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Abstract. Let p be a prime number, F a field containing a root of unity of order p, and GF the
absolute Galois group. Extending results of Hopkins, Wickelgren, Mináč and Tân, we prove that
the triple Massey product H 1(GF )

3
→ H 2(GF ) contains 0 whenever it is non-empty. This gives

a new restriction on the possible profinite group structure of GF .
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A main problem in modern Galois theory is to understand the group-theoretic structure
of the absolute Galois groups GF = Gal(Fsep/F ) of fields F , that is, the possible sym-
metry patterns of roots of polynomials. General restrictions on the possible structure of
the profinite group GF are rare: By classical results of Artin and Schreier, the torsion
in GF can consist only of involutions. In addition, the celebrated work of Voevodsky and
Rost ([Voe03], [Voe11]) identifies the cohomology ring H ∗(GF ) = H ∗(GF ,Z/m) with
the mod-m Milnor K-ring KM

∗ (F )/m, assuming existence of mth roots of unity. In par-
ticular, the graded ring H ∗(GF ) is generated by its degree 1 elements, and its relations
originate from the degree 2 component. This can be used to rule out many more profi-
nite groups from being absolute Galois groups of fields ([CEM12], [EMi17]). In fact,
the Artin–Schreier restriction on the torsion also follows from the latter results [EMi17,
Ex. 6.4(2)].

Very recently, a remarkable series of works by Hopkins, Wickelgren, Mináč and Tân
indicated the possible existence of a new kind of general restrictions on the structure of ab-
solute Galois groups, related to the differential graded algebra C∗(GF ) = C∗(GF ,Z/m)
of continuous cochains on GF . The interplay between C∗(GF ) and its cohomology al-
gebra H ∗(GF ) gives rise to external operations on H ∗(GF ), in addition to its (“inter-
nal”) ring structure with respect to the cup product, notably, the n-fold Massey prod-
ucts H 1(GF )

n
→ H 2(GF ). The definition of the Massey product in the context of gen-

eral differential algebras is recalled in §1, and at this stage we only mention that it is a
multi-valued map, which for n = 2 coincides with the cup product. The Massey product
〈χ1, . . . , χn〉 ⊆ H

2(GF ) is essential if it is non-empty, but does not contain 0. The above-
mentioned works show that, under various assumptions, the triple Massey product for

I. Efrat, E. Matzri: Department of Mathematics, Ben-Gurion University of the Negev,
Be’er-Sheva 84105, Israel; e-mail: efrat@math.bgu.ac.il, elimatzri@gmail.com

Mathematics Subject Classification (2010): Primary 12G05; Secondary 12E30, 16K50



3630 Ido Efrat, Eliyahu Matzri

H ∗(GF ) is never essential. Thus profinite groups G for which H ∗(G) contains an essen-
tial triple Massey product cannot be realized as absolute Galois groups of fields satisfying
these assumptions. Mináč and Tân [MT17a] develop a method to produce such groupsG,
by examining their presentation by generators and relations modulo the 4th term in the
p-Zassenhaus filtration. As a concrete example, the profinite group G on five generators
σ1, . . . , σ5 and the single defining relation [σ4, σ5][[σ2, σ3], σ1] gives rise to an essential
triple Massey product [MT17a, Ex. 7.2].

Specifically, assume thatm = p is prime, and F contains a root of unity of order p (so
charF 6= p). It was shown that the triple Massey product for H ∗(GF ) is never essential
in the following situations:

(1) p = 2 and F is a local field or a global field (Hopkins and Wickelgren [HW15]);
(2) p = 2 and F is arbitrary (Mináč and Tân [MT17a]);
(3) p is arbitrary and F is a local field (Mináč and Tân; follows from [MT17a, Th. 4.3]

and [MT15b, Th. 8.5]);
(4) p is arbitrary, and F is a global field (Mináč and Tân [MT15a]).

Moreover, it is conjectured in [MT15b] that the n-fold Massey product above is never es-
sential for every n ≥ 3. Also, in [EMa15] we find close connections between these results
and classical facts in the theory of central simple algebras. In particular, (2) is closely
related to Albert’s characterization from 1939 [Alb39] (as refined by Tignol [Tig79]; see
also Rowen [Row84] and [Tig81]) of the central simple algebras of exponent 2 and de-
gree 4 as biquaternionic algebras.

Motivated by these works, in this paper we prove the above conjecture for triple
Massey products for arbitrary p and general fields F as above:

Main Theorem 0.1. Let F be a field containing a root of unity of order p, and let
χ1, χ2, χ3 ∈ H

1(GF ). Then 〈χ1, χ2, χ3〉 is not essential.

The Main Theorem was first proved by the second-named author using methods from
the theory of central simple algebras, notably the Amitsur–Saltman theory of abelian
crossed products [Mat14]. The current paper, which replaces [Mat14], is based on a short-
cut which allows carrying the original crossed product computations to the framework of
profinite group cohomology (see Proposition 5.3). We also work in a more general formal
context, and prove the Main Theorem for p-Kummer formations (G,A, {κU }U ) (Theo-
rem 5.4). These structures axiomatize the relevant Galois-theoretic properties of absolute
Galois groups: the Kummer isomorphism, Hilbert’s Theorem 90, and the connections
between restriction, correstriction, and cup product. The Main Theorem is just the case
where G = GF , A = F×sep, and the κU are the Kummer maps (see §5).

The Main Theorem is in a partial analogy with the important work of Deligne, Grif-
fiths, Morgan, and Sullivan [DGMS75], which proves that any compact Kähler manifold
is formal. This implies that its n-fold Massey products, with n ≥ 3, are non-essential in
the de Rahm context (see also [Huy05, Ch. 3.A]). On the other hand, links in R3 provide
examples of essential Massey products in the algebra of singular cochains. For instance,
the Borromean rings give rise to an essential triple Massey product [Hil12, §10.1], and
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this explains why they are not equivalent to three unconnected circles. Thus the Main The-
orem means that a phenomenon such as the Borromean rings is impossible in this Galois
cohomology context. We also note that examples due to Positselski show that H ∗(GF )
may not be formal ([Pos11, §9.11], [Pos17]).

Among the other works on Massey products in Galois cohomology we mention those
by Morishita [Mor04], Sharifi ([Sha99], [Sha07]), Wickelgren ([Wic12a], [Wic12b]), Vo-
gel [Vog05], Gärtner [Gär15], and the first-named author [Efr14].

Addendum (January 2015). In the recent paper [MT16] (which was posted after the ini-
tial version [Mat14] of the current work) Mináč and Tân also give a Galois-cohomological
proof of the Main Theorem, which is similar in several points to our proof; see also
[MT17b]. Moreover, they point out that the standard restriction-correstriction argument
allows one to remove the assumption that the field contains a root of unity of or-
der p. Namely, for a pth root of unity ζ , the index of U = GF(ζ ) in G = GF is
prime to p. If χ1, χ2, χ3 ∈ H 1(G) and α ∈ 〈χ1, χ2, χ3〉, then by our Main Theo-
rem, ResU α = ResU (χ1) ∪ ψ1 + ResU (χ3) ∪ ψ3 for some ψ1, ψ3 ∈ H

1(U). Hence
(G : U)α = χ1∪CorG(ψ1)+χ3∪CorG(ψ3), and consequently 0 ∈ 〈χ1, χ2, χ3〉 (see §1).

1. Massey products

We recall the definition and basic properties of Massey products of degree 1 cohomol-
ogy elements. We first recall that a differential graded algebra over a ring R (abbreviated
R-DGA) is a graded R-algebra C• =

⊕
∞

r=0 C
r equipped with R-module homomor-

phisms ∂s : Cr → Cr+1 such that ∂ =
⊕
∞

r=0 ∂
r satisfies ∂ ◦ ∂ = 0 and ∂r+s(ab) =

∂r(a)b + (−1)ra∂s(b) for a ∈ Cr and b ∈ Cs (the Leibniz rule). Set Zr = Ker(∂r),
Br = Im(∂r−1), and H r

= Zr/Br , and let [c] denote the class of c ∈ Zr in H r . Then
H • =

⊕
∞

r=0H
r has an induced R-DGA structure with zero differentials ∂r . We say that

the DGA C• is graded-commutative if ab = (−1)rsba for a ∈ Cr and b ∈ Cs .
We fix an integer n ≥ 2. Consider a system cij ∈ C

1, where 1 ≤ i ≤ j ≤ n and
(i, j) 6= (1, n). For any i, j satisfying 1 ≤ i ≤ j ≤ n (including (i, j) = (1, n)) we
define

c̃ij =

j−1∑
r=i

circr+1,j ∈ C
2.

One says that (cij ) is a defining system of size n in C• if ∂cij = c̃ij for every 1 ≤
i ≤ j ≤ n with (i, j) 6= (1, n). We also say that the defining system (cij ) is on
c11, . . . , cnn. Note that cii is then a 1-cocycle, i = 1, . . . , n. Further, c̃1n is a 2-cocycle
([Kra66, p. 432], [Fen83, p. 233]). Its cohomology class depends only on the cohomol-
ogy classes [c11], . . . , [cnn] [Kra66, Th. 3]. Given c1, . . . , cn ∈ Z

1, the n-fold Massey
product of 〈[c1], . . . , [cn]〉 is the subset of H 2 consisting of all cohomology classes [c̃1n]

obtained from defining systems (cij ) of size n on c1, . . . , cn in C•. The Massey product
〈[c1], . . . , [cn]〉 is essential if it is non-empty but does not contain 0.

When n = 2, 〈[c1], [c2]〉 is always non-empty and consists only of [c1][c2]. In the
case n = 3 one has the following well-known facts:
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Proposition 1.1 ([EMa15, Prop. 6.1]). Let c1, c2, c3 ∈ Z
1.

(a) 〈[c1], [c2], [c3]〉 is non-empty if and only if [c1][c2] = [c2][c3] = 0.
(b) If (cij ) is a defining system on [c1], [c2], [c3], then 〈[c1], [c2], [c3]〉 = [c̃13]+[c1]H

1

+H 1
[c3].

2. Cohomological preliminaries

We refer, e.g., to [NSW08] for the basic notions and facts in profinite and Galois co-
homology. Let p be a fixed prime number and let G be a profinite group acting triv-
ially on Z/p. We write Cr(G) for the group Cr(G,Z/p) of continuous (inhomogeneous)
cochains Gr → Z/p. Let Zr(G) = Zr(G,Z/p) and Br(G) = Br(G,Z/p) be its sub-
groups of r-cocycles and r-coboundaries, respectively, and let H r(G) = H r(G,Z/p)
be the corresponding profinite cohomology group. We identify H 1(G) = Hom(G,Z/p).
Then C•(G) =

⊕
∞

r=0 C
r(G) is a DGA over Fp with the cup product ∪. Its cohomol-

ogy DGA H •(G) =
⊕
∞

r=0H
r(G) is graded-commutative. We will need the following

slightly refined version of this property for degree 1 elements:

Lemma 2.1. Let χ1, χ2 ∈ H
1(G). Then there exists ψ ∈ C1(G) such that ∂ψ = χ1 ∪

χ2 + χ2 ∪ χ1 and ψ is zero on Ker(χi), i = 1, 2.

Proof. When χ1, χ2 are Fp-linearly independent, let Ḡ = G/(Ker(χ1) ∩ Ker(χ2)) ∼=

(Z/p)2, and choose σ̄1, σ̄2 ∈ Ḡ which are dual to χ1, χ2. Define ψ̄ ∈ C1(Ḡ) by ψ̄(σ̄ i1σ̄
j

2 )

= −ij for 0 ≤ i, j < p, and let ψ = InfG ψ̄ be its inflation to H 1(G).
When χ1, χ2 are non-zero and Fp-linearly dependent, we write χ2 = kχ1 with 1 ≤

k < p and Ḡ = G/Ker(χ1) ∼= Z/p. We define ψ̄ ∈ C1(Ḡ) by ψ̄(σ̄ i1) = −ki
2
∈ Z/p,

and take ψ = InfG ψ̄ .
Finally, when at least one of χ1, χ2 is 0 we take ψ = 0 ∈ C1(G). ut

Given a closed subgroupU ofG let ResU : H i(G)→ H i(U) be the restriction homomor-
phism. When U is open in G, we have a correstriction homomorphism CorG : H i(U)→

H i(G). If N is a closed normal subgroup of G, then every σ ∈ G induces a homomor-
phism σ : H 1(N)→ H 1(N), ϕ 7→ σϕ, where (σϕ)(τ ) = ϕ(στσ−1).

For a closed subgroup U of G and for χ ∈ H 1(U), we consider the sequence

H 1(Ker(χ))
CorU
−−−→ H 1(U)

χ∪
−→ H 2(U)

ResKer(χ)
−−−−−→ H 2(Ker(χ)). (2.1)

Example 2.2. When G = GF for a field F containing a root of unity of order p,
this sequence is exact for every such U and χ . This corresponds to the isomorphism
K×/NL/K(L

×) ∼= Br(L/K) for the fixed fields K,L of U,Ker(χ), respectively, where
Br(L/K) is the relative Brauer group of the field extension L ⊇ K [Dra, p. 73, Th. 1].

Proposition 2.3. Suppose that (2.1) with U = G is exact at H 2(G) for every χ ∈
H 1(G). For every χ1, χ2, χ3 ∈ H

1(G) one has 〈χ1, χ2, χ3〉 = 〈χ3, χ2, χ1〉.
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Proof. Since both Massey products are cosets of χ1∪H
1(G)+χ3∪H

1(G) (Proposition
1.1(b)), it suffices to show that 〈χ1, χ2, χ3〉 ⊇ 〈χ3, χ2, χ1〉. So let α ∈ 〈χ3, χ2, χ1〉. Then
there exist ϕ32, ϕ21 ∈ C

1(G) such that

∂ϕ32 = χ3 ∪ χ2, ∂ϕ21 = χ2 ∪ χ1, α = [χ3 ∪ ϕ21 + ϕ32 ∪ χ1].

Let K = Ker(χ1). Lemma 2.1 yields ψ12 ∈ C
1(G) such that ∂ψ12 = χ1 ∪ χ2 + χ2 ∪ χ1

in C2(G) and ψ12 = 0 on K = Ker(χ1). The graded-commutativity of H •(G) yields
ψ23 ∈ C

1(G) such that ∂ψ23 = χ2 ∪ χ3 + χ3 ∪ χ2 in C2(G). Taking ϕ12 = ψ12 − ϕ21
and ϕ23 = ψ23 − ϕ32, we obtain ∂ϕ12 = χ1 ∪ χ2 and ∂ϕ23 = χ2 ∪ χ3. It therefore
suffices to show that [χ1 ∪ ϕ23 + ϕ12 ∪ χ3] and α are equal modulo the indeterminicity
χ1 ∪H

1(G)+ χ3 ∪H
1(G) of both Massey products.

Now ResK(∂ϕ21) = ResK(χ2 ∪ χ1) = 0, so ResK ϕ21 ∈ Z1(K). The graded-
commutativity of H •(K) gives ResK(ϕ21 ∪ χ3 + χ3 ∪ ϕ21) ∈ B

2(K). As ResK ψ12 = 0,
we obtain

ResK(χ1 ∪ ϕ23 + ϕ12 ∪ χ3) = ResK(ϕ12 ∪ χ3) = −ResK(ϕ21 ∪ χ3)

≡ ResK(χ3 ∪ ϕ21) = ResK(χ3 ∪ ϕ21 + ϕ32 ∪ χ1) (modB2(K)).

Hence ResK [χ1 ∪ ϕ23 + ϕ12 ∪ χ3] = ResK α. By (2.1),

α − [χ1 ∪ ϕ23 + ϕ12 ∪ χ3] ∈ χ1 ∪H
1(G),

as desired. ut

Remark 2.4. Vogel [Vog04, Example 1.2.11] proves the assertion of Proposition 2.3 un-
der the assumption that G = F/R for a free pro-p group F and a closed normal sub-
group R of F contained in the third term of its lower central sequence. In a topological
context, Kraines [Kra66, Th. 8] proves that Massey products of arbitrary length remain
the same up to a sign when the order of the entries is reversed.

Proposition 2.5. Suppose that (2.1) with U = G is exact at H 2(G) for all χ ∈ H 1(G).
The following conditions are equivalent:

(1) For all χ1, χ2, χ3 ∈ H
1(G), the Massey product 〈χ1, χ2, χ3〉 is not essential.

(2) For all χ1, χ2, χ3 ∈ H
1(G) such that the pairs χ1, χ3 and χ2, χ3 are Fp-linearly

independent, 〈χ1, χ2, χ3〉 is not essential.

Proof. (1)⇒(2): Trivial.
(2)⇒(1): Suppose that 〈χ1, χ2, χ3〉 6= ∅. By Proposition 1.1(a), χ1 ∪ χ2 = 0 =

χ2 ∪ χ3 in H 2(G). Therefore there exist ϕ12, ϕ23 ∈ C
1(G) such that ∂ϕ12 = χ1 ∪ χ2 and

∂ϕ23 = χ2 ∪χ3 in C2(G). Then χ1 ∪ϕ23+ϕ12 ∪χ3 ∈ Z
2(G). By Proposition 1.1(b), we

need to find ϕ12, ϕ23 such that the cohomology class of this 2-cocycle is contained in the
subset χ1 ∪H

1(G)+ χ3 ∪H
1(G) of H 2(G). We break the discussion into several cases.

Case I: The pairs χ1, χ3 and χ2, χ3 are Fp-linearly independent. Then we simply ap-
ply (2).
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Case II: χ1, χ3 are Fp-linearly dependent. We may assume that χ1 = iχ3 for some
i ∈ Fp. Given ϕ12, ϕ23 as above we then have

ResKer(χ3)(χ1 ∪ ϕ23 + ϕ12 ∪ χ3) = 0.

By (2.1), [χ1 ∪ ϕ23 + ϕ12 ∪ χ3] ∈ χ3 ∪H
1(G), and we are done.

Case III: χ2 = 0. Then χ1 ∪ χ2 = 0 = χ2 ∪ χ3 in C2(G), so for ϕ12 = ϕ23 = 0 we have
[χ1 ∪ ϕ23 + ϕ12 ∪ χ3] = 0.

Case IV: χ1, χ3 are Fp-linearly independent, χ2 6= 0, and χ2, χ3 are Fp-linearly
dependent. Then χ1, χ2 are also Fp-independent. By Proposition 2.3, 〈χ1, χ2, χ3〉 =

〈χ3, χ2, χ1〉, and by (2), 〈χ3, χ2, χ1〉 is not essential. ut

3. Cup products as coboundaries

LetG be a profinite group and let χa, χb ∈ H 1(G) be Fp-linearly independent. Set Na =
Ker(χa), Nb = Ker(χb) and L = Na ∩ Nb. Thus G/L ∼= (G/Na)× (G/Nb) ∼= (Z/p)2.
Let σa, σb ∈ G be dual to χa, χb, respectively, i.e.,

χa(σa) = 1, χa(σb) = 0, χb(σa) = 0, χb(σb) = 1.

Let τ = [σa, σb] = σaσbσ−1
a σ−1

b .

Proposition 3.1. Suppose that ω ∈ H 1(Nb) satisfies ω − σbω = ResNb χa . Then:

(a) ω(τ) = 1.
(b) Na ∩ Ker(ω) is normal in G.
(c) (G : Na ∩ Ker(ω)) = p3.
(d) The images σ̄a, σ̄b, τ̄ of σa, σb, τ , respectively, in Ḡ = G/(Na ∩Ker(ω)) generate Ḡ

and satisfy [τ̄ , σ̄a] = [τ̄ , σ̄b] = 1.

Proof. (a) Since σa, σbσaσ−1
b ∈ Nb, the assumption on ω gives

ω(τ) = ω(σa)+ ω(σbσ
−1
a σ−1

b ) = ω(σa)− (σbω)(σa) = (ResNb χa)(σa) = 1.

(b) For every σ ∈ Nb we have σω = ω, and therefore σ(ResL ω) = ResL ω. By the
assumption on ω, ResL ω−σb(ResL ω) = ResL χa = 0. Therefore σ(ResL ω) = ResL ω
for every σ ∈ 〈Nb, σb〉 = G. This means that ω(σhσ−1) = ω(h) for every σ ∈ G and
h ∈ L. Consequently, Ker(ResL ω) is normal in G, and we observe that Na ∩ Ker(ω) =
Ker(ResL ω).

(c) We note that every commutator in G is contained in L. From this and (a), we see
that τ ∈ L \ Ker(ResL ω), whence (L : Ker(ResL ω)) = p. Consequently,

(G : Na ∩ Ker(ω)) = (G : L)(L : Ker(ResL ω)) = p2
· p = p3.

(d) The images of σ̄a, σ̄b generateG/L ∼= (Z/p)2. Also, the quotientL/(Na∩Ker(ω))
= L/Ker(ResL(ω)) is generated by τ̄ , by (a). Hence σ̄a, σ̄b, τ̄ generate Ḡ. Since
σa, τ ∈ Nb, we have ω(τσaτ−1σ−1

a ) = 0, so τσaτ−1σ−1
a ∈ Na ∩ Ker(ω). Therefore

[τ̄ , σ̄a] = 1.
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As τ ∈ Na ∩Nb,

ω(τσbτ
−1σ−1

b ) = ω(τ)+ (σbω)(τ
−1) = ω(τ)− (σbω)(τ) = (ResNb χa)(τ ) = 0.

Therefore τσbτ−1σ−1
b ∈ Na ∩ Ker(ω), i.e., [τ̄ , σ̄b] = 1. ut

It follows from Proposition 3.1 that Ḡ is the Heisenberg group Hp3 (D4 when p = 2).
We refer to [Sha99, Ch. II] for related results.

Proposition 3.2. Suppose that ω ∈ H 1(Nb) satisfies ω − σbω = ResNb χa . There exists
ϕ ∈ C1(G) with ∂ϕ = −χa ∪ χb in C2(G) and ω = ResNb ϕ in C1(Nb).

Proof. Let χ̄a, χ̄b ∈ Z1(Ḡ) be the characters with inflations χa, χb, respectively, to G.
Every element of Ḡ can be uniquely written as σ̄ ibσ̄

j
a τ̄

k for integers 0 ≤ i, j, k < p (which
we also consider as elements of Z/p). We define ϕ̄ ∈ C1(Ḡ) by ϕ̄(σ̄ ) = ω(σa)j + k. Let
ϕ ∈ C1(G) be the inflation of ϕ̄ to G.

To compute ∂ϕ, we take 0 ≤ i, j, k, r, s, t < p. Then σ̄ ja σ̄ rb = σ̄
r
b σ̄

j
a τ̄

jr , so

ϕ̄(σ̄ ibσ̄
j
a τ̄

k σ̄ rb σ̄
s
a τ̄

t ) = ϕ̄(σ̄ i+rb σ̄
j+s
a τ̄ k+t+jr) = ω(σa)(j + s)+ k + t + jr.

Therefore

(∂ϕ̄)(σ̄ ibσ̄
j
a τ̄

k, σ̄ rb σ̄
s
a τ̄

t ) = ϕ̄(σ̄ ibσ̄
j
a τ̄

k)+ ϕ̄(σ̄ rb σ̄
s
a τ̄

t )− ϕ̄(σ̄ ibσ̄
j
a τ̄

k σ̄ rb σ̄
s
a τ̄

t )

= ω(σa)j + k + ω(σa)s + t − (ω(σa)(j + s)+ k + t + jr) = −jr

= −χ̄a(σ̄
i
bσ̄

j
a τ̄

k)χ̄b(σ̄
r
b σ̄

s
a τ̄

t ) = −(χ̄a ∪ χ̄b)(σ̄
i
bσ̄

j
a τ̄

k, σ̄ rb σ̄
s
a τ̄

t ).

The first equality of the proposition now follows by inflation to G.
For the second equality, let σ ∈ Nb and let σ̄ be the image of σ in Nb/(Na ∩Ker(ω)).

We may write σ̄ = σ̄ ja τ̄ k for some integers 0 ≤ j, k < p. Since ω(τ) = 1 (Proposition
3.1(a)), we have

ω(σ) = ω(σ
j
a τ

k) = ω(σa)j + k = ϕ(σ). ut

4. Massey products containing 0

Let χ1, χ2, χ3 ∈ H
1(G), and set N1 = Ker(χ1), N3 = Ker(χ3) and M = N1 ∩ N3.

Suppose that σ3 ∈ G satisfies χ1(σ3) = 0 and χ3(σ3) = 1. Also let ω ∈ H 1(N3). We
assume that

ω − σ3ω = ResN3 χ2, χ1 ∪ χ2 = 0, (4.1)

and χ2, χ3 are Fp-linearly independent.

Lemma 4.1. The triple Massey product 〈χ1, χ2, χ3〉 has a representative α such that
ResN3 α = −ResN3(χ1) ∪ ω.

Proof. Since χ1 ∪ χ2 = 0 in H 2(G), there exists ϕ12 ∈ C
1(G) such that ∂ϕ12 = χ1 ∪ χ2

in C2(G). Proposition 3.2 and (4.1) give rise to ϕ23 ∈ C
1(G) with ∂ϕ23 = −χ2 ∪ χ3 and



3636 Ido Efrat, Eliyahu Matzri

ω = ResN3 ϕ23. Then χ1 ∪ (−ϕ23)+ ϕ12 ∪ χ3 is a 2-cocycle with cohomology class α in
〈χ1, χ2, χ3〉. We have

ResN3(χ1 ∪ (−ϕ23)+ ϕ12 ∪ χ3) = −ResN3(χ1) ∪ ω

in C2(N3), whence ResN3 α = −ResN3(χ1) ∪ ω in H 2(N3). ut

Theorem 4.2. In the above setup (4.1), assume further that the sequence (2.1) is exact
for every open subgroup U of G of index dividing p and every χ ∈ H 1(U). Then the
following conditions are equivalent:

(1) 0 ∈ 〈χ1, χ2, χ3〉.
(2) There exists λ ∈ H 1(G) such that ResN3(χ1 ∪ λ) = ResN3(χ1) ∪ ω.
(3) ω ∈ ResN3 H

1(G)+ CorN3 H
1(M).

Proof. (1)⇒(2): Lemma 4.1 yields α ∈ 〈χ1, χ2, χ3〉 with ResN3 α = −ResN3(χ1) ∪ ω.
Since also 0 ∈ 〈χ1, χ2, χ3〉, Proposition 1.1(b) gives λ, λ′ ∈ H 1(G) such that −α =
χ1 ∪ λ+ χ3 ∪ λ

′. Now this implies that ResN3 α = −ResN3(χ1 ∪ λ), whence (2).
(2)⇒(1): For α as in Lemma 4.1, ResN3(α + χ1 ∪ λ) = 0. By the exact sequence

(2.1), α + χ1 ∪ λ ∈ χ3 ∪H
1(G), proving (1).

(2)⇔(3): This follows again from (2.1). ut

5. Kummer formations

Let A be a discrete G-module. For a closed normal subgroup U of G let AU be the
submodule of A fixed by U . There is an induced G/U -action on AU .

For any open normal subgroups U ≤ U ′ of G let NU ′/U : AU → AU
′

be the trace
map a 7→

∑
σ σa, where σ ranges over a system of representatives for the cosets of U ′

modulo U .
Let IU ′/U be the subgroup of AU consisting of all elements of the form σ̄ a − a with

σ̄ ∈ U ′/U and a ∈ AU . We recall that

Ĥ−1(U ′/U,AU ) = Ker(NU ′/U )/IU ′/U .

When U ′/U is cyclic with generator σ̄ , the subgroup IU ′/U consists of all elements
σ̄ a − a with a ∈ AU (since σ̄ k − 1 = (σ̄ − 1)

∑k−1
i=0 σ̄

i). Then Ĥ−1(U ′/U,AU ) ∼=

H 1(U ′/U,AU ) [NSW08, Prop. 1.7.1].

Definition 5.1. A p-Kummer formation (G,A, {κU }U ) consists of a profinite group G,
a discrete G-module A, and for each open normal subgroup U of G a G-equivariant
epimorphism κU : A

U
→ H 1(U) such that for every open normal subgroup U of G the

following conditions hold:

(i) the sequence (2.1) is exact for every χ ∈ H 1(U);
(ii) Ker(κU ) = pAU ;
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(iii) for every open normal subgroup U ′ of G such that U ≤ U ′, there are commutative
squares

AU
κU // H 1(U) AU

κU //

NU ′/U
��

H 1(U)

CorU ′
��

AU
′
?�

OO

κU ′ // H 1(U ′)

ResU

OO

AU
′ κU ′ // H 1(U ′)

(iv) for every open normal subgroup U ′ of G such that U ≤ U ′ and (U ′ : U) = p one
has Ĥ−1(U ′/U,AU ) = 0.

Example 5.2. Let F be a field which contains a root of unity of order p. We fix an iso-
morphism between the group µp of pth roots of unity and Z/p. Given an open subgroup
U ofGF let E = FUsep be its fixed field. The Kummer homomorphism κU : E

×
→ H 1(U)

is the connecting homomorphism arising from the short exact sequence of U -modules

0→ Z/p→ F×sep
p
−→ F×sep → 1.

By Hilbert’s Theorem 90 it is surjective. Then (GF , F×sep, {κU }U ) is a p-Kummer forma-
tion. Indeed, (i) was pointed out in Example 2.2. (ii) is the standard fact that Ker(κU ) =
(E×)p, and (iii) follows from the commutativity of connecting homomorphisms with
restrictions and correstrictions. For (iv) use the isomorphism Ĥ−1(U ′/U,AU ) =

H 1(U ′/U,AU ) for U ′/U cyclic and Hilbert’s Theorem 90.

Proposition 5.3. Let (G,A, {κU }U ) be a p-Kummer formation. Let M1,M3 be distinct
normal subgroups of G of index p, let M = M1 ∩ M3, and let σ3 ∈ M1 satisfy G =
〈M3, σ3〉. Suppose that λ1 ∈ H

1(M1) and λ3 ∈ H
1(M3) satisfy CorG λ1 = CorG λ3.

Then there exists ω ∈ H 1(M3) such that

σ3ω − ω = −ResM3 CorG λ3, ω ∈ ResM3 H
1(G)+ CorM3 H

1(M).

Proof. There exist y1 ∈ A
M1 and y3 ∈ A

M3 such that κM1(y1) = λ1 and κM3(y3) = λ3.
Letw =

∑p−1
i=0 iσ

i
3y3, and note thatw ∈ AM3 . We have (σ3−1)

∑p−1
i=0 iσ

i
3 = (p−1)σp3 +

1−
∑p−1
i=0 σ

i
3 in Z[G]. As σp3 ∈ M3, this gives

(σ3 − 1)w = ((p − 1)σp3 + 1−NG/M3)y3 = py3 −NG/M3y3.

Set ω = κM3(w) ∈ H
1(M3). Then the G-equivariance of κM3 and assumption (iii) imply

that

σ3ω − ω = κM3((σ3 − 1)w) = −κM3(NG/M3y3) = −ResM3 κG(NG/M3y3)

= −ResM3 CorG κM3(y3) = −ResM3 CorG λ3.

By (iii),

κG(NG/M1y1 −NG/M3y3) = CorG κM1(y1)− CorG κM3(y3)

= CorG λ1 − CorG λ3 = 0.

From (ii) we obtain b ∈ AG such that NG/M1y1 −NG/M3y3 = pb.
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Next we choose σ1 ∈ M3 such that G = 〈M1, σ1〉, and denote M ′ = 〈M,σ1σ3〉.
We note that σ1, σ3 commute modulo M , so NM ′/M =

∑p−1
i=0 σ

i
1σ

i
3 on AM . Therefore

NM ′/M = NG/M3 on AM3 , and NM ′/M = NG/M1 on AM1 . We obtain

NM ′/M(y3 − y1 + b) = NG/M3y3 −NG/M1y1 + pb = 0.

By (iv), Ĥ−1(M ′/M,AM) = 0, so y3−y1+b = (σ1σ3−1)t for some t ∈ AM . Therefore

(σ3 − 1)w = py3 −NG/M3y3 = NM3/My3 −NG/M1y1 + pb

= NM3/My3 −NM3/My1 + pb = NM3/M(y3 − y1 + b)

= NM3/M(σ1σ3 − 1)t = σ3σ1NM3/M t −NM3/M t = (σ3 − 1)NM3/M t,

since σ1NM ′/M = NM ′/M on AM . Thus w − NM3/M t ∈ A
〈M3,σ3〉 = AG. Taking η =

κM(t) ∈ H
1(M), we find using (iii) that

ω − CorM3 η = κM3(w −NM3/M t) = ResM3 κG(w −NM3/M t) ∈ ResM3 H
1(G).

Consequently, ω ∈ ResM3 H
1(G)+ CorM3 H

1(M). ut

Theorem 5.4. Let (G,A, {κU }U ) be a p-Kummer formation and let χ1, χ2, χ3 ∈ H
1(G).

Then the Massey product 〈χ1, χ2, χ3〉 is not essential.

Proof. We assume that 〈χ1, χ2, χ3〉 is non-empty. By Proposition 1.1(a), χ1 ∪ χ2 =

0 = χ2 ∪ χ3. By Proposition 2.5, we may assume that the pairs χ1, χ3 and χ2, χ3 are
Fp-linearly independent.

Let M1 = Ker(χ1), M3 = Ker(χ3), and M = M1 ∩M3, and choose σ3 ∈ M1 such
that G = 〈M3, σ3〉. The exact sequence (2.1) yields λ1 ∈ H

1(M1) and λ3 ∈ H
1(M3)

such that CorG λ1 = χ2 = CorG λ3. Proposition 5.3 gives rise to ω ∈ H 1(M3) such
that σ3ω − ω = −ResM3 χ2 and ω ∈ ResM3 H

1(G) + CorM3 H
1(M). By Theorem 4.2,

0 ∈ 〈χ1, χ2, χ3〉. ut

Theorem 5.4 and Example 5.2 imply the Main Theorem.
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[EMi11] Efrat, I., Mináč, J.: On the descending central sequence of absolute Galois groups.
Amer. J. Math. 133, 1503–1532 (2011) Zbl 1236.12003 MR 2863369
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Adv. Math. 273, 242–270 (2015) Zbl 1334.12005 MR 3311763
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