In the following lemma, which may be known, we provide a proof of the C!-!-regularity
for a more general set, which is not necessarily C?>—it may have edges as well but it has
the property that for any tangent ball there exists a “clean area”, in the sense explained
below. For the C?-regularity in the case of CZ-boundaries, see for instance [23, Lemma
14.16].

Given a bounded closed set F', we say that I1 is a supporting hyperplane at x € 9 F if
x € II and there exists a ball B C F€ tangent to IT at x.

Lemma 9.1. Let F be a bounded closed set. Assume that there exists R > 0 such that,
for any x € OF and any supporting hyperplane T1 at x, there is a ball Br(z) tangent to
IT at x such that Br(z) C F€. Denote by dr(x) = d(x, F) the distance function from F.
Then dF is of class CYVin the set {0 < dr < R)}.

Proof. Let yg € {0 < dr < R}. To prove that df is of class C L1 gt vo, we show that there
are smooth functions whose graphs are tangent from below and above to the graph of dp
at (yo, dr (y0)). As proven in Lemma 6.3, the distance function from a closed bounded set
always has a smooth tangent function from above. Indeed, let x € 9 F be a point where
yo realizes the distance from F. Assume, without loss of generality, that x = 0. Then
d(y0,0) = |yol = dr(yo). Moreover, the ball B|y, (yo) is contained in F“ and tangent
to F at 0. For any y € Bjy,(y0), we have dr(y) < d(y,0) = |y|. Therefore the cone
graph of the function y +— |y| (which is smooth at yg 7~ 0) is tangent from above to the
graph of dF at (yo, dr(y0)).

Next, we prove the existence of a smooth function tangent from below. Note that the
tangent line to By, (o) at 0 is a supporting hyperplane to F* at 0. Therefore, there exists
a ball Br(z) tangent to F at O such that Bg(z) C F¢. We must have z = Ryo/|yol-
Moreover, since Bgr(Ryo/|vol) C F€, forany y € Br(Ryo/|yol) N {0 < dr < R} we
have

dr(y) > d(y, dBr(Ryo/lyol)) = R —d(y, Ryo/lyol)

and dr(yo) = |yol = R — d(yo, Ryo/|yol). That is, the cone graph of the function
y = R —d(y, Ryo/|yol) is tangent from below to the graph of dr at (yo, dr(yp)). We
conclude that dr is C! at yj. O

Let S(k) denote the surface that is at distance k from S,

S(k) := {x | ds(x) = k).
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Then, for k < 1+ ¢ and x € S(k), there is a unique xo € S(0) such that x = xo + kv(xg)
where v(xg) is the unit normal vector at xg in the positive direction. More precisely, if
we denote K := max{|»;(x)| | 1 <i <n—1,x € a5} and f(x,t) := x + tv(x),
then f is a diffeomorphism between 9§ x (—k, k) and the neighborhood of 9.5, N;(S) =
{x +tv(x) | x € S, |t] <k}, withk < 1/K.

(b) For all xg € 98, if we apply the linear transformation x; = xg 4 #v(xp) to S we obtain
S(t). Hence, since the tangent plane for each S(¢) is always perpendicular to v(xg), the
eigenvectors of the principal curvatures remain constant along the trajectories of dg, for
dg <1+ e.

(c) The curvatures of S(k) satisfy (see Figure 8)

1 )
i (x0 + kv(x0)) = — =1 #i (x0) 2 =1,....n—1, k<1+ge,
m—k — 5 (x0)
for xp € 9S.
aS(k)
X
as k
0

Fig. 8. Curvature relations.

(d) For xg € 958, the ball Bj(xg) touches S(1) at the point xog + v(xp), where v is the
outward normal. Moreover, it separates quadratically from S(1), that is, for any small
r > 0 and for any x € B,(xo + v(xg)) N dB1(xp), we have d(x, S(1)) < Cr? for some
C > 0.

9.2. Free boundary condition

Following Subsection 9.1, we denote by s¢; (0) the principal curvatures of 357 at 0 where
outward is the positive direction, and by 3 (e,,) = ;(0)/(1 — 3;(0)) the principal curva-
tures of 0.5, at e,. Note that since the normal vectors to S7 and $> at 0 and e,, respectively
have opposite directions, for sz (e,;) the inner direction of 3 is the positive one. The main
result of this section is the following:
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Theorem 9.2. Assume (9.1). Let 0 € 9S| and e, € 052. Assume that 057 is of class c?
in Bap,(0) and the principal curvatures satisfy 5;(0) < 1 foranyi =1,...,n — 1. Then

ul(0) 1:[‘ #i(0)

u%(en) iz i (en)
#; (0)#0

ul(0) = u?(ey) if %0 =0 foranyi=1,...,n— 1.

if % (0) #0 forsomei =1,...,n—1,

In order to prove Theorem 9.2, we first prove a lemma that relates the mass of the Lapla-
cians of the limit functions across the interfaces. For a point x belonging to a neighbor-
hood of 957 around 0, denote by v(x) = v(xg) the exterior normal vector at xo € 997,
where x( is the unique point such that x = xo + v (xg) for some small ¢ > 0. From (a) in
Subsection 9.1, v(x) is well defined.

Lemma 9.3. Under the assumptions of Theorem 9.2, for small h < hy, let

Dy = Bpr(0) N {x | d(x,d81) < h*}, Ep:={yeR"|y=x+v(x), x € Dp}.

/Aulz/ Aus.
Dy, Ej

Proof. Note that the surface Ej; N 9.5 is of class C? for h small enough, since s (0) < 1
fori =1,...,n—1 (see Subsection 9.1). The Laplacians of the u;’s are positive measures
and

Then

1
/ Aup = lim Auf(x)dx = lim / / u§ ()us(y)dy dx,
Dy, Dy J By (x)

e—=>0/p, e—>0 8_2
1
/ Aup = lim Aui(y)dy = lim —2/ / ui()u5(y)dx dy.
E) e—0 E) e—=>0¢& E, JBi ()

Let s be such that ¢!/ < 5 < h, where « is given by Lemma 5.3. We split the set Dy,
as

Dy, = D;f (UD; UDy,

where
Dy :={x € Dy |d(x,0S)) > s> and u; (x) > 0},
D, ={x € Dy | d(x,dS)) > s> and u; (x) = 0},
Dps:={x €Dy |dx, 38 < s*}.

Similarly

Ey=E; (UE, UEp;,
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98,

Fig. 9. Relation between the mass of the Laplacians.

where
E,'Zs ={x € Ey|dx,05) > s% and usr(x) > 0},
E, = {x € Ej | d(x,3Sy) > s* and u(x) = 0},
Eps:=1{x € Ey | d(x,88) < 5%
(see Figure 9). Since 957 is a smooth surface around 0, and Au; = 0 in S;, we see that

uj grows linearly away from the boundary in a neighborhood of 0. This and the uniform
convergence of u] to u; imply that there exists ¢ > 0 such that u](x) > cs? for any
X € DIS for & small enough. Then, by Lemma 5.3, ug(y) < ae‘b(”z)a/e (a, b positive
constants) for y € Bj(x) and any x € D;S. In an analogous way, if y € E;:'S, we

know that for & small enough, u5(y) > cs?, and by Lemma 5.3, ui(x) < ae=bes)’ /e
for x € Bi(y). Since we have chosen s such that s> > £!/2, we have ui(y) = o(e?)
uniformly in y € UXED;T,.Y Bi(x) and uf(x) = o(g?) uniformly in x € UyeE,ij B1(y).
Note that

D, c |J Bi.

yEE}tS
Therefore
l 5 ¢ dyd —i H g dyd
) u](x)uz(y) yax = — ul(x) ”2()’) yax
&% JxeDy JyeB(x) &% JxeDjf, JyeBi(x) —
" negligible
+l ut (u§(y)dyd l H g dyd
; Susdydx+ = | W) u(y)dy dx
€% JxeDy s JyeB(x) €% JxeD, JyeBi(x) ‘——
" negligible
1

== / U (x)us(y) dy dx + o(1). 9.2)
2 xeDy s JyeBi(x)
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Analogously

1 1
—2/ / ui()u5(y)dxdy = —2/ / ui()u5(y)dxdy+o(l). (9.3)
€% JyeEy JxeBi(y) €% JEny JBi1(y)

Next, for fixed x € Dy, s, we have
Bi(x) N {y | d(y,85) > 52} C B14x(0) N {y | d(y, 8$2) > s>} N {uz = 0}.

Therefore forany y € Bi(x)N{y | d(y,982) > sz}, the ball B;(y) enters in S; N By, (0)
at distance at least s2 from 9S;. Since 3S; N Bay (0) is of class C2, u; has linear growth
away from the boundary in 951N By, (0), and therefore there exists a point in Bj (y) where
u; > cs? for some ¢ > 0. As before, Lemma 5.3 implies that u5(y) = o(g%). We infer
that

1
= / ui (x)u5(y) dy dx
&% JxeDys JyeB (o)

1
= _2/ / ui(us5(y)dydx +o(1).  (9.4)
€7 JxeDys JyeBi(x)N{yld(y,dS8)<s?}

Finally, note that (d) of Subsection 9.1 implies that for x € Dy, s,
Bi(x) N {y | d(y,352) <5°} C Epyes.s 9.5)

for some ¢ > 0. From (9.2)—(9.5), we get

1
/ Auf(x)dx —2/ / u§ (x)u5(y)dy dx
Dy, &~ JxeDy J yeBi(x)
1

_2/ / uj (x)u5(y)dydx + o(1)
&% JxeDy s JyeBi(x)N{yld(y,dS2)<s2}

1

L / / u§ (s (y) dy dx + o(1)
&% JxeDps Jy€Eptcss

1

—2/ / u§ (x)u5(y)dxdy +o(1)
€ yEEh+C,T,S x€B(y)

/ Au5(y)dy +o(1).
Epyes

IA

IA

Similar computations give
/ Aus(y)dy < / Auf(x)dx +o(1).
Ey ht-cs

Letting first ¢ and then s go to 0 yields the conclusion of the lemma. O
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Lemma 9.4. Under the assumptions of Theorem 9.2, let F; = 081 N B, (0) and F% =
{x4+vx)|xe I‘}l}. Then

JrzdA 2l 0

lim = if (0) #0 for somei =1,...,n—1, 9.6

h—0 fl"l dA i % (ey) if i (0) # 0 fe 9.6)
7 (0)#0

. frz dA

}L’Ofrl dAzl if2,(0) =0 foranyi =1,...,n—1. 9.7)

Proof. Consider the diffeomorphism f;(x) = f(x,t) = x +tv(x). Then T7 = f1(T'})

and
/dA=/ [Jfi(x)]|dA,
Ty T}

where |J f1] is the determinant of the Jacobian of f. If we take as basis of the tangent
space at O the principal directions, 7;, then the differential of f; at x is given by

df)(m) =7 +@dv)(t) =1 — 77
So, [Jf1(x)] = [T/ (1 = 5 (x)) and
Jrzda

frhl dA  Area(l'}) Jr!

]_[(1 — 5 (x)) dA.

hi=1

Letting &~ — 0, we obtain

f 2 dA n—l
= []a = 0.
i=1

lim
h—0 fFl dA

Now, if 7;(0) # O forsomei =1,...,n — 1, then

n—1 . n—1
H(l_%l(o))_ H (1 —(0) = 1_[ (szzgm%i(O)): 1—[ 7 (0).

i=1 i e
*i (0)7&0 7 (0)#0 5 (0)7#0

and (9.6) follows. If »;;(0) = Oforanyi = 1,...,n — 1, then ]_[f':_l1 (1 —2(0)) =1and
we get (9.7). O

Proof of Theorem 9.2. Let F}l = 051 N Dy and I‘ﬁ = 095> N Ej. The Laplacians Au; are
jump measures along 9S;, i = 1, 2, and satisfy

/Aulz—/luidA and /Auzz—/zu%dA.
Dy, T Ep Ty

h

Then, using Lemma 9.3 we get

_ th Auy . fl"lll ulleA
JE, Auz frf uzdA’

1
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and so

fryuy dA B Jr2 dA
JCF,% u% dA fr;l, dA’

Since,as h — 0,

1
friwpdA 1)
% b
fF}zl uzdA u(en)

by Lemma 9.4 the conclusion of Theorem 9.2 follows. O
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