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Abstract. In this work we study the properties of segregation processes modeled by a family of
equations

L(ui)(x) = ui(x)Fi(u1, . . . , uK )(x), i = 1, . . . , K,

where Fi(u1, . . . , uK )(x) is a non-local factor that takes into consideration the values of the func-
tions uj in a full neighborhood of x. We consider as a model problem

1uεi (x) =
1
ε2 u

ε
i (x)

∑
i 6=j

H(uεj )(x)

where ε is a small parameter and H(uε
j
)(x) is for instance

H(uεj )(x) =

ˆ
B1(x)

uεj (y) dy or H(uεj )(x) = sup
y∈B1(x)

uεj (y).

Here B1(x) is the unit ball centered at x with respect to a smooth, uniformly convex norm ρ in Rn.
Heuristically, this will force the populations to stay at ρ-distance 1 from each other as ε→ 0.

Keywords. Segregation of populations, free boundary problems, long-range interactions

1. Introduction

Segregation phenomena occur in many areas of mathematics and science: from equiparti-
tion problems in geometry, to social and biological processes (cells, bacteria, ants, mam-
mals), to finance (sellers and buyers). There is a large body of literature in connection
with our work and we would like to refer to [4, 5, 8–21, 26–29, 31–33] and the references
therein. We particularly point out the articles [15, 26, 28, 29, 31] where spatial separa-
tion due to competition for resources is discussed among ant nests, mussels and sessile
animals.
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These articles study a family of models arising from different applications whose
main two ingredients are: in the absence of competition, species follow a “propagation”
equation involving diffusion, transport, birth-death, etc., but when two species overlap,
their growth is mutually inhibited by competition, consumption of resources, etc. The
simplest form of such models consists, for species σi with spatial density ui, of a system
of equations

L(ui) = uiFi(u1, . . . , uK).

The operator L quantifies diffusion, transport, etc., while the term uiFi corresponds to
attrition of ui from competition with the remaining species.

In these models, the interaction is punctual, i.e. ui(x) interacts with the remaining
densities also at position x. There are many processes, though, where the growth of σi at
x is inhibited by the populations σj in a full area surrounding x.

This work is a first attempt to study the properties of such a segregation process.
Basically, we consider a family of equations

L(ui)(x) = ui(x)Fi(u1, . . . , uK)(x)

where Fi(u1, . . . , uK)(x) is now a non-local factor that takes into consideration the values
of uj in a full neighborhood of x.Given the previous discussion, a possible model problem
would be the system

1uεi (x) =
1
ε2 u

ε
i (x)

∑
i 6=j

H(uεj )(x), i = 1, . . . , K,

where ε is a small parameter and H(uεj )(x) is a non-local operator, for instance

H(uεj )(x) =

ˆ
B1(x)

uεj (y) dy or H(uεj )(x) = sup
y∈B1(x)

uεj (y).

To study the limit configuration when the competition for resources is very high, we
consider the limit as ε → 0. Heuristically, the non-local term forces the populations to
stay at distance 1 from each other. As an example, as we will prove, in the case of two pop-
ulations in dimension two, we will have strips of length precisely one between the regions
where the populations live. At “edge” points, which we will define as singular points, the
angles of the asymptotic cones have to be the same (Figure 1). Here Si = S1

i ∪S
2
i , i = 1, 2,

represents the region where the population σi with density ui exists. Moreover, the ratio
between the normal derivatives at regular points across the free boundary depends on the
ratio of the respective curvatures κ. For example, if Z1 ∈ ∂S

1
1 and Z2 ∈ ∂S

1
2 , Z1 and Z2

are not “edge” points, and d(Z1, Z2) = 1 then

u1
ν(Z1)

u2
ν(Z2)

=
κ(Z1)

κ(Z2)
if κ(Z2) 6= 0, u1

ν(Z1) = u
2
ν(Z2) if κ(Z2) = 0.

Instead of the unit ball B1(x) in the Euclidean norm we will consider the translation
at x of a general smooth set B that is also uniformly convex, bounded and symmetric with
respect to the origin. The set B defines a smooth, uniformly convex norm ρ in Rn.
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Fig. 1. Example of a limit configuration for K = 2, n = 2.

Note that there is some similarity with the Lasry–Lions model of price formation
[6, 25] where the selling and buying prices are separated by a gap due to the transaction
cost.

2. Notation and statement of the problem

Let B be an open bounded domain of Rn, convex, symmetric with respect to the origin and
with smooth boundary. Then B can be represented as the unit ball of a norm ρ : Rn→ R,
ρ ∈ C∞(Rn \ {0}), called the defining function of B, i.e.

B = {x ∈ Rn | ρ(x) < 1}.

We assume that B is uniformly convex, i.e. there exists 0 < a ≤ A such that in Rn \ {0},

aIn ≤ D
2
(

1
2
ρ2
)
≤ AIn, (2.1)

where In is the n× n identity matrix. In what follows we denote

Br := {y ∈ Rn | ρ(y) < r}, Br(x) := {y ∈ Rn | ρ(x − y) < r}.

So throughout the paper we will always refer to the Euclidean ball as B and to the ρ-ball
as B. For a given closed set K , let

dρ(·,K) = inf
y∈K

ρ(· − y)

be the distance function from K associated to ρ. Then there exist c1, c2 > 0 such that

c1d(·,K) ≤ dρ(·,K) ≤ c2d(·,K), (2.2)

where d(·,K) is the distance function associated to the Euclidean norm | · | of Rn.
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Let � ⊂ Rn be a bounded Lipschitz domain. We will denote by (∂�)≤1 the ρ-strip
of size 1 around ∂� in the complement of � defined by

(∂�)≤1 := {x ∈ �
c
| dρ(x, ∂�) ≤ 1}.

For i = 1, . . . , K , let fi be non-negative functions defined on (∂�)≤1 with supports at
ρ-distance ≥ 1 from each other:

dρ(supp fi, supp fj ) ≥ 1 for i 6= j. (2.3)

We will consider the following system of equations: for i = 1, . . . , K ,
1uεi (x) =

1
ε2 u

ε
i (x)

∑
j 6=i

H(uεj )(x) in �,

uεi = fi on (∂�)≤1.

(2.4)

The functional H(uj )(x) depends only on the restriction of uj to B1(x).
We will consider, for simplicity,

H(w)(x) =

ˆ
B1(x)

wp(y)ϕ(ρ(x − y)) dy, 1 ≤ p <∞, (2.5)

or
H(w)(x) = sup

B1(x)

w (2.6)

with ϕ a strictly positive smooth function of ρ, with at most polynomial decay at ∂B1:

ϕ(ρ) ≥ C(1− ρ)q , q ≥ 0. (2.7)

In the rest of the paper, when we refer to viscosity solutions uε1, . . . , u
ε
K of the problem

(2.4), we mean that uε1, . . . , u
ε
K are continuous functions that satisfy the system (2.4) in

the viscosity sense. Moreover, we make the following assumptions: for i = 1, . . . , K ,

ε > 0, � is a bounded Lipschitz domain in Rn,
fi : (∂�)≤1 → R, fi ≥ 0, fi 6≡ 0, fi is Hölder continuous,
∃c > 0 ∀x ∈ ∂� ∩ supp fi : |Br(x) ∩ supp fi | ≥ c|Br(x)|,
(2.3) holds true,
H is either of the form (2.5) or (2.6), and (2.7) holds.

(2.8)

3. Main results

For the reader’s convenience we present our main results below. Assume that (2.8) holds
true. Then:

Existence (Theorem 4.1): There exist continuous functions uε1, . . . , u
ε
K , depending on

the parameter ε, that are viscosity solutions of problem (2.4).
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Limit problem (Corollary 5.6): There exists a subsequence (Eu)εm converging locally
uniformly, as ε→ 0, to a function Eu = (u1, . . . , uK), satisfying the following properties:

(i) the ui’s are locally Lipschitz continuous in� and have supports at distance at least 1
from each other, i.e.

ui ≡ 0 in {x ∈ � | dρ(x, supp uj ) ≤ 1} for any j 6= i.

(ii) 1ui = 0 when ui > 0.

Semiconvexity of the free boundary (Corollary 6.2): If x0 ∈ ∂{ui > 0} then there is an
exterior tangent ρ-ball of radius 1 at x0.

The supports of ui are sets of finite perimeter (Corollary 6.5): The set {ui > 0} has
finite perimeter.

Sharp characterization of the interfaces (Theorem 7.1): Under the additional assump-
tion that p = 1 in (2.5), the supports of the limit functions are at distance exactly 1 from
each other, i.e. if x0 ∈ ∂{ui > 0} ∩�, then there exists j 6= i such that

B1(x0) ∩ ∂{uj > 0} 6= ∅.

Classification of singular points in dimension 2 (Lemma 8.9, Theorem 8.10, Corollaries
8.11, 8.12): For n = 2, assume in addition that p = 1 in (2.5) and that the supports of
the fi’s have a finite number of connected components. For i 6= j , let x0 ∈ ∂{ui > 0}∩�
and y0 ∈ ∂{uj > 0} ∩� be points such that {ui > 0} has an angle θi at x0, {uj > 0} has
an angle θj at y0 and ρ(x0 − y0) = 1. Then

θi = θj .

If x0 ∈ ∂{ui > 0} ∩ ∂� and y0 ∈ ∂{uj > 0} ∩�, then

θi ≤ θj .

Moreover, singular points, i.e. points where the free boundaries have corners, are isolated
and finite. If the domain is a strip and there are only two populations, then under addi-
tional monotonicity assumptions on the boundary data, the free boundary sets ∂{ui > 0},
i = 1, 2, are of class C1.

Lipschitz regularity of free boundary for the associated obstacle problem in dimen-
sion 2 (Theorem 8.18): For n = 2, under the additional assumptions that p = 1 in (2.5),
fi ≡ 1, and the supports of the fi’s are connected, and under additional conditions about
the regularity of ∂�, if (uε1, . . . , u

ε
K) is a particular solution of (2.4) which satisfies the

associated obstacle problem (8.49) with (u1, . . . , uK) the limit as ε → 0, then the free
boundaries ∂{ui > 0}, i = 1, . . . , K , are Lipschitz curves of the plane.

Free boundary condition (Theorem 9.2): In any dimension, assume that we have two
populations, H is defined as in (2.5) with ϕ ≡ 1, p = 1 and B1(x) = B1(x) is the
Euclidean ball, 0 ∈ ∂{u1 > 0}, en ∈ ∂{u2 > 0}, and ∂{u1 > 0} and ∂{u2 > 0} are
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of class C2 in a neighborhood of 0 and en respectively. Let κi(0) denote the principal
curvatures of ∂{u1 > 0} at 0 where outward is the positive direction, and let κi(en)
denote the principal curvatures of ∂{u2 > 0} at en where now inward is the positive
direction. Then we have the following relation between the exterior normal derivatives of
u1 and u2:

u1
ν(0)

u2
ν(en)

=

n−1∏
i=1

κi (0)6=0

κi(0)
κi(en)

if κi(0) 6= 0 for some i = 1, . . . , n− 1,

u1
ν(0) = u

2
ν(en) if κi(0) = 0 for any i = 1, . . . , n− 1.

4. Existence of solutions

The proof below follows the same steps as in [30] and it is written below for the reader’s
convenience.

Theorem 4.1. Assume (2.8). Then there exist continuous positive functions uε1, . . . , u
ε
K ,

depending on the parameter ε, that are viscosity solutions of problem (2.4).

Proof. The proof uses a fixed point result. Let B be the Banach space of bounded contin-
uous vector-valued functions defined on the domain � with the norm

‖(u1, . . . , uK)‖B := max
i

sup
x∈�

|ui(x)|.

For i = 1, . . . , K , let φi be the solutions of{
1φi = 0 in �,
φi = fi on ∂�.

(4.1)

Let2 be the subset of bounded continuous functions in� that satisfy prescribed boundary
data, and are bounded from above and from below as stated below:

2 = {(u1, . . . , uK) | ui : �→ R is continuous, 0 ≤ ui ≤ φi in �, ui = fi on (∂�)≤1}.

Notice that 2 is a closed and convex subset of B. Let T ε be the operator defined on 2
in the following way: T ε(u1, . . . , uK) := (v

ε
1, . . . , v

ε
K) if for any i = 1, . . . , K , vεi is a

solution to the following problem:
1(vεi )(x) =

1
ε2 v

ε
i (x)

∑
j 6=i

H(uj )(x) in �,

vεi = fi on (∂�)≤1,

(4.2)

where uj , j 6= i, are given. Observe that if T ε has a fixed point,

T ε(uε1, . . . , u
ε
K) = (u

ε
1, . . . , u

ε
K),

then (uε1, . . . , u
ε
K) is a solution of problem (2.4).
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In order for T ε to have a fixed point, we need to prove that it satisfies the hypothesis
of the Schauder fixed point theorem [23]:

(1) T ε(2) ⊂ 2: Classical existence results guarantee the existence of a viscosity solu-
tion (vε1, . . . , v

ε
K) of problem (4.2) which is smooth in �. Since fi ≥ 0 and fi 6≡ 0, the

strong maximum principle implies

vεi > 0 in �.

This implies that
1vεi ≥ 0 in �, (4.3)

and again from the comparison principle we have

vεi ≤ φi in �.

We have proved that T ε(u1, . . . , uK) ∈ 2.

(2) T ε is continuous: Assume that (u1m, . . . , uKm)→ (u1, . . . , uK) in B, meaning that
as m→∞,

max
1≤i≤K

‖uim − ui‖L∞ → 0.

We need to prove that for each fixed ε > 0,

‖T ε(u1m, . . . , uKm)− T
ε(u1, . . . , uK)‖B → 0 as m→∞.

Let
T ε(u1m, . . . , uKm) = (v

ε
1m, . . . , v

ε
Km).

If we prove that there exists a constant Cε independent of m such that, for i = 1, . . . , K ,

‖vεim − v
ε
i ‖L∞ ≤ Cε max

j
‖ujm − uj‖L∞ ,

then the result follows. For all x ∈ � and for fixed i, let

ωm(x) = v
ε
im(x)− v

ε
i (x),

and suppose for instance that there exists y ∈ � such that

ωm(y) > r2Dmax
j
‖ujm − uj‖L∞ (4.4)

for some largeD > 0, where r is such that� ⊂ Br , and Br is the Euclidean ball centered
at 0 of radius r . We want to prove that this is impossible if D is sufficiently large. Let hm
be the concave radially symmetric function

hm(x) = γm(r
2
− |x|2) with γm = Dmax

j
‖ujm − uj‖L∞ .

Observe that:

(a) hm(x) = 0 on ∂Br ;
(b) hm(x) ≤ r2Dmaxj ‖ujm − uj‖L∞ for all x in Br ;
(c) 0 = ωm(x) ≤ hm(x) on ∂�, since vεim and vεi are solutions with the same boundary

data.
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Since we are assuming (4.4), there exists a negative minimum of hm − ωm in �. Let
x0 ∈ � be a point where the minimum value is attained. Then

hm(x0)− ωm(x0) < 0 and 1(hm − ωm)(x0) ≥ 0.

Then

1ωm(x0) = 1(v
ε
im)(x0)−1v

ε
i (x0)

=
1
ε2

(
(vεim(x0)− v

ε
i (x0))

∑
j 6=i

H(ujm)(x0)

− vεi (x0)
∑
j 6=i

(
H(uj )(x0)−H(ujm)(x0)

))

≥
1
ε2

(
(vεim(x0)− v

ε
i (x0))

∑
j 6=i

H(ujm)(x0)

− vεi (x0)(K − 1)Cmax
j
‖ujm − uj‖L∞(�)

)
by adding and subtracting 1

ε2 v
ε
i (x0)

∑
j 6=i H(ujm)(x0), where C depends on the fj ’s

and ϕ. Then

0 ≤ 1(hm − ωm)(x0) ≤ −2γmn−
1
ε2

(
(vεim − v

ε
i )(x0)

∑
j 6=i

H(ujm)(x0)

− vεi (x0)(K − 1)Cmax
j
‖ujm − uj‖L∞

)
≤ −2nDmax

j
‖ujm − uj‖L∞ +

1
ε2 v

ε
i (x0)(K − 1)Cmax

j
‖ujm − uj‖L∞

≤ −2nDmax
j
‖ujm − uj‖L∞ +

C̃

ε2 max
j
‖ujm − uj‖L∞

because 0 < hm(x0) < ωm(x0) = (v
ε
im − v

ε
i )(x0) and

∑
j 6=i H(ujm)(x0) ≥ 0, and so

−
1
ε2 (v

ε
im − v

ε
i )(x0)

∑
j 6=i

H(ujm)(x0) ≤ 0.

Taking D = Dε > C̃

2nε2 , we obtain

0 ≤ 1(hm − ωm)(x0) < 0,

which is a contradiction.

(3) T ε(2) is precompact: Let (u1m, . . . , uKm) be a bounded sequence in B and let

(vε1m, . . . , v
ε
Km) = T

ε(u1m, . . . , uKm).
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Then by standard Hölder estimates for viscosity solutions, (vε1m, . . . , v
ε
Km) is bounded in

the space of Hölder continuous functions on �. Since the subset of 2 of Hölder contin-
uous functions on � is precompact in 2, we can extract from (vε1m, . . . , v

ε
Km) a subse-

quence which converges in B.

We have proven the existence of a solution (uε1, . . . , u
ε
K) of (2.4). The same argument

as in (1) shows that uεi > 0 in �. This concludes the proof of the theorem. ut

5. Uniform in ε Lipschitz estimates

In this section we will prove uniform in ε Lipschitz estimates that will imply the con-
vergence, up to subsequences, of the solution (uε1, . . . , u

ε
K) of (2.4) to a limit function

(u1, . . . , uK) as ε → 0. We will show that the functions ui are locally Lipschitz contin-
uous in � and harmonic inside their support. Moreover, ui ≡ 0 in the ρ-strip of size 1
around the support of uj for any j 6= i, i.e. the supports of the limit functions are at
distance at least 1 from each other. We start by proving general properties of subsolutions
of uniform elliptic equations.

Lemma 5.1. Let:
(a) ω be a subharmonic function in B1 such that

(a1) ω ≤ 1 in B1,
(a2) ω(0) = m > 0;

(b) D0 be a smooth convex set with bounded curvatures

|κi(∂D0)| ≤ C0, i = 1, . . . , n− 1

(like B1 above).
Then there exists a universal τ0 = τ0(C0, n, ρ) such that if dρ(D0, 0) ≤ τ0m, then

sup
∂D0∩B1

ω ≥ m/2.

Proof. Assume without loss of generality that 0 /∈ D0 and let h be harmonic in B1 \D0
and such that {

h = 1 on (∂B1) \D0,

h = m/2 on (∂D0) ∩ B1.

By assumption (b), the set B1 \D0 satisfies an exterior uniform ball condition at any point
of ∂D0 ∩ B1; therefore, by a standard barrier argument, h grows no more than linearly
away from ∂D0 in B1/2, i.e., there exist k1, k2 > 0 depending on C0 and n such that
if x ∈ B1/2 \ D0 and d(x, ∂D0) ≤ k2, then h(x) ≤ k1d(x, ∂D0) + m/2. To prove
that h(0) < m observe that if τ0 ≤ k2c1, where c1 is given by (2.2), then d(0, ∂D0) ≤

τ0m/c1 ≤ k2m ≤ k2, and therefore if in addition τ0 is so small that k1
c1
τ0 ≤

1
2 , we have

h(0) ≤ k1d(0, ∂D0)+
m

2
≤
k1

c1
dρ(0, ∂D0)+

m

2
≤
k1

c1
τ0m+

m

2
< m.

Hence, we must have sup∂D0∩B1
ω ≥ m/2, for otherwise the comparison principle would

imply ω(x) ≤ h(x) in B1 \D0, which is a contradiction at x = 0. ut
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Lemma 5.2. Let ω be a positive subsolution of a uniformly elliptic equation (λ2I ≤

aij ≤ 3
2I )

aijDijω ≥ θ
2ω in Br .

Then there exist c, C > 0 such that
ω(0)

supBr ω
≤ Ce−cθr .

Proof. The function

g(x) =

n∑
i=1

cosh
(
θ

3
xi

)
is a supersolution of the equation aijDiju = θ2u. Moreover, using the convexity of the
exponential function, it is easy to check that

g(x) ≥ C1e
cθr for any x ∈ ∂Br .

Then the comparison principle implies
ω(x)

supBr ω
≤

g(x)

C1ecθr
for any x ∈ Br .

The result follows by taking x = 0. ut

The next lemma says that if uεi attains a positive value σ at some interior point, then all
the other functions uεj , j 6= i, go to zero exponentially in a ρ-ball of radius 1+ cσ around
that point.

Lemma 5.3. Assume (2.8). Let (uε1, . . . , u
ε
K) be a viscosity solution of problem (2.4). For

i = 1, . . . , K , σ > 0, and 0 < r < 1 let

0
σ,r
i := {y ∈ � | dρ(y, supp fi) ≥ 2r, uεi = σ }, m :=

σ

sup∂� fi
.

Then there exists a universal constant 0 < τ < 1 such that in the sets

6
σ,r
i,j := {x ∈ � | dρ(x, 0

σ,r
i ) ≤ 1+ τmr/2, dρ(x, supp fj ) ≥ τmr/4}

we have
uεj ≤ Ce

−cσαrβ/ε for j 6= i,
for some positive α and β depending on the structure of H (p and q).
Proof. Let 0 < τ < 1 to be determined. For 0 < r < 1, consider the set 6σ,ri,j defined
above and let x ∈ 6σ,ri,j . We want to show that for j 6= i, we have

1uεj ≥
Cσαrβ

ε2 uεj in Bτmr/4(x) (5.1)

for some α, β > 0. Let us prove it for x such that dρ(x, 0
σ,r
i ) = 1+ τmr/2, which is the

hardest case. First of all, note that since dρ(x, supp fj ) ≥ τmr/4, the ball Bτmr/4(x) does
not intersect supp fj . Therefore, uεj (which is eventually zero in Bτmr/4(x)∩�c) satisfies

1uεj ≥
1
ε2 u

ε
j

∑
k 6=j

H(uεk) in Bτmr/4(x). (5.2)
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Next, the ball B1−τmr/2(x) is at distance τmr from a point y ∈ 0σ,ri . Observe that since
B2r(y) ∩ supp fi = ∅, the function uεi (which is eventually zero in B2r(y) ∩�

c) satisfies
1uεi ≥ 0 in B2r(y). Moreover, since uεi is subharmonic in �, it attains its maximum at
the boundary of �, so that uεi /sup∂� fi ≤ 1 in �. In particular m = σ/sup∂� fi ≤ 1. Set

v(x) :=
uεi (y + rx)

sup∂� fi
. (5.3)

Then v ≤ 1 and v(0) = uεi (y)/sup∂� fi = σ/sup∂� fi = m and 1v ≥ 0 in B1. Let

D0 := B1/r−τm/2

(
x − y

r

)
.

Then the principal curvatures of D0 satisfy

|κi(∂D0)| ≤
Cρ

1/r − τm/2
=

2rCρ
2− rτm

< 2rCρ < 2Cρ .

MoreoverD0 is at distance τm from 0. Hence, from Lemma 5.1 applied to the function v
given by (5.3) with D0 defined as above, if τ = min{1, τ0}, where τ0 is the universal
constant given by the lemma, then there is a point z in ∂B1−τmr/2(x) ∩ Br(y) such that
uεi (z) ≥ σ/2. Next, if x ∈ Bτmr/4(x) then

B1(x) ⊃ Bτmr/4(z)
(since dρ(x, z) ≤ dρ(x, x)+ dρ(x, z) ≤ τmr/4+ 1− τmr/2 = 1− τmr/4).

First consider the case of H defined as in (2.6). Then for any x ∈ Bτmr/4(x) we have

H(uεi )(x) = sup
B1(x)

uεi ≥ u
ε
i (z) ≥ σ/2,

which, together with (5.2), implies (5.1) with α = 1 and β = 0.
Next, let us turn to the case ofH defined as in (2.5). Since z∈Br(y) and dρ(y, supp fi)

≥ 2r , we have Br(z)∩supp fi = ∅, and therefore the function uεi (which is eventually zero
in Br(z)∩�c) satisfies1uεi ≥ 0 in Br(z). This implies that (uεi )

p, p ≥ 1, is subharmonic
in Br(z), and by the mean value inequality, 

Bs (z)

(uεi )
pdx ≥

(
σ

2

)p
(5.4)

in any Euclidean ball Bs(z) ⊂ Br(z), for any p ≥ 1. Since dρ and the Euclidean distance
are equivalent, there is an s ∼ τmr such that

Bs(z) ⊂ Bτmr/8(z) ⊂ Bτmr/4(z) ⊂ B1(x). (5.5)

Moreover, if y ∈ Bs(z) and x ∈ Bτmr/4(x), then

ρ(y− x) ≤ ρ(y− z)+ρ(z− x)+ρ(x− x) ≤
τmr

8
+

(
1−

τmr

2

)
+
τmr

4
= 1−

τmr

8
,

that is,
1− ρ(y − x) ≥ τmr/8. (5.6)
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Hence, using (5.5), (2.7), (5.6) and (5.4), for all x ∈ Bτmr/4(x) we get

H(uεi )(x) =

ˆ
B1(x)

(uεi )
p(y)ϕ(ρ(y − x)) dy ≥

ˆ
Bs (z)

(uεi )
p(y)C(1− ρ(y − x))q dy

≥

ˆ
Bs (z)

(uεi )
p(y)C(τmr/8)q dy ≥ Cσαrβ

where α and β depend on p, q and on the dimension n. This and (5.2) imply (5.1).
Now, by Lemma 5.2 we get uεj (x) ≤ Ce

−cσαrβ/ε for α = α/2+ 1 and β = β/2+ 1,
and the lemma is proven. ut

Corollary 5.4. Assume (2.8). Let (uε1, . . . , u
ε
K) be a viscosity solution of problem (2.4).

Let y be a point in � such that for some i,

uεi (y) = σ, dρ(y, supp fj ) ≥ 1+ τmr for all j 6= i, dρ(y, ∂�) ≥ 2r,

wherem = σ/sup∂� fi , 0 < r < 1, ε ≤ σ 2αr2β and τ, α and β are given by Lemma 5.3.
Then there exists a constant C0 > 0 such that in Bτmr/4(y) we have

|∇uεi | ≤ C0/r (5.7)

and
1uεi → 0 uniformly as ε→ 0. (5.8)

Proof. First of all, note that m ≤ 1, as ui attains its maximum at the boundary of �.
Since in addition τ < 1, we see that Bτmr/2(y) ⊂ B2r(y) ⊂ �. Therefore, we use
(2.4) to estimate 1uεi (z) for z ∈ Bτmr/2(y). To do that, we need to estimate H(uεj )(z)
for j 6= i. But H(uεj )(z) involves points x at ρ-distance 1 from z. Let x be such that
dρ(x, z) ≤ 1. Then dρ(x, y) ≤ 1 + τmr/2. Moreover, since dρ(y, supp fj ) ≥ 1 + τmr ,
we have dρ(x, supp fj ) ≥ τmr/2. Hence, by Lemma 5.3, for any j 6= i,

uεj (x) ≤ Ce
−cσαrβ/ε for x ∈ B1(z).

From the previous estimate and (2.4), it follows that for z ∈ Bτmr/2(y) we have

0 ≤ 1uεi (z) ≤ u
ε
i (z)

Ce−cσ
αrβ/ε

ε2 ≤ uεi (z)
Ce−cε

−1/2

ε2 = o(1) as ε→ 0, (5.9)

for ε ≤ σ 2αr2β . If we normalize the function in a Lipschitz fashion:

ūεi (z) := 2
uεi

(
τmr

2 z+ y
)

τmr
,

then we have

ūεi (0) = 2
uεi (y)

τmr
=

2 sup∂� fi
τr

,

and

0 ≤ 1ūεi (z) ≤
τmr

2
ūεi (z)

∑
j 6=i

1
ε2H(u

ε
j )

(
τmr

2
z+ y

)
for z ∈ B1(0),
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where
τmr

2
ūεi (z)

∑
j 6=i

1
ε2H(u

ε
j )

(
τmr

2
z+ y

)
≤
Ce−cε

−1/2

ε2 .

Then, by the Harnack inequality (see e.g. [3, Theorem 4.3]), we get

sup
B1/2(0)

ūεi ≤ Cn

(
inf

B1/2(0)
ūεi +

Ce−cε
−1/2

ε2

)
≤ Cn

(
2 sup∂� fi

τr
+
Ce−cε

−1/2

ε2

)
≤
C

r
.

Lipschitz estimates then imply that |∇ūεi | ≤ C/r in B1/2(0), and (5.7) follows.
Further, (5.9) implies (5.8). ut

The next lemma says that in a ρ-strip of size 1 around the support of fj , the function uεi ,
i 6= j , decays to 0 exponentially.

Lemma 5.5. Assume (2.8). Let (uε1, . . . , u
ε
K) be a viscosity solution of problem (2.4). For

j = 1, . . . , K , σ > 0, let 0σj := {fj ≥ σ } ⊂ �
c. Then on the sets

{x ∈ � | dρ(x, 0
σ

j ) ≤ 1− r}, 0 < r < 1,

we have
uεi ≤ Ce

−cσαrβ/ε for i 6= j,

for some positive α and β depending on the structure of H (p and q) and the modulus of
continuity of fj .

Proof. Let x ∈ � and y ∈ 0σj be such that dρ(x, y) ≤ 1 − r . We want to estimate
H(uεj )(x) for any x ∈ Br/2(x). Let x ∈ Br/2(x). Then

dρ(x, y) ≤ 1− r/2. (5.10)

First consider the case of H defined as in (2.6). We have

H(uεj )(x) = sup
B1(x)

uεj ≥ fj (y) ≥ σ.

Next, let us turn to the case of H defined as in (2.5). Let r0 := min{σ γ , r/4} for some γ
depending on the modulus of continuity of fj . Then fj ≥ σ/2 in Br0(y) ∩ supp fj .
Moreover, from (5.10) and r0 ≤ r/4, we have

Br0(y) ∩ supp fj ⊂ Br/4(y) ⊂ Br/2(y) ⊂ B1(x),

and for any z ∈ Br0(y) ∩ supp fj ,

ρ(x − z) ≤ ρ(x − y)+ ρ(y − z) ≤ 1− r/2+ r0 ≤ 1− r/4.
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Therefore, using in addition (2.7), and the fact that, by (2.8), |Br0(y) ∩ supp fj | ≥
c|Br0(y)|, we get

H(uεj )(x) =

ˆ
B1(x)

(uεj )
p(z)ϕ(ρ(x − z)) dz ≥

ˆ
Br0 (y)∩supp fj

(uεj )
p(z)(1− ρ(x − z))q dz

≥

ˆ
Br0 (y)∩supp fj

(fj )
p(z)C(r/4)q dz ≥ Cσprβ0 ,

where β depends on q and on the dimension n.
Thus, for H defined as in (2.5) or (2.6), the function uεi , i 6= j , (which is eventually

zero in Br/2(x) ∩�c) is a subsolution of

1uεi ≥ u
ε
i

Cσpr
β

0
ε2

in Br/2(x), where p = 1 and β = 0 in the case (2.6). The conclusion follows as in
Lemma 5.3. ut

The following corollary is a consequence of Lemma 5.3, Corollary 5.4 and Lemma 5.5.

Corollary 5.6. Assume (2.8). Let (uε1, . . . , u
ε
K) be a viscosity solution of problem (2.4).

Then there exists a subsequence (uεl1 , . . . , u
εl
K) and continuous functions (u1, . . . , uK)

such that
(u
εl
1 , . . . , u

εl
K)→ (u1, . . . , uK) a.e. in � as l→∞,

and the convergence of uεli to ui is locally uniform in the set {x ∈ � | dρ(x, supp fj ) > 1,
j 6= i}. Moreover:

(i) the ui’s are locally Lipschitz continuous in� and have disjoint supports, in particular

ui ≡ 0 in {x ∈ � | dρ(x, supp uj ) ≤ 1} for any j 6= i.

(ii) 1ui = 0 when ui > 0.

Proof. Fix an index i = 1, . . . , K . Let

�i := {x ∈ � | dρ(x, supp fj ) > 1 for any j 6= i}, Bi := � \�i .

Claim 1. uεi (x)→ 0 as ε→ 0 for any x ∈ Bi .

Indeed, let x0 ∈ Bi . Then there exists j 6= i such that dρ(x0, supp fj ) < 1. Note that{
x ∈ �

∣∣∣ dρ(x, supp fj ) < 1} ⊂
⋃
r,σ>0

{x ∈ � | dρ(x, 0
σ

j ) ≤ 1− r
}
,

where 0σj = {fj ≥ σ }. Therefore, there exist r, σ > 0 such that x0 ∈ {x ∈ � |

dρ(x, 0
σ

j ) ≤ 1−r}, and by Lemma 5.5 we have uεi (x0) ≤ Ce
−cσαrβ/ε for some α, β > 0.

Claim 1 follows.
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Claim 2. There exists a subsequence (uεli )l locally uniformly convergent in�i as l→∞
to a locally Lipschitz continuous function ui .

Fix 0 < r < 1 and define

�ri := {x ∈ �i | dρ(x, ∂�) > 2r, dρ(x, supp fj ) ≥ 1+ τr for any j 6= i}.

Fix θ < 1/(2α), set σε = εθ > 0 and consider τ, α and β as given by Lemma 5.3. Since
ε = σ 2α

ε σ
1/θ−2α
ε = σ 2α

ε εθ(1/θ−2α) and 1/θ − 2α > 0, we can fix ε0 = ε0(r) so small that
for any ε < ε0 we have ε ≤ σ 2α

ε r2β . Then, by Corollary 5.4, the functions

vεi := (u
ε
i − σε)+ = (u

ε
i − ε

θ )+

are Lipschitz continuous in �ri . Indeed, if uεi (x) < εθ , then vεi (x) = 0. Next, let x be
such that uεi (x) > εθ . Then ∇vεi (x) = ∇u

ε
i (x). Set σ = uεi (x). Then dρ(x, supp fj ) ≥

1 + τr ≥ 1 + mτr , where m = σ/sup∂� fi ≤ 1. Moreover, dρ(x, ∂�) > 2r and
ε ≤ σ 2α

ε r2β
≤ σ 2αr2β . We can therefore apply Corollary 5.4 to get

|∇uεi (x)| ≤ C0/r.

This concludes the proof that the functions vεi are Lipschitz continuous in �ri .
Therefore, we can extract a subsequence (vεli )l uniformly convergent to a Lipschitz

continuous function ui in �ri as l →∞. By the definition of the vi’s, there exists a sub-
sequence (uεli )l uniformly convergent to the same function ui in �ri as l → ∞. Taking
r → 0 and using a diagonalization argument, we can find a subsequence of (uεi )ε con-
verging locally uniformly to a Lipschitz function ui in�i . This ends the proof of Claim 2.

Claims 1 and 2 yield the convergence, up to a subsequence, of uεi to a continuous
function ui which is locally Lipschitz in both �i and Bi . The fact that the supports of the
limit functions are at distance ≥ 1 is a consequence of Claims 1 and 2 and Lemma 5.3.
Moreover, from the proof of Claim 2 and Corollary 5.4, we infer that the limit function ui
is harmonic inside its support, i.e. (ii) holds. To conclude the proof of (i), we just need to
prove that ui is Lipschitz in a neighborhood of points belonging to ∂Bi = ∂�i ∩ �. Let
x0 ∈ ∂�i ∩�. Then from Claim 1, ui(x0) = 0. If x0 6∈ ∂{ui > 0}, then in a neighborhood
of x0, ui ≡ 0 and of course it is Lipschitz there. On the other hand, if x0 ∈ ∂{ui > 0},
then since there exists an exterior ρ-tangent ball of radius 1 at any point of ∂�i ∩� and
ui is harmonic inside its support, a barrier argument implies that there exist r0, C > 0
such that 0 ≤ ui(x) = ui(x)− ui(x0) ≤ C|x − x0| for any x ∈ Br0(x0). This concludes
the proof of (i) and of the corollary. ut

6. A semiconvexity property of the free boundaries

Let (u1, . . . , uK) be the limit of a convergent subsequence of (uε1, . . . , u
ε
K), whose exis-

tence is guaranteed by Corollary 5.6. For i = 1, . . . , K , set

S(ui) := {x ∈ � : ui > 0}. (6.1)

(In the next sections, for simplicity this set will be represented by Si .) Then the sets S(ui)
have the following semiconvexity property:
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Lemma 6.1. Set

T (ui) = {x ∈ � : dρ(x, S(ui)) ≥ 1}, S∗(ui) = {x ∈ � : dρ(x, T (ui)) > 1}.

Then ∂S(ui) ⊂ ∂S∗(ui).

Proof. We have S∗(ui) ⊃ S(ui). To prove the desired inclusion, for σ > 0 consider the
sets Sσ (ui) := {x ∈ � : ui > σ } and

Tσ (ui) := {x ∈ � : dρ(x, Sσ (ui)) ≥ 1}, S∗σ (ui) := {x ∈ � : dρ(x, Tσ (ui)) > 1}.

Notice that the union of the ρ-balls centered at points in Sσ (ui) coincides with the union
of the ρ-balls centered at points in S∗σ (ui):

(a) (Tσ (ui))c =
⋃

x∈Sσ (ui )

B1(x), (b) (Tσ (ui))c =
⋃

x∈S∗σ (ui )

B1(x).

If x ∈ Sσ (ui), from Corollary 5.6(i) we have dρ(x, supp fj ) > 1 for j 6= i, and the
locally uniform convergence of uεi to ui and Lemma 5.3 imply that, up to subsequences,
uεj ≤ Ce−cσ

αrβ/ε in B1(x), where 2r = min{dρ(x, supp fi), C(dρ(x, supp fj ) − 1)}.
Now, the set where uεj decays is the same if we had considered x ∈ S∗σ (ui), by (a) and (b).
Therefore H(uεj )/ε

2
→ 0 in S∗σ (ui) as ε → 0. It follows that 1ui ≡ 0 in S∗σ (ui) if

S∗σ (ui) is not empty. Now, if A is a connected component of Sσ (ui), then there exists a
connected component A∗ of S∗σ (ui) such that A ⊂ A∗. Since ui is harmonic and non-
negative in A∗, the strong maximum principle implies that ui > 0 in all of A∗, that is,
A∗ ⊂ A. We conclude that A = A∗. Therefore, any connected component of Sσ (ui) is
equal to a connected component of S∗σ (ui). Passing to the limit as σ → 0, we find that any
connected component of S(ui) is equal to a connected component of S∗(ui). In particular,
∂S(ui) ⊂ ∂S

∗(ui). ut

From Lemma 6.1 we can conclude that the sets S(ui) have a tangent ρ-ball of radius 1
from the outside at any point of the boundary, as stated in the following corollary.

Corollary 6.2. If x0 ∈ ∂S(ui) ∩ � there is an exterior tangent ball B1(y) at x0, in the
sense that for x ∈ B1(y) ∩ B1(x0), all uj (x) ≡ 0 (including ui).

The following two lemmas about the distance function may be known; we provide the
proof for the reader’s convenience.

Lemma 6.3. Let S be a closed set. Then, in the set {x | dρ(x, S) > 0}, dρ(·, S) satisfies
in the viscosity sense

1dρ(·, S) ≤
C

dρ(·, S)
,

where C is a constant depending on n, ‖Ddρ(·, S)‖L∞ and the constant A of (2.1).



On a long range segregation model 3591

Proof. We first prove that there exists a smooth tangent function from above at any point
of the graph of dρ(·, S) in the set {dρ(·, S) > 0}. For simplicity we will write dS(·)
instead of dρ(·, S). Let y0 be a point in the complement of S. Let x ∈ ∂S be a point
realizing the distance from y0 to S. Assume, without loss of generality, that x = 0.
Then dρ(y0, 0) = ρ(y0) = dS(y0). In particular, the ball Bρ(y0)(y0) is contained in Sc

and tangent to S at 0. For any y ∈ Bρ(y0)(y0), we have dS(y) ≤ dρ(y, 0) = ρ(y),
therefore the graph of the function y 7→ ρ(y) is tangent from above to the graph of dS(·)
at (y0, dS(y0)).

Next, let ψ be a test function touching dS(·) from below at y0. Then ψ touches from
below the function ρ(y) at y0. In particular, 1ψ(y0) ≤ 1ρ(y0). Let us compute 1ρ.
Using (2.1), we get

D2(ρ) =
1
ρ
D2
(

1
2
ρ2
)
−
Dρ ⊗Dρ

ρ
≤

1
ρ
(AIn −Dρ ⊗Dρ),

which gives 1ρ ≤ C/ρ. In particular,

1ψ(y0) ≤
C

ρ(y0)
=

C

dS(y0)
.

This concludes the proof. ut

Lemma 6.4. Let S be a closed and bounded set. Let (S)=1 be the set of points at ρ-dis-
tance 1 from S. Then (S)=1 has finite perimeter.

Proof. For simplicity we will write dS(·) instead of dρ(·, S) as in the previous lemma,
and first we present a heuristic proof by integrating1d2

S over the set {0 < dS < 1}. Since
|DdS | is bounded, from Lemma 6.3 we see that

1d2
S = 2|DdS |2 + 2dS1dS ≤ C.

Therefore, integrating 1d2
S , we get

C ≥

ˆ
{0<dS<1}

1d2
S dx =

ˆ
{dS=0}

2dSDdS · n dHn−1
+

ˆ
{dS=1}

2dSDdS · n dHn−1

=

ˆ
{dS=1}

2DdS · n dHn−1
≥ c

ˆ
{dS=1}

dHn−1
= cHn−1({dS = 1}),

where n = DdS/|DdS | is the unit exterior normal. This provides an upper bound for
Hn−1({dS = 1}) and concludes the heuristic proof.

To make the argument precise, we need to handle the regularity over the boundary. For
that, consider a smooth function η with compact support in (0, 1) such that 0 ≤ η(ξ) ≤ ξ
for any ξ ∈ [0, 1], η(ξ) = ξ for ξ ∈ [δ, 1 − δ], |η′| ≤ c on (0, 1 − δ) and η′(ξ) ≤ −c/δ
for ξ ∈ (1− δ, 1), where δ > 0 is a small parameter. Then, in a weak sense,

div(η(dS)DdS) = η′(dS)|DdS |2 + η(dS)1dS . (6.2)



3592 L. Caffarelli et al.

Moreover, from Lemma 6.3, in the set {0 < dS < 1} we have

η(dS)1dS ≤ η(dS)
C

dS
≤ C

in the viscosity sense, and therefore in the distributional sense (see, e.g., [24] for the
equivalence between viscosity solutions and weak solutions). Therefore, since η(dS) is a
function with compact support in {0 < dS < 1}, we get

0 =
ˆ
{0<dS<1}

div(η(dS)DdS) dx ≤
ˆ
{0<dS<1}

η′(dS)|DdS |
2 dx + C

=

ˆ
{0<dS<1−δ}

η′(dS)|DdS |
2 dx +

ˆ
{1−δ<dS<1}

η′(dS)|DdS |
2 dx + C

≤

ˆ
{1−δ<dS<1}

η′(dS)|DdS |
2 dx + C ≤ −

c

δ

ˆ
{1−δ<dS<1}

|DdS |
2 dx + C. (6.3)

Now, using the coarea formula and the inequalities above, we get

1
δ

ˆ 1

1−δ
Hn−1({dS = t}) dt =

1
δ

ˆ
{1−δ<dS<1}

|DdS |
2 dx ≤ C.

Finally, taking the limit as δ → 0+ and using the lower semicontinuity of the perimeter
with respect to convergence in measure, we infer that

Per({dS = 1}) ≤ lim inf
δ→0+

1
δ

ˆ 1

1−δ
Hn−1({dS = t}) dt ≤ C. ut

Corollary 6.5. The sets S(ui), i = 1, . . . , K , have finite perimeter.

Proof. The corollary is an immediate consequence of Lemmas 6.1 and 6.4. ut

7. A sharp characterization of the interfaces

In Section 5 we proved that the supports of the limit functions ui are at distance at least 1
from each other (Corollary 5.6). In this section we will prove that they are exactly at
distance 1, as stated in the following theorem.

Theorem 7.1. Assume (2.8) with p = 1 in (2.5). Let (uε1, . . . , u
ε
K) be a viscosity solution

of problem (2.4) and (u1, . . . , uK) the limit as ε → 0 of a convergent subsequence. Let
x0 ∈ ∂{ui > 0} ∩�. Then there exists j 6= i such that

B1(x0) ∩ ∂{uj > 0} 6= ∅. (7.1)

Proof. It is enough to prove the theorem for a point x0 for which ∂S(ui) has a tangent
ρ-ball from the inside, since such points are dense on ∂S(ui). Indeed, let x be any point
of ∂S(ui). Consider a sequence (xk) of points in S(ui) converging to x as k→∞. Let dk
be the ρ-distance of xk from ∂S(ui). Then the ρ-balls Bdk (xk) are contained in S(ui) and
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there exist points yk ∈ ∂S(ui) ∩ Bdk (xk) where the xk’s realize the distance from ∂S(ui).
The sequence (yk) is a sequence of points of ∂S(ui) that have a tangent ρ-ball from the
inside and converge to x.

Next, from Corollary 5.6(ii), we know that dρ(x0, supp fj ) ≥ 1 for any j 6= i. If
there is a j such that dρ(x0, supp fj ) = 1, then (7.1) is obviously true. Therefore, we
can assume that dρ(x0, supp fj ) > 1 for any j 6= i. Then for small S > 0 we have
B1+S(x0) ∩ supp fj = ∅, and from (2.4) we know that

1uεj ≥
1
ε2 u

ε
j

∑
k 6=j

H(uεk) in B1+S(x0).

We divide the proof into two cases:

(a) H(u)(x) =
ˆ
B1(x)

u(y)ϕ(ρ(x − y)) dy, (b) H(u)(x) = sup
y∈B1(x)

u(y).

Proof of case (a). Let S(ui) = {x ∈ � | ui > 0} as in (6.1). Let BS be a small ρ-ball
centered at x0 ∈ ∂S(ui). Then, as a measure, as ε→ 0, up to a subsequence

1uεi |BS (x0)→ 1ui |BS (x0)

(the latter has strictly positive mass, since ui is not harmonic in BS(x0)).
We can bound ˆ

B1+S (x0)

∑
j 6=i

1uεj dx ≥

ˆ
BS (x0)

1uεi dx.

Indeed,

ε2
ˆ
BS (x0)

1uεi (x) dx =
∑
j 6=i

ˆ
BS (x0)

ˆ
B1(x)

uεi (x)ϕ(ρ(x − y))u
ε
j (y) dy dx

=

∑
j 6=i

ˆ ˆ
BS (x0)×B1+S (x0)

uεi (x)χ[0,1](ρ(x − y))ϕ(ρ(x − y))u
ε
j (y) dx dy

≤

∑
j 6=i

ˆ ˆ
B2+S (x0)×B1+S (x0)

uεi (x)χ[0,1](ρ(x − y))ϕ(ρ(x − y))u
ε
j (y) dx dy

=

∑
j 6=i

ˆ
B1+S (x0)

ˆ
B1(y)

uεi (x)ϕ(ρ(x − y))u
ε
j (y) dx dy ≤ ε

2
∑
j 6=i

ˆ
B1+S (x0)

1uεj (y) dy,

(7.2)

where χ[0,1] is the indicator function of the set [0, 1].
Therefore, for any small positive S, letting ε→ 0 we getˆ

B1+S (x0)

∑
j 6=i

1uj ≥

ˆ
BS (x0)

1ui > 0,

which implies that there exists j 6= i such that uj cannot be identically zero in B1+S(x0).
Since S small is arbitrary, the result follows.
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Proof of case (b). This case is more involved. We may assume x0 = 0. Let y0 be such
that Bµ(y0) ⊂ S(ui) and 0 ∈ ∂Bµ(y0). By Corollary 6.2 there exists a ρ-ball B1(y1) such
that B1(y1) ∩ S(ui) = ∅ and 0 ∈ ∂B1(y1).

Let us first prove two claims.

Claim 1. There exist µ′ < µ and C1 > 0 such that in the annulus {µ′ < ρ(x− y0) < µ}

we have
ui(x) ≥ C1dρ(x, ∂Bµ(y0)).

Since any ρ-ball B satisfies the uniform interior ball condition, for any x̄ ∈ ∂Bµ(y0)

there exists a Euclidean ball BR0(z0) of radius R0 independent of x̄ contained in Bµ(y0)

and tangent to ∂Bµ(y0) at x̄. Let m > 0 be the infimum of ui on the set {x ∈ Bµ(y0) |

d(x, ∂Bµ(y0)) ≥ R0/2}, where d is the Euclidean distance function, and let φ be the
solution of 

1φ = 0 in {R0/2 < |x − z0| < R0},

φ = 0 on ∂BR0(z0),

φ = m on ∂BR0/2(z0),

i.e. for n ≥ 3,

φ(x) = C(n)m

(
Rn−2

0
|x − z0|n−2 − 1

)
.

Since ui is harmonic in Bµ(y0) and ui ≥ φ on ∂BR0(z0)∪∂BR0/2(z0), by the comparison
principle ui ≥ φ in {R0/2 < |x − z0| < R0}. In particular, for any x ∈ {R0/2 <

|x−z0| < R0} belonging to the segment between z0 and x̄, using the fact that φ is convex
in the radial direction, that

∂φ

∂νi

∣∣∣∣
∂BR0 (z0)

=
C(n)(n− 2)m

R0

where νi is the interior normal at ∂BR0(z0), and that (2.2) holds, we get

ui(x) ≥
C(n)(n− 2)m

R0
d(x, ∂BR0(z0)) = C(n,R0)md(x, ∂Bµ(y0))

≥ C1dρ(x, ∂Bµ(y0)).

Therefore, letting x̄ vary in ∂Bµ(y0) we get

ui(x) ≥ C1dρ(x, ∂Bµ(y0)) for any x ∈ Bµ(y0) with d(x, ∂Bµ(y0)) ≤ R0/2.

By (2.2), Claim 1 follows.

Next, let e0= y0/ρ(y0) and fix σ <µ so small that Bσ (σe0)⊂{µ
′<ρ(x − y0)<µ}

∩ B1+δ(y1). For r ∈ [σ − υ, σ + υ] and small υ < σ , define

uεi := inf
∂Br (σe0)

uεi and ui := inf
∂Br (σe0)

ui .

Since ∂Br(σe0) ∩ (S(ui))
c
6= ∅ for r ∈ [σ, σ + υ], and ui ≡ 0 on (S(ui))c, we have

ui = 0 for r ∈ [σ, σ + υ]. (7.3)
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By Claim 1, we know that in Bσ (σe0) we have

ui(x) ≥ C1dρ(x, ∂Bµ(y0)) ≥ C1dρ(x, ∂Bσ (σe0)) = C1(σ − ρ(x − σe0)).

We deduce that, for r ∈ [σ − υ, σ ],

ui = inf
∂Br (σe0)

ui ≥ inf
∂Br (σe0)

C1(σ − ρ(x − σe0)) = C1(σ − r).

From this inequality and (7.3), we infer that

ui ≥ C1(σ − r)
+, r ∈ [σ − υ, σ + υ]. (7.4)

Next, for j 6= i and r ∈ [σ − υ, σ + υ], define

ūεj := sup
∂B1+r (σe0)

uεj and ūj := sup
∂B1+r (σe0)

uj .

The functions uεi and ūεj are respectively solutions of

1ru
ε
i ≤

1
ε2 u

ε
i

∑
i 6=j

sup
B1(zir )

uεj , 1r ū
ε
j ≥

1
ε2 ū

ε
j sup
B1(z̄

j
r )

uεi , (7.5)

where

1ru = urr +
n− 1
r

ur =
1
rn−1

∂

∂r

(
rn−1 ∂u

∂r

)
and zi

r
and z̄jr are respectively the points where the infimum of uεi on ∂Br(σe0) and the

supremum of uεj on ∂B1+r(σe0) are attained. Note that in spherical coordinates

1u = 1ru+1θu,

and if we are at a point where u attains a minimum value in θ for a fixed r then 1θu ≥ 0,
while the opposite inequality holds if we are at a maximum point. We also remark that

ȳ
j
r := σe0 +

r

r + 1
(z̄
j
r − σe0) ∈ ∂Br(σe0) ∩ ∂B1(z̄

j
r ),

therefore
sup

B1(z̄
j
r )

uεi ≥ u
ε
i (ȳ

j
r ) ≥ u

ε
i . (7.6)

Moreover, since B1(z
i
r
) ⊂ B1+r(σe0) and uεj is a subharmonic function, we have

sup
B1(zir )

uεj ≤ sup
B1+r (σe0)

uεj = sup
∂B1+r (σe0)

uεj = ū
ε
j . (7.7)

From (7.5)–(7.7), we conclude that

1ru
ε
i ≤ 1r

(∑
j 6=i

ūεj

)
. (7.8)

In other words, for any φ ∈ C∞c (σ − υ, σ + υ), φ ≥ 0, we haveˆ σ+υ

σ−υ

uεi
∂

∂r

(
rn−1 ∂

∂r

(
1
rn−1φ

))
dr ≤

ˆ σ+υ

σ−υ

∑
j 6=i

ūεj
∂

∂r

(
rn−1 ∂

∂r

(
1
rn−1φ

))
dr.
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Passing to the limit as ε→ 0 along a uniformly converging subsequence, we get
ˆ σ+υ

σ−υ

ui
∂

∂r

(
rn−1 ∂

∂r

(
1
rn−1φ

))
dr ≤

ˆ σ+υ

σ−υ

∑
j 6=i

ūj
∂

∂r

(
rn−1 ∂

∂r

(
1
rn−1φ

))
dr.

The linear growth of ui away from the free boundary, given by (7.3) and (7.4), implies
that 1rui develops a Dirac mass at r = σ and

ˆ σ+υ

σ−υ

ui
∂

∂r

(
rn−1 ∂

∂r

(
1
rn−1φ

))
dr > 0

for υ small enough. Hence, 1r(
∑
j 6=i ūj ) is a positive measure in (σ − υ, σ + υ), and

therefore there exists j 6= i such that uj cannot be identically zero in B1+σ (σe0). Since
σ small is arbitrary, the result follows. ut

8. Classification of singular points and Lipschitz regularity in dimension 2

In this section we study singular points in dimension 2. We will always assume (2.8)
with p = 1 in (2.5). From the results of the previous sections we know that the solu-
tions uε1, . . . , u

ε
K of system (2.4), along a subsequence, converge as ε → 0 to functions

u1, . . . , uK which are locally Lipschitz continuous in � and harmonic inside their sup-
port. For i = 1, . . . , K , denote the interior of the support of ui by Si as in (6.1), and the
union of the interiors of the supports of all the other functions by

Ci :=
⋃
j 6=i

Sj . (8.1)

Since the sets Si are disjoint, we have ∂Ci =
⋃
j 6=i ∂Sj . From Theorem 7.1 we know that

Si and Ci are at ρ-distance 1, therefore for any x ∈ ∂Si there is a y ∈ ∂Ci such that
ρ(x − y) = 1. We say that x realizes at y the distance from Ci .

Definition. A point x ∈ ∂Si is a singular point if it realizes the distance from Ci to at
least two points in ∂Ci . We say that x ∈ ∂Si is a regular point if it is not singular.

Geometrically, we can describe regular and singular points as follows. Let x ∈ ∂Si be a
singular point and y1, y2 ∈ ∂Ci points where x realizes the distance from Ci . Then the
balls B1(y1) and B1(y2) are tangent to ∂Si at x. Consider the convex cone determined
by the two tangent lines to the two tangent ρ-balls B1(y1) and B1(y2), which does not
intersect the two ρ-balls. The intersection of all cones generated by all ρ-balls of radius 1,
tangent at x and with center exterior to Si , defines a convex asymptotic cone centered at x
(see Figure 2). The asymptotic cone can be equivalently defined as the intersection of all
cones generated by all ρ-balls of radius 1, tangent at x and with center in Ci (see Lemma
8.1 below).

If x ∈ ∂Si is a regular point, then there is only one point y ∈ ∂Ci where x realizes the
distance from Ci . In this case, the two tangent balls coincide, and therefore by definition
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u1 > 0
S1

∂S1

x0

Fig. 2. Asymptotic cone at x0.

the asymptotic cone at x ∈ ∂Si is a half-plane. We will show that at regular points, ∂Si is
the graph of a differentiable function. If θ ∈ [0, π] is the opening of the cone at x, we say
that Si has angle θ at x. Regular points correspond to θ = π . When θ = 0 the tangent
cone is actually a half-line and Si has a cusp at x. Later on in this section we will show
that, under additional hypotheses on the boundary data and the domain �, the case θ = 0
never occurs, and therefore the free boundaries are Lipschitz curves of the plane.

Lemma 8.1. Let C = {(x1, x2) | x2 ≥ α|x1|}, α ≥ 0, be the asymptotic cone of Si at
0 ∈ ∂Si . Then there exist y1, y2 ∈ ∂Ci such that the balls B1(y1) and B1(y2) are tangent
respectively to the lines x2 = ±αx1 at 0.

Proof. Let y1, y2 ∈ B1(0) be such that the line x2 = αx1 is tangent to B1(y1) at 0 and the
line x2 = −αx1 is tangent to B1(y2) at 0. Suppose for contradiction that y1, y2 /∈ ∂Ci .
Then any y ∈ Ci such that ρ(y− 0) = 1 must lie in the smaller arc in ∂B1(0) between y1
and y2. Moreover, there exists δ > 0 such that all ρ-balls B1(y) have at most as tangent
lines at 0 the lines x2 = ±(α− δ)x1. Then the asymptotic cone at 0 must contain the cone
{(x1, x2) | x2 ≥ (α − δ)|x1|}, which is not possible. ut

Lemma 8.2. Assume that Si has an angle θ ∈ (0, π] at x0 ∈ ∂Si . Then there exists a
neighborhood U of x0, a system of coordinates (x1, x2) and a locally Lipschitz function
ψ : (−r, r) → R, for some r > 0, such that in the coordinates (x1, x2), we have x0 =

(0, 0) and
∂Si ∩ U = {(x1, ψ(x1)) | x1 ∈ (−r, r)}.

If in addition θ = π , then ϕ is differentiable at 0.

Proof. Let C be the convex asymptotic cone of Si at x0. Let us fix a system of coordinates
(x1, x2) such that the x2 axis coincides with the axis of the cone and is oriented in such a
way that the cone is above the x1 axis. Then x0 = (0, 0) and C = {(x1, x2) : x2 ≥ α|x1|}

with α = tan
(
π−θ

2

)
. To prove that in these coordinates, ∂Si is the graph of a function

in a small neighborhood of x0, it suffices to show that there exists a small r > 0 such
that, for any |t | < r , the vertical line {x1 = t} intersects ∂Si ∩ Br(0) in only one point.
Suppose for contradiction that there exists a sequence (tn) such that tn → 0 as n→ ∞,
and the line {x1 = tn} intersects ∂Si ∩ Br(0) at two distinct points (tn, an) and (tn, bn)
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with bn > an. Assume, without loss of generality, that tn > 0 for any n. By Lemma 8.1
there exist y1, y2 ∈ ∂Ci that realize the distance from 0, and such that B1(y1) is tangent
to the line {(x1, x2) : x2 = αx1} at 0 and B1(y2) is tangent to {(x1, x2) : x2 = −αx1} also
at 0. For instance, in the particular case of the Euclidean norm, we would have

y1 =

(√
1

1+ α2 ,−α

√
1

1+ α2

)
and y2 =

(
−

√
1

1+ α2 ,−α

√
1

1+ α2

)
.

In general, we can say that the x2 coordinate of y1 and y2 is a negative value−c. We have
B1(y1)∩B1(y2) 6= ∅, since θ > 0. Moreover, Si∩(B1(y1)∪B1(y2)) = ∅. Then both points
(tn, an) and (tn, bn)must be above B1(y1)∪B1(y2) for n large enough. Next, let yan , y

b
n ∈

∂Ci be points where (tn, an) and (tn, bn), respectively, realize the distance from Ci . Then
the ρ-balls B1(y

a
n) and B1(y

b
n) are exterior tangent balls to ∂Si at (tn, an) and (tn, bn),

respectively. Recall that the ρ-distance between (tn, an) and (tn, bn) converges to 0 as
n → ∞, and so yan has to belong to the lower half ρ-ball ∂B1(tn, an) ∩ {x2 < an} for n
large enough. Indeed, if not, the tangent ρ-ball B1(y

a
n) would contain (tn, bn) for n large

enough. Similarly, ybn has to belong to the upper half ρ-ball ∂B1(tn, bn)∩ {x2 > bn} for n
large enough. This implies that the tangent ρ-ball B1(y

b
n) converges to a tangent ball to Si

at 0, B1(y
b), with yb ∈ {x2 ≥ 0}. On the other hand, by the definition of the asymptotic

cones, all the centers of the tangent balls at 0 must belong to the set ∂B1(0)∩ {x2 ≤ −c},
where−c < 0 is the x2 coordinate of the points y1, y2 defined above. Therefore, we have
reached a contradiction. We infer that there exists r > 0 such that ∂Si is the graph of a
function ψ : (−r, r)→ R. Since ∂Si is a closed set, ψ is continuous.

Let us prove that ψ is Lipschitz continuous at 0. If C = {x2 ≥ α|x1|} is the tangent
cone of Si at x0 in coordinates (x1, x2), then for r > 0 small enough we have

{x2 ≥ 2α|x1|} ⊂ Si ∩ Br(0) ⊂ {x2 ≥ α|x1|/2},

that is, for |x1| < r ,

α|x1|/2 ≤ ψ(x1) = ψ(x1)− ψ(0) ≤ 2α|x1|.

Therefore, ψ is Lipschitz at 0.
Next, assume that θ = π . Then y1 = y2, and x0 is a regular point. Therefore,

B1(y1) ⊂ {x2 < 0} is the unique tangent ball to the graph of ψ at x0 = (0, 0). Moreover,
the tangent cone is the half-plane {x2 ≥ 0}. Let us show that ψ is differentiable at 0.
Assume for contradiction that there exists a sequence (xn1 ) ⊂ (−r, r) of positive numbers
such that xn1 → 0 as n→∞ and

lim
n→∞

ψ(xn1 )

xn1
= β 6= 0. (8.2)

Since there exists a tangent ball from below to the graph of ψ at 0 contained in {x2 < 0},
we must have β > 0. For any (xn1 , ψ(x

n
1 )) ∈ ∂Si there exists yn ∈ ∂Ci such that B1(yn)

is tangent to Si at (xn1 , ψ(x
n
1 )). Let y2 ∈ ∂Ci be the limit of a converging subsequence

of (yn). Then the ρ-ball B1(y2) is an exterior tangent ball at Si at 0. Equation (8.2) gives
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ψ(xn1 ) ≥ βx
n
1 /2 for n large enough, i.e. the points (xn1 , ψ(x

n
1 )) of the free boundary are

above the line {x2 = β|x1|/2}. This implies that y1 6= y2, that is, the limit ρ-ball B1(y2)

must be different from B1(y1). This is in contradiction with the fact that x0 is a regular
point. Therefore we must have

lim
x1→0+

ψ(x1)

x1
= 0.

Similarly, one can prove that

lim
x1→0−

ψ(x1)

x1
= 0.

We conclude that ψ is differentiable at 0 and ψ ′(0) = 0. ut

Lemma 8.3. Assume that there exists an open subset U of R2 such that any point of
U ∩ ∂Si is regular. Then U ∩ ∂Si is a C1 curve of the plane.

Proof. Let y0 ∈ ∂Si ∩ U . By Lemma 8.2, there exists a differentiable function ψ and a
small r > 0, such that, in the system of coordinates (x1, x2) centered at y0 and with the
x2 axis in the direction of the inner normal of ∂Si at y0, ∂Si ∩ Br(y0) is the graph of ψ .
Moreover, in these coordinates, ψ(y0) = ψ ′(y0) = 0. By Corollary 6.2, there exists a
tangent ball from below, with uniform radius, at any point of the graph of ψ . This implies
that for any |x0

1 | < r , there exists a C2 function ϕx0
1

tangent from below to the graph of
ψ at x0

1 and such that |ϕ′′
x0

1
| ≤ C, for some C > 0 independent of x0

1 . Therefore we have,
for any |x1| < r ,

ψ(x1) ≥ ϕx0
1
(x1) ≥ ϕx0

1
(x0

1)+ ϕ
′

x0
1
(x0

1)(x1 − x
0
1)− C|x1 − x

0
1 |

2

= ψ(x0
1)+ ψ

′(x0
1)(x1 − x

0
1)− C|x1 − x

0
1 |

2.

Now, let us show that ψ is of class C1. Fix a point x0
1 and consider a sequence (xl1)

converging to x0
1 as l →∞. Let p be the limit of a convergent subsequence of (ψ ′(xl1)).

Passing to the limit in l in the inequality

ψ(x1) ≥ ψ(x
l
1)+ ψ

′(xl1)(x1 − x
l
1)− C|x1 − x

l
1|

2,

we get
ψ(x1) ≥ ψ(x

0
1)+ p(x1 − x

0
1)− C|x1 − x

0
1 |

2

for any |x1| < r . Since ψ is differentiable at x0
1 , we must have p = ψ ′(x0

1). ut

Lemma 8.4. Assume that the supports of the boundary data fi on (∂�)≤1 have a finite
number of connected components. Then the sets Si have a finite number of connected
components.

Proof. Consider all the connected components of Si , S
j
i , i = 1, . . . , K and j = 1, 2, . . . .

Note that for any i and j ,

∂S
j
i ∩ {x ∈ (∂�)≤1 | fi(x) > 0} 6= ∅.
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Indeed, if not we would have ui = 0 on ∂Sji and 1ui ≥ 0 in Sji . The maximum principle
would then imply ui ≡ 0 in Sji , which is not possible. Moreover, by continuity, ∂Sji must
contain one connected component of the set {x ∈ (∂�)≤1 | fi(x) > 0}. For this reason
we say that the components of Si reach the boundary of�. This implies that the connected
components of Si are finitely many. ut

8.1. Properties of singular points

We start by proving three lemmas that will allow us to estimate the growth of the so-
lutions near the singular points. The first lemma states that positive functions which are
superharmonic [subharmonic] in a cone and vanish on its boundary, have at least [at most]
linear growth away from the boundary of the cone far from the vertex, with a slope that
degenerates in a Hölder fashion when approaching the vertex. The power just depends
on the opening of the cone. The second and third lemmas generalize these estimates to
domains which are sets of points at ρ-distance greater than 1 from a closed bounded set.
Then we prove that the set of singularities is a set of isolated points and we give a char-
acterization. For the set Si which has finite perimeter, we denote by ∂∗Si the reduced
boundary, that is, the set of points whose blow-ups converge to half-planes; and the es-
sential boundary, ∂∗Si , are all points except points of Lebesgue density zero and one. We
have H1(∂∗Si \ ∂

∗Si) = 0. For more details see [1, 22].

Lemma 8.5. Let v be a nonnegative Lipschitz function defined on B1 ⊂ Rn such that1v
is locally a Radon measure on B1 and v is smooth on S = {v > 0}. Assume that S is a set
of finite perimeter. Then, for every smooth φ with compact support contained in B1,ˆ

B1

1v φ =

ˆ
S

1vφ dx −

ˆ
∂∗S

∂v

∂νS
φ dHn−1

where νS is the measure-theoretic outward unit normal and ∂∗S is the reduced boundary.
Proof. As a distribution and integrating by parts,ˆ

B1

1vφ =

ˆ
S

v1φ dx =

ˆ
S

[div(v∇φ)− div(∇vφ)+1vφ] dx.

Applying the generalized Gauss–Green theorem (see [7], and also [1, 22] for more details)
we obtain the result. ut

Lemma 8.6. Let θ0 ∈ (0, π]. Let C be the cone defined in polar coordinates by

C = {(%, θ) | % ∈ [0,∞), 0 ≤ θ ≤ θ0}.

Let u1 and u2 be respectively a superharmonic and a subharmonic positive function in
the interior of C ∩B2r0 such that u1 ≥ u2 = 0 on ∂C ∩B2r0 . Then for any r < r0/3 there
exist R = R(θ0, r), and constants c, C > 0 depending on respectively (θ0, u1, r0) and
(θ0, u2, r0), but independent of r , such that for any x ∈ [r, 3r] × [0, R] we have

(a) u1(x) ≥ cr
αd(x, ∂C), (b) u2(x) ≤ Cr

αd(x, ∂C),
where α is given by

1+ α = π/θ0.
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Proof. Let us introduce the function

v(%, θ) := %1+α sin((1+ α)θ). (8.3)

Notice that v is harmonic in the interior of C, since it is the imaginary part of the function
z1+α , where z = x + iy, which is holomorphic in C \ (−∞, 0]. Moreover v is positive
inside C and vanishes on its boundary. By a barrier argument, u1 has at least linear growth
away from the boundary of C, meaning that for ρ ∈ [r0/2, 3r0/2] (far from the vertex and
from ∂B2r0 )

u1(x) ≥ kd(x, ∂C)
for k = c0 minx∈C, d(x,∂C)≥s0 u1 and for x ∈ {x ∈ C | r0/2 < |x| < 3r0/2, d(x, ∂C) ≤ s0}
where c0 and s0 depend on r0 and θ0. Therefore, we can find a constant c > 0, depending
on u1, r0 and θ0, such that

u1 ≥ cv on C ∩ ∂Br0 .
Since in addition u1 ≥ cv = 0 on ∂C ∩ Br0 , the comparison principle implies

u1 ≥ cv in C ∩ Br0 . (8.4)

Since v is increasing in the radial direction and if we are near ∂C it is also increas-
ing in the θ direction, for r ≤ |x| ≤ 3r with r ≤ r0/3 and d(x, C) ≤ R with R =
r min{1, tan(θ0/2)} we have

u1(x) ≥ cv(x) ≥ Cr
αd(x, ∂C),

and (a) follows.
To prove (b) similarly, we have

u2 ≤ Cv in C ∩ Br0 , (8.5)

where C depends on (θ0, u2, r0) but is independent of r . In particular, for r ≤ |x| ≤ 3r
and d(x, C) ≤ R/2 we have

u2(x) ≤ Cv(x) ≤ C̃r
αd(x, ∂C). ut

Lemma 8.7. Let � be an open set, C be a closed subset of �, and S = {x ∈ � |
dρ(x, C) ≥ 1}. Let S1 be a connected component of S. Assume that ∂S1 = 01 ∪ 02 with
01 ∩ 02 = {0} and S1 has an angle θ0 ∈ (0, π] at 0 ∈ ∂S1. Let u1 be a superharmonic
positive function in S1 ∩ B2r0(0) with u1 = 0 on ∂S1 ∩ B2r0(0). Then there exists a
sequence (xh) ⊂ 01 of regular points with xh → 0 as h → 0, and there exist balls
BRh(zh) ⊂ S1 tangent to ∂S1 at xh, where Rh ≥ c|xh|, such that

u1(x) ≥ cR
αδ
h d(x, ∂BRh(zh)) for any x ∈ BRh(zh) \ BRh/4(zh),

where αδ is given by

1+ αδ =
π

θ0 − δ
.
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Proof. Since θ0 ∈ (0, π] for any 0 < δ < θ0, there exist rδ > 0 and a cone C1
δ centered

at 0 with opening θ0 − δ such that

C1
δ ∩ Brδ (0) ⊂ S1 ∩ Brδ (0).

Take a sequence of points th ∈ ∂C1
δ ∩ Brδ (0) converging to 0 as h→ 0. Let

rh := d(th, 0) and Rh := rh min
{

1, tan
(
θ0 − δ

2

)}
.

Then, for h small enough, there exist ballsBRh(sh) ⊂ C1
δ∩Brδ (0) such that th ∈ ∂BRh(sh).

Consider a system of polar coordinates (%, θ) centered at 0. Moving the balls BRh(sh)
along the θ direction until they touch 01, we can find a sequence of regular points xh
in that region such that d(xh, 0) ≤ crh, and balls BRh(zh) ⊂ S1 ∩ Brδ (0) such that
xh ∈ ∂BRh(zh). Observe that the center zh remains inside the cone C1

δ , that is, for h and
δ small enough, we have zh ∈ C1

δ and d(zh, ∂C1
δ ) ≥ Rh/2. Let us introduce the barrier

function

φ(x) :=
m

log 4
log
(

Rh

|x − zh|

)
, where m = inf

∂BRh/4(zh)
u1.

Then φ satisfies 
1φ = 0 in BRh(zh) \ BRh/4(zh),
φ = 0 on ∂BRh(zh),
φ = m on ∂BRh/4(zh).

Since u1 ≥ φ on ∂BRh(zh) ∪ ∂BRh/4(zh), the comparison principle implies

u1 ≥ φ in BRh(zh) \ BRh/4(zh).

If ν1 is the inner normal vector of BRh(zh), then for x ∈ ∂BRh(zh),

∂φ

∂ν1
(x) =

m

Rh log 4
,

and the convexity of φ in the radial direction gives, for any x ∈ BRh(zh) \ BRh/4(zh),

u1(x) ≥
m

Rh log 4
d(x, ∂BRh(zh)).

Let us estimate m. Since d(zh, ∂C1
δ ) ≥ Rh/2, we have d(x, ∂C1

δ ) ≥ Rh/4 for any x in
BRh/4(zh). As in Lemma 8.6, consider the harmonic function v(x), introduced in (8.3),
defined on the cone C1

δ (α = αδ), and the comparison principle result stated in (8.4). Then

m ≥ c min
∂BRh/4(zh)

v ≥ min
{
v

(
rh −

Rh

4
,
θ0 − δ

8

)
, v

(
3rh
4
,
π

16

)}
= c1

(
3rh
4

)αδ+1

where c1 = c1(u1, rδ, θ0 − δ). Therefore, since rh/Rh ≥ 1, we conclude that for any
x ∈ BRh(zh) \ BRh/4(zh),

u1(x) ≥ cR
αδ
h d(x, ∂BRh(zh)). ut
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Lemma 8.8. Let � be an open set, C be a closed subset of �, and S = {x ∈ � |
dρ(x, C) ≥ 1}. Let S1 be a connected component of S. Assume that S1 has an angle
θ0 ∈ [0, π] at 0 ∈ ∂S1. Let u2 be a subharmonic positive function in S1 ∩ B2r0(0) with
u2 = 0 on ∂S1 ∩ B2r0(0). Then, for any 0 < δ < θ0, there exists rδ > 0 such that for any
r < rδ/5 there exist R = R(θ0, r), and a constant C > 0 depending on (θ0 + δ, u2, rδ),
but independent of r , such that

u2(x) ≤ Cr
βδd(x, ∂S1) for any x ∈ (B3r(0) \ Br(0)) ∩ {x ∈ S1 | d(x, ∂S1) ≤ R/4}

(8.6)
where βδ is given by

1+ βδ =
π

θ0 + δ
.

Proof. For any δ > 0, there exist rδ > 0 and a cone C2
δ centered at 0 and with opening

θ0 + δ such that
S1 ∩ Brδ (0) ⊂ C2

δ ∩ Brδ (0).

Take any r < rδ and let y ∈ ∂S ∩ (B3r(0) \ Br(0)) and ry := d(y, 0) ∈ (r, 3r). Since
S is at ρ-distance 1 from C, for any point of the boundary of S1 there exists an exterior
tangent ρ-ball of radius 1. This implies that for r small enough, there exists wy such that
the Euclidean ball BRy (wy) is contained in the complement of S, and y ∈ ∂BRy (wy),
where Ry is defined by

Ry = ry min
{

1, tan
(
θ0 + δ

2

)}
.

Let us now take as barrier the function

ψ(x) :=
M

log(3/2)
log
(
|wy − x|

Ry

)
with M = sup

∂B3Ry/2(wy )

u2.

Then ψ satisfies 
1ψ = 0 in B3Ry/2(wy) \ BRy (wy),

ψ = M on ∂B3Ry/2(wy),

ψ = 0 on ∂BRy (wy).

Using the comparison principle with u2, the concavity of ψ in the radial direction implies
that for any x ∈ B3Ry/2(wy) \ BRy (wy),

u2 ≤
M

Ry log(3/2)
d(x, ∂BRy (wy)).

Let us estimate M . Consider again a system of polar coordinates (%, θ) centered at 0 and
the harmonic function v(x), introduced in (8.3), defined on the cone C2

δ (α = βδ). By
definition of v, Ry , and taking into account (8.5), for δ, r small enough and

M ≤ C max
∂B3Ry/2(wy )

v ≤ Cv

(
4ry,

θ0 + δ

2

)
= C1(4ry)βδ+1

= C̃1r
βδ
y

Ry

min
{
1, tan

(
θ0+δ

2

)}
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we see that for any x ∈ B3Ry/2(wy) \ BRy (wy) belonging to the segment y + s(y −wy),
s ∈ (0, 1/2), we have

u2(x) ≤ CMd(x, ∂BRy (wy)) = CMd(x, ∂S1) ≤ Cr
βδ
y d(x, ∂S1). (8.7)

Letting the tangent ball move along ∂S1 ∩ (B3ry (0) \ Bry (0)), we get (b). ut

Lemma 8.9. Assume (2.8) with n = 2 and p = 1 in (2.5). Assume in addition that the
supports on ∂� of the boundary data fi have a finite number of connected components.
Let (uε1, . . . , u

ε
K) be a viscosity solution of problem (2.4) and (u1, . . . , uK) the limit as

ε→ 0 of a convergent subsequence. Then all singular points of � are isolated.

Proof. Suppose for contradiction that there exists a sequence (yk)k∈N of distinct singular
points such that yk ∈ ∂Sj and yk → y ∈ � as k→∞. Since by Lemma 8.4 the connected
components of the sets Si , i = 1, . . . , K , are finitely many, we may assume without loss
of generality that the points yk belong to the same connected component of Sj , which we
denote by S1

j . If there exists θmax < π such that S1
j has an angle smaller than θmax at yk

for any k, then there exists k such that starting from yk , after a finite number of singular
points S1

j would be an isle and not reach the boundary. Therefore we would have uj = 0
on ∂S1

j and1uj = 0 in S1
j , and the maximum principle would imply uj ≡ 0 in S1

j , which
is a contradiction. We infer that there exists a k ∈ N such that the angle at yk is close to π .
In particular, if xk1 and xk2 are points in Cj that realize the ρ-distance from Sj at yk, then
the ρ-distance between xk1 and xk2 is less than 1.

Next, suppose that xki and xk2 belong to the same connected component of Si , for some
i 6= j . Then by Theorem 7.1 we know that ∂Si ∩B1(yk) has to contain the arc of the unit
ρ-ball between xk1 and xk2 . If not, there would be points in the curve connecting xk1 and xk2
which do not realize the distance from Ci . Any point inside this arc is a regular point
at ρ-distance 1 from yk . Consider any of them, for instance the middle point of the arc,
denoted by xk . We want to compare the mass of the Laplacian of ui at xk with the mass of
the Laplacian at uj at yk , across the free boundaries. First assumeH is defined as in (2.5).
For σ < 1

8dρ(x
k
1 , x

k
2 ) define

Dσ (xk) := {x ∈ Bσ (xk) | d(x, ∂Ci) ≤ σ 2
},

where Ci is the asymptotic cone to S1
i at xk. Note that since xk is a regular point, ∂Ci is

the tangent line to ∂S1
i at xk , and so Ci has opening π . Let (Dσ (xk))<1 be the set of points

at ρ-distance less than 1 from Dσ (xk). Thenˆ
Dσ (xk)

1ui ≤
∑
j 6=i

ˆ
(Dσ (xk))<1

1uj (8.8)

as in (7.2) with (Dσ (xk))<1 in place of B1+S(x0). By the Hopf Lemma, we obtainˆ
Dσ (xk)

1ui =

ˆ
∂Si∩Dσ (xk)

∂ui

∂νi
dH ≥ cH(∂Si ∩Dσ (xk)) = C̃σ (8.9)

where νi is the inner normal vector.
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Now we estimate
´
(Dσ (xk))<1

1uj . From Corollary 6.5 we know that Sj has finite
perimeter. Therefore by Lemmas 8.5 and 8.8 we obtainˆ

(Dσ (xk))<1

1uj =

ˆ
∂∗S1

j ∩(Dσ (xk))<1

∂uj

∂νS1
j

dH ≤ Cσ βδ H(∂∗S1
j ∩ (Dσ (xk))<1) (8.10)

where νSj is the measure-theoretic inward unit normal to S1
j and βδ > 0. Since, for some

constant c,
∂S1
j ∩ (Dσ (xk))<1 ⊂ ∂S

1
j ∩ Bcσ (yk)

by (2.2), there exists c̃2, that for simplicity we will still name c, such that ∂S1
j ∩(Dσ (xk))<1

⊂ ∂S1
j ∩ Bcσ (yk). Then

H(∂∗S1
j ∩ (Dσ (xk))<1) ≤ Per(∂S1

j ∩ Bcσ (yk)). (8.11)

To estimate Per(∂S1
j ∩Bcσ (yk)), consider (6.2) in the distributional sense. Take a smooth

function 0 ≤ φ ≤ 1 with compact support contained in Bcσ (yk)∩ {x | 0 < d(x, Si) < 1}
and such that φ ≡ 1 on Bcσ (yk) ∩ {x | 1− δ < d(x, Si) < 1− ε} for 0 < ε < δ and δ as
introduced in the definition of η in the proof of Lemma 6.4. Then for dSi (·) = dρ(·, Si)
we have

0 =
ˆ
Bcσ (yk)∩{x|0<dSi<1}

div(η(dSi )DdSi )φ dx

=

ˆ
Bcσ (yk)∩{x|0<dSi<1}

η′(dSi )|DdSi |
2φ dx +

ˆ
Bcσ (yk)∩{x|0<dSi<1}

η(dSi )1dSiφ dx

≤

ˆ
Bcσ (yk)∩{x|0<dSi<1}

η′(dSi )|DdSi |
2φ dx + Cσ.

Proceeding as in Lemma 6.4 we obtain

Per(∂S1
j ∩ Bcσ (yk)) ≤ Cσ. (8.12)

Putting together (8.8)–(8.12) we obtain

Cσ 1+βδ ≥ C̃σ,

and we get a contradiction for σ small enough. In the case (2.6) the proof follows the
same steps using (7.8).

Therefore xk1 and xk2 must belong to different components of Cj for any k ≥ k. In
particular, since the distance between them is less than 1, they must belong to two different
components of the same population. Suppose that xk1 ∈ S

1
i and xk2 ∈ S

2
i , for i 6= j .

Consider the consecutive two points xk+1
1 and xk+1

2 which realize the distance at yk+1, and
again belong to two different components of Cj . Since S1

j (to which yk belongs) and S2
i

reach the boundary of �, the point xk+1
2 must belong to a connected component different

from S1
i . Iterating the procedure, we construct a sequence of distinct points belonging to

connected components, each different from the others. This contradicts Lemma 8.4. We
conclude that singular points are isolated. ut
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Theorem 8.10. Assume (2.8) with n = 2 and p = 1 in (2.5). Let (uε1, . . . , u
ε
K) be a

viscosity solution of problem (2.4) and (u1, . . . , uK) the limit as ε → 0 of a convergent
subsequence. For i 6= j , let x0 ∈ ∂Si ∩� and y0 ∈ ∂Sj ∩� be points such that Si has an
angle θi ∈ [0, π] at x0, Sj has an angle θj ∈ [0, π] at y0 and ρ(x0 − y0) = 1. Then

θi = θj . (8.13)

If x0 ∈ ∂Si ∩ ∂� and y0 ∈ ∂Sj ∩�, then

θi ≤ θj . (8.14)

Proof. By Lemma 8.4, the connected components of the sets Si are finitely many. Assume
x0 ∈ � and y0 ∈ �. Without loss of generality we can assume that x0 = 0. It suffices to
show the theorem for y0 belonging to a region that is side by side with Si , in the sense
that 0 is the limit as h → 0 of interior regular points xh ∈ ∂Si ∩ � with the property
that xh realizes the distance from Sj at interior points yh ∈ ∂Sj ∩ �, with yh → y0 as
h→ 0. Let Ci be the asymptotic cone at 0. First suppose for simplicity that ∂Si and ∂Sj
are locally cones around 0 and y0 respectively. In particular, θi, θj > 0. We will explain
later on how to handle the general case.

Proof of Theorem 8.10 when ∂Si and ∂Sj are locally cones. We assume that there exists
r0 > 0 such that ∂Si ∩ B2r0 = Ci ∩ B2r0 , where B2r0 is the Euclidean ball centered at 0
of radius 2r0. When x0 ∈ ∂�, we are just interested in the side of the cone Ci contained
in �.

If (%, θ) is a system of polar coordinates in the plane centered at zero, we may assume
that Ci is the cone given by

Ci = {(%, θ) | % ∈ [0,∞), 0 ≤ θ ≤ θi}.

First consider the case (2.6). Assume that xh = (2rh, 0) with rh > 0. We know that
rh → 0 as h → 0, so we can fix h so small that rh < r0/3. By Lemma 8.6 applied to
u1 = ui, we have

ui(x) ≥ cr
α
h d(x, ∂Si) for any x ∈ [rh, 3rh] × [0, Rh] , (8.15)

where
1+ α = π/θi ≥ 1. (8.16)

Now, we repeat an argument similar to the one in the proof of Theorem 7.1. We look
at inf ui on small circles of radius r that go across the free boundary of ui , and we look at
sup uj in circles of radius r+1 across the free boundary of uj , then we compare the mass
of the corresponding Laplacians. Precisely, there exists a small σ > 0 and e ∈ Si such
that Bσ (e) ⊂ [rh, 3rh] × [0, Rh] and xh ∈ ∂Bσ (e). In particular, in Bσ (e) the function ui
satisfies (8.15). For υ < σ and r ∈ [σ − υ, σ + υ], we define

ui := inf
∂Br (e)

ui and ūj := sup
∂B1+r (e)

uj . (8.17)
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In what follows we denote by C and c several constants independent of h. For r ∈
[σ − υ, σ ], by (8.15) we have

ui ≥ inf
∂Br (e)

crαh d(x, ∂Si) ≥ inf
∂Br (e)

Crαh dρ(x, ∂Si) ≥ Cr
α
h (σ − r).

For r ∈ [σ, σ + υ], the ball Br(e) goes across ∂Si , therefore ui = 0. Hence

ui(r) ≥ Cr
α
h (σ − r) for r ∈ [σ − υ, σ ],

ui(r) = 0 for r ∈ [σ, σ + υ].
(8.18)

Next, let us study the behavior of ūj . First of all, let us show that

dρ(e, ∂Sj ) = ρ(e − yh) = 1+ σ. (8.19)

Since dρ(e, ∂Si) = σ and dρ(Si, Sj ) ≥ 1, it is easy to see that dρ(e, ∂Sj ) ≥ 1 + σ . The
function ρ is also called a Minkowski norm and from known results about Minkowski
norms, if we denote by T the Legendre transform T : Rn → Rn defined by T (y) =
ρ(y)Dρ(y), then T is a bijection with inverse T −1(ξ) = ρ∗(ξ)Dρ∗(ξ), where ρ∗ is the
dual norm defined by ρ∗(ξ) := sup{y · ξ | y ∈ B1}. Now, the ball B1(yh) is tangent
to ∂Si at xh and therefore also tangent to Bσ (e) at xh. This implies that Dρ(e − xh) =
−Dρ(xh − e) = Dρ(xh − yh). Consequently,

e − xh = T
−1(T (e − xh)) = T

−1(σDρ(e − xh)) = T
−1(σDρ(xh − yh))

= σT −1(T (xh − yh) = σ(xh − yh).

We infer that
e = xh + σ(xh − yh) (8.20)

and
ρ(e − yh) = (1+ σ)ρ(xh − yh) = 1+ σ,

which proves (8.19). As a consequence ∂B1+r(e) ∩ Sj = ∅ for r ∈ [σ − υ, σ ), while if
r ∈ (σ, σ + υ] then ∂B1+r(e) ∩ Sj 6= ∅ and ∂B1+r(e) enters inside Sj at ρ-distance at
most r − σ from the boundary of Sj . In particular,

ūj = 0 for r ∈ [σ − υ, σ ]. (8.21)

Next, if θj is the angle of Sj at y0, let β be defined by

1+ β = π/θj ≥ 1. (8.22)

Note that yh is at ρ-distance 2rh from y0. Again by Lemma 8.6 applied to u2 = uj , (after
a rotation and a translation) we have the estimate

uj (x) ≤ Cr
β
h d(x, ∂Sj ) ≤ Cr

β
h dρ(x, ∂Sj )
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in a neighborhood of yh. As a consequence, recalling in addition that the ball B1+r(e)

enters in Sj at ρ-distance r − σ from the boundary, for r ∈ [σ, σ + υ] we get

ūj = sup
∂B1+r (e)

uj ≤ Cr
β
h (r − σ).

The last estimate and (8.21) imply

ūj (r) ≤ Cr
β
h (r − σ)

+ for r ∈ [σ − υ, σ + υ]. (8.23)

Now, we want to compare the mass of the Laplacians of ui and ūj . Define, as in (8.17),

uεi := inf
∂Br (e)

uεi , ūεk := sup
∂B1+r (e)

uεk, k 6= i.

For σ and υ small enough, the ball Br(e) is contained in � for any r ≤ σ + υ, and thus

1uεi =
1
ε2 u

ε
i

∑
k 6=i

H(uεk) in Br+σ (e).

On the other hand, since xh is an interior regular point that realizes its distance from Sj
at an interior point, yh, its distance from the support of the boundary data fk is greater
than 1 for any k 6= i. We infer that, for σ and υ small enough and r ≤ σ + υ,

1uεk ≥
1
ε2 u

ε
k

∑
l 6=k

H(uεl ) in B1+r(e).

Hence, arguing as in the proof of Theorem 7.1, we see that

1ru
ε
i ≤

∑
k 6=i

1r ū
ε
k in (σ − υ, σ + υ), (8.24)

where 1ru = 1
r
∂
∂r

(
r ∂u
∂r

)
. Since xh is a regular point of ∂Si that realizes the distance

from Sj at yh ∈ ∂Ci , the ball B1+σ+υ(e) does not intersect the support of the functions uk
for k 6= j and small υ and σ . Therefore, multiplying inequality (8.24) by a positive test
function φ ∈ C∞c (σ −υ, σ +υ), integrating by parts in (σ −υ, σ +υ) and passing to the
limit as ε → 0 along a converging subsequence, we see that the only surviving function
on the right hand side is ūj and we get

ˆ σ+υ

σ−υ

ui
∂

∂r

(
r
∂

∂r

(
1
r
φ

))
dr ≤

ˆ σ+υ

σ−υ

ūj
∂

∂r

(
r
∂

∂r

(
1
r
φ

))
dr. (8.25)

Let us choose a function φ which is increasing in (σ −υ, σ ) and decreasing in (σ, σ +υ)
and hence with maximum at r = σ , and let us estimate the two sides of the last inequality.
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Estimates (8.18) imply that ∂ui
∂r
(σ−) ≤ −Crαh . Therefore, for small υ we have

ˆ σ+υ

σ−υ

ui
∂

∂r

(
r
∂

∂r

(
1
r
φ

))
dr

= −

ˆ σ

σ−υ

∂ui

∂r
r
∂

∂r

(
1
r
φ

)
dr = −

ˆ σ

σ−υ

(
∂ui

∂r
(σ−)+ oσ−r(1)

)
r
∂

∂r

(
1
r
φ

)
dr

≥ −

ˆ σ

σ−υ

∂ui

∂r
(σ−)

(
∂φ

∂r
−

1
r
φ

)
dr − oυ(1)

ˆ σ

σ−υ

(
∂φ

∂r
+

1
r
φ

)
dr

≥ −
∂ui

∂r
(σ−)

[
φ(σ)− φ(σ) log

(
σ

σ − υ

)]
− oυ(1)

[
φ(σ)+ φ(σ) log

(
σ

σ − υ

)]
≥ (Crαh − oυ(1))φ(σ ).

Similarly, using (8.23) and integrating by parts, we get
ˆ σ+υ

σ−υ

ūj
∂

∂r

(
r
∂

∂r

(
1
r
φ

))
dr ≤ (Cr

β
h + oυ(1))φ(σ ).

From the previous estimates and (8.25), letting υ go to 0, we obtain

rαh ≤ Cr
β
h ,

and therefore, for h small enough,
β ≤ α.

Recalling the definitions (8.16) and (8.22) of α and β respectively, we infer that θi ≤ θj .
This proves (8.14). If x0 = 0 is an interior point of �, exchanging the roles of ui and uj ,
we get the opposite inequality θj ≤ θi, and this proves (8.13) for H defined as in (2.6).

Next, let us turn to the case (2.5). Again we compare the mass of the Laplacians of ui
and uj across the free boundaries. For σ < rh define

Dσ (xh) := {x ∈ Bσ (xh) | d(x, ∂Si) ≤ σ 2
}. (8.26)

If we denote by (Dσ (xh))<1 the sets of points at ρ-distance less than 1 from Dσ (xh), we
have ˆ

Dσ (xh)

1ui ≤
∑
k 6=i

ˆ
(Dσ (xh))<1

1uk (8.27)

as in (7.2) with (Dσ (xh))<1 in place of B1+S(x0). By Lemma 8.6 the normal derivative
of ui with respect to the inner normal νi , at any point on the boundary ∂Ci with distance
to the vertex between rh and 3rh, is greater than crαh . Hence

ˆ
Dσ (xh)

1ui =

ˆ
∂Ci∩Dσ (xh)

∂ui

∂νi
dH ≥ c

ˆ 2rh+Cσ

2rh−cσ
rαh dr = Cr

α
h σ.

Note that (Dσ (xh))<1 ∩ ∂Sj ⊂ Bcσ (yh) ∩ ∂Sj , and therefore, for σ small enough, again
from Lemma 8.6 we have ˆ

(Dσ (xh))<1

1uj ≤ Cr
β
h σ.



3610 L. Caffarelli et al.

Then for rh small enough we obtain β ≤ α, and therefore θi ≤ θj . If x0 = 0 is an interior
point of �, exchanging the roles of ui and uj we get θj ≤ θi . This concludes the proof of
the theorem in the case where ∂Si and ∂Sj are locally cones around 0 and y0 respectively.

We are now going to explain how to adapt the proof in the general case.

Proof of Theorem 8.10 in the general case. If θi = 0, then θi ≤ θj . Assume θi ∈ (0, π]
and θj ∈ [0, π]; then for any 0 < δ < θi , there exist rδ > 0, a cone Ciδ centered at 0 and
with opening θi − δ, and a cone Cjδ centered at y0 and with opening θj + δ such that

Ciδ ∩ Brδ (0) ⊂ Si ∩ Brδ (0) and Sj ∩ Brδ (y0) ⊂ Cjδ ∩ Brδ (y0).

Let (xh)h be the sequence of regular points on ∂Si ∩� given by Lemma 8.7 (consider 01
to be the closest side to Sj ), and let rh = d(0, xh). Denote by yh the point on ∂Sj ∩ �
at ρ-distance 1 from xh. Then dρ(yh, y0) ≤ crh. Now, the proof of the theorem proceeds
as in the previous case and we can compare the mass of the Laplacians across the free
boundaries of ui and uj .

First consider the case (2.5). For σ > 0 take Dσ (xh) and (Dσ (xh))<1 as defined
in (8.26). For σ small enough, by Lemma 8.9, ∂Si ∩ Dσ (xh) does not contain singular
points and by Lemma 8.3 it is a C1 curve of the plane.

By Lemma 8.7,
ˆ
Dσ (xh)

1ui =

ˆ
∂Si∩Dσ (xh)

∂ui

∂νi
dH ≥ Crαδh σ.

Note that
(Dσ (xh))<1 ∩ ∂Sj ⊂ Bcσ (yh) ∩ ∂Sj ,

and therefore, for σ small enough, from Lemma 8.8, as in the proof of Lemma 8.9, we
have ˆ

(Dσ (xh))<1

1uj ≤ C̃r
βδ
h σ.

Then for h small enough, we obtain βδ ≤ αδ , and therefore θi ≤ θj . If x0 = 0 is an
interior point of �, exchanging the roles of ui and uj we get θj ≤ θi .

Next, let us turn to the case (2.6). Then we define, for r ∈ [Rh − υ,Rh + υ],

ui := inf
∂Br (zh)

ui and ūj := sup
∂B1+r (zh)

uj .

Arguing as before, and using the Lemma 8.7 we get βδ ≤ αδ, and therefore, letting δ go
to 0, we finally obtain θi ≤ θj . Note in particular that if θi > 0 then θj > 0. If x0 = 0 is
an interior point of �, exchanging the roles of ui and uj we get θj ≤ θi . ut

An immediate corollary of Theorem 8.10 is the C1-regularity of the free boundaries when
K = 2 and under the following additional assumptions on �, f1 and f2:

� := {(x1, x2) ∈ R2
| g(x2) ≤ x1 ≤ h(x2), x2 ∈ [a, b]}, b − a ≥ 4, (8.28)
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where {
g, h : [a, b] → R are Lipschitz functions with
−m2 ≤ g ≤ −m1 ≤ M2 ≤ h ≤ M1, M2 ≥ −m1 + 4;

(8.29)

the boundary data are such that
f1 ≡ 1, f2 ≡ 0 on {x1 ≤ g(x2)},

f1 ≡ 0, f2 ≡ 1 on {x1 ≥ h(x2)},

f1 is decreasing in x1 on {x2 ≤ a} ∪ {x2 ≥ b},

f2 is increasing in x1 on {x2 ≤ a} ∪ {x2 ≥ b}.

(8.30)

These assumptions imply that −u1 and u2 are increasing in the x1 direction. Then we
have the following

Corollary 8.11. Assume (2.8) with p = 1 in (2.5). Assume in addition K = n = 2 and
(8.28)–(8.30). Then the sets ∂Si , i = 1, 2, are of class C1.

Proof. We know that the sets ∂Si are curves of the plane at ρ-distance 1 from each other.
Suppose for contradiction that ∂S1 has an angle θ < π at y0. In particular, there exist
two ρ-balls of radius 1, centered at two points z,w ∈ ∂S2, that are tangent to ∂S1 at y0.
Then, by the monotonicity property of the ui’s and Theorem 7.1, the arc of the ρ-ball of
radius 1 centered at y0 between the points z andw must all be in ∂S2. This means that any
point inside this arc, which is a regular point of ∂S2, is at ρ-distance 1 from the singular
point y0 ∈ ∂S1. This contradicts Theorem 8.10. We have shown that any point of the free
boundaries is regular. Then by Lemma 8.3 the free boundaries are of class C1. ut

Another corollary of Theorem 8.10 is that the number of singular points is finite.

Corollary 8.12. Assume (2.8) with n = K = 2 and p = 1 in (2.5). Assume in addition
that the supports on ∂� of the boundary data f1 and f2 have a finite number of connected
components. Then the singular points form a finite set.

Proof. From Lemma 8.4, S1 and S2 have a finite number of connected components. More-
over, we recall that any connected component has to reach the boundary.

Let x0 be a singular point belonging to the boundary of the support of one of the
limit functions ui . Without loss of generality assume x0 ∈ ∂S1. Let y1, y2 ∈ ∂S2 be
two different points where x0 realizes the distance from S2 (y1, y2 ∈ ∂B1(x0) ∩ ∂S2, see
Figure 3). We can choose y1 such that B1(x0) is the limit as k→∞ of balls B1(xk) with
xk ∈ ∂S1, tangent to points yk ∈ ∂S2 with yk → y1 and xk → x0 as k → ∞. Theorem
8.10 implies that S2 has an angle at y1 and y2, and the intersection of the arc on ∂B1(x0)

between y1 and y2 with ∂C1 must have empty interior. This means that near y1 there are
points on ∂S2 outside B1(x0). These points are at distance greater than 1 from x0 and from
any other point of ∂S1 close to x0, and must realize the distance from S1 outside B1(y1)

(see Figure 3). Therefore if we take a sequence zk of such points converging to y1 and we
consider the corresponding tangent balls centered at points that are in ∂S1 where the zk’s
realize the distance, we obtain a second tangent ball B1(x1) for y1 with x1 6= x0.
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x0

y1
y2

∂S1
1

∂S2

zk

Forbidden arc

x1

S1
1

S2
1

Forbidden arc

Fig. 3. Forbidden arc.

Now, denote by S1
1 the connected component of S1 whose boundary contains x0. Re-

member that since S1 and S2 are at ρ-distance 1, we have u1 ≡ 0 in B1(y1) ∪ B1(y2).
Moreover, since the connected components of S2 whose boundaries contain y1 and y2
must reach the boundary of �, they separate the components of S1 whose boundaries
contain x0 and x1. Therefore x1 must belong to the boundary of different components
of S1. The same argument that we have used for x1 and x0 also proves that y1 and y2 must
belong to the boundary of different components of C1.

We conclude that a singular point x0 of S1 involves at least four different connected
components, and there corresponds to it another singular point, x1, belonging to a differ-
ent component of S1 (see Figure 4).

Assume without loss of generality that x1 ∈ ∂S
2
1 . Since all the connected components

must reach the boundary of �, x1 is the only singular point of S2
1 corresponding to a

y1

x0

y2

x1

S1
1

S2
1

S2
2S1

2

Fig. 4. A singular point involving four components.



On a long range segregation model 3613

singular point of S1
1 . Since the connected components of S1 are finitely many, we infer

that there are a finite number of singular points on ∂S1
1 . This argument applied to any

connected component of S1 shows that the set of singular points of S1 is finite. ut

8.2. Lipschitz regularity of the free boundaries

In this section, we will show, under some additional assumptions on the domain � and
the boundary data fi , that we can construct a solution of problem (2.4) such that the
free boundaries Si of the limiting functions have the following properties: if Si has an
angle θ at a singular point, then θ > 0. This result can be rephrased by saying that the
free boundaries are Lipschitz curves of the plane. Let us make the assumptions precise.
We assume that the domain � has the property that for any point of the boundary there
are tangent ρ-balls of radius 1 + η, with η > 0, contained in � and in its complement.
Precisely:

� is a bounded domain of R2;
∃η > 0 ∀x ∈ ∂� ∃B1+η(y), B1+η(z):
x ∈ ∂B1+η(y) ∩ ∂B1+η(z), B1+η(y) ⊂ �, and B1+η(z) ⊂ �

c.

(8.31)

On the boundary data fi , i = 1, . . . , K , we assume

fi ≡ 1 in supp fi;
∃c > 0 ∀x ∈ ∂� ∩ supp fi : |Br(x) ∩ supp fi | ≥ c|Br(x)|,
dρ(supp fi, supp fj ) ≥ 1, i 6= j,
dρ(supp fi ∩ ∂�, supp fi+1 ∩ ∂�) = 1, where fK+1 := f1;

0i := supp fi ∩ ∂� is a connected (C2) curve.

(8.32)

We are going to build a solution of (2.4) such that the support of any limiting function ui
contains a full neighborhood of 0i in � with Lipschitz boundary. Then we prove that the
free boundaries are Lipschitz. In order to do it, we first prove the existence of a solution
(uε1, . . . , u

ε
K) of an obstacle problem associated to system (2.4). Then we show that the

functions uεi never touch the obstacles, implying that (uε1, . . . , u
ε
K) is actually a solution

of (2.4). We consider obstacle functions ψi , for i = 1, . . . , K , defined as follows. Let
yi1, y

i
2 be the endpoints of the curve 0i . For 0 < µ < λ < 1, we set

0
µ
i := {x ∈ �

c
| d(x, 0i) = µ}, 0

µ,λ
i := {x ∈ 0

µ
i | d(x, y

i
1), d(x, y

i
2) ≥ λ}.

For µ and λ small enough, 0µ,λi is a C1,1 curve in �c with endpoints zi1, zi2 such that
d(zil , y

i
l ) = λ, l = 1, 2. We finally set

Ai := {x ∈ � | d(x, 0
µ,λ
i ) < λ} = � ∩

⋃
x∈0

µ,λ
i

Bλ(x). (8.33)

Note that
∂Ai = 0i ∪ (∂Ai ∩�),
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Fig. 5. Construction of an obstacle.

where ∂Ai ∩ � is the union of two arcs contained respectively in the balls Bλ(zi1) and
Bλ(z

i
2), and a curve contained in the set of points of � at distance λ − µ from 0i (see

Figure 5). Denote by αil the angle of Ai at yil , l = 1, 2. Note that{
αil → π/2+ oλ(1) as µ→ 0,
αil → 0 as µ→ λ,

(8.34)

where oλ(1)→ 0 as λ→ 0.
We take as obstacles the functions ψi : (�)≤1 → R defined as the solutions of the

following problem, for i = 1, . . . , K:
1ψi = 0 in Ai,
ψi = fi on (∂�)≤1,

ψi = 0 in � \ Ai .
(8.35)

In this section we deal with the solution (uε1, . . . , u
ε
K) of the following obstacle problem:

for i = 1, . . . , K , 

uεi ≥ ψi in �,

1uεi (x) ≤
1
ε2 u

ε
i (x)

∑
j 6=i

H(uεj )(x) in �,

1uεi (x) =
1
ε2 u

ε
i (x)

∑
j 6=i

H(uεj )(x) in {uεi > ψi},

uεi = fi on (∂�)≤1.

(8.36)

In the whole section we make the following assumptions:
ε > 0,
(8.31) and (8.32) hold true,
H is either of the form (2.5) with p = 1, or (2.6) and (2.7) hold true,
for i = 1, . . . , K , Ai and ψi are defined by (8.33) and (8.35) respectively.

(8.37)
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Theorem 8.13. Assume (8.37). Then there are continuous positive functions uε1, . . . , u
ε
K ,

depending on the parameter ε, that are viscosity solutions of problem (8.36). In particular

1uεi (x) =
1
ε2 u

ε
i (x)

∑
j 6=i

H(uεj )(x) in � \ Ai . (8.38)

Moreover, for i = 1, . . . , K ,
1uεi ≥ 0 in � (8.39)

in the viscosity sense.

Proof. The proof of the existence of a solution (uε1, . . . , u
ε
K) of (8.36) is a slight modifi-

cation of the proof of Theorem 4.1. Here

2= {(u1, . . . , uK) | ui :�→ R is continuous, ψi ≤ ui ≤ φi in �, ui = fi on (∂�)≤1}.

In the set � \ Ai , we have uεi > 0 = ψi , which implies (8.38). Inequality (8.39) is a
consequence of the following facts: in {uεi > ψi} we have1uεi =

1
ε2 u

ε
i

∑
j 6=i H(u

ε
j ) ≥ 0;

in the interior of {uεi = ψi}, 1uεi = 1ψi = 0; the free boundaries ∂{uεi > ψi} have
locally finite n− 1-Hausdorff measure [2]. ut

Theorem 8.14. Assume (8.37). Let (uε1, . . . , u
ε
K) be a viscosity solution of prob-

lem (8.36). Then there exists a subsequence (uεl1 , . . . , u
εl
K) and continuous functions

(u1, . . . , uK) defined on � such that

(u
εl
1 , . . . , u

εl
K)→ (u1, . . . , uK) a.e. in � as l→∞,

and the convergence of uεli to ui is locally uniform in the support of ui . Moreover:

(i) The ui’s are locally Lipschitz continuous in �, in particular, there exists C0 > 0
such that if dρ(x, ∂�) ≥ r , then

|∇ui(x)| ≤ C0/r. (8.40)

(ii) The ui’s have disjoint supports, more precisely

ui ≡ 0 in {x ∈ � | dρ(x, supp uj ) ≤ 1} for any j 6= i.

(iii) 1ui = 0 when ui > 0.
(iv) ui ≥ ψi in �.
(v) ui = fi on ∂�.

Proof. The convergence statement is again a consequence of Lemma 5.3, Corollary 5.4
and Lemma 5.5, which hold true with supp fi and supp fj replaced respectively by
suppψi = Ai and suppψj = Aj (in Lemma 5.3 and Corollary 5.4), and 0σj defined
as the set {ψj ≥ σ } (in Lemma 5.5). Estimates (5.7) of Corollary 5.4 imply (8.40). Prop-
erty (iv) is an immediate consequence of uεi ≥ ψi in �. Finally, (v) is implied by the fact
that ψi ≤ uεi ≤ φi in �, and φi = ψi = fi on ∂�, where φi is given by (4.1). ut
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As proven in Corollary 6.2, one can show that the free boundaries satisfy the exterior
ρ-ball condition with radius 1, that they have finite 1-Hausdorff measure, and that the
distance between the supports of two different functions is precisely 1. We are now going
to prove that if λ − µ is small enough, then any solution of the obstacle problem (8.36)
never touches the obstacles inside the domain �. To this end, we first need the following
lemma:

Lemma 8.15. Assume (8.37). Then there exists c > 0 such that, for i = 1, . . . , K ,

∂ψi

∂νi
(x) ≤ −

c

λ− µ
for any x ∈ ∂Ai ∩�, (8.41)

where νi is the exterior normal vector to the set Ai .

Proof. Fix x0 ∈ ∂Ai ∩ �. Then, by definition of Ai , there exists z ∈ �c such that
d(z, ∂�) = µ, Bλ(z) ∩ � ⊂ Ai and x0 ∈ ∂Bλ(z). Consider now the ring {x | µ <

|x − z| < λ} and the barrier function φ that solves
1φ = 0 in {x | µ < |x − z| < λ},

φ = 1 on ∂Bµ(z),
φ = 0 on ∂Bλ(z).

The functionψi is harmonic in Bλ(z)∩�,ψi ≥ 0 = φ on ∂Bλ(z)∩�, andψi = 1 ≥ φ on
∂�∩Bλ(z). Therefore by the comparison principle, ψi(x) ≥ φ(x) for any x ∈ Bλ(z)∩�,
and this implies (8.41) at x = x0. ut

Theorem 8.16. Assume (8.37). Let (u1, . . . , uK) be the limit of a converging subse-
quence of solutions (uε1, . . . , u

ε
K) of (8.36). Set a := λ − µ. Then there exists a0 > 0

such that for any a < a0 and i = 1, . . . , K ,

ui > ψi in Ai ∩�. (8.42)

Proof. In order to prove (8.42), it is enough to show that

ui(x) > ψi(x) for any x ∈ ∂Ai ∩�. (8.43)

Indeed, if (8.43) holds true, since by (8.35) and Theorem 8.14, both ui and ψi are har-
monic in Ai , the strong maximum principle implies ui > ψi in Ai . This and (8.43) give
(8.42). Suppose for contradiction that there exists x0 ∈ ∂Ai ∩ � such that ui(x0) =

ψi(x0) = 0. Then, by (8.41),

∂ui

∂νi
(x0) ≤

∂ψi

∂νi
(x0) ≤ −

c

λ− µ
= −

c

a
. (8.44)

Assumptions (8.31) imply that if the angles αil of Ai at yil , l = 1, 2, are small enough,
then the sets

6i := {y | y = x + νi(x), x ∈ ∂Ai ∩�},

6−i := {y | y = x + tνi(x), x ∈ ∂Ai ∩�, 0 < t < 1}
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are relatively compact in � and

dρ(x0, suppψj ) > 1 for any j 6= i. (8.45)

Therefore, by (8.34), we can choose a so small that (8.45) holds true. Moreover, from
(8.45), there exists a small σ > 0 such that B1+σ (x0) ∩ suppψj = ∅, j 6= i, and from
(8.36) we know that

1uεj ≥
1
ε2 u

ε
jH(u

ε
i ) in B1+σ (x0)

(consider uεj extended by zero if the ball falls out of �). When H is defined as in (2.5)
with p = 1, arguing as in (8.27) in the proof of Theorem 8.10 we obtain∑

j 6=i

ˆ
(Dσ (x0))<1

1uj ≥

ˆ
Dσ (x0)

1ui .

Now, since ui ≥ ψi > 0 inAi and ui(x0) = 0, the point x0 belongs to ∂{ui > 0}∩∂Ai∩�.
Since ∂Ai ∩� has an interior tangent ball and ∂{ui > 0} has an exterior tangent ball, we
deduce that x0 is a regular point. Since the set of regular points is open (Lemma 8.9), for
σ small enough we have

ˆ
Dσ (x0)

1ui ≥ −

ˆ
∂{ui>0}∩Dσ (x0)

∂ui

∂νi
dH, (8.46)

where νi is still the exterior normal vector to Ai . On the other hand, if y0 is the point
that realizes the distance 1 with x0, assume without loss of generality that y0 ∈ ∂ supp uj ;
then y0 has to be in6i and be a regular point. Consequently, for ρ small enough such that
∂{uj > 0} ∩ Bρ(y0) is C1 we have

ˆ
Bρ (y0)

1uj = −

ˆ
∂{uj>0}∩Bρ (y0)

∂uj

∂νj
dH.

Now, using the fact that for σ so small that ρ > cσ , supp uj ∩ (Dσ (x0))<1 ⊂ Bcσ (y0),
we have ˆ

Bcσ (y0)
1uj ≥

ˆ
(Dσ (x0))<1

1ui . (8.47)

Putting all together, dividing (8.46) and (8.47) respectively by H(∂{ui > 0} ∩ Dσ (x0))

and H(∂{uj > 0} ∩ Bcσ (y0)), and passing to the limit as σ → 0 we obtain

−
∂uj

∂νj
(y0) ≥ −c

∂ui

∂νi
(x0) ≥

c̃

a
. (8.48)

We are now going to show that (8.48) yields a contradiction. Indeed, the point y0 realizes
its distance from the set {ui > 0} at x0, so the ball B1(y0) is tangent to {ui > 0} at x0.
Moreover, since Ai ⊂ {ui > 0}, the ball B1(y0) is tangent to Ai at x0. On the other
hand, for a small enough, by assumption (8.31), B1(y0) is contained in �. In particular,
the ρ-distance of y0 from ∂� is greater than 1. Therefore, from (8.40), we infer that
|∇uj (y0)| ≤ C0, which contradicts (8.48) for a small enough.
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When H is defined as in (2.6), we argue as in case (b) in the proof of Theorem 7.1,
and similarly we get a contradiction for a small enough. ut

Corollary 8.17. Under the assumptions of Theorem 8.16, if a < a0 then (uε1, . . . , u
ε
K) is

a solution of the problem
uεi ≥ ψi in �,

1uεi (x) =
1
ε2 u

ε
i (x)

∑
j 6=i

H(uεj )(x) in �,

uεi = fi on (∂�)≤1.

(8.49)

In particular, (uε1, . . . , u
ε
K) is a solution of (2.4).

We are now ready to show that free boundaries are Lipschitz.

Theorem 8.18. Let (uε1, . . . , u
ε
K) be the solution of (2.4) given by Corollary 8.17. Let

(u1, . . . , uK) be the limit as ε → 0 of a converging subsequence. Then the free bound-
aries ∂{ui > 0}, i = 1, . . . , K , are Lipschitz curves of the plane.

Proof. Assume that the free boundaries are not Lipschitz. This implies that there exists
at least one singular point with asymptotic cone with zero opening.

Let x0 be an interior singular point with asymptotic cone with zero angle. Without loss
of generality suppose x0 ∈ ∂{u1 > 0}. Let e1 be the line perpendicular to the cone axis
and passing through x0, in which we choose an orientation such that the cone is below
the axis e1. As we proved in Theorem 8.10 and Corollary 8.12, there exist y0 and y1, with
y0, y1 ∈

⋃
j 6=1 ∂{uj > 0} singular points at distance 1 from x0 with asymptotic cones

with zero opening. Also, by Theorem 7.1 for any regular point x ∈ ∂{u1 > 0} ∩ B1(x0)

there exists a corresponding y ∈
⋃
j 6=1 ∂{uj > 0} such that

y = x + ν(x)

with ν(x) the external normal vector to ∂{u1 > 0} at x. Observe that y0, y1 must lie on e1.
In fact, let xln ∈ ∂{u1 > 0} be regular points converging to x0 as n → ∞ from the left
side of the cone axis, and let xrn ∈ ∂{u1 > 0} be regular points converging to x0 from
the right side of the cone axis. Then the limits of the normal vectors, ν(xln) → νl and
ν(xrn)→ νr , both have direction e1 since they are orthogonal to the cone axis. Let y0 and
y1 be without loss of generality the points defined by

y0 = x0 + ν
l, y1 = x0 + ν

r .

So we have three singular points at distance 1, all on the line e1. Repeating the same
argument and using now y1 as the reference singular point, we conclude that there must
exist another singular point, y2, with zero opening cone, at distance 1 from y1 and also
on the axis e1. Iterating, we will be able to proceed until the prescribed boundary of the
domain stops us from finding the next point. We will have all singular points with cone
with zero opening aligned on the axis e1, until we reach the boundary ∂� and we cannot
proceed with this process, i.e. we cannot obtain the next point aligned in the direction
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of e1, which implies that ∂� crosses the axis e1 and the distance of yk to the boundary
of � along e1 is less than or equal to 1.

Now, there are two cases: either yk ∈ ∂� or yk ∈ �. If yk ∈ ∂� assume without loss
of generality that yk ∈ ∂{u1 > 0}. Since u1 ≥ ψ1, we have A1 ⊂ {u1 > 0} and yk must
coincide with one of the endpoints y1

l , l = 1, 2, of the curve 01. Indeed, by the fourth
assumption in (8.32), no points of ∂{u1 > 0} are on ∂� between the curves 01 and 02,
and 01 and 0K . Assume without loss of generality that yk = y1

1 . Let θ be the angle of
∂{u1 > 0} at y1

1 . Then, from (8.14) applied to yk = y1
1 and y0 = yk−1, we get θ = 0. On

the other hand, since A1 ⊂ {u1 > 0}, we have θ ≥ α1
1 > 0, where α1

1 is the angle of A1

at y1
1 . We have obtained a contradiction.

y0 y1

B1(yk)

x0
e1

u1 > 0

⌫l ⌫r

⌫(xr
n)⌫(xl

n)

⌦

@⌦

yk�1 yk

f1

f2

A1

= y1
1

↵1
1

Fig. 6. Contradiction in the case yk ∈ ∂�.

Suppose now that yk is an interior point. Again, assume that yk ∈ ∂{u1 > 0}. Let
zk ∈ ∂� be the closest point to yk in the direction e1 and d(yk, zk) = l < 1. Recall that
by (8.31) there is an exterior tangent ball at zk , B1+η, so once the axis e1 is crossed, �
will remain outside of the tangent ball at zk , and so ∂� will not cross e1 again in B1(yk).
We know that zk cannot belong to ∂{uj > 0} since it does not respect the distance 1 and
also Aj ⊂ {uj > 0}. And by Theorem 7.1 for any point on the free boundary there exists
a corresponding point at distance 1 belonging to the support of another function. Taking
into account the previous case, the only option is that the point ȳ that realizes the distance
from yk belongs to B1(yk), and it must be such that the angle between e1 and the line that
contains both yk and ȳ is strictly positive (see Figure 7). Therefore, B1(ȳ)∩{u1 > 0} 6= ∅.

We have obtained a contradiction. We conclude that the free boundaries cannot have
a zero angle at a singular point, so they are Lipschitz curves of the plane. ut
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Fig. 7. Contradiction in the case yk ∈ �.

9. A relation between the normal derivatives at the free boundary

In this section we restrict ourselves to the following case:
K = 2,
H defined as in (2.5), with
p = 1, ϕ ≡ 1 and ρ the Euclidean norm.

(9.1)

Therefore, system (2.4) becomes

1uε1(x) =
1
ε2 u

ε
1(x)

ˆ
B1(x)

uε2(y) dy in �,

1uε2(x) =
1
ε2 u

ε
2(x)

ˆ
B1(x)

uε1(y) dy in �,

where we denote by B1(x) the Euclidean ball of radius 1 centered at x. Let (u1, u2) be the
limit functions of a converging subsequence that we still denote (uε1, u

ε
2), and for i = 1, 2

let
Si := {ui > 0}.

From Section 7 we know that the ui’s have disjoint supports and there is a strip of width
exactly 1 that separates S1 and S2. Moreover, Corollary 6.2 guarantees that at any point of
the boundary of the two sets, the principal curvatures are ≤ 1. For i = 1, 2, let xi ∈ ∂Si
be such that x1 is at distance 1 from x2, ∂Si is of class C2 in a neighborhood of xi , and
all the principal curvatures of ∂Si at xi are strictly less than 1. Without loss of generality
we can assume x1 = 0 and x2 = en, where en = (0, . . . , 1). Denote by u1

ν(0) and
u2
ν(en) the exterior normal derivatives of u1 and u2 respectively at 0 and en. Note that the

two normals have opposite directions. We want to deduce a relation between u1
ν(0) and

u2
ν(en). Let us start by recalling some basic properties of the level surfaces of the distance

function to a set.
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9.1. Level surfaces of the distance function to a set. Some basic properties

Consider a bounded open set S and its boundary ∂S, of class C2. Let κi(x) be the princi-
pal curvatures of ∂S at x (outward is the positive direction). Assume that for any x ∈ ∂S
there exists a tangent ball BR(z) to ∂S at x such that BR(z) ⊂ Sc. In particular the prin-
cipal curvatures satisfy κi(x) ≤ 1/R, i = 1, . . . , n− 1.

(a) The distance function to S, dS(x) = d(x, S), is defined and is C2 as long as

0 < dS(x) < R.

In the following lemma, which may be known, we provide a proof of the C1,1-regularity
for a more general set, which is not necessarily C2—it may have edges as well but it has
the property that for any tangent ball there exists a “clean area”, in the sense explained
below. For the C2-regularity in the case of C2-boundaries, see for instance [23, Lemma
14.16].

Given a bounded closed set F , we say that 5 is a supporting hyperplane at x ∈ ∂F if
x ∈ 5 and there exists a ball B ⊂ F c tangent to 5 at x.

Lemma 9.1. Let F be a bounded closed set. Assume that there exists R > 0 such that,
for any x ∈ ∂F and any supporting hyperplane 5 at x, there is a ball BR(z) tangent to
5 at x such that BR(z) ⊂ F c. Denote by dF (x) = d(x, F ) the distance function from F .
Then dF is of class C1,1 in the set {0 < dF < R}.

Proof. Let y0 ∈ {0 < dF < R}. To prove that dF is of class C1,1 at y0, we show that there
are smooth functions whose graphs are tangent from below and above to the graph of dF
at (y0, dF (y0)). As proven in Lemma 6.3, the distance function from a closed bounded set
always has a smooth tangent function from above. Indeed, let x ∈ ∂F be a point where
y0 realizes the distance from F . Assume, without loss of generality, that x = 0. Then
d(y0, 0) = |y0| = dF (y0). Moreover, the ball B|y0|(y0) is contained in F c and tangent
to F at 0. For any y ∈ B|y0|(y0), we have dF (y) ≤ d(y, 0) = |y|. Therefore the cone
graph of the function y 7→ |y| (which is smooth at y0 6= 0) is tangent from above to the
graph of dF at (y0, dF (y0)).

Next, we prove the existence of a smooth function tangent from below. Note that the
tangent line to B|y0|(y0) at 0 is a supporting hyperplane to F at 0. Therefore, there exists
a ball BR(z) tangent to F at 0 such that BR(z) ⊂ F c. We must have z = Ry0/|y0|.
Moreover, since BR(Ry0/|y0|) ⊂ F c, for any y ∈ BR(Ry0/|y0|) ∩ {0 < dF < R} we
have

dF (y) ≥ d(y, ∂BR(Ry0/|y0|)) = R − d(y, Ry0/|y0|)

and dF (y0) = |y0| = R − d(y0, Ry0/|y0|). That is, the cone graph of the function
y 7→ R − d(y, Ry0/|y0|) is tangent from below to the graph of dF at (y0, dF (y0)). We
conclude that dF is C1,1 at y0. ut

Let S(k) denote the surface that is at distance k from S,

S(k) := {x | dS(x) = k}.
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Then, for k < 1+ ε and x ∈ S(k), there is a unique x0 ∈ S(0) such that x = x0 + kν(x0)

where ν(x0) is the unit normal vector at x0 in the positive direction. More precisely, if
we denote K := max{|κi(x)| | 1 ≤ i ≤ n − 1, x ∈ ∂S} and f (x, t) := x + tν(x),
then f is a diffeomorphism between ∂S× (−k, k) and the neighborhood of ∂S, Nk(S) =
{x + tν(x) | x ∈ ∂S, |t | < k}, with k < 1/K.

(b) For all x0 ∈ ∂S, if we apply the linear transformation xt = x0+ tν(x0) to S we obtain
S(t). Hence, since the tangent plane for each S(t) is always perpendicular to ν(x0), the
eigenvectors of the principal curvatures remain constant along the trajectories of dS, for
dS < 1+ ε.

(c) The curvatures of S(k) satisfy (see Figure 8)

κi(x0 + kν(x0)) =
1

1
κi (x0)

− k
=

κi(x0)

1− κi(x0)k
, i = 1, . . . , n− 1, k < 1+ ε,

for x0 ∈ ∂S.

k {
0

∂S

∂S(k)
R =

1

χ(0)}
Fig. 8. Curvature relations.

(d) For x0 ∈ ∂S, the ball B1(x0) touches S(1) at the point x0 + ν(x0), where ν is the
outward normal. Moreover, it separates quadratically from S(1), that is, for any small
r > 0 and for any x ∈ Br(x0 + ν(x0)) ∩ ∂B1(x0), we have d(x, S(1)) ≤ Cr2 for some
C > 0.

9.2. Free boundary condition

Following Subsection 9.1, we denote by κi(0) the principal curvatures of ∂S1 at 0 where
outward is the positive direction, and by κi(en) = κi(0)/(1− κi(0)) the principal curva-
tures of ∂S2 at en. Note that since the normal vectors to S1 and S2 at 0 and en respectively
have opposite directions, for κi(en) the inner direction of S2 is the positive one. The main
result of this section is the following:
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Theorem 9.2. Assume (9.1). Let 0 ∈ ∂S1 and en ∈ ∂S2. Assume that ∂S1 is of class C2

in B4h0(0) and the principal curvatures satisfy κi(0) < 1 for any i = 1, . . . , n− 1. Then

u1
ν(0)

u2
ν(en)

=

n−1∏
i=1

κi (0) 6=0

κi(0)
κi(en)

if κi(0) 6= 0 for some i = 1, . . . , n− 1,

u1
ν(0) = u

2
ν(en) if κi(0) = 0 for any i = 1, . . . , n− 1.

In order to prove Theorem 9.2, we first prove a lemma that relates the mass of the Lapla-
cians of the limit functions across the interfaces. For a point x belonging to a neighbor-
hood of ∂S1 around 0, denote by ν(x) = ν(x0) the exterior normal vector at x0 ∈ ∂S1,
where x0 is the unique point such that x = x0 + tν(x0) for some small t > 0. From (a) in
Subsection 9.1, ν(x) is well defined.

Lemma 9.3. Under the assumptions of Theorem 9.2, for small h < h0, let

Dh := Bh(0) ∩ {x | d(x, ∂S1) ≤ h
2
}, Eh := {y ∈ Rn | y = x + ν(x), x ∈ Dh}.

Then ˆ
Dh

1u1 =

ˆ
Eh

1u2.

Proof. Note that the surface Eh ∩ ∂S2 is of class C2 for h small enough, since κi(0) < 1
for i = 1, . . . , n−1 (see Subsection 9.1). The Laplacians of the ui’s are positive measures
and

ˆ
Dh

1u1 = lim
ε→0

ˆ
Dh

1uε1(x) dx = lim
ε→0

1
ε2

ˆ
Dh

ˆ
B1(x)

uε1(x)u
ε
2(y) dy dx,

ˆ
Eh

1u2 = lim
ε→0

ˆ
Eh

1uε2(y) dy = lim
ε→0

1
ε2

ˆ
Eh

ˆ
B1(y)

uε1(x)u
ε
2(y) dx dy.

Let s be such that ε1/(4α) < s < h, where α is given by Lemma 5.3. We split the set Dh
as

Dh = D
+

h,s ∪D
−

h,s ∪Dh,s,

where

D+h,s := {x ∈ Dh | d(x, ∂S1) > s2 and u1(x) > 0},

D−h,s := {x ∈ Dh | d(x, ∂S1) > s2 and u1(x) = 0},

Dh,s := {x ∈ Dh | d(x, ∂S1) ≤ s
2
}.

Similarly
Eh = E

+

h,s ∪ E
−

h,s ∪ Eh,s,
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∂S1

1

∂S2

2s

2s

Dh

0

en

D+
h,s

D−
h,s

u1 > 0

u2 > 0

Eh E+
h,s

Dh,s

Fig. 9. Relation between the mass of the Laplacians.

where

E+h,s := {x ∈ Eh | d(x, ∂S2) > s2 and u2(x) > 0},

E−h,s := {x ∈ Eh | d(x, ∂S2) > s2 and u2(x) = 0},

Eh,s := {x ∈ Eh | d(x, ∂S2) ≤ s
2
}

(see Figure 9). Since ∂S1 is a smooth surface around 0, and 1u1 = 0 in S1, we see that
u1 grows linearly away from the boundary in a neighborhood of 0. This and the uniform
convergence of uε1 to u1 imply that there exists c > 0 such that uε1(x) > cs2 for any

x ∈ D+h,s for ε small enough. Then, by Lemma 5.3, uε2(y) ≤ ae
−b(cs2)

α
/ε (a, b positive

constants) for y ∈ B1(x) and any x ∈ D+h,s . In an analogous way, if y ∈ E+h,s , we

know that for ε small enough, uε2(y) > cs2, and by Lemma 5.3, uε1(x) ≤ ae−b(cs
2)
α
/ε

for x ∈ B1(y). Since we have chosen s such that s2α > ε1/2, we have uε2(y) = o(ε2)

uniformly in y ∈
⋃
x∈D+h,s

B1(x) and uε1(x) = o(ε2) uniformly in x ∈
⋃
y∈E+h,s

B1(y).

Note that
D−h,s ⊂

⋃
y∈E+h,s

B1(y).

Therefore

1
ε2

ˆ
x∈Dh

ˆ
y∈B1(x)

uε1(x)u
ε
2(y) dy dx =

1
ε2

ˆ
x∈D+h,s

ˆ
y∈B1(x)

uε1(x) u
ε
2(y)︸ ︷︷ ︸

negligible

dy dx

+
1
ε2

ˆ
x∈Dh,s

ˆ
y∈B1(x)

uε1(x)u
ε
2(y) dy dx +

1
ε2

ˆ
x∈D−h,s

ˆ
y∈B1(x)

uε1(x)︸ ︷︷ ︸
negligible

uε2(y) dy dx

=
1
ε2

ˆ
x∈Dh,s

ˆ
y∈B1(x)

uε1(x)u
ε
2(y) dy dx + o(1). (9.2)
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Analogously

1
ε2

ˆ
y∈Eh

ˆ
x∈B1(y)

uε1(x)u
ε
2(y) dx dy =

1
ε2

ˆ
Eh,s

ˆ
B1(y)

uε1(x)u
ε
2(y) dx dy+o(1). (9.3)

Next, for fixed x ∈ Dh,s ,we have

B1(x) ∩ {y | d(y, ∂S2) > s2
} ⊂ B1+h(0) ∩ {y | d(y, ∂S2) > s2

} ∩ {u2 ≡ 0}.

Therefore for any y ∈ B1(x)∩ {y | d(y, ∂S2) > s2
}, the ball B1(y) enters in S1 ∩B2h(0)

at distance at least s2 from ∂S1. Since ∂S1 ∩ B4h(0) is of class C2, u1 has linear growth
away from the boundary in ∂S1∩B2h(0), and therefore there exists a point in B1(y)where
u1 ≥ cs

2 for some c > 0. As before, Lemma 5.3 implies that uε2(y) = o(ε
2). We infer

that

1
ε2

ˆ
x∈Dh,s

ˆ
y∈B1(x)

uε1(x)u
ε
2(y) dy dx

=
1
ε2

ˆ
x∈Dh,s

ˆ
y∈B1(x)∩{y|d(y,∂S2)≤s2}

uε1(x)u
ε
2(y) dy dx + o(1). (9.4)

Finally, note that (d) of Subsection 9.1 implies that for x ∈ Dh,s ,

B1(x) ∩ {y | d(y, ∂S2) ≤ s
2
} ⊂ Eh+cs,s (9.5)

for some c > 0. From (9.2)–(9.5), we get
ˆ
Dh

1uε1(x) dx =
1
ε2

ˆ
x∈Dh

ˆ
y∈B1(x)

uε1(x)u
ε
2(y) dy dx

=
1
ε2

ˆ
x∈Dh,s

ˆ
y∈B1(x)∩{y|d(y,∂S2)≤s2}

uε1(x)u
ε
2(y) dy dx + o(1)

≤
1
ε2

ˆ
x∈Dh,s

ˆ
y∈Eh+cs,s

uε1(x)u
ε
2(y) dy dx + o(1)

≤
1
ε2

ˆ
y∈Eh+cs,s

ˆ
x∈B1(y)

uε1(x)u
ε
2(y) dx dy + o(1)

=

ˆ
Eh+cs

1uε2(y) dy + o(1).

Similar computations give
ˆ
Eh

1uε2(y) dy ≤

ˆ
Dh+cs

1uε1(x) dx + o(1).

Letting first ε and then s go to 0 yields the conclusion of the lemma. ut



3626 L. Caffarelli et al.

Lemma 9.4. Under the assumptions of Theorem 9.2, let 01
h = ∂S1 ∩ Bh(0) and 02

h =

{x + ν(x) | x ∈ 01
h}. Then

lim
h→0

´
02
h
dA´

01
h
dA
=

n−1∏
i=1

κi (0)6=0

κi(0)
κi(en)

if κi(0) 6= 0 for some i = 1, . . . , n− 1, (9.6)

lim
h→0

´
02
h
dA´

01
h
dA
= 1 if κi(0) = 0 for any i = 1, . . . , n− 1. (9.7)

Proof. Consider the diffeomorphism ft (x) = f (x, t) = x + tν(x). Then 02
h = f1(0

1
h)

and ˆ
02
h

dA =

ˆ
01
h

|Jf1(x)| dA,

where |Jf1| is the determinant of the Jacobian of f1. If we take as basis of the tangent
space at 0 the principal directions, τi , then the differential of f1 at x is given by

(df1)(τi) = τi + (dν)(τi) = τi − κiτi .

So, |Jf1(x)| =
∏n−1
i=1 (1− κi(x)) and´

02
h
dA´

01
h
dA
=

1
Area(01

h)

ˆ
01
h

n−1∏
i=1

(1− κi(x)) dA.

Letting h→ 0, we obtain

lim
h→0

´
02
h
dA´

01
h
dA
=

n−1∏
i=1

(1− κi(0)).

Now, if κi(0) 6= 0 for some i = 1, . . . , n− 1, then

n−1∏
i=1

(1− κi(0)) =
n−1∏
i=1

κi (0)6=0

(1− κi(0)) =
n−1∏
i=1

κi (0)6=0

(
1− κi(0)
κi(0)

κi(0)
)
=

n−1∏
i=1

κi (0)6=0

κi(0)
κi(en)

,

and (9.6) follows. If κi(0) = 0 for any i = 1, . . . , n− 1, then
∏n−1
i=1 (1− κi(0)) = 1 and

we get (9.7). ut

Proof of Theorem 9.2. Let 01
h = ∂S1 ∩Dh and 02

h = ∂S2 ∩Eh. The Laplacians 1ui are
jump measures along ∂Si , i = 1, 2, and satisfyˆ

Dh

1u1 = −

ˆ
01
h

u1
ν dA and

ˆ
Eh

1u2 = −

ˆ
02
h

u2
ν dA.

Then, using Lemma 9.3 we get

1 =

´
Dh
1u1´

Eh
1u2

=

´
01
h
u1
ν dA´

02
h
u2
ν dA

,
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and so ffl
01
h
u1
ν dAffl

02
h
u2
ν dA

=

´
02
h
dA´

01
h
dA

.

Since, as h→ 0, ffl
01
h
u1
ν dAffl

02
h
u2
ν dA

→
u1
ν(0)

u2
ν(en)

,

by Lemma 9.4 the conclusion of Theorem 9.2 follows. ut

Acknowledgments. S. Patrizi was supported by the ERC grant 277749 “EPSILON Elliptic Pde’s and
Symmetry of Interfaces and Layers for Odd Nonlinearities”.

References

[1] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity
Problems. Oxford Univ. Press (2000) Zbl 0957.49001 MR 1857292

[2] Caffarelli, L.: The obstacle problem revisited. J. Fourier Anal. Appl. 4, 383–402 (1998)
Zbl 0928.49030 MR 1658612
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